US20060151162A1 - Louvre for an air-conduction housing of a vehicle air-conditioning system - Google Patents
Louvre for an air-conduction housing of a vehicle air-conditioning system Download PDFInfo
- Publication number
- US20060151162A1 US20060151162A1 US10/562,921 US56292105A US2006151162A1 US 20060151162 A1 US20060151162 A1 US 20060151162A1 US 56292105 A US56292105 A US 56292105A US 2006151162 A1 US2006151162 A1 US 2006151162A1
- Authority
- US
- United States
- Prior art keywords
- louver
- air
- region
- regions
- pivot axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00664—Construction or arrangement of damper doors
- B60H1/00671—Damper doors moved by rotation; Grilles
- B60H1/00685—Damper doors moved by rotation; Grilles the door being a rotating disc or cylinder or part thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00664—Construction or arrangement of damper doors
- B60H2001/00721—Air deflecting or air directing means
Definitions
- the invention relates to a louver for an air-conduction housing of a motor vehicle air-conditioning system and to a heating or air-conditioning device.
- a plurality of louvers which control the air flow in different air ducts are used in air-conduction housings. This is the case particularly when a stratified flow is to be generated, for which purpose cold air and warm air are mixed in a controlled way, in regions, so as to form temperature stratification, and, in regions, are conducted parallel to one another.
- a plurality of air ducts are designed correspondingly, the louvers being arranged in these and, as a rule, so as to be spaced apart from one another and generally being activated individually as a function of one another and being actuated by a servomotor.
- louver of correspondingly subdivided design may be used, in which case the louver is subdivided by partitions of the air-conduction housing which separate the air ducts from one another.
- a louver of this type consisting of individual regions formed separately from one another is simpler to control, but still leaves desires, particularly with regard to the construction space requirement, unsatisfied.
- the object of the invention is to make available an improved louver for an air-conduction housing of a motor vehicle air-conditioning system, and at the same time, in particular, the utilization of the construction space is to be optimized and the cross section of the cold-air path is to be obstructed as little as possible.
- a louver for an air-conduction housing of a motor vehicle air-conditioning system having, to allow air stratification, a plurality of regions which are directly adjacent to one another and are subdivided by partitions which, in contrast to conventional louvers, are not part of the air-conduction housing, but are part of the louver, so that the louver itself forms air ducts which, in a corresponding louver position, guide the air in a controlled way and supply it to further air ducts.
- the louver preferably has two outer regions and a middle region lying between them.
- the louver is preferably designed mirror-symmetrically with respect to the center plane which extends perpendicularly with respect to the pivot axis.
- the flow cross section of the two outer regions is approximately as large as the flow cross section of the middle region.
- the louver has at least one region with a configuration in the manner of a drum-type louver, that is to say, in this region, the outer wall of the louver is arranged preferably concentrically with respect to the pivot axis of the louver.
- the louver has at least one region which is planar and runs parallel with respect to the pivot axis and/or is curved toward the pivot axis and which is preferably a middle region.
- At least two of the different regions of the louver preferably extend over a different distance with respect to the circumference of the latter.
- At least one region of the louver has, on at least one side, an end running obliquely with respect to the pivot axis, so that, during a rotation of the louver, the air passage is opened slowly.
- this end may be straight or else have any other, in particular arcuate profile.
- a control characteristic can be integrated into the configuration of the louver in a simple way, so that the corresponding actuating movement can be simplified.
- the louver preferably has a bridge, in particular in a planar or slightly curved region, said bridge connecting the partitions of a region to one another.
- the bridge may be of curved design for the purpose of performing a guide function.
- the louver For sealing off in at least one end position, the louver preferably has at least one outwardly extending edge which, in this end position, bears sealingly against the air-conduction housing at a corresponding bearing point. Additional sealing means, such as, for example, elastic sealing elements, may be provided at this edge.
- the edge preferably extends beyond the end faces, if possible as far as the pivot axis or the corresponding mounting.
- the louver is preferably produced in one piece, in particular as a plastic injection molding. Such a design allows cost-effective production.
- louver for example obliquely running ends of individual regions of the louver, edges which project outward, individual regions extending over a different distance with respect to the circumference of the louver, along with a corresponding configuration of the air-conduction housing
- regulation is simplified, since essential regulation characteristics are already contained in the louver form and in the air-conduction housing form cooperating with this, so that the actuating movement is simplified and therefore simpler servomotors and/or simpler controls can be used.
- FIG. 1 shows a perspective view of an air-conduction housing
- FIG. 2 shows the air-conduction housing of FIG. 1 , cut away in regions, from the same perspective
- FIG. 3 shows a section through the air-conduction housing in the center of the louver in the 100% warm louver position
- FIG. 4 shows a section through the air-conduction housing in the lateral region of the louver in the louver position of FIG. 3 ,
- FIG. 5 shows a section through the air-conduction housing in the center of the louver in the 75% warm louver position
- FIG. 6 shows a section through the air-conduction housing in the lateral region of the louver in the louver position of FIG. 5 ,
- FIG. 7 shows a section through the air-conduction housing in the center of the louver in the 50% warm louver position
- FIG. 8 shows a section through the air-conduction housing in the lateral region of the louver in the louver position of FIG. 7 ,
- FIG. 9 shows a section through the air-conduction housing in the center of the louver in the 0% warm louver position
- FIG. 10 shows a section through the air-conduction housing in the lateral region of the louver in the louver position of FIG. 9 ,
- FIG. 11 shows a perspective view of the louver
- FIG. 12 shows the view of FIG. 11 with an illustration of the sectional lines of FIGS. 3 to 10 ,
- FIG. 13 shows the louver from another perspective
- FIG. 14 shows a cross section through the louver.
- the thermally controlled air can be supplied to various regions of the vehicle interior via air ducts regulated by means of louvers.
- an air duct 8 is provided which branches off from the air-conduction housing 7 and which serves for defrosting the windshield.
- the air quantity conducted through the defrosting air duct 8 is regulated by means of a defrosting louver 9 .
- a further air duct 10 leads to the side and middle nozzles and can be regulated by means of a louver 11 .
- a foot-space air duct 12 is provided which can be regulated by means of a foot-space louver 13 .
- the ventilation air duct 10 is designed in three parts, in the present case the three subducts having in each case approximately the same cross section. They serve, in cooperation with the louver 6 , for air stratification between the middle and the side nozzle.
- the three-part louver 6 In order to make this air stratification possible by means of a single louver which makes partitions or specially designed cold-air ducts unnecessary and therefore has a somewhat lower construction space requirement, the three-part louver 6 according to the present exemplary embodiment is provided. This has, in its pivot axis, two tenons 14 which are arranged on the end faces 15 .
- the louver 6 is designed mirror-symmetrically with respect to a plane running perpendicularly with respect to the pivot axis in the center of the louver 6 , the sectional lines of this plane with the louver 6 being illustrated in FIG. 12 .
- the louver 6 by virtue of its symmetry, has two outer regions 16 and a middle region 17 . It is designed in the manner of a drum-type louver in its outer regions 16 , that is to say the louver 6 has the configuration of part of a hollow cylinder. On a side 18 extending in the longitudinal direction of the louver 6 , the regions 16 and 17 terminate at the same height, there being provided, for better sealing off, a radially outwardly extending edge 19 which also extends beyond the end faces 15 as far as the tenons 14 . According to the present exemplary embodiment, the flow cross section of the two outer regions 16 together corresponds approximately to the flow cross section of the middle region 17 .
- the middle region 17 is designed to be curved or concave in the direction of the pivot axis and is separated from the lateral regions 16 by walls 20 . At the end of the walls 20 which is on the pivot-axis side, these are connected by means of a bridge 21 , the latter being curved slightly according to the middle region 17 .
- This bridge 21 serves, on the one hand, as a kind of spoiler with an air guide function and, on the other hand, for increasing the stability of the louver 6 .
- the regions 16 and 17 terminate at different heights, as is evident particularly from FIG. 13 .
- the outer regions 16 are of beveled design, that is to say, in particular, they do not run parallel with respect to the pivot axis.
- the middle region 17 terminates parallel to the pivot axis, again an outwardly extending edge 23 being provided, which also extends beyond the outside of the outer regions 16 and the end faces 15 as far as the tenons 14 and therefore as far as the edge 19 .
- louver 6 The functioning of the louver 6 is explained in more detail below with reference to FIGS. 3 to 10 .
- FIGS. 3 and 4 show the 100% warm position, that is to say the louver 6 , with all the regions 16 and 17 , closes the path for the cold air coming directly from the evaporator 3 .
- the louver 6 bears with its edge 19 against the correspondingly designed air-conduction housing 7 , so that no cold air can arrive at the air ducts 8 and 12 .
- the flow path of the warm air coming from the heater 4 and additional heater 5 is illustrated by means of unbroken arrows for the situation where the defrosting and foot-space louvers 9 and 13 are open.
- the louver 11 for the supply of air to the side and middle nozzles is closed according to the illustration.
- the cold-air passage in the middle region 17 is opened increasingly more widely, so that the temperature falls further.
- the cold-air passages slowly begin to open on account of the beveling, and, in the outer regions 16 , cold air arrives, in particular, at the defrosting air duct 8 .
- temperature stratification giving the passenger a pleasant feeling is achieved, in that the temperature of the air which is guided into the foot space is higher than the temperature of the air which enters the defrosting air duct 8 .
- louver positions which cause opening or at least partial opening of the air duct 10 (not illustrated in FIGS. 3 to 8 )
- temperature stratification between middle and side air ducts is obtained.
- the temperature of the air which is supplied to the middle nozzle or middle nozzles is lower than the air temperature in the side nozzles, thus likewise contributing to an increase in comfort in the interior, since the radiation of heat via the side windows is higher than in the middle of the passenger space, and the temperature stratification described brings about an equalization of at least the temperature profile felt by the passenger.
- both the defrosting air duct 9 and the air duct 12 into the foot space are closed, and only uniformly cold air enters the ducts 10 with the side and middle nozzles.
- a stratification of the air can thus be made possible, and, in all the mixed or intermediate positions of the louver 6 , the air supplied to the windshield is colder than the air supplied to the foot space or the air supplied to the middle nozzles is colder than the air supplied to the side nozzles.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
- Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/538,380 US8302669B2 (en) | 2003-06-30 | 2009-08-10 | Louvre for an air-conduction housing of a vehicle air-conditioning system |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10329582 | 2003-06-30 | ||
DE10329582.8 | 2003-06-30 | ||
DE102004008818.7 | 2004-02-20 | ||
DE102004008818 | 2004-02-20 | ||
PCT/EP2004/006634 WO2005000611A1 (fr) | 2003-06-30 | 2004-06-18 | Volet de boitier de guidage d'air pour un systeme de climatisation de vehicule a moteur |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/538,380 Continuation US8302669B2 (en) | 2003-06-30 | 2009-08-10 | Louvre for an air-conduction housing of a vehicle air-conditioning system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060151162A1 true US20060151162A1 (en) | 2006-07-13 |
Family
ID=33553476
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/562,921 Abandoned US20060151162A1 (en) | 2003-06-30 | 2004-06-18 | Louvre for an air-conduction housing of a vehicle air-conditioning system |
US12/538,380 Expired - Fee Related US8302669B2 (en) | 2003-06-30 | 2009-08-10 | Louvre for an air-conduction housing of a vehicle air-conditioning system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/538,380 Expired - Fee Related US8302669B2 (en) | 2003-06-30 | 2009-08-10 | Louvre for an air-conduction housing of a vehicle air-conditioning system |
Country Status (6)
Country | Link |
---|---|
US (2) | US20060151162A1 (fr) |
EP (1) | EP1641642B1 (fr) |
JP (1) | JP4516569B2 (fr) |
AT (1) | ATE449693T1 (fr) |
DE (2) | DE102004029490A1 (fr) |
WO (1) | WO2005000611A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050257925A1 (en) * | 2002-07-29 | 2005-11-24 | Behr Gmbh 7 Co. Kg | Air-conditioner housing |
US20110105007A1 (en) * | 2008-09-25 | 2011-05-05 | Behr America, Inc. | Vehicle hvac temperature control system |
US20150090424A1 (en) * | 2013-09-30 | 2015-04-02 | Behr Gmbh & Co., Kg | Air conditioning system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE502004009206D1 (de) † | 2003-10-09 | 2009-05-07 | Behr Gmbh & Co Kg | Klimaanlage, insbesondere Kraftfahrzeug-Klimaanlage |
WO2007055499A1 (fr) * | 2005-11-10 | 2007-05-18 | Halla Climate Control Corporation | Climatisation pour vehicules disposant de deux flux d’air en couche a l’interieur |
EP2459388A2 (fr) | 2009-07-28 | 2012-06-06 | Sicpa Holding Sa | Feuille de transfert comprenant un pigment magnétique optiquement variable, procédé de fabrication, utilisation d une feuille de transfert, et article ou document la comprenant |
BR112013018266A2 (pt) * | 2011-02-09 | 2021-03-23 | Valeo Japan Co., Ltd. | porta multifuncional para ar condicionado e dispositivo para ar condicionado para veículo |
JP2016182835A (ja) * | 2013-07-23 | 2016-10-20 | 株式会社ヴァレオジャパン | 車両用空調ユニット |
JP6444627B2 (ja) * | 2014-06-20 | 2018-12-26 | 株式会社ヴァレオジャパン | 車両用空調装置 |
EP4257966A3 (fr) | 2015-09-03 | 2023-11-29 | Hamamatsu Photonics K.K. | Dispositif de spectrométrie de masse |
DE102015122348A1 (de) * | 2015-12-21 | 2017-06-22 | Hanon Systems | Heiz- und Klimaanlage für ein Kraftfahrzeug |
JP6499609B2 (ja) * | 2016-03-31 | 2019-04-10 | しげる工業株式会社 | 車両用レジスタ装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3264971A (en) * | 1963-05-28 | 1966-08-09 | Applic Ind Commerciales Et Imm | Air supply nozzle of utility in particular for the aeration or heating of vehicles |
US4610196A (en) * | 1984-01-30 | 1986-09-09 | Aurora Konrad G. Schulz Gmbh & Co. | Air supply nozzle |
US4938122A (en) * | 1989-12-04 | 1990-07-03 | Chrysler Corporation | Improved outlet assembly |
US5643080A (en) * | 1994-12-28 | 1997-07-01 | Hitachi Construction Machinery Co., Ltd. | Air outlet member |
US5902181A (en) * | 1998-05-01 | 1999-05-11 | Chrysler Corporation | Diverter valve assembly for an automobile HVAC system |
US20030037918A1 (en) * | 2001-08-22 | 2003-02-27 | Junkang Lee | Air conditioning system for a vehicle |
US6695691B1 (en) * | 2003-03-31 | 2004-02-24 | Trw Automotive U.S. Llc | Door assembly for a vehicle HVAC system and method for making same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4938914Y1 (fr) * | 1969-07-25 | 1974-10-25 | ||
GB2168786A (en) * | 1984-12-20 | 1986-06-25 | Austin Rover Group | An air distribution valve for an air heater |
DE4305253C2 (de) * | 1993-02-20 | 2000-09-21 | Opel Adam Ag | Heiz- und Belüftungseinrichtung |
FR2715352B1 (fr) * | 1994-01-24 | 1996-04-19 | Valeo Thermique Habitacle | Dispositif de chauffage-ventilation de l'habitacle d'un véhicule automobile. |
FR2720693B1 (fr) | 1994-06-01 | 1996-07-12 | Valeo Thermique Habitacle | Dispositif de chauffage et/ou d'aération de l'habitacle d'un véhicule. |
JP3671533B2 (ja) * | 1996-08-08 | 2005-07-13 | 株式会社デンソー | 空調装置 |
FR2765526B1 (fr) * | 1997-07-01 | 2002-01-11 | Valeo Climatisation | Installation de chauffage et/ou climatisation, notamment de vehicule automobile, equipee d'un boitier de traitement d'air a distribution d'air perfectionne |
FR2771343B1 (fr) * | 1997-11-27 | 2000-01-28 | Valeo Climatisation | Dispositif de distribution d'air pour un appareil de chauffage et/ou climatisation de vehicule automobile |
FR2786134B1 (fr) * | 1998-11-19 | 2001-02-09 | Valeo Climatisation | Dispositif de chauffage-ventilation de l'habitacle d'un vehicule |
FR2788019B1 (fr) | 1998-12-30 | 2001-11-16 | Valeo Climatisation | Dispositif de distribution d'air pour le chauffage et/ou la climatisation d'un vehicule automobile |
FR2798322B1 (fr) | 1999-09-10 | 2002-09-27 | Valeo Climatisation | Dispositif de chauffage et/ou climatisation de vehicule automobile a distribution amelioree |
DE10106774A1 (de) | 2001-02-08 | 2002-08-14 | Behr France Sarl | Mehrkanalige Klimaanlage mit einheitlich leistungsgesteuertem Heizkörper |
DE10147112B4 (de) * | 2001-09-25 | 2006-02-09 | Visteon Global Technologies, Inc., Dearborn | Steuerklappe für eine Vorrichtung zum Temperieren und Belüften von Kraftfahrzeugen |
JP3846283B2 (ja) * | 2001-11-22 | 2006-11-15 | 株式会社デンソー | 車両用空調装置 |
-
2004
- 2004-06-18 JP JP2006516002A patent/JP4516569B2/ja not_active Expired - Fee Related
- 2004-06-18 WO PCT/EP2004/006634 patent/WO2005000611A1/fr active Application Filing
- 2004-06-18 DE DE102004029490A patent/DE102004029490A1/de not_active Withdrawn
- 2004-06-18 DE DE502004010425T patent/DE502004010425D1/de not_active Expired - Lifetime
- 2004-06-18 EP EP04740078A patent/EP1641642B1/fr not_active Expired - Lifetime
- 2004-06-18 AT AT04740078T patent/ATE449693T1/de not_active IP Right Cessation
- 2004-06-18 US US10/562,921 patent/US20060151162A1/en not_active Abandoned
-
2009
- 2009-08-10 US US12/538,380 patent/US8302669B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3264971A (en) * | 1963-05-28 | 1966-08-09 | Applic Ind Commerciales Et Imm | Air supply nozzle of utility in particular for the aeration or heating of vehicles |
US4610196A (en) * | 1984-01-30 | 1986-09-09 | Aurora Konrad G. Schulz Gmbh & Co. | Air supply nozzle |
US4938122A (en) * | 1989-12-04 | 1990-07-03 | Chrysler Corporation | Improved outlet assembly |
US5643080A (en) * | 1994-12-28 | 1997-07-01 | Hitachi Construction Machinery Co., Ltd. | Air outlet member |
US5902181A (en) * | 1998-05-01 | 1999-05-11 | Chrysler Corporation | Diverter valve assembly for an automobile HVAC system |
US20030037918A1 (en) * | 2001-08-22 | 2003-02-27 | Junkang Lee | Air conditioning system for a vehicle |
US6695691B1 (en) * | 2003-03-31 | 2004-02-24 | Trw Automotive U.S. Llc | Door assembly for a vehicle HVAC system and method for making same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050257925A1 (en) * | 2002-07-29 | 2005-11-24 | Behr Gmbh 7 Co. Kg | Air-conditioner housing |
US7708055B2 (en) * | 2002-07-29 | 2010-05-04 | Behr Gmbh & Co. Kg | Air-conditioner housing |
US20110105007A1 (en) * | 2008-09-25 | 2011-05-05 | Behr America, Inc. | Vehicle hvac temperature control system |
US9610823B2 (en) * | 2008-09-25 | 2017-04-04 | Mahle International Gmbh | Vehicle HVAC temperature control system |
US20150090424A1 (en) * | 2013-09-30 | 2015-04-02 | Behr Gmbh & Co., Kg | Air conditioning system |
US10137757B2 (en) * | 2013-09-30 | 2018-11-27 | Mahle International Gmbh | Air conditioning system for heating and air conditioning a motor vehicle |
Also Published As
Publication number | Publication date |
---|---|
EP1641642A1 (fr) | 2006-04-05 |
US20090318070A1 (en) | 2009-12-24 |
JP4516569B2 (ja) | 2010-08-04 |
DE502004010425D1 (de) | 2010-01-07 |
DE102004029490A1 (de) | 2005-02-24 |
JP2007506600A (ja) | 2007-03-22 |
EP1641642B1 (fr) | 2009-11-25 |
ATE449693T1 (de) | 2009-12-15 |
US8302669B2 (en) | 2012-11-06 |
WO2005000611A1 (fr) | 2005-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8302669B2 (en) | Louvre for an air-conduction housing of a vehicle air-conditioning system | |
EP1809500B1 (fr) | Chauffage ventilation et climatisation avec deflecteur amovible | |
KR101866016B1 (ko) | 개방형 아키텍처를 갖는 hvac 모듈 | |
KR101465792B1 (ko) | 자동차의 공기 조화 장치용 공기 분배 케이스 | |
CN108025622B (zh) | 机动车辆供暖、通风和/或空调装置和相应的附加模块以及组装方法 | |
CN102950989B (zh) | 车用空调 | |
KR102470409B1 (ko) | 차량용 좌,우 독립 공조장치 | |
US6475077B2 (en) | Heating or air-conditioning system and method of operating same | |
KR20060094142A (ko) | 자동차용 좌우독립 공조장치 | |
CN101995056B (zh) | 用于车辆的空调 | |
KR20170121069A (ko) | 차량용 공조장치 | |
JP2005529794A (ja) | 自動車用モジュラー暖房および/または空調装置 | |
KR102225316B1 (ko) | 차량용 후방 공기 조화 장치 | |
KR102512355B1 (ko) | 차량용 공조장치 | |
US20220153083A1 (en) | Air conditioner for vehicle | |
KR101463496B1 (ko) | 차량용 공조장치 | |
KR102470404B1 (ko) | 차량용 공조장치 | |
KR20150129161A (ko) | 차량용 공조장치 | |
KR101474828B1 (ko) | 차량용 공조장치 | |
KR101425880B1 (ko) | 차량용 공조장치 | |
KR101463495B1 (ko) | 차량용 공조장치 | |
KR101450634B1 (ko) | 차량용 좌,우 독립 공조장치 | |
JPS60183218A (ja) | 自動車用空調装置 | |
KR200358431Y1 (ko) | 차량용 공기조화장치 | |
KR102531523B1 (ko) | 차량용 공조장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BEHR GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIEL, RONNY;DIEKSANDER, WOLFGANG;LITWING, ERICH;REEL/FRAME:017611/0884;SIGNING DATES FROM 20060123 TO 20060124 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |