US20050017160A1 - Arrangement for optimizing the pulse shape in a laser scanning microscope - Google Patents

Arrangement for optimizing the pulse shape in a laser scanning microscope Download PDF

Info

Publication number
US20050017160A1
US20050017160A1 US10/916,813 US91681304A US2005017160A1 US 20050017160 A1 US20050017160 A1 US 20050017160A1 US 91681304 A US91681304 A US 91681304A US 2005017160 A1 US2005017160 A1 US 2005017160A1
Authority
US
United States
Prior art keywords
spectral components
manipulator means
phase modulation
microscope
optimized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/916,813
Other languages
English (en)
Inventor
Ralf Wolleschensky
Thomas Feurer
Roland Sauerbrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Microscopy GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7913413&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20050017160(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/916,813 priority Critical patent/US20050017160A1/en
Publication of US20050017160A1 publication Critical patent/US20050017160A1/en
Priority to US11/405,908 priority patent/US7411166B2/en
Assigned to CARL ZEISS MICROSCOPY GMBH reassignment CARL ZEISS MICROSCOPY GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARL ZEISS JENA GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4244Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in wavelength selecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1804Plane gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping

Definitions

  • nonlinear contrasts such as two-photon absorption or second harmonic generation (SHG) are used to an increasing extent in microscopy, e.g., for examination of biological preparations.
  • SHG second harmonic generation
  • Short pulse lasers supply light pulses, for example, of several 10 fs at a repetition rate of several 10 MHz. Accordingly, they have the advantage that they emit extremely high peak pulse energies accompanied at the same time by low average output.
  • a device for coupling a short laser into a microscope beam comprises a dispersive element for spatially separating the spectral components of the laser radiation, means for manipulating individual spectral components and another dispersive element for spatially superimposing the manipulated individual spectral components.
  • FIG. 1 is a block diagram of the arrangement in accordance with the invention.
  • FIG. 2 a is a schematic representation of a 4f system
  • FIG. 2 b is a schematic representation of a folded 4 f system
  • FIG. 3 shows schematically the dispersive splitting and continuation of a red component r and a blue component b passing the manipulator and the wavelength shape along a direction x to the manipulator.
  • the light pulses proceed from the short pulse laser KL to the pulse shaper PF.
  • the latter is shown schematically in FIG. 2 a .
  • the incident beam (beam in) is spatially split into the spectral components of the light pulses in a first dispersive element ( 1 ) comprising, e.g., a grating or prisms.
  • a Fourier plane is then generated by means of an achromatically corrected lens or lens group L 1 ( FIG. 2 ).
  • This plane is characterized in that the individual spectral components of the light pulses are spatially separated.
  • the transformation into this plane corresponds to a Fourier transform.
  • a spatial light modulator ( 2 ) (SLM) is used in transmission.
  • the modulator is also referred to herein as a manipulator of spectral components.
  • it comprises a matrix of nematic liquid crystals (e.g., SLM-S160/h, Jenoptik LOS) in helical or parallel arrangement.
  • the transmission and phase displacement of the corresponding spectral components can be adjusted by a corresponding electronic arrangement of the individual points of the matrix.
  • the spatial separation of the spectral components of the light pulses is then canceled by a second identical lens L 2 and a second dispersive element ( 3 ) (beam out) identical to the first dispersive element.
  • This process corresponds to the inverse transform in the time domain. Therefore, the time behavior of the light pulses can be controlled by means of phase modulation or amplitude modulation.
  • the arrangement of 2 gratings and 2 lenses is known from the literature as a 4f system.
  • FIG. 2 b A simplified arrangement for the pulse shaper is shown in FIG. 2 b .
  • a mirror S is arranged right after the modulator ( 2 ) so that the beam runs back into itself with a small vertical offset or at a small angle.
  • this arrangement makes do with few optical components;
  • the light pulses traverse the modulator ( 2 ) twice, so that the magnitude of the phase/amplitude modulation is doubled.
  • FIG. 3 shows schematically the dispersive splitting and combination of a red component r and a blue component b passing the manipulator 2 and the wavelength shape along a direction X to the manipulator 2 .
  • the light pulses pass via corresponding optical components via the microscope M and the objective V into the specimen P.
  • a nonlinear effect is excited in the specimen P because of the sharp focussing through the objective and the high peak pulse power of the light pulses. This nonlinear effect is recorded by the detector ( 4 ). Therefore, a corresponding measurement signal is available that can be optimized by electronically controlling the pulse shaper by means of regulation R.
  • the two-photon fluorescence signal (S) can be described as follows: S ⁇ P avg 2 ⁇ 2 ⁇ A 2 , where P avg is the average output and T is the pulse length of the light pulses at the location of the specimen. A stands for the beam cross section at the location of the specimen interaction.
  • the pulse length is influenced, i.e., usually lengthened, by the following factors:
  • the pulse shaper PF and accordingly the time behavior of the light pulses, is therefore adjusted by regulation in real time depending on the above-mentioned variables, wherein the two-photon fluorescence signal functions as a measured quantity. Essentially the pulse length and the average output at the location of specimen interaction are optimized by the pulse shaper.
  • the interaction cross sections of the utilized dyes are dependent on the time behavior of the light pulses. Accordingly, it is possible to optimize the fluorescence signal for individual dyes, wherein the fluorescence of other dyes is simultaneously suppressed. This is known in the literature as coherent control. Thus, by feeding back the measured quantity (in this case, the two-photon fluorescence signal), it is possible to adjust the time behavior of the light pulses by phase modulation or amplitude modulation in such a way that the corresponding measured quantity is optimized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
US10/916,813 1999-06-30 2004-08-12 Arrangement for optimizing the pulse shape in a laser scanning microscope Abandoned US20050017160A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/916,813 US20050017160A1 (en) 1999-06-30 2004-08-12 Arrangement for optimizing the pulse shape in a laser scanning microscope
US11/405,908 US7411166B2 (en) 1999-06-30 2006-04-18 Arrangement for optimizing the pulse shape in a laser scanning microscope

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19930532.3 1999-06-30
DE19930532A DE19930532C2 (de) 1999-06-30 1999-06-30 Anordnung zur Optimierung der Pulsform in einem Laser-Scanning-Mikroskop
US60764300A 2000-06-30 2000-06-30
US10/916,813 US20050017160A1 (en) 1999-06-30 2004-08-12 Arrangement for optimizing the pulse shape in a laser scanning microscope

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US60764300A Continuation 1999-06-30 2000-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/405,908 Continuation US7411166B2 (en) 1999-06-30 2006-04-18 Arrangement for optimizing the pulse shape in a laser scanning microscope

Publications (1)

Publication Number Publication Date
US20050017160A1 true US20050017160A1 (en) 2005-01-27

Family

ID=7913413

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/916,813 Abandoned US20050017160A1 (en) 1999-06-30 2004-08-12 Arrangement for optimizing the pulse shape in a laser scanning microscope
US11/405,908 Expired - Fee Related US7411166B2 (en) 1999-06-30 2006-04-18 Arrangement for optimizing the pulse shape in a laser scanning microscope

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/405,908 Expired - Fee Related US7411166B2 (en) 1999-06-30 2006-04-18 Arrangement for optimizing the pulse shape in a laser scanning microscope

Country Status (4)

Country Link
US (2) US20050017160A1 (enrdf_load_stackoverflow)
JP (1) JP2001066253A (enrdf_load_stackoverflow)
DE (1) DE19930532C2 (enrdf_load_stackoverflow)
GB (1) GB2352827B (enrdf_load_stackoverflow)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050243313A1 (en) * 2002-05-21 2005-11-03 Erwin Neher Method and device for conducting the spectral differentiating, imaging measurement of fluorescent light
US20060152791A1 (en) * 2002-12-19 2006-07-13 Ralf Wolleschensky Method and arrangement for optical examination or processing of a sample
US20070268546A1 (en) * 2006-05-16 2007-11-22 Bojan Resan Adjustable pulse-shaper
US20080170218A1 (en) * 2005-02-14 2008-07-17 Board Of Trustees Of Michigan State University Ultra-Fast Laser System
US20080304127A1 (en) * 2007-06-11 2008-12-11 Bojan Resan Non-fourier pulse-shapers including a combined pulse-shaper and pulse-compressor
US20090122819A1 (en) * 2001-01-30 2009-05-14 Board Of Trustees Operating Michigan State Univers Laser Pulse Shaping System
US20090257464A1 (en) * 2001-01-30 2009-10-15 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US20090256071A1 (en) * 2001-01-30 2009-10-15 Board Of Trustees Operating Michigan State University Laser and environmental monitoring method
US20090296744A1 (en) * 2005-11-30 2009-12-03 Board Of Trustees Of Michigan State University Laser Based Identification of Molecular Characteristics
EP2337489A1 (en) 2008-09-25 2011-06-29 The Trustees of Columbia University in the City of New York Devices, apparatus and method for providing photostimulation and imaging of structures
US20110211600A1 (en) * 2010-03-01 2011-09-01 Board Of Trustees Of Michigan State University Laser system for output manipulation
US8208505B2 (en) 2001-01-30 2012-06-26 Board Of Trustees Of Michigan State University Laser system employing harmonic generation
US8861075B2 (en) 2009-03-05 2014-10-14 Board Of Trustees Of Michigan State University Laser amplification system
CN115685574A (zh) * 2022-11-24 2023-02-03 深圳市启扬光学科技有限公司 多通道谱线筛选及宽度调制的装置和方法
EP4198613A4 (en) * 2020-09-16 2023-11-22 Femtosecond Research Center Co., Ltd. LASER PULSE SHAPING APPARATUS AND METHOD AS WELL AS PULSE SHAPERS AND OPTICAL SYSTEM

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973936B2 (en) 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
JP3757854B2 (ja) 2001-12-06 2006-03-22 株式会社島津製作所 複数の蛍光物質を含む試料の分析方法及び装置
JP3915651B2 (ja) * 2002-10-09 2007-05-16 株式会社島津製作所 複数の蛍光物質を含む試料の分析方法及び装置
US7256885B2 (en) * 2003-01-29 2007-08-14 Yeda Research And Development Company Ltd. Coherently controlled nonlinear Raman spectroscopy and microscopy
DE102005020543A1 (de) * 2005-05-03 2006-11-09 Carl Zeiss Jena Gmbh Verfahren und Vorrichtung zur einstellbaren Veränderung von Licht
DE102005032041A1 (de) * 2005-07-08 2007-01-18 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zum Ändern einer optischen und/oder mechanischen Eigenschaft einer in ein Auge implantierten Linse
WO2007145702A2 (en) 2006-04-10 2007-12-21 Board Of Trustees Of Michigan State University Laser material processing systems and methods with, in particular, use of a hollow waveguide for broadening the bandwidth of the pulse above 20 nm
WO2008011059A1 (en) * 2006-07-20 2008-01-24 Board Of Trustees Of Michigan State University Laser plasmonic system
DE102007025821A1 (de) * 2007-06-02 2008-12-04 Carl Zeiss Microimaging Gmbh Anordnung und Verfahren zur zeitlichen Einstellung der Pulse eines Kurzpulslasers
US8311069B2 (en) 2007-12-21 2012-11-13 Board Of Trustees Of Michigan State University Direct ultrashort laser system
FR2930031A1 (fr) * 2008-04-14 2009-10-16 Centre Nat Rech Scient Dispositif et procede d'analyse exaltee d'un echantillon de particules.
US8675699B2 (en) 2009-01-23 2014-03-18 Board Of Trustees Of Michigan State University Laser pulse synthesis system
DE102009060793A1 (de) 2009-12-22 2011-07-28 Carl Zeiss Microlmaging GmbH, 07745 Hochauflösendes Mikroskop und Verfahren zur zwei- oder dreidimensionalen Positionsbestimmung von Objekten
DE102010018967B4 (de) 2010-04-29 2021-11-04 Carl Zeiss Microscopy Gmbh Anordnungen und Verfahren zur nichtlinearen Mikroskopie
GB201217171D0 (en) * 2012-08-23 2012-11-07 Isis Innovation Stimulated emission depletion microscopy
JP6276749B2 (ja) * 2013-03-06 2018-02-07 浜松ホトニクス株式会社 蛍光受光装置および蛍光受光方法
JP6213293B2 (ja) * 2014-02-18 2017-10-18 ソニー株式会社 半導体レーザ装置組立体
WO2018089839A1 (en) 2016-11-10 2018-05-17 The Trustees Of Columbia University In The City Of New York Rapid high-resolution imaging methods for large samples
DE102019118446A1 (de) * 2019-07-08 2021-01-14 Laser-Laboratorium Göttingen e.V. Verfahren und Mikroskop mit einer Korrekturvorrichtung zur Korrektur von aberrationsinduzierten Abbildungsfehlern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995281A (en) * 1997-04-09 1999-11-30 Carl Zeiss Jena Gmbh Device for coupling the radiation of short-pulse lasers in an optical beam path of a microscope
US6327068B1 (en) * 1998-05-27 2001-12-04 Yeda Research And Development Co. Ltd. Adaptive pulse compressor
US6930779B2 (en) * 2001-11-06 2005-08-16 Mcgrew Stephen P. Quantum resonance analytical instrument

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791771B2 (ja) * 1987-04-17 1998-08-27 日本電信電話株式会社 光パルス発生回路およびスペクトル測定装置
DE3915421C2 (de) * 1989-05-11 1995-03-02 Bayer Ag Vorrichtung zur Messung der Fluoreszenzanregung biologischer Zellen bei zwei verschiedenen Wellenlängen
US5090807A (en) * 1990-01-10 1992-02-25 Environmental Research Institute Of Michigan Real time optical pre-detection processing of multispectral image data
JPH03294815A (ja) * 1990-04-13 1991-12-26 Nippon Telegr & Teleph Corp <Ntt> 極短光パルス供給装置
JPH04296639A (ja) * 1991-03-26 1992-10-21 Nikon Corp 光エコー測定装置
JP2660613B2 (ja) * 1991-08-23 1997-10-08 富士写真フイルム株式会社 共焦点走査型顕微鏡
DE4221063C2 (de) * 1992-06-26 1994-06-01 Thomas Dr Heiden Optisches System für Auflicht-Fluoreszenzmikroskop zur Beobachtung mehrer Fluoreszenzvorgänge
US5414540A (en) * 1993-06-01 1995-05-09 Bell Communications Research, Inc. Frequency-selective optical switch employing a frequency dispersive element, polarization dispersive element and polarization modulating elements
DE4330347C2 (de) * 1993-09-08 1998-04-09 Leica Lasertechnik Verwendung einer Vorrichtung zur Selektion und Detektion mindestens zweier Spektralbereiche eines Lichtstrahls
JPH0943147A (ja) * 1995-07-28 1997-02-14 Bunshi Bio Photonics Kenkyusho:Kk 暗視野落射蛍光顕微鏡装置
US5748308A (en) * 1996-02-02 1998-05-05 Abbott Laboratories Programmable standard for use in an apparatus and process for the noninvasive measurement of optically absorbing compounds
DE19622359B4 (de) * 1996-06-04 2007-11-22 Carl Zeiss Jena Gmbh Vorrichtung zur Einkopplung der Strahlung von Kurzpulslasern in einem mikroskopischen Strahlengang
JP3917731B2 (ja) * 1996-11-21 2007-05-23 オリンパス株式会社 レーザ走査顕微鏡
JPH10318924A (ja) * 1997-05-19 1998-12-04 Olympus Optical Co Ltd パルスレーザを備えた光学装置
DE19733193B4 (de) * 1997-08-01 2005-09-08 Carl Zeiss Jena Gmbh Mikroskop mit adaptiver Optik
JPH11101944A (ja) * 1997-09-26 1999-04-13 Satoru Toyooka 光源装置
ATE272224T1 (de) * 1997-11-17 2004-08-15 Max Planck Gesellschaft Konfokales spektroskopiesystem und -verfahren
DE19835072A1 (de) * 1998-08-04 2000-02-10 Zeiss Carl Jena Gmbh Anordnung zur Beleuchtung und/oder Detektion in einem Mikroskop
WO2002061799A2 (en) * 2001-01-30 2002-08-08 Board Of Trustees Operating Michigan State University Control system and apparatus for use with laser excitation or ionization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995281A (en) * 1997-04-09 1999-11-30 Carl Zeiss Jena Gmbh Device for coupling the radiation of short-pulse lasers in an optical beam path of a microscope
US6327068B1 (en) * 1998-05-27 2001-12-04 Yeda Research And Development Co. Ltd. Adaptive pulse compressor
US6930779B2 (en) * 2001-11-06 2005-08-16 Mcgrew Stephen P. Quantum resonance analytical instrument

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8265110B2 (en) 2001-01-30 2012-09-11 Board Of Trustees Operating Michigan State University Laser and environmental monitoring method
US20090257464A1 (en) * 2001-01-30 2009-10-15 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US8208505B2 (en) 2001-01-30 2012-06-26 Board Of Trustees Of Michigan State University Laser system employing harmonic generation
US20090256071A1 (en) * 2001-01-30 2009-10-15 Board Of Trustees Operating Michigan State University Laser and environmental monitoring method
US20090122819A1 (en) * 2001-01-30 2009-05-14 Board Of Trustees Operating Michigan State Univers Laser Pulse Shaping System
US8208504B2 (en) 2001-01-30 2012-06-26 Board Of Trustees Operation Michigan State University Laser pulse shaping system
US8300669B2 (en) * 2001-01-30 2012-10-30 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US20050243313A1 (en) * 2002-05-21 2005-11-03 Erwin Neher Method and device for conducting the spectral differentiating, imaging measurement of fluorescent light
US7304733B2 (en) * 2002-05-21 2007-12-04 Max-Planck-Gesellschaft Method and device for conducting the spectral differentiating, imaging measurement of fluorescent light
US20060152791A1 (en) * 2002-12-19 2006-07-13 Ralf Wolleschensky Method and arrangement for optical examination or processing of a sample
US7612884B2 (en) 2002-12-19 2009-11-03 Carl Zeiss Jena Gmbh Method and arrangement for optical examination or processing of a sample
US20080170218A1 (en) * 2005-02-14 2008-07-17 Board Of Trustees Of Michigan State University Ultra-Fast Laser System
US8633437B2 (en) 2005-02-14 2014-01-21 Board Of Trustees Of Michigan State University Ultra-fast laser system
US8618470B2 (en) 2005-11-30 2013-12-31 Board Of Trustees Of Michigan State University Laser based identification of molecular characteristics
US20090296744A1 (en) * 2005-11-30 2009-12-03 Board Of Trustees Of Michigan State University Laser Based Identification of Molecular Characteristics
US20080310004A1 (en) * 2006-05-16 2008-12-18 Bojan Resan Adjustable pulse-shaper
US7430071B2 (en) 2006-05-16 2008-09-30 Coherent, Inc. Adjustable pulse-shaper
US20070268546A1 (en) * 2006-05-16 2007-11-22 Bojan Resan Adjustable pulse-shaper
US7542192B2 (en) 2006-05-16 2009-06-02 Coherent, Inc. Adjustable pulse-shaper
US7688493B2 (en) 2007-06-11 2010-03-30 Coherent, Inc. Non-fourier pulse-shapers including a combined pulse-shaper and pulse-compressor
US20080304127A1 (en) * 2007-06-11 2008-12-11 Bojan Resan Non-fourier pulse-shapers including a combined pulse-shaper and pulse-compressor
US9846313B2 (en) 2008-09-25 2017-12-19 The Trustees Of Columbia University In The City Of New York Devices, apparatus and method for providing photostimulation and imaging of structures
EP2337489A1 (en) 2008-09-25 2011-06-29 The Trustees of Columbia University in the City of New York Devices, apparatus and method for providing photostimulation and imaging of structures
US11531207B2 (en) 2008-09-25 2022-12-20 The Trustees Of Columbia University In The City Of New York Devices, apparatus and method for providing photostimulation and imaging of structures
US8861075B2 (en) 2009-03-05 2014-10-14 Board Of Trustees Of Michigan State University Laser amplification system
US8630322B2 (en) 2010-03-01 2014-01-14 Board Of Trustees Of Michigan State University Laser system for output manipulation
US20110211600A1 (en) * 2010-03-01 2011-09-01 Board Of Trustees Of Michigan State University Laser system for output manipulation
EP4198613A4 (en) * 2020-09-16 2023-11-22 Femtosecond Research Center Co., Ltd. LASER PULSE SHAPING APPARATUS AND METHOD AS WELL AS PULSE SHAPERS AND OPTICAL SYSTEM
CN115685574A (zh) * 2022-11-24 2023-02-03 深圳市启扬光学科技有限公司 多通道谱线筛选及宽度调制的装置和方法

Also Published As

Publication number Publication date
GB0015912D0 (en) 2000-08-23
GB2352827B (en) 2003-11-19
US7411166B2 (en) 2008-08-12
US20060186327A1 (en) 2006-08-24
DE19930532A1 (de) 2001-01-11
GB2352827A (en) 2001-02-07
DE19930532C2 (de) 2002-03-28
JP2001066253A (ja) 2001-03-16

Similar Documents

Publication Publication Date Title
US7411166B2 (en) Arrangement for optimizing the pulse shape in a laser scanning microscope
US6356088B1 (en) Highly compact laser scanning microscope with integrated short-pulse laser
US6178041B1 (en) Device for coupling the radiation of short-pulse lasers in an optical beam path of a microscope
US4972423A (en) Method and apparatus for generating ultrashort light pulses
USRE41666E1 (en) Process and arrangement for confocal microscopy
EP2211430A2 (en) Laser autocorrelation system
JP5248804B2 (ja) 超短光パルスの光ファイバ伝送装置、およびこれを有する光学システム
US7525724B2 (en) Laser system for photonic excitation investigation
US7098447B2 (en) Light source for the illumination of microscopic specimens and scanning microscope system
US6269206B1 (en) Microscope with a short pulse laser which is coupled in via a light-conducting fiber
US7005654B2 (en) Method for microscopy, and microscope
EP2149070B1 (de) Durchstimmbares akusto-optisches filterelement
JP5203063B2 (ja) 多光子励起測定装置
DE10042840A1 (de) Vorrichtung und Verfahren zur Anregung von Fluoreszenzmikroskopmarkern bei der Mehrphotonen-Rastermikroskopie
JP2007504499A (ja) 複数の微細構造光学要素を有する光源
EP1252965B1 (en) Transparent medium processing device
EP1835323B1 (en) Fluorescence microscope and observation method
US11041760B2 (en) Optical measurement device and optical measurement method
US10837906B2 (en) Measurement device and irradiation device
EP2281182A1 (de) Vorrichtung und verfahren zur kohärenten mehr-dimensionalen optischen spektroskopie
US7847933B2 (en) Cars microscopy and spectroscopy using ultrafast chirped pulses
US7612884B2 (en) Method and arrangement for optical examination or processing of a sample
Müller et al. Construction and performance of a custom-built two-photon laser scanning system
GB2410122A (en) Tunable source of electromagnetic radiation
WO2005119328A1 (en) Improved scanning microscope source

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CARL ZEISS MICROSCOPY GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARL ZEISS JENA GMBH;REEL/FRAME:030801/0205

Effective date: 20130704