US20060241218A1 - Asphalt composition containing styrene-butadiene-styrene block copolymer having asymmetric polystyrene block - Google Patents

Asphalt composition containing styrene-butadiene-styrene block copolymer having asymmetric polystyrene block Download PDF

Info

Publication number
US20060241218A1
US20060241218A1 US11/213,892 US21389205A US2006241218A1 US 20060241218 A1 US20060241218 A1 US 20060241218A1 US 21389205 A US21389205 A US 21389205A US 2006241218 A1 US2006241218 A1 US 2006241218A1
Authority
US
United States
Prior art keywords
styrene
asphalt composition
block
butadiene
modified asphalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/213,892
Other languages
English (en)
Inventor
Sam Min Kim
Young Kim
Seung Kim
Joon Pyun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOREA KUMHO PERTOCHEMICAL Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to KOREA KUMHO PERTOCHEMICAL CO., LTD. reassignment KOREA KUMHO PERTOCHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, SAM MIN, KIM, SEUNG EUI, KIM, YOUNG JIN, PYUN, JOON BUM
Publication of US20060241218A1 publication Critical patent/US20060241218A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • E01C7/26Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre
    • E01C7/265Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre with rubber or synthetic resin, e.g. with rubber aggregate, with synthetic resin binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/40Mixtures based upon bitumen or asphalt containing functional additives
    • C08L2555/80Macromolecular constituents
    • C08L2555/84Polymers comprising styrene, e.g., polystyrene, styrene-diene copolymers or styrene-butadiene-styrene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/24Graft or block copolymers according to groups C08L51/00, C08L53/00 or C08L55/02; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a modified asphalt composition containing asymmetric styrene-butadiene-styrene triblock copolymer as modifier. More particularly, this invention relates to a modified asphalt composition containing asymmetric styrene-butadiene-styrene triblock copolymer showing an excellent balance of ductility at low temperatures and high flow resistance at high temperatures.
  • a modified asphalt composition has been developed by addition of polymer to the asphalt.
  • polymer for example, low density polyethylene, ethylenevinylacetate, styrene-butadiene rubber, buthyl rubber and/or mixture of them have been used for asphalt modifier to resist the permanent deformation at high temperature as well as to resist impact crack caused by repeated weight pressure and tensile strength at low temperature.
  • modified asphalt has been increasing in the field of industry.
  • asphalt modifier a radial type of styrene-butadiene block copolymer has been also suggested as asphalt modifier, because it enhances the processibility, softening point, stability and/or viscosity of asphalt composition.
  • asphalt composition can be used as looping, coating, hot-melt, asphalt concrete and/or silant composition.
  • modified asphalt composition shows excellent physical properties, such as, good thermal resistance, anti-aging property and resistance against permanent deformation.
  • Such enhancement of physical properties in modified asphalt composition results from the increase of liquidity resistance caused by high viscosity at high temperature, the increase of impact resistance at low temperature and the increase of anti-aging property from light or air, because the polymers in asphalt composition enhances the matrix of asphalt by forming polymer domain.
  • the anti-crack property at low temperature depends on the ductility of asphalt composition. If the ductility of asphalt composition increases, the liquidity of modified asphalt composition is enhanced at low temperature. Of course, the crack of asphalt caused by pressure fatigue or thermal deformation is also declined if the ductility of asphalt composition increases. Therefore, ductility is very important factor for estimating the crack resistance at low temperature.
  • asphalt polymer modifier has a role for enhancing liquidity and declining the thermal sensitivity in low temperature as well as for resisting the deformation in high temperature. Further, it has a role for improving physical properties, such as, tensile strength, stiffness, tenesity, adhesion with aggregate.
  • the improvement of stability in low temperature depends on the kinds of polymers inserted as modifier. Even though the structure of polymer is similar, the resistance against thermal sensitivity can be varied.
  • polyolefin, styrene-butadiene random copolymer rubber and/or styrene-butadiene block copolymer rubber can be used as polymer asphalt modifier.
  • styrene-butadiene random copolymer rubber or styrene-butadiene block copolymer rubber has a role for enhancing ductility, which prevents the crack caused by repeated tensile force at low temperature.
  • the inventors of present invention have researched an enhanced asphalt modifier showing excellent ductility at low temperature, while the physical properties in high temperature have been still maintained.
  • asymmetric styrene-butadiene-styrene block copolymer enhances the ductility and thermal stability of asphalt composition at low temperature, which has not been anticipated from conventional asphalt modifier, such as, linear or radial styrene-butadiene block copolymer rubber.
  • the object of the present invention is to provide a modified asphalt composition containing asymmetric styrene-butadiene-styrene triblock copolymer as modifier showing excellent ductility and thermal stability at low temperature and the resistance to permanent deformation at high temperature.
  • the object of the present invention is to provide a modified asphalt composition
  • a modified asphalt composition comprising i) 100 wt. part of natural asphalt; and ii) 0.5 ⁇ 40 wt. part of asymmetric triblock copolymer having number average molecular weight of 20,000 ⁇ 1,000,000 represented as following formula 1.
  • A-B-A′ (formula 1)
  • A represents a vinyl aromatic polymer block having number average molecular weight of 8,000 ⁇ 30,000;
  • B represents a conjugated-diene polymer block or a conjugated-diene copolymer block having a small amount of vinyl aromatic monomers
  • A′ represents a vinyl aromatic polymer block having number average molecular weight of 500 ⁇ 5,000;
  • weight amount of A and A′ block is 5 ⁇ 40 wt % of total A-B-A′ triblock copolymer, and the percentage of vinyl aromatic monomer in the block A+A′ as to total vinyl aromatic monomer amount in A-B-A′ is 50 ⁇ 98%.
  • said vinyl aromatic polymer block (A or A′) comprises monomers at least one selected from the group consisting of styrene, a-methylstyrene, o-methylstyrene, p-methylstyrene and p-tert-butylstyrene, and said vinyl aromatic monomer is preferably a styrene.
  • said conjugated-diene polymer block (B) is a homopolymer block consisting of butadiene or a tapered block consisting of most of butadienes and a small amount of conjugated diene monomers.
  • the number average molecular weight of said compound of formula 1 is 50,000 ⁇ 400,000.
  • the asphalt composition preferably comprises i) 100 wt. part of natural asphalt and ii) 1 ⁇ 20 wt. part of asymmetric triblock copolymer represented by formula 1.
  • the present invention also provide a modified asphalt composition further comprising linear or radial block copolymer as to the modified asphalt composition described above.
  • the present invention also provide a usage of said modified asphalt composition as to pavement of road or manufacturing water proof sheet.
  • the asphalt modifier of the present invention can be an asymmetric styrene-butadiene-styrene block copolymer represented by formula 1.
  • the number average molecular weight of asymmetric styrene-butadiene-styrene block copolymer represented by formula 1 is 20,000 ⁇ 1,000,000, preferably 50,000 ⁇ 400,000.
  • the number average molecular weight of said block copolymer is less than 20,000, the mechanical properties of copolymer can not be fully expressed. On the other hand, if the number average molecular weight is more than 1,000,000, the processibility of copolymer can be declined.
  • Said vinyl aromatic polymer block (A or A′) comprises monomers at least one selected from the group consisting of styrene, a-methylstyrene, o-methylstyrene, p-methylstyrene and p-tert-butylstyrene, and said vinyl aromatic monomer is preferably a styrene.
  • the weight amount of A and A′ block is 5 ⁇ 40 wt % of total A-B-A′ triblock copolymer, and the percentage of vinyl aromatic monomer in the blocks A+A′ as to total vinyl aromatic monomer amount in A-B-A′ is 50 ⁇ 98%.
  • the difference of number average moleculae weight between block A and block A′ can be 3,000 ⁇ 29,500, which shows that block A and block A′ are asymmetric blocks.
  • Said conjugated-diene polymer block (B) is a homopolymer block consisting of butadiene or a tapered block consisting of most amount of butadienes and a small amount of conjugated diene monomers.
  • Said asymmetric styrene-butadiene-styrene triblock copolymer represented by formula 1 can be prepared by conventional continuous polymerization method in the presence of anion initiator, such as, organic lithium compound.
  • the asphalt composition of the present invention comprises i) 100 wt. part of natural asphalt and ii) 0.5 ⁇ 40 wt. part of asymmetric triblock copolymer represented by formula 1, preferably, 1 ⁇ 25 wt. part of asymmetric triblock copolymer represented by formula 1. If the amount of asymmetric triblock copolymer represented by formula 1 is less than 0.5 wt. part, this triblock copolymer cannot make a role as asphalt modifier, because it cannot fully express the function of polymer. On the other hand, if the amount of asymmetric triblock copolymer represented by formula 1 is more than 40 wt.
  • this triblock copolymer can result in extremely high viscosity, which causes the decline of dispersion between asphalt and modifier as well as the decline of liquidity by the delay of dispersion. Further, in this case, the mechanical cracking or thermal decomposition of binder can be occur.
  • the amount of sulfur in modified asphalt composition can be 0.1 ⁇ 20 wt. part as to 100 wt. part of styrene-butadiene-styrene block copolymer, preferably, 1 ⁇ 10 wt. part.
  • styrene-butadiene-styrene triblock copolymer represented by formula 1 has asymmetric styrene blocks. Of course, it has excellent ductility in low temperature, which results in excellent ductility and thermal stability at low temperature and the resistance to permanent deformation at high temperature.
  • the analysis of molecular weight is measured by high performance liquid chromatography ‘separation's module Waters 2690’ as well as by detector ‘differential refractometer Waters 410’. Following are analysis conditions. The temperature of column is 41° C., solvent is THF and flow rate is 0.3 mL/min. Column is used by linear connection of divinylbenzene Styragel HR 5E, HR 4, HR 2. The standard of polystyrene is employed to measure the difference of refraction rate by the refraction detector.
  • the amount of styrene and butadiene as well as the micro structure of polymer are measured by Bruker NMR-200 and NMR400.
  • the testing materials are prepared using chloroform-d solvent.
  • copolymer solution viscosity is carried out using polymer solution dissolved with toluene in a concentration of 5.23 wt %. At 25° C. constant temperature, the visicosity is measured by Ubbelohde visicosity meter under the condition that constant K is 0.09048 mm 2 /s 2 . TABLE 1 Styrene Percentage Molecular Solution Amount of Block(%) Weight(Mn) Viscosity(cps) Pre. Ex. 1 14.8 92 192,000 21 Pre. Ex. 2 14.5 83 201,000 21 Pre. Ex. 3 15.2 88 190,000 20 Pre. Ex. 4 14.8 78 195,000 21 Pre. Ex. 5 22.3 93 202,000 18 Com. Pre. 14.8 91 198,000 21 Ex. 1 Com. Pre. 29.8 97 195,000 12 Ex. 2 Com. Pre. 30.1 96 209,000 21 Ex. 3
  • the testing materials are prepared according to the process comprising the steps of i) heating the modified asphalt composition, ii) pouring the melting composition to the mold, and iii) cooling the composition (KS M 2254).
  • measurement protocol comprising the steps of i) inserting the testing materials into 5° C. water bath, ii) forcing tensile strength at both ends in a velocity of 3 cm/min, and iii) measuring the length when the testing materials are divided are employed.
  • Table 2 shows the softening point and ductility length of testing materials.
  • the testing materials are prepared according to the process comprising the steps of i) heating the modified asphalt composition, ii) pouring the melting composition to the mold, and iii) cooling the composition (KS M 2254).
  • measurement protocol comprising the steps of i) inserting the testing materials into 5° C. water bath, ii) forcing tensile strength at both ends in a velocity of 3 cm/min, and iii) measuring the length when the testing materials are divided are employed.
  • Table 2 shows the softening point and ductility length of testing materials.
  • TABLE 2 Amount of Ductility block Before After copolymer Softening RTFO(rolling RTFO(rolling modifier point thin film oven) thin film oven) (wt. part) (° C.) (5° C., cm) (5° C., cm) Ex. 1 3.5 74 39.5 24.5 Ex. 2 3.5 77 36.1 26.1 Ex. 3 3.5 79 36.4 26.1 Ex. 4 3.5 92 40.5 26.5 Ex. 5 3.5 94 33.8 24.9 Com.
  • an asphalt compositions comprising asymmetric styrene-butadiene-styrene block copolymer prepared in Example 4 and 5 show higher softening point compared to Example 1, which means that the resistance against permanent deformation has been maintained at high temperature.
  • the softening points of compositions prepared in Example 4 and 5 are similar to that of Comparative Example 2 having high styrene amount.
  • the compositions prepared in Example 4 and 5 show that the ductility after rolling thin film oven has been remarkably enhanced. Of course, it means that the ductility of at low temperature is also enhanced, while the crack caused by fatigue or thermal deformation is declined. Therefore, the asphalt composition prepared in Examples can be regarded as suitable asphalt composition for pavement of road.
  • comparing radial type polymer in Comparative Example 3 the asphalt compositions prepared in Examples show the better ductility, while softening points are not better than that of radial type polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
US11/213,892 2005-04-20 2005-08-30 Asphalt composition containing styrene-butadiene-styrene block copolymer having asymmetric polystyrene block Abandoned US20060241218A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050032650A KR100639893B1 (ko) 2005-04-20 2005-04-20 비대칭 스티렌 블록으로 구성된 스티렌-부타디엔-스티렌블록 공중합체를 함유한 아스팔트 조성물
KR2005-32650 2005-04-20

Publications (1)

Publication Number Publication Date
US20060241218A1 true US20060241218A1 (en) 2006-10-26

Family

ID=37187800

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/213,892 Abandoned US20060241218A1 (en) 2005-04-20 2005-08-30 Asphalt composition containing styrene-butadiene-styrene block copolymer having asymmetric polystyrene block

Country Status (3)

Country Link
US (1) US20060241218A1 (zh)
KR (1) KR100639893B1 (zh)
CN (1) CN100549099C (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179255A1 (en) * 2007-04-26 2010-07-15 Celine Grenier Method of preparing asphalt
US8992118B2 (en) 2013-03-15 2015-03-31 William B. Coe Pavement repair system utilizing solid phase autoregenerative cohesion
US9057163B1 (en) 2013-03-15 2015-06-16 William B. Coe Pavement repair system
US20160017139A1 (en) * 2014-07-15 2016-01-21 Korea Kumho Petrochemical Co., Ltd. Additive Composition for Polymer-Modified Asphalt, Polymer-Modified Asphalt Composition Comprising the Same, and Method for Preparing the Same
US9637870B1 (en) 2013-03-15 2017-05-02 William B. Coe Pavement repair system
WO2018227173A1 (en) * 2017-06-09 2018-12-13 Kraton Polymers Llc Highly asymmetric triblock polymer compositions and methods of making same
US11186959B2 (en) 2017-02-14 2021-11-30 William B. Coe Apparatus and method for preparing asphalt and aggregate mixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220330B1 (ko) 2010-12-14 2013-01-09 금호석유화학 주식회사 비대칭 블록을 가진 테이퍼 공중합체 및 그를 포함하는 점착제 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3238173A (en) * 1962-09-27 1966-03-01 Shell Oil Co Polystyrene-polyisoprene-polystyrene block copolymer latices and process for their preparation
US3992341A (en) * 1974-05-28 1976-11-16 Basf Aktiengesellschaft Filaments and fibers and their manufacture
US4891410A (en) * 1987-05-02 1990-01-02 Basf Aktiengesellschaft Butadiene/sytrene block copolymers having an asymmetric structure, their preparation and their use as molding materials
USH876H (en) * 1987-11-16 1991-01-01 Bitumen composition
US5246987A (en) * 1992-05-14 1993-09-21 Shell Oil Company Bitumen and halogenated vinyl aromatic-conjugated diolefin block copolymer compositions
US5721296A (en) * 1995-02-24 1998-02-24 Kao Corporation Asphalt additive and asphalt composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412019A (en) 1980-07-12 1983-10-25 Phillips Petroleum Company Asphalt compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3238173A (en) * 1962-09-27 1966-03-01 Shell Oil Co Polystyrene-polyisoprene-polystyrene block copolymer latices and process for their preparation
US3992341A (en) * 1974-05-28 1976-11-16 Basf Aktiengesellschaft Filaments and fibers and their manufacture
US4891410A (en) * 1987-05-02 1990-01-02 Basf Aktiengesellschaft Butadiene/sytrene block copolymers having an asymmetric structure, their preparation and their use as molding materials
USH876H (en) * 1987-11-16 1991-01-01 Bitumen composition
US5246987A (en) * 1992-05-14 1993-09-21 Shell Oil Company Bitumen and halogenated vinyl aromatic-conjugated diolefin block copolymer compositions
US5721296A (en) * 1995-02-24 1998-02-24 Kao Corporation Asphalt additive and asphalt composition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179255A1 (en) * 2007-04-26 2010-07-15 Celine Grenier Method of preparing asphalt
US9551117B2 (en) 2013-03-15 2017-01-24 William B. Coe Pavement repair system utilizing solid phase autoregenerative cohesion
US9074328B1 (en) 2013-03-15 2015-07-07 William B. Coe Pavement repair system utilizing solid phase autoregenerative cohesion
US9637870B1 (en) 2013-03-15 2017-05-02 William B. Coe Pavement repair system
US9127413B2 (en) 2013-03-15 2015-09-08 William B. Coe Pavement repair system utilizing solid phase autoregenerative cohesion
US9169606B2 (en) 2013-03-15 2015-10-27 William B. Coe Emitter unit for asphalt pavement repair utilizing solid phase autoregenerative cohesion
US9624625B2 (en) 2013-03-15 2017-04-18 William B. Coe Pavement repair system
US9347187B2 (en) 2013-03-15 2016-05-24 William B. Coe Pavement repair system
US9481967B2 (en) 2013-03-15 2016-11-01 William B. Coe Pavement repair system utilizing solid phase autoregenerative cohesion
US11078633B2 (en) * 2013-03-15 2021-08-03 Wiliam B. Coe Pavement repair system
US8992118B2 (en) 2013-03-15 2015-03-31 William B. Coe Pavement repair system utilizing solid phase autoregenerative cohesion
US10934669B2 (en) 2013-03-15 2021-03-02 William B. Coe Method for preparing asphalt paving material utilizing solid phase autoregenerative cohesion
US9057163B1 (en) 2013-03-15 2015-06-16 William B. Coe Pavement repair system
US9551114B2 (en) 2013-03-15 2017-01-24 William B. Coe Pavement repair system
US10081920B2 (en) 2013-03-15 2018-09-25 William B. Coe Hot asphalt pavement installation method utilizing solid phase autoregenerative cohesion
US10724183B2 (en) 2013-03-15 2020-07-28 William B. Coe Pavement repair system
US10364534B2 (en) 2013-03-15 2019-07-30 William B. Coe Pavement repair system
US9862820B2 (en) * 2014-07-15 2018-01-09 Korea Kumho Petrochemical Co., Ltd. Additive composition for polymer-modified asphalt, polymer-modified asphalt composition comprising the same, and method for preparing the same
US20160017139A1 (en) * 2014-07-15 2016-01-21 Korea Kumho Petrochemical Co., Ltd. Additive Composition for Polymer-Modified Asphalt, Polymer-Modified Asphalt Composition Comprising the Same, and Method for Preparing the Same
US11186959B2 (en) 2017-02-14 2021-11-30 William B. Coe Apparatus and method for preparing asphalt and aggregate mixture
US20180355090A1 (en) * 2017-06-09 2018-12-13 Kraton Polymers Llc Highly asymmetric triblock polymer compositions and methods of making same
US10647805B2 (en) 2017-06-09 2020-05-12 Kraton Polymers Llc Highly asymmetric triblock polymer compositions and methods of making same
WO2018227173A1 (en) * 2017-06-09 2018-12-13 Kraton Polymers Llc Highly asymmetric triblock polymer compositions and methods of making same

Also Published As

Publication number Publication date
KR100639893B1 (ko) 2006-10-30
KR20060110892A (ko) 2006-10-26
CN100549099C (zh) 2009-10-14
CN1854200A (zh) 2006-11-01

Similar Documents

Publication Publication Date Title
US20060241218A1 (en) Asphalt composition containing styrene-butadiene-styrene block copolymer having asymmetric polystyrene block
US20090131558A1 (en) Method for preparing complex styrenic block copolymer and asphalt composition containing it
KR100711270B1 (ko) 스티렌-부타디엔-스티렌 블록 공중합체를 함유한 개질아스팔트 조성물
CN102762598B (zh) 共轭二烯类橡胶、橡胶组合物、橡胶交联物及轮胎、以及共轭二烯类橡胶的制造方法
US20090182075A1 (en) Composition of Asphalt Containing Tapered Block Copolymer
KR102047637B1 (ko) 공중합체, 그것을 사용한 고무 조성물 및 타이어
CN102159600B (zh) 具有苯乙烯梯度的苯乙烯-丁二烯聚合物及其制备方法
JP2660274B2 (ja) アスファルト組成物、及びアスファルト改質用ブロック共重合体組成物
CN103270053A (zh) 共轭二烯系橡胶、橡胶组合物、橡胶交联物以及轮胎
EP1464672B1 (en) Block copolymer
JP3313297B2 (ja) 新規アスファルト組成物、及び新規アスファルト改質用ブロック共重合体組成物
JP4963796B2 (ja) アスファルト粘接着剤用ブロック共重合体組成物及びアスファルト粘接着剤組成物
JP4841073B2 (ja) アスファルト組成物、及びアスファルト改質用ブロック共重合体
JP3418420B2 (ja) アスファルト改質用熱可塑性共重合体
US10450455B2 (en) Hydrogenated block copolymer and composition thereof
US6777499B2 (en) Multiblock interpolymers and processes for the preparation thereof
JP2002030126A (ja) アスファルト改質用ブロック共重合体、及びアスファルト組成物
Feng et al. Tin‐coupled star‐shaped block copolymer of styrene and butadiene (I) synthesis and characterization
KR100591014B1 (ko) 다중 가지 스티렌-부타디엔 블록 공중합체로 개질된아스팔트 조성물
JP4108196B2 (ja) ポリプロピレン系樹脂組成物
JPH0456841B2 (zh)
EP3018171B1 (en) Asphalt composition comprising an asphalt modifier having improved mixing properties
JPH01254768A (ja) アスフアルト改質用熱可塑性エラストマー
CN100537626C (zh) 偶联低乙烯基嵌段共聚物组合物的制造方法和所得组合物
KR102129024B1 (ko) 개질 아스팔트용 첨가제 조성물, 그 제조방법 및 이를 포함하는 개질 아스팔트 조성물

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOREA KUMHO PERTOCHEMICAL CO., LTD., KOREA, REPUBL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, SAM MIN;KIM, YOUNG JIN;KIM, SEUNG EUI;AND OTHERS;REEL/FRAME:016929/0914

Effective date: 20050812

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION