US20050222309A1 - Phosphorus-containing flame retardant formulation for cellulose-containing moldings - Google Patents

Phosphorus-containing flame retardant formulation for cellulose-containing moldings Download PDF

Info

Publication number
US20050222309A1
US20050222309A1 US11/093,599 US9359905A US2005222309A1 US 20050222309 A1 US20050222309 A1 US 20050222309A1 US 9359905 A US9359905 A US 9359905A US 2005222309 A1 US2005222309 A1 US 2005222309A1
Authority
US
United States
Prior art keywords
flame retardant
weight
phosphorus
containing flame
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/093,599
Other languages
English (en)
Inventor
Harald Bauer
Werner Krause
Martin Sicken
Volker Thewes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant GmbH filed Critical Clariant GmbH
Assigned to CLARIANT GMBH reassignment CLARIANT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SICKEN, MARTIN, BAUER, HARALD, KRAUSE, WERNER, THEWES, VOLKER
Publication of US20050222309A1 publication Critical patent/US20050222309A1/en
Assigned to CLARIANT PRODUKTE (DEUTSCHLAND) GMBH reassignment CLARIANT PRODUKTE (DEUTSCHLAND) GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CLARIANT GMBH
Priority to US12/148,391 priority Critical patent/US7622517B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/285Phosphines; Phosphine oxides; Phosphine sulfides; Phosphinic or phosphinous acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/34Ignifugeants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K2240/00Purpose of the treatment
    • B27K2240/30Fireproofing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/52Impregnating agents containing mixtures of inorganic and organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/10Phosphorus-containing compounds

Definitions

  • the invention relates to a phosphorus-containing flame retardant formulation for cellulose-containing materials, to a process for preparation of this flame retardant formulation, and to its use.
  • U.S. Pat. No. 5,389,309 discloses flame retardant formulations based on diammonium phosphates for textiles, wood, and paper.
  • WO-A-98/24604 discloses flame-retardant impregnation materials for wood, paper, and textiles, based on ammonium phosphates, on phosphoric acid, and on water-soluble salts which with phosphate ions can form salts insoluble in water.
  • the phosphorus-containing flame retardant formulation used according to the invention has lower water solubility than comparable systems based on phosphoric acid and/or on ammonium phosphates.
  • the invention therefore provides a phosphorus-containing flame retardant formulation for cellulose-containing materials, comprising
  • the phosphorus-containing flame retardant preferably comprises a particulate phosphorus-containing flame retardant.
  • the particulate phosphorus-containing flame retardant preferably comprises a phosphinic salt of the formula (I) and/or a diphosphinic salt of the formula (II) and/or polymers of these
  • R 1 and R 2 are preferably C 1 -C 6 -alkyl, linear or branched, and/or phenyl.
  • R 1 and R 2 are preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-pentyl and/or phenyl.
  • R 3 is preferably methylene, ethylene, n-propylene, isopropylene, n-butylene, tert-butylene, n-pentylene, n-octylene or n-dodecylene; phenylene or naphthylene; methylphenylene, ethylphenylene, tert-butylphenylene, methylnaphthylene, ethylnaphthylene, or tert-butylnaphthylene; phenylmethylene, phenylethylene, phenylpropylene, or phenylbutylene.
  • the material preferably comprises a single-component flame retardant formulation which is composed of from 0.1 to 99.9% by weight of resin of an organic nitrogen compound and from 0.1 to 99.9% by weight of particulate phosphorus-containing flame retardant, preferably of from 4.4 to 82.3% by weight of a resin of an organic nitrogen compound and from 95.6 to 17.7% by weight of particulate phosphorus-containing flame retardant, and particularly preferably of from 18.8 to 69.9% by weight of a resin of an organic nitrogen compound and from 81.2 to 30.1% by weight of particulate phosphorus-containing flame retardant.
  • the inventive flame retardant formulation preferably has thermal stability extending to 200-500° C., particularly preferably 250-400° C.
  • the solubility of the particulate flame retardant is preferably from 0.001 to 15% by weight in water and/or in organic solvents, such as alcohols, glycols, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, alicyclic hydrocarbons, ethers, glycol ethers, ketones, esters, and/or carboxylic acids, preferably from 0.1 to 9.9% by weight.
  • organic solvents such as alcohols, glycols, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, alicyclic hydrocarbons, ethers, glycol ethers, ketones, esters, and/or carboxylic acids, preferably from 0.1 to 9.9% by weight.
  • the median particle size d 50 of the particulate flame retardant is from 1 nm to 5 mm, preferably from 100 nm to 100 ⁇ m, and particularly preferably from 1 to 20 ⁇ m.
  • the phosphorus-containing flame retardant comprises a non-particulate phosphorus-containing flame retardant.
  • the non-particulate phosphorus-containing flame retardant preferably comprises a phosphinic acid and/or phosphinic salt of the formula (I) and/or a diphosphinic acid and/or diphosphinic salt of the formula (II) and/or polymers of these, where R 1 , R 2 , and R 3 are as defined and M is Na, K, or H, and m is 1; n is 1; x is 1.
  • the phosphorus-containing flame retardant formulation preferably also comprises an aluminum compound, titanium compound, zinc compound, tin compound, and/or zirconium compound.
  • the phosphorus-containing flame retardant formulation preferably comprises a single-component flame retardant formulation which is composed of from 0.1 to 99.9% by weight of resin of an organic nitrogen compound and from 0.1 to 99.9% by weight of non-particulate phosphorus-containing flame retardant, preferably of from 4.4 to 82.3% by weight of a resin of an organic nitrogen compound and from 95.6 to 17.7% by weight of non-particulate phosphorus-containing flame retardant, and particularly preferably of from 18.8 to 69.9% by weight of a resin of an organic nitrogen compound and from 81.2 to 30.1% by weight of non-particulate phosphorus-containing flame retardant.
  • the phosphorus-containing flame retardant formulation comprises a two-component phosphorus-containing flame retardant formulation which is composed of from 0.1 to 99.9% by weight of a component A and from 0.1 to 99.9% by weight of a component B, where component A is composed of from 0.1 to 99.9% by weight of resin of an organic nitrogen compound and from 0.1 to 99.9% by weight of non-particulate phosphorus-containing flame retardant, and component B is an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound.
  • the two-component phosphorus-containing flame retardant formulation is preferably composed of from 68.9 to 94.2% by weight of a component A and from 31.1 to 5.83% by weight of a component B, where component A is composed of from 93.7 to 12.9% by weight of resin of an organic nitrogen compound and from 6.3 to 87.1% by weight of non-particulate phosphorus-containing flame retardant, and component B is an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound.
  • the two-component phosphorus-containing flame retardant formulation is preferably composed of from 68.9 to 87.9% by weight of a component A and from 31.1 to 12.1% by weight of a component B, where component A is composed of from 93.7 to 1.5% by weight of resin of an organic nitrogen compound and from 6.3 to 98.5% by weight of non-particulate phosphorus-containing flame retardant, and component B is an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound.
  • the phosphorus-containing flame retardant formulation comprises a two-component phosphorus-containing flame retardant formulation which is composed of from 0.1 to 99.9% by weight of a component C and from 0.1 to 99.9% by weight of a component D, where component C is composed of from 0.1 to 99.9% by weight of resin of an organic nitrogen compound and from 0.1 to 99.9% by weight of an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound, and component D is a non-particulate phosphorus-containing flame retardant.
  • the two-component phosphorus-containing flame retardant formulation is preferably composed of from 13.3 to 95.6% by weight of a component C and from 86.7 to 4.4% by weight of a component D, where component C is composed of from 9.6 to 67.5% by weight of resin of an organic nitrogen compound and from 90.4 to 32.5% by weight of an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound, and component D is a non-particulate phosphorus-containing flame retardant.
  • the two-component phosphorus-containing flame retardant formulation is preferably composed of from 22.3 to 86.8% by weight of a component C and from 77.7 to 13.2% by weight of a component D, where component C is composed of from 51.5 to 67.5% by weight of resin of an organic nitrogen compound and from 48.5 to 32.5% by weight of an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound, and component D is a non-particulate phosphorus-containing flame retardant.
  • the phosphorus-containing flame retardant formulation comprises a three-component phosphorus-containing flame retardant formulation which is composed of from 0.1 to 99.9% by weight of a component E, a resin of an organic nitrogen compound, from 0.1 to 99.9% by weight of a component D, a non-particulate phosphorus-containing flame retardant, and from 0.1 to 99.9% by weight of a component B, an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound.
  • the material preferably comprises a three-component phosphorus-containing flame retardant formulation which is composed of from 1 to 65% by weight of a component E, a resin of an organic nitrogen compound, from 4 to 87% by weight of a component D, a non-particulate phosphorus-containing flame retardant, and from 12 to 32% by weight of a component B, an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound.
  • a three-component phosphorus-containing flame retardant formulation which is composed of from 1 to 65% by weight of a component E, a resin of an organic nitrogen compound, from 4 to 87% by weight of a component D, a non-particulate phosphorus-containing flame retardant, and from 12 to 32% by weight of a component B, an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound.
  • the material preferably comprises a three-component phosphorus-containing flame retardant formulation which is composed of from 11 to 59% by weight of a component E, a resin of an organic nitrogen compound, from 13 to 78% by weight of a component D, a non-particulate phosphorus-containing flame retardant, and from 12 to 38% by weight of a component B, an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound.
  • a three-component phosphorus-containing flame retardant formulation which is composed of from 11 to 59% by weight of a component E, a resin of an organic nitrogen compound, from 13 to 78% by weight of a component D, a non-particulate phosphorus-containing flame retardant, and from 12 to 38% by weight of a component B, an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound.
  • the resins of an organic nitrogen compound preferably comprise resins and/or condensates of carbonyl compounds with organic nitrogen compounds, e.g. urea, substituted urea derivatives, thiourea, guanidine, substituted guanadine derivatives, biguanide, melamine, substituted melamine derivatives, condensates of melamine and higher-level-condensation products thereof, melamine-phenol systems, benzoguanamine, acetoguanamine, urethanes, cyanamide, dicyandiamide, aniline, sulfonamide, biuret, allantoin, tolyltriazole, benzotriazole, 2-amino-4-methylpyrimidine, hydantoin, substituted hydantoin derivatives, malonamide amidine, ethylenebis-5-triazone, glycine anhydride, and any desired mixtures thereof.
  • organic nitrogen compounds e.g. urea, substituted urea derivative
  • the resins of the organic nitrogen compound preferably comprise dicyandiamide resins composed of 1 mol of dicyandiamide and from 1 to 10 mol of formaldehyde, preferably of 1 mol of dicyandiamide and from 1 to 4 mol of formaldehyde.
  • the solubility of the non-particulate flame retardant is preferably from 20 to 100% by weight in water and/or in organic solvents, such as alcohols, glycols, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, alicyclic hydrocarbons, ethers, glycol ethers, ketones, esters, and/or carboxylic acids.
  • organic solvents such as alcohols, glycols, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, alicyclic hydrocarbons, ethers, glycol ethers, ketones, esters, and/or carboxylic acids.
  • the invention also provides a process for preparation of a phosphorus-containing flame retardant formulation, which comprises mixing the organic nitrogen compounds (e.g. dicyandiamide), formaldehyde and, if appropriate, solvents at from 10 to 300° C. for from 0.1 to 100 h, where the mixing process incorporates mono- or polyfunctional amines, and also particulate and/or non-particulate phosphorus-containing flame retardants and, if appropriate, aluminum compounds and/or titanium compounds and/or zinc compounds and/or tin compounds and/or zirconium compounds.
  • organic nitrogen compounds e.g. dicyandiamide
  • formaldehyde e.g. formaldehyde
  • solvents e.g. a phosphorus-containing flame retardant formulation
  • the mixing process incorporates mono- or polyfunctional amines, and also particulate and/or non-particulate phosphorus-containing flame retardants and, if appropriate, aluminum compounds and/or titanium compounds and/or zinc compounds and/or t
  • the process for preparation of a phosphorus-containing flame retardant formulation composed of components A and B is preferably one wherein, for preparation of component A, dicyandiamide, formaldehyde, and solvent, and optionally mono- or polyfunctional amines are mixed at from 10 to 300° C. for from 0.1 to 100 h, and the non-particulate phosphorus-containing flame retardant is added, and then mixing to incorporate aluminum compounds and/or titanium compounds and/or zinc compounds and/or tin compounds and/or zirconium compounds are incorporated by mixing for component B.
  • the process for preparation of a phosphorus-containing flame retardant formulation composed of components C and D is preferably one wherein, for preparation of component A, dicyandiamide, formaldehyde, and solvent, and optionally mono- or polyfunctional amines are mixed at from 10 to 300° C. for from 0.1 to 100 h, and aluminum compounds and/or titanium compounds and/or zinc compounds and/or tin compounds and/or zirconium compounds are added, and then the non-particulate phosphorus-containing flame retardants are incorporated by mixing for component D.
  • the process for preparation of a phosphorus-containing flame retardant formulation composed of components E, D and B is preferably one wherein, for preparation of component E, dicyandiamide, formaldehyde, and solvent, and optionally mono- or polyfunctional amines are mixed at from 10 to 300° C. for from 0.1 to 100 h, then the non-particulate phosphorus-containing flame retardant is added as component D, and finally aluminum compounds and/or titanium compounds and/or zinc compounds and/or tin compounds and/or zirconium compounds are incorporated by mixing as component B.
  • the pH is preferably adjusted via mixing to incorporate pH modifiers at from 10 to 300° C. for from 0.1 to 100 h, preferably to a pH of from 8 to 13.
  • the invention also provides the use of the inventive phosphorus-containing flame retardant formulation for providing flame retardancy to paper, cardboard, paperboard, textiles, wood, and other cellulose-containing materials.
  • the use for providing flame retardancy to paper, cardboard, and paperboard is preferably one wherein a phosphorus-containing flame retardant formulation, composed of the resin of an organic nitrogen compound and of particulate phosphorus-containing flame retardant, is added to the fiber suspension during engine sizing.
  • the use for providing flame retardancy to paper, cardboard and paperboard is preferably one wherein a phosphorus-containing flame retardant formulation, composed of the resin of an organic nitrogen compound and of non-particulate phosphorus-containing flame retardant, is added to the fiber suspension during engine sizing.
  • the use for providing flame retardancy to paper, cardboard, and paperboard is preferably one wherein a two-component phosphorus-containing flame retardant formulation, composed of components A and B, is added to the fiber suspension during engine sizing.
  • the use for providing flame retardancy to paper, cardboard, and paperboard is preferably one wherein a two-component phosphorus-containing flame retardant formulation, composed of components C and D, is added to the fiber suspension during engine sizing.
  • the use for providing flame retardancy to paper, cardboard and paperboard is preferably one wherein a three-component phosphorus-containing flame retardant formulation, composed of components E, D, and B, is added to the fiber suspension during engine sizing.
  • the use for providing flame retardancy to textiles is preferably one wherein a phosphorus-containing flame retardant formulation is applied in the form of an impregnating solution to the fabric.
  • This use is preferably one wherein the impregnating solution is applied via immersion or via spray-application onto the fabric.
  • the use for providing flame retardancy to wood is preferably one wherein the wood is introduced into an impregnating system and is exposed for at least 20 minutes to a pressure of 50 mbar, the wood being impregnated at a pressure of 16 bar for from 1 to 10 hours with an impregnating solution which comprises an inventive phosphorus-containing flame retardant formulation.
  • the use for providing flame retardancy to wood is preferably one wherein the wood is coated via dipping processes, spraying processes, or spreading processes, where the coating component comprises an inventive phosphorus-containing flame retardant formulation.
  • the invention also provides flame-retardant cellulose-containing moldings which comprise:
  • the invention also provides flame-retardant cellulose-containing moldings which comprise:
  • the invention also provides flame-retardant cellulose-containing moldings which comprise:
  • the invention also provides flame-retardant cellulose-containing moldings which comprise:
  • All of the cellulose-containing materials and moldings may comprise paper, cardboard and paperboard, wallpapers, veneer wood, plywood, blockboard, laminated wood, particle board, wood-fiber board (hard, medium-hardness, and porous), polymer-treated wood, parquet, composite wood products, chopped wood, timber, sawn timber boards, sawn construction-grade timber, etc.
  • Preferred resins of an organic nitrogen compound are resins and/or condensates of carbonyl compounds with urea, substituted urea derivatives (e.g. dimethylurea, N,N′-diphenylurea, benzylurea, acetyleneurea, tetramethylurea), thiourea, guanidine, substituted guanidine derivatives (e.g. alkylguanidine, arylguanidine, diphenylguanidine), biguanide, melamine, substituted melamine derivatives (e.g. ethylenedimelamine), condensates of melamine, e.g.
  • substituted urea derivatives e.g. dimethylurea, N,N′-diphenylurea, benzylurea, acetyleneurea, tetramethylurea
  • thiourea guanidine
  • substituted guanidine derivatives e.g. alkylguanidine
  • Preferred carbonyl compounds are aldehydes. Particular preference is given here to aliphatic aldehydes, e.g. formaldehyde, acetaldehyde, propionaldehyde, etc.
  • composition of the inventive single-component phosphorus-containing flame retardant formulation composed of a resin of an organic nitrogen compound and of non-particulate phosphorus-containing flame retardant
  • the individual components are preferably:
  • a three-component phosphorus-containing flame retardant formulation composed of component E, of a resin of an organic nitrogen compound, of component D, a non-particulate phosphorus-containing flame retardant, and of component C, an aluminum compound, its composition being as follows, based on the individual components:
  • the two-component phosphorus-containing flame retardant formulation comprises a formulation composed of component A, a resin of an organic nitrogen compound, and of a non-particulate phosphorus-containing flame retardant, and of a component B, a zinc compound, the compositions are then:
  • compositions for the other inventive two-component phosphorus-containing flame retardant formulation composed of component C, of a resin of an organic nitrogen compound, and of a zinc compound, and of a component D, a non-particulate phosphorus-containing flame retardant are likewise
  • a three-component phosphorus-containing flame retardant formulation composed of component E, of a resin of an organic nitrogen compound, of component D, a non-particulate phosphorus-containing flame retardant, and of component C, a zinc compound, and having the following composition, based on the individual components:
  • the two-component phosphorus-containing flame retardant formulation comprises a formulation composed of component A, a resin of an organic nitrogen compound, and a non-particulate phosphorus-containing flame retardant, and of a component B, a titanium compound, or comprises the other two-component phosphorus-containing flame retardant formulation composed of component C, a resin of an organic nitrogen compound, and a titanium compound, and also of a component D, a non-particulate phosphorus-containing flame retardant, or comprises a three-component phosphorus-containing flame retardant formulation composed of component E, a resin of an organic nitrogen compound, of component D, a non-particulate phosphorus-containing flame retardant, and of component C, a titanium compound
  • these flame retardant formulations have the following compositions:
  • the dicyandiamide resins are prepared via reaction of 1 mol of dicyandiamide with from 1 to 4 mol of formaldehyde at a pH of from 8 to 13 optionally in the presence of from 0.1 to 2 mol of an inorganic or organic acid and/or optionally of an ammonium or amine salt of an inorganic or organic acid, and/or optionally from 0.05 to 0.5 mol of a mono- or polyfunctional amine.
  • Inorganic acids which may in particular be used here are hydrochloric, sulfuric, nitric, and phosphoric acid, and organic acids which may be used here are formic, acetic, or oxalic acid, phosphinic acids, and phosphonous acids.
  • the pH may optionally be adjusted via addition of pH modifiers.
  • Preferred pH modifiers are ammonium hydroxide, ammonium chloride, ammonium carbonate, ammonium nitrate, and ammonium sulfate, and ammonium formate and ammonium acetate.
  • pH modifiers are the conventional alkalis, e.g. the hydroxides, carbonates, and/or hydroxide carbonates of alkali metals and of alkaline earth metals.
  • Other preferred pH modifiers are amine salts, such as ethylenediamine formate, or triethylenetetramine hydrochloride.
  • the preferred mono- or polyfunctional amines are ethylenediamine, propylenediamine, diethylenetriamine, and triethylenetetramine, and substituted derivatives, such as mono- or diethanolamine.
  • the dicyandiamide-formaldehyde resins are preferably used in the form of 10-60% strength by weight aqueous solutions.
  • Protonated nitrogen bases are preferably the protonated bases of ammonia, melamine, triethanolamine, in particular NH 4 + .
  • Inventive solvents are preferably water, alcohols, e.g. methanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutanol, amyl alcohol, etc.
  • alcohols e.g. methanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutanol, amyl alcohol, etc.
  • aliphatic hydrocarbons such as hexane, heptane, octane, and petroleum ether
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, diethylbenzene and chlorobenzene
  • halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, etc., carbon tetrachloride, tetrabromoethylene
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane
  • ketones such as diisobutyl ketone and methyl n-propyl ketone
  • esters such as n-propyl acetate and n-butyl acetate
  • carboxylic acids One or more of these compounds may be used alone or combined.
  • Aluminum salts with anions of the seventh main group are also preferred, examples being aluminum fluoride, aluminum fluoride trihydrate, aluminum chloride (anhydrous, crystallized; anhydrous, anhydrous, sublimed), aluminum chloride hexahydrate, aluminum hydroxy chloride, ALCHLOR®-AC from Hardman Australia, basic aluminum chloride solution, aluminum chloride solution and polyaluminum chloride solution, sulfate-conditioned (PACS) from Lurgi Lifescience, OBRAFLOC 18 from Oker Chemie GmbH, Alkaflock®, Ekocid® 60 grades, Sachtoklar® grades, Ekofloc grades, Ekozet grades from Sachtleben, anhydrous aluminum bromide, aluminum iodide, aluminum iodide hexahydrate.
  • PPS sulfate-conditioned
  • the ratio of polyaluminum hydroxy compound to cationic dicyandiamide resin may vary within wide limits, but an aluminum:dicyandiamide molar ratio of from 4:1 to 1:4 has proven particularly advantageous in practice.
  • aluminum salts of the oxo acids of the seventh main group e.g. aluminum chlorate
  • aluminum salts of the oxo acids of the sixth main group e.g. aluminum sulfate, aluminum sulfate hydrate, aluminum sulfate hexahydrate, aluminum sulfate hexadecahydrate, aluminum sulfate octadeca hydrate, aluminum sulfate solution from Ekachemicals, liquid aluminum sulfate from Oker Chemie GmbH, sodium aluminum sulfate, sodium aluminum sulfate dodecahydrate, aluminum potassium sulfate, aluminum potassium sulfate dodecahydrate, aluminum ammonium sulfate, aluminum ammonium sulfate dodecahydrate, magaldrate (Al 5 Mg 10 (OH) 31 (SO 4 ) 2 x nH 2 O).
  • aluminum salts of the oxo acids of the fifth main group e.g. aluminum nitrate nonahydrate, aluminum metaphosphate, aluminum phosphate, low-density aluminum phosphate hydrate, monobasic aluminum phosphate, monobasic aluminum phosphate solution
  • aluminum salts of the oxo acids of the fourth main group e.g. aluminum silicate, aluminum magnesium silicate, aluminum magnesium silicate hydrates (almasilate), aluminum carbonates, hydrotalcites (Mg 6 Al 2 (OH) 16 CO 3 *nH 2 O), dihydroxyaluminum sodium carbonate, NaAl(OH) 2 CO 3 , and aluminum salts of the oxo acids of the third main group, e.g. aluminum borate.
  • aluminum salts of the pseudohalides e.g. aluminumthiocyanate, and aluminum oxides (purum, purissimum, technical, basic, neutral, acidic), aluminum oxide hydrate, aluminum hydroxides, or mixed aluminum oxide hydroxides and polyaluminum hydroxy compounds, which preferably have an aluminum content of from 9 to 40% by weight.
  • Preferred aluminum salts are those having organic anions, e.g. the salts of mono-, di-, oligo-, or polycarboxylic acids, for example aluminum diacetate, basic aluminum acetate, aluminum subacetate, aluminum acetotartrate, aluminum formate, aluminum lactate, aluminum oxalate, aluminum tartrate, aluminum oleate, aluminium palmitate, aluminum monostearate, aluminum stearate, aluminum trifluoromethanesulfonate, aluminum benzoate, aluminum salicylate, aluminum hexaurea sulfate triiodide, aluminum 8-hydroxyquinolate.
  • organic anions e.g. the salts of mono-, di-, oligo-, or polycarboxylic acids, for example aluminum diacetate, basic aluminum acetate, aluminum subacetate, aluminum acetotartrate, aluminum formate, aluminum lactate, aluminum oxalate, aluminum tartrate, aluminum oleate, aluminium palmitate, aluminum monostearate, aluminum stea
  • Aluminum actetylacetonate alkylaluminum compounds, alkylaluminum chlorides, aluminum tert-butoxide, aluminum ethoxide, aluminum isopropoxide, aluminum sec-butoxide.
  • the aluminum content of preferred aluminum salts is from 9 to 40% by weight (based on dry weight).
  • elemental, metallic zinc and zinc salts having inorganic anions e.g. zinc halides (zinc fluoride, zinc fluoride tetrahydrate, zinc chlorides (butter of zinc), bromides, zinc iodide), etc.
  • inorganic anions e.g. zinc halides (zinc fluoride, zinc fluoride tetrahydrate, zinc chlorides (butter of zinc), bromides, zinc iodide), etc.
  • zinc salts of the oxo acids of the third main group (zinc borate, e.g. Firebrake ZB, Firebrake 415), and zinc salts of the oxo acids of the fourth main group (basic zinc carbonate, zinc hydroxide carbonate, anhydrous zinc carbonate, basic zinc carbonate hydrate, (basic) zinc silicate, zinc hexafluorosilicate, zinc hexafluorosilicate hexahydrate, zinc stannate, zinc magnesium aluminum hydroxide carbonate, and zinc salts of the oxo acids of the fifth main group (zinc nitrate, zinc nitrate hexahydrate, nitrites, zinc phosphate, zinc pyrophosphate).
  • zinc salts of the oxo acids of the fourth main group (basic zinc carbonate, zinc hydroxide carbonate, anhydrous zinc carbonate, basic zinc carbonate hydrate, (basic) zinc silicate, zinc hexafluorosilicate, zinc hexa
  • zinc salts of the oxo acids of the sixth main group (zinc sulfate, zinc sulfate monohydrate, zinc heptahydrate) and zinc salts of the oxo acids of the seventh main group (hypohalites, halites, halates, e.g. zinc iodate, and perhalates, e.g. zinc perchlorate).
  • zinc salts of the pseudohalides (zinc thiocyanate, zinc cyanate, zinc cyanide), and also zinc oxides, zinc peroxides (e.g. zinc peroxide), zinc hydroxides, or mixed zinc oxide hydroxides (standard zinc oxide, e.g. from Grillo, activated zinc oxide, e.g. from Rheinchemie, zincite, calamine).
  • zinc salts of the oxo acids of the transition metals (zinc chromate(VI) hydroxide (zinc yellow), zinc chromite, zinc molybdate, e.g. Kemgard 911 B, zinc permanganate, zinc molybdate-magnesium silicate, e.g. Kemgard 911 C).
  • Preferred zinc salts are those having organic anions, among these are zinc slats of mono-, di-, oligo-, or polycarboxylic acids (salts of formic acid (zinc formates), of acetic acid (zinc acetates, zinc acetate dihydrate, Galzin), of trifluoroacetic acid (zinc trifluoroacetate hydrate), zinc propionate, zinc butyrate, zinc valerate, zinc caprylate, zinc oleate, zinc stearate, of oxalic acid (zinc oxalate), of tartaric acid (zinc tartrate), of citric acid (tribasic zinc citrate dihydrate), benzoic acid (benzoate), zinc salicylate, lactic acid (zinc lactate, zinc lactate trihydrate), acrylic acid, maleic acid, succinic acid, of amino acids (glycine), of acidic hydroxy functions (zinc phenolate, etc), zinc para-phenolsulfonate, zinc para-phenolsulfonate
  • Zinc phosphide, zinc selenide, zinc telluride are also preferred.
  • metallic titanium or titanium salts having inorganic anions, e.g. chloride, nitrate, or sulfate, or else having organic anions, e.g. formate or acetate ions.
  • tin compounds preference is given to metallic tin and tin salts (stannous chloride, stannous chloride dihydrate, stannic chloride) and tin oxides.
  • zirconium compounds preference is given to metallic zirconium and zirconium salts, such as zirconium(IV) chloride, zirconium sulfate, zirconium sulfate tetrahydrate, zirconyl acetate, zirconyl chloride, zirconyl chloride octahydrate, and zirconium oxides.
  • dicyandiamide, formaldehyde and solvent are mixed at from 10 to 300° C. for from 0.1 to 100 h.
  • the pH is optionally adjusted via mixing to incorporate pH modifiers at from 10 to 300° C. for from 0.1 to 100 h. Preference is given to a pH of from 8 to 13.
  • Mono- or polyfunctional amines are optionally incorporated by mixing at from 10 to 300° C. for from 0.1 to 100 h.
  • the inventive particulate and/or non-particulate phosphorus-containing flame retardants are incorporated by mixing at from 10 to 300° C. for from 0.1 to 100 h.
  • Aluminum compounds and/or titanium compounds and/or zinc compounds and/or tin compounds and/or zirconium compounds are optionally incorporated by mixing at from 10 to 300° C. for from 0.1 to 100 h.
  • dicyandiamide, formaldehyde and solvent are mixed at from 10 to 300° C. for from 0.1 to 100 h.
  • the pH is optionally adjusted via incorporation of pH modifiers by mixing at from 10 to 300° C. for from 0.1 to 100 h. Preference is given to a pH of from 8 to 13.
  • Mono- or polyfunctional amines are optionally incorporated by mixing at from 10 to 300° C. for from 0.1 to 100 h.
  • Aluminum compounds and/or titanium compounds and/or zinc compounds and/or tin compounds and/or zirconium compounds are optionally incorporated by mixing at from 10 to 300° C. for from 0.1 to 100 h.
  • the inventive particulate and/or non-particulate phosphorus-containing flame retardants are incorporated by mixing at from 10 to 300° C. for from 0.1 to 100 h.
  • dicyandiamide, formaldehyde and solvent are mixed at from 10 to 300° C. for from 0.1 to 100 h.
  • the pH is optionally adjusted via mixing to incorporate pH modifiers at from 10 to 300° C. for from 0.1 to 100 h. Preference is given to a pH of from 8 to 13.
  • Mono- or polyfunctional amines are optionally incorporated by mixing at from 10 to 300° C. for from 0.1 to 100 h.
  • the non-particulate phosphorus-containing flame retardants are incorporated by mixing as component D at from 10 to 300° C. for from 0.1 to 100 h, and then the aluminum compounds and/or titanium compounds and/or zinc compounds and/or tin compounds and/or zirconium compounds are incorporated by mixing as component B at from 10 to 300° C. for from 0.1 to 100 h.
  • Each of the abovementioned components may be used in the form of a solution of strength from 1 to 99% by weight, in order to improve capability for incorporation.
  • a mixing ratio recommended is from 60:40 to 5:95.
  • paper for writing, printing, or for labels
  • paper for writing, printing, or for labels have to be sized in order to obtain a controlled level of resistance to the penetration of aqueous liquids and to become writable and printable.
  • the sizing of the papers may either be carried out in bulk (“engine sizing”) or via impregnation of the finished paper web (“surface sizing”).
  • rosin process rosin sizing process
  • the rosin is deposited on the fiber under acidic manufacturing conditions, using aluminum sulfate.
  • rosin soaps aqueous solutions of alkali metal salts of the rosin (mostly 50% strength by weight in commercially available form, e.g. Dynakoll from Eka Chemicals) and anionic (e.g. Bewosol from Eka Chemicals) or cationic (Composize from Eka Chemicals) rosin dispersions.
  • Natural sizes which may be mentioned here are rosin, animal size, casein, starch, waxes, fatty acids, and tall resins, and synthetic sizes which may be particularly highlighted, based on ketene dimers, on acrylic acids, on maleic anhydrides, or on polyvinyl acetates.
  • the inventive means are also similarly suitable for modified sizes (e.g. rosin with dienophilic acids).
  • AKD alkylketene dimer
  • ASA alkenylsuccinic anhydride size based on long-chain olefins (carbon chain length from 16 to 20) and maleic anhydride.
  • the use of the sizes in the composition is similar to that of rosin size.
  • the pH of the fiber suspension is generally from 3.5 to 6.5.
  • the sizes are added at a concentration of from 0.1 to 5 percent by weight, preferably from 0.5 to 3 percent by weight, based on dry fiber, to the paper fiber suspensions.
  • a previously formed paper web is impregnated with the aqueous solution comprising sizes or with a dispersion of the sizes.
  • Preferred sizes for surface sizing are starch, carboxymethylcellulose, alginate, alkali metal salt solutions of styrene-maleic anhydride polymers or of styrene-acrylic acid copolymers, or microemulsions of copolymers composed of styrene-acrylic derivatives (Jetsize Basis SAE from Eka Chemicals), or of modified polyurethanes (Jetsize Basis PU from Eka Chemicals), or alkylketene dimer dispersions (Jetsize Basis AKD from Eka Chemicals).
  • the base paper is intended to comprise at least 0.5 percent by weight, preferably from 1 to 4 percent by weight, of alum.
  • Preferred wet-strength agents comprise two product groups: urea-formaldehyde (UF) resins for paperboard and papers produced under acidic conditions, and polyamide-amine-epichlorohydrin (PAAE) resins for neutral and alkaline process conditions.
  • UF urea-formaldehyde
  • PAAE polyamide-amine-epichlorohydrin
  • Preferred pulps are obtained from conifers, e.g. spruce, fir, pine, or from hardwood, i.e. deciduous trees, e.g. birch, beech, poplar, and the pulp is produced by conventional processes, e.g. the sulfite process or especially the sulfate process.
  • Examples are spruce, beech, or birch sulfate pulp, softwood bisulfite pulp, softwood sulfite pulp, semichemical pulp composed of hardwood (bisulfite pulps, neutral sulfite pulps, bleached neutral sulfite pulps), very-high-yield pulps composed of soft- and hardwood (bisulfite pulps, neutral sulfite pulps, cold alkali pulps), straw pulps (neutral sulfite pulps, cold alkali pulps), rayon.
  • the fiber suspension also comprises groundwood, if appropriate.
  • the fiber suspension may also comprise used paper. Use may also be made of pulp suspensions produced by the process known as CMP or CTMP (chemimechanical and chemithermomechanical pulping processes).
  • Preferred organic fillers are synthetic pigments, e.g. polycondensates composed of urea or melamine and formaldehyde with large specific surface areas, present in fine-particle form.
  • Preferred mineral fillers are titanium dioxide, zinc oxide, calcium sulfate, barium sulfate, barium carbonate, magnesites, kaolin, aluminum silicates, calcium silicates, oxide hydrates of aluminum, talc, satin white, China clay, calcium carbonate in fine-particle form, precipitated chalks.
  • the fiber suspension generally comprises from 0 to 40% by weight, preferably from 5 to 25% by weight, in particular from 15 to 20% by weight, based on the solids content of the fiber suspension, of dry weight of fillers of the stated type.
  • Retention aids retain the solid constituents of the paper stock on the screen in the paper machine.
  • suitable retention aids are polyethyleneimine, polyacrylamides (Eka PL from Eka Chemicals), and polyaminoamides, the amounts of these added to the pulp being from 0.04 to 0.1% by weight (solids, based on dry pulp).
  • engine sizing comprises addition of phosphorus-containing flame retardant formulation (composed of the resin of an organic nitrogen compound and of particulate phosphorus-containing flame retardant) to the fiber suspension.
  • engine sizing comprises adding phosphorus-containing flame retardant formulation (composed of the resin of an organic nitrogen compound and of a particulate or non-particulate phosphorus-containing flame retardant and, if appropriate of an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound) to the fiber suspension.
  • phosphorus-containing flame retardant formulation composed of the resin of an organic nitrogen compound and of a particulate or non-particulate phosphorus-containing flame retardant and, if appropriate of an aluminum compound and/or titanium compound and/or zinc compound and/or tin compound and/or zirconium compound
  • the decomposition temperature of the inventive phosphorus-containing flame retardant formulation is above 250° C., preferably above 300° C.
  • WO-A-98/24604 discloses flame-retardant impregnating materials for wood, paper, and textiles, based on ammonium phosphates, on phosphoric acid, and on water-soluble salts which with phosphate ions can form salts insoluble in water.
  • U.S. Pat. No. 4,073,617 discloses flame retardants for textile materials, composed of dicyandiamide, which is condensed with formaldehyde and with phosphoric acid and then is diluted with water and applied to the cellulose-containing textile (cotton, rayon, polyester/cotton blend).
  • the inventive flame retardant formulation is applied to the cellulose-containing textiles via impregnation.
  • Preferred textiles are cotton, rayon, wool, and mixed fabrics.
  • a preferred process for the impregnation of textiles is application of the impregnating solution to the fabric via immersion.
  • the amount used of the dry weight of the impregnating solution can be from 1 to 25% by weight, based on the dry weight of the fabric. It is then preferable to remove the excess liquid by squeezing and to dry at from 30 to 300° C.
  • the ratio by weight of fabric to impregnating material after drying is therefore from 8:2 to 9:1.
  • a preferred process for the impregnation of textiles is application of the impregnating solution to the fabric via spray-application.
  • the amount used of the dry weight of the impregnating solution can be from 5 to 25% by weight, based on the dry weight of the fabric. It is then preferable to remove the excess liquid by squeezing and to dry at from 30 to 300° C.
  • the ratio by weight of fabric to impregnating material after drying is therefore from 8:2 to 9:1.
  • cellulose-containing moldings may be: veneer wood, veneer board, blackboard, laminated wood, chipboard, particle board, wood-fiber board (hard, medium-hardness, and porous), plywood, polymer-treated wood, parquet, composite wood products, chopped wood, timber, sawn timber boards (spruce, pine), sawn construction-grade timber, etc.
  • the wood is introduced into the impregnation system and exposed to a pressure of 50 mbar for at least 20 minutes.
  • the impregnating solution is pumped into the pressure vessel, and the wood is impregnated at a pressure of 16 bar for from 1 to 10 h.
  • the timber is preferably dried at 60° C. in a timber dryer with slowly falling humidity. After drying, the timber comprises from 1 to 40% by weight of the impregnating material (based on the dry weight of dry timber).
  • Another preferred process for impregnation of wood is wood-coating.
  • Preferred processes are dipping, spraying, or spreading processes.
  • the examples below illustrate the invention.
  • a specimen is stored for 24 h at 250° C. in a drying cabinet and then sampled visually.
  • Example 1 As in Example 1, 13.5 parts by weight of dicyandiamide, 35.4 parts by weight of 30% strength aqueous formaldehyde, 6.9 parts by weight of ammonium chloride, 1173.8 parts by weight of water, 1.0 part by weight of ethylenediamine, and 138 parts by weight of Exolit OP 930 (TP) are reacted in a three-necked round-bottomed flask with superposed reflux condenser.
  • TP Exolit OP 930
  • Example 2 As in Example 1, 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, 1123.8 parts by weight of water, 1.9 parts by weight of ethylenediamine, and 138 parts by weight of Exolit OP 930 (TP) are reacted in a three-necked round-bottomed flask with superposed reflux condenser.
  • TP Exolit OP 930
  • Example 2 As in Example 1, 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, 113.8 parts by weight of water, 1.9 parts by weight of ethylenediamine, and 27.6 parts by weight of Exolit OP 930 (TP) are reacted in a three-necked round-bottomed flask with superposed reflux condenser.
  • TP Exolit OP 930
  • Example 2 As in Example 1, 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, 143.8 parts by weight of water, 1.9 parts by weight of ethylenediamine, and 13.8 parts by weight of Exolit OP 930 (TP) are reacted in a three-necked round-bottomed flask with superposed reflux condenser.
  • TP Exolit OP 930
  • Example 6 As in Example 6, 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, 1.9 parts by weight of ethylenediamine, 723.8 parts by weight of water, 106 parts by weight of polyaluminum chloride solution, 434 parts by weight of sodium diethylphosphinate solution are reacted.
  • Example 8 As in Example 8, 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, 1.9 parts by weight of ethylenediamine, 13.8 parts by weight of water, 106 parts by weight of polyaluminum chloride solution, 129.5 parts by weight of diethylphosphinic acid are reacted.
  • Example 8 As in Example 8, 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, 1.9 parts by weight of ethylenediamine, 13.8 parts by weight of water, 106 parts by weight of polyaluminum chloride, 215.9 parts by weight of diethylphosphinic acid are reacted.
  • 2.7 parts by weight of dicyandiamide, 7.1 parts by weight of 30% strength aqueous formaldehyde, 1.4 parts by weight of ammonium chloride, and 701.4 parts by weight of water are used as initial charge in a three-necked round-bottomed flask with superposed reflux condenser.
  • 0.2 part of ethylenediamine are added, with stirring, and the mixture is heated to 90-95° C. for 10 min. 223.9 parts by weight of aluminum sulfate solution are then added, and the mixture is heated to 100° C. for a further 10 min, and finally 434 parts by weight of sodium diethylphosphinate solution are added, and the mixture is heated to 100° C. for a further 10 min, and then cooled.
  • Example 11 As in Example 11, 13.5 parts by weight of dicyandiamide, 35.4 parts by weight of 30% strength aqueous formaldehyde, 6.9 parts by weight of ammonium chloride, 1.0 part by weight of ethylenediamine, 656.9 parts by weight of water, 223.9 parts by weight of aluminum sulfate solution, 434 parts by weight of sodium diethylphosphinate solution are reacted.
  • Example 11 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, 1.9 parts by weight of ethylenediamine, 603.8 parts by weight of water, 223.9 parts by weight of aluminum sulfate solution, 434 parts by weight of sodium diethylphosphinate solution are reacted.
  • Example 11 As in Example 11, 135.2 parts by weight of dicyandiamide, 354 parts by weight of 30% strength aqueous formaldehyde, 69.2 parts by weight of ammonium chloride, 9.7 parts by weight of ethylenediamine, 151.2 parts by weight of water, 223.9 parts by weight of aluminum sulfate solution, 434 parts by weight of sodium diethylphosphinate solution are reacted.
  • Example 11 As in Example 11, 135.2 parts by weight of dicyandiamide, 354 parts by weight of 30% strength aqueous formaldehyde, 69.2 parts by weight of ammonium chloride, 9.7 parts by weight of ethylenediamine, 481.9 parts by weight of water, 112 parts by weight of aluminum sulfate solution, 217 parts by weight of sodium diethylphosphinate solution are reacted.
  • Example 11 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, 1.9 parts by weight of ethylenediamine, 603.8 parts by weight of water, 223.9 parts by weight of aluminum sulfate solution, 43.4 parts by weight of sodium diethylphosphinate solution are reacted.
  • a two-component impregnating solution is prepared as follows.
  • Component 1 2.7 parts by weight of dicyandiamide, 7.1 parts by weight of 30% strength aqueous formaldehyde, 1.4 parts by weight of ammonium chloride, and 201.4 parts by weight of water are used as initial charge in a three-necked round-bottomed flask with superposed reflux condenser. 0.2 part by weight of ethylenediamine is added with stirring, and the mixture is heated to 90-95° C. for 10 min. 223.9 parts by weight of aluminum sulfate solution are then added and the mixture is heated to 100° C. for a further 10 min, and then cooled.
  • Component 2 434 parts by weight of sodium diethylphosphinate solution are mixed with 500 parts by weight of water.
  • a two-component impregnating solution is prepared as follows.
  • Component 1 As in Example 17, 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, 1.9 parts by weight of ethylenediamine, 103.8 parts by weight of water, and 223.9 parts by weight of aluminum sulfate solution are reacted.
  • Component 2 434 parts by weight of sodium diethylphosphinate solution are mixed with 500 parts by weight of water.
  • a two-component impregnating solution is prepared as follows.
  • Component 1 As in Example 17, 135.2 parts by weight of dicyandiamide, 354 parts by weight of 30% strength aqueous formaldehyde, 69.2 parts by weight of ammonium chloride, 9.7 parts by weight of ethylenediamine, 481.9 parts by weight of water, and 112 parts by weight of aluminum sulfate solution are reacted.
  • Component 2 217 parts by weight of sodium diethylphosphinate at original concentration.
  • a three component impregnating solution is prepared as follows.
  • Component 1 27 parts by weight of dicyandiamide, 70.8 parts by weight of 30% strength aqueous formaldehyde, 13.8 parts by weight of ammonium chloride, and 603.8 parts by weight of water are used as initial charge in a three-necked round-bottomed flask with superposed reflux condenser. 1.9 parts by weight of ethylenediamine are added with stirring, and the mixture is heated to 90-95° C. for 10 min, and then cooled.
  • Component 2 223.9 parts by weight of aluminum sulfate solution at original concentration.
  • Component 3 434 parts by weight of sodium diethylphosphinate solution at original concentration.
  • the amounts of chalk and of aid are based on the solids content of the fiber suspension.
  • 0.9 part of flame retardant of Example 2 and 0.25% by weight of the active substance Polymin R P (polyethyleneimine with molecular weight of from 10,000 to 100,000) as retention aid were also added to 100 parts of suspension.
  • Standard sheets whose weight per unit area is 80 g/qm were produced on a Rapid Köthen laboratory sheet-forming machine from 100% by weight of bleached spruce sulfite pulp, adding the sizes stated in Table 1. The sheets were then dried at 120° C. for 3 min.
  • the flame retardant content is about 15% by weight, and the phosphorus content is about 3.1% by weight.
  • Paper strips (width 1 cm, length 20 cm) were secured at 45° inclination in a combustion chamber, for protection from drafts.
  • Example 25 Using a method based on Example 25, 1 g of flame retardant of Example 1 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 3.1% by weight.
  • Example 25 Using a method based on Example 25, 0.8 g of flame retardant of Example 3 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 2.7% by weight.
  • Example 25 Using a method based on Example 25, 0.1 g of flame retardant of Example 4 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 5% by weight and with a phosphorus content of about 0.4% by weight.
  • Example 25 Using a method based on Example 25, 0.45 g of flame retardant of Example 5 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 0.8% by weight.
  • Example 25 Using a method based on Example 25, 0.5 g of flame retardant of Example 6 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 0.3% by weight.
  • Example 25 Using a method based on Example 25, 0.8 g of flame retardant of Example 7 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 2.7% by weight.
  • Example 25 Using a method based on Example 25, 1 g of flame retardant of Example 8 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 53% by weight and with a phosphorus content of about 0.1% by weight.
  • Example 25 Using a method based on Example 25, 0.2 g of flame retardant of Example 9 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 14% by weight and with a phosphorus content of about 2.6% by weight.
  • Example 25 Using a method based on Example 25, 1 g of flame retardant of Example 11 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 3.4% by weight.
  • Example 25 Using a method based on Example 25, 0.8 g of flame retardant of Example 13 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 2.7% by weight.
  • Example 25 Using a method based on Example 25, 0.5 g of flame retardant of Example 15 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 16% by weight and with a phosphorus content of about 0.8% by weight.
  • Example 25 Using a method based on Example 25, 1 g of flame retardant of Example 17 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 3.4% by weight.
  • Example 25 Using a method based on Example 25, 0.8 g of flame retardant of Example 18 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 2.7% by weight.
  • Example 25 Using a method based on Example 25, 0.5 g of flame retardant of Example 22 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 6.7% by weight.
  • Example 25 Using a method based on Example 25, 0.5 g of flame retardant of Example 24 is added to a fiber suspension, and standard sheets are produced with a flame retardant content of about 15% by weight and with a phosphorus content of about 6.8% by weight.
  • paper strips (80 g/qm, width 1 cm, length 20 cm) are dipped into a 6% strength coating solution for 1 minute, allowed to drip dry, and dried for 10 minutes at 110° C.
  • the flame retardant content (weight increase, based on dry weight) is about 15% by weight, and the phosphorus content is 3.1% by weight.
  • a coating solution 1, based on component 1 of Example 18, is prepared by diluting component 1 of Example 18 with demineralized water at 1:1.
  • a coating solution 2, based on component 2 of Example 18, is prepared by diluting component 2 of Example 18 with demineralized water at 1:1.
  • paper strips (80 g/qm, width 1 cm, length 20 cm) are dipped into a coating solution 1 for 1 minute, allowed to drip dry, and dried for 10 minutes at 110° C.
  • the paper strip is then dipped into a coating solution 2 for 1 minute, allowed to drip dry, and dried at 110° C. for 10 minutes.
  • the flame retardant content (weight increase, based on dry weight) is about 15% by weight, and the phosphorus content is 2.7% by weight.
  • a coating solution based on component 1 of Example 22 is prepared by diluting the flame retardant solution of Example 22 with demineralized water at 1: 2.5.
  • paper strips (80 g/qm, width 1 cm, length 20 cm) are dipped into the coating solution for 1 minute, allowed to drip dry, and dried for 10 minutes at 110° C.
  • the flame retardant content (weight increase, based on dry weight) is about 15% by weight, and the phosphorus content is 6.7% by weight.
  • the textile specimens were suspended vertically. A Bunsen burner flame of height four cm was applied for 10 sec under each textile specimen. The fire tests investigated whether visible flames emerged from the specimen during the test. Once the flame had been removed, any ignition and/or further smoldering of the textiles was observed. The height of the carbonized area was measured in millimeters from the lowest edge of the specimen to the upper limit of the carbonized area.
  • Pieces of cotton fabric (100*115 mm, weight per unit area 140 g/qm) are immersed in accordance with Example BB of WO 98/24604 in an impregnating solution composed of 1.35% by weight of dicyandiamide, 11.6% by weight of monoammonium phosphate, 1.87% by weight of phosphoric acid, 0.11% by weight of magnesium hydroxide, 0.13% by weight of ammonium carbonate, 0.04% by weight of additive, and 85% by weight of water, and soaked.
  • the impregnating solution comprises 15% by weight of active substance. After the soaking process, the pieces of fabric are squeezed dry and dried at 110° C. in a drying cabinet.
  • the weight increase due to impregnation is 10% by weight and the phosphorus content is 2.1% by weight.
  • the combustion behavior of the fabric specimen is studied. It does not ignite, exhibits no afterglow, and generates no smoke, and the dimension of the carbonized area is 53 mm (diameter).
  • a coating solution is prepared by taking 8.3 g of the flame retardant solution of Example 22 and making this up to 100 g with demineralized water.
  • a coating solution is prepared by taking 21.2 g of the flame retardant solution of Example 7 and making this up to 100 g with demineralized water.
  • the boards After drying for two days, the boards are exposed at a distance of 14 cm to heat of intensity 1 cal*cm ⁇ 2 *sec ⁇ 1 .
  • a gas flame applied to the board ignites the combustible gases liberated from the board.
  • Example 2 of GB 1 055 555 a layer (400 g/m 2 , corresponding to about 0.5% by weight of phosphorus, based on the weight of board plus coating) of a two-component flame retardant formulation based on dicyandiamide-formaldehyde resin is spread on sprucewood boards (10 ⁇ 10 ⁇ 2 cm). The average ignition time was from 10 to 11 min. Untreated sprucewood boards gave ignition after as little as 25-35 sec.
  • Example 41 As in Example 41, a layer (325 g/m2, corresponding to about 0.5% by weight of phosphorus, based on the weight of board plus coating) of the flame retardant formulation of Example 13 was spread on sprucewood boards. The average ignition time was 15 min.
  • Example 41 a layer (500 g/m2, corresponding to about 0.5% by weight of phosphorus, based on the weight of board plus coating) of the flame retardant formulation of Example 22 was spread on sprucewood boards. The average ignition time was 16 min.
  • Sprucewood boards (10 ⁇ 10 ⁇ 2 cm) with moisture content 19% by weight are coated in an autoclave.
  • the impregnating solution of Example 13 is charged to the autoclave, which is heated at 6.9 bar for 60 min by external electrical heating.
  • the impregnating solution is then discharged and the boards are allowed to drip dry, and are dried at room temperature for a period of 5 days to moisture content below 19% by weight.
  • the amount of flame retardant absorbed was about 3 g.
  • the average ignition time was 16 min.
  • Example 44 Using a method based on Example 44, the impregnating solution of Example 22 was used to impregnate sprucewood boards in an autoclave.
  • the amount of flame retardant absorbed was about 5 g.
  • the average ignition time was 14 min.
  • a sodium diphenylphosphinate solution is prepared by dissolving firstly 42.4 parts by weight of sodium hydroxide and then 231.5 parts by weight of diphenylphosphinic acid in 281.3 parts by weight of water.
  • the technical advantage of the inventive phosphorus-containing flame retardant is its relatively low solubility in water when compared with ammonium-phosphate-based flame retardants.
  • Titanium tetrachloride Lancaster TABLE 1 Dicyan- Formal- Ammonium Ethylene Polyaluminum Aluminum Diethylphos- Na diethyl- Al diethyl- diamide dehyde chloride diamine Water hydroxychloride sulfate phinic acid phosphinate phosphinate Ex. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pts. by wt. pt. by wt. pt. by w

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
US11/093,599 2004-03-30 2005-03-30 Phosphorus-containing flame retardant formulation for cellulose-containing moldings Abandoned US20050222309A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/148,391 US7622517B2 (en) 2004-03-30 2008-04-18 Phosphorus-containing flame retardant formulation for cellulose-containing moldings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004015356A DE102004015356A1 (de) 2004-03-30 2004-03-30 Phosphorhaltige Flammschutzmittelzusammensetzung für cellulosehaltige Materialien
DE102004015356.6 2004-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/148,391 Division US7622517B2 (en) 2004-03-30 2008-04-18 Phosphorus-containing flame retardant formulation for cellulose-containing moldings

Publications (1)

Publication Number Publication Date
US20050222309A1 true US20050222309A1 (en) 2005-10-06

Family

ID=34934421

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/093,599 Abandoned US20050222309A1 (en) 2004-03-30 2005-03-30 Phosphorus-containing flame retardant formulation for cellulose-containing moldings
US12/148,391 Expired - Fee Related US7622517B2 (en) 2004-03-30 2008-04-18 Phosphorus-containing flame retardant formulation for cellulose-containing moldings

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/148,391 Expired - Fee Related US7622517B2 (en) 2004-03-30 2008-04-18 Phosphorus-containing flame retardant formulation for cellulose-containing moldings

Country Status (5)

Country Link
US (2) US20050222309A1 (fr)
EP (1) EP1586619B1 (fr)
JP (1) JP5198721B2 (fr)
DE (1) DE102004015356A1 (fr)
ES (1) ES2396546T3 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050272839A1 (en) * 2004-06-02 2005-12-08 Clariant Gmbh Compression-granulated flame retardant composition
US20060020064A1 (en) * 2004-07-22 2006-01-26 Clariant Gmbh Flame-retardant polymer molding compositions
US20060287418A1 (en) * 2004-07-22 2006-12-21 Clariant Gmbh Nanoparticulate phosphorus-containing flame retardant system
US20070187657A1 (en) * 2006-02-16 2007-08-16 John Griem Flame retardant chemical composition
US20080241529A1 (en) * 2007-03-29 2008-10-02 Clariant International Ltd. Flameproofed adhesive and sealing materials
US20090304939A1 (en) * 2008-06-06 2009-12-10 Metsaliitto Osuuskunta Method of treating wood
WO2015189810A1 (fr) 2014-06-13 2015-12-17 Csir Composition ignifuge liquide
WO2019160909A1 (fr) * 2018-02-14 2019-08-22 Winona Building Products, Llc Emballages adhésifs ignifuges et non fumigènes et produits d'isolation
CN111070356A (zh) * 2019-12-17 2020-04-28 安徽唯码数据科技有限公司 一种家装用木料板材的阻燃处理工艺
CN113493624A (zh) * 2021-07-27 2021-10-12 黑龙江省科学院石油化学研究院 一种生物质阻燃剂、水性阻燃涂料及其制备方法与应用
CN114407152A (zh) * 2022-02-15 2022-04-29 江山欧派门业股份有限公司 一种木竹材阻燃剂及其制备方法
CN114786897A (zh) * 2019-12-13 2022-07-22 有机木材公司 新型木材保护方法和用该方法生产的木材产品
CN115232417A (zh) * 2022-08-08 2022-10-25 江苏立晟德新材料有限公司 一种低烟阻燃的塑料制品半导电pvc护套料

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870412B2 (ja) * 2005-10-31 2012-02-08 小松精練株式会社 繊維・ウレタン樹脂積層物およびその製造方法
JP5309355B2 (ja) * 2006-05-02 2013-10-09 大和化学工業株式会社 繊維の加工方法
JP4969948B2 (ja) * 2006-08-18 2012-07-04 北越紀州製紙株式会社 照明調整具用シート及びそのシートを用いた照明調整具
DE102007005527A1 (de) * 2007-02-03 2008-08-07 Alzchem Trostberg Gmbh Verfahren zur Behandlung von Holzteilen
CN101687387B (zh) 2007-04-17 2013-08-28 世联株式会社 金属包覆织物
WO2012018749A1 (fr) 2010-08-03 2012-02-09 International Paper Company Bande de pâte défibrée ignifugée et son processus de fabrication
US8663427B2 (en) 2011-04-07 2014-03-04 International Paper Company Addition of endothermic fire retardants to provide near neutral pH pulp fiber webs
US8388807B2 (en) 2011-02-08 2013-03-05 International Paper Company Partially fire resistant insulation material comprising unrefined virgin pulp fibers and wood ash fire retardant component
CN103073373A (zh) * 2013-01-21 2013-05-01 华东师范大学 一种α-羟甲基-α-芳基-α-氨基酸衍生物及其制备方法
JP5823600B2 (ja) * 2013-12-26 2015-11-25 花王株式会社 微細セルロース繊維複合体
CN106738141A (zh) * 2016-12-09 2017-05-31 安徽宏翔自动化科技有限公司 一种胶合板的阻燃处理工艺
CN107127848B (zh) * 2017-05-14 2018-12-28 马鞍山市泰博化工科技有限公司 一种阻燃抑烟木材的制备方法
CN107150389A (zh) * 2017-06-05 2017-09-12 安徽信达家居有限公司 一种实木家具护理液
CN109397438A (zh) * 2017-08-18 2019-03-01 四川承美科技有限责任公司 一种阻燃竹材及其制备方法
KR102040102B1 (ko) * 2018-06-18 2019-11-27 이은수 친환경 다기능 방염코팅제 및 그 방염코팅제의 제조방법
CN111906871B (zh) * 2020-08-14 2022-01-14 潍坊恒远新材料科技有限公司 一种木材增强增韧阻燃改性剂及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939107A (en) * 1974-09-06 1976-02-17 Monsanto Company Fire-retardant particle board and binder therefor from aminoplast with ammonium polyphosphate-formaldehyde product
US4073617A (en) * 1976-04-26 1978-02-14 Le Blanc Robert Bruce Water-dilutable solutions of dicyandiamide-formaldehyde-phosphoric acid condensates
US4219456A (en) * 1977-12-21 1980-08-26 Deutsche Gold- Und Silber Scheideanstalt Vormals Roessler Flame retardant agent solution of phosphoric acid containing condensate of guanidine and formaldehyde compatible with formaldehyde resin solutions
US4435533A (en) * 1981-07-30 1984-03-06 Tsolis Alexandros K 4-Hydroxy-5-(substituted phosphinyl)ethyleneureas
US5389309A (en) * 1990-12-21 1995-02-14 Lopez; Richard A. Composition and method for making fire-retardant materials
US6255371B1 (en) * 1999-07-22 2001-07-03 Clariant Gmbh Flame-retardant combination
US6365071B1 (en) * 1996-04-12 2002-04-02 Clariant Gmbh Synergistic flame protection agent combination for thermoplastic polymers
US6617382B1 (en) * 1999-04-30 2003-09-09 Clariant Gmbh Flame-retardant coating for fiber materials
US20040021135A1 (en) * 2000-10-05 2004-02-05 Steenbakkers-Menting Henrica Norbert Alberta Maria Halogen-free flame retarder composition and flame retardant polyamide composition
US20040051087A1 (en) * 2002-09-17 2004-03-18 Clariant Gmbh Fire-protection coating
US20050014875A1 (en) * 2003-07-14 2005-01-20 Clariant Gmbh Flame retardant formulation
US20050143503A1 (en) * 2003-10-07 2005-06-30 Clariant Gmbh Phosphorus-containing flame retardant agglomerates
US20050173684A1 (en) * 2002-07-25 2005-08-11 Clariant Gmbh Flame retardant combination
US7148276B2 (en) * 2002-09-06 2006-12-12 Clariant Gmbh Granular flame-retardant composition
US7208539B2 (en) * 2002-04-16 2007-04-24 Hitachi Chemical Co., Ltd. Thermosetting resin composition, and prepreg and laminated board using the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1055555A (en) 1964-08-04 1967-01-18 Albert Ag Chem Werke Improvements in or relating to fire retardants
JPS4832428B1 (fr) * 1970-03-10 1973-10-05
JPS49109700A (fr) * 1973-02-28 1974-10-18
JPS5065698A (fr) * 1973-10-19 1975-06-03
JPS5610582A (en) * 1979-07-07 1981-02-03 Otsuka Chem Co Ltd Flame retarder and flame-retardant treatment
JPH01198685A (ja) * 1987-10-28 1989-08-10 Dainippon Ink & Chem Inc 木材用難燃剤及び難燃木材
DE4101539A1 (de) * 1991-01-19 1992-07-23 Pfersee Chem Fab Zusammensetzung zur flammfestausruestung von fasermaterialien
JP3630496B2 (ja) * 1996-04-02 2005-03-16 アイカ工業株式会社 木製防火ドアのガラスパネルの嵌め込み構造
NO303725B1 (no) 1996-12-04 1998-08-24 Fireguard Scandinavia As Brannhemmende blanding og framgangsmöte for impregnering av brennbart materiale
JPH11169619A (ja) * 1997-12-09 1999-06-29 Kureha Ltd 非ハロゲン耐炎フィルター
ES2254053T3 (es) * 1999-01-30 2006-06-16 Clariant Produkte (Deutschland) Gmbh Combinacion de agentes ignifugantes para polimeros termoplasticos.
JP2002113017A (ja) 2000-10-05 2002-04-16 Fuji Photo Film Co Ltd レーザ治療装置
DE10104277B4 (de) * 2001-01-31 2008-02-21 Papcel - Papier Und Cellulose, Technologie Und Handels-Gmbh Flammfestes Vlies, das Celluloseregeneratfasern umfasst
DE10137930A1 (de) * 2001-08-07 2003-02-20 Basf Ag Halogenfreie flammgeschützte Polyester
WO2003046084A1 (fr) * 2001-11-30 2003-06-05 Polyplastics Co., Ltd. Composition de resine ignifuge

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939107A (en) * 1974-09-06 1976-02-17 Monsanto Company Fire-retardant particle board and binder therefor from aminoplast with ammonium polyphosphate-formaldehyde product
US4073617A (en) * 1976-04-26 1978-02-14 Le Blanc Robert Bruce Water-dilutable solutions of dicyandiamide-formaldehyde-phosphoric acid condensates
US4219456A (en) * 1977-12-21 1980-08-26 Deutsche Gold- Und Silber Scheideanstalt Vormals Roessler Flame retardant agent solution of phosphoric acid containing condensate of guanidine and formaldehyde compatible with formaldehyde resin solutions
US4435533A (en) * 1981-07-30 1984-03-06 Tsolis Alexandros K 4-Hydroxy-5-(substituted phosphinyl)ethyleneureas
US5389309A (en) * 1990-12-21 1995-02-14 Lopez; Richard A. Composition and method for making fire-retardant materials
US6365071B1 (en) * 1996-04-12 2002-04-02 Clariant Gmbh Synergistic flame protection agent combination for thermoplastic polymers
US6617382B1 (en) * 1999-04-30 2003-09-09 Clariant Gmbh Flame-retardant coating for fiber materials
US6255371B1 (en) * 1999-07-22 2001-07-03 Clariant Gmbh Flame-retardant combination
US20040021135A1 (en) * 2000-10-05 2004-02-05 Steenbakkers-Menting Henrica Norbert Alberta Maria Halogen-free flame retarder composition and flame retardant polyamide composition
US7208539B2 (en) * 2002-04-16 2007-04-24 Hitachi Chemical Co., Ltd. Thermosetting resin composition, and prepreg and laminated board using the same
US20050173684A1 (en) * 2002-07-25 2005-08-11 Clariant Gmbh Flame retardant combination
US7148276B2 (en) * 2002-09-06 2006-12-12 Clariant Gmbh Granular flame-retardant composition
US20040051087A1 (en) * 2002-09-17 2004-03-18 Clariant Gmbh Fire-protection coating
US7144527B2 (en) * 2002-09-17 2006-12-05 Clariant Gmbh Fire-protection coating
US20050014875A1 (en) * 2003-07-14 2005-01-20 Clariant Gmbh Flame retardant formulation
US20050143503A1 (en) * 2003-10-07 2005-06-30 Clariant Gmbh Phosphorus-containing flame retardant agglomerates

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050272839A1 (en) * 2004-06-02 2005-12-08 Clariant Gmbh Compression-granulated flame retardant composition
US20060020064A1 (en) * 2004-07-22 2006-01-26 Clariant Gmbh Flame-retardant polymer molding compositions
US20060287418A1 (en) * 2004-07-22 2006-12-21 Clariant Gmbh Nanoparticulate phosphorus-containing flame retardant system
US7736549B2 (en) * 2006-02-16 2010-06-15 John Griem Flame retardant chemical composition
US20070187657A1 (en) * 2006-02-16 2007-08-16 John Griem Flame retardant chemical composition
US20080241529A1 (en) * 2007-03-29 2008-10-02 Clariant International Ltd. Flameproofed adhesive and sealing materials
US20090304939A1 (en) * 2008-06-06 2009-12-10 Metsaliitto Osuuskunta Method of treating wood
US8771551B2 (en) * 2008-06-06 2014-07-08 Metsäliitto Osuuskunta Method of treating wood
WO2015189810A1 (fr) 2014-06-13 2015-12-17 Csir Composition ignifuge liquide
WO2019160909A1 (fr) * 2018-02-14 2019-08-22 Winona Building Products, Llc Emballages adhésifs ignifuges et non fumigènes et produits d'isolation
CN114786897A (zh) * 2019-12-13 2022-07-22 有机木材公司 新型木材保护方法和用该方法生产的木材产品
CN111070356A (zh) * 2019-12-17 2020-04-28 安徽唯码数据科技有限公司 一种家装用木料板材的阻燃处理工艺
CN113493624A (zh) * 2021-07-27 2021-10-12 黑龙江省科学院石油化学研究院 一种生物质阻燃剂、水性阻燃涂料及其制备方法与应用
CN114407152A (zh) * 2022-02-15 2022-04-29 江山欧派门业股份有限公司 一种木竹材阻燃剂及其制备方法
CN115232417A (zh) * 2022-08-08 2022-10-25 江苏立晟德新材料有限公司 一种低烟阻燃的塑料制品半导电pvc护套料

Also Published As

Publication number Publication date
JP5198721B2 (ja) 2013-05-15
EP1586619B1 (fr) 2012-11-28
US7622517B2 (en) 2009-11-24
US20090005471A1 (en) 2009-01-01
EP1586619A3 (fr) 2006-01-04
JP2005281698A (ja) 2005-10-13
DE102004015356A1 (de) 2005-10-20
ES2396546T3 (es) 2013-02-22
EP1586619A2 (fr) 2005-10-19

Similar Documents

Publication Publication Date Title
US7622517B2 (en) Phosphorus-containing flame retardant formulation for cellulose-containing moldings
RU2012120394A (ru) Огнестойкий текстиль
EP1825051A2 (fr) Compositions pour le traitement ignifuge de matériaux fibreux.
US4210452A (en) Novel intumescent composition
IE51748B1 (en) Improvements in or relating to fire retardant compositions
US4226907A (en) Flame retardant article
US4345002A (en) Novel intumescent composition and flame retardant articles treated therewith
US4241145A (en) Novel intumescent composition
AU2011326615B2 (en) Methods for making and using amino-aldehyde resins
US4221837A (en) Flame retardant article
US4205022A (en) 2,2-Bis(haloalkyl)-3-hydroxy-1-propyl phosphoric acids
US4201677A (en) Intumescent composition comprising cyclic nitrogen compound and phosphorus compounds
US4265791A (en) Novel phosphoric acid
CN111484520A (zh) 一种乙二胺四亚甲基膦酸铝阻燃剂及其制备方法和用途
JP6801868B2 (ja) 難燃性木質材料及びその製造方法
US3247015A (en) Flameproofing of textile materials
EP1580320A2 (fr) Composition pour des matériaux poreux
JP7090920B2 (ja) 木質材料用難燃剤及び難燃性木質材料
US4145547A (en) Ureidoalkylphosphonates and their use for the flameproofing of textiles
US10731290B2 (en) Liquid flame retardant composition
US4044006A (en) Oxazine containing ureidoalkylphosphonates
Castellano et al. 3B1_0149_ A NOVEL NITROGEN-CONTAINING CARBOXYLFUNCTIONALIZED ORGANOPHOSPHORUS SYSTEM FOR FLAME RETARDANT FINISHING OF COTTON FABRICS
JPH09202882A (ja) 難燃剤組成物

Legal Events

Date Code Title Description
AS Assignment

Owner name: CLARIANT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAUER, HARALD;KRAUSE, WERNER;SICKEN, MARTIN;AND OTHERS;REEL/FRAME:016445/0921;SIGNING DATES FROM 20050121 TO 20050126

AS Assignment

Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:CLARIANT GMBH;REEL/FRAME:018640/0152

Effective date: 20051128

Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:CLARIANT GMBH;REEL/FRAME:018640/0152

Effective date: 20051128

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION