US20050260443A1 - Organic light - emitting diodes and methods for assembly and enhanced charge injection - Google Patents

Organic light - emitting diodes and methods for assembly and enhanced charge injection Download PDF

Info

Publication number
US20050260443A1
US20050260443A1 US10/992,624 US99262404A US2005260443A1 US 20050260443 A1 US20050260443 A1 US 20050260443A1 US 99262404 A US99262404 A US 99262404A US 2005260443 A1 US2005260443 A1 US 2005260443A1
Authority
US
United States
Prior art keywords
molecular
layer
anode
tpd
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/992,624
Inventor
Tobin Marks
Qinglan Huang
Ji Cui
Jonathan Veinot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/673,600 external-priority patent/US5834100A/en
Priority claimed from US09/187,891 external-priority patent/US6399221B1/en
Application filed by Individual filed Critical Individual
Priority to US10/992,624 priority Critical patent/US20050260443A1/en
Publication of US20050260443A1 publication Critical patent/US20050260443A1/en
Priority to US12/497,109 priority patent/US8053094B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/701Langmuir Blodgett films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • This invention relates generally to organic electroluminescent devices with organic films between anodic and cathodic electrodes, and more particularly to such devices and methods for their assembly using the condensation of various silicon moieties.
  • Organic electroluminescent devices have been known, in various degrees of sophistication, since the early 1970's. Throughout their development and consistent with their function and mode of operation, they can be described generally by way of their physical construction. Such devices are characterized generally by two electrodes which are separated by a series of layered organic films that emit light when an electric potential is applied across the two electrodes.
  • a typical device can consist, in sequence, of an anode, an organic hole injection layer, an organic hole transport layer, an organic electron transport layer, and a cathode.
  • Holes are generated at a transparent electrode, such as one constructed of indium-tin-oxide, and transported through a hole-injecting or hole-transporting layer to an interface with an electron-transporting or electron-injecting layer which transports electrons from a metal electrode.
  • An emissive layer can also be incorporated at the interface between the hole-transporting layer and the electron-transporting layer to improve emission efficiency and to modify the color of the emitted light.
  • polymer-based electroluminescent devices employs spin coating techniques to apply the layers used for the device. This approach is limited by the inherently poor control of the layer thickness in polymer spin coating, diffusion between the layers, pinholes in the layers, and inability to produce thin layers which leads to poor light collection efficiency and the necessity of high D.C. driving voltages.
  • the types of useful polymers typically poly(phenylenevinylenes), are greatly limited and most are environmentally unstable over prolonged use periods.
  • the molecule-based approach uses vapor deposition techniques to put down thin films of volatile molecules. It offers the potential of a wide choice of possible building blocks, for tailoring emissive and other characteristics, and reasonably precise layer thickness control. Impressive advances have recently been achieved in molecular building blocks—especially in electron transporters and emitters, layer structure design (three versus two layers), and light collection/transmission structures (microcavities).
  • FIGS. 1A and 1B show structural formulae for porphyrinic compounds which are illustrative examples of compounds of the type which can be used as hole injection components/agents in the preparation of the molecular conductive or hole injection layers and electroluminescent media of this invention.
  • FIG. 1A shows structural formulae for porphyrinic compounds which are illustrative examples of compounds of the type which can be used as hole injection components/agents in the preparation of the molecular conductive or hole injection layers and electroluminescent media of this invention.
  • M is Cu, Zn, SiCl 2 , or 2H;
  • Q is N or C(X), where X is a substituted or unsubstituted alkyl or aryl group; and R is H, trichlorosilyl, trialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include trichlorosilyl or trialkoxysilyl groups, substituted on the C 1 -C 4 , C 8 -C 11 , C 15 - C 18 and/or C 22 -C 25 positions.
  • B, M is Cu, Zn, SiCl 2 , or 2H;
  • Q is N or C(X), where X is a substituted or unsubstituted alkyl or aryl group; and
  • T 1 /T 2 is H, trichlorosilyl, trialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include trichlorosilyl or trialkoxysilyl groups.
  • FIGS. 2A-2C show structural formulae for arylamine compounds which are illustrative examples of compounds of the type which can be used as hole transport compounds/agents in the preparation of the molecular conductive or hole transport layers and electroluminescent media of this invention.
  • R 2 , R 3 and/or R 4 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions.
  • FIG. 1 R 2 , R 3 and/or R 4 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl
  • Q 1 and Q 2 can be substituted or unsubstituted tertiary aryl amines, such as those described with FIG. 2A ; and G is a linking group to include but not limited to an alkyl, aryl, cylcohexyl or heteroatom group.
  • G is a linking group to include but not limited to an alkyl, aryl, cylcohexyl or heteroatom group.
  • Ar is an arylene group; n is the number of arylene groups from 1-4; and R 5 , R 6 , R 7 , and/or R 8 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions.
  • FIGS. 3A-3C show structural formulae for aryl compounds which are illustrative of examples of compounds of the type which can be used as emissive compounds/agents in the preparation of the molecular conductive layers and electroluminescent media of this invention.
  • R 9 and R 10 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions.
  • FIG. 3A show structural formulae for aryl compounds which are illustrative of examples of compounds of the type which can be used as emissive compounds/agents in the preparation of the molecular conductive layers and electroluminescent media of this invention.
  • R 9 and R 10 can be H, trihalosilyl, trialkoxysilyl, di
  • M is Al or Ga; and R 11 -R 14 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions.
  • R 11 -R 14 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions.
  • Ar is arylene; and R 15 -R 18 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions.
  • FIGS. 4A-4C show structural formulae for heterocyclic compounds which are illustrative examples of compounds of the type which can be used as electron transport components/agents in the preparation of the molecular conductive or electron transport layers and in electroluminescent media of this invention.
  • FIGS. 4A-4C show structural formulae for heterocyclic compounds which are illustrative examples of compounds of the type which can be used as electron transport components/agents in the preparation of the molecular conductive or electron transport layers and in electroluminescent media of this invention.
  • X is O or S; and R 19 -R 24 can be aryl groups substituted with the following substituents anywhere on the aryl ring: trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can contain dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups.
  • FIGS. 5A and 5B show, schematically and in a step-wise manner by way of illustrating the present invention, use of the components/agents of Examples 1-5 and FIGS. 1-4 in the self-assembly and preparation of an organic light-emitting diode device.
  • the molecular representation FIG. 5A illustrates the hydrolysis of an assembled silicon/silane component/agent to provide an Si—OH functionality reactive toward a silicon/silane moiety of another component, agent or conductive layer.
  • the block and molecular representations of FIG. 5B illustrate a completed assembly.
  • FIG. 6 shows an alternative synthetic sequence enroute to several arylamine components/agents, also in accordance with the present invention.
  • FIG. 7 shows, schematically and by way of illustrating an alternative embodiment of the present invention, use of the components/agents of FIG. 6 in the preparation of another representative electroluminescent device.
  • FIG. 9 graphically shows cyclic voltametry measurements, using 10 ⁇ 3 M ferrocene in acetonitrile, taken after successive layer (c-e) deposition and as compared to a bare ITO electrode (a). Even one capping layer (b), in accordance with this invention, effectively blocks the electrode surface. Complete blocking is observed after deposition of three or four layers. The sweep rate was 100 mV/sec, and the electrode area was about 0.7 cm 2 .
  • FIGS. 10 A-C graphically illustrate various utilities and/or performance characteristics (current density, quantum efficiency and forward light output, respectively, versus voltage) achievable through use of the present invention, as a function of the number of capping layers on an electrode surface.
  • FIG. 11 A shows molecular structures of hole adhesion/injection molecular components: TAA (shown after crosslinking), TPD-Si 2 (shown after crosslinking), and prior art copper phthalocyanine, Cu(Pc).
  • FIG. 11B illustrates one possible scheme for the synthesis of a preferred TPD-Si 2 adhesion/injection interlayer molecular precursor. Reference is also made to the procedures described in Example 2.
  • FIGS. 12 A-D provide optical microscopic images of vapor-deposited TPD film (100 nm) morphology after annealing at 80° C. for 1.0 h on ITO substrates coated with a cured 40 nm thick TPD-Si 2 film (12A) and on bare ITO (12B); polarized optical image of TPD film (100 nm) morphology before (12C) and after (12D) annealing the bilayer structure: ITO/CuPc(10 nm)/TPD (100 nm) at 80° C. for 0.50 h.
  • FIGS. 13 A-C show, in turn, (A) light output, (B) external quantum efficiency, and (C) current-voltage characteristics as a function of operating voltage for OLED devices having the structure: ITO/(adhesion/injection/molecular component interlayer)/TPD hole transport layer (50 nm)/Alq (60 nm)/Al, where the injection/adhesion component interlayer is prior art Cu(Pc) (10 nm), TAA (15 nm), and TPD-Si 2 (40 nm).
  • FIG. 14 compares injection characteristics of hole-only devices having the structure ITO/molecular component interlayer/TPD (250 nm)/Au(5 nm)/Al (180 nm) for various anode functionalization layers.
  • FIG. 15 graphically illustrates by comparison the effect of thermal stressing (90° C. under vacuum) on device characteristics of ITO/(injection/adhesion interlayer)/TPD(50 nm)/Alq(60 nm)/Al (100 nm) devices, where the molecular component interlayer is TPD-Si 2 (40 nm), TAA (15 nm), and prior art CuPc (10 nm).
  • This invention describes, in part, a new route to the fabrication of light-emitting organic multilayer heterojunction devices, useful for both large and small, multicolored display applications.
  • electron and hole transporting layers, as well as the emissive layer, as well as any other additional layers, are applied, developed and/or modified by molecular self-assembly techniques.
  • the invention can provide precise control over the thickness of a luminescent medium or the conductive layers which make up such a medium, as well as provide maximum light generation efficiency.
  • Use of the present invention provides strong covalent bonds between the constituent molecular components, such that the mechanical, thermal, chemical and/or photochemical stability of such media and/or conductive layers, as can be used with an electroluminescent device, are enhanced. The use of such components also promotes conformal surface coverage to prevent cracks and pinhole deformities.
  • siloxane self-assembly techniques described herein allow for the construction of molecule-based electroluminescent media and devices.
  • various molecular components can be utilized to control the thickness dimension of the luminescent media and/or conductive layers. Nanometer dimensions can be obtained, with self-sealing, conformal coverage.
  • the resulting covalent, hydrophobic siloxane network imparts considerable mechanical strength, as well as enhancing the resistance of such media and/or devices to dielectric breakdown, moisture intrusion, and other degradative processes.
  • the present invention is an electroluminescent article or device which includes (1) an anode, (2) a plurality of molecular conductive layers where one of the layers is coupled to the anode with silicon-oxygen bonds and each of the layers is coupled one to another with silicon-oxygen bonds, and (3) a cathode in the electrical contact with the conductive layers.
  • an anode is separated from a cathode by an organic luminescent medium.
  • the anode and the cathode are connected to an external power source by conductors.
  • the power source can be a continuous direct, alternating or an intermittent current voltage source.
  • a convenient conventional power source including any desired switching circuitry, which is capable of positively biasing the anode with respect to the cathode, can be employed.
  • Either the anode or cathode can be at ground potential.
  • the conductive layers can include but are limited to a hole transport layer, a hole injection layer, an electron transport layer and an emissive layer.
  • the anode Under forward biasing conditions, the anode is at a higher potential than the cathode, and the anode injects holes (positive charge carriers) into the conductive layers and/or luminescent medium while the cathode injects electrons therein.
  • the portion of the layers/medium adjacent to the anode forms a hole injecting and/or transporting zone while the portion of the layers/medium adjacent to the cathode forms an electron injecting and/or transporting zone.
  • the injected holes and electrons each migrate toward the oppositely charged electrode, resulting in hole-electron interaction within the organic luminescent medium of conductive layers.
  • a migrating electron drops from its conduction potential to a valence band in filling a hole to release energy as light.
  • the organic luminescent layers/medium between the electrodes performs as a luminescent zone receiving mobile charge carriers from each electrode.
  • the released light can be emitted from the luminescent conductive layers/medium through one or more of edges separating the electrodes, through the anode, through the cathode, or through any combination thereof. See, U.S. Pat. No. 5,409,783 and, in particular cols. 4-6 and FIG. 1 thereof, which is incorporated herein by reference in its entirety.
  • the present invention contemplates a forward biasing DC power source and reliance on external current interruption or modulation to regulate light emission.
  • the thickness of the organic luminescent conductive layers/medium can be designed to control and/or determine the wavelength of emitted light, as well as reduce the applied voltage and/or increase in the field potential.
  • the electrode can be formed as a translucent or transparent coating, either on the organic layer/medium or on a separate translucent or transparent support.
  • the layer/medium thickness is constructed to balance light transmission (or extinction) and electrical conductance (or resistance).
  • Other considerations relating to the design, construction and/or structure of such articles or devices are as provided in the above referenced U.S. Pat. No. 5,409,783, such considerations as would be modified in accordance with the molecular conductive layers and assembly methods of the present invention.
  • the conductive layers have molecular components, and each molecular component has at least two silicon moieties.
  • each silicon moiety is a halogenated or alkoxylated silane and silicon-oxygen bonds are obtainable from the condensation of the silane moieties with hydroxy functionalities.
  • the present invention employs an anode with a substrate having a hydroxylated surface portion. The surface portion is transparent to near-IR and visible wavelengths of light.
  • the hydroxylated surface portions include SiO 2 , In 2 .xSnO 2 , Ge and Si, among other such materials.
  • the conductive layers include molecular components, and each molecular component has at least two silicon moieties.
  • each silicon moiety is a halogenated or alkoxylated silane, and silicon-oxygen bonds are obtainable from the condensation of the silane moieties with hydroxy functionalities which can be on a surface portion of an anode.
  • a cathode is in electrical contact with the conductive layers.
  • the cathode is vapor deposited on the conductive layers, and constructed of a material including Al, Mg, Ag, Au, In, Ca and alloys thereof.
  • the present invention is a method of producing a light-emitting diode having enhanced stability and light generation efficiency.
  • the method includes (1) providing an anode with a hydroxylated surface; (2) coupling the surface to a hole transport layer having a plurality of molecular components, with each component having at least two silicon moieties reactive with the surface, with coupling of one of the silicon moieties to form silicon-oxygen bonds between the surface and the hole transport layer; (3) coupling the hole transport layer to an electron transport layer, the electron transport layer having a plurality of molecular components with each of the components having at least two silicon moieties reactive with the hole transport layer, with the coupling of one of the silicon moieties to form silicon-oxygen bonds between the hole and electron transport layers; and (4) contacting the electron transport layer with a cathode material.
  • the hole transport layer includes a hole injecting zone of molecular components and a hole transporting zone of molecular components.
  • each silicon moiety is a halogenated or alkoxylated silane such that, with respect to this embodiment, coupling the hole transport layer to the electron transport layer further includes hydrolyzing the halogenated or alkoxylated silane.
  • contacting the electron transport layer with the cathode further includes hydrolyzing the silane.
  • the present invention is a method of controlling the wavelength of light emitted from an electroluminescent device.
  • the inventive method includes (1) providing in sequence a hole transport layer, an emissive layer and an electron transport layer to form a medium of organic luminescent layers; and (2) modifying the thickness dimension of at least one of the layers, each of the layers including molecular components corresponding to the layer and having at least two silicon moieties reactive to a hydroxy functionality and the layers coupled one to another by Si—O bonds, the modification by reaction of the corresponding molecular components one to another to form Si—O bonds between the molecular components, and the modification in sequence of the provision of the layers.
  • At least one silicon moiety is unreacted after reaction with a hydroxy functionality.
  • modification then includes hydrolyzing the unreacted silicon moiety of one of the molecular components to form a hydroxysilyl functionality and condensing the hydroxysilyl functionality with a silicon moiety of another molecular component to form a siloxane bond sequence between the molecular components.
  • the silicon moieties are halogenated or alkoxylated silane moieties.
  • Such embodiments include modifying the thickness dimension by hydrolyzing the unreacted silane moiety of one of the molecular components to form a hydroxysilyl functionality and condensing the hydroxysilyl functionality with a silane moiety of another molecular component to form a siloxane bond sequence between the molecular components.
  • the organic luminescent conductive layers/medium of this invention can be described as having a single organic hole injecting or transporting layer and a single electron injecting or transporting layer, modification of each of these layers with respect to dimensional thickness or into multiple layers, as more specifically described below, can result in further refinement or enhancement of device performance by way of the light emitted therefrom.
  • the layer receiving holes is the layer in which hole-electron interaction occurs, thereby forming the luminescent or emissive layer of the device.
  • the articles/devices of this invention can emit light through either the cathode or the anode. Where emission is through the cathode, the anode need not be light transmissive.
  • Transparent anodes can be formed of selected metal oxides or a combination of metal oxides having a suitably high work function. Preferred metal oxides have a work function of greater than 4 electron volts (eV). Suitable anode metal oxides can be chosen from among the high (>4 eV) work function materials.
  • a transparent anode can also be formed of a transparent metal oxide layer on a support or as a separate foil or sheet.
  • the devices/articles of this invention can employ a cathode constructed of any metal, including any high or low work function metal, heretofore taught to be useful for this purpose and as further elaborated in that portion of the incorporated patent referenced in the preceding paragraph.
  • fabrication, performance, and stability advantages can be realized by forming the cathode of a combination of a low work function ( ⁇ 4 eV) metal and at least one other metal.
  • Available low work function metal choices for the cathode are listed in cols. 19-20 of the aforementioned incorporated patent, by periods of the Periodic Table of Elements and categorized into 0.5 eV work function groups. All work functions provided therein are from Sze, Physics of Semiconductor Devices , Wiley, New York, 1969, p. 366.
  • a second metal can be included in the cathode to increase storage and operational stability.
  • the second metal can be chosen from among any metal other than an alkali metal.
  • the second metal can itself be a low work function metal and thus be chosen from the above-referenced list and having a work function of less than 4 eV. To the extent that the second metal exhibits a low work function it can, of course, supplement the first metal in facilitating electron injection.
  • the second metal can be chosen from any of the various metals having a work function greater than 4 eV. These metals include elements resistant to oxidation and, therefore, those more commonly fabricated as metallic elements. To the extent the second metal remains invariant in the article or device, it can contribute to the stability. Available higher work function (4 eV or greater) metal choices for the cathode are listed in lines 50-69 of col. 20 and lines 1-15 of col. 21 of the aforementioned incorporated patent, by periods of the Periodic Table of Elements and categorized into 0.5 eV work function groups.
  • the electrodes and/or substrates of this invention have, preferably, a surface with polar reactive groups, such as a hydroxyl (—OH) group.
  • polar reactive groups such as a hydroxyl (—OH) group.
  • Materials suitable for use with or as electrodes and/or substrates for anchoring the conductive layers and luminescent media of this invention should conform to the following requirements: any solid material exposing a high energy (polar) surface to which layer-forming molecules can bind.
  • metals such as SiO 2 , TiO 2 , MgO, and Al 2 O 3 (sapphire), semiconductors, glasses, silica, quartz, salts, organic and inorganic polymers, organic and inorganic crystals and the like.
  • Inorganic oxides in the form of crystals or thin films are especially preferred because oxides yield satisfactory hydrophilic metal hydroxyl groups on the surface upon proper treatment. These hydroxyl groups react readily with a variety of silyl coupling reagents to introduce desired coupling functionalities that can in turn facilitate the introduction of other organic components.
  • Alkaline processes NaOH aq.
  • This process will generate a fresh hydroxylated surface layer on the substrates while the metal oxide bond on the surface is cleaved to form vicinal hydroxyl groups.
  • High surface hydroxyl densities on the anode surface can be obtained by sonicating the substrates in an aqueous base bath.
  • the hydroxyl groups on the surface will anchor and orient any of the molecular components/agents described herein. As described more fully below, molecules such as organosilanes with hydrophilic functional groups can orient to form the conductive layers.
  • the conductive layers and/or organic luminescent medium of the devices/articles of this invention preferably contain at least two separate layers, at least one layer for transporting electrons injected from the cathode and at least one layer for transporting holes injected from the anode.
  • the latter is in turn preferably at least two layers, one in contact with the anode, providing a hole injecting zone and a layer between the hole injecting zone and the electron transport layer, providing a hole transporting zone.
  • Porphyrinic and phthalocyanic compounds of the type described in cols. 11-15 of the referenced/incorporated U.S. Pat. No. 5,409,783 can be used to form the hole injecting zone.
  • the phthalocyanine structure shown in column 11 is representative, particularly where X can be, but is not limited to, an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen.
  • Preferred porphyrinic compounds are represented by the structure shown in col.
  • R, T 1 and T 2 can be but are not limited to an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups contain 1-6 carbon atoms or is hydrogen.
  • Preferred phthalocyanine- and porphyrin-based hole injection agents include silicon phthalocyanine dichloride and 5,10,15,20-tetraphenyl-21H,23H-porphine silicon (IV) dichloride, respectively.
  • the hole transporting layer is preferably one which contains at least one tertiary aromatic amine, examples of which are as described in FIGS. 2A-2C and Examples 1 and 2.
  • Other exemplary arylamine core structures are illustrated in U.S. Pat. No. 3,180,730, which is incorporated herein by reference in its entirety, where the core structures are modified as described herein.
  • Other suitable triarylamines substituted with a vinyl or vinylene radical and/or containing at least one active hydrogen containing group are disclosed in U.S. Pat. Nos. 5,409,783, 3,567,450 and 3,658,520. These patents are incorporated herein by reference in their entirety and the core structures disclosed are modified as described herein.
  • R 24 , R 25 , R 26 , R 27 , R 30 , R 31 and R 32 can be an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen.
  • Molecular components of this invention comprising emissive agents and/or the emissive layer include those described herein in FIGS. 3A-3C and Example 5.
  • Other such components/agents include various metal chelated oxinoid compounds, including chelates of oxine (also commonly referred to as 8-quinolinol or 8-hydroxyquinoline), such as those represented by structure III in col. 8 of the referenced and incorporated U.S. Pat. No.
  • Z 2 can be but is not limited to an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen.
  • Other such molecular components/emissive agents include the quinolinolato compounds represented in cols. 7-8 of U.S. Pat. No.
  • a ring substituent can be but is not limited to an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen.
  • aryl substituents can include an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen.
  • emissive agents include without limitation anthracene, naphthalene, phenanthrene, pyrene, chrysene, perylene and other fused ring compounds, or as provided in col. 17 of the previously referenced and incorporated U.S. Pat. No. 5,409,783, such compounds as modified in accordance with this invention and as more fully described above.
  • Modifiable components also include those described in U.S. Pat. Nos. 3,172,862, 3,173,050 and 3,710,167—all of which are incorporated herein by reference in their entirety.
  • Molecular components which can be utilized as electron injecting or electron transport agents and/or in conjunction with an electron injection or electron transport layer are as described in FIGS. 4A-4C and Examples 3(a)-(d) and 4.
  • Other such components include oxadiazole compounds such as those shown in cols. 12-13 of U.S. Pat. No. 5,276,381, also incorporated herein by reference in its entirety, as such compounds would be modified in accordance with this invention such that the phenyl substituents thereof each include an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen.
  • such components can be derived from the thiadiazole compounds described in U.S. Pat. No. 5,336,546 which is incorporated herein by reference in its entirety.
  • inorganic silicon moieties can be used in conjunction with the various molecular components, agents, conductive layers and/or capping layers.
  • silane moieties can be used with good effect to impart mechanical, thermal, chemical and/or photochemical stability to the luminescent medium and/or device. Such moieties are especially useful in conjunction with the methodology described herein. Degradation is minimized until further synthetic modification is desired. Hydrolysis of an unreacted silicon/silane moiety provides an Si—OH functionality reactive with a silicon/silane moiety of another component, agent and/or conductive layer. Hydrolysis proceeds quickly in quantitative yield, as does a subsequent condensation reaction with an unreacted silicon/silane moiety of another component to provide a siloxane bond sequence between components, agents and/or conductive layers.
  • the molecular agents/components in FIGS. 1-4 can be prepared with a lithium or Grignard reagent using synthetic techniques known to one skilled in the art and subsequent reaction with halosilane or alkoxysilane reagents.
  • unsaturated olefinic or acetylenic groups can be appended from the core structures using known synthetic techniques.
  • halosilane or alkoxysilane functional groups can be introduced using hydrosilation techniques, also known to one skilled in the art. Purification is carried out using procedures appropriate for the specific target molecule.
  • the present invention is also directed to the application of self-assembly techniques to form layers which cap an electrode, provide dielectric and other functions and/or enhance performance relative to the prior art.
  • Such capping layers are self-assembled films which are conformal in their coverage, can have dimensions less than one nanometer and can be deposited with a great deal of control over the total layer thickness.
  • the present invention also includes an electroluminescent article or device which includes (1) an anode, (2) at least one molecular capping layer coupled to the anode with silicon-oxygen bonds, with each capping layer coupled one to another with silicon-oxygen bonds, (3) a plurality of molecular conductive layers, with one of the layers coupled to the capping layer with silicon-oxygen bonds and each conductive layer coupled one to another with silicon-oxygen bonds, and (4) a cathode in electric contact with a conductive layer.
  • the capping layer can be deposited on a conductive layer and/or otherwise introduced so as to be adjacent to a cathode, to enhance overall performance.
  • the anode is separated from the cathode by an organic luminescent medium.
  • the anode and cathode are connected to an external power source by conductors.
  • the power source can be a continuous direct, alternating or intermittent current voltage source.
  • a convenient conventional power source, including any desired switching circuitry, which is capable of positively biasing the anode with respect to the cathode, can be employed.
  • Either the anode or cathode can be at ground potential.
  • each conductive and/or capping layer has molecular components, and each molecular component has at least two silicon moieties.
  • each such conductive and/or capping component is a halogenated or alkoxylated silane, and silicon-oxygen bonds are obtainable from the condensation of the silane moieties with hydroxy functionalities.
  • a preferred capping material is octachlorotrisiloxane. The anode and cathode can be chosen and/or constructed as otherwise described herein.
  • the present invention is a method of using molecular dimension to control the forward light output of an electroluminescent device.
  • the inventive method includes (1) providing an electrode and a molecular layer thereon, the layer coupled to the electrode with first molecular components having at least two silicon moieties reactive to a hydroxy functionality; and (2) modifying the thickness of the layer by reacting the molecular components with second components to form a siloxane bond sequence between the first and second molecular components, the second molecular components having at least two silicon moieties also reactive to a hydroxy functionality.
  • At least one silicon moiety is unreacted after reaction with a hydroxy functionality.
  • the modification further includes hydrolyzing an unreacted silicon moiety of one of the molecular components to form a hydroxysilyl functionality and condensing the hydroxysilyl functionality with a silicon moiety of a third molecular component to form a siloxane bond sequence between the second and third molecular components.
  • the silicon moieties are halogenated or alkoxylated silane moieties.
  • the present invention also includes any electroluminescent article for generating light upon application of an electrical potential across two electrodes.
  • Such an article includes an electrode having a surface portion and a molecular layer coupled and/or capped thereon.
  • the layer includes molecular components, and each component has at least two silicon moieties.
  • the layer is coupled to the electrode with silicon-oxygen bonds.
  • each silicon moiety is a halogenated silane, and silicon-oxygen bonds are obtained from a condensation reaction.
  • the electrode has a substrate with a hydroxylated surface portion transparent to near-IR and visible wavelengths of light.
  • the luminescent medium can be constructed using either the self-assembly techniques described herein or the materials and techniques of the prior art.
  • the electroluminescent devices and related methods of this invention can demonstrate various interlayer/interfacial phenomena through choice of layer/molecular components and design of the resulting electroluminescent medium.
  • a number of cathode and anode interfacial structures can enhance charge injection, hence device performance.
  • ITO anode—hole transport layer (HTL) interface modification of the ITO anode—hole transport layer (HTL) interface is somewhat more controllable, although similar mechanistic uncertainties pertain.
  • ITO functionalization approaches produce phenomenologically similar effects, although less dramatic than those observed for the interposition of alkali fluoride at Al cathodes. These approaches include deposition onto ITO of nanoscale layers of various organic acids, copper phthalocyanine, or thicker (30-100 nm) layers of polyaniline or polythiophene (PEDOT), all resulting in somewhat enhanced luminous performance.
  • PEDOT polyaniline or polythiophene
  • the present invention can be considered in the context of one or more structural relationships between an OLED anode and/or its associated organic layers.
  • moderation of the surface energy mismatch can be effected at a hydrophilic oxide anode-hydrophobic HTL interface, as demonstrated below using nanoscopic self-assembled silyl group functionalized amine components (see, for example, FIG. 11A and 1-4 TAA layers; 11 ⁇ /layer). Promoting anode/ITO-HTL physical cohesion significantly enhances luminous performance and durability.
  • a silyl-group functionalized, crosslinkable amine layer having the core amine structure of the HTL component, TPD, significantly improves ITO/TPD/Alq/Al device performance and thermal durability (one metric of device stability) to an extent surprising, unexpected and unattainable with other anode functionalization structures.
  • the commonly used copper phthalocyanine (Cu(Pc); FIG. 11A ) anode functionalization layer actually templates crystallization of overlying TPD films at modest temperatures (Example 13 and FIG. 12D ), consistent with the thermal instability of many Cu(Pc)-buffered OLED devices of the prior art.
  • the present invention contemplates a method of using an amine molecular component to enhance hole injection across the electrode-organic interface of a light emitting diode device.
  • the inventive method includes (1) providing an anode; and (2) incorporating an electroluminescent medium adjacent the anode, the medium including but not limited to a molecular layer, coupled to the anode, of amine molecular components substituted with at least one silyl group, and thereon a hole transport layer of molecular components having the amine structure of the aforementioned molecular layer components.
  • the molecular layer can have at least one of an arylamine component and an arylalkylamine component, including but not limited to those monoarylamine, diarylamine and triarylamine components described in the aforementioned and incorporated U.S. Pat. No. 5,409,783, modified and/or silyl-functionalized as provided herein.
  • arylamine and/or arylalkylamine structures are disclosed in U.S. Pat. Nos. 3,180,730, 3,567,450 and 3,658,520, each of which is incorporated herein in its entirety, such structures as can also be modified to provide silyl-functionality in accordance herewith.
  • a combination of such silyl-substituted components can be employed with beneficial effect.
  • the aforementioned amine molecular layer components are alkylsilyl-substituted compounds of the type illustrated in FIGS. 2A and 2C .
  • such components include the alkylsilyl-substituted TAA and alkylsilyl substituted TPD compounds prepared as described herein.
  • such a molecular layer can be spin-coated on the anode surface or self-assembled, as described more fully above, to provide silicon-oxygen bonds therewith.
  • a plurality of such molecular layers can be coupled successively on an anode surface—each layer coupled one to another with silicon-oxygen bonds—to improve structural stability and enhance device performance.
  • hole injection can be enhanced by choice of a molecular layer with components having a structural relationship with those arylamine or arylalkylamine components of the hole transport layer.
  • such enhancement can be achieved through use of a silyl-functionalized TPD layer in conjunction with a TPD hole transport layer.
  • the present invention also includes an organic electroluminescent device for generating light upon application of an electrical potential cross to electrodes.
  • a device includes (1) an anode; (2) at least one molecular layer, coupled to the anode, of one or more of the aforementioned amine molecular components substituted with at least one silyl group; (3) a conductive layer of molecular components having the amine structure; and (4) a cathode in electrical contact with the anode.
  • a preferred conductive layer includes a hole transport layer comprising components of the prior art incorporated herein by reference, or modified as described above.
  • Preferred molecular layer components are alkylsilyl-substituted compounds of the type illustrated in FIGS.
  • a preferred conductive layer of such a device is a TPD hole transport layer, such a layer substantially without crystallization upon annealing and/or at device operation temperatures when used in conjunction with a molecular layer of components having the same or a structurally similar amine structure.
  • hydrophobic amine HTL—hydrophilic anode integrity is a factor in OLED performance; poor physical cohesion contributes to inefficient hole injection and ultimately, device failure.
  • Enhanced performance can be achieved through use of molecular layer structures which maximize interfacial cohesion and charge transport.
  • a conveniently applied, spincoated silyl (Si) functionalized TPD analogue, TPD-Si 2 (FIGS. 11 A-B), structurally similar to the overlying HTL, hence well-suited to stabilizing the interface, undergoes rapid crosslinking upon spincoating from solution and subsequent thermal curing to form a dense, robust siloxane matrix with imbedded TPD hole-transport components.
  • the thickness of these layers ( ⁇ 40 nm) was determined by specular X-ray reflectivity on samples deposited via identical techniques on single-crystal silicon.
  • the RMS roughness of the TPD-Si 2 molecular layer films on ITO substrates of 30 ⁇ RMS roughness is 8-12 ⁇ by contact mode AFM.
  • Crosslinked TPD-Si 2 films exhibit high thermal stability, with only 5% weight loss observed up to 400° C. by TGA, indicating substantial resistance to thermal degradation.
  • cyclic voltammetry of 40 nm TPD-Si 2 films on ITO electrodes indicates that they support facile hole transport and are electrochemically stable.
  • TPD-Si 2 molecular layer films The densely crosslinked nature of TPD-Si 2 molecular layer films is evident in the relatively large separation of oxidative and reductive peaks (200 mV), suggesting kinetically hindered oxidation/reduction processes with retarded counterion mobility.
  • W. Li Q. Wang, J. Cui, H. Chou, T. J. Marks, G. E.
  • FIGS. 2A-2C and the representative arylamines provided therein other hole transport agents and/or layers of this invention can be obtained by straightforward application of the silanation procedure described above in Example 1, with routine synthetic modification(s) and optimization of reaction conditions as would be well-known to those skilled in the art and as required by the particular arylamine.
  • preliminary halogenation/bromination can be effected using known synthetic procedures.
  • the arylamines of FIGS. 2A-2C and other suitable substrates can be prepared using other available synthetic procedures to provide multiple silane reaction centers for use with the self-assembly methods and light-emitting diodes of this invention.
  • Core molecular substrates of the type from which the arylamines of FIGS. 2A-2C can be prepared are described by Strukelji et al. in Science, 267, 1969 (1995), which is incorporated herein by reference in its entirety.
  • FIGS. 4A-4C and the representative heterocycles provided therein other electron transport agents and/or layers of this invention can be obtained by straight-forward application of the silanation procedure described above in Example 3, with routine synthetic modification(s) and optimization of reaction conditions as would be well-known to those skilled in the art and as required by the particular heterocyclic substrate. Preliminary halogenation/bromination can be effected using known synthetic procedures or through choice of starting materials enroute to a given heterocycle. Alternatively, the heterocycles of FIGS. 4A-4C and other suitable substrates can be prepared using other available synthetic procedures to provide multiple silane reaction centers for use with the self-assembly methods and light-emitting diodes of this invention. Core molecular substrates of the type from which the heterocycles of FIGS. 4A-4C can be prepared are also described by Strukelji et al. in Science, 267, 1969 (1995).
  • emissive agents and/or layers in accordance with this invention, can be obtained by appropriate choice of starting materials and using halogenation and silanation procedures of the type described in Examples 1-4, above.
  • other chromophores can be silanated using other available synthetic procedures to provide multiple silane reaction centers for use with the self-assembly methods and light-emitting diodes of this invention.
  • such emissive agents or chromophores can be used for emission of light at wavelengths heretofore unpractical or unavailable.
  • the present invention allows for the use of multiple agents or chromophores and construction of an emissive layer or layers such that a combination of wavelengths and/or white light can be emitted.
  • FIG. 6 illustrate the preparation of other molecular components which can be used in accordance with this invention.
  • an electroluminescent article/device also in accordance with this invention is prepared as described, below. It is understood that the arylamine component can undergo another or a series of reactions with a silicon/silane moiety of another molecular component/agent to provide a siloxane bond sequence between components, agents and/or conductive layers. Similar electroluminescent articles/devices and conductive layers/media can be prepared utilizing the various other molecular components/agents and/or layers described above, such as in Examples 1-5 and FIGS. 1-4 , in conjunction with the synthetic modifications of this invention and as required to provide the components with the appropriate reactivity and functionality necessary for the assembly method(s) described herein.
  • This example of the invention shows how slides can be prepared/cleaned prior to use as or with electrode materials.
  • An indium-tin-oxide (ITO)-coated soda lime glass (Delta Technologies) was boiled in a 20% aqueous solution of ethanolamine for 5 minutes, rinsed with copious amounts of distilled water and dried for 1 hour at 120° C.; alternatively and with equal effect, an ITO-coated soda lime glass (Delta Technologies) was sonicated in 0.5 M KOH for 20 minutes, rinsed with copious amounts of distilled water and then ethanol, and dried for 1 hour at 120° C.
  • One or more capping layers comprising Cl 3 SiOSiCl 2 OSiCl 3 are successively deposited onto clean ITO-coated glass where hydrolysis of the deposited material followed by thermal curing/crosslinking in air at 125° C. yields a thin ( ⁇ 7.8 ⁇ ) layer of material on the ITO surface.
  • X-ray reflectivity measurements indicate that the total film thickness increases linearly with repeated layer deposition, as seen in FIG. 8 .
  • Other molecular components can be used with similar effect. Such components include, without limitation, the bifunctional silicon compounds described in U.S. Pat. No. 5,156,918, at column 7 and elsewhere therein, incorporated by reference herein in its entirety.
  • FIGS. 10 A-C show the behavior of these devices with varying thickness of the self-assembled capping material. These results show that such a material can be used to modify forward light output and device quantum efficiency. For a device with two capping layers, higher current densities and increased forward light output are achieved at lower voltages, suggesting an optimum thickness of capping material can be used to maximize performance of an electroluminescent article.
  • This example illustrates how a capping material can be introduced to and/or used in the construction of an electroluminescent article.
  • ITO-coated glass substrates were cleaned by sonication in acetone for 1 hour followed by sonication in methanol for 1 hour. The dried substrates were then reactively ion etched in an oxygen plasma for 30 seconds. Cleaned substrates were placed in a reaction vessel and purged with nitrogen. A suitable silane, for instance a 24 mM solution of octachlorotrisiloxane in heptane, was added to the reaction vessel in a quantity sufficient to totally immerse the substrates. (Other such compounds include those described in Example 8). Substrates were allowed to soak in the solution under nitrogen for 30 minutes.
  • the substrates were washed and sonicated in freshly distilled pentane followed by a second pentane wash under nitrogen. Substrates were then removed from the reaction vessel washed and sonicated in acetone. Substrates were dried in air at 125° C. for 15 minutes. This process can be repeated to form a capping layer of precisely controlled thickness.
  • the stability of device-type TPD-Si 2 molecular layer/TPD hole transport layer interfaces under thermal stress was investigated by annealing ITO/TPD-Si 2 (40 nm)/TPD (100 nm) bilayers at 80° C. for 1.0 h.
  • the optical image of the annealed TPD film shows no evidence of TPD de-wetting/decohesion ( FIG. 12A ), indicating that the ITO-TPD surface energy mismatch is effectively moderated by the interfacial TPD-Si 2 molecular layer.
  • the bare ITO/TPD interface exhibits catastrophic de-wetting/de-cohesion under identical thermal cycling ( FIG. 12B ), visible even under a layer of Alq).
  • FIG. 12D illustrates the morphology of a 100 nm TPD film on 10 nm Cu(Pc) following heating at 80° C.
  • TAA and TPD-Si 2 interfacial/molecular component layers are significantly more effective injection structures than conventional Cu(Pc) layers.
  • the maximum light output for a Cu(Pc)-based device is ⁇ 1500 cd/m 2 at 25 V, while that of a TAA-based device is 2600 cd/m 2 , and at a much lower bias voltage (16 V).
  • the external quantum efficiency of the Cu(Pc)-based device also falls well below those based on TAA and TPD-Si 2 anode layers: the maximum quantum efficiency for Cu(Pc) is ⁇ 0.3%, in contrast to those of TPD-Si 2 ( ⁇ 1.2%) and TAA ( ⁇ 0.9%).
  • the TPD-Si 2 -functionalized device is most efficient, producing a maximum light output ⁇ 10 ⁇ greater than the Cu(Pc)-buffered device, and ⁇ 100 ⁇ greater than the bare ITO-based device. Improvements observed and differences between TPD-Si 2 and silyl-functionalized TAA molecular layers can be explained, without limitation, in relation to: (1) closer aromatic structural similarity of TPD-Si 2 to TPD, producing a stronger interlayer affinity and presumably greater ⁇ - ⁇ interfacial overlap, and (2) the higher triarylamine: siloxane linker ratio in TPD-Si 2 , consistent with more facile hole hopping via denser triarylamine packing.
  • the silyl-functionalized TAA- and TPD-Si 2 -modified anodes enhance the hole current density by 10-100 ⁇ for the same field strength, with ITO/TPD-Si 2 being most effective.
  • the greater electric field induced across the Alq layer enhances electron injection and transport, affording higher light output and comparable or, in the cases where recombination is more probable, enhanced quantum efficiency.
  • the present and related data for Cu(Pc) devices show that the Cu(Pc) significantly suppresses hole injection.
  • thermal stress tests were carried out on devices based on bare ITO, having a 10 nm Cu(Pc) interlayer, and having a 40 nm TPD-Si 2 interlayer. These were subjected to heating at 95° C. for 0.5 h in vacuum and subsequently examined for changes in luminous response.
  • the irreversible degradation of the bare ITO and Cu(Pc)-based devices upon heating at 95° C. for 0.5 h ( FIG. 15 ) is reasonably ascribed to TPD de-wetting and Cu(Pc)-nucleated TPD crystallization, respectively.
  • TPD-Si 2 -buffered molecular layer devices exhibit enhanced performance after heating, which is presumably a consequence of interfacial reconstruction that promotes charge injection.
  • TPD-Si 2 can be synthesized as provided elsewhere, herein (see Example 2) or according to FIG. 11B and Examples 19-21, and further characterized by 1 H NMR spectroscopy and elemental analysis.
  • arylalkylamine molecular components and their silyl-functionalized analogs can be prepared using straight-forward modifications of the synthetic techniques described herein.
  • diphenylbenzidene can be mono- or dialkylated with the appropriate haloalkyl reagent to provide the desired arylalkylamine hole transport layer component.
  • the corresponding silyl-functionalized molecular layer component can be prepared via mono- or dialkylation with the appropriate dihaloalkyl reagent followed by subsequent silation, adopting the procedures illustrated in Examples 20 and 21.
  • the alkylafed mono- and diarylamine components discussed above, and their silyl-functionalized analogs can be prepared to provide the structurally-related molecular and hole transport layers of this invention, and the enhanced performance and/or hole injection resulting therefrom.
  • TPD-Si 2 and TAA Thin Film Deposition and Characterization Indium tin oxide (ITO) glass sheets with a resistance of 20 ⁇ / ⁇ from Donnelly Corp. were subjected to a standard literature cleaning procedure. TAA and TPD-Si 2 -based buffer layers were spincoated onto cleaned ITO surfaces from their respective toluene solutions (10 mg/mL) at 2 Krpm, followed by curing in moist air at 110° C. for 15 min.
  • ITO Indium tin oxide
  • TGA sample preparation involved drop-coating a TPD-Si 2 solution in toluene (10 mM) onto clean glass substrates under ambient conditions. Following solvent evaporation, the TPD-Si 2 -coated slides were cured at 120° C. for 1 h. Upon cooling, the films were detached from the glass substrates using a razor blade and collected as powders for TGA characterization.
  • ITO/Buffer Layer/TPD Interfacial Stability Studies TPD de-cohesion analysis of the interfacial structures ITO/buffer layer/TPD (100 nm) (spincoated TPD-Si 2 , spincoated TAA, vapor-deposited Cu(Pc)) were carried out in the following manner. Following vapor deposition of 50-100 nm TPD films onto the respective buffer layer-coated ITO substrates, the samples were annealed at 80-100° C. under N 2 for 1.0 h, and the film morphology subsequently imaged by optical microscopy and AFM.
  • OLED Device Fabrication OLED devices of the structure: ITO/interlayer/TPD(50 nm)/Alq(60 nm)/Al(100 nm) were fabricated using standard vacuum deposition procedures (twin evaporators interfaced to a ⁇ 1 ppm O 2 glove box facility). Deposition rates for organic and metal were 2-4 ⁇ /sec and 1-2 ⁇ /sec respectively, at 1 ⁇ 10 ⁇ 6 Torr. The OLED devices were characterized inside a sealed aluminum sample container under N 2 using instrumentation described elsewhere. J. Cui, Q. Huang, Q. Wang, T. J. Marks, Langmuir 2001, 17, 2051; W. Li, Q. Wang, J. Cui, H. Chou, T. J.
  • OLED devices were subjected to heating under vacuum at 95° C. for 0.5 h, and were subsequently evaluated for I-V and L-V characteristics as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

New organic light-emitting diodes and related electroluminescent devices and methods for fabrication, using siloxane self-assembly techniques.

Description

  • This application is a continuation-in-part of and claims priority benefit from application Ser. No. 09/187,891, filed on Nov. 6, 1998, which is a continuation-in-part of application Ser. No. 08/673,600, filed on Jun. 25, 1996, and issued as U.S. Pat. No. 5,834,100, each of which are incorporated herein by reference in their entirety.
  • The United States Government has certain rights to this invention pursuant to Grant Nos. N0014-95-1-1319 and DMR-00769097 from the Office of Naval Research and National Science Foundation, respectively, to Northwestern University.
  • BACKGROUND OF THE INVENTION
  • This invention relates generally to organic electroluminescent devices with organic films between anodic and cathodic electrodes, and more particularly to such devices and methods for their assembly using the condensation of various silicon moieties.
  • Organic electroluminescent devices have been known, in various degrees of sophistication, since the early 1970's. Throughout their development and consistent with their function and mode of operation, they can be described generally by way of their physical construction. Such devices are characterized generally by two electrodes which are separated by a series of layered organic films that emit light when an electric potential is applied across the two electrodes. A typical device can consist, in sequence, of an anode, an organic hole injection layer, an organic hole transport layer, an organic electron transport layer, and a cathode. Holes are generated at a transparent electrode, such as one constructed of indium-tin-oxide, and transported through a hole-injecting or hole-transporting layer to an interface with an electron-transporting or electron-injecting layer which transports electrons from a metal electrode. An emissive layer can also be incorporated at the interface between the hole-transporting layer and the electron-transporting layer to improve emission efficiency and to modify the color of the emitted light.
  • Significant progress has been made in the design and construction of polymer- and molecule-based electroluminescent devices, for light-emitting diodes, displays and the like. Other structures have been explored and include the designated “DH” structure which does not include the hole injection layer, the “SH-A” structure which does not include the hole injection layer or the electron transport layer, and the “SH-B” structure which does not include the hole injection layer or the hole transport layer. See, U.S. Pat. No. 5,457,357 and in particular col. 1 thereof, which is incorporated herein by reference in its entirety.
  • The search for an efficient, effective electroluminescent device and/or method for its production has been an ongoing concern. Several approaches have been used with certain success. However, the prior art has associated with it a number of significant problems and deficiencies. Most are related to the devices and the methods by which they are constructed, and result from the polymeric and/or molecular components and assembly techniques used therewith.
  • The fabrication of polymer-based electroluminescent devices employs spin coating techniques to apply the layers used for the device. This approach is limited by the inherently poor control of the layer thickness in polymer spin coating, diffusion between the layers, pinholes in the layers, and inability to produce thin layers which leads to poor light collection efficiency and the necessity of high D.C. driving voltages. The types of useful polymers, typically poly(phenylenevinylenes), are greatly limited and most are environmentally unstable over prolonged use periods.
  • The molecule-based approach uses vapor deposition techniques to put down thin films of volatile molecules. It offers the potential of a wide choice of possible building blocks, for tailoring emissive and other characteristics, and reasonably precise layer thickness control. Impressive advances have recently been achieved in molecular building blocks—especially in electron transporters and emitters, layer structure design (three versus two layers), and light collection/transmission structures (microcavities).
  • Nevertheless, further advances must be made before these devices are optimum. Component layers which are thinner than achievable by organic vapor deposition techniques would allow lower DC driving voltages and better light transmission collection characteristics. Many of the desirable component molecules are nonvolatile or poorly volatile, with the latter requiring expensive, high vacuum or MBE growth equipment. Such line-of-site growth techniques also have limitation in terms of conformal coverage. Furthermore, many of the desirable molecular components do not form smooth, pinhole-free, transparent films under these conditions nor do they form epitaxial/quasiepitaxial multilayers having abrupt interfaces. Finally, the mechanical stability of molecule-based films can be problematic, especially for large-area applications or on flexible backings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B show structural formulae for porphyrinic compounds which are illustrative examples of compounds of the type which can be used as hole injection components/agents in the preparation of the molecular conductive or hole injection layers and electroluminescent media of this invention. In FIG. 1, M is Cu, Zn, SiCl2, or 2H; Q is N or C(X), where X is a substituted or unsubstituted alkyl or aryl group; and R is H, trichlorosilyl, trialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include trichlorosilyl or trialkoxysilyl groups, substituted on the C1-C4, C8-C11, C15- C18 and/or C22-C25 positions. In FIG. B, M is Cu, Zn, SiCl2, or 2H; Q is N or C(X), where X is a substituted or unsubstituted alkyl or aryl group; and T1/T2 is H, trichlorosilyl, trialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include trichlorosilyl or trialkoxysilyl groups.
  • FIGS. 2A-2C show structural formulae for arylamine compounds which are illustrative examples of compounds of the type which can be used as hole transport compounds/agents in the preparation of the molecular conductive or hole transport layers and electroluminescent media of this invention. In FIG. 2A, R2, R3 and/or R4 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions. In FIG. 2B, Q1 and Q2 can be substituted or unsubstituted tertiary aryl amines, such as those described with FIG. 2A; and G is a linking group to include but not limited to an alkyl, aryl, cylcohexyl or heteroatom group. In FIG. 2C, Ar is an arylene group; n is the number of arylene groups from 1-4; and R5, R6, R7, and/or R8 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions.
  • FIGS. 3A-3C show structural formulae for aryl compounds which are illustrative of examples of compounds of the type which can be used as emissive compounds/agents in the preparation of the molecular conductive layers and electroluminescent media of this invention. In FIG. 3A, R9 and R10 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions. In FIG. 3B, M is Al or Ga; and R11-R14 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions. In FIG. 3C, Ar is arylene; and R15-R18 can be H, trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can include dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups substituted anywhere on the aryl positions.
  • FIGS. 4A-4C show structural formulae for heterocyclic compounds which are illustrative examples of compounds of the type which can be used as electron transport components/agents in the preparation of the molecular conductive or electron transport layers and in electroluminescent media of this invention. In FIGS. 4A-4C, X is O or S; and R19-R24 can be aryl groups substituted with the following substituents anywhere on the aryl ring: trihalosilyl, trialkoxysilyl, dihalosilyl, dialkoxysilyl, or a moiety having 1 to 6 carbon atoms which can contain dialkyldichlorosilyl, dialkyldialkoxysilyl, trichlorosilyl or trialkoxysilyl groups.
  • FIGS. 5A and 5B (ITO is indium-tin-oxide; HTL is hole transport layer and ETL is electron transport layer) show, schematically and in a step-wise manner by way of illustrating the present invention, use of the components/agents of Examples 1-5 and FIGS. 1-4 in the self-assembly and preparation of an organic light-emitting diode device. In particular, the molecular representation FIG. 5A illustrates the hydrolysis of an assembled silicon/silane component/agent to provide an Si—OH functionality reactive toward a silicon/silane moiety of another component, agent or conductive layer. The block and molecular representations of FIG. 5B illustrate a completed assembly.
  • FIG. 6 shows an alternative synthetic sequence enroute to several arylamine components/agents, also in accordance with the present invention.
  • FIG. 7 shows, schematically and by way of illustrating an alternative embodiment of the present invention, use of the components/agents of FIG. 6 in the preparation of another representative electroluminescent device.
  • FIG. 8 graphically correlates x-ray reflectivity measurements of film thickness with the number of capping layers applied to a substrate. As calculated from the slope of the line (y=8.3184x), each layer is about 7.84 Å in dimensional thickness.
  • FIG. 9 graphically shows cyclic voltametry measurements, using 10−3M ferrocene in acetonitrile, taken after successive layer (c-e) deposition and as compared to a bare ITO electrode (a). Even one capping layer (b), in accordance with this invention, effectively blocks the electrode surface. Complete blocking is observed after deposition of three or four layers. The sweep rate was 100 mV/sec, and the electrode area was about 0.7 cm2.
  • FIGS. 10A-C graphically illustrate various utilities and/or performance characteristics (current density, quantum efficiency and forward light output, respectively, versus voltage) achievable through use of the present invention, as a function of the number of capping layers on an electrode surface. 0 layers, bare ITO (<>), 1 layer, 8 Å (□), 2 layers, 17 Å (●), 3 layers, 25 Å (▴) and 4 layers, 33 Å (∇). Reference is made to example 10.
  • FIG. 11 A shows molecular structures of hole adhesion/injection molecular components: TAA (shown after crosslinking), TPD-Si2 (shown after crosslinking), and prior art copper phthalocyanine, Cu(Pc). FIG. 11B illustrates one possible scheme for the synthesis of a preferred TPD-Si2 adhesion/injection interlayer molecular precursor. Reference is also made to the procedures described in Example 2.
  • FIGS. 12A-D provide optical microscopic images of vapor-deposited TPD film (100 nm) morphology after annealing at 80° C. for 1.0 h on ITO substrates coated with a cured 40 nm thick TPD-Si2 film (12A) and on bare ITO (12B); polarized optical image of TPD film (100 nm) morphology before (12C) and after (12D) annealing the bilayer structure: ITO/CuPc(10 nm)/TPD (100 nm) at 80° C. for 0.50 h.
  • FIGS. 13A-C show, in turn, (A) light output, (B) external quantum efficiency, and (C) current-voltage characteristics as a function of operating voltage for OLED devices having the structure: ITO/(adhesion/injection/molecular component interlayer)/TPD hole transport layer (50 nm)/Alq (60 nm)/Al, where the injection/adhesion component interlayer is prior art Cu(Pc) (10 nm), TAA (15 nm), and TPD-Si2 (40 nm).
  • FIG. 14 compares injection characteristics of hole-only devices having the structure ITO/molecular component interlayer/TPD (250 nm)/Au(5 nm)/Al (180 nm) for various anode functionalization layers.
  • FIG. 15 graphically illustrates by comparison the effect of thermal stressing (90° C. under vacuum) on device characteristics of ITO/(injection/adhesion interlayer)/TPD(50 nm)/Alq(60 nm)/Al (100 nm) devices, where the molecular component interlayer is TPD-Si2 (40 nm), TAA (15 nm), and prior art CuPc (10 nm).
  • SUMMARY OF THE INVENTION
  • In light of the foregoing, it is an object of the present invention to provide electroluminescent articles and/or devices and method(s) for their production and/or assembly, thereby overcoming various deficiencies and shortcomings of the prior art, including those outlined above. It will be understood by those skilled in the art that one or more aspects of this invention can meet certain objectives, while one or more other aspects can meet certain other objectives. Each objective may not apply equally, in all its respects, to every aspect of this invention. As such, the following objects can be viewed the alternative with respect to any one aspect of this invention.
  • It is an object of the present invention to provide control over the thickness dimension of a luminescent medium and/or the conductive layers of such a medium, to control the wavelength of light emitted from any electroluminescent device and enhance the efficiency of such emission.
  • It can be another object of the present invention to provide molecular components for the construction and/or modification of an electroluminescent medium and/or the conductive layers thereof, which will allow lower driving and/or turn-on voltages than are available through use of conventional materials.
  • It can also be an object of the present invention to provide component molecules which can be used effectively in liquid media without resort to high vacuum or MBE growth equipment.
  • It can also be an object of the present invention to provide conformal conductive layers and the molecular components thereof which allows for the smooth, uniform deposition on an electrode, substrate surface and/or previously-deposited layers.
  • It can also be an object of this invention to provide an electroluminescent medium having a hybrid structure and where one or more of the layers is applied by a spin-coat or vapor deposition technique to one or more self-assembled conductive layers.
  • Other objects, features and advantages of the present invention will be apparent from this summary of the invention and its descriptions of various preferred embodiments, and will be readily apparent to those skilled in the art having knowledge of various electroluminescent devices and assembly/production techniques. Such objects, features, benefits and advantages will be apparent from the above as taken into conjunction with the accompanying examples, data, figures and all reasonable inferences to be drawn therefrom, alone or with consideration of the references incorporated herein.
  • This invention describes, in part, a new route to the fabrication of light-emitting organic multilayer heterojunction devices, useful for both large and small, multicolored display applications. As described more fully below, electron and hole transporting layers, as well as the emissive layer, as well as any other additional layers, are applied, developed and/or modified by molecular self-assembly techniques. As such, the invention can provide precise control over the thickness of a luminescent medium or the conductive layers which make up such a medium, as well as provide maximum light generation efficiency. Use of the present invention provides strong covalent bonds between the constituent molecular components, such that the mechanical, thermal, chemical and/or photochemical stability of such media and/or conductive layers, as can be used with an electroluminescent device, are enhanced. The use of such components also promotes conformal surface coverage to prevent cracks and pinhole deformities.
  • More specifically, the siloxane self-assembly techniques described herein allow for the construction of molecule-based electroluminescent media and devices. As described more fully below, various molecular components can be utilized to control the thickness dimension of the luminescent media and/or conductive layers. Nanometer dimensions can be obtained, with self-sealing, conformal coverage. The resulting covalent, hydrophobic siloxane network imparts considerable mechanical strength, as well as enhancing the resistance of such media and/or devices to dielectric breakdown, moisture intrusion, and other degradative processes.
  • In part, the present invention is an electroluminescent article or device which includes (1) an anode, (2) a plurality of molecular conductive layers where one of the layers is coupled to the anode with silicon-oxygen bonds and each of the layers is coupled one to another with silicon-oxygen bonds, and (3) a cathode in the electrical contact with the conductive layers. More generally and within the scope of this invention, an anode is separated from a cathode by an organic luminescent medium. The anode and the cathode are connected to an external power source by conductors. The power source can be a continuous direct, alternating or an intermittent current voltage source. A convenient conventional power source, including any desired switching circuitry, which is capable of positively biasing the anode with respect to the cathode, can be employed. Either the anode or cathode can be at ground potential.
  • The conductive layers can include but are limited to a hole transport layer, a hole injection layer, an electron transport layer and an emissive layer. Under forward biasing conditions, the anode is at a higher potential than the cathode, and the anode injects holes (positive charge carriers) into the conductive layers and/or luminescent medium while the cathode injects electrons therein. The portion of the layers/medium adjacent to the anode forms a hole injecting and/or transporting zone while the portion of the layers/medium adjacent to the cathode forms an electron injecting and/or transporting zone. The injected holes and electrons each migrate toward the oppositely charged electrode, resulting in hole-electron interaction within the organic luminescent medium of conductive layers. A migrating electron drops from its conduction potential to a valence band in filling a hole to release energy as light. In such a manner, the organic luminescent layers/medium between the electrodes performs as a luminescent zone receiving mobile charge carriers from each electrode. Depending upon the construction of the article/device, the released light can be emitted from the luminescent conductive layers/medium through one or more of edges separating the electrodes, through the anode, through the cathode, or through any combination thereof. See, U.S. Pat. No. 5,409,783 and, in particular cols. 4-6 and FIG. 1 thereof, which is incorporated herein by reference in its entirety. As would be understood by those skilled in the art, reverse biasing of the electrodes will reverse the direction of mobile charge migration, interrupt charge injection, and terminate light emission. Consistent with the prior art, the present invention contemplates a forward biasing DC power source and reliance on external current interruption or modulation to regulate light emission.
  • As demonstrated and explained below, it is possible to maintain a current density compatible with efficient light emission while employing a relatively low voltage across the electrodes by limiting the total thickness of the organic luminescent medium to nanometer dimensions. At the molecular dimensions possible through use of this invention, an applied voltage of less than about 10 volts is sufficient for efficient light emission. As discussed more thoroughly herein, the thickness of the organic luminescent conductive layers/medium can be designed to control and/or determine the wavelength of emitted light, as well as reduce the applied voltage and/or increase in the field potential.
  • Given the nanometer dimensions of the organic luminescent layers/medium, light is usually emitted through one of the two electrodes. The electrode can be formed as a translucent or transparent coating, either on the organic layer/medium or on a separate translucent or transparent support. The layer/medium thickness is constructed to balance light transmission (or extinction) and electrical conductance (or resistance). Other considerations relating to the design, construction and/or structure of such articles or devices are as provided in the above referenced U.S. Pat. No. 5,409,783, such considerations as would be modified in accordance with the molecular conductive layers and assembly methods of the present invention.
  • In preferred embodiments, the conductive layers have molecular components, and each molecular component has at least two silicon moieties. In highly preferred embodiments, each silicon moiety is a halogenated or alkoxylated silane and silicon-oxygen bonds are obtainable from the condensation of the silane moieties with hydroxy functionalities. In preferred embodiments, the present invention employs an anode with a substrate having a hydroxylated surface portion. The surface portion is transparent to near-IR and visible wavelengths of light. In such highly preferred embodiments the hydroxylated surface portions include SiO2, In2.xSnO2, Ge and Si, among other such materials.
  • In conjunction with anodes and the hydroxylated surface portions thereof, the conductive layers include molecular components, and each molecular component has at least two silicon moieties. As discussed above, in such embodiments, each silicon moiety is a halogenated or alkoxylated silane, and silicon-oxygen bonds are obtainable from the condensation of the silane moieties with hydroxy functionalities which can be on a surface portion of an anode. Consistent with such preferred embodiments, a cathode is in electrical contact with the conductive layers. In highly preferred embodiments, the cathode is vapor deposited on the conductive layers, and constructed of a material including Al, Mg, Ag, Au, In, Ca and alloys thereof.
  • In part, the present invention is a method of producing a light-emitting diode having enhanced stability and light generation efficiency. The method includes (1) providing an anode with a hydroxylated surface; (2) coupling the surface to a hole transport layer having a plurality of molecular components, with each component having at least two silicon moieties reactive with the surface, with coupling of one of the silicon moieties to form silicon-oxygen bonds between the surface and the hole transport layer; (3) coupling the hole transport layer to an electron transport layer, the electron transport layer having a plurality of molecular components with each of the components having at least two silicon moieties reactive with the hole transport layer, with the coupling of one of the silicon moieties to form silicon-oxygen bonds between the hole and electron transport layers; and (4) contacting the electron transport layer with a cathode material.
  • In preferred embodiments of this method, the hole transport layer includes a hole injecting zone of molecular components and a hole transporting zone of molecular components. Likewise, in preferred embodiments, each silicon moiety is a halogenated or alkoxylated silane such that, with respect to this embodiment, coupling the hole transport layer to the electron transport layer further includes hydrolyzing the halogenated or alkoxylated silane. Likewise, with respect to a halogenated or alkoxylated silane embodiment, contacting the electron transport layer with the cathode further includes hydrolyzing the silane.
  • In part, the present invention is a method of controlling the wavelength of light emitted from an electroluminescent device. The inventive method includes (1) providing in sequence a hole transport layer, an emissive layer and an electron transport layer to form a medium of organic luminescent layers; and (2) modifying the thickness dimension of at least one of the layers, each of the layers including molecular components corresponding to the layer and having at least two silicon moieties reactive to a hydroxy functionality and the layers coupled one to another by Si—O bonds, the modification by reaction of the corresponding molecular components one to another to form Si—O bonds between the molecular components, and the modification in sequence of the provision of the layers.
  • In preferred embodiments of this inventive method, at least one silicon moiety is unreacted after reaction with a hydroxy functionality. In highly preferred embodiments, modification then includes hydrolyzing the unreacted silicon moiety of one of the molecular components to form a hydroxysilyl functionality and condensing the hydroxysilyl functionality with a silicon moiety of another molecular component to form a siloxane bond sequence between the molecular components.
  • In highly preferred embodiments, the silicon moieties are halogenated or alkoxylated silane moieties. Such embodiments include modifying the thickness dimension by hydrolyzing the unreacted silane moiety of one of the molecular components to form a hydroxysilyl functionality and condensing the hydroxysilyl functionality with a silane moiety of another molecular component to form a siloxane bond sequence between the molecular components.
  • While the organic luminescent conductive layers/medium of this invention can be described as having a single organic hole injecting or transporting layer and a single electron injecting or transporting layer, modification of each of these layers with respect to dimensional thickness or into multiple layers, as more specifically described below, can result in further refinement or enhancement of device performance by way of the light emitted therefrom. When multiple electron injecting and transporting layers are present, the layer receiving holes is the layer in which hole-electron interaction occurs, thereby forming the luminescent or emissive layer of the device.
  • The articles/devices of this invention can emit light through either the cathode or the anode. Where emission is through the cathode, the anode need not be light transmissive. Transparent anodes can be formed of selected metal oxides or a combination of metal oxides having a suitably high work function. Preferred metal oxides have a work function of greater than 4 electron volts (eV). Suitable anode metal oxides can be chosen from among the high (>4 eV) work function materials. A transparent anode can also be formed of a transparent metal oxide layer on a support or as a separate foil or sheet.
  • The devices/articles of this invention can employ a cathode constructed of any metal, including any high or low work function metal, heretofore taught to be useful for this purpose and as further elaborated in that portion of the incorporated patent referenced in the preceding paragraph. As mentioned therein, fabrication, performance, and stability advantages can be realized by forming the cathode of a combination of a low work function (<4 eV) metal and at least one other metal. Available low work function metal choices for the cathode are listed in cols. 19-20 of the aforementioned incorporated patent, by periods of the Periodic Table of Elements and categorized into 0.5 eV work function groups. All work functions provided therein are from Sze, Physics of Semiconductor Devices, Wiley, New York, 1969, p. 366.
  • A second metal can be included in the cathode to increase storage and operational stability. The second metal can be chosen from among any metal other than an alkali metal. The second metal can itself be a low work function metal and thus be chosen from the above-referenced list and having a work function of less than 4 eV. To the extent that the second metal exhibits a low work function it can, of course, supplement the first metal in facilitating electron injection.
  • Alternatively, the second metal can be chosen from any of the various metals having a work function greater than 4 eV. These metals include elements resistant to oxidation and, therefore, those more commonly fabricated as metallic elements. To the extent the second metal remains invariant in the article or device, it can contribute to the stability. Available higher work function (4 eV or greater) metal choices for the cathode are listed in lines 50-69 of col. 20 and lines 1-15 of col. 21 of the aforementioned incorporated patent, by periods of the Periodic Table of Elements and categorized into 0.5 eV work function groups.
  • As described more fully in U.S. Pat. No. 5,156,918 which is incorporated herein by reference in its entirety, the electrodes and/or substrates of this invention have, preferably, a surface with polar reactive groups, such as a hydroxyl (—OH) group. Materials suitable for use with or as electrodes and/or substrates for anchoring the conductive layers and luminescent media of this invention should conform to the following requirements: any solid material exposing a high energy (polar) surface to which layer-forming molecules can bind. These may include: metals, metal oxides such as SiO2, TiO2, MgO, and Al2O3 (sapphire), semiconductors, glasses, silica, quartz, salts, organic and inorganic polymers, organic and inorganic crystals and the like.
  • Inorganic oxides (in the form of crystals or thin films) are especially preferred because oxides yield satisfactory hydrophilic metal hydroxyl groups on the surface upon proper treatment. These hydroxyl groups react readily with a variety of silyl coupling reagents to introduce desired coupling functionalities that can in turn facilitate the introduction of other organic components.
  • The physical and chemical nature of the anode materials dictates specific cleaning procedures to improve the utility of this invention. Alkaline processes (NaOH aq.) are generally used. This process will generate a fresh hydroxylated surface layer on the substrates while the metal oxide bond on the surface is cleaved to form vicinal hydroxyl groups. High surface hydroxyl densities on the anode surface can be obtained by sonicating the substrates in an aqueous base bath. The hydroxyl groups on the surface will anchor and orient any of the molecular components/agents described herein. As described more fully below, molecules such as organosilanes with hydrophilic functional groups can orient to form the conductive layers.
  • Other considerations relating to the design, material choice and construction of electrodes and/or substrates useful with this invention are as provided in the above referenced and incorporated U.S. Pat. No. 5,409,783 and in particular cols. 21-23 thereof, such considerations as would be modified by those skilled in the art in accordance with the molecular conductive layers, and assembly methods and objects of the present invention.
  • The conductive layers and/or organic luminescent medium of the devices/articles of this invention preferably contain at least two separate layers, at least one layer for transporting electrons injected from the cathode and at least one layer for transporting holes injected from the anode. As is more specifically taught in U.S. Pat. No. 4,720,432, incorporated herein by reference in its entirety, the latter is in turn preferably at least two layers, one in contact with the anode, providing a hole injecting zone and a layer between the hole injecting zone and the electron transport layer, providing a hole transporting zone. While several preferred embodiments of this invention are described as employing at least three separate organic layers, it will be appreciated that either the layer forming the hole injecting zone or the layer forming the hole transporting zone can be omitted and the remaining layer will perform both functions. However, enhanced initial and sustained performance levels of the articles or devices of this invention can be realized when separate hole injecting and hole transporting layers are used in combination.
  • Porphyrinic and phthalocyanic compounds of the type described in cols. 11-15 of the referenced/incorporated U.S. Pat. No. 5,409,783 can be used to form the hole injecting zone. In particular, the phthalocyanine structure shown in column 11 is representative, particularly where X can be, but is not limited to, an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen. Preferred porphyrinic compounds are represented by the structure shown in col. 14 and where R, T1 and T2 can be but are not limited to an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups contain 1-6 carbon atoms or is hydrogen. (See, also, FIGS. 1A and 1B, herein.) Preferred phthalocyanine- and porphyrin-based hole injection agents include silicon phthalocyanine dichloride and 5,10,15,20-tetraphenyl-21H,23H-porphine silicon (IV) dichloride, respectively.
  • The hole transporting layer is preferably one which contains at least one tertiary aromatic amine, examples of which are as described in FIGS. 2A-2C and Examples 1 and 2. Other exemplary arylamine core structures are illustrated in U.S. Pat. No. 3,180,730, which is incorporated herein by reference in its entirety, where the core structures are modified as described herein. Other suitable triarylamines substituted with a vinyl or vinylene radical and/or containing at least one active hydrogen containing group are disclosed in U.S. Pat. Nos. 5,409,783, 3,567,450 and 3,658,520. These patents are incorporated herein by reference in their entirety and the core structures disclosed are modified as described herein. In particular, with respect to the arylamines represented by structural formulas XXI and XXIII in cols. 15-16 of U.S. Pat. No. 5,409,703, R24, R25, R26, R27, R30, R31 and R32 can be an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen.
  • Molecular components of this invention comprising emissive agents and/or the emissive layer include those described herein in FIGS. 3A-3C and Example 5. Other such components/agents include various metal chelated oxinoid compounds, including chelates of oxine (also commonly referred to as 8-quinolinol or 8-hydroxyquinoline), such as those represented by structure III in col. 8 of the referenced and incorporated U.S. Pat. No. 5,409,783, and where Z2 can be but is not limited to an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen. Other such molecular components/emissive agents include the quinolinolato compounds represented in cols. 7-8 of U.S. Pat. No. 5,151,629, also incorporated herein by reference in its entirety, where a ring substituent can be but is not limited to an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen. In a similar fashion, the dimethylidene compounds of U.S. Pat. No. 5,130,603, also incorporated herein by reference in its entirety, can be used, as modified in accordance with this invention such that the aryl substituents can include an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen.
  • Other components which can be used as emissive agents include without limitation anthracene, naphthalene, phenanthrene, pyrene, chrysene, perylene and other fused ring compounds, or as provided in col. 17 of the previously referenced and incorporated U.S. Pat. No. 5,409,783, such compounds as modified in accordance with this invention and as more fully described above. Modifiable components also include those described in U.S. Pat. Nos. 3,172,862, 3,173,050 and 3,710,167—all of which are incorporated herein by reference in their entirety.
  • Molecular components which can be utilized as electron injecting or electron transport agents and/or in conjunction with an electron injection or electron transport layer are as described in FIGS. 4A-4C and Examples 3(a)-(d) and 4. Other such components include oxadiazole compounds such as those shown in cols. 12-13 of U.S. Pat. No. 5,276,381, also incorporated herein by reference in its entirety, as such compounds would be modified in accordance with this invention such that the phenyl substituents thereof each include an alkyltrichlorosilane, alkyltrialkoxysilane, dialkyldialkoxysilane, or dialkyldichlorosilane functionality and where the alkyl and alkoxy groups can contain 1-6 carbon atoms or is hydrogen. Likewise, such components can be derived from the thiadiazole compounds described in U.S. Pat. No. 5,336,546 which is incorporated herein by reference in its entirety.
  • As described above, inorganic silicon moieties can be used in conjunction with the various molecular components, agents, conductive layers and/or capping layers. In particular, silane moieties can be used with good effect to impart mechanical, thermal, chemical and/or photochemical stability to the luminescent medium and/or device. Such moieties are especially useful in conjunction with the methodology described herein. Degradation is minimized until further synthetic modification is desired. Hydrolysis of an unreacted silicon/silane moiety provides an Si—OH functionality reactive with a silicon/silane moiety of another component, agent and/or conductive layer. Hydrolysis proceeds quickly in quantitative yield, as does a subsequent condensation reaction with an unreacted silicon/silane moiety of another component to provide a siloxane bond sequence between components, agents and/or conductive layers.
  • In general, the molecular agents/components in FIGS. 1-4 can be prepared with a lithium or Grignard reagent using synthetic techniques known to one skilled in the art and subsequent reaction with halosilane or alkoxysilane reagents. Alternatively, unsaturated olefinic or acetylenic groups can be appended from the core structures using known synthetic techniques. Subsequently, halosilane or alkoxysilane functional groups can be introduced using hydrosilation techniques, also known to one skilled in the art. Purification is carried out using procedures appropriate for the specific target molecule.
  • It has been observed previously that the performance characteristics of electroluminescent articles of the type described herein can be enhanced by the incorporation of a layer having a dielectric function between the anode and, for instance, a hole transport layer. Previous studies show that the vapor deposition of thin layers of LiF onto an anode before deposition of the other layer(s) improves performance in the areas of luminescence and quantum efficiency. However, this technique is limited in that the deposited LiF films are rough, degrade in air and do not form comformal, pinhole-free coatings.
  • The present invention is also directed to the application of self-assembly techniques to form layers which cap an electrode, provide dielectric and other functions and/or enhance performance relative to the prior art. Such capping layers are self-assembled films which are conformal in their coverage, can have dimensions less than one nanometer and can be deposited with a great deal of control over the total layer thickness. Accordingly, the present invention also includes an electroluminescent article or device which includes (1) an anode, (2) at least one molecular capping layer coupled to the anode with silicon-oxygen bonds, with each capping layer coupled one to another with silicon-oxygen bonds, (3) a plurality of molecular conductive layers, with one of the layers coupled to the capping layer with silicon-oxygen bonds and each conductive layer coupled one to another with silicon-oxygen bonds, and (4) a cathode in electric contact with a conductive layer. Likewise, and in accordance with this invention, the capping layer can be deposited on a conductive layer and/or otherwise introduced so as to be adjacent to a cathode, to enhance overall performance.
  • More generally and within the scope of this invention, the anode is separated from the cathode by an organic luminescent medium. The anode and cathode are connected to an external power source by conductors. The power source can be a continuous direct, alternating or intermittent current voltage source. A convenient conventional power source, including any desired switching circuitry, which is capable of positively biasing the anode with respect to the cathode, can be employed. Either the anode or cathode can be at ground potential.
  • In preferred embodiments, each conductive and/or capping layer has molecular components, and each molecular component has at least two silicon moieties. In highly preferred embodiments, each such conductive and/or capping component is a halogenated or alkoxylated silane, and silicon-oxygen bonds are obtainable from the condensation of the silane moieties with hydroxy functionalities. Without limitation, a preferred capping material is octachlorotrisiloxane. The anode and cathode can be chosen and/or constructed as otherwise described herein.
  • In part, the present invention is a method of using molecular dimension to control the forward light output of an electroluminescent device. The inventive method includes (1) providing an electrode and a molecular layer thereon, the layer coupled to the electrode with first molecular components having at least two silicon moieties reactive to a hydroxy functionality; and (2) modifying the thickness of the layer by reacting the molecular components with second components to form a siloxane bond sequence between the first and second molecular components, the second molecular components having at least two silicon moieties also reactive to a hydroxy functionality.
  • In preferred embodiments of this inventive method, at least one silicon moiety is unreacted after reaction with a hydroxy functionality. In highly preferred embodiments, the modification further includes hydrolyzing an unreacted silicon moiety of one of the molecular components to form a hydroxysilyl functionality and condensing the hydroxysilyl functionality with a silicon moiety of a third molecular component to form a siloxane bond sequence between the second and third molecular components. In highly preferred embodiments, the silicon moieties are halogenated or alkoxylated silane moieties.
  • In part, the present invention also includes any electroluminescent article for generating light upon application of an electrical potential across two electrodes. Such an article includes an electrode having a surface portion and a molecular layer coupled and/or capped thereon. The layer includes molecular components, and each component has at least two silicon moieties. The layer is coupled to the electrode with silicon-oxygen bonds. In preferred embodiments, each silicon moiety is a halogenated silane, and silicon-oxygen bonds are obtained from a condensation reaction. Likewise, and without limitation, the electrode has a substrate with a hydroxylated surface portion transparent to near-IR and visible wavelengths of light. Such a layer can be utilized to cap the electrode and/or enhance performance as otherwise described herein. More generally, in such an article or any other described herein, the luminescent medium can be constructed using either the self-assembly techniques described herein or the materials and techniques of the prior art.
  • The electroluminescent devices and related methods of this invention can demonstrate various interlayer/interfacial phenomena through choice of layer/molecular components and design of the resulting electroluminescent medium. As a point of reference, a number of cathode and anode interfacial structures can enhance charge injection, hence device performance. For instance, with vapor-deposited, anode/TPD (N—N′-diphenyl-N—N′-bis(3-methylphenyl)-(1-1′-biphenyl)-4-4′-diamine)/Alq (tris(quinoxalinato)Al(III))/cathode devices of the prior art, a dramatic increase in light output and quantum efficiency occurs when Å-scale LiF or CsF layers are interposed between the cathode and electron transport layer (ETL). Such thin dielectric layers are thought to lower the Al work function, thus reducing the effective electron injection barrier (energy level offset between the Alq LUMO and the Al Fermi level).
  • In contrast, modification of the ITO anode—hole transport layer (HTL) interface is somewhat more controllable, although similar mechanistic uncertainties pertain. Thus, a variety of ITO functionalization approaches produce phenomenologically similar effects, although less dramatic than those observed for the interposition of alkali fluoride at Al cathodes. These approaches include deposition onto ITO of nanoscale layers of various organic acids, copper phthalocyanine, or thicker (30-100 nm) layers of polyaniline or polythiophene (PEDOT), all resulting in somewhat enhanced luminous performance. Explanations for these phenomena are diverse, ranging from altering interfacial electric fields, balancing electron/hole injection fluence, confining electrons in the emissive layer, reducing injected charge back-scattering, and moderating anode Fermi level-HTL HOMO energetic discontinuities. This diversity of proposed mechanisms accurately reflects the complexity of interactions at OLED interfaces and, in many cases, the lack of necessary microstructural information.
  • In a departure from the prior art, the present invention can be considered in the context of one or more structural relationships between an OLED anode and/or its associated organic layers. Without restriction to any one theory or mode of operation, moderation of the surface energy mismatch can be effected at a hydrophilic oxide anode-hydrophobic HTL interface, as demonstrated below using nanoscopic self-assembled silyl group functionalized amine components (see, for example, FIG. 11A and 1-4 TAA layers; 11 Å/layer). Promoting anode/ITO-HTL physical cohesion significantly enhances luminous performance and durability. Furthermore, as relates to another aspect of this invention, a silyl-group functionalized, crosslinkable amine layer having the core amine structure of the HTL component, TPD, (TPD-Si2, FIG. 11 A) significantly improves ITO/TPD/Alq/Al device performance and thermal durability (one metric of device stability) to an extent surprising, unexpected and unattainable with other anode functionalization structures. In contrast thereto, the commonly used copper phthalocyanine (Cu(Pc); FIG. 11A) anode functionalization layer actually templates crystallization of overlying TPD films at modest temperatures (Example 13 and FIG. 12D), consistent with the thermal instability of many Cu(Pc)-buffered OLED devices of the prior art.
  • Accordingly, in its broader respects, the present invention contemplates a method of using an amine molecular component to enhance hole injection across the electrode-organic interface of a light emitting diode device. The inventive method includes (1) providing an anode; and (2) incorporating an electroluminescent medium adjacent the anode, the medium including but not limited to a molecular layer, coupled to the anode, of amine molecular components substituted with at least one silyl group, and thereon a hole transport layer of molecular components having the amine structure of the aforementioned molecular layer components. The molecular layer can have at least one of an arylamine component and an arylalkylamine component, including but not limited to those monoarylamine, diarylamine and triarylamine components described in the aforementioned and incorporated U.S. Pat. No. 5,409,783, modified and/or silyl-functionalized as provided herein. Other suitable arylamine and/or arylalkylamine structures are disclosed in U.S. Pat. Nos. 3,180,730, 3,567,450 and 3,658,520, each of which is incorporated herein in its entirety, such structures as can also be modified to provide silyl-functionality in accordance herewith. Likewise, a combination of such silyl-substituted components can be employed with beneficial effect.
  • In preferred embodiments of this inventive method, the aforementioned amine molecular layer components are alkylsilyl-substituted compounds of the type illustrated in FIGS. 2A and 2C. In highly preferred embodiments, such components include the alkylsilyl-substituted TAA and alkylsilyl substituted TPD compounds prepared as described herein. Regardless, such a molecular layer can be spin-coated on the anode surface or self-assembled, as described more fully above, to provide silicon-oxygen bonds therewith. A plurality of such molecular layers can be coupled successively on an anode surface—each layer coupled one to another with silicon-oxygen bonds—to improve structural stability and enhance device performance. As described herein and with reference to several of the following examples, hole injection can be enhanced by choice of a molecular layer with components having a structural relationship with those arylamine or arylalkylamine components of the hole transport layer. In preferred embodiments, such enhancement can be achieved through use of a silyl-functionalized TPD layer in conjunction with a TPD hole transport layer.
  • As such, the present invention also includes an organic electroluminescent device for generating light upon application of an electrical potential cross to electrodes. Such a device includes (1) an anode; (2) at least one molecular layer, coupled to the anode, of one or more of the aforementioned amine molecular components substituted with at least one silyl group; (3) a conductive layer of molecular components having the amine structure; and (4) a cathode in electrical contact with the anode. A preferred conductive layer includes a hole transport layer comprising components of the prior art incorporated herein by reference, or modified as described above. Preferred molecular layer components are alkylsilyl-substituted compounds of the type illustrated in FIGS. 2A and 2C, in particular silyl-functionalized TAA and TPD. In light of the aforementioned structural relationships and associated methodologies, a preferred conductive layer of such a device is a TPD hole transport layer, such a layer substantially without crystallization upon annealing and/or at device operation temperatures when used in conjunction with a molecular layer of components having the same or a structurally similar amine structure.
  • As demonstrated herein, hydrophobic amine HTL—hydrophilic anode integrity is a factor in OLED performance; poor physical cohesion contributes to inefficient hole injection and ultimately, device failure. Enhanced performance can be achieved through use of molecular layer structures which maximize interfacial cohesion and charge transport. With reference to one preferred embodiment, a conveniently applied, spincoated silyl (Si) functionalized TPD analogue, TPD-Si2 (FIGS. 11A-B), structurally similar to the overlying HTL, hence well-suited to stabilizing the interface, undergoes rapid crosslinking upon spincoating from solution and subsequent thermal curing to form a dense, robust siloxane matrix with imbedded TPD hole-transport components. The thickness of these layers (˜40 nm) was determined by specular X-ray reflectivity on samples deposited via identical techniques on single-crystal silicon. The RMS roughness of the TPD-Si2 molecular layer films on ITO substrates of 30 Å RMS roughness is 8-12 Å by contact mode AFM. Crosslinked TPD-Si2 films exhibit high thermal stability, with only 5% weight loss observed up to 400° C. by TGA, indicating substantial resistance to thermal degradation. Furthermore, cyclic voltammetry of 40 nm TPD-Si2 films on ITO electrodes indicates that they support facile hole transport and are electrochemically stable.
  • The densely crosslinked nature of TPD-Si2 molecular layer films is evident in the relatively large separation of oxidative and reductive peaks (200 mV), suggesting kinetically hindered oxidation/reduction processes with retarded counterion mobility. P. E. Smolenyak, E. J. Osbum, S.-Y. Chen, L.-K. Chau, D. F. O'Brian, N. R. Armstrong, Langmuir 1997, 21, 6568. That TPD-Si2 film coverage on ITO is conformal and largely pinhole-free is supported by studies using a previously described ferrocene probe technique. W. Li, Q. Wang, J. Cui, H. Chou, T. J. Marks, G. E. Jabbour, S. E. Shaheen, B. Kippelen, N. Pegyhambarian, P. Dutta, A. J. Richter, J. Anderson, P. Lee, N. Armstrong, Adv. Mater. 1999, 11, 730. The lack of significant current flow near the formal potential for ferrocene oxidation at a TPD-Si2-coated ITO working electrode indicates suppression of ferrocene oxidation, consistent with largely pinhole-free surface coverage. G. Inzelt, Electroanalytical Chemistry, Vol, 18, Marcel Dekker, New York, 1994, p. 89.
  • EXAMPLES OF THE INVENTION
  • The following non-limiting examples and data illustrate various aspects and features relating to the articles/devices and/or methods of the present invention, including the assembly of a luminescent medium having various molecular components/agents and/or conductive layers, as are available through the synthetic methodology described herein. In comparison with the prior art, the present methods and articles/devices provide results and data which are surprising, unexpected and contrary to the prior art. While the utility of this invention is illustrated through the use of several articles/devices and molecular components/agents/layers which can be used therewith, it will be understood by those skilled in the art that comparable results are obtainable with various other articles/devices and components/agents/layers, as are commensurate with the scope of this invention.
  • Example 1
  • Figure US20050260443A1-20051124-C00001
  • Synthesis of a Silanated Hole Transport Agent [1]. With reference to reaction scheme, above, hole transport components, agents and/or layers can be prepared, in accordance with this invention and/or for use in conjunction with light-emitting diodes and other similar electroluminescent devices. Accordingly, 500 mg. (1.0 mmole) of trisbromophenylamine (Aldrich Chemical Company) was dissolved in 30 ml of dry dimethoxyethane (DME). This solution was cooled to −45° C. and 1.2 ml (3.3 mmole) of a 2.5 M solution of n-butyl lithium in hexane was added to the reaction mixture. The entire mixture was then slowly warmed to 20° C. After stirring at 20° C. for an additional hour, the solvent was removed in vacuo. The resulting white precipitate was washed (3×20 ml) with dry pentane and redissolved in 30 ml dry DME. This solution was subsequently poured into 10 ml (87 mmole) of silicon tetrachloride at a rate of 1 m/min. The entire reaction mixture was then refluxed for two hours. The resulting supernatent was separated from the precipitate, and the solvent again removed in vacuo yielding a green-brown residue. A white solid was obtained from this residue upon sublimation at 10−6 torr. Characterization: 1H NMR (600 MHz, C6D6, 20° C.): δ7.07 (d, 6H, Ar—H); δ7.05 (d, 6H, Ar—H); EI-MS (m/z): 645 (M+).
  • Example 2
  • With reference to FIGS. 2A-2C and the representative arylamines provided therein, other hole transport agents and/or layers of this invention can be obtained by straightforward application of the silanation procedure described above in Example 1, with routine synthetic modification(s) and optimization of reaction conditions as would be well-known to those skilled in the art and as required by the particular arylamine. Likewise, preliminary halogenation/bromination can be effected using known synthetic procedures. Alternatively, the arylamines of FIGS. 2A-2C and other suitable substrates can be prepared using other available synthetic procedures to provide multiple silane reaction centers for use with the self-assembly methods and light-emitting diodes of this invention. Core molecular substrates of the type from which the arylamines of FIGS. 2A-2C can be prepared are described by Strukelji et al. in Science, 267, 1969 (1995), which is incorporated herein by reference in its entirety.
  • Example 3
  • Synthesis of a Silanated Electron Transport Agent. With reference to Examples 3(a)-(d) and corresponding reaction schemes, below, electron transport agents and/or layers can be prepared, in accordance with this invention and/or for use in conjunction with light-emitting diodes and other similar electroluminescent devices.
    Figure US20050260443A1-20051124-C00002
  • Example 3a
  • Synthesis of 4′-Bromo-2-(4-bromobenzoyl)acetophenone [2]. In a 1-liter three neck round bottom flask, 43 g (0.2 mol) methyl 4-bromobenzoic acid and 17.6 g (0.4 mol) sodium hydride were dissolved in 200 ml dried benzene and heated to 60° C. Next, 39.8 g (0.2 mol) 4-bromoacetophenone in 100 ml dry benzene was slowly-added through a dropping funnel, and 1 ml methanol was added to the flask to initiate the reaction. After the mixture was refluxed overnight, the reaction was quenched by adding methanol and pouring it into ice water. The pH of the mixture was brought down to 7.0 using 5 N sulfuric acid. A solid was collected, washed with water, and recrystallized from benzene to give a light yellow product. Characterization. Yield: 30.3 g (40%). 1H NMR (300 MHz, CDCl3, 20° C., δ): 7.84 (d, 4H, ArH); 7.62 (d, 4H, ArH); 6.77 (s, 2H, CH2). EI-MS: 382(M+), 301, 225, 183, 157.
  • Example 3b
  • Synthesis of 3,5-Bis(4-bromophenyl)isoxazole [3]. In a 250 ml round bottom flask, 4 g (10.4 mmol) of [2] was dissolved in 100 ml dry dioxane and heated to reflux, then 3.0 g (43.2 mmol) hydroxylamine hydrogen chloride in 10 ml water and 5 ml (25 mmol) 5 N NaOH was then dropped into the refluxing mixture. After 12 hours, the reaction mixture was cooled down to room temperature, and the solvent was removed in vacuo. The product was recrystallized from ethanol. Characterization. Yield: 3.41 g (85%). M.P. 218.5-219.5° C. 1H NMR (300 MHz, CDCl3, 20° C., δ): 7.78 (d, 2H, ArH), 7.74 (d, 2H, Ar′H), 7.66 (d, 2H, ArH), 7.62 (d, 2H, Ar′H), 6.82 (s, 1H, isoxazole proton). EI-MS: 379(M+), 224, 183, 155.
  • Example 3c
  • Synthesis of 3,5-Bis(4-allylphenyl)isoxazole [4]. In a 250 ml three-neck round bottom flask, 3.77 g (10 mmol) of [3], 460 mg. (0.4 mmol) tetrakis-(triphenylphosphine) palladium, and 7.28 g (22 mmol) tributylallyltin were dissolved in 100 ml. dried toluene and degassed with nitrogen for 30 min. The mixture was heated to 100° C. for 10 h, then cooled down to room temperature. Next, 50 ml. of a saturated aqueous ammonium fluoride solution was subsequently added to the mixture. The mixture was extracted with ether, and the combined organic layer was washed by water, then brine, and finally dried over sodium sulfate. The solvent was removed in vacuo. The residue was purified by column chromatography. (first, 100% hexanes, then chloroform:hexanes [80:20]). Characterization. Yield: 1.55 g (57%). 1H NMR (300 MHz, CDCl3, 20° C., δ): 7.78 (d, 2H, ArH), 7.74 (d, 2H, Ar′H), 7.34 (d, 2H, ArH), 7.30 (d, 2H, Ar′H), 6.78 (s, 1H, isoxazole proton), 5.96 (m, 2H, alkene H), 5.14 (d, 4H, terminal alkene H), 3.44 (d, 4H, methylene group). EI-MS: 299(M+), 258, 217.
  • Example 3d
  • Synthesis of 3,5-Bis(4-(N-trichlorosilyl)propylphenyl)isoxazole [5]. To 2 ml of THF was added 5 mg of [4], 3.4 μl of HSiCl3 and 0.8 mg. of H2PtCl6 were added to 2 ml of THF. The reaction was heated at 50° C. for 14 h. The solvent was then removed in vacuo. A white solid was obtained from this residue upon sublimation at 10−6 torr. Characterization. 1H NMR (300 MHz, d8-THF, 20° C., δ): 7.72 (d, 2H, ArH), 7.68 (d, 2H, Ar′H), 7.36 (d, 2H, ArH), 7.32 (d, 2H, Ar′H), 6.30 (s, 1H, isoxazole); 2.52 (t, 2H, CH); 1.55 (m, 4H, CH2); 0.85 (t, 6H, CH3).
  • Example 4
  • With reference to FIGS. 4A-4C and the representative heterocycles provided therein, other electron transport agents and/or layers of this invention can be obtained by straight-forward application of the silanation procedure described above in Example 3, with routine synthetic modification(s) and optimization of reaction conditions as would be well-known to those skilled in the art and as required by the particular heterocyclic substrate. Preliminary halogenation/bromination can be effected using known synthetic procedures or through choice of starting materials enroute to a given heterocycle. Alternatively, the heterocycles of FIGS. 4A-4C and other suitable substrates can be prepared using other available synthetic procedures to provide multiple silane reaction centers for use with the self-assembly methods and light-emitting diodes of this invention. Core molecular substrates of the type from which the heterocycles of FIGS. 4A-4C can be prepared are also described by Strukelji et al. in Science, 267, 1969 (1995).
  • Example 5
  • With reference to FIGS. 3A-3C and the representative chromophores provided therein, emissive agents and/or layers, in accordance with this invention, can be obtained by appropriate choice of starting materials and using halogenation and silanation procedures of the type described in Examples 1-4, above. Alternatively, other chromophores can be silanated using other available synthetic procedures to provide multiple silane reaction centers for use with the self-assembly methods and light-emitting diodes of this invention. Regardless, in accordance with this invention, such emissive agents or chromophores can be used for emission of light at wavelengths heretofore unpractical or unavailable. Likewise, the present invention allows for the use of multiple agents or chromophores and construction of an emissive layer or layers such that a combination of wavelengths and/or white light can be emitted.
  • Example 6
  • Examples 6(a)-6(c) together with FIG. 6 illustrate the preparation of other molecular components which can be used in accordance with this invention.
  • Example 6a
  • Synthesis of Tertiary Arylamine [6]. Together, 14.46 g (20 mmole) of tris(4-bromophenyl)amine and 500 ml of dry diethyl ether were stirred at −78° C. under a nitrogen atmosphere. Next, 112.5 ml of a 1.6 M n-butyllithium solution in hexanes was slowly added to the reaction mixture over 1.5 hours. The reaction was then warmed to −10° C. and stirred for an additional 30 minutes. The reaction was then cooled down again to −78° C. before the addition of 22 g (0.5 mole) of ethylene oxide. The mixture was stirred and slowly warmed to room temperature over 12 hours. Next, 2 ml of a dilute NH4Cl solution was then added to the reaction mixture. The solvent was evaporated under vacuum yielding a light green solid. The product was purified using column chromatography. The column was first eluted with chloroform and then with MeOH:CH2Cl2 (5:95 v/v). The resulting light gray solid was recrystallized using chloroform to give 1.89 g. Yield: 25%. 1H NMR (δ, 20° C., DMSO): 2.65 (t, 6H), 3.57 (q, 6H), 4.64 (t, 3H), 6.45 (d, 6H), 7.09 (d, 6H). EI-MS: 377 (M+), 346 (M+−31), 315 (M+−62). HRMS: 377.2002. calcd; 377.1991. Anal. Calculated for C24H27NO3; C, 76.36; H, 7.21; N, 3.71. Found: C, 76.55; H, 7.01; N, 3.52.
  • Example 6b
  • Synthesis of Tosylated Arylamine [7]. A pyridine solution of tosyl chloride (380 mg in 5 ml) was added over 5 minutes to a pyridine solution of [6] (500 mg in 10 ml, from Example 6a) cooled to 0° C. The mixture was stirred for 12 hours, then quenched with water and extracted with chloroform. The organic extract was washed with water, 5% sodium bicarbonate, and dried with magnesium sulfate. After filtration, the chloroform solution was then evaporated to dryness under vacuum and purified using column chromatography. The column was first eluted with hexane:CHCl3 (1:2 v/v) yielding [7]. 1H NMR (300 MHz, δ, 20° C., CDCl3): 2.45 (s, 3H), 2.90 (t, 6H), 3.02 (t, 3H), 3.70 (t, 3H), 4.19 (t, 6H), 6.92 (d, 2H), 6.98 (d, 4H), 7.00 (d, 4H), 711 (d, 2H), 7.32 (d, 2H), 7.77 (d, 2H).
  • Example 6c
  • Synthesis of Tosylated Arylamine [8]. Continuing the chromatographic procedure similar for 2 (from Example 6b)but changing the eluting solvent to 100% CHCl3 yielded [8]. 1H NMR (300 MHz, δ, 20° C., CDCl3): 2.44 (s, 6H), 2.91 (t, 3H), 3.02 (t, 6H), 3.70 (t, 6H), 4.19 (t, 3H), 6.92 (d, 4H), 6.98 (d, 2H), 7.00 (d, 2H), 7.11 (d, 4H), 7.32 (d, 4H), 7.77 (d, 4H).
  • Example 7
  • Using the arylamines of Examples 6 and with reference to FIG. 7, an electroluminescent article/device also in accordance with this invention is prepared as described, below. It is understood that the arylamine component can undergo another or a series of reactions with a silicon/silane moiety of another molecular component/agent to provide a siloxane bond sequence between components, agents and/or conductive layers. Similar electroluminescent articles/devices and conductive layers/media can be prepared utilizing the various other molecular components/agents and/or layers described above, such as in Examples 1-5 and FIGS. 1-4, in conjunction with the synthetic modifications of this invention and as required to provide the components with the appropriate reactivity and functionality necessary for the assembly method(s) described herein.
  • Example 7a
  • This example of the invention shows how slides can be prepared/cleaned prior to use as or with electrode materials. An indium-tin-oxide (ITO)-coated soda lime glass (Delta Technologies) was boiled in a 20% aqueous solution of ethanolamine for 5 minutes, rinsed with copious amounts of distilled water and dried for 1 hour at 120° C.; alternatively and with equal effect, an ITO-coated soda lime glass (Delta Technologies) was sonicated in 0.5M KOH for 20 minutes, rinsed with copious amounts of distilled water and then ethanol, and dried for 1 hour at 120° C.
  • Example 7b
  • Electroluminescent Article Fabrication and Use. The freshly cleaned ITO-coated slides were placed in a 1% aqueous solution of 3-aminopropyltrimethoxysilane and then agitated for 5 minutes. These coated slides were then rinsed with distilled water and cured for 1 hour at 120° C. The slides were subsequently placed in a 1% toluene solution of [7] (or [8] from Example 6) and stirred for 18 hours under ambient conditions. Afterwards, the slides were washed with toluene and cured for 15 minutes at 120° C. AlQ3 (or GaQ3; Q=quinoxalate) was vapor deposited on top of the amine-coated slides. Finally, 750-1000 Å of aluminum was vapor deposited over the metal quinolate layer. Wires were attached to the Al and ITO layers using silver conducting epoxy (CircuitWorks™), and when a potential (<7V) was applied, red, orange, and/or green light was emitted from the device.
  • Example 8
  • One or more capping layers comprising Cl3SiOSiCl2OSiCl3 are successively deposited onto clean ITO-coated glass where hydrolysis of the deposited material followed by thermal curing/crosslinking in air at 125° C. yields a thin (˜7.8 Å) layer of material on the ITO surface. X-ray reflectivity measurements indicate that the total film thickness increases linearly with repeated layer deposition, as seen in FIG. 8. Other molecular components can be used with similar effect. Such components include, without limitation, the bifunctional silicon compounds described in U.S. Pat. No. 5,156,918, at column 7 and elsewhere therein, incorporated by reference herein in its entirety. Other useful components, in accordance with this invention include those trifuctional compounds which cross-link upon curing. As would be well known to those skilled in the art and made aware of this invention, such components include those compounds chemically reactive with both the electrode capped and an adjacent conductive layer.
  • Example 9
  • Cyclic voltametry measurements shown in FIG. 9 using aqueous ferri/ferrocyanide show that there is considerable blocking of the electrode after the deposition of just one layer of the self-assembled capping material specified in Example 8. Other molecular components described, above, show similar utility. Almost complete blocking, as manifested by the absence of pinholes, is observed after application of three layers of capping material.
  • Example 10
  • Conventional organic electroluminescent devices consisting of TPD (600 Å)/Alq (600 Å)/Mg (2000 Å) were vapor-deposited on ITO substrates modified with the capping material specified in Example 8. FIGS. 10A-C show the behavior of these devices with varying thickness of the self-assembled capping material. These results show that such a material can be used to modify forward light output and device quantum efficiency. For a device with two capping layers, higher current densities and increased forward light output are achieved at lower voltages, suggesting an optimum thickness of capping material can be used to maximize performance of an electroluminescent article.
  • Example 11
  • This example illustrates how a capping material can be introduced to and/or used in the construction of an electroluminescent article. ITO-coated glass substrates were cleaned by sonication in acetone for 1 hour followed by sonication in methanol for 1 hour. The dried substrates were then reactively ion etched in an oxygen plasma for 30 seconds. Cleaned substrates were placed in a reaction vessel and purged with nitrogen. A suitable silane, for instance a 24 mM solution of octachlorotrisiloxane in heptane, was added to the reaction vessel in a quantity sufficient to totally immerse the substrates. (Other such compounds include those described in Example 8). Substrates were allowed to soak in the solution under nitrogen for 30 minutes. Following removal of the siloxane solution the substrates were washed and sonicated in freshly distilled pentane followed by a second pentane wash under nitrogen. Substrates were then removed from the reaction vessel washed and sonicated in acetone. Substrates were dried in air at 125° C. for 15 minutes. This process can be repeated to form a capping layer of precisely controlled thickness.
  • Example 12
  • The stability of device-type TPD-Si2 molecular layer/TPD hole transport layer interfaces under thermal stress (one measure of durability) was investigated by annealing ITO/TPD-Si2 (40 nm)/TPD (100 nm) bilayers at 80° C. for 1.0 h. The optical image of the annealed TPD film shows no evidence of TPD de-wetting/decohesion (FIG. 12A), indicating that the ITO-TPD surface energy mismatch is effectively moderated by the interfacial TPD-Si2 molecular layer. In contrast, the bare ITO/TPD interface exhibits catastrophic de-wetting/de-cohesion under identical thermal cycling (FIG. 12B), visible even under a layer of Alq). Despite seemingly similar cohesive effects for both TAA and TPD-Si2 as interfacial buffer layers, it is reasonable to suggest that the interfacial cohesion between TPD-Si2 and TPD is greater, given closer structural similarity, evidenced by comparing advancing aqueous contact angles: values for bare ITO, silyl-functionalized TAA, silyl (Si2) functionalized TPD and TPD film surfaces are 0°, 45°, 70°, and 85° respectively, indicating a closer surface energy match at TPD-TPD-Si2 interfaces.
  • Example 13
  • Speculation that one role of Cu(Pc) in enhancing OLED performance might be via the above adhesion mechanism led to parallel thermal studies. In contrast to a preferred alkylsilyl-substituted arylamine TPD-Si2, Cu(Pc)-buffered ITO does not prevent TPD de-cohesion upon heating to temperatures near/above the TPD glass transition temperature (Tg). FIG. 12D illustrates the morphology of a 100 nm TPD film on 10 nm Cu(Pc) following heating at 80° C. It is clearly seen that thermal annealing induces TPD crystallization on the Cu(Pc) film surface (visible even under a layer of Alq), yielding star-shaped dendritic crystallites (as-deposited TPD films on Cu(Pc) are smooth and featureless, FIG. 12C). It is likely that such Cu(Pc)-nucleated crystallization occurs during localized heating in operating OLEDs and contributes to observed device instability.
  • Example 14
  • Device characteristics employing spincoated TAA, TPD-Si2, and vapor-deposited Cu(Pc) hole injection layer/adhesion layers in OLEDs having the structure ITO/interlayer/TPD/Alq/Al are compared in FIG. 13. Versus the bare ITO system, all of the molecular/buffer layer-incorporated devices exhibit higher light output, enhanced quantum efficiencies, and lower turn-on voltages. Note that a preferred TPD-Si2 component layer affords ˜15,000 cd/m2 of maximum light output, which is 10-100× greater than the bare ITO-based device. Similar increases in ITO/TPD/Alq/AI-type device performance with electrode functionalization have only been reported previously for LiF or CsF-modified Al cathodes, via what remains an unresolved mechanism. It is widely accepted that conventional ITO/TPD/Alq/AI heterostructures are electron-limited due to the low Alq electron mobility and Alq LUMO-Al Fermi level energetic mismatch, thus raising the question of why TPD-Si2 anode modification produces similar effects. It is suggested that under conditions of anode-HTL surface energy mismatch and poor anode-HTL cohesion (an unmodified device of prior art), non-ohmic contacts dominate device behavior, resulting in significant hole injection barriers typical of poor electrode-organic contact.
  • Example 15
  • With reference to FIG. 14, TAA and TPD-Si2 interfacial/molecular component layers are significantly more effective injection structures than conventional Cu(Pc) layers. The maximum light output for a Cu(Pc)-based device is ˜1500 cd/m2 at 25 V, while that of a TAA-based device is 2600 cd/m2, and at a much lower bias voltage (16 V). The external quantum efficiency of the Cu(Pc)-based device also falls well below those based on TAA and TPD-Si2 anode layers: the maximum quantum efficiency for Cu(Pc) is ˜0.3%, in contrast to those of TPD-Si2 (˜1.2%) and TAA (˜0.9%). The TPD-Si2-functionalized device is most efficient, producing a maximum light output ˜10× greater than the Cu(Pc)-buffered device, and ˜100× greater than the bare ITO-based device. Improvements observed and differences between TPD-Si2 and silyl-functionalized TAA molecular layers can be explained, without limitation, in relation to: (1) closer aromatic structural similarity of TPD-Si2 to TPD, producing a stronger interlayer affinity and presumably greater π-π interfacial overlap, and (2) the higher triarylamine: siloxane linker ratio in TPD-Si2, consistent with more facile hole hopping via denser triarylamine packing.
  • Example 16
  • These findings argue that promotion of ITO-TPD interfacial contact/adhesion leads to more efficient hole injection due to reduced interfacial contact resistance. This hypothesis was tested by examining characteristics of hole-only devices having the structure ITO/molecular interlayer/TPD(250 nm)/Au(6 nm)/Al(80 nm), in which electron injection at the cathode is blocked. Here the Au layer is deposited by rf-sputtering to avoid excessive heating of the TPD underlayer. The hole injection capacity falls in the order TPD-Si2≧TAA>Cu(Pc)>bare ITO (FIG. 14). Compared to bare ITO, the silyl-functionalized TAA- and TPD-Si2-modified anodes enhance the hole current density by 10-100× for the same field strength, with ITO/TPD-Si2 being most effective. Thus, when contact resistance at the OLED anode side is reduced and hole injection increased, the greater electric field induced across the Alq layer enhances electron injection and transport, affording higher light output and comparable or, in the cases where recombination is more probable, enhanced quantum efficiency. In contrast, the present and related data for Cu(Pc) devices show that the Cu(Pc) significantly suppresses hole injection. E. W. Forsythe, M. A. Abkowitz, Y. Gao, J. Phys. Chem. B 2000, 104, 3948; S. C. Kim, G. B. Lee, M. Choi, Y. Roh, C. N. Whang, K. Jeong, Appl. Phys. Lett. 2001, 78, 1445. It is believed, in light of these results, that Cu(Pc) enhances quantum efficiency via better balancing hole and electron injection fluences, rather than by facilitating hole injection or interfacial stability.
  • Example 17
  • To examine cohesion and crystallization effects on device durability, thermal stress tests were carried out on devices based on bare ITO, having a 10 nm Cu(Pc) interlayer, and having a 40 nm TPD-Si2 interlayer. These were subjected to heating at 95° C. for 0.5 h in vacuum and subsequently examined for changes in luminous response. The irreversible degradation of the bare ITO and Cu(Pc)-based devices upon heating at 95° C. for 0.5 h (FIG. 15) is reasonably ascribed to TPD de-wetting and Cu(Pc)-nucleated TPD crystallization, respectively. Both processes would disrupt the multilayer structure, leading to direct hole injection into, and consequent degradation of, the emissive Alq layer, and possible amplification of pinholes and defects. In contrast, TPD-Si2-buffered molecular layer devices exhibit enhanced performance after heating, which is presumably a consequence of interfacial reconstruction that promotes charge injection. These experiments unambiguously demonstrate that covalently interlinked alkylsilyl-substituted compounds such as TPD-Si2 and TAA, when used as described herein, offer significant improvements in stabilizing the anode-HTL interface and promoting hole injection.
  • The results of this and several preceding examples, demonstrate that a spincoated, hole injecting TPD-Si2 layer can significantly increase maximum OLED device luminence (˜100×) and quantum efficiency (˜6×) by promoting ITO-TPD interfacial cohesion, hence promoting more efficient hole injection. Devices having a TPD-Si2 anode adhesion layer afford a maximum luminance level of 15,000 cd/m2 in absence of dopants or low work function cathodes, while exhibiting excellent thermal stability. In addition, the same results demonstrate that Cu(Pc) interlayers nucleate TPD crystallization upon heating above the Tg of TPD
  • Example 18
  • The synthesis of alkylsilyl-functionalized TAA is as was previously described, both herein and in the literature. W. Li, Q. Wang, J. Cui, H. Chou, T. J. Marks, G. E. Jabbour, S. E. Shaheen, B. Kippelen, N. Pegyhambarian, P. Dutta, A. J. Richter, J. Anderson, P. Lee, N. Armstrong, Adv. Mater. 1999, 11, 730. TPD, Alq, and Cu(Pc) were obtained from Aldrich and purified by gradient sublimation. All other reagents were used as received unless otherwise indicated. TPD-Si2 can be synthesized as provided elsewhere, herein (see Example 2) or according to FIG. 11B and Examples 19-21, and further characterized by 1H NMR spectroscopy and elemental analysis.
  • Example 19
  • With reference to FIG. 11B enroute to TPD-Si2, the synthesis of 4,4′-bis[(p-bromophenyl)phenylamino)biphenyl (9). To a solution of tris(dibenzyldeneacetone)dipalladium (0.55 g, 0.6 mmol), and bis-(diphenylphosphino)ferrocene; (0.50 g, 0.9 mmol) in toluene (50 mL), was added 1,4-dibromobenzene (18.9 g, 0.0800 mol) at 25° C., and the solution stirred under N2 for 10 min. Subsequently, sodium tert-butoxide (4.8 g, 0.050 mol) and N,N′-diphenylbenzidine (6.8 g, 0.020 mol) were added, and the reaction mixture stirred at 90° C. for 12 h. The reaction mixture was subsequently cooled to 25° C. and poured into water. The organic layer was separated, and the aqueous layer was extracted with toluene (3×100 mL). The extract was combined with the original organic layer, and the solvent was removed in vacuo to give the crude product. This was purified by chromatography on silica gel using hexane: ethylene chloride (6:1) as the eluant. A white solid (6.9 g) was obtained in 50% yield. 1H NMR (CDCl3): δ 6.99 (d, J=8.8 Hz, 4H), 7.02-7.16 (m, 10H), 7.28 (t, J=7.6 Hz, 4H), 7.34 (d, J=8.8 Hz, 4H), 7.45 (d, J=8.4 Hz, 4H).
  • Example 20
  • With further reference to FIG. 11B enroute to TPD-Si2, the synthesis of 4,4′-bis[(p-allylphenyl)′phenylamino]biphenyl (10). To a stirring, anhydrous ether solution (10 mL) of 1(1.02 g, 1.58 mmol) under N2 was added dropwise at 25° C. 1.6 mL (3.5 mmol) n-butyl lithium(2.5 M in hexanes), and the mixture stirred for 2 h. CuI (0.76 g, 4.0 mmol) was then added, the reaction mixture cooled to 0° C., and allyl bromide (0.60 g, 5.0 mmol) added in one portion. The solution was stirred for 14 h, after which time it was quenched with 100 mL saturated aqueous NH4 +Cl solution, followed by extraction with ether (3×100 mL). The combined ether extracts were washed with water (2×100 mL) and brine (2×100 mL), and dried over anhydrous Na2SO4. Following filtration, solvent was removed in vacuo to yield a yellow oil. Chromatography on silica gel with hexane: ethylene chloride (4:1) afforded 0.63 g white solid. Yield, 70%. 1H NMR (CDCl3) δ 3.40 (d, J=10 Hz, 4H), 5.10-5.20 (m, 4H), 6.02 (m, 2H), 6.99-7.10 (m, 2H), 7.10-7.20 (m, 16H), 7.28 (t, J=7.6 Hz, 4H), 7.46 (d, J=8.8 Hz, 4H). Anal. Calcd for C42H36N2: C 88.68; H 6.39; N 5.23 Found, C 87.50; H 6.35, N 4.93.
  • Example 21
  • With reference to FIG. 11B enroute to TPD-Si2, the synthesis of 4,4′-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (11). To a solution of 2 (0.32 g, 0.55 mol) in 30 mL CH2Cl2 at 25° C. was added a grain of H2PtCl6.xH2O, followed by HSiCl3 (0.73 g, 5.5 mmol). The reaction solution was warmed to 30° C. and stirred for 4 h. Removal of the solvent in vacuum yielded a dark-yellow oil. A mixture of 50 mL pentane and 10 mL toluene was then added. The resulting solid was filtered off, and the filtrate was concentrated under vacuum to a viscous, pale-yellow oil. Yield, 98%. 1H NMR (CDCl3): δ1.45 (t, J=7 Hz, 4H), 1.90 (t, J=7 Hz, 4H), 2.70 (brs, 4H), 6.80-7.80 (m, 26H). Anal. Calcd for C42H38Cl6N2Si2: C 60.07, H 4.57; Found, C 60.52, H 4.87.
  • Example 22
  • With reference to Examples 19-21, a wide variety of arylalkylamine molecular components and their silyl-functionalized analogs can be prepared using straight-forward modifications of the synthetic techniques described herein. For instance, with reference to Example 19, diphenylbenzidene can be mono- or dialkylated with the appropriate haloalkyl reagent to provide the desired arylalkylamine hole transport layer component. As would also be well known to those skilled in the art made aware of this invention, the corresponding silyl-functionalized molecular layer component can be prepared via mono- or dialkylation with the appropriate dihaloalkyl reagent followed by subsequent silation, adopting the procedures illustrated in Examples 20 and 21. Accordingly, by way of further example, the alkylafed mono- and diarylamine components, discussed above, and their silyl-functionalized analogs can be prepared to provide the structurally-related molecular and hole transport layers of this invention, and the enhanced performance and/or hole injection resulting therefrom.
  • Example 23
  • TPD-Si2 and TAA Thin Film Deposition and Characterization. Indium tin oxide (ITO) glass sheets with a resistance of 20 Ω/□ from Donnelly Corp. were subjected to a standard literature cleaning procedure. TAA and TPD-Si2-based buffer layers were spincoated onto cleaned ITO surfaces from their respective toluene solutions (10 mg/mL) at 2 Krpm, followed by curing in moist air at 110° C. for 15 min. Cyclic voltammetry of spincoated TPD-Si2 films on ITO was performed with a BAS 100 electrochemical workstation (scan rate, 100 mV/s; Ag wire pseudo-reference electrode, Pt wire counter electrode, supporting electrolyte, 0.1 M TBAHFP in anhydrous MeCN). For TPD-Si2 film contiguity assessment, 1.0 mM ferrocene in 0.1 M TBAHFP/MeCN was used as the probe. Thermogravimetric analysis (TGA) was carried out on an SDT 2960 DTA-TGA instrument with a scan rate of 10° C./min under N2. TGA sample preparation involved drop-coating a TPD-Si2 solution in toluene (10 mM) onto clean glass substrates under ambient conditions. Following solvent evaporation, the TPD-Si2-coated slides were cured at 120° C. for 1 h. Upon cooling, the films were detached from the glass substrates using a razor blade and collected as powders for TGA characterization.
  • Example 24
  • ITO/Buffer Layer/TPD Interfacial Stability Studies. TPD de-cohesion analysis of the interfacial structures ITO/buffer layer/TPD (100 nm) (spincoated TPD-Si2, spincoated TAA, vapor-deposited Cu(Pc)) were carried out in the following manner. Following vapor deposition of 50-100 nm TPD films onto the respective buffer layer-coated ITO substrates, the samples were annealed at 80-100° C. under N2 for 1.0 h, and the film morphology subsequently imaged by optical microscopy and AFM.
  • Example 25
  • OLED Device Fabrication. OLED devices of the structure: ITO/interlayer/TPD(50 nm)/Alq(60 nm)/Al(100 nm) were fabricated using standard vacuum deposition procedures (twin evaporators interfaced to a <1 ppm O2 glove box facility). Deposition rates for organic and metal were 2-4 Å/sec and 1-2 Å/sec respectively, at 1×10−6 Torr. The OLED devices were characterized inside a sealed aluminum sample container under N2 using instrumentation described elsewhere. J. Cui, Q. Huang, Q. Wang, T. J. Marks, Langmuir 2001, 17, 2051; W. Li, Q. Wang, J. Cui, H. Chou, T. J. Marks, G. E. Jabbour, S. E. Shaheen, B. Kippelen, N. Pegyhambarian, P. Dutta, A. J. Richter, J. Anderson, P. Lee, N. Armstrong, Adv. Mater. 1999, 11, 730.
  • Example 26
  • Device Thermal Stability Evaluations. OLED devices were subjected to heating under vacuum at 95° C. for 0.5 h, and were subsequently evaluated for I-V and L-V characteristics as described above.
  • While the principles of this invention have been described in connection with specific embodiments, it should be understood clearly that these descriptions are added only by way of example and are not intended to limit, in any way, the scope of this invention. For instance, the present invention can be applied more specifically to the construction of second-order nonlinear optical materials as have been described in U.S. Pat. No. 5,156,918 which is incorporated herein by reference in its entirety. Likewise, the present invention can be used in conjunction with the preparation of optical waveguides. Another advantages and features will become apparent from the claims hereinafter, with the scope of the claims determined by the reasonable equivalents, as understood by those skilled in the art.

Claims (20)

1. A method of using an amine molecular component to enhance hole injection across the electrode-organic interface of a light emitting diode device, said method comprising:
providing an anode; and
incorporating an electroluminescent medium adjacent said anode, said medium comprising an amine molecular layer, coupled to said anode, said molecular layer having at the least one of an arylamine molecular component and an arylalkylamine molecular component, each said component substituted with at least one silyl group, and on said molecular layer a hole transport layer of molecular components having said amine structure.
2. The method of claim 1 wherein said molecular layer components are selected from the group consisting of alkylsilyl-substituted compounds of FIGS. 2A and 2C.
3. The method of claim 2 wherein said molecular layer components are selected from the group consisting of alkylsilyl-substituted TAA and alkylsilyl-substituted TPD.
4. The method of claim 3 wherein said molecular layer is spin-coated on said anode.
5. The method of claim 3 wherein said anode is immersed in a solution of said molecular layer components.
6. The method of claim 1 wherein a plurality of molecular layers are coupled to said anode.
7. The method of claim 1 wherein said hole transport layer is TPD.
8. The method of claim 7 wherein said hole transport layer is spin-coated on said anode.
9. An electroluminescent device for generating light upon application of an electrical potential across two electrodes, said device comprising:
an anode;
at least one amine molecular layer, coupled to said anode, said molecular layer having at least one of an arylamine molecular component and an arylalkylamine molecular component, each said component substituted with at least one silyl group;
a conductive layer of molecular components having said amine structure; and
a cathode in electrical contact with said anode layer.
10. The device of claim 9 wherein said molecular layer components are selected from the group consisting of alkylsilyl-substituted compounds of FIGS. 2A and 2C.
11. The device of claim 10 wherein said molecular layer components are selected from the group consisting of alkylsilyl-substituted TAA and alkylsilyl-substituted TPD.
12. The device of claim 11 wherein said conductive layer is a hole transport layer of TPD.
13. The device of claim 9 wherein a plurality of molecular layers are coupled to said anode.
14. An electroluminescent device for generating light upon application of an electrical potential across two electrodes, said device comprising:
an anode;
at least one molecular layer, coupled to said anode, of arylamine molecular components substituted with at least two silyl groups;
a hole transport layer of TPD molecular components, said hole transport layer substantially without crystallization upon annealing; and
a cathode in electrical contact with said anode.
15. The device of claim 14 wherein said molecular layer components are selected from the group consisting of alkylsilyl-substituted TAA and alkylsilyl-substituted TPD.
16. The device of claim 14 wherein a plurality of molecular layers are coupled to said anode.
17. The device of claim 14 further including an electron transport layer.
18. An electroluminescent device for generating light upon application of an electrical potential across two electrodes, said device comprising;
an anode;
at least one molecular layer, coupled to said anode, of alkylsilyl-substituted TPD molecular components;
a hole transport layer of TPD molecular components and
a cathode in electrical contact with said anode.
19. The device of claim 18 further including, an electron transport layer.
20. The device of claim 18 wherein a plurality of molecular layers are coupled to said anode.
US10/992,624 1996-06-25 2004-11-18 Organic light - emitting diodes and methods for assembly and enhanced charge injection Abandoned US20050260443A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/992,624 US20050260443A1 (en) 1996-06-25 2004-11-18 Organic light - emitting diodes and methods for assembly and enhanced charge injection
US12/497,109 US8053094B2 (en) 1996-06-25 2009-07-02 Organic light-emitting diodes and methods for assembly and enhanced charge injection

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/673,600 US5834100A (en) 1996-06-25 1996-06-25 Organic light-emitting dioddes and methods for assembly and emission control
US09/187,891 US6399221B1 (en) 1996-06-25 1998-11-06 Organic light-emitting diodes and methods for assembly and emission control
US10/099,131 US6939625B2 (en) 1996-06-25 2002-03-15 Organic light-emitting diodes and methods for assembly and enhanced charge injection
US10/992,624 US20050260443A1 (en) 1996-06-25 2004-11-18 Organic light - emitting diodes and methods for assembly and enhanced charge injection

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/099,131 Continuation US6939625B2 (en) 1996-06-25 2002-03-15 Organic light-emitting diodes and methods for assembly and enhanced charge injection

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/497,109 Continuation US8053094B2 (en) 1996-06-25 2009-07-02 Organic light-emitting diodes and methods for assembly and enhanced charge injection

Publications (1)

Publication Number Publication Date
US20050260443A1 true US20050260443A1 (en) 2005-11-24

Family

ID=28039524

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/099,131 Expired - Fee Related US6939625B2 (en) 1996-06-25 2002-03-15 Organic light-emitting diodes and methods for assembly and enhanced charge injection
US10/992,624 Abandoned US20050260443A1 (en) 1996-06-25 2004-11-18 Organic light - emitting diodes and methods for assembly and enhanced charge injection
US12/235,552 Expired - Fee Related US8057918B2 (en) 1996-06-25 2008-09-22 Organic light-emitting diodes and methods for assembly and enhanced charge injection
US12/497,109 Expired - Fee Related US8053094B2 (en) 1996-06-25 2009-07-02 Organic light-emitting diodes and methods for assembly and enhanced charge injection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/099,131 Expired - Fee Related US6939625B2 (en) 1996-06-25 2002-03-15 Organic light-emitting diodes and methods for assembly and enhanced charge injection

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/235,552 Expired - Fee Related US8057918B2 (en) 1996-06-25 2008-09-22 Organic light-emitting diodes and methods for assembly and enhanced charge injection
US12/497,109 Expired - Fee Related US8053094B2 (en) 1996-06-25 2009-07-02 Organic light-emitting diodes and methods for assembly and enhanced charge injection

Country Status (3)

Country Link
US (4) US6939625B2 (en)
AU (1) AU2003218175A1 (en)
WO (1) WO2003079732A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040108509A1 (en) * 2002-09-03 2004-06-10 Caballero Gabriel Joseph Light emitting molecules and organic light emitting devices including light emitting molecules
US20100227157A1 (en) * 2009-03-04 2010-09-09 Xerox Corporation Composite structured organic films
US8119314B1 (en) 2010-08-12 2012-02-21 Xerox Corporation Imaging devices comprising structured organic films
US8119315B1 (en) 2010-08-12 2012-02-21 Xerox Corporation Imaging members for ink-based digital printing comprising structured organic films
US8247142B1 (en) 2011-06-30 2012-08-21 Xerox Corporation Fluorinated structured organic film compositions
US8257889B2 (en) 2010-07-28 2012-09-04 Xerox Corporation Imaging members comprising capped structured organic film compositions
US8313560B1 (en) 2011-07-13 2012-11-20 Xerox Corporation Application of porous structured organic films for gas separation
US8318892B2 (en) 2010-07-28 2012-11-27 Xerox Corporation Capped structured organic film compositions
US8353574B1 (en) 2011-06-30 2013-01-15 Xerox Corporation Ink jet faceplate coatings comprising structured organic films
US8372566B1 (en) 2011-09-27 2013-02-12 Xerox Corporation Fluorinated structured organic film photoreceptor layers
US8377999B2 (en) 2011-07-13 2013-02-19 Xerox Corporation Porous structured organic film compositions
US8410016B2 (en) 2011-07-13 2013-04-02 Xerox Corporation Application of porous structured organic films for gas storage
US8460844B2 (en) 2011-09-27 2013-06-11 Xerox Corporation Robust photoreceptor surface layer
US8529997B2 (en) 2012-01-17 2013-09-10 Xerox Corporation Methods for preparing structured organic film micro-features by inkjet printing
US8697322B2 (en) 2010-07-28 2014-04-15 Xerox Corporation Imaging members comprising structured organic films
US8759473B2 (en) 2011-03-08 2014-06-24 Xerox Corporation High mobility periodic structured organic films
US8765340B2 (en) 2012-08-10 2014-07-01 Xerox Corporation Fluorinated structured organic film photoreceptor layers containing fluorinated secondary components
US8906462B2 (en) 2013-03-14 2014-12-09 Xerox Corporation Melt formulation process for preparing structured organic films
US9567425B2 (en) 2010-06-15 2017-02-14 Xerox Corporation Periodic structured organic films

Families Citing this family (514)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939625B2 (en) * 1996-06-25 2005-09-06 Nôrthwestern University Organic light-emitting diodes and methods for assembly and enhanced charge injection
US7750175B2 (en) * 1996-06-25 2010-07-06 Northwestern University Organic light-emitting diodes and related hole transport compounds
US20050158579A1 (en) * 1996-06-25 2005-07-21 Marks Tobin J. Organic light-emitting diodes and methods for assembly and enhanced charge injection
US7651777B1 (en) 2000-03-22 2010-01-26 Northwestern University Layer by layer self-assembly of large response molecular electro-optic materials by a desilylation strategy
US6855274B1 (en) 2000-03-22 2005-02-15 Northwestern University Layer by layer self-assembly of large response molecular electro-optic materials by a desilylation strategy
US20040195966A1 (en) * 2001-05-14 2004-10-07 Conway Natasha M J Method of providing a layer including a metal or silicon or germanium and oxygen on a surface
KR100738219B1 (en) * 2003-12-23 2007-07-12 삼성에스디아이 주식회사 Substance for Intermediate layer of organic electroluminescent device and organic electroluminescent device using the same
US7365230B2 (en) * 2004-02-20 2008-04-29 E.I. Du Pont De Nemours And Company Cross-linkable polymers and electronic devices made with such polymers
US7393598B2 (en) * 2004-03-10 2008-07-01 Hcf Partners, L.P. Light emitting molecules and organic light emitting devices including light emitting molecules
CN101002506B (en) 2004-03-31 2014-06-25 E.I.内穆尔杜邦公司 Triarylamine compounds for use as charge transport materials
WO2007050049A1 (en) * 2004-09-14 2007-05-03 Northwestern University Carbonyl-functionalized thiophene compounds and related device structures
EP1802706B1 (en) * 2004-10-22 2014-10-08 Semiconductor Energy Laboratory Co., Ltd. Composite material and light emitting element
KR101436791B1 (en) 2004-10-29 2014-09-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Composite material, light-emitting element, light-emitting device, and manufacturing method thereof
US7811624B1 (en) * 2004-12-30 2010-10-12 Dupont Displays, Inc. Self-assembled layers for electronic devices
JP4277816B2 (en) * 2005-03-03 2009-06-10 セイコーエプソン株式会社 LIGHT EMITTING ELEMENT, DISPLAY DEVICE, AND ELECTRONIC DEVICE
US9070884B2 (en) 2005-04-13 2015-06-30 Universal Display Corporation Hybrid OLED having phosphorescent and fluorescent emitters
WO2006116584A2 (en) * 2005-04-27 2006-11-02 Dynamic Organic Light, Inc. Light emitting polymer devices using self-assembled monolayer structures
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
US8586204B2 (en) 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
US7678463B2 (en) * 2005-12-20 2010-03-16 Northwestern University Intercalated superlattice compositions and related methods for modulating dielectric property
KR102103062B1 (en) 2006-02-10 2020-04-22 유니버셜 디스플레이 코포레이션 METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF
JP2009536980A (en) * 2006-05-11 2009-10-22 ノースウェスタン ユニバーシティ Silole-based polymers and semiconductor materials prepared from these polymers
WO2008066622A2 (en) * 2006-10-20 2008-06-05 Northwestern University Semiconducting siloxane compositions for thin film transistor devices, and making and using the same
US8778508B2 (en) 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
US9130177B2 (en) 2011-01-13 2015-09-08 Universal Display Corporation 5-substituted 2 phenylquinoline complexes materials for light emitting diode
US20130032785A1 (en) 2011-08-01 2013-02-07 Universal Display Corporation Materials for organic light emitting diode
TWI510598B (en) 2007-03-08 2015-12-01 Universal Display Corp Phosphorescent materials
WO2008121793A1 (en) * 2007-03-30 2008-10-09 The Penn State Research Foundation Mist fabrication of quantum dot devices
JP5248910B2 (en) * 2007-05-30 2013-07-31 住友化学株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE USING THE ELEMENT
KR102073400B1 (en) 2007-08-08 2020-02-05 유니버셜 디스플레이 코포레이션 Single triphenylene chromophores in phosphorescent light emitting diodes
TWI511964B (en) 2007-08-08 2015-12-11 Universal Display Corp Benzo-fused thiophene/triphenylen hybrid materials
JP2010537427A (en) * 2007-08-23 2010-12-02 エスアールアイ インターナショナル Electroluminescent device using organic cathode
JP5591800B2 (en) 2008-06-30 2014-09-17 ユニバーサル・ディスプレイ・コーポレーション Hole transport material containing triphenylene
WO2010027583A1 (en) 2008-09-03 2010-03-11 Universal Display Corporation Phosphorescent materials
TWI482756B (en) 2008-09-16 2015-05-01 Universal Display Corp Phosphorescent materials
CN102272261B (en) * 2008-11-11 2014-02-26 通用显示公司 Phosphorescent emitters
US8815415B2 (en) 2008-12-12 2014-08-26 Universal Display Corporation Blue emitter with high efficiency based on imidazo[1,2-f] phenanthridine iridium complexes
US9067947B2 (en) * 2009-01-16 2015-06-30 Universal Display Corporation Organic electroluminescent materials and devices
US8722205B2 (en) 2009-03-23 2014-05-13 Universal Display Corporation Heteroleptic iridium complex
US8709615B2 (en) 2011-07-28 2014-04-29 Universal Display Corporation Heteroleptic iridium complexes as dopants
US11910700B2 (en) 2009-03-23 2024-02-20 Universal Display Corporation Heteroleptic iridium complexes as dopants
JP5650889B2 (en) * 2009-03-26 2015-01-07 ユー・ディー・シー アイルランド リミテッド Inorganic materials, devices and organic electroluminescent elements
DE102009022902B4 (en) 2009-03-30 2023-10-26 Pictiva Displays International Limited Organic optoelectronic component and method for producing an organic optoelectronic component
TWI638807B (en) 2009-04-28 2018-10-21 環球展覽公司 Iridium complex with methyl-d3 substitution
US8586203B2 (en) 2009-05-20 2013-11-19 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands
US8648333B2 (en) 2009-10-19 2014-02-11 E I Du Pont De Nemours And Company Triarylamine compounds for use in organic light-emitting diodes
KR20120086319A (en) 2009-10-19 2012-08-02 이 아이 듀폰 디 네모아 앤드 캄파니 Triarylamine compounds for electronic applications
US8545996B2 (en) 2009-11-02 2013-10-01 The University Of Southern California Ion-pairing soft salts based on organometallic complexes and their applications in organic light emitting diodes
US8580394B2 (en) 2009-11-19 2013-11-12 Universal Display Corporation 3-coordinate copper(I)-carbene complexes
US8288187B2 (en) 2010-01-20 2012-10-16 Universal Display Corporation Electroluminescent devices for lighting applications
US9156870B2 (en) * 2010-02-25 2015-10-13 Universal Display Corporation Phosphorescent emitters
US9175211B2 (en) * 2010-03-03 2015-11-03 Universal Display Corporation Phosphorescent materials
JP5907944B2 (en) 2010-03-25 2016-04-26 ユニバーサル ディスプレイ コーポレイション Solution processable doped triarylamine hole injection material
US8968887B2 (en) 2010-04-28 2015-03-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
US8673458B2 (en) 2010-06-11 2014-03-18 Universal Display Corporation Delayed fluorescence OLED
US8742657B2 (en) 2010-06-11 2014-06-03 Universal Display Corporation Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications
DE102010023620B4 (en) * 2010-06-14 2016-09-15 Novaled Ag Organic, bottom-emitting device
WO2012016074A1 (en) 2010-07-29 2012-02-02 University Of Southern California Co-deposition methods for the fabrication of organic optoelectronic devices
US9954180B2 (en) 2010-08-20 2018-04-24 Universal Display Corporation Bicarbazole compounds for OLEDs
US20120049168A1 (en) 2010-08-31 2012-03-01 Universal Display Corporation Cross-Linked Charge Transport Layer Containing an Additive Compound
KR101114352B1 (en) * 2010-10-07 2012-02-13 주식회사 엘지화학 Substrate for organic electronic devices and method for manufacturing thereof
US8932734B2 (en) 2010-10-08 2015-01-13 Universal Display Corporation Organic electroluminescent materials and devices
US8269317B2 (en) 2010-11-11 2012-09-18 Universal Display Corporation Phosphorescent materials
JP5762932B2 (en) * 2010-11-30 2015-08-12 信越化学工業株式会社 Triarylamine derivatives having silanol groups
US20120138906A1 (en) 2010-12-07 2012-06-07 The University of Southern California USC Stevens Institute for Innovation Capture agents for unsaturated metal complexes
US10008677B2 (en) 2011-01-13 2018-06-26 Universal Display Corporation Materials for organic light emitting diode
US8415031B2 (en) 2011-01-24 2013-04-09 Universal Display Corporation Electron transporting compounds
US9005772B2 (en) 2011-02-23 2015-04-14 Universal Display Corporation Thioazole and oxazole carbene metal complexes as phosphorescent OLED materials
US8563737B2 (en) 2011-02-23 2013-10-22 Universal Display Corporation Methods of making bis-tridentate carbene complexes of ruthenium and osmium
US8748011B2 (en) 2011-02-23 2014-06-10 Universal Display Corporation Ruthenium carbene complexes for OLED material
CN115448957A (en) 2011-02-23 2022-12-09 通用显示公司 Novel tetradentate platinum complexes
US8492006B2 (en) 2011-02-24 2013-07-23 Universal Display Corporation Germanium-containing red emitter materials for organic light emitting diode
US8883322B2 (en) 2011-03-08 2014-11-11 Universal Display Corporation Pyridyl carbene phosphorescent emitters
US8580399B2 (en) 2011-04-08 2013-11-12 Universal Display Corporation Substituted oligoazacarbazoles for light emitting diodes
US8564192B2 (en) 2011-05-11 2013-10-22 Universal Display Corporation Process for fabricating OLED lighting panels
US8927308B2 (en) 2011-05-12 2015-01-06 Universal Display Corporation Method of forming bus line designs for large-area OLED lighting
US8432095B2 (en) 2011-05-11 2013-04-30 Universal Display Corporation Process for fabricating metal bus lines for OLED lighting panels
US8795850B2 (en) 2011-05-19 2014-08-05 Universal Display Corporation Phosphorescent heteroleptic phenylbenzimidazole dopants and new synthetic methodology
US9212197B2 (en) 2011-05-19 2015-12-15 Universal Display Corporation Phosphorescent heteroleptic phenylbenzimidazole dopants
US8748012B2 (en) 2011-05-25 2014-06-10 Universal Display Corporation Host materials for OLED
US10158089B2 (en) 2011-05-27 2018-12-18 Universal Display Corporation Organic electroluminescent materials and devices
US10079349B2 (en) 2011-05-27 2018-09-18 Universal Display Corporation Organic electroluminescent materials and devices
KR102166396B1 (en) 2011-06-08 2020-10-16 유니버셜 디스플레이 코포레이션 Heteroleptic iridium carbene complexes and light emitting device using them
US8659036B2 (en) 2011-06-17 2014-02-25 Universal Display Corporation Fine tuning of emission spectra by combination of multiple emitter spectra
US8884316B2 (en) 2011-06-17 2014-11-11 Universal Display Corporation Non-common capping layer on an organic device
KR101965014B1 (en) 2011-07-14 2019-04-02 유니버셜 디스플레이 코포레이션 Inorganic hosts in oleds
US9783564B2 (en) 2011-07-25 2017-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US8409729B2 (en) 2011-07-28 2013-04-02 Universal Display Corporation Host materials for phosphorescent OLEDs
US8926119B2 (en) 2011-08-04 2015-01-06 Universal Display Corporation Extendable light source with variable light emitting area
US8552420B2 (en) 2011-08-09 2013-10-08 Universal Display Corporation OLED light panel with controlled brightness variation
US9493698B2 (en) 2011-08-31 2016-11-15 Universal Display Corporation Organic electroluminescent materials and devices
US8652656B2 (en) 2011-11-14 2014-02-18 Universal Display Corporation Triphenylene silane hosts
US9193745B2 (en) 2011-11-15 2015-11-24 Universal Display Corporation Heteroleptic iridium complex
US9217004B2 (en) 2011-11-21 2015-12-22 Universal Display Corporation Organic light emitting materials
US9512355B2 (en) 2011-12-09 2016-12-06 Universal Display Corporation Organic light emitting materials
US8987451B2 (en) 2012-01-03 2015-03-24 Universal Display Corporation Synthesis of cyclometallated platinum(II) complexes
US9461254B2 (en) 2012-01-03 2016-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US9163174B2 (en) 2012-01-04 2015-10-20 Universal Display Corporation Highly efficient phosphorescent materials
US8969592B2 (en) 2012-01-10 2015-03-03 Universal Display Corporation Heterocyclic host materials
US10211413B2 (en) 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
US9386657B2 (en) 2012-03-15 2016-07-05 Universal Display Corporation Organic Electroluminescent materials and devices
US9054323B2 (en) 2012-03-15 2015-06-09 Universal Display Corporation Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds
US8723209B2 (en) 2012-04-27 2014-05-13 Universal Display Corporation Out coupling layer containing particle polymer composite
US9773985B2 (en) 2012-05-21 2017-09-26 Universal Display Corporation Organic electroluminescent materials and devices
US9670404B2 (en) 2012-06-06 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9540329B2 (en) 2012-07-19 2017-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US9663544B2 (en) 2012-07-25 2017-05-30 Universal Display Corporation Organic electroluminescent materials and devices
US8952362B2 (en) 2012-08-31 2015-02-10 The Regents Of The University Of Michigan High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion
US10957870B2 (en) 2012-09-07 2021-03-23 Universal Display Corporation Organic light emitting device
US9312505B2 (en) 2012-09-25 2016-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
US9634264B2 (en) 2012-11-09 2017-04-25 Universal Display Corporation Organic electroluminescent materials and devices
US9748500B2 (en) 2015-01-15 2017-08-29 Universal Display Corporation Organic light emitting materials
US10069090B2 (en) 2012-11-20 2018-09-04 Universal Display Corporation Organic electroluminescent materials and devices
US9196860B2 (en) 2012-12-04 2015-11-24 Universal Display Corporation Compounds for triplet-triplet annihilation upconversion
US8716484B1 (en) 2012-12-05 2014-05-06 Universal Display Corporation Hole transporting materials with twisted aryl groups
JP2014131987A (en) 2012-12-05 2014-07-17 Samsung R&D Institute Japan Co Ltd Amine derivative, organic luminescence material and organic electroluminescent device using the same
US9209411B2 (en) 2012-12-07 2015-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US9653691B2 (en) 2012-12-12 2017-05-16 Universal Display Corporation Phosphorescence-sensitizing fluorescence material system
US10400163B2 (en) 2013-02-08 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US10367154B2 (en) 2013-02-21 2019-07-30 Universal Display Corporation Organic electroluminescent materials and devices
US10135002B2 (en) 2013-03-29 2018-11-20 Konica Minolta, Inc. Organic electroluminescent element, and lighting device and display device which are provided with same
WO2014157494A1 (en) 2013-03-29 2014-10-02 コニカミノルタ株式会社 Material for organic electroluminescent elements, organic electroluminescent element, display device and lighting device
WO2014157610A1 (en) 2013-03-29 2014-10-02 コニカミノルタ株式会社 Organic electroluminescent element, lighting device, display device, light-emitting thin film and composition for organic electroluminescent element, and light-emitting method
US9673401B2 (en) 2013-06-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US10199581B2 (en) 2013-07-01 2019-02-05 Universal Display Corporation Organic electroluminescent materials and devices
US10121975B2 (en) 2013-07-03 2018-11-06 Universal Display Corporation Organic electroluminescent materials and devices
US9761807B2 (en) 2013-07-15 2017-09-12 Universal Display Corporation Organic light emitting diode materials
US9324949B2 (en) 2013-07-16 2016-04-26 Universal Display Corporation Organic electroluminescent materials and devices
US20150028290A1 (en) 2013-07-25 2015-01-29 Universal Display Corporation Heteroleptic osmium complex and method of making the same
US10074806B2 (en) 2013-08-20 2018-09-11 Universal Display Corporation Organic electroluminescent materials and devices
US9735378B2 (en) 2013-09-09 2017-08-15 Universal Display Corporation Organic electroluminescent materials and devices
US9853229B2 (en) 2013-10-23 2017-12-26 University Of Southern California Organic electroluminescent materials and devices
US20150115250A1 (en) 2013-10-29 2015-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US9647218B2 (en) 2013-11-14 2017-05-09 Universal Display Corporation Organic electroluminescent materials and devices
US9905784B2 (en) 2013-11-15 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US10355227B2 (en) 2013-12-16 2019-07-16 Universal Display Corporation Metal complex for phosphorescent OLED
TW201525101A (en) * 2013-12-23 2015-07-01 Wintek Corp Organic light emitting material, organic light emitting device and fabricating method thereof
US10135008B2 (en) 2014-01-07 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US9978961B2 (en) 2014-01-08 2018-05-22 Universal Display Corporation Organic electroluminescent materials and devices
US9755159B2 (en) 2014-01-23 2017-09-05 Universal Display Corporation Organic materials for OLEDs
US9590194B2 (en) 2014-02-14 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US10003033B2 (en) 2014-02-18 2018-06-19 Universal Display Corporation Organic electroluminescent materials and devices
US10707423B2 (en) 2014-02-21 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US9647217B2 (en) 2014-02-24 2017-05-09 Universal Display Corporation Organic electroluminescent materials and devices
US10403825B2 (en) 2014-02-27 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US9673407B2 (en) 2014-02-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9590195B2 (en) 2014-02-28 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US10008679B2 (en) 2014-04-14 2018-06-26 Universal Display Corporation Organic electroluminescent materials and devices
US9905785B2 (en) 2014-04-14 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US10256427B2 (en) 2014-04-15 2019-04-09 Universal Display Corporation Efficient organic electroluminescent devices
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US9741941B2 (en) 2014-04-29 2017-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US10457699B2 (en) 2014-05-02 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
WO2015171627A1 (en) 2014-05-08 2015-11-12 Universal Display Corporation Stabilized imidazophenanthridine materials
US10301338B2 (en) 2014-05-08 2019-05-28 Universal Display Corporation Organic electroluminescent materials and devices
US10636983B2 (en) 2014-05-08 2020-04-28 Universal Display Corporation Organic electroluminescent materials and devices
US10403830B2 (en) 2014-05-08 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US9997716B2 (en) 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
US10297762B2 (en) 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US11108000B2 (en) 2014-08-07 2021-08-31 Unniversal Display Corporation Organic electroluminescent materials and devices
US10135007B2 (en) 2014-09-29 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10043987B2 (en) 2014-09-29 2018-08-07 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US9397302B2 (en) 2014-10-08 2016-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US10854826B2 (en) 2014-10-08 2020-12-01 Universal Display Corporation Organic electroluminescent compounds, compositions and devices
US10950803B2 (en) 2014-10-13 2021-03-16 Universal Display Corporation Compounds and uses in devices
US9484541B2 (en) 2014-10-20 2016-11-01 Universal Display Corporation Organic electroluminescent materials and devices
US10868261B2 (en) 2014-11-10 2020-12-15 Universal Display Corporation Organic electroluminescent materials and devices
US10411201B2 (en) 2014-11-12 2019-09-10 Universal Display Corporation Organic electroluminescent materials and devices
JP2016100364A (en) 2014-11-18 2016-05-30 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Material for organic electroluminescent element and organic electroluminescent element using the same
US9444075B2 (en) 2014-11-26 2016-09-13 Universal Display Corporation Emissive display with photo-switchable polarization
US9450195B2 (en) 2014-12-17 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US10418569B2 (en) 2015-01-25 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US9711730B2 (en) 2015-01-25 2017-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US10418562B2 (en) 2015-02-06 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US10355222B2 (en) 2015-02-06 2019-07-16 Universal Display Corporation Organic electroluminescent materials and devices
US10177316B2 (en) 2015-02-09 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
JP5831654B1 (en) 2015-02-13 2015-12-09 コニカミノルタ株式会社 Aromatic heterocycle derivative, organic electroluminescence device using the same, illumination device and display device
US10144867B2 (en) 2015-02-13 2018-12-04 Universal Display Corporation Organic electroluminescent materials and devices
US10680183B2 (en) 2015-02-15 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US10600966B2 (en) 2015-02-27 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US10686143B2 (en) 2015-03-05 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
US10270046B2 (en) 2015-03-06 2019-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US9911928B2 (en) 2015-03-19 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US10529931B2 (en) 2015-03-24 2020-01-07 Universal Display Corporation Organic Electroluminescent materials and devices
US10297770B2 (en) 2015-03-27 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US20160293855A1 (en) 2015-04-06 2016-10-06 Universal Display Corporation Organic Electroluminescent Materials and Devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US10403826B2 (en) 2015-05-07 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US10777749B2 (en) 2015-05-07 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US9478758B1 (en) 2015-05-08 2016-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10109799B2 (en) 2015-05-21 2018-10-23 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10033004B2 (en) 2015-06-01 2018-07-24 Universal Display Corporation Organic electroluminescent materials and devices
US10818853B2 (en) 2015-06-04 2020-10-27 University Of Southern California Organic electroluminescent materials and devices
US11925102B2 (en) 2015-06-04 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US10825997B2 (en) 2015-06-25 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10873036B2 (en) 2015-07-07 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US9978956B2 (en) 2015-07-15 2018-05-22 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US11018309B2 (en) 2015-08-03 2021-05-25 Universal Display Corporation Organic electroluminescent materials and devices
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US10522769B2 (en) 2015-08-18 2019-12-31 Universal Display Corporation Organic electroluminescent materials and devices
US10181564B2 (en) 2015-08-26 2019-01-15 Universal Display Corporation Organic electroluminescent materials and devices
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US11706972B2 (en) 2015-09-08 2023-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US11302872B2 (en) 2015-09-09 2022-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US10770664B2 (en) 2015-09-21 2020-09-08 Universal Display Corporation Organic electroluminescent materials and devices
US20170092880A1 (en) 2015-09-25 2017-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10593892B2 (en) 2015-10-01 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10847728B2 (en) 2015-10-01 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10991895B2 (en) 2015-10-06 2021-04-27 Universal Display Corporation Organic electroluminescent materials and devices
US10388892B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10177318B2 (en) 2015-10-29 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
US10388893B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10998507B2 (en) 2015-11-23 2021-05-04 Universal Display Corporation Organic electroluminescent materials and devices
US10476010B2 (en) 2015-11-30 2019-11-12 Universal Display Corporation Organic electroluminescent materials and devices
US10957861B2 (en) 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US11024808B2 (en) 2015-12-29 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US10135006B2 (en) 2016-01-04 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
JP6788314B2 (en) 2016-01-06 2020-11-25 コニカミノルタ株式会社 Organic electroluminescence element, manufacturing method of organic electroluminescence element, display device and lighting device
US10707427B2 (en) 2016-02-09 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US10457864B2 (en) 2016-02-09 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10600967B2 (en) 2016-02-18 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US11094891B2 (en) 2016-03-16 2021-08-17 Universal Display Corporation Organic electroluminescent materials and devices
US10276809B2 (en) 2016-04-05 2019-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10566552B2 (en) 2016-04-13 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US11081647B2 (en) 2016-04-22 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11228002B2 (en) 2016-04-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11228003B2 (en) 2016-04-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US20170324049A1 (en) 2016-05-05 2017-11-09 Universal Display Corporation Organic Electroluminescent Materials and Devices
US10985328B2 (en) 2016-05-25 2021-04-20 Universal Display Corporation Organic electroluminescent materials and devices
US10468609B2 (en) 2016-06-02 2019-11-05 Universal Display Corporation Organic electroluminescent materials and devices
US10651403B2 (en) 2016-06-20 2020-05-12 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10727423B2 (en) 2016-06-20 2020-07-28 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10686140B2 (en) 2016-06-20 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10957866B2 (en) 2016-06-30 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US9929360B2 (en) 2016-07-08 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US10680184B2 (en) 2016-07-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10153443B2 (en) 2016-07-19 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10720587B2 (en) 2016-07-19 2020-07-21 Universal Display Corporation Organic electroluminescent materials and devices
US10205105B2 (en) 2016-08-15 2019-02-12 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10505127B2 (en) 2016-09-19 2019-12-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11189804B2 (en) 2016-10-03 2021-11-30 Universal Display Corporation Organic electroluminescent materials and devices
US11183642B2 (en) 2016-10-03 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11081658B2 (en) 2016-10-03 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11127906B2 (en) 2016-10-03 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US11239432B2 (en) 2016-10-14 2022-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US10608185B2 (en) 2016-10-17 2020-03-31 Univeral Display Corporation Organic electroluminescent materials and devices
US10236458B2 (en) 2016-10-24 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10340464B2 (en) 2016-11-10 2019-07-02 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10897016B2 (en) 2016-11-14 2021-01-19 Universal Display Corporation Organic electroluminescent materials and devices
US10964893B2 (en) 2016-11-17 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10662196B2 (en) 2016-11-17 2020-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US10153445B2 (en) 2016-11-21 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10833276B2 (en) 2016-11-21 2020-11-10 Universal Display Corporation Organic electroluminescent materials and devices
CN106712760B (en) * 2016-11-30 2019-11-05 维沃移动通信有限公司 A kind of membrane keyboard mould group and mobile terminal
CN106535538B (en) * 2016-11-30 2019-06-07 维沃移动通信有限公司 A kind of rear cover and mobile terminal
US11555048B2 (en) 2016-12-01 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US10490753B2 (en) 2016-12-15 2019-11-26 Universal Display Corporation Organic electroluminescent materials and devices
US11545636B2 (en) 2016-12-15 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US11548905B2 (en) 2016-12-15 2023-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US10811618B2 (en) 2016-12-19 2020-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11152579B2 (en) 2016-12-28 2021-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US11201298B2 (en) 2017-01-09 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10804475B2 (en) 2017-01-11 2020-10-13 Universal Display Corporation Organic electroluminescent materials and devices
US11545637B2 (en) 2017-01-13 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US10629820B2 (en) 2017-01-18 2020-04-21 Universal Display Corporation Organic electroluminescent materials and devices
US10964904B2 (en) 2017-01-20 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US11053268B2 (en) 2017-01-20 2021-07-06 Universal Display Corporation Organic electroluminescent materials and devices
US11765968B2 (en) 2017-01-23 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
US11050028B2 (en) 2017-01-24 2021-06-29 Universal Display Corporation Organic electroluminescent materials and devices
US12089486B2 (en) 2017-02-08 2024-09-10 Universal Display Corporation Organic electroluminescent materials and devices
US10978647B2 (en) 2017-02-15 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US10822361B2 (en) 2017-02-22 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10745431B2 (en) 2017-03-08 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10741780B2 (en) 2017-03-10 2020-08-11 Universal Display Corporation Organic electroluminescent materials and devices
US10672998B2 (en) 2017-03-23 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10873037B2 (en) 2017-03-28 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10910577B2 (en) 2017-03-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US11056658B2 (en) 2017-03-29 2021-07-06 Universal Display Corporation Organic electroluminescent materials and devices
US11158820B2 (en) 2017-03-29 2021-10-26 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10862046B2 (en) 2017-03-30 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11276829B2 (en) 2017-03-31 2022-03-15 Universal Display Corporation Organic electroluminescent materials and devices
US11139443B2 (en) 2017-03-31 2021-10-05 Universal Display Corporation Organic electroluminescent materials and devices
US11038117B2 (en) 2017-04-11 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US10777754B2 (en) 2017-04-11 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US11101434B2 (en) 2017-04-21 2021-08-24 Universal Display Corporation Organic electroluminescent materials and devices
US11084838B2 (en) 2017-04-21 2021-08-10 Universal Display Corporation Organic electroluminescent materials and device
US10975113B2 (en) 2017-04-21 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US10910570B2 (en) 2017-04-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US11038137B2 (en) 2017-04-28 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US11117897B2 (en) 2017-05-01 2021-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US10941170B2 (en) 2017-05-03 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US11201299B2 (en) 2017-05-04 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US10870668B2 (en) 2017-05-05 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10862055B2 (en) 2017-05-05 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10930864B2 (en) 2017-05-10 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US10822362B2 (en) 2017-05-11 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10934293B2 (en) 2017-05-18 2021-03-02 Universal Display Corporation Organic electroluminescent materials and devices
US10944062B2 (en) 2017-05-18 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10840459B2 (en) 2017-05-18 2020-11-17 Universal Display Corporation Organic electroluminescent materials and devices
US11038115B2 (en) 2017-05-18 2021-06-15 Universal Display Corporation Organic electroluminescent materials and device
US10790455B2 (en) 2017-05-18 2020-09-29 Universal Display Corporation Organic electroluminescent materials and devices
US10930862B2 (en) 2017-06-01 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US12098157B2 (en) 2017-06-23 2024-09-24 Universal Display Corporation Organic electroluminescent materials and devices
US11758804B2 (en) 2017-06-23 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US11174259B2 (en) 2017-06-23 2021-11-16 Universal Display Corporation Organic electroluminescent materials and devices
US11552261B2 (en) 2017-06-23 2023-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US11725022B2 (en) 2017-06-23 2023-08-15 Universal Display Corporation Organic electroluminescent materials and devices
US11814403B2 (en) 2017-06-23 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11832510B2 (en) 2017-06-23 2023-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US10968226B2 (en) 2017-06-23 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11495757B2 (en) 2017-06-23 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11608321B2 (en) 2017-06-23 2023-03-21 Universal Display Corporation Organic electroluminescent materials and devices
US11802136B2 (en) 2017-06-23 2023-10-31 Universal Display Corporation Organic electroluminescent materials and devices
US11678565B2 (en) 2017-06-23 2023-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US11469382B2 (en) 2017-07-12 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11917843B2 (en) 2017-07-26 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11765970B2 (en) 2017-07-26 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
US11322691B2 (en) 2017-07-26 2022-05-03 Universal Display Corporation Organic electroluminescent materials and devices
US11968883B2 (en) 2017-07-26 2024-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US11239433B2 (en) 2017-07-26 2022-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744141B2 (en) 2017-08-09 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US11910699B2 (en) 2017-08-10 2024-02-20 Universal Display Corporation Organic electroluminescent materials and devices
US11508913B2 (en) 2017-08-10 2022-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US11349083B2 (en) 2017-08-10 2022-05-31 Universal Display Corporation Organic electroluminescent materials and devices
US11462697B2 (en) 2017-08-22 2022-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US11723269B2 (en) 2017-08-22 2023-08-08 Universal Display Corporation Organic electroluminescent materials and devices
US11437591B2 (en) 2017-08-24 2022-09-06 Universal Display Corporation Organic electroluminescent materials and devices
US11605791B2 (en) 2017-09-01 2023-03-14 Universal Display Corporation Organic electroluminescent materials and devices
US11424420B2 (en) 2017-09-07 2022-08-23 Universal Display Corporation Organic electroluminescent materials and devices
US11696492B2 (en) 2017-09-07 2023-07-04 Universal Display Corporation Organic electroluminescent materials and devices
US11444249B2 (en) 2017-09-07 2022-09-13 Universal Display Corporation Organic electroluminescent materials and devices
US10608188B2 (en) 2017-09-11 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US11778897B2 (en) 2017-09-20 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11214587B2 (en) 2017-11-07 2022-01-04 Universal Display Corporation Organic electroluminescent materials and devices
US11910702B2 (en) 2017-11-07 2024-02-20 Universal Display Corporation Organic electroluminescent devices
US11183646B2 (en) 2017-11-07 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11168103B2 (en) 2017-11-17 2021-11-09 Universal Display Corporation Organic electroluminescent materials and devices
US11825735B2 (en) 2017-11-28 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10971687B2 (en) 2017-12-14 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11233204B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11233205B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US12075690B2 (en) 2017-12-14 2024-08-27 Universal Display Corporation Organic electroluminescent materials and devices
US11081659B2 (en) 2018-01-10 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11700765B2 (en) 2018-01-10 2023-07-11 Universal Display Corporation Organic electroluminescent materials and devices
US11271177B2 (en) 2018-01-11 2022-03-08 Universal Display Corporation Organic electroluminescent materials and devices
US11515493B2 (en) 2018-01-11 2022-11-29 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US11367840B2 (en) 2018-01-26 2022-06-21 Universal Display Corporation Organic electroluminescent materials and devices
US11845764B2 (en) 2018-01-26 2023-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US12029055B2 (en) 2018-01-30 2024-07-02 The University Of Southern California OLED with hybrid emissive layer
US11239434B2 (en) 2018-02-09 2022-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US11342509B2 (en) 2018-02-09 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11180519B2 (en) 2018-02-09 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11957050B2 (en) 2018-02-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US11557733B2 (en) 2018-03-12 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11165028B2 (en) 2018-03-12 2021-11-02 Universal Display Corporation Organic electroluminescent materials and devices
US11279722B2 (en) 2018-03-12 2022-03-22 Universal Display Corporation Organic electroluminescent materials and devices
US11217757B2 (en) 2018-03-12 2022-01-04 Universal Display Corporation Host materials for electroluminescent devices
US11142538B2 (en) 2018-03-12 2021-10-12 Universal Display Corporation Organic electroluminescent materials and devices
US11390639B2 (en) 2018-04-13 2022-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US11882759B2 (en) 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US11616203B2 (en) 2018-04-17 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US11753427B2 (en) 2018-05-04 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US11515494B2 (en) 2018-05-04 2022-11-29 Universal Display Corporation Organic electroluminescent materials and devices
US11342513B2 (en) 2018-05-04 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11793073B2 (en) 2018-05-06 2023-10-17 Universal Display Corporation Host materials for electroluminescent devices
US11450822B2 (en) 2018-05-25 2022-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US11459349B2 (en) 2018-05-25 2022-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US11716900B2 (en) 2018-05-30 2023-08-01 Universal Display Corporation Host materials for electroluminescent devices
US11296283B2 (en) 2018-06-04 2022-04-05 Universal Display Corporation Organic electroluminescent materials and devices
US11925103B2 (en) 2018-06-05 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11339182B2 (en) 2018-06-07 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11228004B2 (en) 2018-06-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11261207B2 (en) 2018-06-25 2022-03-01 Universal Display Corporation Organic electroluminescent materials and devices
US11753425B2 (en) 2018-07-11 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11233203B2 (en) 2018-09-06 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11485706B2 (en) 2018-09-11 2022-11-01 Universal Display Corporation Organic electroluminescent materials and devices
US11718634B2 (en) 2018-09-14 2023-08-08 Universal Display Corporation Organic electroluminescent materials and devices
US11903305B2 (en) 2018-09-24 2024-02-13 Universal Display Corporation Organic electroluminescent materials and devices
US11469383B2 (en) 2018-10-08 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11495752B2 (en) 2018-10-08 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11476430B2 (en) 2018-10-15 2022-10-18 Universal Display Corporation Organic electroluminescent materials and devices
US11515482B2 (en) 2018-10-23 2022-11-29 Universal Display Corporation Deep HOMO (highest occupied molecular orbital) emitter device structures
US11469384B2 (en) 2018-11-02 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11825736B2 (en) 2018-11-19 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices
US11963441B2 (en) 2018-11-26 2024-04-16 Universal Display Corporation Organic electroluminescent materials and devices
US11716899B2 (en) 2018-11-28 2023-08-01 Universal Display Corporation Organic electroluminescent materials and devices
US11672165B2 (en) 2018-11-28 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US11672176B2 (en) 2018-11-28 2023-06-06 Universal Display Corporation Host materials for electroluminescent devices
US11706980B2 (en) 2018-11-28 2023-07-18 Universal Display Corporation Host materials for electroluminescent devices
US11889708B2 (en) 2019-11-14 2024-01-30 Universal Display Corporation Organic electroluminescent materials and devices
US11690285B2 (en) 2018-11-28 2023-06-27 Universal Display Corporation Electroluminescent devices
US11623936B2 (en) 2018-12-11 2023-04-11 Universal Display Corporation Organic electroluminescent materials and devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US11812624B2 (en) 2019-01-30 2023-11-07 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
US11325932B2 (en) 2019-02-08 2022-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US11370809B2 (en) 2019-02-08 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11773320B2 (en) 2019-02-21 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11871653B2 (en) 2019-02-22 2024-01-09 Universal Display Corporation Organic electroluminescent materials and devices
US11557738B2 (en) 2019-02-22 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11512093B2 (en) 2019-03-04 2022-11-29 Universal Display Corporation Compound used for organic light emitting device (OLED), consumer product and formulation
US11739081B2 (en) 2019-03-11 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US11637261B2 (en) 2019-03-12 2023-04-25 Universal Display Corporation Nanopatch antenna outcoupling structure for use in OLEDs
US11569480B2 (en) 2019-03-12 2023-01-31 Universal Display Corporation Plasmonic OLEDs and vertical dipole emitters
JP2020158491A (en) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
US11963438B2 (en) 2019-03-26 2024-04-16 The University Of Southern California Organic electroluminescent materials and devices
US11639363B2 (en) 2019-04-22 2023-05-02 Universal Display Corporation Organic electroluminescent materials and devices
US12075691B2 (en) 2019-04-30 2024-08-27 Universal Display Corporation Organic electroluminescent materials and devices
US11613550B2 (en) 2019-04-30 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes
US11560398B2 (en) 2019-05-07 2023-01-24 Universal Display Corporation Organic electroluminescent materials and devices
US11495756B2 (en) 2019-05-07 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US12103942B2 (en) 2019-05-13 2024-10-01 Universal Display Corporation Organic electroluminescent materials and devices
US11827651B2 (en) 2019-05-13 2023-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US11634445B2 (en) 2019-05-21 2023-04-25 Universal Display Corporation Organic electroluminescent materials and devices
US12010859B2 (en) 2019-05-24 2024-06-11 Universal Display Corporation Organic electroluminescent materials and devices
US11647667B2 (en) 2019-06-14 2023-05-09 Universal Display Corporation Organic electroluminescent compounds and organic light emitting devices using the same
US12077550B2 (en) 2019-07-02 2024-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US11920070B2 (en) 2019-07-12 2024-03-05 The University Of Southern California Luminescent janus-type, two-coordinated metal complexes
US11926638B2 (en) 2019-07-22 2024-03-12 Universal Display Corporation Organic electroluminescent materials and devices
US11685754B2 (en) 2019-07-22 2023-06-27 Universal Display Corporation Heteroleptic organic electroluminescent materials
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US11708355B2 (en) 2019-08-01 2023-07-25 Universal Display Corporation Organic electroluminescent materials and devices
US11985888B2 (en) 2019-08-12 2024-05-14 The Regents Of The University Of Michigan Organic electroluminescent device
US11374181B2 (en) 2019-08-14 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11930699B2 (en) 2019-08-15 2024-03-12 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US11925105B2 (en) 2019-08-26 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11937494B2 (en) 2019-08-28 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11600787B2 (en) 2019-08-30 2023-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US11820783B2 (en) 2019-09-06 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices
US20210098717A1 (en) 2019-09-26 2021-04-01 Universal Display Corporation Organic electroluminescent materials and devices
US11864458B2 (en) 2019-10-08 2024-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US11950493B2 (en) 2019-10-15 2024-04-02 Universal Display Corporation Organic electroluminescent materials and devices
US11697653B2 (en) 2019-10-21 2023-07-11 Universal Display Corporation Organic electroluminescent materials and devices
US11919914B2 (en) 2019-10-25 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11765965B2 (en) 2019-10-30 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
CN113130813A (en) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US11778895B2 (en) 2020-01-13 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11917900B2 (en) 2020-01-28 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11932660B2 (en) 2020-01-29 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US12084465B2 (en) 2020-02-24 2024-09-10 Universal Display Corporation Organic electroluminescent materials and devices
US12018035B2 (en) 2020-03-23 2024-06-25 Universal Display Corporation Organic electroluminescent materials and devices
US11970508B2 (en) 2020-04-22 2024-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US12035613B2 (en) 2020-05-26 2024-07-09 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US12065451B2 (en) 2020-08-19 2024-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
US20240343970A1 (en) 2021-12-16 2024-10-17 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A3 (en) 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
KR102537611B1 (en) * 2022-07-11 2023-05-26 한양대학교 산학협력단 Charge transporting layer composite and patterning method of charge transporting layer comprising the same, charge transporting layer composition comprising the same, organic light emitting device compris0ing the same
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US20240188316A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240188419A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240188319A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240196730A1 (en) 2022-10-27 2024-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US20240180025A1 (en) 2022-10-27 2024-05-30 Universal Display Corporation Organic electroluminescent materials and devices
US20240247017A1 (en) 2022-12-14 2024-07-25 Universal Display Corporation Organic electroluminescent materials and devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834100A (en) * 1996-06-25 1998-11-10 Northwestern University Organic light-emitting dioddes and methods for assembly and emission control
US6939625B2 (en) * 1996-06-25 2005-09-06 Nôrthwestern University Organic light-emitting diodes and methods for assembly and enhanced charge injection

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172862A (en) * 1960-09-29 1965-03-09 Dow Chemical Co Organic electroluminescent phosphors
US3172050A (en) * 1961-12-29 1965-03-02 Bell Telephone Labor Inc Balanced clipping amplifier
NL6712617A (en) * 1967-09-15 1969-03-18
US3658520A (en) * 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3567450A (en) * 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3710167A (en) * 1970-07-02 1973-01-09 Rca Corp Organic electroluminescent cells having a tunnel injection cathode
US3824562A (en) * 1973-03-30 1974-07-16 Us Navy High speed random access memory shift register
US4539507A (en) * 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
ES2021268B3 (en) * 1986-10-21 1991-11-01 Ibm PROCEDURE FOR THE DIGITAL REGULATION OF THE DECLINE OF FLANGES OF THE OUTPUT SIGNALS OF PERFORMANCE AMPLIFIERS OF THE SEMICONDUCTING CHIPS OF COMPUTERS, WITH HIGHLY INTEGRATED CONNECTIONS.
US4720432A (en) * 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5130603A (en) * 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5156918A (en) * 1991-03-28 1992-10-20 Northwestern University Self-assembled super lattices
US5336546A (en) * 1991-07-12 1994-08-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5151629A (en) * 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
JP2974835B2 (en) * 1991-09-12 1999-11-10 パイオニア株式会社 Organic electroluminescence device
US5170073A (en) * 1991-10-24 1992-12-08 Intel Corporation Ultra-low noise port output driver circuit
US5306572A (en) * 1991-12-24 1994-04-26 Mitsui Toatsu Chemicals, Inc. EL element comprising organic thin film
JPH05307997A (en) * 1992-04-30 1993-11-19 Pioneer Electron Corp Organic electroluminescent element
JP3268819B2 (en) * 1992-05-19 2002-03-25 三洋電機株式会社 Organic electroluminescent device
JP3300069B2 (en) * 1992-11-19 2002-07-08 パイオニア株式会社 Organic electroluminescence device
US5414069A (en) * 1993-02-01 1995-05-09 Polaroid Corporation Electroluminescent polymers, processes for their use, and electroluminescent devices containing these polymers
US5424669A (en) * 1993-04-29 1995-06-13 Texas Instruments Incorporated Digitally controlled output slope control/current limit in power integrated circuits
US5409703A (en) * 1993-06-24 1995-04-25 Carrington Laboratories, Inc. Dried hydrogel from hydrophilic-hygroscopic polymer
JP3106786B2 (en) * 1993-08-26 2000-11-06 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
US5409783A (en) * 1994-02-24 1995-04-25 Eastman Kodak Company Red-emitting organic electroluminescent device
US5660920A (en) * 1995-07-14 1997-08-26 The United States Of America As Represented By The Secretary Of The Navy Inter-level dielectrics with low dielectric constants
DE69608446T3 (en) * 1995-07-28 2010-03-11 Sumitomo Chemical Company, Ltd. 2.7 ARYL 9 SUBSTITUTED FLUORESE AND 9 SUBSTITUTED FLUORESOLIGOMERS AND POLYMERS
US6399221B1 (en) * 1996-06-25 2002-06-04 Northwestern University Organic light-emitting diodes and methods for assembly and emission control
US5948552A (en) * 1996-08-27 1999-09-07 Hewlett-Packard Company Heat-resistant organic electroluminescent device
TW546301B (en) * 1997-02-28 2003-08-11 Sumitomo Chemical Co Silicon-containing compound and organic electroluminescence device using the same
US6165383A (en) * 1998-04-10 2000-12-26 Organic Display Technology Useful precursors for organic electroluminescent materials and devices made from such materials
JP4105831B2 (en) * 1998-09-11 2008-06-25 株式会社アドバンテスト Waveform generator, semiconductor test apparatus, and semiconductor device
KR100327135B1 (en) * 1999-08-26 2002-03-13 윤종용 delay circuit and semiconductor memory device using this circuit
US6233200B1 (en) * 1999-12-15 2001-05-15 Intel Corporation Method and apparatus for selectively disabling clock distribution
KR100459727B1 (en) * 2002-10-21 2004-12-03 삼성전자주식회사 Integrated circuit device capable of applying different signal to internal circuit through the same pin and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834100A (en) * 1996-06-25 1998-11-10 Northwestern University Organic light-emitting dioddes and methods for assembly and emission control
US6939625B2 (en) * 1996-06-25 2005-09-06 Nôrthwestern University Organic light-emitting diodes and methods for assembly and enhanced charge injection

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040108509A1 (en) * 2002-09-03 2004-06-10 Caballero Gabriel Joseph Light emitting molecules and organic light emitting devices including light emitting molecules
WO2010102036A1 (en) * 2009-03-04 2010-09-10 Xerox Corporation Structured organic films having an added functionality
US20100227998A1 (en) * 2009-03-04 2010-09-09 Xerox Corporation Structured organic films
US9097995B2 (en) 2009-03-04 2015-08-04 Xerox Corporation Electronic devices comprising structured organic films
CN102414215A (en) * 2009-03-04 2012-04-11 施乐公司 Structured organic films having an added functionality
WO2010102038A1 (en) * 2009-03-04 2010-09-10 Xerox Corporation Electronic devices comprising structured organic films
US8093347B2 (en) * 2009-03-04 2012-01-10 Xerox Corporation Structured organic films
US8436130B2 (en) 2009-03-04 2013-05-07 Xerox Corporation Structured organic films having an added functionality
US20100227157A1 (en) * 2009-03-04 2010-09-09 Xerox Corporation Composite structured organic films
US8394495B2 (en) 2009-03-04 2013-03-12 Xerox Corporation Composite structured organic films
US20100227081A1 (en) * 2009-03-04 2010-09-09 Xerox Corporation Mixed solvent process for preparing structured organic films
US8389060B2 (en) 2009-03-04 2013-03-05 Xerox Corporation Process for preparing structured organic films (SOFs) via a pre-SOF
US8357432B2 (en) 2009-03-04 2013-01-22 Xerox Corporation Mixed solvent process for preparing structured organic films
US8591997B2 (en) 2009-03-04 2013-11-26 Xerox Corporation Process for preparing structured organic films (SOFS) via a pre-SOF
US8334360B2 (en) 2009-03-04 2012-12-18 Xerox Corporation Structured organic films
US9567425B2 (en) 2010-06-15 2017-02-14 Xerox Corporation Periodic structured organic films
US8318892B2 (en) 2010-07-28 2012-11-27 Xerox Corporation Capped structured organic film compositions
US8697322B2 (en) 2010-07-28 2014-04-15 Xerox Corporation Imaging members comprising structured organic films
US8257889B2 (en) 2010-07-28 2012-09-04 Xerox Corporation Imaging members comprising capped structured organic film compositions
US8119315B1 (en) 2010-08-12 2012-02-21 Xerox Corporation Imaging members for ink-based digital printing comprising structured organic films
US8119314B1 (en) 2010-08-12 2012-02-21 Xerox Corporation Imaging devices comprising structured organic films
US8759473B2 (en) 2011-03-08 2014-06-24 Xerox Corporation High mobility periodic structured organic films
US8353574B1 (en) 2011-06-30 2013-01-15 Xerox Corporation Ink jet faceplate coatings comprising structured organic films
US8247142B1 (en) 2011-06-30 2012-08-21 Xerox Corporation Fluorinated structured organic film compositions
US8377999B2 (en) 2011-07-13 2013-02-19 Xerox Corporation Porous structured organic film compositions
US8410016B2 (en) 2011-07-13 2013-04-02 Xerox Corporation Application of porous structured organic films for gas storage
US8313560B1 (en) 2011-07-13 2012-11-20 Xerox Corporation Application of porous structured organic films for gas separation
US8372566B1 (en) 2011-09-27 2013-02-12 Xerox Corporation Fluorinated structured organic film photoreceptor layers
US8460844B2 (en) 2011-09-27 2013-06-11 Xerox Corporation Robust photoreceptor surface layer
US8529997B2 (en) 2012-01-17 2013-09-10 Xerox Corporation Methods for preparing structured organic film micro-features by inkjet printing
US8765340B2 (en) 2012-08-10 2014-07-01 Xerox Corporation Fluorinated structured organic film photoreceptor layers containing fluorinated secondary components
US8906462B2 (en) 2013-03-14 2014-12-09 Xerox Corporation Melt formulation process for preparing structured organic films

Also Published As

Publication number Publication date
US20090284145A1 (en) 2009-11-19
US6939625B2 (en) 2005-09-06
WO2003079732A1 (en) 2003-09-25
US20030162053A1 (en) 2003-08-28
AU2003218175A1 (en) 2003-09-29
US8057918B2 (en) 2011-11-15
US20090224657A1 (en) 2009-09-10
US8053094B2 (en) 2011-11-08

Similar Documents

Publication Publication Date Title
US6939625B2 (en) Organic light-emitting diodes and methods for assembly and enhanced charge injection
US6399221B1 (en) Organic light-emitting diodes and methods for assembly and emission control
US7969088B2 (en) Method of using silicon molecular components for controlling charge migration and light emission of organic light-emitting diodes
US5834100A (en) Organic light-emitting dioddes and methods for assembly and emission control
Cui et al. Interfacial Microstructure Function in Organic Light‐Emitting Diodes: Assembled Tetraaryldiamine and Copper Phthalocyanine Interlayers
Veinot et al. Toward the ideal organic light-emitting diode. The versatility and utility of interfacial tailoring by cross-linked siloxane interlayers
JP6343311B2 (en) Electronic devices containing organic semiconductor materials
WO2006023950A2 (en) Organic light-emitting diodes and related hole transport compounds
Lee et al. Modification of an ITO anode with a hole-transporting SAM for improved OLED device characteristics
Otsubo et al. Functional oligothiophenes as advanced molecular electronic materials
TWI408193B (en) Adhesion promoter, electroactive layer and electroactive device comprising same, and method
US7964878B2 (en) Light emitting polymer devices using self-assembled monolayer structures
US20050285101A1 (en) Formation of ordered thin films of organics on metal oxide surfaces
KR20180128088A (en) Electron-accepting compound, composition for charge transport film, and light-emitting element using same
CN102576815B (en) Organic electronic device and manufacture method thereof
CN104995185A (en) Heterocyclic compound and organic light-emitting element using same
JP2007527605A (en) Organic electronic devices incorporating semiconductor polymer brushes
US20050158579A1 (en) Organic light-emitting diodes and methods for assembly and enhanced charge injection
US20070195576A1 (en) Organic compound having functional groups different in elimination reactivity at both terminals, organic thin film, organic device and method of producing the same
WO2004062322A1 (en) Light-emitting device and method for manufacturing same
KR20170118170A (en) Semiconductor materials and naphthofuran matrix compounds therefor
KR20190133627A (en) Compound, coating composition comprising compound and electroluminescence device comprising the same
JP3873424B2 (en) Silicon-containing compound and organic electroluminescence device using the same
JP2004047176A (en) Organic electroluminescent element
US20080129192A1 (en) Organic light emitting device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION