US20040198992A1 - Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition - Google Patents
Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition Download PDFInfo
- Publication number
- US20040198992A1 US20040198992A1 US10/815,089 US81508904A US2004198992A1 US 20040198992 A1 US20040198992 A1 US 20040198992A1 US 81508904 A US81508904 A US 81508904A US 2004198992 A1 US2004198992 A1 US 2004198992A1
- Authority
- US
- United States
- Prior art keywords
- range
- mmole
- hia
- catalyst composition
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 164
- 239000000203 mixture Substances 0.000 title claims abstract description 94
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 73
- 239000002184 metal Substances 0.000 claims abstract description 73
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 31
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims abstract description 31
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 29
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 25
- 239000011591 potassium Substances 0.000 claims abstract description 25
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 17
- 239000010937 tungsten Substances 0.000 claims abstract description 17
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 14
- 239000011733 molybdenum Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 67
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 48
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 25
- 229910052792 caesium Inorganic materials 0.000 claims description 23
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 23
- 150000002739 metals Chemical class 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 229910052709 silver Inorganic materials 0.000 claims description 22
- 239000004332 silver Substances 0.000 claims description 22
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 21
- 239000005977 Ethylene Substances 0.000 claims description 21
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 19
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 10
- 229910052744 lithium Inorganic materials 0.000 claims description 10
- 239000003607 modifier Substances 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 239000011574 phosphorus Substances 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 239000011593 sulfur Substances 0.000 claims description 10
- 239000001569 carbon dioxide Substances 0.000 claims description 9
- 150000004820 halides Chemical class 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 229910017464 nitrogen compound Inorganic materials 0.000 claims 1
- 150000002830 nitrogen compounds Chemical class 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- 229910001868 water Inorganic materials 0.000 description 26
- 239000007789 gas Substances 0.000 description 17
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 15
- 230000000977 initiatory effect Effects 0.000 description 15
- 238000006735 epoxidation reaction Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000005470 impregnation Methods 0.000 description 8
- -1 alkaline earth metal carbonates Chemical class 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229960003750 ethyl chloride Drugs 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229930195734 saturated hydrocarbon Natural products 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 229910052701 rubidium Inorganic materials 0.000 description 3
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Chemical group 0.000 description 2
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- JSZOAYXJRCEYSX-UHFFFAOYSA-N 1-nitropropane Chemical compound CCC[N+]([O-])=O JSZOAYXJRCEYSX-UHFFFAOYSA-N 0.000 description 1
- FGLBSLMDCBOPQK-UHFFFAOYSA-N 2-nitropropane Chemical compound CC(C)[N+]([O-])=O FGLBSLMDCBOPQK-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- GEVPUGOOGXGPIO-UHFFFAOYSA-N oxalic acid;dihydrate Chemical compound O.O.OC(=O)C(O)=O GEVPUGOOGXGPIO-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000000963 oxybis(methylene) group Chemical group [H]C([H])(*)OC([H])([H])* 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- XNGYKPINNDWGGF-UHFFFAOYSA-L silver oxalate Chemical compound [Ag+].[Ag+].[O-]C(=O)C([O-])=O XNGYKPINNDWGGF-UHFFFAOYSA-L 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/18—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
- A01N37/20—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof containing the group, wherein Cn means a carbon skeleton not containing a ring; Thio analogues thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/34—Nitriles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/36—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
- A01N37/38—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system
- A01N37/40—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system having at least one carboxylic group or a thio analogue, or a derivative thereof, and one oxygen or sulfur atom attached to the same aromatic ring system
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N47/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
- A01N47/40—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
- A01N47/46—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides containing —N=C=S groups
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N47/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
- A01N47/40—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
- A01N47/48—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides containing —S—C≡N groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/688—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/64—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
- C07C233/76—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/42—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/44—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
- C07C235/46—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/49—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C255/57—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C331/00—Derivatives of thiocyanic acid or of isothiocyanic acid
- C07C331/02—Thiocyanates
- C07C331/12—Thiocyanates having sulfur atoms of thiocyanate groups bound to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms, not being part of nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C331/00—Derivatives of thiocyanic acid or of isothiocyanic acid
- C07C331/16—Isothiocyanates
- C07C331/18—Isothiocyanates having isothiocyanate groups bound to acyclic carbon atoms
- C07C331/20—Isothiocyanates having isothiocyanate groups bound to acyclic carbon atoms of a saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/03—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
- C07D301/04—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
- C07D301/08—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
- C07D301/10—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/612—Surface area less than 10 m2/g
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the invention relates to a catalyst composition suitable for the epoxidation of ethylene, a process for preparing the catalyst composition and a process for the epoxidation of ethylene in which the catalyst composition is used.
- Such highly selective catalysts may comprise as their active components silver, and one or more dopants, such as rhenium, tungsten or molybdenum or a nitrate- or nitrite-forming compound, or components comprising rhenium, tungsten or molybdenum or a nitrate- or nitrite-forming compound.
- the high selectivity catalysts comprise as additional dopants one or more Group IA metals, or one or more components comprising Group IA metals.
- Preferred Group IA metals are the higher Group IA metals having an atomic number of at least 37, for example rubidium and, in particular, cesium.
- the Group IA metals having an atomic number of at least 37 may hereinafter be referred to by the term “higher Group IA metals”.
- Highly selective catalysts are disclosed, for example, in U.S. Pat. No. 4,761,394 and U.S. Pat. No. 4,766,105, and in several subsequent patent publications.
- the highly selective catalysts are in particular subject to an aging-related performance decline during normal operation and they tend to be exchanged more frequently than the conventional catalysts.
- the aging manifests itself by a reduction in the activity of the catalyst.
- the reaction temperature is increased in order to compensate for the reduction in activity.
- the reaction temperature may be increased until it becomes undesirably high, at which point in time the catalyst is deemed to be at the end of its lifetime and would need to be exchanged. It goes without saying that from an economical point of view it is highly desirable to extend the lifetime of the catalyst as much as possible.
- This invention relates to high selectivity catalysts comprising a higher Group IA metal.
- the initial activity of the catalysts, the performance in the course of the catalysts' lifetime and the lifetime itself are improved when in the preparation of the catalysts a portion of the higher Group IA metal is substituted for potassium.
- the present invention provides a catalyst composition
- a catalyst composition comprising a support having a surface area of at least 500 m 2 /kg, and deposited on the support:
- a metal or component comprising rhenium, tungsten, molybdenum or a nitrate- or nitrite-forming compound
- a Group IA metal or component comprising a Group IA metal having an atomic number of at least 37, and in addition potassium,
- the value of the expression (Q K /R)+Q HIA is in the range of from 1.5 to 30 mmole/kg, wherein Q HIA and Q K represent the quantities in mmole/kg of the Group IA metal having an atomic number of at least 37 and potassium, respectively, present in the catalyst composition, the ratio of Q HIA to Q K is at least 1:1, the value of Q K is at least 0.01 mmole/kg, and R is a dimensionless number in the range of from 1.5 to 5, the units mmole/kg being relative to the weight of the catalyst composition.
- the invention also provides a process for preparing a catalyst composition, which process comprises selecting a support having a surface area of at least 500 m 2 /kg, and depositing on the support:
- a metal or component comprising rhenium, tungsten, molybdenum or a nitrate- or nitrite-forming compound
- a Group IA metal or component comprising a Group IA metal having an atomic number of at least 37, and in addition potassium,
- the value of the expression (Q K /R)+Q HIA is in the range of from 1.5 to 30 mmole/kg, wherein Q HIA and Q K represent the quantities in mmole/kg of the Group IA metal having an atomic number of at least 37 and potassium, respectively, present in the catalyst composition, the ratio of Q HIA to Q K is at least 1:1, the value of Q K is at least 0.01 mmole/kg, and R is a dimensionless number in the range of from 1.5 to 5, the units mmole/kg being relative to the weight of the catalyst composition.
- the invention also provides a process for preparing ethylene oxide by reacting ethylene with oxygen in the presence of a catalyst composition according to this invention.
- the invention also provides a method of using ethylene oxide for making 1,2-ethanediol, a 1,2-ethanediol ether or an ethanolamine comprising converting ethylene oxide into 1,2-ethanediol, the 1,2-ethanediol ether, or the ethanolamine, wherein the ethylene oxide has been obtained by a process for preparing ethylene oxide according to this invention.
- the catalyst composition for use in this invention is a supported composition.
- the support may be selected from a wide range of inert supports. Such supports may be natural or artificial inorganic materials and they include silicon carbide, clays, pumice, zeolites, charcoal and alkaline earth metal carbonates, such as calcium carbonate. Preferred are refractory supports, such as alumina, magnesia, zirconia and silica. The most preferred support is ⁇ -alumina.
- the support is preferably porous and has a surface area of at least 500 m 2 /kg, preferably at least 600 m 2 /kg. Typically, the surface area is less than 5000 m 2 /kg, more typically at most 4000 m 2 /kg. As used herein, the surface area is deemed be the B.E.T. surface area as measured by the method as described in Brunauer, Emmet and Teller in J. Am. Chem. Soc. 60 (1938) 309-316. The surface area is expressed relative to the weight of the support. A larger surface area may lead to a more active catalyst.
- the water absorption of the support is typically at least 0.3 g/g, more typically at least 0.35 g/g. Frequently, the water absorption is at most 0.8 g/g, more frequently at most 0.7 g/g, or at most 0.55 g/g, for example 0.39 g/g, or 0.5 g/g.
- water absorption is as measured in accordance with ASTM C393, and water absorption is expressed as the weight of the water that can be absorbed into the pores of the support, relative to the weight of the support.
- a higher water absorption and a higher total pore volume are in favour in view of a more efficient deposition of silver and further elements, if any, on the support by impregnation.
- the support, or the catalyst made therefrom may have lower crush strength.
- the performance of the catalyst composition may be enhanced if the support is washed, to remove soluble residues, before deposition of other catalyst ingredients on the support.
- unwashed supports may also be used successfully.
- a useful method for washing the support comprises washing the support in a continuous fashion with hot, demineralised water, until the electrical conductivity of the effluent water does not further decrease.
- a suitable temperature of the demineralised water is in the range of 80 to 100° C., for example 90° C. or 95° C. Reference may be made to US-B1-6368998, US-2002/0010094 A1 and WO-00/15333, which are incorporated herein by reference.
- the catalyst composition of this invention comprises silver as a catalytically active metal.
- Appreciable catalytic activity may be obtained by employing a silver content of at least 10 g/kg, relative to the weight of the catalyst composition.
- the silver content is in the range of from 10 to 500 g/kg, more preferably from 50 to 250 g/kg, for example 105 g/kg, or 130 g/kg, or 200 g/kg, relative to the weight of the catalyst composition.
- the preparation of the catalysts is known in the art and the known methods are applicable to the preparation of the catalyst of this invention.
- Methods of preparing the catalyst include impregnating the support with a silver compound and with other catalyst ingredients, and performing a reduction to form metallic silver particles.
- the impregnation may include impregnation with a solution of which the pH has a value above 12, for example 13 or 13.2 or above. This may be accomplished by the addition of a base to the impregnation solution, for example lithium hydroxide, cesium hydroxide, rubidium hydroxide or a tetraalkylammonium hydroxide, such as tetramethylammonium hydroxide or tetraethylammonium hydroxide, in sufficient quantity.
- a quantity of base in the range of from 20 to 70 mmole/kg catalyst composition, for example 30, 40, 50 or 60 mmole/kg catalyst composition may be sufficient to achieve a sufficiently high pH.
- the reduction of cationic silver to metallic silver may be accomplished during a step in which the catalyst composition is dried, so that the reduction as such does not require a separate process step.
- the impregnation solution comprises a reducing agent, for example, an oxalate, as described in the Examples hereinafter.
- the catalyst composition of this invention comprises, in addition to silver, one or more of rhenium, molybdenum, tungsten and nitrate- or nitrite-forming compounds, or components comprising one or more of rhenium, molybdenum, tungsten and nitrate- or nitrite-forming compounds.
- the catalyst comprises rhenium, or a rhenium comprising component.
- Rhenium, molybdenum and tungsten and nitrate- or nitrite-forming compounds may suitably be provided as an oxyanion, for example, as a perrhenate, molybdate, tungstate, nitrate or nitrite, in salt or acid form.
- rhenium, molybdenum, tungsten and/or the nitrate- or nitrite-forming compounds may each be present in a quantity of from 0.01 to 500 mmole/kg, calculated as the element (rhenium, molybdenum, tungsten or nitrogen) on the total catalyst composition.
- Rhenium may preferably be present in an amount of from 0.1 to 10 mmole/kg, for example 0.2 mmole/kg, or 1.5 mmole/kg, or 2 mmole/kg, or 5 mmole/kg.
- Tungsten may preferably be present in an amount in the range of from 0.5 to 20 mmole/kg, such as 0.75 mmole/kg, or 5 mmole/kg, or 15 mmole/kg.
- the catalyst composition of this invention comprises a higher Group IA metal, and in addition potassium.
- the quantities of these Group IA metals are such that the value of (Q K /R)+Q HIA is in the range of from 1.5 to 30 mmole/kg, wherein Q HIA and Q K represent the quantities of the higher Group IA metal and potassium, respectively, present in the catalyst.
- Q K is at least 0.01 mmole/kg, more typically at least 0.1 mmole/kg, relative to the weight of the catalyst composition.
- Q K is at most 50 mmole/kg, more typically at most 30 mmole/kg, relative to the weight of the catalyst composition.
- the catalyst composition comprises rubidium, and, in particular, cesium as a higher Group IA metal. If cesium is present, cesium may represent at least 75 mole-%, in particular at least 90 mole-%, more particular at least 99 mole-% of the higher Group IA metals. If cesium is present, the other higher Group IA metals (rubidium and francium) may be absent or substantially absent. Preferably, cesium only represents the Group IA metals having an atomic number of at least 37.
- R is a dimensionless number in the range of from 1.5 to 5. More typically, the value of R is in the range of from 2 to 3, for example 2.5. A suitable value of R may be determined by routine experimention, as set out in Examples 1-7, hereinafter, and in the discussion following Examples 1-7.
- the ratio of Q HIA to Q K may be at least 1:1, preferably at least 1.1:1. In preferred embodiments, amongst others, the ratio of Q HIA to Q K may be at most 5:1, preferably at most 3.5:1, in particular at most 2.5:1, as this leads to a better initial activity, better performance of the catalyst in the course of the lifetime of the catalyst, and to a more extended catalyst lifetime.
- SA denotes the surface area of the support, in m 2 /kg
- F is a factor having a value in the range of from 0.001 to 0.01 mmole/m 2 .
- the value of F is in the range of from 0.002 to 0.008 mmole/m 2 . More typically, the value of F is in the range of from 0.003 to 0.006 mmole/m 2 .
- the catalyst exhibits an optimum or close to optimum initial activity for a given surface area or for a given value of (Q K /R)+Q HIA .
- the value of (Q K /R)+Q HIA is preferably in the range of from 1.5 to 12 mmole/kg, in particular from 2 to 6 mmole/kg.
- the value of (Q K /R)+Q HIA is preferably in the range of from 4 to 15 mmole/kg, in particular, from 6 to 10 mmole/kg.
- the value of (Q K /R)+Q HIA is preferably in the range of from 5 to 25 mmole/kg, in particular from 10 to 20 mmole/kg.
- the catalyst composition of this invention may comprise lithium, as an additional Group IA metal, or a compound thereof.
- the catalyst comprises cesium, potassium and lithium as the Group IA metals, other Group IA metals being absent.
- Suitable amounts for lithium are in the range of from 1 to 500 mmole/kg, more suitably from 5 to 100 mmole/kg, relative to the total weight of the catalyst composition, for example 10 mmole/kg, or 15 mmole/kg, or 40 mmole/kg, or 50 mmole/kg. It is understood that the presence of lithium or a compound thereof on the catalyst surface generally improves the catalyst performance.
- catalysts which comprise rhenium, in addition to silver, and further a rhenium co-promoter which may be selected from one or more of sulfur, phosphorus, boron, and components comprising one or more of sulfur, phosphorus and boron, on the support material.
- a rhenium co-promoter which may be selected from one or more of sulfur, phosphorus, boron, and components comprising one or more of sulfur, phosphorus and boron, on the support material.
- the rhenium co-promoter may be provided as an oxyanion, in salt or acid form.
- the rhenium co-promoter or co-promoters may be present in a quantity of from 0.1 to 30 mmole/kg each.
- each Group IIA metal is present in a quantity of from 0.1 to 500 mmole/kg.
- the Group IIA metal may be, for example, calcium and barium.
- the quantity of Group IA metal present in the catalyst composition is deemed to be the quantity in so far as it can be extracted with de-ionized water at 100° C.
- the extraction method involves extracting a 10-gram sample of the catalyst composition three times by heating it in 20 ml portions of de-ionized water for 5 minutes at 100° C. and determining in the combined extracts the relevant metals by using a known method, for example atomic absorption spectroscopy.
- the quantity of Group IIA metal present in the catalyst composition is deemed to the quantity in so far as it can be extracted with 10% w nitric acid in de-ionized water at 100° C.
- the extraction method involves extracting a 10-gram sample of the catalyst composition by boiling it with a 100 ml portion of 10% w nitric acid for 30 minutes (1 atm., i.e. 101.3 kPa) and determining in the combined extracts the relevant metals by using a known method, for example atomic absorption spectroscopy.
- a known method for example atomic absorption spectroscopy.
- the present process for preparing ethylene oxide may be carried out in many ways, it is preferred to carry it out as a gas phase process, i.e. a process in which the feed is contacted in the gas phase with the catalyst which is present as a solid material, typically in a packed bed. Generally the process is carried out as a continuous process.
- the ethylene concentration in the feed may be selected within a wide range. Typically, the ethylene concentration in the feed will be at most 80 mole-%, relative to the total feed. Preferably, it will be in the range of from 0.5 to 70-mole-%, in particular from 1 to 60 mole-%, on the same basis. As used herein, the feed is considered to be the composition which is contacted with the catalyst.
- the present epoxidation process may be air-based or oxygen-based, see “Kirk-Othmer Encyclopedia of Chemical Technology”, 3 rd edition, Volume 9, 1980, pp. 445-447.
- air or air enriched with oxygen is employed as the source of the oxidizing agent while in the oxygen-based processes high-purity (at least 95 mole-%) oxygen is employed as the source of the oxidizing agent.
- oxygen-based plants are oxygen-based and this is a preferred embodiment of the present invention.
- the oxygen concentration in the feed may be selected within a wide range. However, in practice, oxygen is generally applied at a concentration which avoids the flammable regime. Typically, the concentration of oxygen applied will be within the range of from 1 to 15 mole-%, more typically from 2 to 12 mole-% of the total feed.
- the concentration of oxygen in the feed may be lowered as the concentration of ethylene is increased.
- the actual safe operating ranges depend, along with the feed composition, also on the reaction conditions such as the reaction temperature and the pressure.
- a reaction modifier may be present in the feed for increasing the selectively, suppressing the undesirable oxidation of ethylene or ethylene oxide to carbon dioxide and water, relative to the desired formation of ethylene oxide.
- Many organic compounds, especially organic halides, may be employed as the reaction modifier.
- Organic nitrogen compounds or inorganic compounds such as nitrogen oxides, hydrazine, hydroxylamine or ammonia may be employed as well, but this is generally less preferred. It is considered that under the operating conditions of the epoxidation process the nitrogen containing reaction modifiers are precursors of nitrates or nitrites, i.e. they are so-called nitrate- or nitrite-forming compounds (cf. e.g. EP-A-3642 and U.S. Pat. No. 4,822,900, which are incorporated herein by reference).
- Organic halides are the preferred reaction modifiers, in particular organic bromides, and more in particular organic chlorides.
- Preferred organic halides are chlorohydrocarbons or bromohydrocarbons. More preferably they are selected from the group of methyl chloride, ethyl chloride, ethylene dichloride, ethylene dibromide, vinyl chloride or a mixture thereof. Most preferred reaction modifiers are ethyl chloride and ethylene dichloride.
- Suitable nitrogen oxides are of the general formula NO x wherein x is in the range of from 1 to 2, and include for example NO, N 2 O 3 and N 2 O 4 .
- Suitable organic nitrogen compounds are nitro compounds, nitroso compounds, amines, nitrates and nitrites, for example nitromethane, 1-nitropropane or 2-nitropropane.
- the nitrate- or nitrite-forming compounds, e.g. nitrogen oxides and/or organic nitrogen compounds may be used together with an organic halide, in particular an organic chloride.
- reaction modifiers are generally effective when used in low concentration in the feed, for example up to 0.01 mole-%, relative to the total feed. It is preferred that the reaction modifier is present in the feed at a concentration of from 0.1 ⁇ 10 ⁇ 4 to 50 ⁇ 10 ⁇ 4 mole-%, in particular from 0.3 ⁇ 10 ⁇ 4 to 30 ⁇ 10 ⁇ 4 mole-%, relative to the total feed.
- the feed may comprise one or more optional components, such as carbon dioxide, inert gases and saturated hydrocarbons.
- Carbon dioxide is a by-product in the epoxidation process.
- carbon dioxide generally has an adverse effect on the catalyst activity.
- a concentration of carbon dioxide in the feed in excess of 25 mole-%, preferably in excess of 10 mole-%, relative to the total feed is avoided.
- a concentration of carbon dioxide as low as 0.5 mole-% or lower, relative to the total feed may be employed, for example in the range of from 0.5 to 4 mole-%, in particular from 0.5 to 2 mole-%, relative to the total feed.
- Inert gases for example nitrogen or argon, may be present in the feed in a concentration of from 30 to 90 mole-%, typically from 40 to 80 mole-%.
- Suitable saturated hydrocarbons are methane and ethane. If saturated hydrocarbons are present, they may be present in a quantity of up to 80 mole-%, relative to the total feed, in particular up to 75 mole-%. Frequently they are present in a quantity of at least 30 mole-%, more frequently at least 40 mole-%. Saturated hydrocarbons may be added to the feed in order to increase the oxygen flammability limit.
- the epoxidation process may be carried out using reaction temperatures selected from a wide range.
- the reaction temperature is in the range of from 150 to 325° C., more preferably in the range of from 180 to 300° C.
- the epoxidation process is preferably carried out at a reactor inlet pressure in the range of from 1000 to 3500 kPa.
- “GHSV” or Gas Hourly Space Velocity is the unit volume of gas at normal temperature and pressure (0° C., 1 atm, i.e. 101.3 kPa) passing over one unit volume of packed catalyst per hour.
- the GHSV is in the range of from 1000 to 10000 Nl/(l.h).
- the process is carried out at a work rate.
- the work rate is the amount of ethylene oxide produced per unit volume of catalyst per hour and the selectivity is the molar quantity of ethylene oxide formed relative to the molar quantity of ethylene converted.
- the ethylene oxide produced may be recovered from the reaction mixture by using methods known in the art, for example by absorbing the ethylene oxide from a reactor outlet stream in water and optionally recovering the ethylene oxide from the aqueous solution by distillation. At least a portion of the aqueous solution containing the ethylene oxide may be applied in a subsequent process for converting the ethylene oxide into 1,2-ethanediol or a 1,2-ethanediol ether.
- the ethylene oxide produced in the epoxidation process may be converted into 1,2-ethanediol, a 1,2-ethanediol ether, or an ethanolamine.
- this invention leads to a more attractive process for the production of ethylene oxide, it concurrently leads to a more attractive process which comprises producing ethylene oxide in accordance with the invention and the subsequent use of the obtained ethylene oxide in the manufacture of the 1,2-ethanediol, 1,2-ethanediol ether, and/or ethanolamine.
- the conversion into 1,2-ethanediol or the 1,2-ethanediol ether may comprise, for example, reacting the ethylene oxide with water, suitably using an acidic or a basic catalyst.
- the ethylene oxides may be reacted with a ten fold molar excess of water, in a liquid phase reaction in presence of an acid catalyst, e.g. 0.5-1.0% w sulfuric acid, based on the total reaction mixture, at 50-70° C. at 1 bar absolute, or in a gas phase reaction at 130-240° C. and 20-40 bar absolute, preferably in the absence of a catalyst.
- an acid catalyst e.g. 0.5-1.0% w sulfuric acid
- the 1,2-ethanediol ethers thus produced may be a di-ether, tri-ether, tetra-ether or a subsequent ether.
- Alternative 1,2-ethanediol ethers may be prepared by converting the ethylene oxide with an alcohol, in particular a primary alcohol, such as methanol or ethanol, by replacing at least a portion of the water by the alcohol.
- the conversion into the ethanolamine may comprise, for example, reacting the ethylene oxide with ammonia.
- Anhydrous or aqueous ammonia may be used, although anhydrous ammonia is typically used to favour the production of monoethanolamine.
- the 1,2-ethanediol and the 1,2-ethanediol ether may be used in a large variety of industrial applications, for example in the fields of food, beverages, tobacco, cosmetics, thermoplastic polymers, curable resin systems, detergents, heat transfer systems, etc.
- the ethanolamine may be used, for example, in the treating (“sweetening”) of natural gas.
- the low-molecular weight organic compounds mentioned herein for example the 1,2-ethanediol ethers and reaction modifiers, have typically at most 40 carbon atoms, more typically at most 20 carbon atoms, in particular at most 10 carbon atoms, more in particular at most 6 carbon atoms.
- ranges for numbers of carbon atoms include the numbers specified for the limits of the ranges.
- An ⁇ -alumina support was prepared according to the process as described in Example 1 of U.S. Pat. No. 5,100,859.
- the surface area of the support was 790 m 2 /kg, the water absorption was 0.39 g/g.
- a silver-amine-oxalate stock solution was prepared by the following procedure:
- the sodium hydroxide solution was added slowly to the silver nitrate solution, with stirring, while maintaining a solution temperature of 50° C. This mixture was stirred for 15 minutes, then the temperature was lowered to 40° C.
- Impregnation solutions were prepared by adding aqueous solutions comprising predetermined quantities of lithium nitrate, ammonium perrhenate, ammonium metatungstate, cesium hydroxide (optional), potassium nitrate (optional), and water to samples of an silver-amine-oxalate stock solution as described.
- the quantities were predetermined by calculation based on the desired composition of the catalyst to be prepared.
- the catalysts so prepared contained 13.2% w silver, 1.5 mmole/kg rhenium, 0.75 mmole/kg tungsten and 15 mmole/kg lithium and they had cesium and potassium loadings as specified in Table I, hereinafter, all relative to the weight of the catalysts.
- the catalysts so prepared were tested in the production of ethylene oxide from ethylene and oxygen. To do this, 3.5 to 4.5 g of crushed catalyst were loaded into a stainless steel U-shaped tube. The tube was immersed in a molten metal bath (heat medium) and the ends were connected to a gas flow system. A gas or gas mixture passed through the catalyst bed, in a “once-through” operation. The weight of catalyst used and the inlet gas flow rate were adjusted to give a gas hourly space velocity of 3300 Nl/(l.h). The inlet gas pressure was 1550 kPa absolute.
- the catalysts were pretreated at 225° C. for 3 hours with nitrogen, and then the composition of the gas mixture was adjusted to 30% v ethylene, 8% v oxygen, 5% v carbon dioxide, 2.5 ppmv-ethyl chloride, and nitrogen balance.
- the reactor temperature was ramped up at a rate of 10° C. per hour to 245° C. and then the temperature was adjusted so as to achieve an ethylene oxide content of 3.1% v in the outlet gas stream.
- the ethyl chloride concentration in the gas mixture was adjusted between 2.5 and 5 ppmv so as to obtain an optimum selectivity at a constant ethylene oxide concentration in the outlet gas stream.
- the temperature was slowly increased to compensate for a decline in catalyst performance as a result of ageing, i.e. such that a constant ethylene oxide content in the outlet gas stream was maintained.
- the catalysts according to the invention exhibit very advantageously an improved activity and selectivity, relative to the comparative catalysts (for example, compare: activity 267° C. and selectivity 87.2 mole-% at an cumulative ethylene oxide production of 640 T/m 3 in Example 5, with 277° C. and 85.8 mole-% at 640 T/m 3 in Example 2, and 278° C. and 86.5 mole-% at 580 T/m 3 in Example 6).
- the improved long-term selectivity of the catalyst according to the invention is unexpected, in view of the fact that its initial selectivity is not the best.
- the value of R may be determined by routine experimentation, by determining for a highly selective catalyst the value of Q HIA (if more than one higher Group IA metal is present, at a constant ratio of the molar quantities of the individual higher Group IA metals) at which the catalysts exhibits optimal initial activity, and then determining the rate R at which a portion of the one higher Group IA metal (if more than one higher Group IA metal is present, at the same ratio of the molar quantities of the individual higher Group IA metals) may be substituted by potassium such that the catalyst remains exhibiting an optimum initial activity.
- the value of R may be determined by measuring initial activities in the epoxidation of ethylene to ethylene oxide, by using an experimental set-up as provided in Examples 1-7, whereby, as used throughout in this patent document, the initial activity is the highest activity found at an cumulative ethylene oxide production of less than 160 T/m 3 catalyst.
- the resulting catalyst will be advantaged, in that it exhibits a higher initial activity and its performance in the course of its lifetime and the lifetime itself are improved, similar as found for the catalyst of Example 2, compared with the catalyst of Example 1.
- ⁇ -alumina support was prepared by mixing the following ingredients:
- the average particle size is as measured by a Horiba LA900 particle size analyzer and represents a particle diameter at which there are equal spherical equivalent volumes of particles larger and particles smaller than the stated average particle size.
- the method includes dispersing the particles by ultrasonic treatment, thus breaking up secondary particles into primary particles. This sonification treatment is continued until no further change in the d 50 value is noticed, which typically requires 5 minute sonification when using the Horiba LA900 particle size analyzer.
- the surface area of the support so prepared was 2000 m 2 /kg, the water absorption was 0.42 g/g.
- the support was subjected to washing with boiling de-ionised water following the method as disclosed in US-2002/0010094 A1, paragraph 0034.
- the dried support was then used for the preparation of a catalyst by the procedures applied in the Preparation of Catalysts, specified in Examples 1-9.
- the catalyst so prepared contained 13.2% w silver, 2 mmole/kg rhenium, 1 mmole/kg tungsten, 6.4 mmole/kg cesium, 4 mmole/kg potassium and 40 mmole/kg lithium, relative to the weight of the catalyst.
- the catalyst was tested using the procedures outlined in Examples 1-9. The results are given in Table II.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Plant Pathology (AREA)
- Environmental Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Epoxy Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW093108550A TWI346574B (en) | 2003-03-31 | 2004-03-29 | A catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition |
US10/815,089 US20040198992A1 (en) | 2003-03-31 | 2004-03-31 | Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition |
US12/191,949 US8932979B2 (en) | 2003-03-31 | 2008-08-14 | Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45913603P | 2003-03-31 | 2003-03-31 | |
US10/815,089 US20040198992A1 (en) | 2003-03-31 | 2004-03-31 | Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/191,949 Continuation US8932979B2 (en) | 2003-03-31 | 2008-08-14 | Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040198992A1 true US20040198992A1 (en) | 2004-10-07 |
Family
ID=33159623
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/815,089 Abandoned US20040198992A1 (en) | 2003-03-31 | 2004-03-31 | Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition |
US12/191,949 Expired - Lifetime US8932979B2 (en) | 2003-03-31 | 2008-08-14 | Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/191,949 Expired - Lifetime US8932979B2 (en) | 2003-03-31 | 2008-08-14 | Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition |
Country Status (10)
Country | Link |
---|---|
US (2) | US20040198992A1 (ko) |
EP (2) | EP3144061B1 (ko) |
JP (1) | JP5075409B2 (ko) |
KR (1) | KR101037506B1 (ko) |
CN (2) | CN1774293A (ko) |
CA (1) | CA2520786C (ko) |
MX (1) | MXPA05010432A (ko) |
RU (1) | RU2333034C2 (ko) |
TW (1) | TWI346574B (ko) |
WO (1) | WO2004089539A1 (ko) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080081920A1 (en) * | 2006-09-29 | 2008-04-03 | Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg | Catalyst with bimodal pore size distribution and the use thereof |
US20080281118A1 (en) * | 2007-05-09 | 2008-11-13 | Marek Matusz | Epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
WO2008141032A1 (en) * | 2007-05-09 | 2008-11-20 | Shell Oil Company | An epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US20090177000A1 (en) * | 2006-04-18 | 2009-07-09 | Natal Manuel A W | Alkylene oxide catalyst and use thereof |
US20090198076A1 (en) * | 2006-09-29 | 2009-08-06 | Scientific Design Company, Inc. | Catalyst with bimodal pore size distribution and the use thereof |
US20090281345A1 (en) * | 2008-05-07 | 2009-11-12 | Marek Matusz | Process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US20090281339A1 (en) * | 2008-05-07 | 2009-11-12 | Marek Matusz | Process for the start-up of an epoxidation process, a process for the production of ethylene oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US20100267969A1 (en) * | 2009-04-21 | 2010-10-21 | Dow Technology Investments Llc | Rhenium-promoted epoxidation catalysts and methods of making and using them |
US20110301368A1 (en) * | 2010-06-04 | 2011-12-08 | Scientific Design Company, Inc. | Carrier for Ethylene Oxide Catalysts |
WO2013061294A1 (de) * | 2011-10-28 | 2013-05-02 | Basf Se | Verfahren zur herstellung eines geträgerten silberkatalysators |
US8987482B2 (en) | 2011-10-28 | 2015-03-24 | Basf Se | Process for producing a supported silver catalyst |
US9090577B2 (en) | 2009-03-31 | 2015-07-28 | Nippon Shokubai Co., Ltd. | Catalyst for producing ethylene oxide and method for producing ethylene oxide |
EP2155708B1 (en) | 2007-05-09 | 2018-02-21 | Shell Internationale Research Maatschappij B.V. | A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2433502A (en) * | 2005-12-22 | 2007-06-27 | Shell Int Research | Epoxidation of an olefin by reacting olefin, oxygen & catalyst in a microchannel reactor, and chemicals derivable from an olefin oxide |
US8097557B2 (en) * | 2006-08-08 | 2012-01-17 | Sd Lizenverwertungsgesellschaft Mbh & Co. Kg | Two-stage calcination for catalyst production |
WO2011109215A1 (en) | 2010-03-01 | 2011-09-09 | Shell Oil Company | An epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide |
US8884037B2 (en) | 2010-12-10 | 2014-11-11 | Dow Technology Investments Llc | Method of reducing the value of an alkylene oxide production parameter in a process of making an alkylene oxide using a high efficiency catalyst |
JP5957005B2 (ja) | 2010-12-29 | 2016-07-27 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | マルチローブ多孔質セラミック体およびその製造方法 |
JP5656708B2 (ja) * | 2011-03-24 | 2015-01-21 | 株式会社日本触媒 | 使用後のエチレンオキシド製造用触媒からの活性成分の回収方法及び回収された成分を用いた触媒の製造方法。 |
JP5656709B2 (ja) * | 2011-03-24 | 2015-01-21 | 株式会社日本触媒 | 使用後のエチレンオキシド製造用触媒からの活性成分の回収方法および回収された成分を用いた触媒の製造方法。 |
CA2987416A1 (en) * | 2015-06-02 | 2016-12-08 | Scientific Design Company, Inc. | Porous bodies with enhanced pore architecture |
RU2732397C2 (ru) | 2015-12-15 | 2020-09-16 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ и система удаления примеси иодистого винила из потока оборотного газа в производстве этиленоксида |
EP3390356B1 (en) | 2015-12-15 | 2019-11-13 | Shell International Research Maatschappij B.V. | Processes and systems for removing iodide impurities from a recycle gas stream in the production of ethylene oxide |
RU2721603C2 (ru) | 2015-12-15 | 2020-05-21 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способы и системы для удаления примеси алкилиодида из возвратного газового потока при получении этиленоксида |
CN108367261B (zh) | 2015-12-15 | 2021-06-25 | 国际壳牌研究有限公司 | 防护床系统和方法 |
TWI772330B (zh) | 2016-10-14 | 2022-08-01 | 荷蘭商蜆殼國際研究所 | 用於定量分析氣態製程流之方法及設備 |
CN110035998B (zh) * | 2016-12-02 | 2024-02-20 | 国际壳牌研究有限公司 | 调节乙烯环氧化催化剂的方法和生产环氧乙烷的相关方法 |
TWI808125B (zh) | 2018-02-07 | 2023-07-11 | 德商巴斯夫歐洲公司 | 有效地將乙烯氧化轉化為環氧乙烷之催化劑 |
Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3893910A (en) * | 1972-03-09 | 1975-07-08 | Harry E Robson | Process for reforming naphthas with novel chyrsotile catalyst compositions |
US3962136A (en) * | 1972-01-07 | 1976-06-08 | Shell Oil Company | Catalyst for production of ethylene oxide |
US4010115A (en) * | 1972-01-07 | 1977-03-01 | Shell Oil Company | Catalyst for the oxidation of ethylene to ethylene oxide |
US4039561A (en) * | 1973-09-07 | 1977-08-02 | Nippon Shokubai Kagaku Kogyo | Process for preparing ethylene oxide |
US4212772A (en) * | 1976-05-19 | 1980-07-15 | Basf Aktiengesellschaft | Catalyst for the manufacture of ethylene oxide |
US4226782A (en) * | 1977-05-23 | 1980-10-07 | Imperial Chemical Industries Limited | Production of alkylene oxides and catalysts thereof |
US4356312A (en) * | 1972-01-07 | 1982-10-26 | Shell Oil Company | Ethylene oxide process |
US4419222A (en) * | 1978-07-25 | 1983-12-06 | Exxon Research And Engineering Co. | Hydrocarbon conversion processes using improved transition metal oxide catalysts |
US4761394A (en) * | 1986-10-31 | 1988-08-02 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
US4766105A (en) * | 1986-10-31 | 1988-08-23 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
US4808738A (en) * | 1986-10-31 | 1989-02-28 | Shell Oil Company | Ethylene oxide process |
US4820675A (en) * | 1986-10-31 | 1989-04-11 | Shell Oil Company | Ethylene oxide catalyst & process for preparing the catalyst |
US4822900A (en) * | 1984-09-12 | 1989-04-18 | Imperial Chemical Industries Plc | Production of ethylene oxide |
US4845296A (en) * | 1983-12-13 | 1989-07-04 | Union Carbide Corporation | Process for preparing alkanolamines |
US4908343A (en) * | 1987-02-20 | 1990-03-13 | Union Carbide Chemicals And Plastics Company Inc. | Catalyst composition for oxidation of ethylene to ethylene oxide |
US4916243A (en) * | 1979-03-20 | 1990-04-10 | Union Carbide Chemicals And Plastics Company Inc. | New catalyst composition and process for oxidation of ethylene to ethylene oxide |
US5012027A (en) * | 1986-06-06 | 1991-04-30 | Uop | Dual profile surface-impregnated dehydrogenation catalyst and process |
US5057481A (en) * | 1987-02-20 | 1991-10-15 | Union Carbide Chemicals And Plastics Technology Corporation | Catalyst composition for oxidation of ethylene to ethylene oxide |
US5100859A (en) * | 1991-01-22 | 1992-03-31 | Norton Company | Catalyst carrier |
US5106802A (en) * | 1990-02-26 | 1992-04-21 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Catalyst for purification of exhaust gas from diesel engine |
US5380697A (en) * | 1993-09-08 | 1995-01-10 | Shell Oil Company | Ethylene oxide catalyst and process |
US5504053A (en) * | 1989-04-18 | 1996-04-02 | Union Carbide Chemicals & Plastics Technology Corporation | Alkylene oxide catalysts having enhanced activity and/or stability |
US5739075A (en) * | 1995-10-06 | 1998-04-14 | Shell Oil Company | Process for preparing ethylene oxide catalysts |
US5801259A (en) * | 1996-04-30 | 1998-09-01 | Shell Oil Company | Ethylene oxide catalyst and process |
US5965481A (en) * | 1993-05-14 | 1999-10-12 | Institut Francais Du Petrole | Process for preparing a catalyst suitable for the treatment of exhaust gases from internal combustion engines |
US6251820B1 (en) * | 1996-02-02 | 2001-06-26 | Toyota Jidosha Kabushiki Kaisha | Catalyst for purifying exhaust gas and process for producing the same |
US20020010094A1 (en) * | 1998-09-14 | 2002-01-24 | Lockemeyer John Robert | Process for preparing catalysts with improved catalytic properties |
US6368998B1 (en) * | 1998-09-14 | 2002-04-09 | Shell Oil Company | Process for preparing catalyst with improved catalytic properties |
US6498259B1 (en) * | 2001-10-19 | 2002-12-24 | Arco Chemical Technology L.P. | Direct epoxidation process using a mixed catalyst system |
US6511938B1 (en) * | 1990-10-12 | 2003-01-28 | Union Carbide Chemicals & Plastics Technology Corporation | Alkylene oxide catalysts having enhanced activity and/or stability |
US6534441B1 (en) * | 1999-03-06 | 2003-03-18 | Union Carbide Chemicals & Plastics Technology Corporation | Nickel-rhenium catalyst for use in reductive amination processes |
US6579825B2 (en) * | 1998-09-14 | 2003-06-17 | Shell Oil Company | Catalyst composition |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3702259A (en) | 1970-12-02 | 1972-11-07 | Shell Oil Co | Chemical production of metallic silver deposits |
JPS5741472B2 (ko) | 1973-12-26 | 1982-09-03 | ||
EP0003642B1 (en) * | 1978-02-10 | 1984-07-18 | Imperial Chemical Industries Plc | Production of olefine oxides |
JPS56105750A (en) | 1980-01-24 | 1981-08-22 | Nippon Shokubai Kagaku Kogyo Co Ltd | Silver catalyst for production of ethylene oxide |
IL84232A (en) * | 1986-10-31 | 1992-06-21 | Shell Int Research | Catalyst and process for the catalytic production of ethylene oxide |
EP0357293B1 (en) | 1988-08-30 | 1996-02-28 | Union Carbide Corporation | Catalysts for the production of ethylene oxide and their preparation processes |
US5187140A (en) | 1989-10-18 | 1993-02-16 | Union Carbide Chemicals & Plastics Technology Corporation | Alkylene oxide catalysts containing high silver content |
US5418202A (en) | 1993-12-30 | 1995-05-23 | Shell Oil Company | Ethylene oxide catalyst and process |
ES2155111T3 (es) | 1994-12-15 | 2001-05-01 | Shell Int Research | Procedimiento para preparar catalizadores para la obtencion de oxido de etileno. |
US5705661A (en) | 1995-09-25 | 1998-01-06 | Mitsubishi Chemical Corporation | Catalyst for production of ethylene oxide |
US6372925B1 (en) | 2000-06-09 | 2002-04-16 | Shell Oil Company | Process for operating the epoxidation of ethylene |
US6407280B1 (en) * | 2000-09-28 | 2002-06-18 | Rohm And Haas Company | Promoted multi-metal oxide catalyst |
BRPI0312010B1 (pt) | 2002-06-28 | 2017-11-28 | Shell Internationale Research Maatschappij B.V | Method for detaining an epoxidation process and a process for the epoxidation of an olefine |
BRPI0912391B1 (pt) | 2008-05-07 | 2018-04-17 | Shell Internationale Research Maatschappij B.V. | Processo para epoxidação de uma olefina |
US9073035B2 (en) | 2011-10-14 | 2015-07-07 | Saint-Gobain Ceramics & Plastics, Inc. | Catalyst and catalyst carrier |
-
2004
- 2004-03-29 TW TW093108550A patent/TWI346574B/zh not_active IP Right Cessation
- 2004-03-30 CN CNA2004800088534A patent/CN1774293A/zh active Pending
- 2004-03-30 KR KR1020057018501A patent/KR101037506B1/ko active IP Right Grant
- 2004-03-30 RU RU2005133450/04A patent/RU2333034C2/ru active
- 2004-03-30 EP EP16193966.5A patent/EP3144061B1/en not_active Revoked
- 2004-03-30 CA CA2520786A patent/CA2520786C/en not_active Expired - Lifetime
- 2004-03-30 JP JP2006509526A patent/JP5075409B2/ja not_active Expired - Lifetime
- 2004-03-30 MX MXPA05010432A patent/MXPA05010432A/es unknown
- 2004-03-30 CN CN2013100954161A patent/CN103212415A/zh active Pending
- 2004-03-30 WO PCT/US2004/009884 patent/WO2004089539A1/en active Search and Examination
- 2004-03-30 EP EP04758662.3A patent/EP1641559B1/en not_active Revoked
- 2004-03-31 US US10/815,089 patent/US20040198992A1/en not_active Abandoned
-
2008
- 2008-08-14 US US12/191,949 patent/US8932979B2/en not_active Expired - Lifetime
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356312A (en) * | 1972-01-07 | 1982-10-26 | Shell Oil Company | Ethylene oxide process |
US3962136A (en) * | 1972-01-07 | 1976-06-08 | Shell Oil Company | Catalyst for production of ethylene oxide |
US4010115A (en) * | 1972-01-07 | 1977-03-01 | Shell Oil Company | Catalyst for the oxidation of ethylene to ethylene oxide |
US4012425A (en) * | 1972-01-07 | 1977-03-15 | Shell Oil Company | Ethylene oxide process |
US3962136B1 (ko) * | 1972-01-07 | 1983-11-15 | ||
US3893910A (en) * | 1972-03-09 | 1975-07-08 | Harry E Robson | Process for reforming naphthas with novel chyrsotile catalyst compositions |
US4039561A (en) * | 1973-09-07 | 1977-08-02 | Nippon Shokubai Kagaku Kogyo | Process for preparing ethylene oxide |
US4212772A (en) * | 1976-05-19 | 1980-07-15 | Basf Aktiengesellschaft | Catalyst for the manufacture of ethylene oxide |
US4226782A (en) * | 1977-05-23 | 1980-10-07 | Imperial Chemical Industries Limited | Production of alkylene oxides and catalysts thereof |
US4419222A (en) * | 1978-07-25 | 1983-12-06 | Exxon Research And Engineering Co. | Hydrocarbon conversion processes using improved transition metal oxide catalysts |
US4916243A (en) * | 1979-03-20 | 1990-04-10 | Union Carbide Chemicals And Plastics Company Inc. | New catalyst composition and process for oxidation of ethylene to ethylene oxide |
US4845296A (en) * | 1983-12-13 | 1989-07-04 | Union Carbide Corporation | Process for preparing alkanolamines |
US4822900A (en) * | 1984-09-12 | 1989-04-18 | Imperial Chemical Industries Plc | Production of ethylene oxide |
US5012027A (en) * | 1986-06-06 | 1991-04-30 | Uop | Dual profile surface-impregnated dehydrogenation catalyst and process |
US4761394A (en) * | 1986-10-31 | 1988-08-02 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
US4766105A (en) * | 1986-10-31 | 1988-08-23 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
US4808738A (en) * | 1986-10-31 | 1989-02-28 | Shell Oil Company | Ethylene oxide process |
US4820675A (en) * | 1986-10-31 | 1989-04-11 | Shell Oil Company | Ethylene oxide catalyst & process for preparing the catalyst |
US4908343A (en) * | 1987-02-20 | 1990-03-13 | Union Carbide Chemicals And Plastics Company Inc. | Catalyst composition for oxidation of ethylene to ethylene oxide |
US5057481A (en) * | 1987-02-20 | 1991-10-15 | Union Carbide Chemicals And Plastics Technology Corporation | Catalyst composition for oxidation of ethylene to ethylene oxide |
US5504053A (en) * | 1989-04-18 | 1996-04-02 | Union Carbide Chemicals & Plastics Technology Corporation | Alkylene oxide catalysts having enhanced activity and/or stability |
US5106802A (en) * | 1990-02-26 | 1992-04-21 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Catalyst for purification of exhaust gas from diesel engine |
US6511938B1 (en) * | 1990-10-12 | 2003-01-28 | Union Carbide Chemicals & Plastics Technology Corporation | Alkylene oxide catalysts having enhanced activity and/or stability |
US5100859A (en) * | 1991-01-22 | 1992-03-31 | Norton Company | Catalyst carrier |
US5965481A (en) * | 1993-05-14 | 1999-10-12 | Institut Francais Du Petrole | Process for preparing a catalyst suitable for the treatment of exhaust gases from internal combustion engines |
US5380697A (en) * | 1993-09-08 | 1995-01-10 | Shell Oil Company | Ethylene oxide catalyst and process |
US5739075A (en) * | 1995-10-06 | 1998-04-14 | Shell Oil Company | Process for preparing ethylene oxide catalysts |
US6251820B1 (en) * | 1996-02-02 | 2001-06-26 | Toyota Jidosha Kabushiki Kaisha | Catalyst for purifying exhaust gas and process for producing the same |
US5801259A (en) * | 1996-04-30 | 1998-09-01 | Shell Oil Company | Ethylene oxide catalyst and process |
US6368998B1 (en) * | 1998-09-14 | 2002-04-09 | Shell Oil Company | Process for preparing catalyst with improved catalytic properties |
US20020010094A1 (en) * | 1998-09-14 | 2002-01-24 | Lockemeyer John Robert | Process for preparing catalysts with improved catalytic properties |
US6579825B2 (en) * | 1998-09-14 | 2003-06-17 | Shell Oil Company | Catalyst composition |
US6534441B1 (en) * | 1999-03-06 | 2003-03-18 | Union Carbide Chemicals & Plastics Technology Corporation | Nickel-rhenium catalyst for use in reductive amination processes |
US6498259B1 (en) * | 2001-10-19 | 2002-12-24 | Arco Chemical Technology L.P. | Direct epoxidation process using a mixed catalyst system |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090177000A1 (en) * | 2006-04-18 | 2009-07-09 | Natal Manuel A W | Alkylene oxide catalyst and use thereof |
US9101918B2 (en) | 2006-09-29 | 2015-08-11 | Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg | Catalyst with bimodal pore size distribution and the use thereof |
US20090198076A1 (en) * | 2006-09-29 | 2009-08-06 | Scientific Design Company, Inc. | Catalyst with bimodal pore size distribution and the use thereof |
US20080081920A1 (en) * | 2006-09-29 | 2008-04-03 | Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg | Catalyst with bimodal pore size distribution and the use thereof |
US7977274B2 (en) * | 2006-09-29 | 2011-07-12 | Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg | Catalyst with bimodal pore size distribution and the use thereof |
US7932408B2 (en) * | 2006-09-29 | 2011-04-26 | Scientific Design Company, Inc. | Catalyst with bimodal pore size distribution and the use thereof |
WO2008141032A1 (en) * | 2007-05-09 | 2008-11-20 | Shell Oil Company | An epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US20080281118A1 (en) * | 2007-05-09 | 2008-11-13 | Marek Matusz | Epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
EP2152681B1 (en) | 2007-05-09 | 2017-03-29 | Shell Internationale Research Maatschappij B.V. | An epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
EP3187493A1 (en) * | 2007-05-09 | 2017-07-05 | Shell Internationale Research Maatschappij B.V. | An epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US10532989B2 (en) | 2007-05-09 | 2020-01-14 | Shell Oil Company | Epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
EP2155708B1 (en) | 2007-05-09 | 2018-02-21 | Shell Internationale Research Maatschappij B.V. | A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US20110034710A1 (en) * | 2007-05-09 | 2011-02-10 | Marek Matusz | Epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US20090281345A1 (en) * | 2008-05-07 | 2009-11-12 | Marek Matusz | Process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
KR20110013446A (ko) * | 2008-05-07 | 2011-02-09 | 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 | 산화올레핀, 1,2-디올, 1,2-디올 에테르, 1,2-카보네이트 또는 알칸올아민의 생산방법 |
WO2009137431A3 (en) * | 2008-05-07 | 2010-02-04 | Shell Oil Company | A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US20090281339A1 (en) * | 2008-05-07 | 2009-11-12 | Marek Matusz | Process for the start-up of an epoxidation process, a process for the production of ethylene oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
KR101629038B1 (ko) * | 2008-05-07 | 2016-06-09 | 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 | 산화올레핀, 1,2-디올, 1,2-디올 에테르, 1,2-카보네이트 또는 알칸올아민의 생산방법 |
US9346774B2 (en) | 2008-05-07 | 2016-05-24 | Shell Oil Company | Process for the start-up of an epoxidation process, a process for the production of ethylene oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US8921586B2 (en) | 2008-05-07 | 2014-12-30 | Shell Oil Company | Process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
WO2009137431A2 (en) | 2008-05-07 | 2009-11-12 | Shell Oil Company | A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
US9090577B2 (en) | 2009-03-31 | 2015-07-28 | Nippon Shokubai Co., Ltd. | Catalyst for producing ethylene oxide and method for producing ethylene oxide |
US8716504B2 (en) | 2009-04-21 | 2014-05-06 | Dow Technology Investments Llc | Epoxidation processes |
US8546294B2 (en) * | 2009-04-21 | 2013-10-01 | Dow Technology Investments, Llc | Rhenium-promoted epoxidation catalysts and methods of making and using them |
US20100267969A1 (en) * | 2009-04-21 | 2010-10-21 | Dow Technology Investments Llc | Rhenium-promoted epoxidation catalysts and methods of making and using them |
US8586769B2 (en) * | 2010-06-04 | 2013-11-19 | Scientific Design Company, Inc. | Carrier for ethylene oxide catalysts |
US20110301368A1 (en) * | 2010-06-04 | 2011-12-08 | Scientific Design Company, Inc. | Carrier for Ethylene Oxide Catalysts |
US8987482B2 (en) | 2011-10-28 | 2015-03-24 | Basf Se | Process for producing a supported silver catalyst |
US9199223B2 (en) | 2011-10-28 | 2015-12-01 | Basf Se | Process for producing a supported silver catalyst |
WO2013061294A1 (de) * | 2011-10-28 | 2013-05-02 | Basf Se | Verfahren zur herstellung eines geträgerten silberkatalysators |
Also Published As
Publication number | Publication date |
---|---|
CA2520786C (en) | 2013-03-12 |
TWI346574B (en) | 2011-08-11 |
RU2005133450A (ru) | 2006-03-10 |
EP3144061A1 (en) | 2017-03-22 |
MXPA05010432A (es) | 2005-11-04 |
US8932979B2 (en) | 2015-01-13 |
WO2004089539A1 (en) | 2004-10-21 |
EP1641559B1 (en) | 2020-01-22 |
TW200505562A (en) | 2005-02-16 |
CA2520786A1 (en) | 2004-10-21 |
CN1774293A (zh) | 2006-05-17 |
EP3144061B1 (en) | 2021-04-21 |
US20080306289A1 (en) | 2008-12-11 |
EP1641559A1 (en) | 2006-04-05 |
JP5075409B2 (ja) | 2012-11-21 |
CN103212415A (zh) | 2013-07-24 |
KR101037506B1 (ko) | 2011-05-26 |
KR20050115326A (ko) | 2005-12-07 |
JP2006521927A (ja) | 2006-09-28 |
RU2333034C2 (ru) | 2008-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8932979B2 (en) | Catalyst composition, a process for preparing the catalyst composition and a use of the catalyst composition | |
EP1517751B1 (en) | A method for improving the selectivity of a catalyst and a process for the epoxidation of an olefin | |
EP2152411B1 (en) | An epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine | |
US8921586B2 (en) | Process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine | |
JP5931106B2 (ja) | エポキシ化触媒、触媒を調製するための方法および酸化オレフィン、1,2−ジオール、1,2−ジオールエーテル、1,2−カーボネートまたはアルカノールアミンを製造する方法 | |
JP5507444B2 (ja) | 酸化オレフィン、1,2−ジオール、1,2−ジオールエーテル、1,2−カーボネートまたはアルカノールアミンの製造方法 | |
US8148555B2 (en) | Method for improving the selectivity of a catalyst and a process for the epoxidation of an olefin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHELL OIL COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATUSZ, MAREK;RICHARD, MICHAEL ALAN;HESS, MARTIN LYSLE;REEL/FRAME:015173/0379 Effective date: 20040322 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |