US20070117845A1 - 2-Pyridinylethylcarboxamide derivatives and their use as fungicides - Google Patents

2-Pyridinylethylcarboxamide derivatives and their use as fungicides Download PDF

Info

Publication number
US20070117845A1
US20070117845A1 US10/583,011 US58301104A US2007117845A1 US 20070117845 A1 US20070117845 A1 US 20070117845A1 US 58301104 A US58301104 A US 58301104A US 2007117845 A1 US2007117845 A1 US 2007117845A1
Authority
US
United States
Prior art keywords
halogen atoms
alkyl
group
general formula
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/583,011
Other languages
English (en)
Inventor
Pierre-Yves Coqueron
Philippe Desbordes
Darren Mansfield
Heiko Rieck
Marie-Claire Grosjean-Cournoyer
Alain Villier
Pierre Genix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience SA
Original Assignee
Bayer CropScience SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience SA filed Critical Bayer CropScience SA
Assigned to BAYER CROPSCIENCE S.A. reassignment BAYER CROPSCIENCE S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VILLIER, ALAIN, RIECK, HEIKO, COQUERON, PIERRE-YVES, DESBORDES, PHILIPPE, GENIX, PIERRE, MANSFIELD, DARREN JAMES, GROSJEAN-COURNOYER, MARIE-CLAIRE
Publication of US20070117845A1 publication Critical patent/US20070117845A1/en
Priority to US12/292,676 priority Critical patent/US8071627B2/en
Priority to US13/303,632 priority patent/US8318777B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • C07D213/82Amides; Imides in position 3
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to novel N-[2-(2-pyridinyl)ethyl]carboxamide derivatives, their process of preparation, their use as fungicides, particularly in the form of fungicidal compositions, and methods for the control of phytopathogenic fungi of plants using these compounds or their compositions.
  • the present invention relates to a N-[2-(2-pyridinyl)ethyl]carboxamide derivative of general formula (I) in which:
  • the 2-pyridyl may be substituted in every position by (X) n and R a , in which X, R a and n are as defined above.
  • the present invention relates to N-[2-(2-pyridinyl)ethyl]carboxamide derivative of general formula (I) in which the different characteristics may be chosen alone or in combination as being:
  • the 2-pyridyl is substituted in 3-position by —Cl and in 5-position by —CF 3 .
  • the two carbon atoms and the nitrogen atom of the “ethylamide part” of the compound of formula (I) are respectively substituted by R 1 and R 2 , R 3 and R 4 , and R 5 , at least one the substituents R 1 , R 2 , R 3 and R 4 being different from hydrogen.
  • the present invention also relates to N-[2-(2-pyridinyl)ethyl]carboxamide derivative of general formula (I) in which the following characteristics may be chosen alone or in combination as being:
  • Het of the compound of general formula (I) may be a five membered ring heterocycle.
  • Specific examples of compounds of the present invention where Het is a five membered heterocycle include: Het Represents a Heterocycle of the General Formula (Het-1) in which:
  • Het Represents a Heterocycle of the General Formula (Het-3) in which:
  • Het Represents a Heterocycle of the General Formula (Het-6) in which:
  • Het Represents a Heterocycle of the General Formula (Het-7) in which:
  • Het Represents a Heterocycle of the General Formula (Het-8) in which:
  • Het Represents a Heterocycle of the General Formula (Het-14) in which:
  • Het Represents a Heterocycle of the General Formula (Het-15) in which:
  • Het Represents a Heterocycle of the General Formula (Het-17) in which
  • Het of the compound of general formula (I) may be a six membered ring heterocycle.
  • Specific examples of compounds of the present invention where Het is a six membered heterocycle include: Het Represents a Heterocycle of the General Formula (Het-21) in which:
  • Het represents a Heterocycle of the General Formula (Het-23) in which R 63 , R 64 , R 65 and R 66 , which may be the same or different, may be a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a C 1 -C 4 -alkyl, a C 1 -C 4 -halogenoalkyl having 1 to 5 halogen atoms, a C 1 -C 4 -alkoxy, a C 1 -C 4 -alkylthio, a C 1 -C 4 -halogenoalkylthio having 1 to 5 halogen atoms, a C 1 -C 4 -halogenoalkoxy having 1 to 5 halogen atoms, a C 1 -C 4 -alkylsulphinyl or a C 1 -C 4 -alkyls
  • Het Represents a Heterocycle of the General Formula (Het-24) in which:
  • the present invention also relates to a process for the preparation of the compound of general formula (I).
  • a process for the preparation of compound of general formula (I) as defined above which comprises reacting a 2-pyridine derivative of general formula (II) or one of its salt:
  • a catalyst may be chosen as being 4-dimethyl-aminopyridine, 1-hydroxy-benzotriazole or dimethylformnamide.
  • Suitable condensing agent may be chosen as being acid halide former, such as phosgene, phosphorous tribromide, phosphorous trichloride, phosphorous pentachloride, phosphorous trichloride oxide or thionyl chloride; anhydride former, such as ethyl chloroformate, methyl chloroformate, isopropyl chloroformate, isobutyl chloroformate or methanesulfonyl -chloride; carbodiimides, such as N,N′-dicyclohexylcarbodiimide (DCC) or other customary condensing agents, such as phosphorous pentoxide, polyphosphoric acid, N,N′-carbonyl-diimidazole, 2-ethoxy-N-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ)
  • R 5 is a hydrogen atom
  • the above mentioned process for the preparation of compound of general formula (I) may optionally be completed by a further step according to the following reaction scheme: in which: R 1 , R 2 , R 3 , R 4 , R 5 , R a , X, n and Het are as defmed above;
  • amine derivatives of general formula (II) may be prepared by different processes.
  • One example (A) of such a process may be when:
  • the first step (step A-1) is conducted in the presence of a base.
  • the base will be chosen as being an inorganic or an organic base. Suitable examples of such bases may for example be alkaline earth metal or alkali metal hydrides, hydroxides, amides, alcoholates, carbonates or hydrogen carbonates, acetates or tertiary amines.
  • the first step (step A-1) according to the present invention is conducted at a temperature of from 0° C. to 200° C.
  • first step (step A-1) is conducted at a temperature of from 0° C. to 120° C., more preferably at a temperature of from 0° C. to 80° C.
  • the first step (step A-1) according to the present invention may be conducted in the presence of a solvent.
  • the solvent is chosen as being water, an organic solvent or a mixture of both.
  • Suitable organic solvents may for example be aliphatic, alicyclic or aromatic solvent.
  • the first step (step A-1) according to the present invention may also be conducted in the presence of a catalyst.
  • the catalyst is chosen as being palladium salts or complexes. More preferably, the catalyst is chosen as being a palladium complex.
  • Suitable palladium complex catalyst may for example be generated directly in the reaction mixture by separately adding to the reaction mixture a palladium salt and a complex ligand.
  • Suitable ligands may for example be bulky phosphines or arsines ligands, such as (R)-( ⁇ )-1-[(S)-2-(dicyclohexylphosphino)ferrocenyl]ethyldicyclohexylphosphine and its corresponding enantiomer, or a mixture of both; (R)-( ⁇ )-1[(S)-2-(dicyclohexylphosphino)ferrocenyl]ethyldiphenylphosphine and its corresponding enantiomer, or a mixture of both; (R)-( ⁇ )-1[(S)-2-(diphenylphosphino)ferrocenyl]ethyldi-t-butylphosphine and its corresponding enantiomer, or a mixture of both; or (R)-( ⁇ )-1[(S)-2-(diphenylphosphino)ferrocenyl]ethy
  • the fourth step (step A-4) according to the present invention is conducted in the presence of a hydride donor.
  • the hydride donor is chosen as being metal or metallloid hydrides such as LiAlH 4 , NaBH 4 , KBH 4 , B 2 H 6 .
  • the fourth step (step A-4) according to the present invention is conducted in the presence of a catalyst.
  • the catalyst is chosen as being Co(II)-Chloride, Ni(II)-chloride, ammonia or one of its salt, Palladium on charcoal, Raney Nickel, Raney Cobalt or Platinum.
  • the fourth step (step A-4) according to the present invention is conducted at a temperature of from 0° C. to 150° C.
  • the temperature is of from 10° C. to 120° C. More prefereably, the temperature is of from 10° C. to 80° C.
  • the fourth step (step A-4) according to the present invention is conducted under a pressure of from 1 bar to 100 bar.
  • the pressure is of from 1 bar to 50 bar.
  • the fourth step (step A-4) according to the present invention may be conducted in the presence of an organic solvent, of water or of a mixture thereof
  • the solvent is chosen as being ether, alcohol, carboxylic acid, or a mixture thereof with water or pure water.
  • a second example (B) of such a process may be when:
  • the first step (step B-1) is conducted at a temperature of from ⁇ 100° C. to 200° C.
  • first step (step A-1) is conducted at a temperature of from ⁇ 80° C. to 120° C., more preferably at a temperature of from ⁇ 80° C. to 80° C.
  • the first step (step B-1) according to the present invention is conducted in the presence of a base.
  • the base will be chosen as being an inorganic or an organic base. Suitable examples of such bases may for example be alkaline earth metal or alkali metal hydrides, hydroxides, amides, alcoholates, carbonates or hydrogen carbonates, acetates or tertiary amines.
  • the first step (step B-1) according to the present invention may be conducted in the presence of a solvent.
  • the solvent is chosen as being water, an organic solvent or a mixture of both.
  • Suitable organic solvents may for example be aliphatic, alicyclic or aromatic solvent.
  • the first step (step B-1) according to the present invention may also be conducted in the presence of a catalyst.
  • the catalyst is chosen as being palladium salts or complexes. More preferably, the catalyst is chosen as being a palladium complex.
  • Suitable palladium complex catalyst may for example be generated directly in the reaction mixture by separately adding to the reaction mixture a palladium salt and a complex ligand.
  • Suitable ligands may for example be bulky phosphines or arsines ligands, such as (R)-( ⁇ )-1-[(S)-2-(dicyclohexylphosphino)ferrocenyl]ethyldicyclohexylphosphine and its corresponding enantiomer, or a mixture of both; (R)-( ⁇ )-1[(S)-2-(dicyclohexylphosphino)ferrocenyl]ethyldiphenylphosphine and its corresponding enantiomer, or a mixture of both; (R)-( ⁇ )-1[(S)-2-(diphenylphosphino)ferrocenyl]ethyldi-t-butylphosphine and its corresponding enantiomer, or a mixture of both; or (R)-( ⁇ )- 1[(S)-2-(diphenylphosphino)ferrocenyl]eth
  • step B-2 The preferred conditions under which step B-2 is conducted are the same than the preferred conditions under which step A-4 of the above mentioned process A is conducted.
  • step B-3 The preferred conditions under which step B-3 is conducted are the same than the preferred conditions under which step A-5 of the above mentioned process A is conducted.
  • a third example (C) of such a process may be when:
  • a fourth example (D) of such a process may be when:
  • a fifth example (E) of such a process may be when:
  • a sixth example (F) of such a process may be when:
  • a seventh example (G) of such a process may be when:
  • the present invention also relates to a fungicidal composition
  • a fungicidal composition comprising an effective amount of an active material of general formula (I).
  • a fungicidal composition comprising, as an active ingredient, an effective amount of a compound of general formula (I) as defined above and an agriculturally acceptable support, carrier or filler.
  • the term “support” denotes a natural or synthetic, organic or inorganic material with which the active material is combined to make it easier to apply, notably to the parts of the plant.
  • This support is thus generally inert and should be agriculturally acceptable.
  • the support may be a solid or a liquid.
  • suitable supports include clays, natural or synthetic silicates, silica, resins, waxes, solid fertilisers, water, alcohols, in particular butanol, organic solvents, mineral and plant oils and derivatives thereof Mixtures of such supports may also be used.
  • composition may also comprise additional components.
  • the composition may further comprise a surfactant.
  • the surfactant can be an emulsifier, a dispersing agent or a wetting agent of ionic or non-ionic type or a mixture of such surfactants.
  • the presence of at least one surfactant is generally essential when the active material and/or the inert support are water-insoluble and when the vector agent for the application is water.
  • surfactant content may be comprised between 5% and 40% by weight of the composition.
  • additional components may also be included, e.g. protective colloids, adhesives, thickeners, thixotropic agents, penetration agents, stabilisers, sequestering agents.
  • the active materials can be combined with any solid or liquid additive, which complies with the usual formulation techniques.
  • composition according to the invention may contain from 0.05 to 99% (by weight) of active material, preferably 10 to 70% by weight.
  • compositions according to the present invention can be used in various forms such as aerosol dispenser, capsule suspension, cold fogging concentrate, dustable powder, emulsifiable concentrate, emulsion oil in water, emulsion water in oil, encapsulated granule, fine granule, flowable concentrate for seed treatment, gas (under pressure),gas generating product, granule, hot fogging concentrate, macrogranule, microgranule, oil dispersible powder, oil miscible flowable concentrate, oil miscible liquid, paste, plant rodlet, powder for dry seed treatment, seed coated with a pesticide, soluble concentrate, soluble powder, solution for seed treatment, suspension concentrate (flowable concentrate), ultra low volume (ulv) liquid, ultra low volume (ulv) suspension, water dispersible granules or tablets, water dispersible powder for slurry treatment, water soluble granules or tablets, water soluble powder for seed treatment and wettable powder.
  • aerosol dispenser capsule suspension, cold fogging concentrate
  • dustable powder emuls
  • compositions include not only compositions which are ready to be applied to the plant or seed to be treated by means of a suitable device, such as a spraying or dusting device, but also concentrated commercial compositions which must be diluted before application to the crop.
  • the compounds of the invention can also be mixed with one or more insecticides, fungicides, bactericides, attractant acaricides or pheromones or other compounds with biological activity.
  • the mixtures thus obtained have a broadened spectrum of activity.
  • the mixtures with other fungicides are particularly advantageous.
  • the fingicidal compositions of the present invention can be used to curatively or preventively conltrol the phytopathogenic flingi of crops.
  • a method for curatively or preventively controlling the phytopathogenic :fungi of crops characterised in that a fungicidal composition as hereinbefore defined is applied to the seed, the plant and/or to the fruit of the plant or to the soil in which the plant is growing or in which it is desired to grow.
  • composition as used against phytopathogenic fungi of crops comprises an effective and non-phytotoxic amount of an active material of general formula (I).
  • an effective and non-phytotoxic amount means an amount of composition according to the invention which is sufficient to control or destroy the fungi present or liable to appear on the crops, and which does not entail any appreciable symptom of phytotoxicity for the said crops. Such an amount can vary within a wide range depending on the fungus to be controlled, the type of crop, the climatic conditions and the compounds included in the fungicidal composition according to the invention.
  • the method of treatment according to the present invention is useful to treat propagation material such as tubers or rhizomes, but also seeds, seedlings or seedlings pricking out and plants or plants pricking out. This method of treatment can also be useful to treat roots.
  • the method of treatment according to the present invention can also be useful to treat the overground parts of the plant such as trunks, stems or stalks, leaves, flowers and fruits of the concerned plant.
  • cotton Among the plants that can be protected by the method according to the invention, mention may be made of cotton; flax; vine; fruit crops such as Rosaceae sp. (for instance pip fruits such as apples and pears, but also stone fruits such as apricots, almonds and peaches), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lautraceae sp., Musaceae sp.
  • Rosaceae sp. for instance pip fruits such as apples and pears, but also stone fruits such as apricots, almonds and peaches
  • Ribesioidae sp. Juglandaceae sp.
  • Betulaceae sp. Anacardiaceae s
  • Rubiaceae sp. for instance banana trees and plantins
  • Rubiaceae sp. Theaceae sp., Sterculiceae sp., Rutaceae sp.
  • leguminous crops such as Solanaceae sp. (for instance tomatoes), Liliaceae sp., Asteraceae sp. (for instance lettuces), Umbelliferae sp., Cruciferae sp., Chenopodiaceae sp., Cucurbitaceae sp., Papilionaceae sp. (for instance peas), Rosaceae sp. (for instance strawberries); big crops such as Graminae sp.
  • Asteraceae sp. for instance sunflower
  • Cruciferae sp. for instance colza
  • Papilionaceae sp. for instance soja
  • Solanaceae sp. for instance potatoes
  • Chenopodiaceae sp. for instance beetroots
  • horticultural and forest crops as well as genetically modified homologues of these crops.
  • the fungicide composition according to the present invention may also be used against flngal diseases liable to grow on or inside timber.
  • the term “timber” means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood.
  • the method for treating timber according to the invention mainly consists in contacting one or more compounds of the present invention, or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.
  • the dose of active material usually applied in the treatment according to the present invention is generally and advantageously between 10 and 800 g/ha, preferably between 50 and 300 g/ha for applications in foliar treatment.
  • the dose of active substance applied is generally and advantageously between 2 and 200 g per 100 kg of seed, preferably between 3 and 150 g per 100 kg of seed in the case of seed treatment. It is clearly understood that the doses indicated above are given as illustrative examples of the invention. A person skilled in the art will know how to adapt the application doses according to the nature of the crop to be treated.
  • the fungicidal composition according to the present invention may also be used in the treatment of genetically modified organisms with the compounds according to the invention or the agrochemical compositions according to the invention.
  • Genetically modified plants are plants into whose genome a heterologous gene encoding a protein of interest has been stably integrated.
  • the expression “heterologous gene encoding a protein of interest” essentially means genes which give the transformed plant new agronomic properties, or genes for improving the agronomic quality of the transformed plant.
  • compositions according to the present invention may also be used for the preparation of composition useful to curatively or preventively treat human and animal fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.
  • fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.
  • M+1 means the molecular ion peak, plus or minus 1 am.u. (atomic mass units) respectively, as observed in mass spectroscopy.
  • reaction mixture is concentrated to dryness and purified on silica to yield to 95 mg of N- ⁇ 2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]butyl ⁇ -1-methyl-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide (57%).
  • reaction mixture is concentrated to dryness and purified on silica to yield to 95 mg of N- ⁇ 2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-2-methylpropyl ⁇ -1-methyl-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide (59%).
  • reaction mixture is concentrated to dryness and purified on silica to yield to 96 mg of N-(1- ⁇ [3-chloro-5-(trifluoromethyl)-2-pyridinyl]methyl ⁇ propyl)-3-iodo-2-thiophenecarboxamide (54%).
  • reaction mixture is concentrated to dryness and purified on silica to yield to 27 mg of N- ⁇ 2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-1-phenylethyl ⁇ -3-iodo-2-thiophenecarboxamide.
  • reaction mixture is concentrated to dryness and purified on silica to yield to 29 mg of N- ⁇ 2-(acetylamino)-2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]ethyl ⁇ -3 -iodo-2-thiophenecarboxamide.
  • reaction mixture is concentrated to dryness to provide 104 g of desired product 2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-1-butanamine hydrochloride (87%).
  • the organic phase is washed with an aqueous solution of sodium hydroxide 1 M, brine, and water; dried over magnesium sulfate, filtered and concentrated to dryness.
  • the crude material is dissolved in 15 mL of hydrochloric acid 1M, extracted with 15 mL of ethyl acetate.
  • aqueous phase is then basified with an aqueous solution of sodium hydroxide 1 M, extracted thrice with 15 mL of ethyl acetate, dried over magnesium sulfate, filtered and concentrated to dryness to provide 0.21 g of desired product 1-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-2-butanamine (32%).
  • aqueous phase is concentrated to dryness to provide a pink solid which is washed with diethyl ether, filtered and dried to provide 8.10 g of desired product amino[3-chloro-5-(trifluoromethyl)-2-pyridinyl]acetonitrile hydrochloride (79%).
  • the active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.
  • Radish plants (Pemot variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 18-20° C., are treated at the cotyledon stage by spraying with the aqueous suspension described above.
  • Plants, used as controls, are treated with an aqueous solution not containing the active material.
  • the plants are contaminated by spraying them with an aqueous suspension of Alternaria brassicae spores (40,000 spores per cm 3 ).
  • the spores are collected from a 12-13-day-old culture.
  • the contaminated radish plants are incubated for 6-7 days at about 18° C., under a humid atmosphere.
  • the active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.
  • Wheat plants (Audace variety) in starter cups, sown on 50/50 peat soil-pozzolana substrate and grown at 12° C., are treated at the 1-leaf stage (10 cm tall) by spraying with the aqueous suspension described above.
  • Plants, used as controls, are treated with an aqueous solution not containing the active material.
  • the plants are contaminated by dusting them with Erysiphe graminis f . sp. tritici spores, the dusting being carried out using diseased plants. Grading is carried out 7 to 14 days after the contamination, in comparison with the control plants.
  • the active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.
  • Cucumber plants (Marketer variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 18-20° C., are treated at the cotyledon Z11 stage by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material.
  • the plants are contaminated by depositing drops of an aqueous suspension of Botrytis cinerea spores (150,000 spores per ml) on upper surface of the leaves.
  • the spores are collected from a 15-day-old culture and are suspended in a nutrient solution composed of:
  • the contaminated cucumber plants are settled for 5/7 days in a climatic room at 15-11° C. (day/night) and at 80% relative humidity.
  • the active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.
  • Barley plants (Express variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 12° C., are treated at the 1-leaf stage (10 cm tall) by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material. After 24 hours, the plants are contaminated by spraying them with an aqueous suspension of Pyrenophora teres spores (12,000 spores per ml). The spores are collected from a 12-day-old culture . The contaminated barley plants are incubated for 24 hours at about 20° C. and at 100% relative humidity, and then for 12 days at 80% relative humidity.
  • the active ingredient tested is prepared by potter homogenisation in a concentrated suspension type formulation at 100 g/l. This suspension is then diluted with water to obtain the desired active material concentration.
  • Cabbage plants (Eminence variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at 18-20° C., are treated at the cotyledon stage by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material.
  • the plants are contaminated by spraying them with an aqueous suspension of Peronospora brassicae spores (50,000 spores per ml). The spores are collected from infected plant.
  • the contaminated cabbage plants are incubated for 5 days at 20° C., under a humid atmosphere.
  • N- ⁇ 1-methylcarbamoyl-2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-ethyl ⁇ -4-phenylbenzamide disclosed by Patent Application WO 01/11965 showed poor effectiveness on Alternaria brassicae , and zero effectiveness on Botrytis cinerea at 330 ppm;
  • the N- ⁇ 1-ethylcarbamoyl-2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]ethyl ⁇ -3-nitrobenzamide also disclosed by Patent Application WO 01/11965 (see compound 307 in Table D) showed poor effectiveness on Alternaria brassicae and zero effectiveness on Botrytis cinerea at 330 ppm;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US10/583,011 2003-12-19 2004-12-16 2-Pyridinylethylcarboxamide derivatives and their use as fungicides Abandoned US20070117845A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/292,676 US8071627B2 (en) 2003-12-19 2008-11-24 2-pyridinylethylcarboxamide derivatives and their use as fungicides
US13/303,632 US8318777B2 (en) 2003-12-19 2011-11-23 2-pyridinylethylcarboxamide derivatives and their use as fungicides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03356206.7 2003-12-19
EP03356206A EP1548007A1 (en) 2003-12-19 2003-12-19 2-Pyridinylethylcarboxamide derivatives and their use as fungicides
PCT/EP2004/014897 WO2005058833A1 (en) 2003-12-19 2004-12-16 2-pyridinylethylcarboxamide derivatives and their use as fungicides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014897 A-371-Of-International WO2005058833A1 (en) 2003-12-19 2004-12-16 2-pyridinylethylcarboxamide derivatives and their use as fungicides

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/292,676 Continuation US8071627B2 (en) 2003-12-19 2008-11-24 2-pyridinylethylcarboxamide derivatives and their use as fungicides

Publications (1)

Publication Number Publication Date
US20070117845A1 true US20070117845A1 (en) 2007-05-24

Family

ID=34530852

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/583,011 Abandoned US20070117845A1 (en) 2003-12-19 2004-12-16 2-Pyridinylethylcarboxamide derivatives and their use as fungicides
US12/292,676 Expired - Fee Related US8071627B2 (en) 2003-12-19 2008-11-24 2-pyridinylethylcarboxamide derivatives and their use as fungicides
US13/303,632 Expired - Fee Related US8318777B2 (en) 2003-12-19 2011-11-23 2-pyridinylethylcarboxamide derivatives and their use as fungicides

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/292,676 Expired - Fee Related US8071627B2 (en) 2003-12-19 2008-11-24 2-pyridinylethylcarboxamide derivatives and their use as fungicides
US13/303,632 Expired - Fee Related US8318777B2 (en) 2003-12-19 2011-11-23 2-pyridinylethylcarboxamide derivatives and their use as fungicides

Country Status (11)

Country Link
US (3) US20070117845A1 (zh)
EP (2) EP1548007A1 (zh)
JP (1) JP4931600B2 (zh)
KR (1) KR101207826B1 (zh)
CN (1) CN1898210B (zh)
BR (1) BRPI0416720B8 (zh)
CR (2) CR8506A (zh)
ES (1) ES2457750T3 (zh)
MX (1) MXPA06006803A (zh)
PL (1) PL1694649T3 (zh)
WO (1) WO2005058833A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422276B2 (en) 2011-11-25 2016-08-23 Bayer Intellectual Property Gmbh Use of aryl and hetaryl carboxamides as endoparasiticides

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI368482B (en) * 2003-12-19 2012-07-21 Bayer Sas New 2-pyridinylethylbenzamide derivatives
ATE553083T1 (de) * 2004-12-21 2012-04-15 Bayer Cropscience Ag Verfahren zur herstellung eines 2- pyridylethylcarbonsäureamidderivats
US8324133B2 (en) * 2005-05-13 2012-12-04 Bayer Cropscience Ag Fungicide 2-pyridyl-methylene-carboxamide derivatives
TWI435863B (zh) * 2006-03-20 2014-05-01 Nihon Nohyaku Co Ltd N-2-(雜)芳基乙基甲醯胺衍生物及含該衍生物之蟲害防治劑
WO2008003746A1 (en) * 2006-07-06 2008-01-10 Bayer Cropscience Sa N-(4-pyridin-2-ylbutyl) carboxamide derivatives, their process of preparation and their use as fungicides
EP2218717A1 (en) * 2009-02-17 2010-08-18 Bayer CropScience AG Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives
WO2011151369A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2012129491A1 (en) * 2011-03-24 2012-09-27 Abbott Laboratories Trpv3 modulators
EP2757886A1 (de) 2011-09-23 2014-07-30 Bayer Intellectual Property GmbH Verwendung 4-substituierter 1-phenyl-pyrazol-3-carbonsäurederivate als wirkstoffe gegen abiotischen pflanzenstress
EP2606728A1 (en) 2011-12-21 2013-06-26 Bayer CropScience AG Compounds with nematicidal activity
EP2606727A1 (en) 2011-12-21 2013-06-26 Bayer CropScience AG Compounds with nematicidal activity
EP2589294A1 (en) 2011-11-02 2013-05-08 Bayer CropScience AG Compounds with nematicidal activity
US20140256728A1 (en) 2011-11-02 2014-09-11 Bayer Intellectual Property Gmbh Compounds with nematicidal activity
CA2853876A1 (en) 2011-11-02 2013-05-10 Bayer Intellectual Property Gmbh Compounds with nematicidal activity
EP2730570A1 (de) 2012-11-13 2014-05-14 Bayer CropScience AG Pyridyloxyalkylcarboxamide und deren Verwendung als Endoparasitizide und Nematizide
WO2014177514A1 (en) * 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
UY35772A (es) 2013-10-14 2015-05-29 Bayer Cropscience Ag Nuevos compuestos plaguicidas
CN103848779A (zh) * 2013-11-01 2014-06-11 济南大学 一种1-( 4-吡啶基) 丙酮的制备方法
WO2015125824A1 (ja) 2014-02-18 2015-08-27 日産化学工業株式会社 アルキニルピリジン置換アミド化合物及び有害生物防除剤
EP3630731B1 (en) 2017-05-30 2023-08-09 Basf Se Pyridine and pyrazine compounds for combating phytopathogenic fungi
BR112020004982A2 (pt) * 2017-09-13 2020-09-15 Syngenta Participations Ag derivados microbiocidas de (tio)carboxamida de quinolina
CN108863915B (zh) * 2018-07-23 2020-04-24 山东省农药科学研究院 一种氟吡菌酰胺中间体2-[3-氯-5(三氟甲基)吡啶-2-基]乙腈的合成方法
TW202304919A (zh) 2021-03-31 2023-02-01 印度商皮埃企業有限公司 稠合雜環化合物及其作為害蟲控制劑之用途

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959481A (en) * 1969-02-13 1976-05-25 Uniroyal Method of protecting plants from fungal diseases using furan-3-carboxamide derivatives
JPS5147474B2 (zh) 1973-05-30 1976-12-15
DE3875750D1 (de) * 1987-01-30 1992-12-17 Ciba Geigy Ag Mikrobizide mittel.
DE4011172A1 (de) * 1990-04-06 1991-10-10 Degussa Verbindungen zur bekaempfung von pflanzenkrankheiten
JPH05230016A (ja) * 1991-10-14 1993-09-07 Takeda Chem Ind Ltd アミド誘導体、その製造法および殺菌剤
JPH07112972A (ja) * 1993-10-15 1995-05-02 Ube Ind Ltd ピラゾールカルボキサミド誘導体、その製法及び農園芸用の有害生物防除剤
MY113237A (en) 1995-03-31 2001-12-31 Nihon Nohyaku Co Ltd An agricultural and horticultural disease controller and a method for controlling the diseases
JPH09176125A (ja) * 1995-05-31 1997-07-08 Nissan Chem Ind Ltd 5−ピラゾールカルボン酸アミド誘導体および植物病害防除剤
JPH0931069A (ja) * 1995-07-24 1997-02-04 Nissan Chem Ind Ltd チアゾールカルボン酸誘導体および植物病害防除剤
DE19629825A1 (de) * 1996-07-24 1998-01-29 Bayer Ag Dihydrofuran-carboxamide
JP2000159610A (ja) * 1998-11-20 2000-06-13 Hokko Chem Ind Co Ltd 農園芸用植物病害防除剤および新規イソオキサゾールカルボン酸誘導体
JP2000336080A (ja) * 1999-05-28 2000-12-05 Nippon Bayer Agrochem Co Ltd イソチアゾールカルボキサミド類
AU780698B2 (en) * 1999-07-20 2005-04-14 Dow Agrosciences Llc Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
GB9918331D0 (en) 1999-08-04 1999-10-06 Driver Technology Ltd Rotary positive-displacement fluid machines
KR100718863B1 (ko) * 1999-08-18 2007-05-16 바이엘 크롭사이언스 게엠베하 살진균제
JP2001348382A (ja) * 1999-10-07 2001-12-18 Ito En Ltd ダイオキシン毒性発現阻止剤
JP2001213869A (ja) * 2000-01-28 2001-08-07 Nippon Bayer Agrochem Co Ltd イソチアゾールカルボン酸誘導体および病害防除剤
IL146758A (en) 2000-04-03 2007-06-03 Ihara Chemical Ind Co A process for the production of an ester of real acid
JP4925517B2 (ja) * 2000-04-03 2012-04-25 イハラケミカル工業株式会社 アミド酸エステル類の製造法
JP4925518B2 (ja) * 2000-04-03 2012-04-25 イハラケミカル工業株式会社 置換アルキルアミン誘導体の製造方法
KR100757641B1 (ko) 2000-04-03 2007-09-10 이하라케미칼 고교가부시키가이샤 치환알킬아민유도체의 제조방법
JP3891251B2 (ja) * 2000-06-06 2007-03-14 信越化学工業株式会社 脂環及びオキシラン構造を有する新規エステル化合物、及びその製造方法
JP4423752B2 (ja) * 2000-06-07 2010-03-03 宇部興産株式会社 5−(1−フルオロエチル)−3−メチルイソオキサゾール−4−カルボン酸誘導体及び農園芸用の有害生物防除剤
JP3627666B2 (ja) 2001-04-12 2005-03-09 東レ株式会社 射出成形用ポリフェニレンスルフィド樹脂組成物
FR2827286A1 (fr) * 2001-07-11 2003-01-17 Aventis Cropscience Sa Nouveaux composes fongicides
EP1449841A1 (en) * 2003-02-19 2004-08-25 Bayer CropScience SA New fungicidal compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422276B2 (en) 2011-11-25 2016-08-23 Bayer Intellectual Property Gmbh Use of aryl and hetaryl carboxamides as endoparasiticides

Also Published As

Publication number Publication date
ES2457750T3 (es) 2014-04-29
US20090088456A1 (en) 2009-04-02
EP1694649B1 (en) 2014-01-22
US8318777B2 (en) 2012-11-27
MXPA06006803A (es) 2006-09-04
CN1898210A (zh) 2007-01-17
CR20150219A (es) 2015-06-12
KR101207826B1 (ko) 2012-12-04
CN1898210B (zh) 2011-03-30
US8071627B2 (en) 2011-12-06
BRPI0416720B8 (pt) 2017-05-30
JP4931600B2 (ja) 2012-05-16
BRPI0416720B1 (pt) 2005-06-30
US20120071517A1 (en) 2012-03-22
EP1548007A1 (en) 2005-06-29
EP1694649A1 (en) 2006-08-30
CR8506A (es) 2007-09-14
BRPI0416720A (pt) 2007-01-16
KR20070021118A (ko) 2007-02-22
PL1694649T3 (pl) 2014-06-30
WO2005058833A1 (en) 2005-06-30
JP2007516974A (ja) 2007-06-28

Similar Documents

Publication Publication Date Title
US8318777B2 (en) 2-pyridinylethylcarboxamide derivatives and their use as fungicides
US7723363B2 (en) 2-pyridinylethylcarboxamide derivatives and their use as fungicides
US7687067B2 (en) 2-pyridinylcycloalkylcarboxamide derivatives useful as fungicides
US7560567B2 (en) 2-pyridinylethylbenzamide derivatives
US7524968B2 (en) 2-pyridinylcycloalkylbenzamide derivatives and their use as fungicides
US7723364B2 (en) N-[2-(2-pyridinyl) ethyl]benzamide compounds and their use as fungicides
EP1710237A1 (en) New heterocyclylethylbenzamide derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER CROPSCIENCE S.A., FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COQUERON, PIERRE-YVES;DESBORDES, PHILIPPE;MANSFIELD, DARREN JAMES;AND OTHERS;REEL/FRAME:018429/0006;SIGNING DATES FROM 20060705 TO 20060919

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION