US20070020123A1 - Pump for conveying an exhaust gas aftertreatment medium particularly a urea-water solution, for diesel engines - Google Patents

Pump for conveying an exhaust gas aftertreatment medium particularly a urea-water solution, for diesel engines Download PDF

Info

Publication number
US20070020123A1
US20070020123A1 US10/570,165 US57016506A US2007020123A1 US 20070020123 A1 US20070020123 A1 US 20070020123A1 US 57016506 A US57016506 A US 57016506A US 2007020123 A1 US2007020123 A1 US 2007020123A1
Authority
US
United States
Prior art keywords
pump
pump according
piston
diaphragm
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/570,165
Other languages
English (en)
Inventor
Roland Meyer
Dieter Maisch
Stefan Klotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilite Germany GmbH
Original Assignee
Hydraulik Ring GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004011123A external-priority patent/DE102004011123A1/de
Application filed by Hydraulik Ring GmbH filed Critical Hydraulik Ring GmbH
Assigned to HYDRAULIK-RING GMBH reassignment HYDRAULIK-RING GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEYER, ROLAND, KLOTZ, STEFAN, MAISCH, DIETER
Publication of US20070020123A1 publication Critical patent/US20070020123A1/en
Assigned to BEAR STEARNS CORPORATE LENDING INC., AS FOREIGN AGENT reassignment BEAR STEARNS CORPORATE LENDING INC., AS FOREIGN AGENT INTELLECTUAL PROPERTY SECURITY AGREEMENT Assignors: HYDRAULIK-RING GMBH
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. ASSIGNMENT OF SECURITY INTEREST Assignors: BEAR STEARNS CORPORATE LENDING, INC.
Assigned to HILITE INTERNATIONAL INC., HYDRAULIK-RING GMBH, ACUTEX, INC., HILITE INDUSTRIES AUTOMOTIVE, LP reassignment HILITE INTERNATIONAL INC. RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL Assignors: JPMORGAN CHASE BANK N.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/003Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by piezoelectric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/042Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the solenoid motor being separated from the fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • F04B17/046Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the fluid flowing through the moving part of the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive

Definitions

  • the invention relates to a pump for conveying an exhaust gas after treatment medium, in particular, a urea/water solution, for diesel engines according to the preamble of claim 1 .
  • Cleaning devices for diesel vehicles are known in which the exhaust gas of diesel engines is treated with a medium, preferably a 32.5% urea/water solution, in order to reduce or remove completely the nitrous oxides in the exhaust gas.
  • a medium preferably a 32.5% urea/water solution
  • a pump is provided that pumps the medium from a reservoir.
  • the invention has the object to configure the pump of the aforementioned kind such that by means of the pump the exhaust gas after treatment medium can be properly and reliably conveyed under the conditions occurring within diesel vehicles.
  • the pump element is a piston that is movable against a counterforce during the pumping operation.
  • the piston is separated by a diaphragm from the medium to be pumped.
  • sufficiently high pressures can be achieved. Since the piston is separated from the medium by a diaphragm, it is corrosion-resistant because it does not come into contact with the medium.
  • the diaphragm seals the piston so that a shaft seal is not required in the area in contact with the medium.
  • the pump is characterized by a simple configuration and a long service life.
  • FIGS. 1 and 2 in axial section a pump according to the invention in a first and a second pump position, respectively;
  • FIG. 3 a second embodiment of the pump according to the invention in a representation corresponding to that of FIG. 2 ;
  • FIG. 4 the detail Z of FIG. 3 in an enlarged illustration.
  • the pump is advantageously suitable for use in exhaust gas after treatment devices for diesel engines. Of course, it can also be used for other pumping purposes.
  • the pump has a housing 1 that is provided at one end face with a cylindrical projection 2 . At least one solenoid 3 is embedded in the housing 1 .
  • the housing 1 has a central axial receiving chamber 4 having at its inner wall a sleeve-shaped slide bearing 5 . The bearing is positioned with the first end on a radially inwardly oriented annular shoulder 6 that projects away from the inner wall 7 of the receiving chamber 4 .
  • a cup-shaped piston 8 is arranged in the slide bearing 5 so as to be axially movable against the force of at least one pressure spring 9 .
  • One end of the pressure spring 9 is supported on the bottom 10 of the piston and the other end on the bottom side of an adjusting screw 11 that is screwed into the projection 2 .
  • the adjusting screw 11 By means of the adjusting screw 11 , the pretension of the pressure spring 9 can be adjusted continuously.
  • the adjusting screw 11 is provided at its underside with a central projection 12 that projects into the appropriate end of the pressure spring 9 .
  • the piston 8 is provided at the end facing the adjusting screw 11 with a radially outwardly oriented flange 13 that rests against the radially outwardly oriented shoulder 14 of the inner wall 7 of the receiving chamber 4 in a first position ( FIG. 2 ) of the piston 8 .
  • the adjusting screw 11 has at its circumference an annular wall 15 having an inner wall for guiding the flange 13 of the piston 8 .
  • a pump head 16 is connected, preferably by screwing, to the end face of the housing 1 that is remote from the adjusting screw 11 .
  • the pump head 16 has a housing 17 with a radially outwardly oriented flange 18 with which the pump head 16 rests areally and sealingly against the end face of the housing 1 .
  • fastening screws 19 are provided with which the pump head 16 is screwed onto the housing 1 .
  • the head of the fastening screws 19 is positioned advantageously recessed within the flange 18 .
  • the pump head there are two check valves 20 , 21 that are arranged at a spacing from one another; each is arranged in a receiving chamber 22 , 23 of the pump head 16 .
  • a valve body 24 In the receiving chamber 22 there is a valve body 24 having an outer diameter that is smaller than the outer diameter of the receiving chamber 22 .
  • the valve body 24 is loaded by at least one pressure spring 25 in the direction toward its closed position illustrated in FIG. 1 in which it closes off a bore 26 in the pump head 16 .
  • the axis-parallel bore 26 connects the receiving chamber 22 to a pump chamber 27 that is closed off by a diaphragm 28 .
  • the pump chamber 27 is formed essentially by a recess of the end face of the pump head 16 .
  • the diaphragm 28 has a reinforced circumferentially extending rim 29 that is clamped between the housing 1 and the flange 18 of the pump head 16 .
  • the diaphragm 28 has at its side facing the piston 8 a central projection 30 that penetrates a central bore 31 of the bottom 10 of the piston 8 .
  • the free end of the projection 30 has a wider portion 32 that serves as an axial securing means of the diaphragm 28 relative to the piston 8 .
  • the wider portion 32 rests at the inner side of the piston bottom 10 and is designed such that the diaphragm 28 is connected captively to the piston 8 .
  • a bore 33 opens into the receiving chamber 22 ; the bore is provided in the connecting plate 34 .
  • the plate is fastened to the end face of the pump head 16 that is facing away from the housing 1 .
  • valve body 35 In the receiving chamber 23 of the pump head 16 there is also a valve body 35 that is identical to the valve body 24 but is arranged in the receiving chamber 23 in a 180° rotated position relative to the valve body 24 .
  • the valve body 35 closes a bore 36 that extends parallel to the bore 33 in the connecting plate 34 .
  • the valve body 35 is loaded by at least one pressure spring 37 in the receiving chamber 23 in the direction toward its closed position ( FIG. 2 ).
  • the outer diameter of the valve body 35 is smaller than the diameter of the receiving chamber 23 .
  • a bore 38 is provided in the pump head 16 parallel to the bore 26 and opens into the receiving chamber 23 .
  • the bore 38 connects the pump chamber 27 to the receiving chamber 23 .
  • the pressure spring 25 of the check valve 20 is supported with one end on the connecting plate 34 and with its other end on the valve body 24 .
  • the pressure spring 37 is supported with one end on the bottom of the receiving chamber 23 and with its other end on the valve body 35 .
  • the bores 33 , 36 open into connectors 39 , 40 that are provided at the end face of the connecting plate 34 facing away from the pump head 16 and through which the medium to be conveyed is sucked in or discharged.
  • the level of the pump pressure is dependent on the spring force of the pressure spring 9 with which the piston 8 is actuated.
  • the pump pressure can be fine-adjusted after mounting.
  • the end face 41 of the piston bottom 10 facing the diaphragm 28 is curved ( FIG. 1 ) such that the diaphragm 28 can rest in the deflected position according to FIG. 2 areally against the end face 41 ( FIG. 2 ). In this way, the diaphragm 28 is optimally supported and therefore wears only minimally.
  • the pump is the combination of an oscillating piston pump and a diaphragm pump.
  • the oscillating piston part with the piston 8 serves as a maintenance-free drive while the diaphragm 28 provides the pumping member.
  • the material of the diaphragm 28 can be matched optimally to the medium to be pumped.
  • the piston 8 does not come into contact with this medium and can therefore be manufactured of materials that are accordingly less expensive.
  • the pump can generate pressures, for example, within the range of approximately 5 bar.
  • the pump is corrosion-resistant relative to aqueous solutions because the oscillating piston part is sealed by the diaphragm 28 relative to the medium. In the diaphragm pump part a shaft seal is not provided so that problems related with such seals do not occur.
  • the described pump is freeze-protected because the pump piston 8 in the rest state (solenoid not supplied with current, FIG. 2 ) is in the position of smallest dead pumping volume 27 . When the medium freezes, the resulting additional volume can be taken up by the piston 8 that retreats against the spring 9 .
  • the pump can be easily heated by means of the solenoid 3 so that a self-contained thawing of the medium after a possible freezing action is enabled. possible.
  • the pump operates maintenance-free at least over the service life of the vehicle in which it is mounted.
  • the pump according to FIGS. 3 and 4 differs from the afore described embodiment essentially in that instead of the piston spring 9 a plate spring 9 ′ is provided that is integrated into the diaphragm 28 and is tightly enclosed by the diaphragm.
  • the plate spring 9 ′ is mounted on a fastening part 42 which is also embedded in the diaphragm 28 and from which the projection 30 projects that projects out of the diaphragm 28 and is configured as a threaded pin. It is screwed into the bottom 10 of the piston 8 .
  • the fastening part 42 and the projection 30 together form advantageously a unitary part.
  • the diaphragm 28 is comprised preferably of thermoplastic elastomer or vulcanized elastomer.
  • FIG. 3 shows the piston 8 in a position in accordance with FIG. 2 of the preceding embodiment.
  • the solenoid 3 is not supplied with current and the piston 8 is moved by the force of the plate spring 9 ′ into a position such that it rests with its flange 13 against the shoulder 14 of the pump housing 1 .
  • the diaphragm 28 rests areally on the curved end face 41 of the piston bottom 10 .
  • the function of the pump is identical to that of the embodiment of FIGS. 1 and 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
US10/570,165 2003-09-02 2004-08-19 Pump for conveying an exhaust gas aftertreatment medium particularly a urea-water solution, for diesel engines Abandoned US20070020123A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10341995 2003-09-02
DE10341995.0 2003-09-02
DE102004011123.5 2004-03-08
DE102004011123A DE102004011123A1 (de) 2003-09-02 2004-03-08 Pumpe zur Förderung eines Abgasnachbehandlungsmediums, insbesondere einer Harnstoff-Wasser-Lösung, für Dieselmotoren
PCT/DE2004/001848 WO2005024232A1 (de) 2003-09-02 2004-08-19 Pumpe zur forderung eines abgasnachbehandlungsmediums, insbesondere einer harnstoff-wasser-losung, für dieselmoto­ren

Publications (1)

Publication Number Publication Date
US20070020123A1 true US20070020123A1 (en) 2007-01-25

Family

ID=34276550

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/570,165 Abandoned US20070020123A1 (en) 2003-09-02 2004-08-19 Pump for conveying an exhaust gas aftertreatment medium particularly a urea-water solution, for diesel engines

Country Status (5)

Country Link
US (1) US20070020123A1 (de)
EP (1) EP1660774A1 (de)
JP (1) JP2007504396A (de)
DE (1) DE112004002131D2 (de)
WO (1) WO2005024232A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080138211A1 (en) * 2004-04-12 2008-06-12 Gorman-Rupp Company Pump and valve system
US20100111728A1 (en) * 2008-11-03 2010-05-06 Thomas Magnete Gmbh Reciprocating Piston Pump
US20110186153A1 (en) * 2008-06-17 2011-08-04 Guenther Vogt Metering system for a liquid medium, particularly a urea-water solution
WO2012055636A1 (de) * 2010-10-26 2012-05-03 Robert Bosch Gmbh Arbeitswandelement einer fluidfördereinrichtung
US20120315157A1 (en) * 2009-12-23 2012-12-13 Jean-Denis Rochat Reciprocating Positive-Displacement Diaphragm Pump For Medical Use
CN105102780A (zh) * 2013-02-18 2015-11-25 大陆汽车有限责任公司 用于加热输送装置的方法
US9453507B2 (en) 2011-03-19 2016-09-27 Ebm-Papst St. Georgen Gmbh & Co. Kg Metering system
US9732742B2 (en) 2011-02-09 2017-08-15 EMITEC Geselllschaft fuer Emissionstechnologie mbH Conveying unit for a reducing agent
US20170254317A1 (en) * 2014-09-16 2017-09-07 Robert Bosch Gmbh Piston pump having a region having a non-magnetic material in the magnetic circuit
US20170314550A1 (en) * 2014-12-10 2017-11-02 Robert Bosch Gmbh Piston pump comprising a piston with a profiled front face

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015117B4 (de) * 2005-04-01 2007-04-26 Webasto Ag Hubkolbenbrennstoffpumpe und Verfahren zum Starten und Betreiben einer Kraftfahrzeugheizung
DE102007059239A1 (de) * 2007-12-07 2009-06-10 Thomas Magnete Gmbh Membran, und Hubkolben-Membranpumpe
JP4483952B2 (ja) * 2008-01-29 2010-06-16 株式会社デンソー モータ付ポンプ
GB2460825A (en) 2008-06-06 2009-12-16 Delphi Tech Inc Reagent dosing system
DE102008054689A1 (de) 2008-12-16 2010-06-17 Robert Bosch Gmbh Fluidfördereinrichtung
DE102008054686A1 (de) 2008-12-16 2010-06-17 Robert Bosch Gmbh Fluidfördereinrichtung
DE102009002148A1 (de) 2009-04-02 2010-10-14 Robert Bosch Gmbh Fluidfördereinrichtung
US9266709B2 (en) 2009-11-20 2016-02-23 Jack R. BRAMMELL Systems and methods for on-site mixing and dispensing of a reducing agent solution for use with a diesel catalytic converter
JP5419019B2 (ja) * 2010-10-28 2014-02-19 Smc株式会社 ソレノイドポンプ
DE102012000676A1 (de) * 2012-01-17 2013-07-18 Knf Flodos Ag Verdrängerpumpe
DE102012221479A1 (de) * 2012-11-23 2014-05-28 Robert Bosch Gmbh Vorrichtung, insbesondere Pumpe-Düse-System
DE102017104400A1 (de) 2017-03-02 2018-09-06 Qonqave Gmbh Pumpenvorrichtung zu einer Förderung zumindest eines Fördermittels

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2724398A (en) * 1950-03-14 1955-11-22 Honeywell Regulator Co Proportional speed floating controller
US6162028A (en) * 1996-08-02 2000-12-19 Robert Bosch Gmbh Fuel pumping device for two-stroke engines with an additional driving unit
US6343539B1 (en) * 1999-11-10 2002-02-05 Benjamin R. Du Multiple layer pump diaphragm
US20020044897A1 (en) * 2000-08-15 2002-04-18 Kakwani Ramesh M. Exhaust system for enhanced reduction of nitrogen oxides and particulates from diesel engines
US6526746B1 (en) * 2000-08-02 2003-03-04 Ford Global Technologies, Inc. On-board reductant delivery assembly
US20040179960A1 (en) * 2001-09-25 2004-09-16 Sonja Lenke Reducing agent pump for an exhaust-gas aftertreatment system of an internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD67037A1 (de) * 1968-07-12 1969-05-20 Max Grille Membran aus elastischem material fuer pumpen und verdichter
DE4308837C1 (de) * 1993-03-19 1994-09-29 Eckerle Ind Elektronik Gmbh Verfahren und Schaltungsanordnung zur elektrischen Steuerung der Leistung einer Schwingkolbenpumpe
DE19819408A1 (de) * 1998-04-30 1999-11-11 Freudenberg Carl Fa Membranpumpe zur Förderung von gasförmigen oder flüssigen Medien
DE10150518C1 (de) * 2001-10-12 2003-05-08 Siemens Ag Verfahren und Vorrichtung zur Abgasnachbehandlung bei einer Brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2724398A (en) * 1950-03-14 1955-11-22 Honeywell Regulator Co Proportional speed floating controller
US6162028A (en) * 1996-08-02 2000-12-19 Robert Bosch Gmbh Fuel pumping device for two-stroke engines with an additional driving unit
US6343539B1 (en) * 1999-11-10 2002-02-05 Benjamin R. Du Multiple layer pump diaphragm
US6526746B1 (en) * 2000-08-02 2003-03-04 Ford Global Technologies, Inc. On-board reductant delivery assembly
US20020044897A1 (en) * 2000-08-15 2002-04-18 Kakwani Ramesh M. Exhaust system for enhanced reduction of nitrogen oxides and particulates from diesel engines
US20040179960A1 (en) * 2001-09-25 2004-09-16 Sonja Lenke Reducing agent pump for an exhaust-gas aftertreatment system of an internal combustion engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080138211A1 (en) * 2004-04-12 2008-06-12 Gorman-Rupp Company Pump and valve system
US20110186153A1 (en) * 2008-06-17 2011-08-04 Guenther Vogt Metering system for a liquid medium, particularly a urea-water solution
US20100111728A1 (en) * 2008-11-03 2010-05-06 Thomas Magnete Gmbh Reciprocating Piston Pump
US8696330B2 (en) 2008-11-03 2014-04-15 Thomas Magnete Gmbh Reciprocating piston pump
US9050408B2 (en) * 2009-12-23 2015-06-09 Jean-Denis Rochat Reciprocating positive-displacement diaphragm pump for medical use
US20120315157A1 (en) * 2009-12-23 2012-12-13 Jean-Denis Rochat Reciprocating Positive-Displacement Diaphragm Pump For Medical Use
WO2012055636A1 (de) * 2010-10-26 2012-05-03 Robert Bosch Gmbh Arbeitswandelement einer fluidfördereinrichtung
US9732742B2 (en) 2011-02-09 2017-08-15 EMITEC Geselllschaft fuer Emissionstechnologie mbH Conveying unit for a reducing agent
US9453507B2 (en) 2011-03-19 2016-09-27 Ebm-Papst St. Georgen Gmbh & Co. Kg Metering system
CN105102780A (zh) * 2013-02-18 2015-11-25 大陆汽车有限责任公司 用于加热输送装置的方法
US20150377103A1 (en) * 2013-02-18 2015-12-31 Continental Automotive Gmbh Method for heating a delivery device
US9920672B2 (en) * 2013-02-18 2018-03-20 Continental Automotive Gmbh Method for heating a delivery device
US20170254317A1 (en) * 2014-09-16 2017-09-07 Robert Bosch Gmbh Piston pump having a region having a non-magnetic material in the magnetic circuit
US20170314550A1 (en) * 2014-12-10 2017-11-02 Robert Bosch Gmbh Piston pump comprising a piston with a profiled front face
US10781814B2 (en) * 2014-12-10 2020-09-22 Robert Bosch Gmbh Piston pump comprising a piston with a profiled front face

Also Published As

Publication number Publication date
WO2005024232A1 (de) 2005-03-17
EP1660774A1 (de) 2006-05-31
JP2007504396A (ja) 2007-03-01
DE112004002131D2 (de) 2006-07-13

Similar Documents

Publication Publication Date Title
US20070020123A1 (en) Pump for conveying an exhaust gas aftertreatment medium particularly a urea-water solution, for diesel engines
KR100987540B1 (ko) 스프레이 사용을 위한 자동 공기 축출 및 압력 이상 방지 특징을 갖는 압축 다이어프램 펌프
JP4395534B2 (ja) 高圧ポンプ、特に内燃機関の燃料噴射装置のための高圧ポンプ
EP1490598B1 (de) Kopfdruckentlastungsanordnung
US8444401B2 (en) Check valve and piston pump having check valve
EP2122168A2 (de) Lastenringhalterung für einen pumpstössel
US20130121861A1 (en) Piston Pump
US8333572B2 (en) Pump
US11092149B2 (en) Dual diaphragm pump having a pressure pulsation pad
US6139284A (en) Radial piston pump for high pressure fuel delivery
US6514050B1 (en) High pressure seal means for a radial piston pump
JP4199930B2 (ja) 燃料高圧供給用のピストンポンプ
JP2004537005A (ja) 高圧供給ポンプ
KR101021532B1 (ko) 브레이크 시스템의 펌프
KR100706171B1 (ko) 고압 액압 연료 펌프
JP2004189218A (ja) アンチロックブレーキシステム用ポンプ
US4792287A (en) Wobble driven axial piston pump
SU1732820A3 (ru) Топливный поршневой насос
JP2002509224A (ja) 燃料高圧供給のためのラジアルピストンポンプ
KR100641819B1 (ko) 피스톤 펌프
CN110892263B (zh) 柱塞泵
US11795942B2 (en) High pressure water pump fluid end
KR100543871B1 (ko) 안티록 브레이크 시스템용 펌프
KR20130112377A (ko) 브레이크 시스템용 펌프의 피스톤 및 이를 구비하는 브레이크 시스템용 펌프
CN110594063B (zh) 燃料高压泵

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYDRAULIK-RING GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEYER, ROLAND;MAISCH, DIETER;KLOTZ, STEFAN;REEL/FRAME:017487/0848;SIGNING DATES FROM 20060223 TO 20060303

AS Assignment

Owner name: BEAR STEARNS CORPORATE LENDING INC., AS FOREIGN AG

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:HYDRAULIK-RING GMBH;REEL/FRAME:019781/0172

Effective date: 20070725

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: ASSIGNMENT OF SECURITY INTEREST;ASSIGNOR:BEAR STEARNS CORPORATE LENDING, INC.;REEL/FRAME:023546/0938

Effective date: 20091110

AS Assignment

Owner name: HYDRAULIK-RING GMBH, GERMANY

Free format text: RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL;ASSIGNOR:JPMORGAN CHASE BANK N.A.;REEL/FRAME:026553/0713

Effective date: 20110628

Owner name: ACUTEX, INC., OHIO

Free format text: RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL;ASSIGNOR:JPMORGAN CHASE BANK N.A.;REEL/FRAME:026553/0713

Effective date: 20110628

Owner name: HILITE INDUSTRIES AUTOMOTIVE, LP, TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL;ASSIGNOR:JPMORGAN CHASE BANK N.A.;REEL/FRAME:026553/0713

Effective date: 20110628

Owner name: HILITE INTERNATIONAL INC., OHIO

Free format text: RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL;ASSIGNOR:JPMORGAN CHASE BANK N.A.;REEL/FRAME:026553/0713

Effective date: 20110628