US20040171147A1 - Cytotherapeutics, cytotherapeutic units and methods for treatments using them - Google Patents
Cytotherapeutics, cytotherapeutic units and methods for treatments using them Download PDFInfo
- Publication number
- US20040171147A1 US20040171147A1 US10/721,144 US72114403A US2004171147A1 US 20040171147 A1 US20040171147 A1 US 20040171147A1 US 72114403 A US72114403 A US 72114403A US 2004171147 A1 US2004171147 A1 US 2004171147A1
- Authority
- US
- United States
- Prior art keywords
- unit
- cytotherapeutic
- cells
- cell
- potent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/51—Umbilical cord; Umbilical cord blood; Umbilical stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/50—Placenta; Placental stem cells; Amniotic fluid; Amnion; Amniotic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/54—Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/14—Drugs for genital or sexual disorders; Contraceptives for lactation disorders, e.g. galactorrhoea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
Definitions
- Cytotherapeutic therapy involves the introduction of immature cells, especially stem cells, into a patient in order to secure palliation, amelioration or cure of a disease state.
- the present invention is also directed to improved cytotherapeutic agents, to methods of producing them, to unit dosage forms of such agents and to novel paradigms for administering cytotherapeutic units to patients in need of therapy.
- stem cells have been known heretofore to administer certain types of stem cells to humans and to animals in order to achieve a therapeutic end. Much of this has been done with stem cells from adults, such as those found in adult bone marrow, especially for the repopulation of depopulated interosseous spaces, which attend aggressive chemotherapy or radiation therapy, e.g., for treatment of certain cancers. Indeed, such cytotherapy has become relatively widespread and has achieved a level of success despite limitations including the lack of standardization as to cell numbers and types.
- stem cell preparations from most sources, including from neonatal cord blood include a diverse population of cells with differing potentials for effective therapy and often do not contain a sufficient number of cells for an optimized therapeutic dose, particularly for an averaged size adult undergoing a transplant for leukemia, for example. It is believed that different scientific and medical groups likely achieve differing preparations with differing characteristics, even when supposedly following the same or similar protocols. Presently, most independent preparations, even those done by the same individual, can have different compositions with the specifics of the compositions undetermined. In short, there is a complete lack of unit to unit reproducibility and little standardization in the cellular units used in transplants.
- cytotherapeutic unit refers to a cell preparation comprising a plurality of potent cells in which at, least one cell type has been tailored for a particular patient or particular disease state. Tailoring may include having a minimum number of said cell type or, alternatively, removal of a portion or all of said cell type.
- Patent with respect to a cell or cell type, means that the cell or cell type is capable of differentiation into at least one type of cell.
- “Pluripotent,” with respect to a cell or cell type, means that the cell or cell type is capable of differentiation into at least two different types of cells.
- Antigenic determinant refers to the set of antigenic regions on the surface of a cell.
- “Factor” refers to a cell type by reference to its antigenic determinant.
- Exemplary factors include CD34, CD8, CD10 and the like.
- a cell or cell preparation may also be considered to be positive or negative in regard to a particular factor by reference to whether or not a particular cell or cell type exhibits the characteristics of that particular factor.
- the present invention provides for cytotherapeutic units comprising a plurality of potent cells, the contents of which are known with respect to the identities and numbers of at least some of the potent cells. To ensure that the identities and numbers of at least some of the potent cells are accurate at least one assay is performed. In some preferred embodiments, the provider of the unit certifies the accuracy of the assay. In other embodiments, the potent cells for which the identities and numbers are known are pluripotent cells. The identities of the potent cells preferably reflect the presence or absence of at least one antigenic determinant on the cells. In some embodiments, the cytotherapeutic unit comprises at least some potent cells exhibiting CD34, CD8, CD10, OCT4, CD38, CXCR4, or CD117, for example.
- the cells may also exhibit CD33.
- the cytotherapeutic unit comprises cells that lack specific antigenic determinants.
- at least one identified potent cell that is derived from a source is specifically excluded or removed from the cellular preparation.
- some or all cells may be characterized by the presence of one or more of the following cell surface markers: CD10+, CD29+, CD34 ⁇ , CD38 ⁇ , CD44+, CD45 ⁇ , CD54+, CD90+, SH2+, SH3+, SH4+, SSEA3 ⁇ , SSEA4 ⁇ , OCT ⁇ 4+, and ABC ⁇ p+.
- the potent cells may be obtained from fetal cord blood or other fetal tissue.
- potent cells are obtained from placenta, especially postpartum placenta, which has been metabolically supported and nurtured. Potent cells are preferably obtained from postpartum placenta perfusate.
- the present invention also provides for cytotherapeutic units wherein the potent cells are derived from a plurality of sources. In some embodiments, the potent cells are derived from at least two individuals, at least five individuals, or at least ten individuals.
- the unit comprises at least one cell that is autologous. In some other embodiments, the unit comprises at least one cell that is exogenous. In some embodiments the unit comprises a chimera of autologous and allogeneic cells. In another embodiment at least some of the cells are genetically modified.
- the plurality of potent cells is selected to render the unit suitable for therapy for an indicated disease state or condition and/or the severity of the condition.
- the cytotherapeutic units comprise a minimum number of preselected types of potent cells and may be based, for example, on the weight of the particular patient or that patient's medical status.
- the cytotherapeutic unit is assayed to ensure the accuracy of its contents of preselected types of potent cells.
- the contents of the preselected potent cells in the cytotherapeutic unit are certified.
- the cytotherapeutic unit can be one of a group of substantially identical units wherein the additional units are stored for future transplants so that, if needed, the patient can receive a unit identical to one previously transplanted.
- the additional like-units may be altered to optimize future transplants for that same patient.
- At least one type of cell is excluded from the cytotherapeutic unit comprising preselected potent cells.
- the cytotherapeutic unit is preferably certified as to its contents of the preselected potent cells and the absence of the types of cells to be excluded.
- the identity and the numbers of a plurality of potent cells being selected to render the cytotherapeutic unit suitable for therapy for an indicated disease state or condition is certified.
- the certification is preferably of a plurality of potent cell types, wherein the plurality and the numbers of each of said plurality being selected as well as excluded renders the cytotherapeutic unit suitable for therapy for an indicated disease state or condition.
- the present invention provides for kits for the treatment of a person suspected of having a disease state or condition.
- the kit preferably comprises a cytotherapeutic unit comprising a plurality of potent cells.
- the kit comprises a cytotherapeutic unit wherein at least one type of cell that has been excluded from the cytotherapeutic unit.
- the kit comprises potent cells wherein at least some of the potent cells have been identified and counted.
- the kit comprises a unit that has been assayed to ensure the accuracy of the identities and numbers of the potent cells. In some more preferred embodiments of the kit, the accuracy of the assay has been certified.
- kits for the treatment of a person suspected of having a disease state or condition comprising a cytotherapeutic unit having minimum numbers of identified potent cells and a certification of the potent cell composition.
- the kits may also contain equipment or devices for administering the unit to the patient, materials for monitoring the administration and other attendant things.
- the present invention provides for cytotherapeutic units comprising cells derived from umbilical cord blood, placenta, or a mixture thereof, wherein at least one type of cell has been removed from the unit. In some embodiments, a plurality of cell types has been removed from the unit.
- the present invention provides for a cytotherapeutic unit comprising cells derived from umbilical cord blood, placenta, or a mixture thereof, wherein said cells comprise a plurality of different types.
- a cytotherapeutic unit comprising cells derived from umbilical cord blood, placenta, or a mixture thereof, wherein said cells comprise a plurality of different types.
- the different types of cells are separated into components.
- the components are recombined into the unit. It is preferred in some aspects of the invention that components are used to supplement a cytotherapeutic unit with a specific potent cell type.
- the separated components can be frozen separately or otherwise stored prior to recombination.
- the cytotherapeutic unit itself has been placed in a frozen state.
- the separated cell types have been identified and/or counted.
- the present invention provides methods of treating a disease in a mammal comprising administering to the mammal a therapeutically effective amount of a composition comprising a cytotherapeutic unit.
- the unit used to treat the disease state or condition comprises a plurality of potent cells wherein the content of the unit is known with respect to the identities and numbers. At least some of the cells in the unit are assayed to ensure the accuracy of the identities and the numbers of the potent cells.
- the cytotherapeutic unit is administered multiple times. In other cases, administering multiple doses of the cytotherapeutic units that are derived from different individuals or sources may be performed.
- the methods may also comprise administering multiples doses of the cytotherapeutic unit that is derived from one individual.
- the present invention provides for cytotherapeutic units comprising a plurality of potent cells with the content of the cytotherapeutic unit being known with respect to the identities and numbers of at least some of the potent cells.
- the identities of the potent cells in the cytotherapeutic unit are an aspect of the invention that is important for the reliability and the quality of the unit being used.
- the potent cells can be identified by any number of methods and based on any set of criteria that a person of ordinary skill may find useful. One such method is to identify the potent cells based on the presence of antigenic determinants on the surface of the cell.
- Antigenic determinants can be any molecule that is recognizable by an antibody. Some examples of antigenic determinants include polypeptides, lipids, glycoproteins, sugars, and the like.
- the cells may be characterized by the presence of one or more of the following cell surface markers: CD10+, CD29+, CD34 ⁇ , CD38 ⁇ , CD44+, CD45 ⁇ , CD54+, CD90+, SH2+, SH3+, SH4+, SSEA3 ⁇ , SSEA4 ⁇ , OCT ⁇ 4+, and ABC ⁇ p+.
- potent cells may be identified by the presence of antigenic determinants or by certain expressed factors, it can be equally important to identify a cell based on what antigenic determinants the cell lacks. For example, it is known that the presence of certain determinants may lower the chances of a successful treatment and therefore, a person using the cytotherapeutic unit would want to know that the unit being used lacks certain antigenic determinants. Furthermore, the presence or absence of antigenic factors can aid in determining the maturity level of a particular cell or cell-type. A less mature cell has a wider range of differentiation and is therefore, potentially more useful. Depending on the use of the cytotherapeutic unit, different levels of differentiation of the cells may be required. The identification of some of the cells enables a person to obtain a unit, that when used, results in a better clinical outcome.
- Methods to determine the presence or absence of antigenic factors on or in a cell are well known in the art. These methods include fluorescence activated cell sorting (FACS), Enzyme-Linked Immuno Sorbent Assay (ELISA), western blot, polymerase chain reaction (PCR), reverse-transcribed PCR (RT-PCR), and the like. The precise method or methods used to identify the potent cells is not essential.
- FACS fluorescence activated cell sorting
- ELISA Enzyme-Linked Immuno Sorbent Assay
- PCR polymerase chain reaction
- RT-PCR reverse-transcribed PCR
- the methods to determine the genetic profile of a cell are well known to those of ordinary skill in the art. Any method used is sufficient, but some examples of methods or techniques that can be used to determine the genetic makeup of a cell include, without limitation, PCR, RT-PCR, northern blot, southern blot, single nucleotide polymorphism (SNP) analysis, gene-chip expression analysis, serial analysis of gene expression (SAGE), nucleotide sequencing, FACS, in situ hybridization, and the like.
- a cell can be identified by any of the above-mentioned criteria: antigenic determinants, genetic makeup, a combination thereof, or a cell can be identified based upon another set of criteria. In some embodiments, at least 0.1%, 1%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or about 100% of the cells are identified.
- Methods of identification and determining the number of cells include but are not limited to using standard cell detection techniques such as flow cytometry, cell sorting, immunocytochemistry (e.g., staining with tissue specific or cell-marker specific antibodies), FACS, magnetic activated cell sorting (MACS), by examination of the morphology of cells using light or confocal microscopy, or by measuring changes in gene expression using techniques well known in the art, such as PCR and gene expression profiling.
- standard cell detection techniques such as flow cytometry, cell sorting, immunocytochemistry (e.g., staining with tissue specific or cell-marker specific antibodies), FACS, magnetic activated cell sorting (MACS), by examination of the morphology of cells using light or confocal microscopy, or by measuring changes in gene expression using techniques well known in the art, such as PCR and gene expression profiling.
- relevant determinations can be made by techniques including, but not limited to, optical and electrooptical properties, morphological imaging methods, optophoresis (www.genoptix.com) microwave spectroscopy (Signature Bioscience www.signaturebio.com) and optical tweezers. Other methods may also be employed.
- the present invention provides for cytotherapeutic units that have at least one cell type that is excluded.
- the cell-type that is excluded will not always be the same.
- all CD34 positive cells will be excluded.
- all CD8 positive cells will be excluded.
- multiple cell types are excluded.
- the term “exclusion” or “elimination” as used in this context preferably means at least about 75% reduction in the number of a certain cell type in a cell preparation.
- At least about 90% reduction is achieved, with at least about 95% reduction being even more preferred.
- Essentially complete elimination is, of course, most desirable, although the same may be achievable in some cases.
- the foregoing percentage reductions relate to numbers of cells relative to an original population of such cells using any appropriate assay.
- Cell types can be excluded or reduced either by selecting cell-containing units which, naturally do not contain them (or many of them) or by employing a process that specifically removes selected cell-types. It is preferred to exclude cell types having antigenic determinants which are inconsistent with the therapeutic modality planned for the cytotherapeutic unit. For example, but not by way of limitation, T-lymphocytes and mature dendritic cells may be excluded to lower the expectation of graft versus host disease. In the treatment of adrenal leukodysplasia it may be desirable to delete some or all CD8 positive cells.
- a cell-type can be excluded by a process that is used either before or after the cells are extracted from a source. Processes or methods that are used to exclude a specific cell-type are well known to the art-skilled. Examples of processes or methods include: FACS, centrifugation, immunochromatography, and the like.
- the cells may be sorted using a fluorescence activated cell sorter (FACS).
- Fluorescence activated cell sorting is a well-known method for separating particles, including cells, based on the fluorescent properties of the particles (Kamrach, 1987, Methods Enzymol, 151:150-165). Laser excitation of fluorescent moieties in the individual particles results in a small electrical charge allowing electromagnetic separation of positive and negative particles from a mixture.
- cell surface marker-specific antibodies or ligands are labeled with distinct fluorescent labels. Cells are processed through the cell sorter, allowing separation of cells based on their ability to bind to the antibodies used.
- FACS sorter particles may be directly deposited into individual wells of 96-well or 384-well plates to facilitate separation and cloning.
- Reagents for cell surface markers or cluster designated reagents are available from a variety of sources including Becton Dickinson and Cell Pro Inc., for example.
- Available reagents include but are not limited to reagents for identifying: CD1a; CD2; CD3; CD4; CD4 (Multi-Clone); CD4 v4; CD5; CD7; CD8 (Leu-2a); CD8 (Leu-2b); CD10 (Anti-CALLA); CD11a (Anti-LFA-1 ⁇ ); CD11b; CD11c; CD13; CD14; CD15; CD16 (Leu-11a, 11b, 11c); CD18 (Anti-LIFA-1 ⁇ ); CD19 (Leu-12); CD19(SJ25C1); CD20; CD21(Anti-CR 2 ); CD22; CD23; CD25(Anti-IL-2R); CD26; CD27; CD28; CD31(Anti-PECAM-1); CD33; CD34(Anti-HPCA-1&2); CD38; CD42a(Anti-gpIX); CD44; CD45(Anti-Hle-1); CD45RA; CD45RO; CD49d(Anti-VLA- ⁇ 4); CD
- Non-cluster designated reagents include: Anti-BrdU; Anti-Cytokeratin (CAM 5.2); Anti-HER-2/neu; Anti-HLA-DP; Anti-HLA-DQ; Anti-HLA-DR; Anti-Hu KIR (NKB1); Anti-IgA 2 ; Anti-IgD; Anti-IgG; Anti-IgM (Ig Heavy Chain); Anti-Kappa (Ig Light Chain); Anti-Kappa F(ab′) 2 ; Anti-Lambda (Ig Light Chain); Anti-Lambda F(ab′) 2 ; Anti-P-glycoprotein (P-gp); Anti-TCR ⁇ / ⁇ -1 (WT31); Anti-TCR- ⁇ / ⁇ -1; PAC-1; Lineage Cocktail 1 (lin1) FITC.
- the skilled artisan will use those reagents required for his/her particular needs in order to optimize the desired cytotherapeutic unit or tailor it for a particular patient or use.
- magnetic beads can be used to separate cells.
- the cells may be sorted using a magnetic activated cell sorting (MACS) technique, a method for separating particles based on their ability to bind magnetic beads (0.5-100 ⁇ m diameter).
- a variety of useful modifications can be performed on the magnetic microspheres, including the covalent addition of an antibody which specifically recognizes a cell-solid phase surface molecule or hapten.
- a magnetic field is then applied, to physically manipulate the selected beads.
- the beads are then mixed with the cells to allow binding.
- Cells are then passed through a magnetic field to separate out cells having cell surface markers. These cells can then isolated and re-mixed with magnetic beads coupled to an antibody against additional cell surface markers.
- the cells are again passed through a magnetic field, isolating cells that bound both the antibodies.
- Such cells can then be diluted into separate dishes, such as microtiter dishes for clonal isolation, if desired.
- Knowing the composition of the cytotherapeutic unit will help fulfill the long-felt need of a reliable and certified cytotherapeutic unit.
- the number of the cells will be determined at the same time the identities are determined, but the numbers can also be determined before or after the identities of some of the potent cells are determined.
- the numbers can also be determined before or after the identities of some of the potent cells are determined.
- Cytotherapeutic units can now be prepared that have a minimum numbers of preselected cells. It is also now possible to ensure that other cell types are excluded from the-units.
- the cytotherapeutic unit will comprise at least about 100 selected potent cells. Such units having at least about 1,000 such cells are preferred, with at least about 10,000 being more preferred. Greater numbers of selected cells are still more preferred, especially when it is intended that the unit be administered to the same or different individuals a plurality of times. Thus, selected cell populations greater than about 100,000 or even about 500,000 can be useful. It is preferred that some or all of the cells in the unit be identified through assay and that the same be reflected in a certification of such presence. This certification ensures uniform and effective therapeutic application.
- the cytotherapeutic units will have a minimum number of different, specific cell types. Advantages to having a minimum number of specific cell types are that it may improve the efficacy of the cytotherapeutic unit.
- the cytotherapeutic unit could be assayed to comprise at least about 1,000 OCT4 positive cells, either with or without known quantities of other desirable cell types.
- the unit may be caused to comprise specific percentages of CD34 positive cells, measured by reference to all nucleated cells in the preparation.
- such preparations may contain at least 0.01%, 0.1%, 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or other percentages of CD34 positive cells may be made. Similar, known percentages of cells having other antigenic determinants or specific factors may, likewise, be created.
- cytotherapeutic units comprising cells that have been derived from at least one source, wherein the source's cells have been separated into components.
- components is synonymous to cell-types, identified cells, and the like.
- Methods to separate cellular preparations into components include, without limitation, FACS, centrifugation, chromatography, HPLC, FPLC, and the like.
- cytotherapeutic units can comprise components that are recombined.
- at least one component is used in a cytotherapeutic unit.
- at least two, at least three, at least 4, at least 5, at least 10, at least 100 components are recombined to make the cytotherapeutic unit.
- the components of each source be known in terms of identity and relative numbers, with some cell types preferably being excluded from some or all of the components. It may be seen that the different components may be maintained separately,; e.g. frozen, and that the same may form a “formulary” or “library” of cells of known identity and abundance for formulation into combined cytotherapeutic units.
- cytotherapeutic unit Separating the respective cellular preparations into components allows a cytotherapeutic unit to be created that has a specific composition both in terms of cells present and in types of cells excluded. Additionally, this allows an existing cytotherapeutic unit to be supplemented with a specific cell-type or component as may be indicated for a specific therapeutic modality.
- cytotherapeutic units of the invention may be seen to comprise cells derived from one source or from many sources. Contrary to prevailing practice, it is believed that there are great benefits to providing cells from a plurality of sources and that therapeutic benefit and efficacy will derive therefrom.
- the cells are derived from multiple sources and may derive from multiple organs in such sources.
- the term “source” refers to any organism, tissue, or organ from which cells are derived or extracted.
- the sources are fetal cord blood, fetal tissue, placenta, postpartum placenta, postpartum placenta perfusate, or a mixture thereof.
- the cells are stimulated to proliferate, for example, by administration of erythropoietin, cytokines, lymphokines, interferons, colony stimulating factors (CSF's), interferons, chemokines, interleukins, recombinant human hematopoietic growth factors including ligands, stem cell factors, thrombopoeitin (TPO), interleukins, and granulocyte colony-stimulating factor (G-CSF) or other growth factors.
- CSF's colony stimulating factors
- chemokines chemokines
- interleukins recombinant human hematopoietic growth factors including ligands, stem cell factors, thrombopoeitin (TPO), interleukins, and granulocyte colony-stimulating factor (G-CSF) or other growth factors.
- G-CSF granulocyte colony-stimulating factor
- cells are genetically engineered, for example, using a viral vector such as an adenoviral or retroviral vector, or by using mechanical means such as liposomal or chemical mediated uptake of the DNA.
- a viral vector such as an adenoviral or retroviral vector
- mechanical means such as liposomal or chemical mediated uptake of the DNA.
- a vector containing a transgene can be introduced into a cell of interest by methods well known in the art, e.g., transfection, transformation, transduction, electroporation, infection, microinjection, cell fusion, DEAE extran, calcium phosphate precipitation, liposomes, LIPOFECTINTM, lysosome fusion, synthetic cationic lipids, use of a gene gun or a DNA vector transporter, such that the transgene is transmitted to daughter cells, e.g., the daughter embryonic-like stem cells or progenitor cells produced by the division of an embryonic-like stem cell.
- daughter cells e.g., the daughter embryonic-like stem cells or progenitor cells produced by the division of an embryonic-like stem cell.
- the cytotherapeutic units will preferably comprise minimum numbers of preselected types of potent cells and be certified as such.
- preselected refers to the process of selecting the types of potent cells that are to be in the cytotherapeutic unit before it is administered. Preselecting the types of potent cells that will have a minimum number of those cells in the cytotherapeutic unit allows the cytotherapeutic unit to be tailored to a composition desired to achieve a specific therapeutic result in an individual or class of individuals. Likewise, certification as to the absence of other preselected types of cells is preferred for similar reasons.
- the plurality of potent cells and of cell types present in the cytotherapeutic units of the invention are selected to render the units suitable for therapy for an indicated disease state or condition.
- the phrase “selected to render” refers to the process of deciding that a cytotherapeutic unit comprising a plurality of potent cells is suitable for therapy. This decision can be based on the numbers of potent cells present in the cytotherapeutic unit. As discussed hereinbefore, the number of cells appears to be critical for the success rate of treating an individual or patient with cytotherapy. Therefore, not all cytotherapeutic units may be suitable for therapy for an indicated disease state or condition. Additionally, the types of potent cells will also aid in the decision process on whether or not a cytotherapeutic unit is suitable for therapy.
- Certain types of potent cells can be detrimental or beneficial to the treatment of a specific disease state or condition.
- the types of cells present in the unit can be another factor that is used to select a unit suitable for therapy.
- the criteria that are used to select a unit that is suitable for therapy is not specific to those mentioned above. Any set of criteria can be used to decide whether or not a plurality of potent cells present in a cytotherapeutic unit are selected to render the unit suitable for therapy of an indicated disease state or condition.
- the present invention provides for cytotherapeutic units wherein at least some of the potent cells present in the unit are identified and counted.
- the units' contents must be preferably assayed to ensure the accuracy of the identities and numbers.
- the assays can be done by the same group, individual, or machine that had determined the identities and the numbers of at least some of the potent cells in the cytotherapeutic units.
- the assays can be performed by a different individual, group, or machine that had determined the identities and numbers of some of the potent cells. In some embodiments, only one assay needs to be performed to ensure the accuracy of the identities and the numbers.
- At least 2, at least 5, or at least 10 assays are performed to ensure the accuracy of the identities and the numbers of the potent cells.
- the types of assays to be done can be the same assay that was used to determine the numbers and the identities previously.
- different assays are used to ensure the accuracy of the numbers and identities of some of the potent cells.
- Some assays that can be used to ensure the accuracy include, without limitation, ELISA, FACS, western blot, and the like.
- the provider of the unit certifies the accuracy of the assay.
- the term “provider” refers to an individual, business, or facility that is providing the cytotherapeutic unit to the individual that is using the unit.
- the certification comprises a written statement indicating that the assay was performed correctly and that the results are correct.
- the certification comprises results from an assay done on a positive control to show that the assay was functioning properly.
- the certification comprises both the results of the positive control and a written statement that the assay was functioning properly.
- the certification comprises a list of the types of potent cells that have been excluded from the cytotherapeutic unit.
- the certification comprises a list of at least some of the types of potent cells that are contained in the cytotherapeutic unit. In some embodiments, the certification comprises the numbers of all the cells. In some embodiments, the certification further comprises the quantity of at least some of the specific cell types. In some other embodiments, the certification comprises a list of the types of at least some of the potent cells that have been added to the unit to supplement the potent cells so that the unit comprises minimum numbers of potent cells.
- kits for the treatment of a person suspected of having a disease state or condition comprising a cytotherapeutic unit comprising a plurality of potent cells with the content of the unit being known with respect to the identities and numbers of at least some of the potent cells. Additionally, the cytotherapeutic unit is assayed to ensure the accuracy of the identities and numbers of the potent cells. The kits further comprise a certification of the accuracy of the assay. In some embodiments, the kits comprise a cytotherapeutic unit having minimum numbers of identified potent cells and a certification of the potent cell composition of the unit. In some other embodiments, the kits comprise cytotherapeutic units that have at least one cell-type that has been excluded.
- the present invention also provides for methods of treating a disease state or condition in a mammal.
- the methods comprise administering to the mammal a therapeutically effective amount of a composition comprising a cytotherapeutic unit comprising potent cells, wherein some of the potent cells are known with respect to their identities and numbers.
- the unit is also assayed to ensure the accuracy of the identities and the numbers.
- the cytotherapeutic unit comprises minimum numbers of preselected types of potent cells.
- a therapeutically effective amount for a mammal can vary, but for example could be approximately 0.01 cytotherapeutic units/kg to 100 units/kg.
- the cytotherapeutic unit can be administered rapidly or slowly to the mammal. In some embodiments, the cytotherapeutic unit is administered at a rate of approximately 0.01 ⁇ l/minute, and in other embodiments, the unit is administered at a rate of approximately 100,000 ml/minute.
- the unit can be administered, for example, intravenously, subcutaneously, intramuscularly, orally, or rectally. In some embodiments, the unit is administered multiple times to the mammal at different times. In some other embodiments, cytotherapeutic units derived from different sources or different individuals are administered to the mammal.
- cytotherapeutic units are limitless, but some examples of disease states or conditions that cytotherapeutic units can be used to treat include cancer, acute leukemia, chronic leukemia as well as other cancers presently treated with bone marrow or cord blood cell transplants, myelodysplastic syndrome, stem cell disorder, myeloproliferative disorder, lymphoproliferative disorder, phagocyte disorder, liposomal storage disorder, histiocytic disorder, inherited erythrocyte abnormality, congenital (inherited) immune system disorder, inherited platelet abnormality, plasma cell disorder, Lesch-Nyhan Syndrome, Cartilage-Hair Hypoplasia, Glanzmann Thrombastenia, osteoporosis, breast cancer, Ewing Sarcoma, neuroblastoma, renal cell carcinoma, lung cancer, Alzheimer's disease, liver disease, hepatitis, Parkinson's disease, vision loss, memory loss, and the like.
- the cytotherapeutic units may be optimized for enzyme replacement therapy to treat specific diseases or conditions, including, but not limited to, lysosomal storage diseases, such as Tay-Sachs, Niemann-Pick, Fabry's, Gaucher's, Hunter's, and Hurler's syndromes, as well as other gangliosidoses, mucopolysaccharidoses, and glycogenoses.
- lysosomal storage diseases such as Tay-Sachs, Niemann-Pick, Fabry's, Gaucher's, Hunter's, and Hurler's syndromes, as well as other gangliosidoses, mucopolysaccharidoses, and glycogenoses.
- the cytotherapeutic units in this case may be certified that the cells have been assayed to contain the desired number of cells capable of producing the necessary enzyme.
- Said unit may contain either allogeneic cells containing the functional endogenous gene of the desired enzyme, autologous cells containing exogenous copies of
- the cells may be used as autologous or heterologous transgene carriers in gene therapy to correct inborn errors of metabolism such as adrenoleukodystrophy, cystic fibrosis, glycogen storage disease, hypothyroidism, sickle cell anemia, Pearson syndrome, Pompe's disease, phenylketonuria (PKU), Tay-Sachs disease, porphyrias, maple syrup urine disease, homocystinuria, mucopolypsaccharidoses, chronic granulomatous disease, and tyrosinemia or to treat cancer, tumors or other pathological conditions.
- AML acute myelogenous leukemia
- the patient undergoes traditional chemotherapy followed by conventional preparation for transplant as determined by the patient's health care provider but includes destroying the diseased bone marrow.
- the patient's weight is determined.
- Appropriate HLA typing has been done by conventional methods.
- the transplanter requests and is provided with a cytotherapeutic unit comprising a plurality of potent nucleated cells; the content of said unit being known with respect to the identities and numbers at least some of said plurality; the unit being assayed to ensure the accuracy of said identities and numbers, which is certified.
- the unit is certified to contain about 1.4 ⁇ 10 7 nucleated cells per kilogram of the patient's body weight. Additional certified information includes HLA information. Because the patient suffers from AML, the cytotherapeutic unit contains no less than one (1) percent of CD34+ of the total nucleated cells and no less than 2.5 percent CD8+ cells to minimize graft versus tumor effect.
- the transplanter requests twice the total number of cells needed for transplant (1.4 ⁇ 10 7 nucleated cells multiplied by the patient's weight in kilograms ⁇ 2).
- the transplanter requests the 1 ⁇ amount just prior to the transplant in order to have the number of cells suitable for this transplant.
- the second half of the cells is to be shipped in the event that a second transplant becomes necessary.
- the second cytotherapeutic unit is the same as that to be used in the initial transplant.
- the transplanter may request, based on alterations in the patient's weight, severity of disease or even changes in recommended treatment, that the second cytotherapeutic unit be altered in the appropriate manner (increased number of CD34 positive cells, etc.) and certified.
- the transplant is performed in the same manner conventionally used by the transplanter.
- a child having sickle cell anemia is in need of a cell transplant. It is determined that 1.7 ⁇ 10 7 nucleated cells per kilogram of body weight of the child is needed. Appropriate HLA typing is done by conventional methods. It is determined that the cytotherapeutic unit must have no less than 1% CD34+cells of the total nucleated cells. Said CD34+ cells are further described in a ratio of 2:1 as CD34+/CD33+: CD34+/CD33 ⁇ A cytotherapeutic unit having these parameters is provided. This unit comprises cells derived from cord blood as well as pluripotential placental cells such as those described in WO 02/064755, which are derived in the manner described in WO02/064755.
- the ratio of CD34+/CD33+ cells is 2:1 to CD34+/CD33 ⁇ , a fact which is ascertained by assay and certified as being accurate.
- the certified cells are determined using FACS; based on the fluorescent properties of the particles, cell surface marker-specific antibodies or ligands are labeled with distinct fluorescent labels.
- Cells are processed through the cell sorter, allowing separation of cells based on their ability to bind to the antibodies used.
- Cell surface marker-specific antibodies may be purchased from any company selling such reagents, including Becton Dickinson, for example.
- the transplant is performed in the same manner conventionally used by the transplanter.
- a child suffers from adrenal leukodysplasia. It is determined that a cellular transplant is appropriate. It is determined that 2 ⁇ 10 7 nucleated cells (derived from cord blood by a conventional technique) per kilogram of body weight of the child is needed. Appropriate HLA typing is done by conventional methods. A cytotherapeutic unit having these parameters is provided. In particular, the unit is certified to contain no less than 0.25% of CD34+/CD38 ⁇ cells and with no less than 0.5% depletion of CD8+ cells of the total nucleated cells. The transplant is performed in the same manner conventionally used by the transplanter.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Developmental Biology & Embryology (AREA)
- Cell Biology (AREA)
- Reproductive Health (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Virology (AREA)
- Hematology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Physical Education & Sports Medicine (AREA)
- Gynecology & Obstetrics (AREA)
- Pregnancy & Childbirth (AREA)
- Diabetes (AREA)
- Genetics & Genomics (AREA)
- Rheumatology (AREA)
- Wood Science & Technology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Ophthalmology & Optometry (AREA)
- Oncology (AREA)
- Pulmonology (AREA)
- Urology & Nephrology (AREA)
- Psychiatry (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/721,144 US20040171147A1 (en) | 2002-11-26 | 2003-11-25 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US11/592,544 US8617535B2 (en) | 2002-11-26 | 2006-11-03 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US15/362,300 US20170290862A1 (en) | 2002-11-26 | 2016-11-28 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US16/532,080 US20200009199A1 (en) | 2002-11-26 | 2019-08-05 | Cytotherapeutics, Cytotherapeutic Units and Methods for Treatments Using Them |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42970202P | 2002-11-26 | 2002-11-26 | |
US10/721,144 US20040171147A1 (en) | 2002-11-26 | 2003-11-25 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/592,544 Continuation US8617535B2 (en) | 2002-11-26 | 2006-11-03 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US15/362,300 Division US20170290862A1 (en) | 2002-11-26 | 2016-11-28 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040171147A1 true US20040171147A1 (en) | 2004-09-02 |
Family
ID=32393577
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/721,144 Abandoned US20040171147A1 (en) | 2002-11-26 | 2003-11-25 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US11/592,544 Active 2027-10-08 US8617535B2 (en) | 2002-11-26 | 2006-11-03 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US15/362,300 Abandoned US20170290862A1 (en) | 2002-11-26 | 2016-11-28 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US16/532,080 Abandoned US20200009199A1 (en) | 2002-11-26 | 2019-08-05 | Cytotherapeutics, Cytotherapeutic Units and Methods for Treatments Using Them |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/592,544 Active 2027-10-08 US8617535B2 (en) | 2002-11-26 | 2006-11-03 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US15/362,300 Abandoned US20170290862A1 (en) | 2002-11-26 | 2016-11-28 | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US16/532,080 Abandoned US20200009199A1 (en) | 2002-11-26 | 2019-08-05 | Cytotherapeutics, Cytotherapeutic Units and Methods for Treatments Using Them |
Country Status (11)
Country | Link |
---|---|
US (4) | US20040171147A1 (de) |
EP (1) | EP1571910A4 (de) |
JP (2) | JP2006509770A (de) |
KR (3) | KR20050086780A (de) |
CN (1) | CN1717177A (de) |
AU (2) | AU2003298775B2 (de) |
BR (1) | BR0316695A (de) |
CA (1) | CA2505534A1 (de) |
MX (1) | MXPA05005673A (de) |
WO (1) | WO2004047770A2 (de) |
ZA (1) | ZA200504273B (de) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020160510A1 (en) * | 2001-02-14 | 2002-10-31 | Hariri Robert J. | Renovation and repopulation of decellularized tissues and cadaveric organs by stem cells |
US20030235909A1 (en) * | 2002-04-12 | 2003-12-25 | Hariri Robert J. | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
US20050019908A1 (en) * | 2000-12-06 | 2005-01-27 | Anthrogenesis Corporation | Post-partum mammalian placenta, its use and placental stem cells therefrom |
US20050118715A1 (en) * | 2002-04-12 | 2005-06-02 | Hariri Robert J. | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
US20050148034A1 (en) * | 2002-04-12 | 2005-07-07 | Hariri Robert J. | Methods for identification of modulators of angiogenesis, compounds discovered thereby, and methods of treatment using the compounds |
US20050186218A1 (en) * | 2001-04-13 | 2005-08-25 | Wyeth Holdings Corporation | Removal of bacterial endotoxin in a protein solution by immobilized metal affinity chromatography |
US20050276792A1 (en) * | 2004-03-26 | 2005-12-15 | Kaminski Joseph K | Systems and methods for providing a stem cell bank |
US20060040392A1 (en) * | 2004-04-23 | 2006-02-23 | Collins Daniel P | Multi-lineage progenitor cells |
US20060147431A1 (en) * | 2005-01-04 | 2006-07-06 | Nobuko Uchida | Methods for the treatment of lysosomal storage disorders |
US20070134210A1 (en) * | 2005-10-13 | 2007-06-14 | Mohammad Heidaran | Production of oligodendrocytes from placenta-derived stem cells |
US20070190042A1 (en) * | 2005-12-29 | 2007-08-16 | Edinger James W | Composition for collecting and preserving placental stem cells and methods of using the composition |
US20070249047A1 (en) * | 2006-04-17 | 2007-10-25 | Bioe, Inc. | Differentiation of Multi-Lineage Progenitor Cells to Respiratory Epithelial Cells |
US20090053805A1 (en) * | 2000-12-06 | 2009-02-26 | Anthrogenesis Corporation | Post-partum mammalian placenta, its use and placental stem cells therefrom |
US7670596B2 (en) | 2004-04-23 | 2010-03-02 | Bioe, Inc. | Multi-lineage progenitor cells |
US7682803B2 (en) | 2005-10-13 | 2010-03-23 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
US7700090B2 (en) | 2002-02-13 | 2010-04-20 | Anthrogenesis Corporation | Co-culture of placental stem cells and stem cells from a second source |
US20100104539A1 (en) * | 2007-09-07 | 2010-04-29 | John Daniel | Placental tissue grafts and improved methods of preparing and using the same |
US7790458B2 (en) | 2004-05-14 | 2010-09-07 | Becton, Dickinson And Company | Material and methods for the growth of hematopoietic stem cells |
US20110020293A1 (en) * | 2009-07-21 | 2011-01-27 | Abt Holding Company | Use of Stem Cells to Reduce Leukocyte Extravasation |
US7993918B2 (en) | 2006-08-04 | 2011-08-09 | Anthrogenesis Corporation | Tumor suppression using placental stem cells |
US20110212069A1 (en) * | 2010-02-25 | 2011-09-01 | Abt Holding Company | Modulation of Microglia Activation |
US8057788B2 (en) | 2000-12-06 | 2011-11-15 | Anthrogenesis Corporation | Placental stem cell populations |
US8057789B2 (en) | 2002-02-13 | 2011-11-15 | Anthrogenesis Corporation | Placental stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells |
US8263065B2 (en) | 2007-09-28 | 2012-09-11 | Anthrogenesis Corporation | Tumor suppression using human placental perfusate and human placenta-derived intermediate natural killer cells |
US8367409B2 (en) | 2008-11-19 | 2013-02-05 | Anthrogenesis Corporation | Amnion derived adherent cells |
US8372437B2 (en) | 2006-08-17 | 2013-02-12 | Mimedx Group, Inc. | Placental tissue grafts |
US8460650B2 (en) | 2007-02-12 | 2013-06-11 | Anthrogenesis Corporation | Treatment of inflammatory diseases using placental stem cells |
US8562973B2 (en) | 2010-04-08 | 2013-10-22 | Anthrogenesis Corporation | Treatment of sarcoidosis using placental stem cells |
US8562972B2 (en) | 2006-10-23 | 2013-10-22 | Anthrogenesis Corporation | Methods and compositions for treatment of bone defects with placental cell populations |
US8586360B2 (en) | 2009-07-02 | 2013-11-19 | Anthrogenesis Corporation | Method of producing erythrocytes without feeder cells |
US8617535B2 (en) | 2002-11-26 | 2013-12-31 | Anthrogenesis Corporation | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US8728805B2 (en) | 2008-08-22 | 2014-05-20 | Anthrogenesis Corporation | Methods and compositions for treatment of bone defects with placental cell populations |
US8828376B2 (en) | 2008-08-20 | 2014-09-09 | Anthrogenesis Corporation | Treatment of stroke using isolated placental cells |
US8926964B2 (en) | 2010-07-13 | 2015-01-06 | Anthrogenesis Corporation | Methods of generating natural killer cells |
US8969315B2 (en) | 2010-12-31 | 2015-03-03 | Anthrogenesis Corporation | Enhancement of placental stem cell potency using modulatory RNA molecules |
US9040035B2 (en) | 2011-06-01 | 2015-05-26 | Anthrogenesis Corporation | Treatment of pain using placental stem cells |
US9121007B2 (en) | 2010-01-26 | 2015-09-01 | Anthrogenesis Corporatin | Treatment of bone-related cancers using placental stem cells |
US9200253B1 (en) | 2007-08-06 | 2015-12-01 | Anthrogenesis Corporation | Method of producing erythrocytes |
US9254302B2 (en) | 2010-04-07 | 2016-02-09 | Anthrogenesis Corporation | Angiogenesis using placental stem cells |
US9763983B2 (en) | 2013-02-05 | 2017-09-19 | Anthrogenesis Corporation | Natural killer cells from placenta |
US9925221B2 (en) | 2011-09-09 | 2018-03-27 | Celularity, Inc. | Treatment of amyotrophic lateral sclerosis using placental stem cells |
US10104880B2 (en) | 2008-08-20 | 2018-10-23 | Celularity, Inc. | Cell composition and methods of making the same |
US10494607B2 (en) | 2007-02-12 | 2019-12-03 | Celularity, Inc. | CD34+,CD45−placental stem cell-enriched cell populations |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080152629A1 (en) * | 2000-12-06 | 2008-06-26 | James Edinger | Placental stem cell populations |
GB0321337D0 (en) * | 2003-09-11 | 2003-10-15 | Massone Mobile Advertising Sys | Method and system for distributing advertisements |
EP2035552A2 (de) * | 2006-06-09 | 2009-03-18 | Anthrogenesis Corporation | Plazentare nische und ihre verwendung zur züchtung von stammzellen |
WO2008156659A1 (en) | 2007-06-18 | 2008-12-24 | Children's Hospital & Research Center At Oakland | Method of isolating stem and progenitor cells from placenta |
US8771677B2 (en) | 2008-12-29 | 2014-07-08 | Vladimir B Serikov | Colony-forming unit cell of human chorion and method to obtain and use thereof |
US8574899B2 (en) | 2010-12-22 | 2013-11-05 | Vladimir B Serikov | Methods for augmentation collection of placental hematopoietic stem cells and uses thereof |
EP2623978A1 (de) | 2012-02-03 | 2013-08-07 | Charité - Universitätsmedizin Berlin | CD8+ T-Zell-Subpopulationen als Indikator zur Vorhersage von verzögerter Bruchheilung |
WO2024085251A1 (ja) * | 2022-10-21 | 2024-04-25 | 住友ファーマ株式会社 | 網膜移植物の品質を評価する方法 |
Citations (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862002A (en) * | 1962-05-08 | 1975-01-21 | Sanfar Lab Inc | Production of physiologically active placental substances |
US4008719A (en) * | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
US4798824A (en) * | 1985-10-03 | 1989-01-17 | Wisconsin Alumni Research Foundation | Perfusate for the preservation of organs |
US4810643A (en) * | 1985-08-23 | 1989-03-07 | Kirin- Amgen Inc. | Production of pluripotent granulocyte colony-stimulating factor |
US4999291A (en) * | 1985-08-23 | 1991-03-12 | Amgen Inc. | Production of human pluripotent granulocyte colony-stimulating factor |
US5192553A (en) * | 1987-11-12 | 1993-03-09 | Biocyte Corporation | Isolation and preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood and methods of therapeutic use |
US5192312A (en) * | 1991-03-05 | 1993-03-09 | Colorado State University Research Foundation | Treated tissue for implantation and methods of treatment and use |
US5197985A (en) * | 1990-11-16 | 1993-03-30 | Caplan Arnold I | Method for enhancing the implantation and differentiation of marrow-derived mesenchymal cells |
US5284766A (en) * | 1989-02-10 | 1994-02-08 | Kao Corporation | Bed material for cell culture |
US5385901A (en) * | 1991-02-14 | 1995-01-31 | The Rockefeller University | Method of treating abnormal concentrations of TNF α |
US5391485A (en) * | 1985-08-06 | 1995-02-21 | Immunex Corporation | DNAs encoding analog GM-CSF molecules displaying resistance to proteases which cleave at adjacent dibasic residues |
US5486359A (en) * | 1990-11-16 | 1996-01-23 | Osiris Therapeutics, Inc. | Human mesenchymal stem cells |
US5487992A (en) * | 1989-08-22 | 1996-01-30 | University Of Utah Research Foundation | Cells and non-human organisms containing predetermined genomic modifications and positive-negative selection methods and vectors for making same |
US5591767A (en) * | 1993-01-25 | 1997-01-07 | Pharmetrix Corporation | Liquid reservoir transdermal patch for the administration of ketorolac |
US5591625A (en) * | 1993-11-24 | 1997-01-07 | Case Western Reserve University | Transduced mesenchymal stem cells |
US5599705A (en) * | 1993-11-16 | 1997-02-04 | Cameron; Robert B. | In vitro method for producing differentiated universally compatible mature human blood cells |
US5605822A (en) * | 1989-06-15 | 1997-02-25 | The Regents Of The University Of Michigan | Methods, compositions and devices for growing human hematopoietic cells |
US5605914A (en) * | 1993-07-02 | 1997-02-25 | Celgene Corporation | Imides |
US5709854A (en) * | 1993-04-30 | 1998-01-20 | Massachusetts Institute Of Technology | Tissue formation by injecting a cell-polymeric solution that gels in vivo |
US5716616A (en) * | 1995-03-28 | 1998-02-10 | Thomas Jefferson University | Isolated stromal cells for treating diseases, disorders or conditions characterized by bone defects |
US5716794A (en) * | 1996-03-29 | 1998-02-10 | Xybernaut Corporation | Celiac antigen |
US5716827A (en) * | 1990-03-30 | 1998-02-10 | Systemix, Inc. | Human hematopoietic stem cell |
US5733541A (en) * | 1995-04-21 | 1998-03-31 | The Regent Of The University Of Michigan | Hematopoietic cells: compositions and methods |
US5733542A (en) * | 1990-11-16 | 1998-03-31 | Haynesworth; Stephen E. | Enhancing bone marrow engraftment using MSCS |
US5733566A (en) * | 1990-05-15 | 1998-03-31 | Alkermes Controlled Therapeutics Inc. Ii | Controlled release of antiparasitic agents in animals |
US5855619A (en) * | 1994-06-06 | 1999-01-05 | Case Western Reserve University | Biomatrix for soft tissue regeneration |
US5858782A (en) * | 1995-11-13 | 1999-01-12 | Regents Of The University Of Michigan | Functional human hematopoietic cells |
US5861315A (en) * | 1994-11-16 | 1999-01-19 | Amgen Inc. | Use of stem cell factor and soluble interleukin-6 receptor for the ex vivo expansion of hematopoietic multipotential cells |
US5866414A (en) * | 1995-02-10 | 1999-02-02 | Badylak; Stephen F. | Submucosa gel as a growth substrate for cells |
US5874448A (en) * | 1997-11-18 | 1999-02-23 | Celgene Corporation | Substituted 2-(2,6 dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing TNFα levels |
US5874301A (en) * | 1994-11-21 | 1999-02-23 | National Jewish Center For Immunology And Respiratory Medicine | Embryonic cell populations and methods to isolate such populations |
US5877299A (en) * | 1995-06-16 | 1999-03-02 | Stemcell Technologies Inc. | Methods for preparing enriched human hematopoietic cell preparations |
US5877200A (en) * | 1993-07-02 | 1999-03-02 | Celgene Corporation | Cyclic amides |
US5879318A (en) * | 1997-08-18 | 1999-03-09 | Npbi International B.V. | Method of and closed system for collecting and processing umbilical cord blood |
US5879940A (en) * | 1994-07-20 | 1999-03-09 | Fred Hutchinson Cancer Research Center | Human marrow stromal cell lines which sustain hematopoieses |
US6011000A (en) * | 1995-03-03 | 2000-01-04 | Perrine; Susan P. | Compositions for the treatment of blood disorders |
US6010696A (en) * | 1990-11-16 | 2000-01-04 | Osiris Therapeutics, Inc. | Enhancing hematopoietic progenitor cell engraftment using mesenchymal stem cells |
US6020469A (en) * | 1993-12-22 | 2000-02-01 | Amgen Inc. | Stem cell factor formulations and methods |
US6022540A (en) * | 1997-09-04 | 2000-02-08 | Osiris Therapeutics, Inc. | Ligands that modulate differentiation of mesenchymal stem cells |
US6022743A (en) * | 1986-04-18 | 2000-02-08 | Advanced Tissue Sciences, Inc. | Three-dimensional culture of pancreatic parenchymal cells cultured living stromal tissue prepared in vitro |
US6022848A (en) * | 1993-03-31 | 2000-02-08 | Pro-Neuron, Inc. | Inhibitor of stem cell proliferation and uses thereof |
US6030836A (en) * | 1998-06-08 | 2000-02-29 | Osiris Therapeutics, Inc. | Vitro maintenance of hematopoietic stem cells |
US6174333B1 (en) * | 1994-06-06 | 2001-01-16 | Osiris Therapeutics, Inc. | Biomatrix for soft tissue regeneration using mesenchymal stem cells |
US6179819B1 (en) * | 1996-08-30 | 2001-01-30 | John N. Haswell | Umbilical cord blood collection |
US6184035B1 (en) * | 1998-11-18 | 2001-02-06 | California Institute Of Technology | Methods for isolation and activation of, and control of differentiation from, skeletal muscle stem or progenitor cells |
US6190368B1 (en) * | 1996-05-14 | 2001-02-20 | Children's Hospital Medical Center Of Northern California | Apparatus and method for collecting blood from an umbilical cord |
US6335195B1 (en) * | 1997-01-28 | 2002-01-01 | Maret Corporation | Method for promoting hematopoietic and mesenchymal cell proliferation and differentiation |
US6335349B1 (en) * | 1996-07-24 | 2002-01-01 | Celgene Corporation | Substituted 2(2,6-dioxopiperidin-3-yl)isoindolines |
US6337387B1 (en) * | 1995-11-17 | 2002-01-08 | Asahi Kasei Kabushiki Kaisha | Differentiation-suppressive polypeptide |
US6338942B2 (en) * | 1995-05-19 | 2002-01-15 | T. Breeders, Inc. | Selective expansion of target cell populations |
US20020028510A1 (en) * | 2000-03-09 | 2002-03-07 | Paul Sanberg | Human cord blood as a source of neural tissue for repair of the brain and spinal cord |
US6355239B1 (en) * | 1998-03-13 | 2002-03-12 | Osiris Therapeutics, Inc. | Uses for non-autologous mesenchymal stem cells |
US6358737B1 (en) * | 1996-07-31 | 2002-03-19 | Board Of Regents, The University Of Texas System | Osteocyte cell lines |
US20030003573A1 (en) * | 2000-04-27 | 2003-01-02 | Lakshmi Rambhatle | Hepatocytes for therapy and drug screening made from embryonic stem cells |
US20030007954A1 (en) * | 1999-04-12 | 2003-01-09 | Gail K. Naughton | Methods for using a three-dimensional stromal tissue to promote angiogenesis |
US20030032179A1 (en) * | 2000-12-06 | 2003-02-13 | Hariri Robert J. | Post-partum mammalian placenta, its use and placental stem cells therefrom |
US6528245B2 (en) * | 1998-05-07 | 2003-03-04 | University Of South Florida | Bone marrow cells as a source of neurons for brain and spinal cord repair |
US20030044976A1 (en) * | 2001-08-27 | 2003-03-06 | Advanced Cell Technology | De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies |
US20030044977A1 (en) * | 2001-08-10 | 2003-03-06 | Norio Sakuragawa | Human stem cells originated from human amniotic mesenchymal cell layer |
US20030045552A1 (en) * | 2000-12-27 | 2003-03-06 | Robarge Michael J. | Isoindole-imide compounds, compositions, and uses thereof |
US6534084B1 (en) * | 1999-06-30 | 2003-03-18 | Ethicon, Inc. | Porous tissue scaffoldings for the repair or regeneration of tissue |
US6538023B1 (en) * | 2000-09-15 | 2003-03-25 | Tsuyoshi Ohnishi | Therapeutic uses of green tea polyphenols for sickle cell disease |
US20030059414A1 (en) * | 2001-09-21 | 2003-03-27 | Ho Tony W. | Cell populations which co-express CD49c and CD90 |
US20030235563A1 (en) * | 2002-04-19 | 2003-12-25 | Strom Stephen C. | Placental derived stem cells and uses thereof |
US20040018817A1 (en) * | 2002-07-18 | 2004-01-29 | Omron Corporation | Communication system, communication apparatus, and communication control method |
US20040018617A1 (en) * | 2002-07-26 | 2004-01-29 | Shiaw-Min Hwang | Somatic pluripotent cells |
US6685936B2 (en) * | 1999-10-12 | 2004-02-03 | Osiris Therapeutics, Inc. | Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation |
US20040028660A1 (en) * | 2002-05-30 | 2004-02-12 | Anthrogenesis Corporation | Methods of using JNK or MKK inhibitors to modulate cell differentiation and to treat myeloproliferative disorders and myelodysplastic syndromes |
US20040048796A1 (en) * | 2002-03-26 | 2004-03-11 | Hariri Robert J. | Collagen biofabric and methods of preparation and use therefor |
US6709864B1 (en) * | 1996-07-30 | 2004-03-23 | Osiris Therapeutics, Inc. | Adipogenic differentiation of human mesenchymal stem cells |
US20040058412A1 (en) * | 2002-09-20 | 2004-03-25 | Neuronyx, Inc. | Cell populations which co-express CD49c and CD90 |
US20050009876A1 (en) * | 2000-07-31 | 2005-01-13 | Bhagwat Shripad S. | Indazole compounds, compositions thereof and methods of treatment therewith |
US20050019865A1 (en) * | 2003-06-27 | 2005-01-27 | Kihm Anthony J. | Cartilage and bone repair and regeneration using postpartum-derived cells |
US20050042595A1 (en) * | 2003-08-14 | 2005-02-24 | Martin Haas | Banking of multipotent amniotic fetal stem cells |
US20050058641A1 (en) * | 2002-05-22 | 2005-03-17 | Siemionow Maria Z. | Tolerance induction and maintenance in hematopoietic stem cell allografts |
US20050074435A1 (en) * | 2001-12-21 | 2005-04-07 | Robert Casper | Cellular compositions and methods of making and using them |
US20060004043A1 (en) * | 2003-11-19 | 2006-01-05 | Bhagwat Shripad S | Indazole compounds and methods of use thereof |
US20060008450A1 (en) * | 1999-08-05 | 2006-01-12 | Verfaillie Catherine M | Use of multipotent adult stem cells in treatment of myocardial infarction and congestive heart failure |
US6987184B2 (en) * | 2001-02-15 | 2006-01-17 | Signal Pharmaceuticals, Llc | Isothiazoloanthrones, isoxazoloanthrones, isoindolanthrones and derivatives thereof as JNK inhibitors and compositions and methods related |
US20060024280A1 (en) * | 2002-01-22 | 2006-02-02 | Advanced Cell Technology, Inc. | Stem cell-derived endothelial cells modified to disrupt tumor angiogenesis |
US20060030041A1 (en) * | 1999-08-05 | 2006-02-09 | Regents Of The University Of Minnesota | Multipotent adult stem cells and methods for isolation |
US20070031384A1 (en) * | 2005-01-07 | 2007-02-08 | Anthony Atala | Regeneration of pancreatic islets by amniotic fluid stem cell therapy |
US20070041954A1 (en) * | 2005-07-14 | 2007-02-22 | Ichim Thomas E | Compositions of placentally-derived stem cells for the treatment of cancer |
US7642091B2 (en) * | 2005-02-24 | 2010-01-05 | Jau-Nan Lee | Human trophoblast stem cells and use thereof |
US20110003387A1 (en) * | 2009-07-02 | 2011-01-06 | Abbot Stewart | Method of producing erythrocytes without feeder cells |
US20120020936A1 (en) * | 2000-12-06 | 2012-01-26 | Hariri Robert J | Treatment of neurodegenerative disease using placental stem cells |
US8105634B2 (en) * | 2006-08-15 | 2012-01-31 | Anthrogenesis Corporation | Umbilical cord biomaterial for medical use |
US20120034195A1 (en) * | 2002-02-13 | 2012-02-09 | Hariri Robert J | Placental stem cells derive from post-partum manmalian placenta, and uses and methods of treatment using said cells |
Family Cites Families (131)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4829000A (en) | 1985-08-30 | 1989-05-09 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Reconstituted basement membrane complex with biological activity |
US5902741A (en) | 1986-04-18 | 1999-05-11 | Advanced Tissue Sciences, Inc. | Three-dimensional cartilage cultures |
US5004681B1 (en) | 1987-11-12 | 2000-04-11 | Biocyte Corp | Preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood |
FR2646438B1 (fr) | 1989-03-20 | 2007-11-02 | Pasteur Institut | Procede de remplacement specifique d'une copie d'un gene present dans le genome receveur par l'integration d'un gene different de celui ou se fait l'integration |
US5763266A (en) | 1989-06-15 | 1998-06-09 | The Regents Of The University Of Michigan | Methods, compositions and devices for maintaining and growing human stem and/or hematopoietics cells |
US5437994A (en) | 1989-06-15 | 1995-08-01 | Regents Of The University Of Michigan | Method for the ex vivo replication of stem cells, for the optimization of hematopoietic progenitor cell cultures, and for increasing the metabolism, GM-CSF secretion and/or IL-6 secretion of human stromal cells |
US5635386A (en) | 1989-06-15 | 1997-06-03 | The Regents Of The University Of Michigan | Methods for regulating the specific lineages of cells produced in a human hematopoietic cell culture |
US5399493A (en) | 1989-06-15 | 1995-03-21 | The Regents Of The University Of Michigan | Methods and compositions for the optimization of human hematopoietic progenitor cell cultures |
EP0950707B1 (de) | 1989-07-25 | 2009-02-18 | Cell Genesys, Inc. | Homologe Rekombination für universelle Donorzellen und chimerische Säugetierzellen |
DE69032809T2 (de) | 1989-11-06 | 1999-07-08 | Cell Genesys, Inc., Foster City, Calif. | Herstellung von Proteinen mittels homologer Rekombination |
US5272071A (en) | 1989-12-22 | 1993-12-21 | Applied Research Systems Ars Holding N.V. | Method for the modification of the expression characteristics of an endogenous gene of a given cell line |
US5635387A (en) | 1990-04-23 | 1997-06-03 | Cellpro, Inc. | Methods and device for culturing human hematopoietic cells and their precursors |
US6326198B1 (en) | 1990-06-14 | 2001-12-04 | Regents Of The University Of Michigan | Methods and compositions for the ex vivo replication of stem cells, for the optimization of hematopoietic progenitor cell cultures, and for increasing the metabolism, GM-CSF secretion and/or IL-6 secretion of human stromal cells |
US5811094A (en) | 1990-11-16 | 1998-09-22 | Osiris Therapeutics, Inc. | Connective tissue regeneration using human mesenchymal stem cell preparations |
US5226914A (en) | 1990-11-16 | 1993-07-13 | Caplan Arnold I | Method for treating connective tissue disorders |
US5837539A (en) | 1990-11-16 | 1998-11-17 | Osiris Therapeutics, Inc. | Monoclonal antibodies for human mesenchymal stem cells |
US5190556A (en) | 1991-03-19 | 1993-03-02 | O.B. Tech, Inc. | Cord cutter sampler |
US5744361A (en) | 1991-04-09 | 1998-04-28 | Indiana University | Expansion of human hematopoietic progenitor cells in a liquid medium |
WO1993004169A1 (en) | 1991-08-20 | 1993-03-04 | Genpharm International, Inc. | Gene targeting in animal cells using isogenic dna constructs |
JPH07502404A (ja) | 1991-12-23 | 1995-03-16 | ブリティッシュ バイオ−テクノロジー リミテッド | 幹細胞阻害タンパク質 |
US5668104A (en) | 1992-03-31 | 1997-09-16 | Toray Industries, Inc. | Hematopoietic stem cell growth-promoting compositions containing a fibroblast-derived fragment of fibronectin and a growth factor, and methods employing them in vitro or in vivo |
US5460964A (en) | 1992-04-03 | 1995-10-24 | Regents Of The University Of Minnesota | Method for culturing hematopoietic cells |
AU4543193A (en) | 1992-06-22 | 1994-01-24 | Henry E. Young | Scar inhibitory factor and use thereof |
US5672499A (en) | 1992-07-27 | 1997-09-30 | California Institute Of Technology | Immoralized neural crest stem cells and methods of making |
US5672346A (en) | 1992-07-27 | 1997-09-30 | Indiana University Foundation | Human stem cell compositions and methods |
US5849553A (en) | 1992-07-27 | 1998-12-15 | California Institute Of Technology | Mammalian multipotent neural stem cells |
AU5603894A (en) | 1992-11-16 | 1994-06-08 | Applied Immune Sciences, Inc. | Pluripotential quiescent stem cell population |
US5772992A (en) | 1992-11-24 | 1998-06-30 | G.D. Searle & Co. | Compositions for co-administration of interleukin-3 mutants and other cytokines and hematopoietic factors |
US5654186A (en) | 1993-02-26 | 1997-08-05 | The Picower Institute For Medical Research | Blood-borne mesenchymal cells |
GB9308271D0 (en) | 1993-04-21 | 1993-06-02 | Univ Edinburgh | Method of isolating and/or enriching and/or selectively propagating pluripotential animal cells and animals for use in said method |
US5372581A (en) | 1993-07-21 | 1994-12-13 | Minneapolis Children's Services Corporation | Method and apparatus for placental blood collection |
IL107483A0 (en) | 1993-11-03 | 1994-02-27 | Yeda Res & Dev | Bone marrow transplantation |
US6001654A (en) | 1994-01-28 | 1999-12-14 | California Institute Of Technology | Methods for differentiating neural stem cells to neurons or smooth muscle cells using TGT-β super family growth factors |
US5942496A (en) | 1994-02-18 | 1999-08-24 | The Regent Of The University Of Michigan | Methods and compositions for multiple gene transfer into bone cells |
DE4422667A1 (de) | 1994-06-30 | 1996-01-04 | Boehringer Ingelheim Int | Verfahren zur Herstellung und Züchtung hämatopoetischer Vorläuferzellen |
US5516532A (en) | 1994-08-05 | 1996-05-14 | Children's Medical Center Corporation | Injectable non-immunogenic cartilage and bone preparation |
US5827742A (en) | 1994-09-01 | 1998-10-27 | Beth Israel Deaconess Medical Center, Inc. | Method of selecting pluripotent hematopioetic progenitor cells |
US5665557A (en) | 1994-11-14 | 1997-09-09 | Systemix, Inc. | Method of purifying a population of cells enriched for hematopoietic stem cells populations of cells obtained thereby and methods of use thereof |
US5914268A (en) | 1994-11-21 | 1999-06-22 | National Jewish Center For Immunology & Respiratory Medicine | Embryonic cell populations and methods to isolate such populations |
US5789147A (en) | 1994-12-05 | 1998-08-04 | New York Blood Center, Inc. | Method for concentrating white cells from whole blood by adding a red cell sedimentation reagent to whole anticoagulated blood |
US5736396A (en) | 1995-01-24 | 1998-04-07 | Case Western Reserve University | Lineage-directed induction of human mesenchymal stem cell differentiation |
US5906934A (en) | 1995-03-14 | 1999-05-25 | Morphogen Pharmaceuticals, Inc. | Mesenchymal stem cells for cartilage repair |
US5677139A (en) | 1995-04-21 | 1997-10-14 | President And Fellows Of Harvard College | In vitro differentiation of CD34+ progenitor cells into T lymphocytes |
US5908782A (en) | 1995-06-05 | 1999-06-01 | Osiris Therapeutics, Inc. | Chemically defined medium for human mesenchymal stem cells |
US5830708A (en) | 1995-06-06 | 1998-11-03 | Advanced Tissue Sciences, Inc. | Methods for production of a naturally secreted extracellular matrix |
WO1996040875A1 (en) | 1995-06-07 | 1996-12-19 | Novartis Ag | Methods for obtaining compositions enriched for hematopoietic stem cells and antibodies for use therein |
US5654381A (en) | 1995-06-16 | 1997-08-05 | Massachusetts Institute Of Technology | Functionalized polyester graft copolymers |
US6306575B1 (en) | 1995-06-16 | 2001-10-23 | Stemcell Technologies, Inc. | Methods for preparing enriched human hematopoietic cell preparations |
AU1119397A (en) | 1995-11-14 | 1997-06-05 | Regents Of The University Of Minnesota | Ex vivo culture of stem cells |
CA2237890C (en) | 1995-11-16 | 2011-03-29 | Case Western Reserve University | In vitro chondrogenic induction of human mesenchymal stem cells |
US5851984A (en) | 1996-08-16 | 1998-12-22 | Genentech, Inc. | Method of enhancing proliferation or differentiation of hematopoietic stem cells using Wnt polypeptides |
US6227202B1 (en) | 1996-09-03 | 2001-05-08 | Maulana Azad Medical College | Method of organogenesis and tissue regeneration/repair using surgical techniques |
US5945337A (en) | 1996-10-18 | 1999-08-31 | Quality Biological, Inc. | Method for culturing CD34+ cells in a serum-free medium |
US5969105A (en) | 1996-10-25 | 1999-10-19 | Feng; Yiqing | Stem cell factor receptor agonists |
JPH10295369A (ja) * | 1997-02-26 | 1998-11-10 | Japan Tobacco Inc | 造血幹細胞の製造方法 |
US6152142A (en) | 1997-02-28 | 2000-11-28 | Tseng; Scheffer C. G. | Grafts made from amniotic membrane; methods of separating, preserving, and using such grafts in surgeries |
US6231880B1 (en) | 1997-05-30 | 2001-05-15 | Susan P. Perrine | Compositions and administration of compositions for the treatment of blood disorders |
DK1028737T3 (da) | 1997-07-03 | 2007-08-13 | Osiris Therapeutics Inc | Humane mesenchymale stamceller fra perifert blod |
US6077708A (en) | 1997-07-18 | 2000-06-20 | Collins; Paul C. | Method of determining progenitor cell content of a hematopoietic cell culture |
US5968829A (en) | 1997-09-05 | 1999-10-19 | Cytotherapeutics, Inc. | Human CNS neural stem cells |
US6093531A (en) | 1997-09-29 | 2000-07-25 | Neurospheres Holdings Ltd. | Generation of hematopoietic cells from multipotent neural stem cells |
US6248587B1 (en) | 1997-11-26 | 2001-06-19 | University Of Southern Cailfornia | Method for promoting mesenchymal stem and lineage-specific cell proliferation |
AU1710199A (en) * | 1997-12-04 | 1999-07-05 | University Of Medicine And Dentistry Of New Jersey | Use of human umbilical cord blood for adoptive therapy |
US6059968A (en) | 1998-01-20 | 2000-05-09 | Baxter International Inc. | Systems for processing and storing placenta/umbilical cord blood |
KR20010052302A (ko) | 1998-05-04 | 2001-06-25 | 바바라 피. 월너 | 조혈 자극 |
DK1084230T3 (da) | 1998-06-08 | 2008-03-03 | Osiris Therapeutics Inc | Regulering af hæmatopoietisk stamcelledifferentiering ved anvendelse af humane mesenkymstamceller |
US6713245B2 (en) * | 1998-07-06 | 2004-03-30 | Diacrin, Inc. | Methods for storing neural cells such that they are suitable for transplantation |
US5958767A (en) | 1998-08-14 | 1999-09-28 | The Children's Medical Center Corp. | Engraftable human neural stem cells |
JP3517359B2 (ja) | 1998-09-14 | 2004-04-12 | テルモ株式会社 | 細胞分離・回収装置および細胞の分離・回収方法 |
US6630349B1 (en) | 1998-09-23 | 2003-10-07 | Mount Sinai Hospital | Trophoblast cell preparations |
AU1720400A (en) | 1998-11-12 | 2000-05-29 | Cell Science Therapeutics, Inc. | Lymphoid tissue-specific cell production from hematopoietic progenitor cells in three-dimensional devices |
US6548299B1 (en) | 1999-11-12 | 2003-04-15 | Mark J. Pykett | Lymphoid tissue-specific cell production from hematopoietic progenitor cells in three-dimensional devices |
US6102871A (en) | 1998-11-23 | 2000-08-15 | Coe; Rosemarie O. | Blood collection funnel |
US6328765B1 (en) | 1998-12-03 | 2001-12-11 | Gore Enterprise Holdings, Inc. | Methods and articles for regenerating living tissue |
IN191359B (de) | 1999-04-20 | 2003-11-29 | Nat Inst Immunology | |
WO2000073421A2 (en) | 1999-06-02 | 2000-12-07 | Lifebank Services, L.L.C. | Methods of isolation, cryopreservation, and therapeutic use of human amniotic epithelial cells |
US6280718B1 (en) | 1999-11-08 | 2001-08-28 | Wisconsin Alumni Reasearch Foundation | Hematopoietic differentiation of human pluripotent embryonic stem cells |
US20010038836A1 (en) | 2000-04-04 | 2001-11-08 | Matthew During | Application of myeloid-origin cells to the nervous system |
ES2267778T3 (es) | 2000-06-06 | 2007-03-16 | Glaxo Group Limited | Composicion para el tratamiento del cancer, que contiene un agente anti-neoplastico y un inhibidor de pde4. |
US7560280B2 (en) | 2000-11-03 | 2009-07-14 | Kourion Therapeutics Gmbh | Human cord blood derived unrestricted somatic stem cells (USSC) |
KR20040029311A (ko) | 2000-11-22 | 2004-04-06 | 제론 코포레이션 | 다능성 줄기 세포의 동종이식편의 내성화 |
US20080152629A1 (en) | 2000-12-06 | 2008-06-26 | James Edinger | Placental stem cell populations |
ES2522526T3 (es) | 2001-02-14 | 2014-11-14 | Anthrogenesis Corporation | Placenta post-parto de mamíferos, su uso y células troncales placentarias de la misma |
US20020132343A1 (en) * | 2001-03-19 | 2002-09-19 | Clark Lum | System and method for delivering umbilical cord-derived tissue-matched stem cells for transplantation |
US20030152558A1 (en) | 2001-11-09 | 2003-08-14 | Christopher Luft | Methods and compositions for the use of stromal cells to support embryonic and adult stem cells |
JP4330995B2 (ja) | 2001-11-15 | 2009-09-16 | チルドレンズ メディカル センター コーポレーション | 絨毛膜絨毛、羊水、および胎盤からの胎児性幹細胞を単離、増殖、および分化させる方法、ならびにその治療的使用方法 |
US20030099621A1 (en) | 2001-11-29 | 2003-05-29 | Robert Chow | Stem cell screening and transplantation therapy for HIV infection |
US7799324B2 (en) | 2001-12-07 | 2010-09-21 | Geron Corporation | Using undifferentiated embryonic stem cells to control the immune system |
US7736892B2 (en) | 2002-02-25 | 2010-06-15 | Kansas State University Research Foundation | Cultures, products and methods using umbilical cord matrix cells |
CN100579577C (zh) | 2002-03-15 | 2010-01-13 | 退伍军人事务研发服务部 | 使用细胞脱唾液酸决定簇和糖缀合物将细胞靶向组织和器官的方法和组合物 |
US7498171B2 (en) | 2002-04-12 | 2009-03-03 | Anthrogenesis Corporation | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
WO2003087333A2 (en) | 2002-04-12 | 2003-10-23 | Celgene Corporation | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
WO2003086373A1 (en) | 2002-04-12 | 2003-10-23 | Celgene Corporation | Methods for identification of modulators of angiogenesis, compounds discovered thereby, and methods of treatment using the compounds |
US20040161419A1 (en) | 2002-04-19 | 2004-08-19 | Strom Stephen C. | Placental stem cells and uses thereof |
US20040171147A1 (en) | 2002-11-26 | 2004-09-02 | Hariri Robert J. | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
AU2004212009B2 (en) | 2003-02-13 | 2010-07-29 | Celularity Inc. | Use of umbilical cord blood to treat individuals having a disease, disorder or condition |
US20050089513A1 (en) | 2003-10-28 | 2005-04-28 | Norio Sakuragawa | Side population cells originated from human amnion and their uses |
WO2005047491A2 (en) | 2003-11-10 | 2005-05-26 | Amgen Inc. | Methods of using g-csf mobilized c-kit+cells in the production of embryoid body-like cell clusters for tissue repair and in the treatment of cardiac myopathy |
TWI338714B (en) | 2003-12-02 | 2011-03-11 | Cathay General Hospital | Method of isolation and enrichment of mesenchymal stem cells from amniotic fluid |
AU2004296765B2 (en) | 2003-12-02 | 2011-03-24 | Celgene Corporation | Methods and compositions for the treatment and management of hemoglobinopathy and anemia |
US20050176139A1 (en) | 2004-01-12 | 2005-08-11 | Yao-Chang Chen | Placental stem cell and methods thereof |
US20050266391A1 (en) | 2004-01-15 | 2005-12-01 | Bennett Brydon L | Methods for preserving tissue |
JP2007531116A (ja) | 2004-03-26 | 2007-11-01 | セルジーン・コーポレーション | 幹細胞バンクを提供するためのシステム及び方法 |
US7244759B2 (en) | 2004-07-28 | 2007-07-17 | Celgene Corporation | Isoindoline compounds and methods of making and using the same |
US7147626B2 (en) | 2004-09-23 | 2006-12-12 | Celgene Corporation | Cord blood and placenta collection kit |
US7909806B2 (en) | 2004-09-23 | 2011-03-22 | Anthrogenesis Corporation | Cord blood and placenta collection kit |
JP2008543783A (ja) | 2005-06-10 | 2008-12-04 | セルジーン・コーポレーション | ヒト胎盤のコラーゲン組成物、これらの調製方法、これらの使用方法及び組成物を含むキット。 |
JP2008544818A (ja) | 2005-06-30 | 2008-12-11 | アントフロゲネシス コーポレーション | 胎盤由来コラーゲンバイオ線維を用いた鼓膜の修復 |
WO2007009061A2 (en) | 2005-07-13 | 2007-01-18 | Anthrogenesis Corporation | Ocular plug formed from placenta derived collagen biofabric |
EP1919500A2 (de) | 2005-07-13 | 2008-05-14 | Anthrogenesis Corporation | Behandlung von beingeschwüren mit kollagen-biogewebe aus plazenta |
EP1934334A1 (de) | 2005-10-13 | 2008-06-25 | Anthrogenesis Corporation | Herstellung von oligodendrozyten aus stammzellen der plazenta |
WO2007047468A2 (en) | 2005-10-13 | 2007-04-26 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
US8455250B2 (en) | 2005-12-29 | 2013-06-04 | Anthrogenesis Corporation | Co-culture of placental stem cells and stem cells from a second source |
KR20190104428A (ko) | 2005-12-29 | 2019-09-09 | 안트로제네시스 코포레이션 | 태반 줄기 세포 집단 |
CN101374941A (zh) | 2005-12-29 | 2009-02-25 | 人类起源公司 | 采集和保存胎盘干细胞的改良组合物及其使用方法 |
EP2035552A2 (de) | 2006-06-09 | 2009-03-18 | Anthrogenesis Corporation | Plazentare nische und ihre verwendung zur züchtung von stammzellen |
US7993918B2 (en) | 2006-08-04 | 2011-08-09 | Anthrogenesis Corporation | Tumor suppression using placental stem cells |
WO2008042441A1 (en) | 2006-10-03 | 2008-04-10 | Anthrogenesis Corporation | Use of umbilical cord biomaterial for ocular surgery |
WO2008060377A2 (en) | 2006-10-04 | 2008-05-22 | Anthrogenesis Corporation | Placental or umbilical cord tissue compositions |
JP5769925B2 (ja) | 2006-10-06 | 2015-08-26 | アントフロゲネシス コーポレーション | ヒト胎盤コラーゲン組成物、並びにそれらの製造方法及び使用方法 |
NZ595854A (en) | 2006-10-23 | 2013-04-26 | Anthrogenesis Corp | Methods and compositions for treatment of bone defects with placental cell populations (ELOVL2, ST3GAL6, STGALNAC5, SLC12A8) |
CA2677679A1 (en) | 2007-02-12 | 2008-08-21 | Anthrogenesis Corporation | Hepatocytes and chondrocytes from adherent placental stem cells; and cd34+, cd45- placental stem cell-enriched cell populations |
MX349225B (es) | 2007-02-12 | 2017-07-19 | Anthrogenesis Corp | Uso de celulas madre placentarias para preparar medicamentos utiles en el tratamiento de padecimientos inflamatorios. |
MX2010003217A (es) | 2007-09-26 | 2010-07-30 | Celgene Cellular Therapeutics | Celulas angiogenicas de perfundido de placenta humana. |
KR20210022148A (ko) | 2007-09-28 | 2021-03-02 | 안트로제네시스 코포레이션 | 인간 태반 관류액 및 인간 태반-유래 중간체 천연 킬러 세포를 사용한 종양 억제 방법 |
US20090136471A1 (en) | 2007-11-07 | 2009-05-28 | Anthrogenesis Corporation | Treatment of premature birth complications |
EP3539380A3 (de) | 2008-08-20 | 2019-12-18 | Celularity, Inc. | Verbesserte zellzusammensetzung und verfahren zur herstellung davon |
MX2011001991A (es) | 2008-08-20 | 2011-03-29 | Anthrogenesis Corp | Tratamiento de la apoplejia utilizando celulas placentarias aisladas. |
WO2010021756A1 (en) | 2008-08-22 | 2010-02-25 | Anthrogenesis Corporation | Methods and compositions for treatment of bone defects with placental cell populations |
DK2367932T3 (da) | 2008-11-19 | 2019-09-23 | Celularity Inc | Amnion-afledte adhærente celler |
ES2731340T3 (es) | 2008-11-21 | 2019-11-15 | Celularity Inc | Tratamiento de enfermedades, trastornos o afecciones pulmonares utilizando células placentarias |
-
2003
- 2003-11-25 US US10/721,144 patent/US20040171147A1/en not_active Abandoned
- 2003-11-25 CN CNA2003801041795A patent/CN1717177A/zh active Pending
- 2003-11-25 EP EP03796533A patent/EP1571910A4/de not_active Withdrawn
- 2003-11-25 KR KR1020057009372A patent/KR20050086780A/ko not_active Application Discontinuation
- 2003-11-25 MX MXPA05005673A patent/MXPA05005673A/es not_active Application Discontinuation
- 2003-11-25 AU AU2003298775A patent/AU2003298775B2/en not_active Expired
- 2003-11-25 WO PCT/US2003/038143 patent/WO2004047770A2/en active Application Filing
- 2003-11-25 KR KR1020107025045A patent/KR20100125479A/ko not_active Application Discontinuation
- 2003-11-25 BR BR0316695-3A patent/BR0316695A/pt not_active Application Discontinuation
- 2003-11-25 CA CA002505534A patent/CA2505534A1/en not_active Abandoned
- 2003-11-25 KR KR1020097017004A patent/KR101042448B1/ko active IP Right Grant
- 2003-11-25 JP JP2004555819A patent/JP2006509770A/ja active Pending
-
2005
- 2005-05-25 ZA ZA200504273A patent/ZA200504273B/en unknown
-
2006
- 2006-11-03 US US11/592,544 patent/US8617535B2/en active Active
-
2008
- 2008-10-16 AU AU2008229977A patent/AU2008229977A1/en not_active Abandoned
-
2011
- 2011-07-22 JP JP2011160949A patent/JP2011225606A/ja active Pending
-
2016
- 2016-11-28 US US15/362,300 patent/US20170290862A1/en not_active Abandoned
-
2019
- 2019-08-05 US US16/532,080 patent/US20200009199A1/en not_active Abandoned
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862002A (en) * | 1962-05-08 | 1975-01-21 | Sanfar Lab Inc | Production of physiologically active placental substances |
US4008719A (en) * | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
US5391485A (en) * | 1985-08-06 | 1995-02-21 | Immunex Corporation | DNAs encoding analog GM-CSF molecules displaying resistance to proteases which cleave at adjacent dibasic residues |
US5393870A (en) * | 1985-08-06 | 1995-02-28 | Immunex Corporation | Analogs of human granulocyte-macrophage colony stimulating factor |
US4999291A (en) * | 1985-08-23 | 1991-03-12 | Amgen Inc. | Production of human pluripotent granulocyte colony-stimulating factor |
US4810643A (en) * | 1985-08-23 | 1989-03-07 | Kirin- Amgen Inc. | Production of pluripotent granulocyte colony-stimulating factor |
US4798824A (en) * | 1985-10-03 | 1989-01-17 | Wisconsin Alumni Research Foundation | Perfusate for the preservation of organs |
US6022743A (en) * | 1986-04-18 | 2000-02-08 | Advanced Tissue Sciences, Inc. | Three-dimensional culture of pancreatic parenchymal cells cultured living stromal tissue prepared in vitro |
US5192553A (en) * | 1987-11-12 | 1993-03-09 | Biocyte Corporation | Isolation and preservation of fetal and neonatal hematopoietic stem and progenitor cells of the blood and methods of therapeutic use |
US5284766A (en) * | 1989-02-10 | 1994-02-08 | Kao Corporation | Bed material for cell culture |
US5605822A (en) * | 1989-06-15 | 1997-02-25 | The Regents Of The University Of Michigan | Methods, compositions and devices for growing human hematopoietic cells |
US5487992A (en) * | 1989-08-22 | 1996-01-30 | University Of Utah Research Foundation | Cells and non-human organisms containing predetermined genomic modifications and positive-negative selection methods and vectors for making same |
US5716827A (en) * | 1990-03-30 | 1998-02-10 | Systemix, Inc. | Human hematopoietic stem cell |
US5733566A (en) * | 1990-05-15 | 1998-03-31 | Alkermes Controlled Therapeutics Inc. Ii | Controlled release of antiparasitic agents in animals |
US5486359A (en) * | 1990-11-16 | 1996-01-23 | Osiris Therapeutics, Inc. | Human mesenchymal stem cells |
US5733542A (en) * | 1990-11-16 | 1998-03-31 | Haynesworth; Stephen E. | Enhancing bone marrow engraftment using MSCS |
US6010696A (en) * | 1990-11-16 | 2000-01-04 | Osiris Therapeutics, Inc. | Enhancing hematopoietic progenitor cell engraftment using mesenchymal stem cells |
US5197985A (en) * | 1990-11-16 | 1993-03-30 | Caplan Arnold I | Method for enhancing the implantation and differentiation of marrow-derived mesenchymal cells |
US5385901A (en) * | 1991-02-14 | 1995-01-31 | The Rockefeller University | Method of treating abnormal concentrations of TNF α |
US5192312A (en) * | 1991-03-05 | 1993-03-09 | Colorado State University Research Foundation | Treated tissue for implantation and methods of treatment and use |
US5591767A (en) * | 1993-01-25 | 1997-01-07 | Pharmetrix Corporation | Liquid reservoir transdermal patch for the administration of ketorolac |
US6022848A (en) * | 1993-03-31 | 2000-02-08 | Pro-Neuron, Inc. | Inhibitor of stem cell proliferation and uses thereof |
US5709854A (en) * | 1993-04-30 | 1998-01-20 | Massachusetts Institute Of Technology | Tissue formation by injecting a cell-polymeric solution that gels in vivo |
US5877200A (en) * | 1993-07-02 | 1999-03-02 | Celgene Corporation | Cyclic amides |
US5605914A (en) * | 1993-07-02 | 1997-02-25 | Celgene Corporation | Imides |
US5599705A (en) * | 1993-11-16 | 1997-02-04 | Cameron; Robert B. | In vitro method for producing differentiated universally compatible mature human blood cells |
US5591625A (en) * | 1993-11-24 | 1997-01-07 | Case Western Reserve University | Transduced mesenchymal stem cells |
US6020469A (en) * | 1993-12-22 | 2000-02-01 | Amgen Inc. | Stem cell factor formulations and methods |
US6174333B1 (en) * | 1994-06-06 | 2001-01-16 | Osiris Therapeutics, Inc. | Biomatrix for soft tissue regeneration using mesenchymal stem cells |
US5855619A (en) * | 1994-06-06 | 1999-01-05 | Case Western Reserve University | Biomatrix for soft tissue regeneration |
US5879940A (en) * | 1994-07-20 | 1999-03-09 | Fred Hutchinson Cancer Research Center | Human marrow stromal cell lines which sustain hematopoieses |
US5861315A (en) * | 1994-11-16 | 1999-01-19 | Amgen Inc. | Use of stem cell factor and soluble interleukin-6 receptor for the ex vivo expansion of hematopoietic multipotential cells |
US5874301A (en) * | 1994-11-21 | 1999-02-23 | National Jewish Center For Immunology And Respiratory Medicine | Embryonic cell populations and methods to isolate such populations |
US5866414A (en) * | 1995-02-10 | 1999-02-02 | Badylak; Stephen F. | Submucosa gel as a growth substrate for cells |
US6011000A (en) * | 1995-03-03 | 2000-01-04 | Perrine; Susan P. | Compositions for the treatment of blood disorders |
US5716616A (en) * | 1995-03-28 | 1998-02-10 | Thomas Jefferson University | Isolated stromal cells for treating diseases, disorders or conditions characterized by bone defects |
US5733541A (en) * | 1995-04-21 | 1998-03-31 | The Regent Of The University Of Michigan | Hematopoietic cells: compositions and methods |
US6338942B2 (en) * | 1995-05-19 | 2002-01-15 | T. Breeders, Inc. | Selective expansion of target cell populations |
US5877299A (en) * | 1995-06-16 | 1999-03-02 | Stemcell Technologies Inc. | Methods for preparing enriched human hematopoietic cell preparations |
US5858782A (en) * | 1995-11-13 | 1999-01-12 | Regents Of The University Of Michigan | Functional human hematopoietic cells |
US6337387B1 (en) * | 1995-11-17 | 2002-01-08 | Asahi Kasei Kabushiki Kaisha | Differentiation-suppressive polypeptide |
US5716794A (en) * | 1996-03-29 | 1998-02-10 | Xybernaut Corporation | Celiac antigen |
US6190368B1 (en) * | 1996-05-14 | 2001-02-20 | Children's Hospital Medical Center Of Northern California | Apparatus and method for collecting blood from an umbilical cord |
US6335349B1 (en) * | 1996-07-24 | 2002-01-01 | Celgene Corporation | Substituted 2(2,6-dioxopiperidin-3-yl)isoindolines |
US6709864B1 (en) * | 1996-07-30 | 2004-03-23 | Osiris Therapeutics, Inc. | Adipogenic differentiation of human mesenchymal stem cells |
US6358737B1 (en) * | 1996-07-31 | 2002-03-19 | Board Of Regents, The University Of Texas System | Osteocyte cell lines |
US6179819B1 (en) * | 1996-08-30 | 2001-01-30 | John N. Haswell | Umbilical cord blood collection |
US6335195B1 (en) * | 1997-01-28 | 2002-01-01 | Maret Corporation | Method for promoting hematopoietic and mesenchymal cell proliferation and differentiation |
US5879318A (en) * | 1997-08-18 | 1999-03-09 | Npbi International B.V. | Method of and closed system for collecting and processing umbilical cord blood |
US6022540A (en) * | 1997-09-04 | 2000-02-08 | Osiris Therapeutics, Inc. | Ligands that modulate differentiation of mesenchymal stem cells |
US5874448A (en) * | 1997-11-18 | 1999-02-23 | Celgene Corporation | Substituted 2-(2,6 dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing TNFα levels |
US6355239B1 (en) * | 1998-03-13 | 2002-03-12 | Osiris Therapeutics, Inc. | Uses for non-autologous mesenchymal stem cells |
US6528245B2 (en) * | 1998-05-07 | 2003-03-04 | University Of South Florida | Bone marrow cells as a source of neurons for brain and spinal cord repair |
US6030836A (en) * | 1998-06-08 | 2000-02-29 | Osiris Therapeutics, Inc. | Vitro maintenance of hematopoietic stem cells |
US6184035B1 (en) * | 1998-11-18 | 2001-02-06 | California Institute Of Technology | Methods for isolation and activation of, and control of differentiation from, skeletal muscle stem or progenitor cells |
US20030007954A1 (en) * | 1999-04-12 | 2003-01-09 | Gail K. Naughton | Methods for using a three-dimensional stromal tissue to promote angiogenesis |
US6534084B1 (en) * | 1999-06-30 | 2003-03-18 | Ethicon, Inc. | Porous tissue scaffoldings for the repair or regeneration of tissue |
US20060030041A1 (en) * | 1999-08-05 | 2006-02-09 | Regents Of The University Of Minnesota | Multipotent adult stem cells and methods for isolation |
US20060008450A1 (en) * | 1999-08-05 | 2006-01-12 | Verfaillie Catherine M | Use of multipotent adult stem cells in treatment of myocardial infarction and congestive heart failure |
US6685936B2 (en) * | 1999-10-12 | 2004-02-03 | Osiris Therapeutics, Inc. | Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation |
US20020028510A1 (en) * | 2000-03-09 | 2002-03-07 | Paul Sanberg | Human cord blood as a source of neural tissue for repair of the brain and spinal cord |
US20030003573A1 (en) * | 2000-04-27 | 2003-01-02 | Lakshmi Rambhatle | Hepatocytes for therapy and drug screening made from embryonic stem cells |
US20050009876A1 (en) * | 2000-07-31 | 2005-01-13 | Bhagwat Shripad S. | Indazole compounds, compositions thereof and methods of treatment therewith |
US6538023B1 (en) * | 2000-09-15 | 2003-03-25 | Tsuyoshi Ohnishi | Therapeutic uses of green tea polyphenols for sickle cell disease |
US20040048372A1 (en) * | 2000-12-06 | 2004-03-11 | Anthrogenesis Corporation | Post-partum mammalian placenta, its use and placental stem cells therefrom |
US20030032179A1 (en) * | 2000-12-06 | 2003-02-13 | Hariri Robert J. | Post-partum mammalian placenta, its use and placental stem cells therefrom |
US20120020936A1 (en) * | 2000-12-06 | 2012-01-26 | Hariri Robert J | Treatment of neurodegenerative disease using placental stem cells |
US20050019908A1 (en) * | 2000-12-06 | 2005-01-27 | Anthrogenesis Corporation | Post-partum mammalian placenta, its use and placental stem cells therefrom |
US20030045552A1 (en) * | 2000-12-27 | 2003-03-06 | Robarge Michael J. | Isoindole-imide compounds, compositions, and uses thereof |
US6987184B2 (en) * | 2001-02-15 | 2006-01-17 | Signal Pharmaceuticals, Llc | Isothiazoloanthrones, isoxazoloanthrones, isoindolanthrones and derivatives thereof as JNK inhibitors and compositions and methods related |
US20030044977A1 (en) * | 2001-08-10 | 2003-03-06 | Norio Sakuragawa | Human stem cells originated from human amniotic mesenchymal cell layer |
US20030044976A1 (en) * | 2001-08-27 | 2003-03-06 | Advanced Cell Technology | De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies |
US20030059414A1 (en) * | 2001-09-21 | 2003-03-27 | Ho Tony W. | Cell populations which co-express CD49c and CD90 |
US20050074435A1 (en) * | 2001-12-21 | 2005-04-07 | Robert Casper | Cellular compositions and methods of making and using them |
US20060024280A1 (en) * | 2002-01-22 | 2006-02-02 | Advanced Cell Technology, Inc. | Stem cell-derived endothelial cells modified to disrupt tumor angiogenesis |
US20120034195A1 (en) * | 2002-02-13 | 2012-02-09 | Hariri Robert J | Placental stem cells derive from post-partum manmalian placenta, and uses and methods of treatment using said cells |
US20040048796A1 (en) * | 2002-03-26 | 2004-03-11 | Hariri Robert J. | Collagen biofabric and methods of preparation and use therefor |
US20030235563A1 (en) * | 2002-04-19 | 2003-12-25 | Strom Stephen C. | Placental derived stem cells and uses thereof |
US20050058641A1 (en) * | 2002-05-22 | 2005-03-17 | Siemionow Maria Z. | Tolerance induction and maintenance in hematopoietic stem cell allografts |
US20040028660A1 (en) * | 2002-05-30 | 2004-02-12 | Anthrogenesis Corporation | Methods of using JNK or MKK inhibitors to modulate cell differentiation and to treat myeloproliferative disorders and myelodysplastic syndromes |
US20040018817A1 (en) * | 2002-07-18 | 2004-01-29 | Omron Corporation | Communication system, communication apparatus, and communication control method |
US20040018617A1 (en) * | 2002-07-26 | 2004-01-29 | Shiaw-Min Hwang | Somatic pluripotent cells |
US20040058412A1 (en) * | 2002-09-20 | 2004-03-25 | Neuronyx, Inc. | Cell populations which co-express CD49c and CD90 |
US20050058630A1 (en) * | 2003-06-27 | 2005-03-17 | Harris Ian Ross | Postpartum-derived cells for use in treatment of disease of the heart and circulatory system |
US20070014771A1 (en) * | 2003-06-27 | 2007-01-18 | Ethicon, Incorporated | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US20050058631A1 (en) * | 2003-06-27 | 2005-03-17 | Kihm Anthony J. | Postpartum cells derived from placental tissue, and methods of making and using the same |
US20050019865A1 (en) * | 2003-06-27 | 2005-01-27 | Kihm Anthony J. | Cartilage and bone repair and regeneration using postpartum-derived cells |
US20050032209A1 (en) * | 2003-06-27 | 2005-02-10 | Messina Darin J. | Regeneration and repair of neural tissue using postpartum-derived cells |
US20050054098A1 (en) * | 2003-06-27 | 2005-03-10 | Sanjay Mistry | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US20070036767A1 (en) * | 2003-06-27 | 2007-02-15 | Ethicon, Incorporated | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US20050037491A1 (en) * | 2003-06-27 | 2005-02-17 | Sanjay Mistry | Repair and regeneration of ocular tissue using postpartum-derived cells |
US20070009494A1 (en) * | 2003-06-27 | 2007-01-11 | Ethicon, Incorporated | Postpartum cells derived from umbilical cord tissue, and methods of making and using the same |
US20050058629A1 (en) * | 2003-06-27 | 2005-03-17 | Harmon Alexander M. | Soft tissue repair and regeneration using postpartum-derived cells |
US20050042595A1 (en) * | 2003-08-14 | 2005-02-24 | Martin Haas | Banking of multipotent amniotic fetal stem cells |
US20050054093A1 (en) * | 2003-08-14 | 2005-03-10 | Martin Haas | Multipotent amniotic fetal stem cells |
US20060004043A1 (en) * | 2003-11-19 | 2006-01-05 | Bhagwat Shripad S | Indazole compounds and methods of use thereof |
US20070031384A1 (en) * | 2005-01-07 | 2007-02-08 | Anthony Atala | Regeneration of pancreatic islets by amniotic fluid stem cell therapy |
US7642091B2 (en) * | 2005-02-24 | 2010-01-05 | Jau-Nan Lee | Human trophoblast stem cells and use thereof |
US20070041954A1 (en) * | 2005-07-14 | 2007-02-22 | Ichim Thomas E | Compositions of placentally-derived stem cells for the treatment of cancer |
US8105634B2 (en) * | 2006-08-15 | 2012-01-31 | Anthrogenesis Corporation | Umbilical cord biomaterial for medical use |
US20110003387A1 (en) * | 2009-07-02 | 2011-01-06 | Abbot Stewart | Method of producing erythrocytes without feeder cells |
Cited By (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8580563B2 (en) * | 2000-12-06 | 2013-11-12 | Anthrogenesis Corporation | Placental stem cells |
US8545833B2 (en) | 2000-12-06 | 2013-10-01 | Anthrogenesis Corporation | Treatment of radiation injury using placental stem cells |
US20050019908A1 (en) * | 2000-12-06 | 2005-01-27 | Anthrogenesis Corporation | Post-partum mammalian placenta, its use and placental stem cells therefrom |
US8986984B2 (en) | 2000-12-06 | 2015-03-24 | Anthrogenesis Corporation | Method of propagating cells |
US9149569B2 (en) | 2000-12-06 | 2015-10-06 | Anthrogenesis Corporation | Treatment of diseases or disorders using placental stem cells |
US9387283B2 (en) | 2000-12-06 | 2016-07-12 | Anthrogenesis Corporation | Method of collecting placental stem cells |
US8293223B2 (en) | 2000-12-06 | 2012-10-23 | Anthrogenesis Corporation | Treatment of organ injuries and burns using placental stem cells |
US8057788B2 (en) | 2000-12-06 | 2011-11-15 | Anthrogenesis Corporation | Placental stem cell populations |
US7976836B2 (en) | 2000-12-06 | 2011-07-12 | Anthrogenesis Corporation | Treatment of stroke using placental stem cells |
US20100120015A1 (en) * | 2000-12-06 | 2010-05-13 | Hariri Robert J | Method of collecting placental stem cells |
US20090053805A1 (en) * | 2000-12-06 | 2009-02-26 | Anthrogenesis Corporation | Post-partum mammalian placenta, its use and placental stem cells therefrom |
US20080131966A1 (en) * | 2001-02-14 | 2008-06-05 | Hariri Robert J | Renovation and repopulation of decellularized tissues and cadaveric organs by stem cells |
US9139813B2 (en) | 2001-02-14 | 2015-09-22 | Anthrogenesis Corporation | Renovation and repopulation of decellularized tissues and cadaveric organs by stem cells |
US7311904B2 (en) | 2001-02-14 | 2007-12-25 | Anthrogenesis Corporation | Tissue matrices comprising placental stem cells, and methods of making the same |
US7914779B2 (en) | 2001-02-14 | 2011-03-29 | Anthrogenesis Corporation | Tissue matrices comprising placental stem cells, and methods of making the same |
US20020160510A1 (en) * | 2001-02-14 | 2002-10-31 | Hariri Robert J. | Renovation and repopulation of decellularized tissues and cadaveric organs by stem cells |
US8435788B2 (en) | 2001-02-14 | 2013-05-07 | Anthrogenesis Corporation | Tissue matrices comprising placental stem cells |
US20050186218A1 (en) * | 2001-04-13 | 2005-08-25 | Wyeth Holdings Corporation | Removal of bacterial endotoxin in a protein solution by immobilized metal affinity chromatography |
US8057789B2 (en) | 2002-02-13 | 2011-11-15 | Anthrogenesis Corporation | Placental stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells |
US8753883B2 (en) | 2002-02-13 | 2014-06-17 | Anthrogenesis Corporation | Treatment of psoriasis using placental stem cells |
US7700090B2 (en) | 2002-02-13 | 2010-04-20 | Anthrogenesis Corporation | Co-culture of placental stem cells and stem cells from a second source |
US8889411B2 (en) | 2002-04-12 | 2014-11-18 | Anthrogenesis Corporation | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
US20050118715A1 (en) * | 2002-04-12 | 2005-06-02 | Hariri Robert J. | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
US20050148034A1 (en) * | 2002-04-12 | 2005-07-07 | Hariri Robert J. | Methods for identification of modulators of angiogenesis, compounds discovered thereby, and methods of treatment using the compounds |
US7498171B2 (en) | 2002-04-12 | 2009-03-03 | Anthrogenesis Corporation | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
US20030235909A1 (en) * | 2002-04-12 | 2003-12-25 | Hariri Robert J. | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
US8617535B2 (en) | 2002-11-26 | 2013-12-31 | Anthrogenesis Corporation | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
US20150193581A1 (en) * | 2004-03-26 | 2015-07-09 | Celgene Corporation | Systems and methods for providing a stem cell bank |
US20050276792A1 (en) * | 2004-03-26 | 2005-12-15 | Kaminski Joseph K | Systems and methods for providing a stem cell bank |
US20120046968A1 (en) * | 2004-03-26 | 2012-02-23 | Kaminski Joseph K | Systems and methods for providing a stem cell bank |
US20060040392A1 (en) * | 2004-04-23 | 2006-02-23 | Collins Daniel P | Multi-lineage progenitor cells |
US8163275B2 (en) | 2004-04-23 | 2012-04-24 | Bioe Llc | Multi-lineage progenitor cells |
US7670596B2 (en) | 2004-04-23 | 2010-03-02 | Bioe, Inc. | Multi-lineage progenitor cells |
US7790458B2 (en) | 2004-05-14 | 2010-09-07 | Becton, Dickinson And Company | Material and methods for the growth of hematopoietic stem cells |
US20060147431A1 (en) * | 2005-01-04 | 2006-07-06 | Nobuko Uchida | Methods for the treatment of lysosomal storage disorders |
WO2006074387A1 (en) * | 2005-01-04 | 2006-07-13 | Stemcells California, Inc. | Methods for the treatment of lysosomal storage disorders |
US8071376B2 (en) | 2005-10-13 | 2011-12-06 | Anthrogenesis Corporation | Production of oligodendrocytes from placenta-derived stem cells |
US9539288B2 (en) | 2005-10-13 | 2017-01-10 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
US8216566B2 (en) | 2005-10-13 | 2012-07-10 | Anthrogenesis Corporation | Treatment of multiple sclerosis using placental stem cells |
US20070134210A1 (en) * | 2005-10-13 | 2007-06-14 | Mohammad Heidaran | Production of oligodendrocytes from placenta-derived stem cells |
US7682803B2 (en) | 2005-10-13 | 2010-03-23 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
US8895256B2 (en) | 2005-10-13 | 2014-11-25 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
US8455250B2 (en) | 2005-12-29 | 2013-06-04 | Anthrogenesis Corporation | Co-culture of placental stem cells and stem cells from a second source |
US9078898B2 (en) | 2005-12-29 | 2015-07-14 | Anthrogenesis Corporation | Placental stem cell populations |
US10383897B2 (en) | 2005-12-29 | 2019-08-20 | Celularity, Inc. | Placental stem cell populations |
US9598669B2 (en) | 2005-12-29 | 2017-03-21 | Anthrogenesis Corporation | Composition for collecting placental stem cells and methods of using the composition |
US9725694B2 (en) | 2005-12-29 | 2017-08-08 | Anthrogenesis Corporation | Composition for collecting and preserving placental stem cells and methods of using the composition |
US8691217B2 (en) | 2005-12-29 | 2014-04-08 | Anthrogenesis Corporation | Placental stem cell populations |
US8202703B2 (en) | 2005-12-29 | 2012-06-19 | Anthrogenesis Corporation | Placental stem cell populations |
US20070190042A1 (en) * | 2005-12-29 | 2007-08-16 | Edinger James W | Composition for collecting and preserving placental stem cells and methods of using the composition |
US8591883B2 (en) | 2005-12-29 | 2013-11-26 | Anthrogenesis Corporation | Placental stem cell populations |
US20070249047A1 (en) * | 2006-04-17 | 2007-10-25 | Bioe, Inc. | Differentiation of Multi-Lineage Progenitor Cells to Respiratory Epithelial Cells |
US7727763B2 (en) | 2006-04-17 | 2010-06-01 | Bioe, Llc | Differentiation of multi-lineage progenitor cells to respiratory epithelial cells |
US7993918B2 (en) | 2006-08-04 | 2011-08-09 | Anthrogenesis Corporation | Tumor suppression using placental stem cells |
US9572839B2 (en) | 2006-08-17 | 2017-02-21 | Mimedx Group, Inc. | Placental tissue grafts and methods of preparing and using the same |
US11504449B2 (en) | 2006-08-17 | 2022-11-22 | Mimedx Group, Inc. | Placental tissue grafts and methods of preparing and using the same |
US8597687B2 (en) | 2006-08-17 | 2013-12-03 | Mimedx Group, Inc. | Methods for determining the orientation of a tissue graft |
US9265800B2 (en) | 2006-08-17 | 2016-02-23 | Mimedx Group, Inc. | Placental tissue grafts |
US8623421B2 (en) | 2006-08-17 | 2014-01-07 | Mimedx Group, Inc. | Placental graft |
US9272005B2 (en) | 2006-08-17 | 2016-03-01 | Mimedx Group, Inc. | Placental tissue grafts |
US10406259B2 (en) | 2006-08-17 | 2019-09-10 | Mimedx Group, Inc. | Placental tissue grafts and improved methods of preparing and using the same |
US9265801B2 (en) | 2006-08-17 | 2016-02-23 | Mimedx Group, Inc. | Placental tissue grafts |
US9463207B2 (en) | 2006-08-17 | 2016-10-11 | Mimedx Group, Inc. | Placental tissue grafts |
US8709494B2 (en) | 2006-08-17 | 2014-04-29 | Mimedx Group, Inc. | Placental tissue grafts |
US9433647B2 (en) | 2006-08-17 | 2016-09-06 | Mimedx Group, Inc. | Placental tissue grafts |
US8460716B2 (en) | 2006-08-17 | 2013-06-11 | Mimedx Group, Inc. | Method for applying a label to a placental tissue graft |
US8372437B2 (en) | 2006-08-17 | 2013-02-12 | Mimedx Group, Inc. | Placental tissue grafts |
US9956253B2 (en) | 2006-08-17 | 2018-05-01 | Mimedx Group, Inc. | Placental tissue grafts |
US8460715B2 (en) | 2006-08-17 | 2013-06-11 | Mimedx Group, Inc. | Placental tissue grafts |
US8562972B2 (en) | 2006-10-23 | 2013-10-22 | Anthrogenesis Corporation | Methods and compositions for treatment of bone defects with placental cell populations |
US10105399B2 (en) | 2006-10-23 | 2018-10-23 | Celularity, Inc. | Methods and compositions for treatment of bone defects with placental cell populations |
US9339520B2 (en) | 2006-10-23 | 2016-05-17 | Anthrogenesis Corporation | Methods and compositions for treatment of bone defects with placental cell populations |
US8916146B2 (en) | 2007-02-12 | 2014-12-23 | Anthrogenesis Corporation | Treatment of inflammatory diseases using placental stem cells |
US8460650B2 (en) | 2007-02-12 | 2013-06-11 | Anthrogenesis Corporation | Treatment of inflammatory diseases using placental stem cells |
US10494607B2 (en) | 2007-02-12 | 2019-12-03 | Celularity, Inc. | CD34+,CD45−placental stem cell-enriched cell populations |
US9200253B1 (en) | 2007-08-06 | 2015-12-01 | Anthrogenesis Corporation | Method of producing erythrocytes |
US8372439B2 (en) | 2007-09-07 | 2013-02-12 | Mimedx Group, Inc. | Method for treating a wound using improved placental tissue graft |
US8372438B2 (en) | 2007-09-07 | 2013-02-12 | Mimedx Group, Inc. | Method for inhibiting adhesion formation using an improved placental tissue graft |
US9084767B2 (en) | 2007-09-07 | 2015-07-21 | Mimedx Group, Inc. | Placental tissue grafts and methods of preparing and using the same |
US20100104539A1 (en) * | 2007-09-07 | 2010-04-29 | John Daniel | Placental tissue grafts and improved methods of preparing and using the same |
US8409626B2 (en) | 2007-09-07 | 2013-04-02 | Mimedx Group, Inc. | Placental tissue grafts |
US8357403B2 (en) | 2007-09-07 | 2013-01-22 | Mimedx Group, Inc. | Placental tissue grafts |
US10874697B2 (en) | 2007-09-07 | 2020-12-29 | Mimedx Group, Inc. | Placental tissue grafts and improved methods of preparing and using the same |
US9789137B2 (en) | 2007-09-07 | 2017-10-17 | Mimedx Group, Inc. | Placental tissue grafts and improved methods of preparing and using the same |
US8709493B2 (en) | 2007-09-07 | 2014-04-29 | Mimedx Group, Inc. | Placental tissue grafts |
US9533011B2 (en) | 2007-09-07 | 2017-01-03 | Mimedx Group, Inc. | Placental tissue grafts and methods of preparing and using the same |
US8703207B2 (en) | 2007-09-07 | 2014-04-22 | Mimedx Group, Inc. | Placental tissue grafts |
US8703206B2 (en) | 2007-09-07 | 2014-04-22 | Mimedx Group, Inc. | Placental tissue grafts |
US8932643B2 (en) | 2007-09-07 | 2015-01-13 | Mimedx Group, Inc. | Placental tissue grafts |
US9272003B2 (en) | 2007-09-07 | 2016-03-01 | Mimedx Group, Inc. | Placental tissue grafts |
US8642092B2 (en) | 2007-09-07 | 2014-02-04 | Mimedx Group, Inc. | Placental tissue grafts |
US11752174B2 (en) | 2007-09-07 | 2023-09-12 | Mimedx Group, Inc. | Placental tissue grafts and improved methods of preparing and using the same |
US8323701B2 (en) | 2007-09-07 | 2012-12-04 | Mimedx Group, Inc. | Placental tissue grafts |
US9415074B2 (en) | 2007-09-07 | 2016-08-16 | Mimedx Group, Inc. | Placental tissue grafts |
US8263065B2 (en) | 2007-09-28 | 2012-09-11 | Anthrogenesis Corporation | Tumor suppression using human placental perfusate and human placenta-derived intermediate natural killer cells |
US9216200B2 (en) | 2007-09-28 | 2015-12-22 | Anthrogenesis Corporation | Tumor suppression using human placental perfusate and human placenta-derived intermediate natural killer cells |
US8828376B2 (en) | 2008-08-20 | 2014-09-09 | Anthrogenesis Corporation | Treatment of stroke using isolated placental cells |
US10104880B2 (en) | 2008-08-20 | 2018-10-23 | Celularity, Inc. | Cell composition and methods of making the same |
US8728805B2 (en) | 2008-08-22 | 2014-05-20 | Anthrogenesis Corporation | Methods and compositions for treatment of bone defects with placental cell populations |
US8367409B2 (en) | 2008-11-19 | 2013-02-05 | Anthrogenesis Corporation | Amnion derived adherent cells |
US9198938B2 (en) | 2008-11-19 | 2015-12-01 | Antrhogenesis Corporation | Amnion derived adherent cells |
US8586360B2 (en) | 2009-07-02 | 2013-11-19 | Anthrogenesis Corporation | Method of producing erythrocytes without feeder cells |
US9255248B2 (en) | 2009-07-02 | 2016-02-09 | Anthrogenesis Corporation | Method of producing erythrocytes without feeder cells |
US20110020293A1 (en) * | 2009-07-21 | 2011-01-27 | Abt Holding Company | Use of Stem Cells to Reduce Leukocyte Extravasation |
US9121007B2 (en) | 2010-01-26 | 2015-09-01 | Anthrogenesis Corporatin | Treatment of bone-related cancers using placental stem cells |
US20110212069A1 (en) * | 2010-02-25 | 2011-09-01 | Abt Holding Company | Modulation of Microglia Activation |
US9254302B2 (en) | 2010-04-07 | 2016-02-09 | Anthrogenesis Corporation | Angiogenesis using placental stem cells |
US8562973B2 (en) | 2010-04-08 | 2013-10-22 | Anthrogenesis Corporation | Treatment of sarcoidosis using placental stem cells |
US8926964B2 (en) | 2010-07-13 | 2015-01-06 | Anthrogenesis Corporation | Methods of generating natural killer cells |
US9464274B2 (en) | 2010-07-13 | 2016-10-11 | Anthrogenesis Corporation | Methods of generating natural killer cells |
US8969315B2 (en) | 2010-12-31 | 2015-03-03 | Anthrogenesis Corporation | Enhancement of placental stem cell potency using modulatory RNA molecules |
US9040035B2 (en) | 2011-06-01 | 2015-05-26 | Anthrogenesis Corporation | Treatment of pain using placental stem cells |
US11090339B2 (en) | 2011-06-01 | 2021-08-17 | Celularity Inc. | Treatment of pain using placental stem cells |
US9925221B2 (en) | 2011-09-09 | 2018-03-27 | Celularity, Inc. | Treatment of amyotrophic lateral sclerosis using placental stem cells |
US9763983B2 (en) | 2013-02-05 | 2017-09-19 | Anthrogenesis Corporation | Natural killer cells from placenta |
Also Published As
Publication number | Publication date |
---|---|
KR20050086780A (ko) | 2005-08-30 |
US20070092497A1 (en) | 2007-04-26 |
AU2008229977A1 (en) | 2008-11-06 |
JP2011225606A (ja) | 2011-11-10 |
US20200009199A1 (en) | 2020-01-09 |
EP1571910A4 (de) | 2009-10-28 |
KR20100125479A (ko) | 2010-11-30 |
CA2505534A1 (en) | 2004-06-10 |
WO2004047770A2 (en) | 2004-06-10 |
WO2004047770A3 (en) | 2004-08-19 |
KR101042448B1 (ko) | 2011-06-16 |
AU2003298775A1 (en) | 2004-06-18 |
MXPA05005673A (es) | 2005-11-23 |
JP2006509770A (ja) | 2006-03-23 |
US8617535B2 (en) | 2013-12-31 |
AU2003298775B2 (en) | 2008-07-17 |
BR0316695A (pt) | 2005-10-18 |
CN1717177A (zh) | 2006-01-04 |
EP1571910A2 (de) | 2005-09-14 |
US20170290862A1 (en) | 2017-10-12 |
KR20090092351A (ko) | 2009-08-31 |
ZA200504273B (de) | 2006-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8617535B2 (en) | Cytotherapeutics, cytotherapeutic units and methods for treatments using them | |
Bednarski et al. | Donor memory-like NK cells persist and induce remissions in pediatric patients with relapsed AML after transplant | |
Choudhury et al. | Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses | |
Dolcetti et al. | Hierarchy of immunosuppressive strength among myeloid‐derived suppressor cell subsets is determined by GM‐CSF | |
Mapara et al. | Monitoring of tumor cell purging after highly efficient immunomagnetic selection of CD34 cells from leukapheresis products in breast cancer patients: comparison of immunocytochemical tumor cell staining and reverse transcriptase–polymerase chain reaction | |
Vescio et al. | The hematopoietic stem cell antigen, CD34, is not expressed on the malignant cells in multiple myeloma | |
DE10132502A1 (de) | Angriff auf Tumorzellen mit fehlender, niedriger oder anormaler MHC-Expression durch kombinieren von nicht MHC-Restringierten T-Zellen/NK-Zellen und MHC-Restringierten Zellen | |
Guo et al. | Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner | |
Sekhsaria et al. | Granulocyte colony-stimulating factor recruitment of CD34+ progenitors to peripheral blood: impaired mobilization in chronic granulomatous disease and adenosine deaminase--deficient severe combined immunodeficiency disease patients | |
TW201130978A (en) | Method of isolation of stem cell populations from peripheral blood using sized-based separation (elutriation) | |
AU2005210105A1 (en) | Method of inducing or modulating immune response | |
Ryu et al. | Granulocyte macrophage-colony stimulating factor produces a splenic subset of monocyte-derived dendritic cells that efficiently polarize T helper type 2 cells in response to blood-borne antigen | |
US20230052157A1 (en) | Method for obtaining nucleic acid for sequencing | |
WO2023081320A1 (en) | Therapeutic compositions and methods for allogeneic hematopoietic stem cell transplantation | |
Nguyen et al. | Factors affecting human umbilical cord blood quality before cryopreservation: the importance of birth weight and gestational age | |
NZ553745A (en) | Cytotherapeutic units comprising CD34-, OCT-4+ postpartum placental cells and methods of using such in the manufacture of medicaments | |
US8802434B2 (en) | Biological cell culture, cell culture media and therapeutic use of biological cells | |
To et al. | Single-cell transcriptomics reveal distinct subsets of activated dendritic cells in the tumor microenvironment | |
Crough et al. | Donor-derived b2a2-specific T cells for immunotherapy of patients with chronic myeloid leukemia | |
Hassab et al. | Study of CD25 expression on leukemic cells: a prognostic factor in acute myeloid leukemia | |
CA3237748A1 (en) | Biomarkers of megakaryocyte-derived extracellular vesicles | |
Maziarz et al. | The rationale behind grafting haploidentical hematopoietic stem cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ANTHROGENESIS CORPORATION, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARIRI, ROBERT J.;REEL/FRAME:015340/0205 Effective date: 20040505 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: CLARITY ACQUISITION II LLC, NEW JERSEY Free format text: MERGER;ASSIGNOR:ANTHROGENESIS CORPORATION;REEL/FRAME:044413/0680 Effective date: 20170815 |
|
AS | Assignment |
Owner name: CELULARITY, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLARITY ACQUISITION II LLC;REEL/FRAME:044780/0261 Effective date: 20171103 |