TW201130978A - Method of isolation of stem cell populations from peripheral blood using sized-based separation (elutriation) - Google Patents

Method of isolation of stem cell populations from peripheral blood using sized-based separation (elutriation) Download PDF

Info

Publication number
TW201130978A
TW201130978A TW099142523A TW99142523A TW201130978A TW 201130978 A TW201130978 A TW 201130978A TW 099142523 A TW099142523 A TW 099142523A TW 99142523 A TW99142523 A TW 99142523A TW 201130978 A TW201130978 A TW 201130978A
Authority
TW
Taiwan
Prior art keywords
cells
flow rate
peripheral blood
target
population
Prior art date
Application number
TW099142523A
Other languages
Chinese (zh)
Inventor
Wayne Marasco
Satish Medicetty
Yajuan Jiang
Original Assignee
Neostem Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neostem Inc filed Critical Neostem Inc
Priority to TW099142523A priority Critical patent/TW201130978A/en
Publication of TW201130978A publication Critical patent/TW201130978A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0665Blood-borne mesenchymal stem cells, e.g. from umbilical cord blood

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for isolating multiple populations of stem cells in at least one step from a single peripheral blood sample or mobilized peripheral blood sample without using positive selection, therefore enabling a "no-touch" method to isolate different stem cell populations without contaminating the stem cell populations with positive selection agents (e.g., antibodies, etc.). In particular, the present invention relates to flow-rate separation of stem cell populations using elutriation (sized-based separation) to negatively exclude cells based on size, to separate the peripheral blood into various elutriation fractions, each comprising a different stem cells of interest. In some embodiments, different fractions or subfractions comprise an increase in yield of Very Small Embryonic-like Stem cells (VSELs), MSCs or HSCs as compared to non-fractionated apheresis product. The isolated stem cell populations provide a library of different stem cell types from a particular individual which can be maintained in culture and/or cryopreserved for future use, e.g., for use alone, or selectively recombined (e.g., custom mixing) for individualized autologous therapeutic applications in regenerative therapy. The isolated stem cell populations also provide a pool of different stem cell populations for personalized cell-based assays to assess the effect of a persons diet, pharmacogenetics, neutrochemicals, or lifestyle on the function and viability of different stem cell populations, either alone or as a combination of different stem cells.

Description

201130978 六、發明說明: 【發明所屬之技術領域】 本發明之標的大體而言係關於採用對細胞大小及密度具 有特異性之裝置進行細胞分離。細胞來源之生物樣本可為 血液,諸如經調動周邊血液及其類似物。本發明係關於一 種分離粒子之系統及方法,且特定言之提供將周邊血液分 離成所需幹細胞群子集之有利方法。 【先前技術】 成年幹細胞為見於分化組織之未分化細胞。其具有自我 更新且變得特異化(specialized)以產生其所起源之組織之 所有細胞類型且在適當環境中亦可變成不同組織之特異化 細胞的能力。成年幹細胞能夠在生物體之一生中自我更 新。 成年幹細胞之來源已見於骨髓、血流、眼睛之角膜及視 網膜、牙髓、肝臟、皮膚、 胃腸道、脂肪組織及胰腺。幹 細胞提供補充細胞及組織之可更新來源的可能性以治療無 數疾病、病狀及失能 尤其在細胞周轉較低之生物體中,201130978 VI. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The subject matter of the present invention relates generally to cell separation using a device specific for cell size and density. The biological sample from which the cells are derived may be blood, such as mobilized peripheral blood and the like. The present invention relates to a system and method for separating particles, and in particular provides an advantageous method of separating peripheral blood into a subset of desired stem cell populations. [Prior Art] Adult stem cells are undifferentiated cells found in differentiated tissues. It has the ability to self-renew and become specialized to produce all cell types of the tissue from which it originates and, in an appropriate environment, also become specialized cells of different tissues. Adult stem cells are capable of self-renewal in one of the organisms. The source of adult stem cells has been found in bone marrow, blood flow, cornea of the eye and retina, pulp, liver, skin, gastrointestinal tract, adipose tissue and pancreas. Stem cells provide the possibility to replenish renewable sources of cells and tissues to treat countless diseases, conditions and disability, especially in organisms with low cell turnover,

傷產生快速及強烈反應。The injury produces a rapid and strong reaction.

塑性(plasticity)之現象。 近’已認為自骨髓或周邊血液(造 包不能產生不同組織類型之細胞, 近年之大量臨床研究已確認稱為可 。可塑性為成年幹細胞自特定細胞 152717.doc 201130978 株刀化為其他細胞類型之能力。換言之,來自骨髓或自循 環血液之幹細胞確實具有分化成其他細胞類型(諸如心臟 細胞或神經細胞)之能力。 因為此可㈣’所以人類自身之成年幹細胞為源自其他 供者或胚胎幹細胞之幹細胞的完美倫理及道德替代物。成 年幹細胞移植物(骨髓移植物)已成功用於治療癌症(諸如白 血病多發性骨髓瘤及淋巴瘤)逾40年,且此等移植物現 已打開再生及修復性治療劑之大門。 6午多經診斷患有需要骨髓移植之疾病的人不能發現健康 配對者且存在極低之發現適合供者之機率。因此,宜在出 現骨髓移植需要之前自此等個體收集幹細胞,其中可儲存 δ玄等幹細胞以便在未來時點進行自體移植。因此,適用的 是當幹細胞可能還沒有因疾病而被損害或計劃時,自健康 個體收集幹細胞。另外,可自任何健康成年人收集幹細胞 以便將來針對疾病進行自體移植或作為再生療法,以及自 具有心臟病、糖尿病、癌症、神經疾病或自體免疫性病症 之陽性家族史的成人收集幹細胞以用於將來自體性治療用 途。 自體幹細胞移植(接受自身的幹細胞)存在巨大臨床及經 濟優勢’包括無免疫排斥問題,例如包括產生宿主抗移植 物疾病(HVGD)(接受者之免疫系統將供者細胞視作「非自 身的」且破壞移植細胞)或移植物抗宿主疾病(GVHD)(供者 Τ細胞排斥「非自身的」接受者細胞且破壞宿主(接受者) 細胞)。另外,以其自身幹細胞(自體性)對個體進行移植比 152717.doc 201130978 接受其他人之幹細胞(異源性)要快速、安全得多且成本小 得多。 鑑別、表徵及純化幹細胞亞群之能力料在自體移植療 法中以及在眾多生物及醫學應用中之用途至關重要從而 經常形成研究方案之起點及當前及新興臨床方案之基礎。 細胞分離在諸如醫藥、生物技術、生物醫學研究、環境監 測及生物/化學戰防禦之領域中具有眾多應用。舉例而 言,細胞分離可實現可行的救命程序(諸如補救晚期癌症 之自體骨髓移植,纟中必須自患者㈣移除致癌轉移性細 胞)(Fischer,丨993)。在其他應用(諸如血細胞之間的信號傳 導研究(Stout,1993 ; Cantrell等人,⑽2))中,高度純化之 細胞亞群允許以其他方式無法進行之研究。 通常,細胞分選之當前方法最經常利用特異性免疫學目 標(Smeland等人,1992)或受體-配位體相互作用(〇11以3等 人,1976)之差異或在一些情況下細胞密度之差異(B〇yum, 1974)以分離特定細胞或細胞群。然而,現有技術經常不 夠且因此需要能夠經由新穎物理特性來鑑別及選擇性操縱 幹細胞之分選裝置。另外,自人類分離幹細胞群之技術通 常僅分離一個幹細胞群,同時棄置其他幹細胞群,且通常 亦使用正向選擇技術,其導致正向選擇方法中所用之藥劑 會污染所收集之幹細胞群。 AC電動力學原理應用已用於經由電旋轉(R〇T)法(Arn〇ld 及 Zimmermann,1982 ; Fuhr, 1985 ; H61zel 及 Lamprecht, 1992 ; Wang等人,1994)及針對細胞辨別及分選(Hagedorn I52717.doc 201130978 專人 ’ 1992,Huang專人 ’ 1993 ; Gascoyne等人,1992 ; Gascoyne等人,1994 ; Huang等人,1992)來介電表徵哺乳 動物細胞。在此等技術中’細胞當經受AC電場時變得電 極化。在ROT中,施加旋轉電場且細胞極化與施加場之間 的相互作用使得細胞旋轉。若該場不均勻,則細胞經受側 向介電泳(DEP)力,其頻率響應隨其固有電特性而變 (Gascoyne等人,1992)。又,此等特性強烈地視細胞組成 及組織、反映細胞形態及表型之特徵而定。電極化性不同 之細胞可因此在不均勻電場中經受分異力(Becker等人, 1994; Becker等人,1995)〇隨施用頻率而變之哺乳動物細 胞之介電泳運動分析允許探測細胞膜生物物理學參數,諸 如電容及表面傳導。因為DEP力有效地將生物物理學特性 對映(map)至方向及量值反映細胞特性之平移力,所以DEp 力可誘導不同特徵之粒子之間的分離。舉例而言,已以微 觀規模使用DEP以自紅血球分離細菌(Markx等人,1994)、 自非活酵母細胞分離存活者(Wang等人,1993)且自紅血球 分離紅白血病細胞(Huang等人,1992)。然而,彼等各種 混合物中細胞類型之電極化性差異大於在許多典型細胞分 選應用中所預期者。 場流分級分離(Field flow fractionation; FFF)亦已一般 用於利用粒子密度、大小、體積、擴散率及表面電荷作為 參數來分離物質(Giddings,1993)。該技術可用以分離大小 為約1奈米至大於約1 〇〇微米之許多不同類型物質,其可包 括例如生物及非生物物質。根據場流分級分離之分離係藉 152717.doc 201130978 由流經薄通道之液流中之差異性截留來發生e FFF技術組 合層析、電泳及超速離心之要素,且其利用當使流體流經 腔室時在薄通道中建立之流速型態。此速度型態可為例如 線性或抛物線性的。接著與該流成直角施加一場,且其用 以將物質推動至流速型態内之不同置換物中。在速度型態 内不同位置經置換之物質將經以不同速度流經腔室之流體 攜帶。場可基於沈降、交又流、溫度梯度、離心力及其類 似物。然而,該等技術具有以下缺點:產生的細胞群不夠 純’速度太慢,或太侷限於目標細胞或其他物質之波譜。 在醫學領域中,幹細胞群可自周邊血液增濃。全血係由 各種液體組分及粒子組分組成。企液之液體部分主要由血 漿構成,且粒子組分包括紅血球(red bl00d ceu ; erythrocyte ; RBC)、白血球(White bl〇〇d cell ; leuk〇cyte ; 界8〇及血小板(1^化^;比1_〇„11)〇(1)^)及幹細胞,諸如(但 不限於)造血幹細胞(HSC)、間葉幹細胞(MSC)及其他小幹 細胞,諸如極小胚胎樣(VSEL)幹細胞。儘管此等組分具有 類似密度’但其按遞減密度順序之平均密度關係如下:紅 血球、白血球、血小板及血漿。另外,粒子組分按遞減大 小順序之大小關係如下:白血球、紅血球及血小板。大多 數當前純化裝置依賴於密度及大小差異或表面化學特徵以 分離及/或過渡血液組分。 因此,此項技術中需要一種自臨床背景中輕易可得及使 用之周邊血液增濃幹細胞群的輕易、快速及有效方法。 【發明内容】 152717.doc -9· 201130978 周邊血液及經調動周邊血液包含許多不同類型之細胞, 包括幹細胞,諸如(但不限於)極小胚胎樣幹細胞(VSEL)、 間葉幹細胞(MSC)及造血幹細胞(HSC)。自周邊血液分離 幹細胞群之習知方法使用正及負向選擇法,其例如在方法 (諸如螢光活化細胞分選(FACS)及其他免疫選擇法)中使用 細胞表面標記以選擇或排除細胞群。另外,此等方法亦通 常母次自周邊血液樣本僅分離一個幹細胞群。 在一個實施例中,本發明係關於一種在不使用正或負向 選擇之情況下以至少一個步驟自單一周邊血液樣本或經調 動周邊血液樣本分離多個幹細胞群的方法,因此實現用於 在不以正向選擇劑(例如抗體等)污染幹細胞群之情況下分 離不同幹細胞群的「非接觸」方法。特定言之,在一個實 施例中’本發明係關於使用淘洗法(以大4、為主之分離方 法)以大小為主負排除細胞以將周邊血液分離成各種淘洗 刀(各包含不同相關幹細胞)之幹細胞群流動速率分離方 法。發明者已證明不同部分或子部分包含極小胚胎樣幹細 胞(VSEL)、MSC或HSC與未分級分離之析離產物相比之產 率提高。在某些實施例中,藉由如本文所揭示之方法獲得 的分離之幹細胞群提供特定個體之不同幹細胞類型的集合 庫,其可維持於培養物中及/或超低溫保存以備將來之 用,例如供單獨使用,或選擇性重組(例如習知混合)以用 於再生療法中之個別化自體性治療應用。另外,在某些實 施例中,力離之幹細胞群亦提供不同幹細胞群之集合池, 其單獨或以不同幹細胞之組合形式用於基於個人化細胞之 152717.doc 201130978 檢疋,該等檢定用於評估人腾食、藥物遺傳學、神經化學 物質及生活方式對不同幹細胞群之功能及生存力之影響。 因此’本發明大體而言係關於將周邊血液分離或分級分 離成複數個部分之方法及組合物’該複數個部分包含在單 一收集方法中來自個體之單一周邊血液樣本的不同幹細胞 群。 本發明大體而言係關於在不使用正向選擇技術之情況下 自周邊血液(諸如獲自人類個體之周邊血液)分離幹細胞群 之快速、輕易、有效及廉價方法。在某些實施例中,周邊 血液為經調動周邊血液,且在某些實施例中周邊血液係藉 由析離術預處理以產生析離產物。 特定言之,本發明係關於在不需將正向選擇劑添加至周 邊血液樣本中之情況下自周邊血液樣本分離複數個不同幹 細胞群之方法。因此,發明者已發現一種在不以正向選擇 劑污染所收集之幹細胞群的情況下自單一樣本分離複數個 不同幹細胞群之方法。 在某些實施例中,本發明提供將周邊血液分級分離成複 數個部分之方法,其中各部分包含不同目標幹細胞群。因 此,本發明係關於一種在不使用正向選擇技術之情況下對 獲自周邊血液之目標幹細胞群增濃之方法。特定言之,本 發明係關於一種將周邊血液樣本分離成複數個不同部分從 而使不同部分中之複數個不同目標幹細胞群能夠增濃之方 法。在某些實施例中,包含目標幹細胞群之所得部分必要 時可經進一步分離成所需目標幹細胞之子集或亞群。在某 152717.doc •11· 201130978 些實施例中,包含目標幹細胞群之所收集部分可經受正向 選擇法以增濃所需幹細胞群。 在基於細胞之療法中’經常必需純化與濃縮樣本(諸如 周邊血液樣本)中之幹細胞亞群。在一些幹細胞療法中, 需要自個體收集骨髓(BM)來源及/或周邊血液(pB)來源之 幹細胞,以便將來用於自體細胞置換或基於自體細胞之再 生療法中。 包括經調動周邊血液之周邊血液包含多種不同類型之幹 細胞,包括造血幹細胞(HSC)、間葉幹細胞(MSC)及其他 幹細胞群,包括(但不限於)極小胚胎樣(VSEL)幹細胞。自 周邊血液樣本分離此等幹細胞群(諸如Hsc、MSC及VSEL) 之典型習知方法包括正向選擇法。此等選擇法包括基於細 胞表面標記之方法’例如免疫選擇,纟包括基於親和力分 子(諸如抗體或細胞表面配位體)對待分離目標幹細胞表面 之結合來分離及單離’彡中該抗體用以分離目標幹細胞。 此等正分離方法通常為此項技術中已知,i包括(不限於) 勞光細胞分選(FACS)、免疫密度分離、免疫磁分離及其類 似方法。 然而’自周邊i液樣本正或負向選擇不同幹細胞群之此 等習知方法引起諸如抗體之選擇劑污染周邊血液樣本及分 離之幹細胞群。此外,此等選擇法亦為昂貴、費時及緩慢 程序,其經常需要熟練專業人以技師專門培訓及/或專 用《又備另外自周邊血液樣本分離幹細胞群之習知選擇 法、、生常自周邊血液樣本僅增濃—個目標幹細胞群且棄置其The phenomenon of plasticity. Recently, it has been considered that it is derived from bone marrow or peripheral blood (packaging cannot produce cells of different tissue types. A large number of clinical studies have been confirmed in recent years. Plasticity is an adult stem cell from a specific cell 152717.doc 201130978 strained into other cell types Capability. In other words, stem cells from bone marrow or self-circulating blood do have the ability to differentiate into other cell types, such as heart cells or nerve cells. Because this can be (4) 'so human adult stem cells are derived from other donors or embryonic stem cells. The perfect ethical and ethical alternative to stem cells. Adult stem cell transplants (bone marrow grafts) have been successfully used to treat cancer (such as leukemia multiple myeloma and lymphoma) for more than 40 years, and these grafts are now open for regeneration. The door to restorative therapeutics. 6 people who have been diagnosed with a disease requiring bone marrow transplantation cannot find a healthy partner and have a very low chance of finding a suitable donor. Therefore, it is advisable to wait until the bone marrow transplant is needed. Individuals collect stem cells, which can store δ metaphyseal stem cells so that they are not Autologous transplantation is performed at a time. Therefore, it is appropriate to collect stem cells from healthy individuals when stem cells may not have been damaged or planned due to disease. In addition, stem cells may be collected from any healthy adult for future autologous transplantation for the disease or As a regenerative therapy, as well as collecting stem cells from adults with a positive family history of heart disease, diabetes, cancer, neurological disease or autoimmune disorders for use in therapeutic use. Autologous stem cell transplantation (receiving self-stem cells) There are significant clinical and economic advantages' including non-immune rejection issues, including, for example, the production of host-versus-versus-infected disease (HVGD) (the recipient's immune system treats donor cells as "non-self" and destroys transplanted cells) or graft resistance Host disease (GVHD) (donor cells reject "non-self" recipient cells and destroy host (recipient) cells.) In addition, transplantation of individuals with their own stem cells (autologous) is accepted by 152717.doc 201130978 Other people's stem cells (heterologous) are much faster, safer and less expensive The ability to identify, characterize, and purify stem cell subpopulations is critical in autologous transplantation therapies and in a variety of biological and medical applications, often forming the starting point for research protocols and the basis of current and emerging clinical protocols. There are numerous applications in areas such as medicine, biotechnology, biomedical research, environmental monitoring, and biological/chemical warfare defense. For example, cell separation can lead to viable life-saving procedures (such as autologous bone marrow transplantation to remedy advanced cancer). Carcinogenic metastatic cells must be removed from the patient (4) (Fischer, 丨 993). Highly purified cell subsets in other applications, such as signaling studies between blood cells (Stout, 1993; Cantrell et al., (10) 2) Studies that are otherwise impossible are allowed. In general, current methods of cell sorting most often utilize specific immunological targets (Smeland et al., 1992) or receptor-ligand interactions (〇11 to 3 et al., 1976). Differences in cell density or in some cases (B〇yum, 1974) to isolate specific cells or cell populations. However, the prior art often does not and therefore requires a sorting device capable of identifying and selectively manipulating stem cells via novel physical properties. In addition, the technique of isolating stem cell populations from humans typically separates only one stem cell population while abandoning other stem cell populations, and often uses positive selection techniques that result in contamination of the collected stem cell population by the agents used in the forward selection method. The application of AC electrodynamic principles has been used for electroporation (R〇T) methods (Arn〇ld and Zimmermann, 1982; Fuhr, 1985; H61zel and Lamprecht, 1992; Wang et al., 1994) and for cell identification and sorting ( Hagedorn I52717.doc 201130978 Specialist '1992, Huang special person' 1993; Gascoyne et al, 1992; Gascoyne et al, 1994; Huang et al, 1992) to dielectrically characterize mammalian cells. In these techniques, cells become electrically polarized when subjected to an AC electric field. In the ROT, a rotating electric field is applied and the interaction between the cell polarization and the applied field causes the cells to rotate. If the field is not uniform, the cells are subjected to lateral dielectrophoresis (DEP) forces whose frequency response varies with their inherent electrical properties (Gascoyne et al., 1992). Moreover, these characteristics strongly depend on the composition and organization of the cells, reflecting the characteristics of the cell morphology and phenotype. Cells with different polarizations can thus undergo differentiating forces in a non-uniform electric field (Becker et al., 1994; Becker et al., 1995). Dielectrophoretic motion analysis of mammalian cells as a function of frequency of administration allows detection of cell membrane biophysics. Learn parameters such as capacitance and surface conduction. Because DEP forces effectively map biophysical properties to directions and magnitudes reflect the translational forces of cellular properties, DEp forces can induce separation between particles of different characteristics. For example, DEP has been used on a microscopic scale to isolate bacteria from red blood cells (Markx et al., 1994), to isolate survivors from non-live yeast cells (Wang et al., 1993) and to isolate red leukemia cells from red blood cells (Huang et al., 1992). However, the difference in electrode type of cell types in their various mixtures is greater than would be expected in many typical cell sorting applications. Field flow fractionation (FFF) has also been used to separate materials using particle density, size, volume, diffusivity, and surface charge as parameters (Giddings, 1993). This technique can be used to separate many different types of materials ranging in size from about 1 nanometer to greater than about 1 micron, which can include, for example, biological and non-biological materials. Separation by field flow fractionation is performed by 152717.doc 201130978 by the differential interception in the flow through the thin channel to generate e FFF technology combined chromatography, electrophoresis and ultracentrifugation elements, and its use when the fluid flows through The flow rate pattern established in the thin channel during the chamber. This velocity profile can be, for example, linear or parabolic. A field is then applied at right angles to the flow and is used to push the material into different displacements within the flow pattern. Substances that are displaced at different locations within the velocity profile are carried by fluid flowing through the chamber at different rates. Fields can be based on settling, crossover, temperature gradients, centrifugal forces, and the like. However, these techniques have the disadvantage that the resulting population of cells is not sufficiently pure 'too slow, or too limited to the spectrum of target cells or other substances. In the medical field, stem cell populations can be enriched from peripheral blood. Whole blood is composed of various liquid components and particle components. The liquid part of the liquid is mainly composed of plasma, and the particle components include red blood cells (red bl00d ceu; erythrocyte; RBC), white blood cells (White bl〇〇d cell; leuk〇cyte; boundary 8 and platelets (1 ^ ^); More than 1_〇„11)〇(1)^) and stem cells such as, but not limited to, hematopoietic stem cells (HSC), mesenchymal stem cells (MSC), and other small stem cells, such as very small embryo-like (VSEL) stem cells. The components have a similar density' but the average density relationship in descending order of density is as follows: red blood cells, white blood cells, platelets, and plasma. In addition, the particle components are in descending order of magnitude as follows: white blood cells, red blood cells, and platelets. Purification devices rely on differences in density and size or surface chemistry to separate and/or transition blood components. Therefore, there is a need in the art for an easy and fast population of peripheral blood-enriched stem cells that are readily available from clinical settings. And effective methods. [Summary] 152717.doc -9· 201130978 Peripheral blood and mobilized peripheral blood contain many different types of cells, including Stem cells, such as, but not limited to, very small embryonic stem cells (VSELs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). Conventional methods for isolating stem cell populations from peripheral blood use positive and negative selection methods, for example, Cell surface markers are used in methods such as fluorescence activated cell sorting (FACS) and other immunoselective methods to select or exclude cell populations. In addition, such methods also typically separate only one stem cell population from peripheral blood samples. In one embodiment, the present invention is directed to a method of isolating a plurality of stem cell populations from a single peripheral blood sample or a mobilized peripheral blood sample in at least one step without using positive or negative selection, thus A "non-contact" method of separating different stem cell populations without contaminating the stem cell population with a positive selection agent (eg, an antibody, etc.). In particular, in one embodiment, the present invention relates to the use of a panning method (larger, mainly separation method) to exclude cells by size to separate peripheral blood into various panning knives (each containing different A stem cell population flow rate separation method for related stem cells. The inventors have demonstrated that different fractions or sub-portions contain an increase in the yield of very small embryonic stem cells (VSEL), MSC or HSC compared to the unfractionated fractionation product. In certain embodiments, the isolated population of stem cells obtained by the methods disclosed herein provides a pool of different stem cell types of a particular individual that can be maintained in culture and/or cryopreserved for future use, For example, for individual use, or for selective recombination (eg, conventional mixing) for use in individualized autologous therapeutic applications in regenerative therapies. In addition, in some embodiments, the population of stem cells that are separated from each other also provides a pool of different stem cell populations, either alone or in combination with different stem cells, for use in personalized cells based on 152717.doc 201130978, for such assays. To assess the effects of human consumption, pharmacogenetics, neurochemicals, and lifestyle on the function and viability of different stem cell populations. Thus, the present invention generally relates to methods and compositions for separating or fractionating peripheral blood into a plurality of portions. The plurality of portions comprise different stem cell populations from a single peripheral blood sample of the individual in a single collection method. The present invention relates generally to a rapid, easy, efficient, and inexpensive method of isolating stem cell populations from peripheral blood, such as peripheral blood obtained from a human subject, without the use of positive selection techniques. In certain embodiments, the peripheral blood is mobilized peripheral blood, and in some embodiments the peripheral blood line is pretreated by a stripping procedure to produce a separation product. In particular, the present invention relates to a method of isolating a plurality of different stem cell populations from a peripheral blood sample without the need to add a positive selection agent to the peripheral blood sample. Accordingly, the inventors have discovered a method of isolating a plurality of different stem cell populations from a single sample without contaminating the collected population of stem cells with a positive selection agent. In certain embodiments, the invention provides a method of fractionating peripheral blood into a plurality of portions, wherein each portion comprises a different population of target stem cells. Accordingly, the present invention is directed to a method of enriching a target stem cell population obtained from peripheral blood without using a positive selection technique. In particular, the present invention relates to a method of separating peripheral blood samples into a plurality of different portions to enable enrichment of a plurality of different target stem cell populations in different portions. In certain embodiments, the resulting portion comprising the target stem cell population can be further separated, if necessary, into a subset or subpopulation of the desired target stem cells. In some embodiments, the collected fraction comprising the target stem cell population can be subjected to a forward selection method to enrich the desired stem cell population. In cell-based therapies, it is often necessary to purify and concentrate a subset of stem cells in a sample, such as a peripheral blood sample. In some stem cell therapies, stem cells derived from bone marrow (BM) and/or peripheral blood (pB) sources are required to be collected from individuals for future use in autologous cell replacement or autologous cell based regenerative therapies. Peripheral blood, including mobilized peripheral blood, contains a number of different types of stem cells, including hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), and other stem cell populations including, but not limited to, minimal embryonic-like (VSEL) stem cells. Typical known methods for isolating such stem cell populations (such as Hsc, MSC, and VSEL) from peripheral blood samples include forward selection. Such selection methods include methods based on cell surface labeling, such as immunoselection, including isolation and isolation of the antibody from the surface of the target stem cell based on affinity molecules (such as antibodies or cell surface ligands). The target stem cells are isolated. Such positive separation methods are generally known in the art and include, without limitation, labor cell sorting (FACS), immunodensity separation, immunomagnetic separation, and the like. However, such conventional methods of selecting different stem cell populations either positively or negatively from a peripheral i-liquid sample cause a selection agent such as an antibody to contaminate the peripheral blood sample and the isolated stem cell population. In addition, these selection methods are also expensive, time-consuming and slow procedures, which often require skilled professionals to specialize in training and/or specialization of the technicians, as well as a separate selection method for separating stem cell populations from peripheral blood samples. Peripheral blood samples are only enriched - a target stem cell population and discarded

152717.doc •12- 201130978 他可能適用之未經選擇或未經增濃之亦存在於周邊血液樣 本中的幹細胞群。 因此,本發明係關於一種在不使用纟文所揭示之正向選 擇技術的情況下自周邊血液樣本分離或增濃眾多幹細胞群 之方法’其與自周邊血液增濃幹細胞之現有彳法相比具有 眾多優勢’其包括(但不限於)⑴自單一周邊血液樣本增濃 多個不同幹細胞群,使收集周邊血液中存在之多種不同幹 細胞群及冑免不得不I置可㊣有價值或適用之幹細胞群可 行,(11)在無需添加其他藥劑之情況下增濃周邊血液中之 幹細胞群,因此避免藥劑(例如,若肖濃幹細胞群隨後用 於人類自體或同種異體移植(allogenic transp丨antation),則 可能不滿足FDA核准之藥劑)污染所收集之幹細胞群或周 邊血液樣本,(111)提供自周邊血液增濃多個不同幹細胞群 之方法,其可由具有極少或無培訓《一般技術者使用快 速、輕易及廉價之方法輕易進行,且無需專用設備、試劑 或高度受訓人員即可在多個地方輕易進行。 在某些實施例中,本發明提供在無通常用於正向選擇或 分離幹細胞群之藥劑污染’例如無免疫選擇方法中所用之 抗體或其他藥劑污染’或無需基於細胞表面標記來分離及 選擇細胞(諸如習知幹細胞分離法中所進行的,習知幹細 胞分離法使用免疫選擇,諸如目標細胞與標記㈣相互作 用後之螢光細胞分選(FACS)或磁性珠粒分離)的情況下分 離複數個不同幹細胞群的方法^疫選擇法包㈣用標記 於磁性珠粒、生物可降解珠粒、不可生物降解珠粒之抗體 152717.doc 201130978 及淘選(pan)於表面(包括培養皿)之抗體的親和力法及此等 方法之組合。 因此,本發明大體而言係關於周邊血液分級分離,其包 含將周邊血液(PB)樣本中存在之細胞分離成不同細胞部 刀’其中各部分為異源細胞群,其中一些部分包含至少一 個不同目標幹細胞群。在某些實施例中,包含異源細胞群 之各PB部分可經進一步分級分離成例如不同同源目標幹細 胞群。舉例而言,包含異源細胞群(其包含至少兩群目標 幹細胞群(例如HSC及MSC))之PB部分可經進一步分級分離 成實質上純HSC群、實質上純MSC群及既非HSC亦非MSC 之異源細胞群。在另一實例中,包含異源細胞群(其包含 目標幹細胞(例如VSEL幹細胞)群)之PB部分可經進一步分 級分離成實質上純VSEL群及異源非VSEL細胞群。 因此,本發明係關於在不使用正向選擇技術且因此避免 選擇或增濃目標幹細胞群所必需之藥劑污染分離之目標幹 細胞群或周邊血液樣本之情況下自單一周邊血液樣本分離 複數個目標幹細胞群的方法。 在某些實施例中,藉由淘洗法達成周邊血液分級分離, 其中通過淘洗裝置之流動速率確定周邊血液之何種細胞收 集於特定PB部分中。在某些實施例中,在通過ELUTRA® 裝置或其他適合之淘洗裝置或機器之不同流動速率下處理 來自周邊血液之析離產物。在某些實施例中,維持淘洗程 序中所用之流動速率且改變向心加速力(亦即「g」)以分級 分離周邊或析離血液。 152717.doc •14- 201130978 發明者證明使用本文所揭示之方法可自周邊血液增濃 VSEL幹細胞群,其中包含約0.01% VSEL之未經分級分離 之析離周邊血液樣本係在50毫升/分鐘之流動速率下增濃 VSEL以產生包含約至少0.3% VSEL幹細胞之部分分離PB 樣本,證明VSEL群自周邊血液增濃至少30倍。因此,在 某些實施例中,如本文實例中所揭示,自50毫升/分鐘之 流動速率收集之PB部分包含目標幹細胞群,其包含VSEL 幹細胞。在某些實施例中,獲自50毫升/分鐘之流動速率 的PB部分中之VSEL百分比大於約0.1%,或約0.2%,或約 0.3%或約0.4%或約0.5%,或大於0.5%。在某些實施例 中,與未經分級分離之周邊血液相比,自50毫升/分鐘之 流動速率收集之PB部分的VSEL增濃約15倍,或約20倍, 或約30倍,或約40倍,或約50倍或大於約50倍。 在某些實施例中,如本文實例中所揭示,自大於或等於 約90 ml/min之流動速率收集之PB部分包含目標幹細胞 群,其包含HSC及MSC。在某些實施例中,獲自大於或等 於約90 ml/min之流動速率的PB部分中之HSC或MSC百分比 大於約15%,或約20%、或約30%或約40%或約50%或大於 約50%,或15%與50%之間的任何整數,或超過約50%。 在一個態樣中,本發明提供一種在不使用正向選擇技術 之情況下分離周邊血液以獲得至少四個目標細胞群之方 法,其包含:(a)使來自個體之周邊血液樣本流經淘洗裝置 之流體腔室,其中選擇第一流動速率,其中周邊血液中大 於最小細胞之細胞將流經,且較小細胞截留於流體腔室 152717.doc 15 201130978 中;(b)在不對截留細胞進行正向選擇步驟之情況下自步驟 (a)在流體腔室中收集截留小細胞,以獲得第一目標細胞 群;(c)使包含未截留細胞之周邊血液樣本再循環通過淘洗 裝置之流體腔室’及提高剩餘周邊血液樣本之流動速率, 其中周邊血液中大於最小細胞之細胞將流經,且較小細胞 截留於流體腔室中;(d)在不對截留細胞進行正向選擇步驟 之情況下在流體腔室中自步驟(c)收集截留小細胞,以獲得 第二目標細胞群;及(e)重複步驟(c)至(d)直至將周邊血液 樣本之所有細胞均收集至所需細胞群中為止。 在某些實施例中,第一流動速率為20毫升/分鐘或20毫 升/分鐘以下且第一目標細胞群包含血小板。在某些實施 例中,提高之流動速率為50毫升/分鐘或50毫升/分鐘以下 且目標細胞群包含極小胚胎樣(VSEL)幹細胞群。在某些實 施例中,提高之流動速率為70毫升/分鐘或70毫升/分鐘以 下且目標細胞群包含紅血球(RBC)群。在某些實施例中, 提高之流動速率為90毫升/分鐘或90毫升/分鐘以下且目標 細胞群包含白血球(WBC)群。在某些實施例中,提高之流 動速率為105毫升/分鐘或105毫升/分鐘以下,且目標細胞 群包含造血幹細胞(HSC)及間葉幹細胞(MSC)群。 在某些實施例中,本文所揭示之方法不使用正向選擇技 術’諸如免疫選擇或免疫密度選擇,例如FACS。在某些 實施例中’本文所揭示之方法不使用利用抗體或抗體片段 之正向選擇技術。在某些實施例中,可對截留細胞群(例 如包含目標幹細胞群之PB部分)進行正向選擇技術以增濃 152717.doc • · ⑤ 201130978 截留細胞群中之所需目標幹細胞群。 在某二實施例中’本文所揭示之分離周邊血液以獲得至 少四個目標細胞群之方法使用周邊血液樣本,諸如人類周 邊血液樣本’包括經調動周邊血液樣本。在某些實施例 中,周邊血液樣本係、獲自投與調動劑後之人類個體,諸如 其中已向人類個體投與調動劑至少2日,或4日或4曰以 下。在某些實施例中,周邊血液樣本為析離產物。 本發明之一個態樣係關於一種在不使用正向選擇技術之 it況下分離周邊血液以獲得至少四個目標細胞群之方法, 其包含:(a)使來自個體之周邊血液樣本流經淘洗裝置之流 體腔至,其中選擇第一流動速率,其中周邊血液中大於最 小細胞之細胞將流經,且較小細胞截留於流體腔室中; 在不對截留細胞進行正向選擇步驟之情況下自步驟(a)在流 體腔至中收集戴留小細胞,以獲得第一目標細胞群;(幻使 包含未截留細胞之周邊血液樣本再循環通過淘洗裝置之流 體腔室,及提高剩餘周邊血液樣本之流動速率,其中周邊 血液中大於最小細胞之細胞將流經’且較小細胞截留於流 體腔室中;(d)在不對截留細胞進行正向選擇步驟之情況下 在流體腔室中自步驟(c)收集截留小細胞,以獲得第二目標 細胞群;及(e)重複步驟(c)至(d)直至將周邊血液樣本之所 有細胞均收集至所需細胞群中為止。 在某些實施例中,第一流動速率為20毫升/分鐘或20毫 升/为紅以下且第一目標細胞群包含小板。在某些實施 例中,提高之流動速率為50毫升/分鐘或50毫升/分鐘以下 152717.doc • 17· 201130978 且目標細胞群包含極小胚胎樣(VSEL)幹細胞群β在某些實 施例中,提高之流動速率為70毫升/分鐘或7〇毫升/分鐘以 下。在某些實施例中,提高之流動速率為90毫升/分鐘或 90毫升/分鐘以下且目標細胞群包含紅血球(rbc)及白血球 (WBC)群。在某些實施例中,提高之流動速率為大於9〇毫 升/分鐘或90毫升/分鐘以下’且目標細胞群包含造血幹細 胞(HSC)及間葉幹細胞(MSC)群。在某些實施例中,提高 之流動速率為約105毫升/分鐘或1〇5毫升/分鐘以下,且目 標細胞群包含造血幹細胞(HSC)及間葉幹細胞(MSC)群。 在某些實施例中’本文所揭示之方法不使用正向選擇技 術,諸如免疫選擇或免疫密度選擇,例如FACS。在某些 實施例中,本文所揭示之方法不使用利用抗體或抗體片段 之正向選擇技術。 在某些實施例中,可對截留細胞群進行負向選擇技術以 增濃截留細胞群中之所需目標幹細胞群。在某些實施例 中,負向選擇技術使用免疫選擇及免疫密度選擇法。在某 些實施例中,負向選擇技術係用以自目標幹細胞群移除不 期望之細胞及組分。 在某些實施例中’該方法可用以自周邊血液樣本(諸如 人類周邊血液樣本,包括經調動周邊血液樣本)獲得複數 個幹細胞群。在某些實施例中,周邊血液樣本係獲自投盘 調動劑後之人類個體’例如其中已向人類個體投與調動劑 至乂 1日i_ 於4日。在本發明之—個實施例中,投與調 動劑兩日。在另—實施例中,投與調動劑三日。在某些; 152717.doc 201130978 施例中,周邊血液樣本為析離產物。 本發明之另一態樣係關於一種用至少— 固自體幹細胞群 治療個體之疾病或病症的方法,其包含:(a)利用至少一個 來自周邊血液樣本之幹細胞群,其中該周“㈣ 自已投與調動劑4日或4日以下之個體,且盆由 ^ 丹甲在不使用正 向選擇技術之情況下使用流動速率分離方法增濃至少一152717.doc •12- 201130978 He may be used for unselected or unenriched stem cell populations that are also present in peripheral blood samples. Accordingly, the present invention relates to a method for isolating or enriching a plurality of stem cell populations from peripheral blood samples without using the positive selection technique disclosed in the text, which has a comparison with the existing method of enriching stem cells from peripheral blood. Numerous advantages 'including, but not limited to, (1) enriching multiple different stem cell populations from a single peripheral blood sample, allowing collection of multiple different stem cell populations and agitation in peripheral blood to have a valuable or suitable stem cell population Feasible, (11) to thicken the stem cell population in the peripheral blood without adding other agents, thus avoiding the agent (for example, if the Shaw rich stem cell population is subsequently used for human autologous or allogenic transp丨antation, It may not meet the FDA-approved agent to contaminate the collected stem cell population or peripheral blood samples, (111) provides a method for enriching multiple different stem cell populations from peripheral blood, which can be used with little or no training. Easy, inexpensive and easy to use, without the need for special equipment, reagents or highly trained personnel To proceed in multiple places. In certain embodiments, the invention provides for the contamination of an antibody or other agent used in a method that is not commonly used for positive selection or isolation of stem cell populations, such as in an immunologically selective method, or without the need to separate and select based on cell surface markers. Cells (such as those performed in conventional stem cell isolation methods, where conventional stem cell isolation methods use immunoselection, such as fluorescence cell sorting (FACS) or magnetic bead separation after interaction of target cells with label (4)) A method for a plurality of different stem cell populations (IV) using antibodies labeled magnetic beads, biodegradable beads, non-biodegradable beads 152717.doc 201130978 and panning on the surface (including petri dishes) The affinity method of the antibody and a combination of these methods. Accordingly, the present invention relates generally to peripheral blood fractionation comprising separating cells present in a peripheral blood (PB) sample into different cell knives, wherein each portion is a heterogeneous cell population, some of which contain at least one different Target stem cell population. In certain embodiments, each PB portion comprising a heterologous cell population can be further fractionated into, for example, a population of different homologous target stem cells. For example, a PB portion comprising a heterogeneous population of cells comprising at least two populations of target stem cells (eg, HSCs and MSCs) can be further fractionated into substantially pure HSC populations, substantially pure MSC populations, and neither HSC nor A heterogeneous population of cells other than MSC. In another example, a PB portion comprising a population of heterologous cells comprising a population of target stem cells (e. g., VSEL stem cells) can be further fractionated into a substantially pure VSEL population and a heterogeneous non-VSEL cell population. Accordingly, the present invention relates to the isolation of a plurality of target stem cells from a single peripheral blood sample without the use of a positive selection technique and thus avoiding the selection or concentration of a target stem cell population necessary for contamination of the target stem cell population or peripheral blood sample. The method of the group. In some embodiments, peripheral blood fractionation is achieved by a panning method wherein the cell of the peripheral blood is determined by the flow rate of the panning device to be collected in a particular PB portion. In certain embodiments, the separation product from peripheral blood is treated at different flow rates through an ELUTRA® device or other suitable panning device or machine. In some embodiments, the flow rate used in the panning process is maintained and the centripetal acceleration force (i.e., "g") is varied to fractionate the surrounding or separate blood. 152717.doc •14- 201130978 The inventors demonstrated that the VSEL stem cell population can be enriched from peripheral blood using the methods disclosed herein, with an unfractionated isolated peripheral blood sample containing approximately 0.01% VSEL at 50 mL/min. The VSEL was enriched at flow rate to produce a partially isolated PB sample containing about at least 0.3% VSEL stem cells, demonstrating that the VSEL population was at least 30-fold more concentrated from peripheral blood. Thus, in certain embodiments, as disclosed in the Examples herein, the PB portion collected from a flow rate of 50 ml/min comprises a population of target stem cells comprising VSEL stem cells. In certain embodiments, the percentage of VSEL in the PB portion obtained from a flow rate of 50 ml/min is greater than about 0.1%, or about 0.2%, or about 0.3% or about 0.4% or about 0.5%, or greater than 0.5%. . In certain embodiments, the VSEL concentration of the PB fraction collected from a flow rate of 50 ml/min is about 15 times, or about 20 times, or about 30 times, or about, compared to the unfractionated peripheral blood. 40 times, or about 50 times or more than about 50 times. In certain embodiments, as disclosed in the Examples herein, the PB portion collected from a flow rate greater than or equal to about 90 ml/min comprises a target stem cell population comprising HSCs and MSCs. In certain embodiments, the percentage of HSC or MSC in the PB portion obtained from a flow rate greater than or equal to about 90 ml/min is greater than about 15%, or about 20%, or about 30% or about 40% or about 50. % or greater than about 50%, or any integer between 15% and 50%, or more than about 50%. In one aspect, the invention provides a method of isolating peripheral blood to obtain at least four target cell populations without using a positive selection technique, comprising: (a) flowing peripheral blood samples from the individual through the panning a fluid chamber of the washing device, wherein a first flow rate is selected, wherein cells in the peripheral blood that are larger than the smallest cells will flow through, and smaller cells are trapped in the fluid chamber 152717.doc 15 201130978; (b) in the absence of the retained cells Carrying out the positive selection step from step (a) collecting the trapped small cells in the fluid chamber to obtain the first target cell population; (c) recycling the peripheral blood sample containing the unretained cells through the panning device Fluid chamber' and increasing the flow rate of the remaining peripheral blood sample, wherein cells in the peripheral blood that are larger than the smallest cells will flow through, and smaller cells are trapped in the fluid chamber; (d) without positive selection steps on the retained cells Collecting the trapped small cells from step (c) in the fluid chamber to obtain a second target cell population; and (e) repeating steps (c) through (d) until All cells in the peripheral blood sample are collected into the desired cell population. In certain embodiments, the first flow rate is 20 milliliters per minute or less and the first target population of cells comprises platelets. In certain embodiments, the increased flow rate is 50 ml/min or less and the target cell population comprises a minimal embryonic-like (VSEL) stem cell population. In some embodiments, the increased flow rate is 70 ml/min or 70 ml/min and the target cell population comprises a red blood cell (RBC) population. In certain embodiments, the increased flow rate is 90 ml/min or less and the target population of cells comprises a white blood cell (WBC) population. In certain embodiments, the increased flow rate is 105 ml/min or less, and the target population of cells comprises a population of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). In certain embodiments, the methods disclosed herein do not use positive selection techniques such as immunoselection or immunological density selection, such as FACS. In certain embodiments, the methods disclosed herein do not employ a forward selection technique that utilizes antibodies or antibody fragments. In certain embodiments, a positive selection technique can be performed on a population of retentate cells (e.g., a portion of the PB comprising a population of target stem cells) to enrich the desired target stem cell population in the population of the retentate cell population of 152717.doc • 5 201130978. In a second embodiment, the method of isolating peripheral blood to obtain at least four target cell populations disclosed herein uses peripheral blood samples, such as human peripheral blood samples' including mobilized peripheral blood samples. In certain embodiments, the peripheral blood sample is obtained from a human subject after administration of the mobilizer, such as wherein the mobilizer has been administered to the human subject for at least 2 days, or 4 days or less. In certain embodiments, the peripheral blood sample is a separation product. One aspect of the present invention relates to a method of separating peripheral blood to obtain at least four target cell populations without using a positive selection technique, comprising: (a) allowing peripheral blood samples from the individual to flow through the panning Washing the fluid chamber of the device to, wherein the first flow rate is selected, wherein cells in the peripheral blood that are larger than the smallest cells will flow through, and smaller cells are trapped in the fluid chamber; without performing a positive selection step on the retained cells Collecting the occluded cells from the fluid chamber to the step (a) to obtain the first target cell population; (magicizing the peripheral blood sample containing the unretained cells to be recirculated through the fluid chamber of the panning device, and increasing the remaining periphery The flow rate of the blood sample, wherein cells in the peripheral blood that are larger than the smallest cells will flow through 'and smaller cells are trapped in the fluid chamber; (d) in the fluid chamber without performing a positive selection step on the retained cells Collecting the trapped small cells from step (c) to obtain a second target cell population; and (e) repeating steps (c) through (d) until all of the peripheral blood samples are taken The cells are collected into the desired cell population. In certain embodiments, the first flow rate is 20 ml/min or 20 ml/below red and the first target cell population comprises platelets. In certain embodiments Increasing the flow rate to 50 ml/min or 50 ml/min or less 152717.doc • 17·201130978 and the target cell population contains a minimal embryonic-like (VSEL) stem cell population β. In some embodiments, the increased flow rate is 70. In milliliters per minute or below 7 milliliters per minute. In some embodiments, the increased flow rate is 90 milliliters per minute or less and the target population of cells comprises red blood cells (rbc) and white blood cell (WBC) populations. In certain embodiments, the increased flow rate is greater than 9 〇ml/min or less than 90 cc/min and the target population of cells comprises a population of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). In certain embodiments, The increased flow rate is about 105 milliliters per minute or less than 1 milliliter per minute, and the target population of cells comprises a population of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). In certain embodiments, the methods disclosed herein Do not Forward selection techniques, such as immunoselection or immunological density selection, such as FACS. In certain embodiments, the methods disclosed herein do not use a positive selection technique that utilizes antibodies or antibody fragments. In certain embodiments, Negative selection techniques are applied to the population of cut-off cells to enrich the desired population of target stem cells in the population of cut-off cells. In certain embodiments, the negative selection technique uses immunoselection and immuno-dense selection. In certain embodiments, Negative selection techniques are used to remove undesired cells and components from a target stem cell population. In certain embodiments, the method can be used to derive from peripheral blood samples (such as human peripheral blood samples, including mobilized peripheral blood samples). A plurality of stem cell populations are obtained. In some embodiments, the peripheral blood sample is obtained from a human entity after the dispenser, for example, wherein the mobilizer has been administered to a human subject until 1 day. In one embodiment of the invention, the mobilizer is administered for two days. In another embodiment, the mobilizer is administered for three days. In some; 152717.doc 201130978, the peripheral blood sample is a separation product. Another aspect of the invention relates to a method of treating a disease or condition in an individual with a population of at least a solid autologous stem cell comprising: (a) utilizing at least one stem cell population from a peripheral blood sample, wherein the week "(4) self Injecting the transfer agent for individuals of 4 days or less, and the pot is enriched by at least one using a flow rate separation method without using a positive selection technique.

幹細胞群Kb)投與個體至少—個幹細胞相治療I 病症。 3 在某些實施例中,已超低溫保存使用本文所揭示之方法 獲得之至少一個幹細胞群。在某些實施例中,至少—個幹 細胞群包含非幹細胞,例如包含至少1()%目標幹細胞群之 幹細胞群。在某些實施例中,至少__個幹細胞群為目標幹 細胞群之實質上純群。在某些實施例中,至少—個幹細胞 群已在投與個體(諸如人類個體)之前活體外擴增。在某= 實施例中,該方法使自周邊血液收集多個幹細胞群可 其中至少一個幹細胞群為極小胚胎樣(VSEL)幹細胞,且至 少一個幹細胞群為MSC,且至少一個幹細胞群在 某些實施例中,投與個體之至少一個幹細胞群為包含選自 極小胚胎樣(VSEL)幹細胞、MSC或HSC之群的任何組合的 細胞組合。 在某些實施例中’本發明提供—種自周邊血液分離目標 細胞群之方法,其包含: (a)使來自個體之周邊血液樣本在第一流動速率下流經 淘洗裝置之流體腔室,其中選擇第一流動速率以使周邊血 152717.doc -19- 201130978 液樣本中小於目標細胞群之細胞流經流體腔室,且將目標 細胞群截留於流體腔室中; (b) 將第一流動速率提高至第二流動速率以使目標細 胞群流經流體腔室;及 (c) 當目標細胞群流經流體腔室時收集目標細胞群; 其中步驟(a)、(b)及(c)不包含使用正向選擇技術。 在某些實施例中’(0選擇第一流動速率以使周邊血液樣 本中小於極小胚胎樣幹細胞(VSEL)之細胞流經流體腔室且 VSEL截留於流體腔室中’及(Π)選擇第二流動速率以使 VSEL流經流體腔室。 在某些實施例中,⑴第一流動速率為約35 ml/min,第 二流動速率為約50-70 ml/min,且收集VSEL。 在某些實施例中’⑴選擇第一流動速率以使周邊血液樣 本中小於間葉幹細胞(MSC)之細胞流經流體腔室且MSC截 留於流體腔室中’及(ii)選擇第二流動速率以使MSC流經 流體腔室。 在某些實施例中,⑴第一流動速率為約10〇 ml/min,第 二流動速率為約110-120 ml/min,且收集MSC。 在某些實施例中,(i)選擇第一流動速率以使周邊血液樣 本中小於造血幹細胞(HSC)之細胞流經流體腔室且HSC截 留於流體腔室中,及(ii)選擇第二流動速率以使HSC流經流 體腔室。 在某些實施例中’⑴第一流動速率為約9〇 ml/min,第 一動速率為約100 ml/min,且收集HSC。 152717.doc •20· 201130978 在某些實施例中,正向選擇技術為免疫選擇或免疫密度 選擇。 在某些實施例中,周邊血液樣本為人類周邊血液樣本。 在某些實施例中,周邊血液樣本為經調動周邊血液樣 本。 在某些實施例中,周邊血液樣本係獲自已投與調動劑4 曰或4日以下之個體。 在某些實施例中,超低溫保存所收集之目標細胞群。 在某些實施例中,投與個體至少—個所收集之目標細胞 群。 在某些實施例中,投與最初提供周邊血液之個體至少一 個所收集之目標細胞群。 在某些實施例中’至少-個所收集之目標細胞群已在投 與個體之前活體外擴增。 在某些實施例中,個體為人類個體。 在某些實施例中’至少-個所收集之目標細胞群為 VSEL。 在某些實施例中’至少一個所收集之目標細胞群為 MSC。 在某些實施例中’至少一個所收集之目標細胞群為 HSC 〇 種自周邊血液分離目標 在某些實施例中,本發明提供 、細胞群之方法,其包含: (a)使來自個體之周邊也液樣本在 4玄 +在第一流動速率下流經 152717.doc -21· 201130978 淘洗裝置之流體腔室’其中選擇第一流動速率以使第一目 標細胞群流經流體腔室且經收集,而周邊蠱液樣本之第一 剩餘物截留於流體腔室中;及 (b) 將第一流動速率提高至第二流動速率以使第二目 標細胞群流經流體腔室且經收集,而周邊血液樣本之第_ 剩餘物截留於流體腔室中; 其中步驟(a)及(b)不包含使用正向選擇技術。 在某些實施例中,該方法進一步包含: (c) 將第二流動速率提高至第三流動速率以使第三目伊、 細胞群流經流體腔室且經收集,而周邊血液樣本之第三剩 餘物截留於流體腔室中; 其中步驟(c)不包含使用正向選擇技術。 在某些實施例中,該方法進一步包含: (d) 將第三流動速率提高至第四流動速率以使第四目 標細胞群流經流體腔室且經收集,而周邊血液樣本之第四 剩餘物截留於流體腔室中; 其中步驟(d)不包含使用正向選擇技術。 在某些實施例中,該方法進一步包含: (e) 將第四流動速率提高至第五流動速率以使第五目才联 細胞群流經流體腔室且經收集,而周邊血液樣本之第五剩 餘物截留於流體腔室中; 其中步驟(e)不包含使用正向選擇技術。 在某些實施例中,該方法進一步包含: (f) 將第五流動速率提高至第六流動速率以使第六目標 152717.doc • 22· 201130978 細胞群流經流體腔室且經收集,而周邊血液樣本之第六剩 餘物截留於流體腔室中; 其中步驟(f)不包含使用正向選擇技術。 在某些實施例中,該方法進一步包含: (g)將第六流動速率提高至第七流動速率以使第七目 標細胞群流經流體腔室且經收集,而周邊血液樣本之第七 剩餘物截留於流體腔室中; 其中步驟(g)不包含使用正向選擇技術》 在某些實施例中,選擇第一流動速率以使第一目標細胞 群為小於極小胚胎樣幹細胞(VSEL)之細胞,及(ii)選擇第 二流動速率以使第二目標細胞群為VSEL。 在某些實施例中’(i)第一流動速率為約35 ml/min,第 一流動速率為約50-70 ml/min,且收集VSEL。 在某些實施例中,⑴選擇第三流動速率以使第一目標細 胞群為小於造血幹細胞(HSC)之細胞,及(π)選擇第四流動 速率以使第二目標細胞群為HSC。 在某些實施例中’(i)第三流動速率為約9〇 mi/min,第 四流動速率為約100 ml/min,且收集HSC » 在某些實施例中’⑴選擇第四流動速率以使第一目標細 胞群為小於間葉幹細胞(MSC)之細胞,及(丨丨)選擇第五流動 速率以使第二目標細胞群為MSC。 在某些實施例中’⑴第三流動速率為約10〇 ml/min,第 四流動速率為約110-120 ml/min,且收集MSC。 在某些實施例中’(i)第一流動速率為約35 ml/min且第 152717.doc -23· 201130978 一目標細胞群為血小板; (ii) 第二流動速率為約50 ml/min且第二目標細胞群為 VSEL ; (iii) 第三流動速率為約70 ml/min且第三目標細胞群為 VSEL ; (iv) 第四流動速率為約90 ml/min且第四目標細胞群為紅 血球; (v) 第五流動速率為約100 ml/min且第五目標細胞群為 HSC ; (vi) 第六流動速率為約110 ml/min且第六目標細胞群為 MSC ;且 (vii) 第七流動速率為約120 ml/min且第七目標細胞群為 MSC。 在某些實施例中’正向選擇技術為免疫選擇或免疫密度 選擇。 在某些實施例中,周邊血液樣本為人類周邊血液樣本。 在某些貫施例中,周邊血液樣本為經調動周邊血液樣 ° 在某些實施財,周邊血液樣本係獲自已投與調動劑4 日或4日以下之個體。 在某些實施例中,超低溫保存所收集之目標細胞群。 在某些實施例中,投與個體至少—個所收集之目標細胞 在某些實施例中 投與最初提供周邊血液之個體至少一 152717.doc -24- 201130978 個所收集之目標細胞群。 在某些實施例中,至少一個所妆 nh Μ P J- in, 吓收集之目標細胞群已在投 與個體之前活體外擴增。 在某些實施例中,個體為人類個體。 _ 在某些實施例中,至少-個所收集之目標細胞群為 • VSEL。 在某些貫施例中’至少一個所收集之目標細胞群為 MSC。 在某些實施例中,至少—個所收集之目標細胞群為 HSC。 在某些實施例中,本發明提供—種自周邊血液分離目標 細胞群之方法,其包含: ⑷使來自個體之周邊血液樣本在第_流動速率下流經 淘洗裝置之流體腔室’其中選擇第_流動速率以使第一目 標細胞群流經流體腔室且經收集,而周邊血液樣本之第一 剩餘物截留於流體腔室中; (b) 將第一流動速率提高至第二流動速率以使第二目 標細胞群流經流體腔室且經收集,而周邊血液樣本之第二 剩餘物截留於流體腔室中;及 (c) 視情況重複步驟(b)直至收集到所需數目之目標細 胞群為止; 其中步驟(a)、(b)及(c)不包含使用正向選擇技術。 在某些實施例中’本發明藉由一種上文所揭示之方法提 供VSEL、MSC或HSC產物。 152717.doc •25- 201130978 【實施方式】 在一個實施例中’本發明實現最佳化自周邊血液樣本回 收特定目標幹細胞群之靈活性,其中增濃複數個不同目標 幹細胞群’產率為高數目之具有非幹細胞或非目標幹細胞 之低交叉細胞污染的細胞》 本發明之一個態樣係關於使用淘洗法自周邊血液快速及 可靠地分離批量幹細胞群,其中各目標幹細胞群具有與其 他不同目標幹細胞群不同的沈降係數(大小及密度),從而 增濃不同目標幹細胞群,其中目標幹細胞群之回收率或生 存力幾乎無損失。 在某些實施例中,根據本文所揭示之方法獲自周邊血液 之目標幹細胞適用於細胞治療。在一些幹細胞療法中,需 要使用骨髓(BM)或周邊血液(PB)來源之幹細胞以用於細胞 置換或再生療法。分離幹細胞及非幹細胞之方法可分為三 個基本類型: (a) 基於細胞物理特性(諸如細胞密度及大小)之分離,其 包括基於流體流(場流分級分離)或沈降場(離心)或沈降場 存在下之流體流(淘洗法)之差異性遷移的方法。差異性沈 降可與不同固有密度之溶液或水凝膠以間斷或連續(梯度) 形式組合進行。 (b) 基於細胞表面特性(諸如單位電荷(電泳)或界面自由 能(相分配(phase portion))或存在特定表面分子基團(與各 種親和力表面相互作用))之分離。基於特定表面分子基團 之分離的實例包括使用細胞表面受體或其他決定子之親和 152717.doc -26- 201130978 力單株或多株抗體。親和力方法包括負向選擇(例如與細 胞表面受體及親和力單株抗體相互作用以移除不期望之細 胞群)或正向選擇(與細胞表面受體及親和力分子(例如單株 抗體)相互作用以選擇所需目標細胞)。 (C)基於細胞物理特性與表面特性之組合的選擇,例如基 於用以分離細胞群之密度梯度介質與識別目標細胞或不期 望之細胞亞群之細胞表面特異性抗體組合的選擇。 然而’幹細胞分離通常基於細胞表面特性,此外,自周 邊血液樣本分離幹細胞群(諸如HSC、MSC及VSEL)之習知 方法通常包括基於細胞表面之分離方法,諸如免疫選擇, 其中分離及單離特定幹細胞群係基於親和力分子(諸如抗 體或細胞表面配位體)對待分離目標幹細胞表面之結合。 此專分離方法通常為此項技術中已知,且包括(不限於)螢 光細胞分選(FACS)、免疫密度分離及免疫磁分離及其類似 方法。因此,自周邊血液分離不同幹細胞群之習知方法需 要·^體污染周邊j^L液樣本且昂貴以及較慢,且經常需要熟 練專業人員或技師專門培訓及/或專用設備。另外,習知 方法經常僅增濃周邊血液樣本中之一個幹細胞群且棄置周 邊血液樣本中存在之其他可能適用之未經選擇或未經增濃 之幹細胞群。 另外’自周邊血液增濃幹細胞之習知方法中存在問題, 諸如其他非目標幹細胞受污染,其可干擾各種細胞分離及/ 或細胞選擇技術及稍後所選目標幹細胞針對治療用途之培 養。因此’需要將幹細胞自周邊血液分離成幹細胞群之所 1527l7.doc -27· 201130978 需子集且移除各幹細胞子集中之非目標幹細胞群或減少其 數目。本發明提供一種分離所需幹細胞群之方法,其可使 用大量輸入細胞在無需使用與此方法相關之細胞表面標記 或藥劑之選擇方法的情況下進行。本發明提供分離參數且 證明若干類型之幹細胞可自周邊及析離血液之其他細胞組 分有效增濃。 在某些實施例中,包含目標幹細胞群之所得部分必要時 可經進一步分離成所需細胞子集以便收集。 先前已報導藉由逆流離心淘洗法分離G-CSF經調動PBSC 移植物使得CD34 +細胞適度增濃,而未損失原始造血祖細 胞(參看 Kwekkeboom等人,British Journal of Haematology, 1997,99; 47-55)。Kwekkeboom等人討論使用逆流離心淘 洗法(CCE)來減少自體G-CSF經調動周邊血液幹細胞 (PBSC)移植物中之非幹細月包數目。藉由細胞大小監測 CCE(cell size-monitored CCE),可將小細胞與白細胞析離 產物(leukapheresis product; LP)樣本中存在之造血祖細胞 快速分離。然而,不同於本發明,Kwekkeboom等人不討 論使用CCE自周邊血液樣本分離不同幹細胞群。更特定言 之,Kwekkeboom未發現原始幹細胞與任何部分(包括小細 胞部分)優先共淘洗之指示。The stem cell population Kb) is administered to the individual to treat at least one stem cell phase I disorder. 3 In certain embodiments, at least one stem cell population obtained using the methods disclosed herein has been cryopreserved. In certain embodiments, at least one stem cell population comprises non-stem cells, such as a population of stem cells comprising at least 1 (%) of the target stem cell population. In certain embodiments, at least __ stem cell populations are substantially pure populations of target stem cell populations. In certain embodiments, at least one stem cell population has been expanded in vitro prior to administration to an individual, such as a human individual. In a certain embodiment, the method provides for collecting a plurality of stem cell populations from peripheral blood, wherein at least one stem cell population is a minimal embryonic-like (VSEL) stem cell, and at least one stem cell population is MSC, and at least one stem cell population is in some implementations In one embodiment, the at least one stem cell population administered to the individual is a combination of cells comprising any combination selected from the group consisting of minimal embryonic (VSEL) stem cells, MSCs or HSCs. In certain embodiments, the invention provides a method of isolating a population of target cells from peripheral blood, comprising: (a) flowing a peripheral blood sample from the individual through a fluid chamber of the panning apparatus at a first flow rate, The first flow rate is selected such that cells of the peripheral blood 152717.doc -19- 201130978 liquid sample are smaller than the target cell population flow through the fluid chamber, and the target cell population is trapped in the fluid chamber; (b) first The flow rate is increased to a second flow rate to cause the target cell population to flow through the fluid chamber; and (c) the target cell population is collected as the target cell population flows through the fluid chamber; wherein steps (a), (b), and (c) Does not include the use of positive selection techniques. In certain embodiments '(0 selects a first flow rate such that cells in the peripheral blood sample that are smaller than minimal embryonic stem cells (VSEL) flow through the fluid chamber and VSEL is trapped in the fluid chamber' and (Π) select The second flow rate is such that the VSEL flows through the fluid chamber. In certain embodiments, (1) the first flow rate is about 35 ml/min, the second flow rate is about 50-70 ml/min, and the VSEL is collected. In some embodiments, '(1) selects a first flow rate such that cells of less than mesenchymal stem cells (MSC) in the peripheral blood sample flow through the fluid chamber and the MSC is trapped in the fluid chamber' and (ii) selects a second flow rate to The MSC is allowed to flow through the fluid chamber. In certain embodiments, (1) the first flow rate is about 10 〇 ml/min, the second flow rate is about 110-120 ml/min, and the MSC is collected. (i) selecting a first flow rate such that cells in the peripheral blood sample that are smaller than hematopoietic stem cells (HSC) flow through the fluid chamber and the HSC is trapped in the fluid chamber, and (ii) selecting a second flow rate to cause the HSC Flow through the fluid chamber. In some embodiments '(1) first flow rate The rate is about 9 〇ml/min, the first rate of motion is about 100 ml/min, and the HSC is collected. 152717.doc • 20· 201130978 In certain embodiments, the positive selection technique is immune selection or immune density selection. In certain embodiments, the peripheral blood sample is a human peripheral blood sample. In some embodiments, the peripheral blood sample is a mobilized peripheral blood sample. In certain embodiments, the peripheral blood sample is obtained from a administered mobilizer 4 曰 or individuals below 4 days. In certain embodiments, the collected target cell population is cryopreserved. In certain embodiments, at least one of the collected target cell populations is administered to the individual. In certain embodiments At least one collected target cell population is initially administered to an individual who initially provides peripheral blood. In certain embodiments, at least one of the collected target cell populations has been expanded in vitro prior to administration to the individual. In certain embodiments The individual is a human individual. In certain embodiments, at least one of the collected target cell populations is a VSEL. In certain embodiments, at least one of the collected target cell populations is an MSC. In some embodiments, at least one of the collected target cell populations is an HSC seed from a peripheral blood separation target. In certain embodiments, the present invention provides a method of cell population comprising: (a) The liquid sample flows through the fluid chamber of the 152717.doc -21·201130978 panwashing device at a first flow rate, wherein the first flow rate is selected such that the first target cell population flows through the fluid chamber and is collected, And the first residue of the surrounding sputum sample is trapped in the fluid chamber; and (b) increasing the first flow rate to a second flow rate such that the second target cell population flows through the fluid chamber and is collected The _th residue of the blood sample is trapped in the fluid chamber; wherein steps (a) and (b) do not include the use of positive selection techniques. In certain embodiments, the method further comprises: (c) increasing the second flow rate to a third flow rate such that the third mesh, the population of cells flow through the fluid chamber and is collected, and the peripheral blood sample is The three residues are trapped in the fluid chamber; wherein step (c) does not involve the use of a forward selection technique. In certain embodiments, the method further comprises: (d) increasing the third flow rate to a fourth flow rate such that the fourth target population of cells flows through the fluid chamber and is collected, while the fourth remaining of the peripheral blood sample The material is trapped in the fluid chamber; wherein step (d) does not involve the use of a forward selection technique. In certain embodiments, the method further comprises: (e) increasing the fourth flow rate to a fifth flow rate such that the fifth target cell population flows through the fluid chamber and is collected, and the peripheral blood sample is The five residues are trapped in the fluid chamber; wherein step (e) does not involve the use of positive selection techniques. In certain embodiments, the method further comprises: (f) increasing the fifth flow rate to a sixth flow rate such that the sixth target 152717.doc • 22· 201130978 cell population flows through the fluid chamber and is collected, The sixth remainder of the peripheral blood sample is trapped in the fluid chamber; wherein step (f) does not involve the use of positive selection techniques. In certain embodiments, the method further comprises: (g) increasing the sixth flow rate to a seventh flow rate such that the seventh target population of cells flows through the fluid chamber and is collected, while the seventh remaining of the peripheral blood sample The material is trapped in the fluid chamber; wherein step (g) does not include the use of positive selection techniques. In certain embodiments, the first flow rate is selected such that the first target population is less than minimal embryonic stem cells (VSEL). The cells, and (ii) select a second flow rate such that the second target population of cells is a VSEL. In certain embodiments, (i) the first flow rate is about 35 ml/min, the first flow rate is about 50-70 ml/min, and the VSEL is collected. In certain embodiments, (1) selecting a third flow rate such that the first target population is less than cells of hematopoietic stem cells (HSC), and (π) selecting a fourth flow rate such that the second target population is HSC. In certain embodiments '(i) the third flow rate is about 9 〇mi/min, the fourth flow rate is about 100 ml/min, and the HSC is collected » In some embodiments '(1) selects the fourth flow rate The first target cell population is a cell that is smaller than the mesenchymal stem cells (MSC), and the fifth flow rate is selected such that the second target cell population is the MSC. In certain embodiments, '(1) a third flow rate of about 10 〇 ml/min, a fourth flow rate of about 110-120 ml/min, and collecting MSCs. In certain embodiments, '(i) a first flow rate of about 35 ml/min and a 152717.doc -23. 201130978 target cell population is platelets; (ii) a second flow rate of about 50 ml/min and The second target cell population is VSEL; (iii) the third flow rate is about 70 ml/min and the third target cell population is VSEL; (iv) the fourth flow rate is about 90 ml/min and the fourth target cell population is Red blood cells; (v) a fifth flow rate of about 100 ml/min and a fifth target cell population of HSC; (vi) a sixth flow rate of about 110 ml/min and a sixth target cell population of MSC; and (vii) The seventh flow rate is about 120 ml/min and the seventh target cell population is MSC. In some embodiments the 'forward selection technique is immunoselection or immune density selection. In certain embodiments, the peripheral blood sample is a human peripheral blood sample. In some embodiments, the peripheral blood sample is a mobilized peripheral blood sample. In some implementations, the peripheral blood sample is obtained from an individual who has administered the mobilizer for 4 or less days. In certain embodiments, the collected target cell population is cryopreserved. In certain embodiments, at least one of the collected target cells administered to the individual, in certain embodiments, is administered at least one of the target cell populations collected from the individual providing the peripheral blood at least one of 152717.doc -24 - 201130978. In some embodiments, at least one of the makeup nh Μ P J-in, the target cell population that has been scared to collect has been expanded in vitro prior to administration to the individual. In certain embodiments, the individual is a human individual. _ In some embodiments, at least one of the collected target cell populations is • VSEL. In some embodiments, at least one of the target cell populations collected is MSC. In certain embodiments, at least one of the collected target cell populations is an HSC. In certain embodiments, the present invention provides a method of isolating a target cell population from peripheral blood, comprising: (4) selecting a peripheral blood sample from the individual to flow through a fluid chamber of the panning apparatus at a first flow rate a first flow rate such that the first target population of cells flows through the fluid chamber and is collected while the first residue of the peripheral blood sample is trapped in the fluid chamber; (b) increasing the first flow rate to the second flow rate So that the second target population of cells flows through the fluid chamber and is collected, while the second remainder of the peripheral blood sample is trapped in the fluid chamber; and (c) repeating step (b) as appropriate until the desired number is collected Target cell population; wherein steps (a), (b), and (c) do not include the use of positive selection techniques. In certain embodiments, the invention provides a VSEL, MSC or HSC product by a method as disclosed above. 152717.doc • 25- 201130978 [Embodiment] In one embodiment, the present invention achieves the flexibility of optimizing the recovery of a specific target stem cell population from peripheral blood samples, wherein the enrichment of a plurality of different target stem cell populations is high in yield. A number of cells with low cross-cell contamination of non-stem cells or non-target stem cells. One aspect of the present invention relates to the rapid and reliable separation of bulk stem cell populations from peripheral blood using a panning method, wherein each target stem cell population has a different Different sedimentation coefficients (size and density) of the target stem cell population, thereby enriching different target stem cell populations, wherein the recovery or viability of the target stem cell population is almost no loss. In certain embodiments, target stem cells obtained from peripheral blood according to the methods disclosed herein are suitable for use in cell therapy. In some stem cell therapies, bone marrow (BM) or peripheral blood (PB) derived stem cells are used for cell replacement or regenerative therapy. Methods for isolating stem cells and non-stem cells can be divided into three basic types: (a) separation based on cellular physical properties (such as cell density and size), including fluid flow (field flow fractionation) or sedimentation field (centrifugation) or A method of differential migration of fluid flow (panning) in the presence of a settling field. The differential sinking can be combined with a solution or hydrogel of different intrinsic density in a discontinuous or continuous (gradient) form. (b) Separation based on cell surface characteristics such as unit charge (electrophoresis) or interfacial free energy (phase portion) or the presence of specific surface molecular groups (interacting with various affinity surfaces). Examples of separation based on specific surface molecular groups include the use of cell surface receptors or other determinants of affinity 152717.doc -26- 201130978 force single or multiple antibodies. Affinity methods include negative selection (eg, interaction with cell surface receptors and affinity monoclonal antibodies to remove undesired cell populations) or positive selection (interacting with cell surface receptors and affinity molecules (eg, monoclonal antibodies) To select the desired target cells). (C) Selection based on a combination of cellular physical properties and surface characteristics, e.g., based on a combination of a density gradient medium for isolating a population of cells and a cell surface specific antibody that recognizes a target cell or an undesired subset of cells. However, 'stem cell isolation is usually based on cell surface characteristics. In addition, conventional methods for isolating stem cell populations (such as HSCs, MSCs, and VSELs) from peripheral blood samples typically include cell surface-based separation methods, such as immunoselection, in which isolation and isolation are specific. The stem cell population is based on the binding of affinity molecules (such as antibodies or cell surface ligands) to the surface of the target stem cells to be isolated. Such specialized separation methods are generally known in the art and include, without limitation, fluorescent cell sorting (FACS), immunodensity separation, and immunomagnetic separation, and the like. Therefore, conventional methods for isolating different stem cell populations from peripheral blood require the contamination of surrounding j^L liquid samples and are expensive and slow, and often require specialized training and/or specialized equipment by skilled professionals or technicians. In addition, conventional methods often only enrich one stem cell population in a peripheral blood sample and discard other potentially unselected or unenriched stem cell populations present in the peripheral blood sample. In addition, there are problems in conventional methods for enriching stem cells from peripheral blood, such as contamination of other non-target stem cells, which can interfere with various cell isolation and/or cell selection techniques and the subsequent selection of target stem cells for therapeutic use. Therefore, it is necessary to separate stem cells from peripheral blood into a population of stem cells. A subset is required and the number of non-target stem cells in each subset of stem cells is removed or reduced. The present invention provides a method of isolating a desired population of stem cells which can be carried out using a large number of input cells without the use of a cell surface marker or a method of selection of the agent associated with the method. The present invention provides separation parameters and demonstrates that several types of stem cells can be effectively enriched from peripheral and other cell components that are separated from the blood. In certain embodiments, the resulting portion comprising the target stem cell population can be further separated into a desired subset of cells for collection if necessary. It has previously been reported that separation of G-CSF by countercurrent centrifugation elutes PBSC grafts to moderately thicken CD34+ cells without loss of primary hematopoietic progenitor cells (see Kwekkeboom et al., British Journal of Haematology, 1997, 99; 47). -55). Kwekkeboom et al. discuss the use of countercurrent centrifugal elution (CCE) to reduce the number of non-dry sacs in autologous G-CSF mobilized peripheral blood stem cell (PBSC) grafts. The hematopoietic progenitor cells present in the small cell and leukapheresis product (LP) samples can be rapidly separated by cell size-monitored CCE. However, unlike the present invention, Kwekkeboom et al. do not discuss the use of CCE to isolate different stem cell populations from peripheral blood samples. More specifically, Kwekkeboom did not find an indication that the primary stem cells were preferentially washed with any part (including the small cell fraction).

Micklethwaite等人討論使用ELUTRA®以增濃免疫療法 方案之單核細胞的臨床規模淘洗法,及對四個(F1-F4)源自 此方法之非單核細胞部分所進行之分析,且討論 ELUTRA®增濃可併入且增強現有免疫療法及幹細胞移植 152717.doc •28- ⑤: 201130978 方案之細胞子集(Micklethwaite 等人,C/zwica/jca/e elutriation as a means of enriching antigen-presenting cells and manipulating alloreactivity, Cytotherapy; 2009, 11; 218-228)。Micklethwaite等人討論使用 FACS來分析T、B、 自然殺手(NK)及樹突細胞(DC)自不同ELUTRA®部分(諸如 F3-F4)增濃。然而,不同於本發明,Micklethwaite等人討 論ELUTRA®自經調動人類周邊血液增濃造血細胞,諸如 樹突細胞或自然殺手細胞,而非增濃幹細胞群之用途。 為方便起見’將在本文中在說明書、實例及隨附申請專 利範圍中所用之某些術語收集於此。除非另有說明或上下 文所隱含’否則以下術語及片語包括下文提供之含義。除 非另外明確規定或據上下文顯而易知,否則下文之術語及 片§吾不排除意謂已在其所屬技術中獲得之術語或片語。提 供β亥專疋義以有助於描述特定實施例且不意欲限制本發 明’此係因為本發明之範嘴僅由申請專利範圍限制之故。 除非另作定義,否則本文中所用之所有技術及科學術語均 具有與一般本發明所屬技術者通常所瞭解相同之含義。 如本文所用,術語「析離(apheresis)」係指自供者個體 抽血且將其分離成其組分之方法或程序,其中一些被截留 下來’諸如血漿、血小板及/或幹細胞群,且剩餘物藉由 此方法在此項技術中亦可稱作血析 輸血返回至供者個體。 析離形式包括··血 :白細胞析離-收集 離(hemapheresis)或除去法(pheresis)。 漿析離術-收集血毁(血液之液體部分) 152717.doc -29· 201130978 白血球;粒細胞析離(Granulocytapheresis)-收集粒細胞(嗜 中性白血球、嗜伊紅白血球及嗜驗性白血球);淋巴細胞 析離(Lymphocytapheresis)-收集淋巴細胞;淋巴細胞血漿 析離(Lymphoplasmapheresis)-收集淋巴細胞及血聚;血小 板析離(Plateletpheresis ; thrombocytapheresis)-收集血小 板。析離比獻全血(whole blood donation)用時更長。獻全 血耗時約10-20分鐘以收集血液’而析離獻血(apheresis donation)可耗時約1-2小時。 如本文所用,術sS·「析離產物」係指自析離方法收集之 異源細胞群《如本文所揭示,析離產物中存在之細胞可使 用淘洗法分離。 如本文所用,術語「淘洗法」係指基於其差異性沈降速 率來分離或增濃細胞,例如來自周邊血液之幹細胞。如本 文所用之淘洗法為基於其大小及質量分離大量細胞之非侵 襲!生方法。又,淘洗法允許在不干擾幹細胞代謝或使用同 步劑(synchronizing agent)之情況下分離混合細胞(尤其為 處於細胞分裂週期之不同階段的幹細胞)群。 術語「增漠(enriching)」或「增濃(enriched)」或「增濃 (enrich)」在本文中可互換使用且意謂一種類型細胞之產 率(亦即分數)較之起始培養物或製财該類型細胞之分數 提高至少10% » 本文所用術居「分離」或「選擇」係指將不同細胞 類型分離成-或多群且收集分離之群作為在特定目標幹細 胞群中增濃m胞群。可使用正向選擇(對於增濃細 I52717.doc 201130978 胞群)或負向選擇(棄置非目標細胞群)進行選擇。 如本文所用’術語「純化」意謂分離掉不期望之組分。 如本文所用,術語「正向選擇」係指例如使用所需或目 枯幹細胞上之特異性細胞表面抗原之單株抗體來靶向所需 幹細胞以便選擇之方法。 如本文所用’術語「負向選擇」係指例如使用特異性細 胞表面抗原之單株抗體絲向不期望或非目標幹細胞以便 消除纟負向選擇中,所需細胞或目標細胞不用抗體標 記0 如本文所用’術語「移除」係指分離及選擇及留出⑼ 、便保留或棄置)。因此,可自混合細胞群移除目標細 胞群,旨在保留其或棄置其。 如本文所用,術語「免疫選擇」係指使用單株抗體標記 細胞(例如幹細胞)及藉由使用抗體上之標記(諸如螢光或磁 性粒子)選擇抗體來分離之方法。 如本文所用,術語「免疫密度選擇」係指以基於單株抗 體之試劑乾向不期望之細胞(例如非目標細胞)及當經密度 介質離心時集結之方法。 如本文利,術語「分級分離」係指自異源幹細胞群產 生幹細胞群之同源組。 如本文所用,術語「周邊血液」係指獲自個體之全血。 如本文所用’術語「經調動周邊血液」係指獲自個體之 周邊企液,其中已投與該個體調動劑以便增加周邊血液中 之幹細胞數’其藉由增大幹細胞自骨髓(例如增加來源 152717.doc -31 - 201130978 幹細胞)向周邊血液中之遷移’或增加周邊血液中存在之 幹細胞的增殖(例如增大PB來源幹細胞數)來達成。可如下 在個體中實現經調動:投與有效量之調動劑,例如組合化 學引誘劑(例如細胞因子)與損失存在於周邊組織及骨髓中 幹細胞小生境中之幹細胞集合池或群的黏著性。「有效 量」為足以實現周邊血液中幹細胞數目及/或頻率顯著增 大的調動劑之量。有效量可分一或多次投藥、施用或給藥 來投與。調動劑之治療有效量係視所選調動劑(例如G_CSF 或GM-CSF)而定。調動劑(諸如g-CSF或GM-CSF)可自每曰 一或多次至每週一或多次(包括每隔一天一次)來投與。熟 習此項技術者應瞭解’某些因素可影響有效治療個體所需 之劑量及時序’ s亥專因素包括(但不限於)先前治療、個體 之一般健康狀況及/或年齡’及是否存在其他疾病。此 外’如一般技術者通常已知,以治療有效量之G-CSF或 GM-CSF治療個體可包括單次治療或一系列治療。 如本文所用’術語「經調動」係指使細胞離開骨髓且進 入血液之方法。可藉由組合化學弓丨誘劑(例如細胞因子)及 損失存在於周邊組織及骨髓中幹細胞小生境中之幹細胞集 合池或群的黏著性來實現經調動。 如本文所用’術語「幹細胞」係以廣義使用且包括傳統 幹細胞、袓細胞、前袓細胞(prepr0genit〇r cell)、儲備細胞 (reserve cell)及其類似細胞。術語「幹細胞」或「祖細 胞」在本文中可互換使用,且係指能夠增殖且產生更多具 有產生大量母細胞(其可又產生分化或可分化之子細胞)之 152717.doc •32· ⑤. 201130978 月^力之袓細胞的未分化細胞。子細胞本身可經誘導增殖且 產生子代,子代隨後分化成一或多㈣熟細胞類型,同時 亦保留一或多種具有親本發育潛能之細胞。術語「幹細 胞」則係指在特定情況下具有分化為較特異化或分化表型 之鱿力或潛能且在某些情況下保留增殖而不實質上分化之 能力的細胞。在一個實施例中,術語祖細胞或幹細胞係指 一般化母細胞,其後代(子代)藉由分化,例如藉由獲得完 全個別特徵經常於不同方向中經特異化,如在胚胎細胞及 組織之進行性多樣化中所發生。細胞分化為通常經由許多 細胞分裂發生之複雜過程。分化細胞可來源於本身源自多 能細胞等之多能細胞。儘管可將各此等多能細胞視作幹細 胞’但各自可產生之細胞類型的範圍可相當不同。一些分 化細胞亦具有產生具有較大發育潛能之細胞的能力。此能 力可為天然或可在以各種因素治療時人工誘導。在許多生 物情況下’幹細胞亦為「多能」,此係因為其可產生一個 以上不同細胞類型的子代之故,但此對於「幹細胞特性 (stem-ness)」為不需要的。自我更新為幹細胞定義之其他 經典部分,且如本文件中所用為必需的。理論上,自我更 新可錯由兩個主要機制中任一者發生。幹細胞可不對稱地 分裂,其中一個子代保留幹細胞狀態且另一子代表現一些 不同之其他特異性功能及表型。或者,群中之一些幹細胞 可對稱地分裂成兩種幹細胞,因此總體上維持群中之一些 幹細胞,而群中之其他細胞僅產生分化子代。在形式上’ 以幹細胞開始之細胞有可能向分化表型進行’但接著「逆 152717.doc •33· 201130978 轉j及再表現幹細胞表型(經常稱作「反分化」之術語)。 例示性幹細胞包括胚胎幹細胞、成年幹細胞、複能幹細 胞、神經幹細胞、肝臟幹細胞、肌肉幹細胞、肌肉前驅幹 細胞、内皮祖細胞、骨髓幹細胞、軟骨性幹細胞、淋巴幹 細胞、間葉幹細胞、造血幹細胞、中樞神經系統幹細胞、 末梢神經系統幹細胞及其類似細胞。幹細胞之描述(包括 其分離及培養方法)可見於(除其他地方外)Embryonic Stem Cells, Methods and Protocols,Turksen編,Humana Press, 2002 ; Weisman等人,Annu· Rev. Cell. Dev. Biol. 17:387 403 ; Pittinger等人,Science, 284:143 47,1999 ; Animal Cell Culture,Masters編,Oxford University Press, 2000; Jackson等人,PNAS 96(25):14482 86,1999 ; Zuk等人, Tissue Engineering,7:211 228, 2001 (「Zuk等人」);Atala 等人,尤其第33 41章;及美國專利第5,559,〇22號、第 5,672,346號及第5,827,735號。基質細胞之描述(包括其分 離方法)可見於(除其他地方外)prock〇p,Science, 276:71 74,1997 ; Theise 等人,Hepatology,31:235 40,2000 ; Current Protocols in Cell Biology,Bonifacino等人編,j〇hnMicklethwaite et al. discuss the clinical scale elution of monocytes using ELUTRA® to enrich the immunotherapy regimen, and the analysis of four (F1-F4) non-monocyte fractions derived from this method, and discuss ELUTRA® Enrichment can be incorporated into and enhances existing immunotherapy and stem cell transplantation 152717.doc • 28-5: 201130978 Cell subsets of the program (Micklethwaite et al., C/zwica/jca/e elutriation as a means of enriching antigen-presenting Cells and manipulating alloreactivity, Cytotherapy; 2009, 11; 218-228). Micklethwaite et al. discuss the use of FACS to analyze T, B, natural killer (NK) and dendritic cells (DC) from different ELUTRA® fractions (such as F3-F4). However, unlike the present invention, Micklethwaite et al. discuss the use of ELUTRA® to mobilize hematopoietic cells, such as dendritic cells or natural killer cells, from human peripheral blood, rather than to thicken stem cell populations. For the sake of convenience, certain terms used in the specification, examples, and accompanying claims are hereby incorporated herein. Unless otherwise stated or implied by the context, the following terms and phrases include the meanings provided below. Unless otherwise expressly stated or apparent from the context, the following terms and phrases § I do not exclude terms or phrases that have been obtained in the art to which they belong. The present invention is provided to facilitate the description of the specific embodiments and is not intended to limit the invention. This is because the scope of the invention is limited only by the scope of the patent application. Unless otherwise defined, all technical and scientific terms used herein have the same meaning meaning As used herein, the term "apheresis" refers to a method or procedure for drawing blood from a donor individual and isolating it into its components, some of which are truncated, such as plasma, platelets, and/or stem cell populations, and remaining This method can also be referred to as blood transfusion in the art to return to the donor individual. The form of separation includes blood: leukocyte separation-heavy-heterogeneous or pheresis. Pulp separation - collecting blood damage (liquid part of the blood) 152717.doc -29· 201130978 white blood cells; granulocyte separation (Granulocytapheresis) - collecting granulocytes (neutrophils, eosinophils and eosinophils) Lymphocytapheresis-collecting lymphocytes; lymphocyte plasmapheresis (Lymphoplasmapheresis) - collecting lymphocytes and blood pooling; platelet detachment (Plateletpheresis; thrombocytapheresis) - collecting platelets. The separation of blood is longer than the whole blood donation. It takes about 10-20 minutes for blood to collect blood, and apheresis donation can take about 1-2 hours. As used herein, sS "separation product" refers to a heterogeneous population of cells collected by a method of separation. As disclosed herein, cells present in the isolated product can be isolated by panning. As used herein, the term "panning" refers to the separation or enrichment of cells based on their differential sedimentation rate, such as stem cells from peripheral blood. The panning method used in this paper is a non-invasive separation of a large number of cells based on their size and quality! Method of birth. Again, the panning process allows for the isolation of mixed cells (especially stem cells at different stages of the cell division cycle) without interfering with stem cell metabolism or using a synchronizing agent. The terms "enriching" or "enriched" or "enrich" are used interchangeably herein and mean the yield (ie fraction) of a type of cell compared to the starting culture. Or the amount of cells of this type is increased by at least 10%. » The term "separation" or "selection" as used herein refers to the separation of different cell types into - or multiple groups and collection of isolated populations as a concentration in specific target stem cell populations. m cell group. You can choose between positive selection (for thickening I52717.doc 201130978 cells) or negative selection (disposal of non-target cell populations). As used herein, the term "purification" means the separation of undesired components. As used herein, the term "positive selection" refers to, for example, a method of targeting a desired stem cell for selection using a monoclonal antibody of a specific cell surface antigen on a desired or target stem cell. As used herein, the term 'negative selection' refers to, for example, the use of a monoclonal antibody filament of a specific cell surface antigen to an undesired or non-target stem cell in order to eliminate the negative selection of the sputum, and the desired cell or target cell is not labeled with an antibody such as 0. As used herein, the term 'removal' means separating and selecting and leaving (9), retaining or disposing of it. Therefore, the target cell population can be removed from the mixed cell population in order to retain it or discard it. As used herein, the term "immunoselection" refers to a method of labeling cells (e.g., stem cells) using a monoclonal antibody and selecting antibodies by using a label (such as fluorescent or magnetic particles) on the antibody. As used herein, the term "immune density selection" refers to a method of dry-to-unwanted cells (e.g., non-target cells) with a single antibody-based reagent and agglomerate when centrifuged through a density medium. As used herein, the term "fractionation" refers to the generation of a homologous group of stem cell populations from a heterogeneous stem cell population. As used herein, the term "peripheral blood" refers to whole blood obtained from an individual. As used herein, the term 'transferred peripheral blood' refers to a peripheral fluid obtained from an individual in which the individual mobilizer has been administered to increase the number of stem cells in the peripheral blood' by increasing the stem cells from the bone marrow (eg, increasing the source) 152717.doc -31 - 201130978 Stem cells) migrate to peripheral blood' or increase the proliferation of stem cells present in peripheral blood (eg increase the number of PB-derived stem cells). The mobilization can be achieved in an individual by administering an effective amount of a mobilizing agent, such as a combination of a chemical attractant (e.g., a cytokine) and loss of adhesion to a pool or population of stem cells in peripheral tissue and stem cell niches in the bone marrow. An "effective amount" is an amount of a mobilizing agent sufficient to achieve a significant increase in the number and/or frequency of stem cells in the peripheral blood. An effective amount can be administered in one or more administrations, administrations or administrations. The therapeutically effective amount of the mobilizing agent will depend on the selected mobilizing agent (e.g., G_CSF or GM-CSF). A mobilizing agent such as g-CSF or GM-CSF can be administered from one or more times per week to one or more times per week (including once every other day). Those skilled in the art should be aware that 'certain factors may affect the dosage and timing required to effectively treat an individual', including but not limited to prior treatment, general health and/or age of the individual, and whether other disease. Further, as is generally known to those of ordinary skill in the art, treating a subject in a therapeutically effective amount with G-CSF or GM-CSF can include a single treatment or a series of treatments. As used herein, the term "mobilized" refers to a method of leaving cells out of the bone marrow and into the blood. The mobilization can be achieved by combining chemical bowing agents (e. g., cytokines) and loss of adhesion of stem cell pools or populations present in peripheral tissue and stem cell niches in the bone marrow. The term "stem cell" as used herein is used broadly and includes conventional stem cells, tendon cells, prepr0genit〇r cells, reserve cells, and the like. The term "stem cell" or "progenitor cell" is used interchangeably herein and refers to the ability to proliferate and produce more 152717.doc • 32·5 which have a large number of blasts that can produce differentiated or differentiated daughter cells. . 201130978 Undifferentiated cells of the cell. The daughter cells themselves can be induced to proliferate and produce progeny, which then differentiate into one or more (four) mature cell types, while also retaining one or more cells with parental developmental potential. The term "dry cell" refers to a cell that, under certain circumstances, has the ability to differentiate into a more specific or differentiated phenotype, and in some cases retains the ability to proliferate without substantial differentiation. In one embodiment, the term progenitor or stem cell refers to a generalized mother cell whose progeny (progeny) are often differentiated in different directions, such as in embryonic cells and tissues, by obtaining fully individual features, for example. It occurs in the progressive diversification. Cells differentiate into complex processes that typically occur through many cell divisions. The differentiated cells can be derived from pluripotent cells derived from pluripotent cells or the like. Although each of these pluripotent cells can be considered a stem cell', the range of cell types that can be produced by each can vary considerably. Some differentiated cells also have the ability to produce cells with greater developmental potential. This ability can be natural or can be artificially induced when treated with various factors. In many cases, stem cells are also "pluripotent" because they produce offspring of more than one different cell type, but this is not required for "stem-ness". Self-renewal is the other classic part of stem cell definition and is required as used in this document. In theory, self-renewal can be wrong by either of the two main mechanisms. Stem cells can divide asymmetrically, with one progeny retaining the stem cell state and the other progeny exhibiting some other specific functions and phenotypes. Alternatively, some of the stem cells in the population can be symmetrically split into two stem cells, thus maintaining some of the stem cells in the population as a whole, while the other cells in the population only produce differentiated progeny. Formally, cells starting with stem cells may proceed to a differentiated phenotype, but then “reverse 152717.doc • 33· 201130978 and then reproduce the stem cell phenotype (often referred to as the term “anti-differentiation”). Exemplary stem cells include embryonic stem cells, adult stem cells, pluripotent stem cells, neural stem cells, liver stem cells, muscle stem cells, muscle precursor stem cells, endothelial progenitor cells, bone marrow stem cells, cartilage stem cells, lymphoid stem cells, mesenchymal stem cells, hematopoietic stem cells, central nervous cells. System stem cells, peripheral nervous system stem cells and the like. Description of stem cells, including their isolation and culture methods, can be found (among other places) Embryonic Stem Cells, Methods and Protocols, Turksen, ed., Humana Press, 2002; Weisman et al, Annu Rev. Cell. Dev. Biol. :387 403; Pittinger et al, Science, 284:143 47, 1999; Animal Cell Culture, Masters, Oxford University Press, 2000; Jackson et al, PNAS 96(25): 14482 86, 1999; Zuk et al, Tissue Engineering, 7: 211 228, 2001 ("Zuk et al."); Atala et al., especially Chapter 33 41; and U.S. Patent Nos. 5,559, 〇 22, 5, 672, 346 and 5, 827, 735. Description of stromal cells (including methods for their isolation) can be found (among other places) prock〇p, Science, 276: 71 74, 1997; Theise et al, Hepatology, 31: 235 40, 2000; Current Protocols in Cell Biology, Edited by Bonifacino et al., j〇hn

Wiley & Sons,2000(包括至2002年3月之更新)·,及美國專 利第 4,963,489號。 術語「祖細胞」在本文中用以指相對於可由分化產生之 細胞具有較原始細胞表型(例如沿發育路徑或進展,比完 全分化之細胞處於更早步驟)之幹細胞。祖細胞經常亦具 有顯著或極高增殖潛能。視發育路徑及細胞發育及分化之 152717.doc ⑤. 201130978 環境而定’祖細胞可產生多個不同分化細胞類型或單一分 化細胞類型。 如上所示,存在不同程度或類別之屬於「幹細胞」之一般 疋義的細胞。其為「全能(totipotent)」、「複能(plurip〇tent)」 及「多能(multipotent)」幹細胞❶術語「全能」係指可在 體内產生任何組織或細胞類型之幹細胞。「複能」幹細胞 可在體内產生除生殖系細胞外之任何類型細胞。可產生較 小或限制數目之不同細胞類型的幹細胞一般稱為「多 月b」。因此,全能細胞分化成可產生胎兒發育必需之大多 數而非所有組織的複能細胞^複能細胞經歷進一步分化成 經定型產生具有特定功能之細胞的多能細胞。舉例而言, 多能造血幹細胞在血液中產生紅血球、白血球及血小板。 如本文所用,術語「複能」係指在不同條件下具有分化 成所有三種生殖細胞層(内胚層、中胚層及外胚層)均特有 之細胞類型之能力的細胞。複能細胞之特徵主要在於其使 用例如裸小鼠畸胎瘤形成檢定分化為所有三種胚層^能 力。亦藉由胚胎幹細胞(ES)細胞標記之表現證實複^,伸 複能之較佳測試為說明分化成三種胚層夂ό 0分目之細胞的能 力。在某些實施例中,複能細胞為未分化細胞。 如本文所用,術語「複能」或「複能狀態」係指具有分 化成所有三種胚胎胚層:内胚層(内臟組織 “ssue))、 中胚層(包括血液、肌肉及血管)及外胚 增、61如皮膚及神 經)之能力且通常具有活體外分裂長時間段(例如大於 或大於30繼代)之潛能的細胞。 ' 年 152717.doc •35· 201130978 當參考「多能細胞」使用時,術語「多能」係指能夠分 化成一些而非所有源自所有三種胚層之細胞的細胞。因 此,多能細胞為部分分化之細胞。多能細胞在此項技術中 為熟知且多能細胞之實例包括成年幹細胞,諸如造血幹細 胞及神經幹細胞。多能意謂幹細胞可形成既定系中之許多 類型細胞,而非其他系細胞。舉例而言,多能血液幹細胞 可形成許多不同類型血細胞(紅、白、血小板等),但其不 能形成神經元。 術語「多能」係指發育多功能性程度小於全能及複能之 細胞。 術語「全能」係指具有描述在成年體以及胚胎外組織 (包括胎盤)中產生所有細胞之能力之分化程度的細胞。受 精卵(fertilized egg ; zygote)因是早期裂解細胞(分裂球 (blastomere))而為全能。 術語「間葉幹細胞(mesenchymal stem cell)」在本文中 亦稱作「MSC」且係指能夠分化成一個以上特定類型之間 葉組織或結締組織(亦即支持特異化元素;例如脂肪、骨 性、基質、軟骨性、彈性及纖維結締組織之體的組織)之 複能幹細胞。人類間葉幹細胞(hMSC)與稱為SH2、SH3及 SH4之某些單株抗體具有反應性(參看美國專利第5,486,359 號’其係以全文引用的方式併入本文中)„MSC可基於其 免疫特異性型態與HSC區別開且其中MSC為SH2+/CD14-及 人類HSC SH2-/CD14+。為達成鑑別目的,人類MSC可基 於以下來鑑別:(i) CD34-、CD45-、CD90+、CD105 +及 152717.doc •36- ⑤ 201130978 CD44+之表型標記表現,(Π)功能表型,包括在如本文實例 中揭示之CFA檢定中形成群落形成單位之能力,及分化成 支持特異化元素(包括(但不限於):軟骨細胞、軟骨及脂肪 細胞)之組織的能力。由MSC表現之其他標記在此項技術 中為已知且包括(不限於)CD71、CD73、Stro-Ι,及 CD166,及CD271。在某些實施例中,MSC為lin-。 術語「極小胚胎樣幹細胞」在本文中亦稱作「VSEL幹 細胞j且係指複能幹細胞。在某些實施例中,VSEL幹細 胞(「VSEL」)為人類VSEL且可表徵為lin·、CD45·及 CD34+。在某些實施例中,VSEL為人類VSEL且可表徵為 lin·、CD45·及CD133+。在某些實施例中,VSEL為人類 VSEL且可表徵為lin·、CD45·及CXCR4+。在某些實施例 中,VSEL為人類VSEL且可表徵為lin·、CD45·、CXCR4+、 CD133 +及 CD34+。人類 VSEL 表現 SSEA-4、Oct-4、Rex-1 及Nanog中至少一者,且具有大核由細胞質之窄邊包圍, 且含有胚胎型未組織染色質。VSEL亦具有高端粒酶活 性。在某些實施例f,VSEL為人類VSEL且可表徵為lin·、 CD45_、CXCR4+、CD133+、Oct 4+、SSEA4+及 CD34+。在 某些實施例中’人類VSEL可能不太原始且可表徵為lin·、 CD45·、CXCR4+、CD133·及CD34+。在某些實施例中,人 類VSEL可針對複能胚胎轉錄因子(例如〇ct_4、s〇x2及 Nanog)經增濃。在某些實施例中,人類VSEL之直徑可為 4-5 μηι、4-6 μιη、4-7 μιη、5-6 μηι、5-8 μπι、6-9 μηι或 7·10 μιη 〇 152717.doc •37- 201130978 與幹細胞關聯使用之術語「周邊血液來源」係指僅自周 邊血液經調動之幹細胞,且可包括周邊血液中之幹細胞擴 增或增殖。在某些實施例中,根據本文所揭示之方法,可 藉由使周邊血液與調動劑在活體内或離體接觸來增大周邊 血液中之循環幹細胞數。 與幹細胞關聯使用之術語「骨髓來源」係指自骨髓經調 動至周邊血液之幹細胞’且可包括已自BM遷移之幹細 胞。在某些實施例中’周邊血液中之BM來源幹細胞包括 在遷移至周邊血液中之前已在骨髓中增殖之幹細胞,或替 代性地在自骨髓遷移後已在周邊血液中增殖之幹細胞。在 某些實施例中’根據本文所揭示之方法,可藉由使周邊企 液與調動劑在活體内接觸來增大周邊血液中之循環BM幹 細胞數。 亦稱作「H S C」之術s吾「造血幹細胞」係指尤其在骨髓 及周邊血液中所見之能夠分化成任何特定類型之造血或血 細胞(諸如紅血球、淋巴細胞、巨噬細胞及巨核細胞)之所 有幹細胞或祖細胞。HSC與現公認對造血細胞具有特異性 之某些單株抗體(例如識別CD34之單株抗體)具有反應性。 如熟習此項技術者應瞭解,術語「造血細胞」係指所有 類型之造血細胞,貫穿其由自我更新造血幹細胞至各種血 液系之不成熟前驅細胞的分化’包括成熟起作用血細胞。 術sf·「間葉細胞」或「間葉」在本文中可互換使用且在 一些情況下係指見於幼胚之外胚層與内胚層之間的紡錘狀 或星狀細胞。大多數間葉細胞源自確立中胚層,但在頭部 152717.doc -38 · 201130978 其亦自神經脊或神經管外胚層發育。間葉細胞(特定言之 胚胎體中之胚胎間葉細胞)具有複能能力,其在不同位置 發育成平滑肌、血管内皮及血細胞之任何類型結締或支持 組織。 如本文所用,術語「分離之細胞」係指已自最初見其之 個體移除之細胞或此細胞之後代。視情況,該細胞已例如 在其他存在下活體外培養。視情況,稍後將細胞(例如藉 由本文所揭示之方法產生的分離目標幹細胞群)引入第二 個體中或再引入其所分離(例如同種異體移植)之個體(或傳 代得其之細胞)中。 如本文所用,關於分離之細胞群,術語「分離之群」係 指已自混合或異源細胞群移除及分離之細胞群。在某些實 施例中’與由此分離或增濃細胞之異源群相比,分離之群 為實質上純細胞群。在某些實施例中,分離之群為分離之 重新編程之細胞(reprogrammed cell)群,其與包含重新編 程之細胞及產生重新編程之細胞之細胞的異源細胞群相比 為實質上純重新編程之細胞群。 關於特定目標幹細胞群之術語「實質上純」係指相對於 構成總幹細胞群之細胞,細胞群為至少約75%、較佳至少 約85%、更佳至少約90%及最佳至少約95%純。重申一 下’關於使用本文所揭示之方法分離之目標幹細胞群的術 語「實質上純」或「基本上純化」係指目標幹細胞群含有 少於約20%、更佳少於約15%、10%、8%、7%、最佳少於 約5%、4%、3%、2%、1%或少於1%如由本文術語定義之 152717.doc •39- 201130978 非目標幹細胞群的細胞。在某些實施例中,本發明涵蓋擴 增目標幹細胞群之方法’其中擴增之目標幹細胞群為實質 上純目標幹細胞群。 如本文所用,「增殖」係指藉助於細胞分裂增大群(生 長)中細胞數。一般將細胞增殖視為由反應於環境(包括生 長因子及其他致裂物質)之多重信號轉導路徑之協調活化 引起。亦可藉由解除細胞内或細胞外信號之作用及阻斷或 負面影響細胞增殖之機制來促進細胞增殖。 術語「再生」意謂細胞群、器官或組織在疾病或外傷後 再生長。 術語「更新」或「自我更新」或「增殖」在本文中可互 換使用,且係指細胞產生更多自身複本之過程(例如細胞 複製)。在某些實施例中,重新編程之細胞能夠藉由長期 及/或歷經許多月至年分裂成相同未分化細胞(例如複能或 非特異化細胞類型)來自我更新。在一些情況下,增殖係 指藉由單一細胞重複分裂成兩個相同子細胞來擴增重新編 程之細胞。 如本文所用,術語「系(lineage)」係指具有共同祖先 (ancestry)之細胞或具有共同發育命運之細胞,例如源自相 同目標幹細胞群或其子代之細胞。 如本文所用,術語「純系細胞株」係指可維持於培養物 中且具有無限增殖之潛能的細胞系。純系細胞株可為幹細 胞株(例如目標幹細胞群細胞株)或源自目標幹細胞群,且 當在包含目標幹細胞群之純系細胞株的情形中使用純系細 152717.doc -40· ⑤. 201130978 胞株時’該術語係指已在允許增殖而不分化長達數月至數 年之活體外條件下培養的目標幹細胞群。此等純系幹細胞 株(例如目標幹細胞群)可具有自原始幹細胞依循若干細胞 系分化之潛能。 「在細胞個體發生學中,形容詞「分化」為相對術語。 「分化細胞」為已比其所比較之細胞沿發育路徑進一步向 下發展之細胞。因,匕,幹細胞可分化為譜系限制性前驅細 胞(諸如中胚幹細胞)’其又可沿路徑進一步向下分化成其 他類型前驅細胞(諸如心肌細胞前驅體),接著分化成結束 階段分化細胞,其在某一組織類型中具有特徵性作用,且 "T flb或可此不保持進一步增殖之能力。 術語「分化」在本發明之上下文中意謂形成表現已知與 ㈣異化及接近變成不能進—步分化之終端分化細胞之細 胞相關的標記之細胞。細胞自不太定型細胞進展至愈加定 型為特定細胞類型之細胞,及最終至終端分化細胞之路徑 係稱作進行性分化或進行性定型。將較特異化(例如已開 始沿進行性分化路徑進展)但尚未終端分化之細胞稱作部 分分化。分化為發育過程,藉此細胞呈現特異化表型,例 如獲得-或多種不同於其他細胞類型之特徵或功能。在一 二It況下’分化表型係、指處於—些發育路徑中之成熟終點 的細胞表型(所謂終端分化細胞)。在許多而非所有組織 中’分化過程伴隨細胞週期出σ。在此等情況下,終端分 化細胞損失或極大限制其增殖能力。然而,吾人注意到, 在本說明書之上下文t ’術語「分化」係指在其命運或功 I527I7.doc •41- 201130978 能方面比其發育中之先前點更特異化的細胞,且包括終端 分化細胞與儘管未經終端分化但比其發育中之先前點更特 異化的細胞。細胞自未定型細胞(例如幹細胞)發育為定型 程度提高的特定分化細胞類型之細胞,且最終發育為終端 分化細胞’此係稱為進行性分化或進行性定型。相對於祖 細胞「分化」之細胞相對於該祖細胞具有一或多個表型差 異。表型差異包括(但不限於)形態學差異及基因表現及生 物活性差異,其不僅包括存在或不存在表現標記,而且包 括標記量之差異及一組標記之共表現模式之差異。 如本文所用’術語「分化」係指細胞自原始階段向較成 熟(亦即較不原始)細胞之細胞發育。 如本文所用,術語「定向導分化」係指迫使細胞自未分 化(例如較原始細胞)經由基因及/或環境操縱分化為較成熟 細胞類型(亦即較不原始之細胞)。在某些實施例中,使如 本文所揭示重新編程之細胞經過定向分化成特定細胞類 型,諸如神經元細胞類型、肌細胞類型及其類似物。 如本文所提及,術語「培養基」為維持組織或細胞群, 或培養含有維持細胞生存力且支持增殖之營養素之細胞群 (例如「培養基」)的培養基。細胞培養基可含有呈適當組 合之任何以下各物:鹽類、緩衝劑類、胺基酸、葡萄糠或 其他糖類、抗生素、血清或血清替代物,及其他組分,諸 如肽生長因子,等。常用於特定細胞類型之細胞培養基係 熟習此項技術者已知者。 術S吾「表型」係指一種或大量總生物學特徵,其在環境 152717.doc ⑤ •42· 201130978 條件及因♦之姑_ $ # $ κ特疋者景下不考慮實際基因型來定義細胞或 生物體。 如本文所用,「標記」描述細胞之特徵及/或表型。可將 ’、己用於選擇包含相關特徵之細胞。標記應隨特^細胞而 變心°己為特徵’亦即細胞類型或由細胞類型表現之分子 特有的形態學、功能或生物化學(酶促)特徵。此等標記 較佳為蛋白質’且更佳具有抗體之抗原決定基或在此項技 術中可知之其他結合分子。然而,標記可由見於細胞之任 可刀子組成,該分子包括(但不限於)蛋白質(肽及多肽)、 質夕糖、核酸及類固醇。形態特徵或特性之實例包括 (仁不限於)形狀、大小及核與細胞質之比率。功能特徵或 特性之實例包括(但不限於)黏著於特定受質之能力併入 或排除特定染料之能力、在特定條件下遷移之能力,及沿 特疋4系分化之能力。標記可藉由熟習此項技術者可用之 任何方法偵測。 如本文所用,如與活體内接觸周邊血液樣本關聯,術語 接觸」可包含經由適當投藥途徑視情況以組合物形式投 與個體調動劑,使得化合物活體内接觸周邊血液樣本。如 本文所用,如與離體接觸周邊血液樣本關聯,術語「接 觸」可包含視情況以組合物形式對周邊血液樣本投與調動 劑,使得調動劑離體接觸周邊血液樣本。 如本文所用,術語「投與」、「引入」及「移植」可互換 使用且係指藉由使得人類目標幹細胞群至少局部定位於所 需位點之方法或途徑將如本文所述之目標幹細胞群置於個 152717.doc •43· 201130978 體中。人類目標幹細胞群可藉由使得傳遞至個體中所需位 置之任何適當途徑來投與,其中人類目標幹細胞群之至少 一部分保持存活。投與個體後之細胞生存階段可短至幾小 時’例如二十四小時’至幾天,至長達幾年。 如本文所用,術語「供者」被收集待移植器官、組織或 細胞之個體。 如本文所用,術語「接受者」係指將接受移植器官、組 織或細胞之個體。 如本文所用,術語「移植」係指游離(未附著)細胞、組 織或器官在移植於個體中之後整合於組織中之方法。 術§吾「同種異體移植物」係指源自相同物種之不同動物 的移植細胞、組織或器官。 如本文所用,術語「異種移植物(Xen〇graft; xen〇transplant)」 係指源自不同物種之動物的移植細胞、組織或器官。在某 些實施例令,異種移植為將組織自一個物種手術移植至不 同物種、屬或家族。舉例而言,自狒狒移植至人類為異種 移植。 術浯「異種移植」係指將活細胞、組織或器官自一個物 種移植至另一者之方法,諸如自豬移植至人類。 術語「個體(subject)」與「個體(individua丨)」在本文中 可互換使用,且係指動物,例如人類,自其可根據本文所 述之方法及組合物來分離及收集本文所揭示之目標幹細胞 群,且視情況個體可接受移植(例如可將目標幹細胞群植 入個體)例如用於治療,包括預防性治療疾病。為治療對 152717.doc 201130978 特疋動物(諸如人類個體)具有特異性之疾病病況,術語 。固體」係指特定動物。術語「非人類動物」肖「非人類 甫礼動物」在本文中可互換使用,且包括哺乳動物,諸如 :鼠小乳、兔、綿羊、I苗 '狗、牛、豬,及非人類靈長 : 術π個體」亦涵蓋任何脊椎動物,其包括(但 不:於)哺乳動物、爬行動物兩棲動物及魚。然而,個 體宜為哺乳動物,諸如人類,或其他哺乳動物,諸如家養 哺乳動物’例如狗ϋ及其類似物,或生產性哺乳動 物,例如奶牛、綿羊、豬及其類似物。 術m「組織」係指類似特異化細胞之群或層,其在一起 進仃某些特定功能。術語「組織特異性」係指來源或定義 特定組織之細胞特徵。 如本文所用,術語「藥劑」意謂任何化合物或物質,諸 如(但不限於)小分子、核酸、多肽、a、藥物、離子等。 「藥劑」可為任何化學物質、實體或部分,包括(不限於) 合成及天然存在之蛋白質性及非蛋白質性實體。在某些實 施例中,藥劑為核酸、核酸類似物、蛋白質、抗體、肽、 適體、核酸券聚物、胺基酸或碳水化合物,包括(不限於) 寡核苦酸、核糖核酸酶、DNAzyme、醣蛋白、siRNA、脂 蛋白及其修改及組合等。在某些實施例中,藥劑為具有化 學部分之小分子《舉例而言’化學部分包括未經取代或經 取代之烷基、芳族或雜環基部分,包括巨環内酯、萊普黴 素(Uptomycin)及相關天然產物或其類似物。可已知化合 物具有所需活性及/或特性,或可選自不同化合物之集合 152717.doc •45- 201130978 庫。 如本文所用,術語「小分子」係指可包括(但不限於)以 下之化學劑:肽、肽模擬物、胺基酸、胺基酸類似物、聚 核苷酸、聚核苷酸類似物、適體、核苷酸、核苷酸類似 物、分子量小於約10,000公克/莫耳之耳有機或無機化合物 (例如包括雜有機及有機金屬化合物)、分子量小於約5,〇〇〇 公克/莫耳之有機或無機化合物、分子量小於約L000公克/ 莫耳之有機或無機化合物、分子量小於約500公克/莫耳之 有機或無機化合物,及鹽、酯,及其他醫藥學上可接受形 式之此專化合物。 術語「疾病」或「病症」在本文中可互換使用,且係指 身體或一些器官狀態之任何交替,其中斷或干擾功能之效 旎及/或對受折磨之人或與該人接觸者引起症狀,諸如不 適、功能異常、痛苦或甚至死亡^^或病症亦可與盘熱 (diStemper)、生病(ailing)、疾病(ailment)、疾病⑽^力、 病症、疾病(sickness)、疾病(Ulness)、病苦(c〇mpUint)、 不適(indisposition)或感染(affection)有關。 如本文所用,術語「病理」係指症狀,例如細胞、組織 或器官之結構及功能變化,其有助於疾病或病症。舉例而 言,病理可與特定核酸序列或「病理學核酸」(其係指完 全或部分有助於病理之核酸序列,舉例而言,病理學核酸 可為編碼具有特定病理引起或病理相關突變或多形現象之 基因的核酸序列)相關。病理可與完全或部分有助於與特 定疾病或病症相關之病理的病理蛋白或病理多肽之表現相 152717.doc .46- ⑤ 201130978 關。在另一實施例中,病理例如與例如局部缺血及其類似 因素之其他因素相關。 如本文所用,術語「治療」包括減少或緩解病狀、疾病 或病症之至少一種不良作用或症狀。 如本文所用,片語「非經腸投與」意謂除經腸及局部投 與外之通常藉由注射之投藥模式,且包括(但不限於)靜脈 内、肌肉内、動脈内、勒内、心、室内、囊内、目艮眶内、心 Θ、皮内、腹膜内、經氣管、皮下、角質下、關節内、囊 下、蜘蛛膜下、脊椎内、腦内脊髓及胸骨内注射及輸注。 如本文所用’片語「全身性投與」及「周邊投與」意謂不 直接向個體投與目標幹細胞群或其分化子代及/或其子代 及/或化合物及/或其他物質,使得其進入動物系統且因此 經受代謝及其他類似過程,例如皮下或靜脈内投與。 片語「醫藥學上可接受」在本文令用以指在正破醫學判 斷之範疇内、適用於與人類及動物組織接觸而無過度毒 性、刺激、過敏反應或其他問題或併發症、與合理收益/ 風險比相稱之彼等化合物、物質、組合物及/或劑型。 如本文所用’「醫藥學上可接受之載劑」意謂醫藥學上 可接受之物質、組合物或媒劑,諸如液體或固體、填料、 稀釋劑、賦形劑'溶劑或囊封材料,其涉及將標的藥劑自 一個器官或身體部分擔帶或輪送至另—器官或身體部分。 各載劑必須在與調配物之其他成分相容的意義上「可接 受」。 本文所用術5吾「藥物」或「化合物」係指投與個體 152717.doc -47· 201130978 以治療或預防或控制疾病或病狀之化學實體或生物產品, 或化學實體或生物產品組合。化學實體或生物產品較佳但 不一定為低分子量化合物,但亦可為較大化合物,例如核 酸、胺基酸或碳水化合物之寡聚物,包括(不限於)蛋白 質、寡核苷酸、核糖核酸酶、DNAzyme、醣蛋白、 siRNA、脂蛋白、適體及其修改及組合。 如本文所用,術語「移植」係指將新細胞(例如目標幹 細胞群或其分化子代)或組織(諸如自目標幹細胞群產生之 分化細胞)或器官引入宿主(亦即移植接受者或移植個體) 中〇 術語「調節」係與其在此項技術中之用途一致地使用, 例如意謂引起或有助於過程、路徑或相關現象之定性或定 量變化、改變或修改。不加限制,此變化可為過程、路徑 或現象之不同分量或分支之相對強度或活性的增大減小 或變化。「調節劑」為引起或有助於過程、路徑或相關現 象之疋性或定量變化、改變或修改的藥劑。 術語「減小」、「降低」或「抑制」所有均在本文中一般 用以意謂減小統計學上顯著之量。然而,為避免疑義, 降低」或減小」或「抑制」意謂與參考程度相比,減 小至少㈣,例如減小至少約2〇%,或至少約3〇%,或至 少約40%,或至少約50%,哎至,丨 4主夕約60%,或至少約70% 或至少約80%,或至少約9〇。/ + n 90/0或至多及包括100%減小(- 如’與參考樣本相比不存在 子在之程度),或與參考程度相 之10-100°/。之間的任何減小。 152717.doc ⑤ •48· 201130978 術語「增大」、「提高」或「活化」所有均在本文中一般 用以意明增大靜態大量,·為避免任何疑義,術語「增大」 或「提高」或「活化」意謂與參考程度相比增大至少 10%,例與參考程度相比增大至少約2〇%,或至少約 30%,或至少約40%,或至少約5〇%,或至少約6〇%,或至 / ’力70/。,或至少約8〇%,或至少約或至多及包括 100%增大或丨0-100%之間的任何增大,或與參考程度相比 至少約2倍’或至少約3倍’或至少約4倍,或至少約5倍或 至少約10倍增大,或2倍與10倍或1〇倍以上之間的任何增 大。 術語「統計學上顯著」或「顯著」係指統計顯著性且一 般意謂在正常值以下或低於標記濃度之兩個標準差 (2SD)。該術語係指存在差異之統計學證據。其係定義為 當虛無假設實際上真實時決定拒絕虛無假設之概率。經常 使用P值作出決定《如本文所用,術語「實質上」意謂至 少約60%,或較佳至少約70%,或至少約8〇%,或至少約 90/。、至;約95%、至少約97%,或至少約99%或99%以 上’或70°/。與1〇〇%之間任何整數的比例。 除非上下文另外明確規定,否則如本說明書及隨附申請 專利範圍中所用,單數形式「一(a; an)」及「該(the)」包 括複數個參考物。因此,舉例而言,參考「該方法」包括 一或多種方法,及/或本文所述之類型的步驟及/或其將在 熟習此項技術者閱讀本揭示案等時變得顯而易知。 應瞭解,前述實施方式及以下實例僅為說明性且不應視 152717.doc -49· 201130978 作對本發明之料的_。可在殘離本㈣之精神及範 鳴的情況下對所揭示之實施例產生各種變化及修改盆將 對熟習此項技術者顯W知H所有經朗之專利、 專利申請案及公開案均以引用的方式明確併入本文中以達 成描述及揭示例如可與本發明關聯制之此等公開案中所 述之方法的目的。在太·申令主安·> tfe ▲主n U w 社不甲吻案之申请曰期之前僅提供此等 公開案之揭示内容"尤此而言不應將任何物視為承認藉助 於先前發明或因任何其㈣因而使發明者未提前日期授權 於此等揭示案·»所有關於日期之陳述或關於此等文件之内 容的陳述均基於中請人可得之f訊且不構成關於此等文件 之日期或内容之正確性的任何承認。 淘洗裝置: 本發明之一個態樣為使用離心淘洗法將不同目標幹細胞 群自周邊血液分離成幹細胞亞群。不希望受理論約束,在 一種淘洗法中’將周邊血液樣本引入位於旋轉離心機上之 一般漏斗狀之分離室中〃接著將液體淘洗緩衝液或低密度 液體流引入含有周邊血液樣本之腔室中。因為液體淘洗緩 衝溶液之流動速率通過腔室時增大(通常以逐步方式),所 以液體向腔室内之淘洗邊界吹掃較小尺寸之較慢沈降細 胞’而較大較快沈降細胞遷移至離心力與沈降(拖曳)力平 衡之腔室區域中。因此,因為周邊血液如經調動周邊血液 包含許多不同幹細胞群,所以本發明之一個態樣係關於使 用淘洗法將周邊血液中存在之此等不同幹細胞群分離成不 同群,其中自尺寸較大之幹細胞分級分離較小幹細胞。 1527l7.doc ⑤ 201130978 在本發明之一些態樣中,任何淘洗裝置均可用以將周邊 血液樣本分級分離成包含不同幹細胞群之部分。在某些實 施例中,可使用市售淘洗裝置,例如Gambro BCT,Inc.製 造之 ELUTRA® 離心機。ELUTRA CELL SEPARATION SYSTEM®使基於尺寸與密度將細胞群分離成多個部分可 行,從而使細胞之增濃、消除、濃縮及洗滌皆可在封閉式 功能系統内進行。ELUTRA CELL SEPARATION SYSTEM® 可以直接自白細胞析離產物中增濃幹細胞群,而無需抗體 或在小於一小時内預處理。ELUTRA CELL SEPARATION SYSTEM®使用逆流離心淘洗法,其中流體在離心場中流 經細胞層以分離細胞群。 在某些實施例中,可使用其他淘洗裝置,包括(但不限 於)COBE® Spectra 析離系統、TRIMA® 系統及 TRIMA ACCEL®系統(亦由Gambro BTC Inc.製造),以及用以分離 血液組分之其他市售淘洗裝置。 在某些實施例中,使用諸如COBE® Spectra析離系統之 細胞分離器來分級分離周邊血液。COBE® SPECTRA™離心 機係描述於美國專利4,425,172 ; 4,708,712 ;及6,022,306 中,該等專利係以引用的方式併入本文中。在此實施例 中,將周邊血液樣本抽入細胞分離器(諸如COBE® Spectra 析離系統)中,且視情況將抗凝血劑溶液添加至血液中以 保持其在程序期間不凝血。血液/抗凝血劑混合物循環通 過離心機以將周邊血液樣本分離成幹細胞群,及來自其他 血液組分及血漿之單核細胞。系統將分離之幹細胞抽汲至 1527l7.doc -51· 201130978 儲存用收集袋中,而使其他血液組分及血漿返回患者。所 有使用之管組(tubing set)及針均為無菌,因此不存在疾病 傳播風險。 可使用其他血液分離裝置’諸如以下中所述之裝置· 1998年3月3日頒予之美國專利第5,722,926號;1999年9月 14曰頒予之美國專利第5,951,877號;2000年4月25曰頒予 之美國專利第6,053,856號;2002年1月1日頒予之美國專利 第6,334,842號;2004年7月1曰申請之美國專利申請案第 1〇/884,877號;美國專利7,201,848 ;美國專利6〇22 3〇6 ; 美國專利6,589,526 ;美國專利申請案2〇〇8/〇〇35585 ; US 2〇〇8/〇3 18756及2009/0104626。此等美國專利及專利申 請案各自之全部揭示内容均以引用的方式併入本文中。 不受理論限制,白細胞析離係指一種類型之分離程序, 其自其他粒子分離白血球,且通常使用離心機。接著可將 所得收集或分離之白血球進一步分離成所需細胞之子集 (例如單核細胞、淋巴細胞及粒細胞)以便必要時收集或培 養,但應瞭解亦可能需要收集其他細胞。然而,所收集之 白細胞析離產物經常被血小板及紅血球污染,此可干擾各 種細胞分離及/或細胞選擇技術及稍後針對治療用途對所 選細胞之培養。因此,需要將白血球分離成所需子集且移 除血小板及紅血球或減少其數目。 已提出自其他粒子分離或分級分離白血球且得較純化所 選子集之若干方法。一種此方法為離心淘洗法。在一種常 見形式之淘洗法中,將細胞批次引入位於旋轉離心機上之 152717.doc -52- ⑤ 201130978 一般漏斗狀之分離室中。接著將液體淘洗緩衝液或低密度 液體流引入含有細胞批次之腔室中。因為液體淘洗緩衝溶 液之流動速率通過腔室時增大(通常以逐步方式),所以液 體向腔室内之淘洗邊界吹掃較小尺寸之較慢沈降細胞,而 較大較快沈降細胞遷移至離心力與沈降(拖曳)力平衡之腔 室區域中。 可能需要相對較長淘洗時間以達成所選細胞向相關子集 之最佳分離及純化。此等長時間段需要液體淘洗緩衝液連 續流於申腔室中。此又可能需要較大體積之袋子及/或多 個較小袋子以容納最佳細胞分離所需之液體或緩衝液之 買。使用較大體積淘洗緩衝液亦為各分離方法增加額外費 用。 較佳地,如本文所用之淘洗法可將周邊血液樣本分離成 各種目裎幹細胞群,其不影響幹細胞之功能或生存力。 I自獲自任何個體(諸如人類個體,包括成人或非新生 兒童)之周邊血液進行收集。此外,收集可包括一或多個 ,集步驟或收集階段。舉例而言,可對一人進行至少兩 _人、至少三次,或至少五次收集(例如使用析離方法)。在 諸_驟_,對於每公斤人體重㈣之總有核細胞數 可為百萬(1χΐ〇6)或一百萬以上(例如lxl07、lxl〇8 ' 1X109 ' 1x10,0 ' lxl〇n ' ΐχΐ〇12 ^ 1X10- ix10u . 1χ10,5Ίχι〇^ιχι〇->1χ1〇^1χ10^1><1〇20)〇^^ 佳實施例中’視供者個體之體重及年齡而 m φ ΐΙΛ. ^ ^ m 甲收集之細胞數可等於或大於lxlol5個總有核細胞, 152717.doc -53- 201130978 或至少大約 lxl〇M、lxl〇丨3、lx1〇〗2、1χ1〇11、ιχι〇ι〇 1χ109、lxio8' lxl〇7、lxl06、lxl〇5個總有核細胞。 視自人類供者收集之幹細胞的情況及量及品質而 乂,較 佳可自當處於「成年」或「成熟」年齡(除非在特定情形 中以其他方式使用以產生不同含義,否則如本文所用少 語成年」係指且包括成人及非新生兒)及/或處於某一最 小體重時之人類個體供者收集幹細胞。舉例而言,當個體 處於根據本發明之一個實施例10至200 kg之體重範圍,戈 此範圍内之任何範圍(諸如20至40 kg)内時可收集幹細^ 群。另外或替代性地’根據本發明之一個實施例,可能需 要個體具有在2-80歲範圍(例如2_10、1〇·15、12_18、 16 20 ^ 20-26 ' 26-30 ' 30-35 ' 30-40 ' 40-45 ' 40-5〇 55-60、60-65、60-70及70-80歲)内之某-年齡。 流動速率: 在某些實施例中,液體淘洗緩衝液流之速率決定與剩餘 幹細胞分離之目標幹細胞的大小。在某些實施例中,當淘 洗流動速率為至少約50毫升/分鐘時,可將小幹細胞(例如 包括(但不限於)VSEL)之目標幹細胞群與周邊血液中之其 他幹細胞分離。在某些實施例中,當淘洗流動速率為至少 7〇毫升/分鐘時,可將大於VSEL尺寸之幹細胞的目標幹 細胞群與周邊血液中之其他幹細胞分離。在某些實施例 中,當淘洗流動速率為至少約90毫升/分鐘時,可將幹細 胞之目標幹細胞群與周邊血液中之其他幹細胞分離。在某 上貫施例中,當淘洗流動速率為至少約>90毫升/分鐘或約 1527l7.doc • 54 - ⑤ 201130978 105毫升/分鐘時,可將幹細胞之目標幹細胞群與周邊血液 中之其他幹細胞分離。 在某些實施例中,小於約20毫升/分鐘之流動速率可用 以自周邊血液收集血小板。在某些實施例中,約2毫升/分 鐘至約20毫升/分鐘之間的流動速率可用以收集血小板。 在某些實施例中,在約2〇毫升/分鐘或2〇毫升/分鐘以下 之流動速率下收集第一部分。在某些實施例中,在2〇毫升/ 为釦至約50毫升/分鐘之間,諸如約至少2〇毫升/分鐘,或 至少30毫升/分鐘,或約40毫升/分鐘或約50毫升/分鐘之流 動速率下收集第二部分❶在某些實施例中,在51毫升/分 鐘至約70毫升/分鐘之間,諸如約至少51毫升/分鐘,或至 少60毫升/分鐘,或約65毫升/分鐘或約7〇毫升/分鐘之流動 速率下收集第三部分。在某些實施例中,在7丨毫升/分鐘 至約90毫升/分鐘之間,諸如約至少71毫升/分鐘,或至少 80毫升/分鐘,或約85毫升/分鐘或約9〇毫升/分鐘之流動速 率下收集第四部分。在某些實施例中,在約91毫升/分鐘 至約105毫升/分鐘或大於1〇5毫升/分鐘之間,諸如約至少 91毫升/分鐘,或至少95毫升/分鐘,或約1〇〇毫升/分鐘, 或約105毫升/分鐘之流動速率下收集第五部分。或者,在 某些實施例中,第五部分可以子部分形式收集例如細胞 可在一或多種以下流動速率下收集;至少約95毫升/分 鐘,或至少約100毫升/分鐘,或約1〇5毫升/分鐘,或大於 105毫升/分鐘。此實施例可適用於收集包含實質上不同目 標幹細胞群之子部分,例如其中所收集之細胞的_個子部 152717.doc •55· 201130978 为包含貫質上HSC,且所收集之細胞的另一子部分包含實 質上MSC。 在某些實施例中,可能需要相對較長淘洗時間以達成所 選幹細胞向相關幹細胞子集(例如目標幹細胞群)之最佳分 離及純化。此等長時間段需要液體淘洗緩㈣連續流於中 腔室中。此又可能需要較大體積之袋子及/或多個較小袋 子以容納最佳細胞分離所需之液體或緩衝液之量。又,使 用較大體積淘洗緩衝液為各分離方法增加額外費用。 在某些實施例中’如美國專利第4,939,〇81號(其係以引 用的方式併入本文中)中所揭示’設置淘洗流動速率或將 其他參數設為允許在分離方法時不僅關於細胞大小而且關 於其他重要細胞特性(諸如比密度、形態及細胞表面標記) 來連續分析分離部分。 如本文所用,術語「最佳設置」係指產生如下分級分離 之設置:在部分之細胞群巾,存在最佳數目之細胞其具 有特定值及處於特定值範圍之細胞特性。舉例而言,蔣周 邊血液樣本(諸如經調動周邊血液樣本)之分級分離的最佳 設置展示於表1中》 之 rpm之離心速度(對應於825^卜操作 ELUTRA®裝置自獲自人類的周邊血液分離不同目標幹 細胞群之最佳設置 152717.doc •56- 201130978Wiley & Sons, 2000 (including updates to March 2002), and U.S. Patent No. 4,963,489. The term "progenitor cell" is used herein to mean a stem cell that has a more primitive cell phenotype relative to cells that can be produced by differentiation (e.g., along a developmental pathway or progression, at an earlier step than a fully differentiated cell). Progenitor cells often also have significant or extremely high proliferative potential. Depending on the developmental pathway and cell development and differentiation 152717. Doc 5.  201130978 Environment-dependent 'progenitor cells can produce multiple different differentiated cell types or single differentiated cell types. As indicated above, there are different degrees or categories of cells that are generally derogatory to "stem cells." It is "totipotent", "plurip〇tent" and "multipotent" stem cells. The term "all-round" refers to stem cells that produce any tissue or cell type in the body. "Reenergy" stem cells can produce any type of cells other than germline cells in the body. Stem cells that produce smaller or limited numbers of different cell types are commonly referred to as "multiple months b." Thus, totipotent cells differentiate into multipotent cells that produce most, but not all, tissues necessary for fetal development. Recombinant cells undergo further differentiation into pluripotent cells that are committed to produce cells with specific functions. For example, pluripotent hematopoietic stem cells produce red blood cells, white blood cells, and platelets in the blood. As used herein, the term "repotential" refers to a cell that has the ability to differentiate into cell types unique to all three germ cell layers (endoderm, mesoderm, and ectoderm) under different conditions. The pluripotent cells are characterized mainly by their ability to differentiate into all three germ layers using, for example, a nude mouse teratoma formation assay. It is also confirmed by the expression of embryonic stem cell (ES) cell markers that the better test is to demonstrate the ability to differentiate into cells of the three germ layer 夂ό 0 cents. In certain embodiments, the potent cells are undifferentiated cells. As used herein, the term "re-energy" or "re-energy state" refers to differentiation into all three embryonic germ layers: endoderm (ssue), mesoderm (including blood, muscle and blood vessels), and ectodermal growth. , 61, such as the skin and nerves, and usually have the potential to divide in vitro for a long period of time (eg, greater than or greater than 30 passages). 'year 152717. Doc •35· 201130978 When used with reference to “pluripotent cells,” the term “pluripotent” refers to cells that can be differentiated into cells that are derived from some, but not all, of all three germ layers. Therefore, pluripotent cells are partially differentiated cells. Pluripotent cells are well known in the art and examples of pluripotent cells include adult stem cells, such as hematopoietic stem cells and neural stem cells. Multi-capable means that stem cells can form many types of cells in a given line, rather than other lineage cells. For example, pluripotent blood stem cells can form many different types of blood cells (red, white, platelets, etc.), but they cannot form neurons. The term "pluripotent" refers to cells whose development versatility is less than that of omnipotent and complex energy. The term "total energy" refers to a cell having a degree of differentiation that describes the ability to produce all cells in adult and extraembryonic tissues, including the placenta. Fertilized egg (zygote) is omnipotent because it is an early lytic cell (blastomere). The term "mesenchymal stem cell" is also referred to herein as "MSC" and refers to the ability to differentiate into more than one specific type of leaf tissue or connective tissue (ie, to support specialized elements; eg, fat, bone Complex cells of the matrix, cartilage, elasticity, and tissues of the fibrous connective tissue. Human mesenchymal stem cells (hMSCs) are reactive with certain monoclonal antibodies, such as SH2, SH3, and SH4 (see U.S. Patent No. 5,486,359, the disclosure of which is incorporated herein by reference in its entirety herein The specific pattern is distinguished from HSC and wherein MSC is SH2+/CD14- and human HSC SH2-/CD14+. For identification purposes, human MSC can be identified based on: (i) CD34-, CD45-, CD90+, CD105+ And 152717. Doc • 36- 5 201130978 CD44+ phenotypic marker expression, (Π) functional phenotype, including the ability to form colony forming units in CFA assays as disclosed in the examples herein, and differentiation into supportive specific elements (including (but not Limited to: the ability to organize tissues of chondrocytes, cartilage and fat cells. Other markers represented by MSC are known in the art and include, without limitation, CD71, CD73, Stro-Ι, and CD166, and CD271. In certain embodiments, the MSC is lin-. The term "very small embryonic stem cells" is also referred to herein as "VSEL stem cells j and refers to pluripotent stem cells. In certain embodiments, VSEL stem cells ("VSEL") are human VSELs and can be characterized as lin·, CD45· And CD34+. In certain embodiments, the VSEL is a human VSEL and can be characterized as lin·, CD45·, and CD133+. In certain embodiments, the VSEL is a human VSEL and can be characterized as lin·, CD45·, and CXCR4+. In certain embodiments, the VSEL is a human VSEL and can be characterized as lin·, CD45·, CXCR4+, CD133+, and CD34+. The human VSEL exhibits at least one of SSEA-4, Oct-4, Rex-1, and Nanog, and has a large nucleus surrounded by a narrow side of the cytoplasm and contains embryonic unorganized chromatin. VSEL also has high-end granzyme activity. In certain embodiments f, the VSELs are human VSELs and can be characterized as lin·, CD45_, CXCR4+, CD133+, Oct 4+, SSEA4+, and CD34+. In certain embodiments, 'human VSELs may be less primitive and may be characterized as lin·, CD45·, CXCR4+, CD133·, and CD34+. In certain embodiments, a human VSEL can be enriched for a reassortant embryonic transcription factor (e.g., 〇ct_4, s〇x2, and Nanog). In some embodiments, the diameter of the human VSEL can be 4-5 μηι, 4-6 μηη, 4-7 μηη, 5-6 μηι, 5-8 μπι, 6-9 μηι or 7·10 μιη 〇 152717. Doc •37- 201130978 The term “peripheral blood source” used in connection with stem cells refers to stem cells that are only mobilized from peripheral blood and may include stem cell expansion or proliferation in peripheral blood. In certain embodiments, according to the methods disclosed herein, the number of circulating stem cells in the peripheral blood can be increased by contacting the peripheral blood with the mobilizing agent in vivo or ex vivo. The term "bone marrow source" as used in connection with stem cells refers to stem cells that are mobilized from bone marrow to peripheral blood' and may include stem cells that have migrated from BM. In certain embodiments, BM-derived stem cells in peripheral blood include stem cells that have proliferated in the bone marrow prior to migration into peripheral blood, or stem cells that have been proliferated in peripheral blood after migration from bone marrow. In certain embodiments, the number of circulating BM stem cells in the peripheral blood can be increased by contacting the peripheral fluid with the mobilizing agent in vivo according to the methods disclosed herein. Also known as "HSC", "hematopoietic stem cells" refers to the ability to differentiate into any particular type of hematopoietic or blood cells (such as red blood cells, lymphocytes, macrophages, and megakaryocytes), especially in the bone marrow and peripheral blood. All stem or progenitor cells. HSCs are reactive with certain monoclonal antibodies (e.g., monoclonal antibodies that recognize CD34) that are now recognized to be specific for hematopoietic cells. As will be understood by those skilled in the art, the term "hematopoietic cells" refers to all types of hematopoietic cells throughout their differentiation from self-renewing hematopoietic stem cells to immature precursor cells of various blood systems, including mature acting blood cells. Sf. "mesenchymal cells" or "mesenchyelia" are used interchangeably herein and in some instances refers to spindle-like or stellate cells found between the ectodermal and endoderm of immature embryos. Most mesenchymal cells are derived from established mesoderm, but in the head 152717. Doc -38 · 201130978 It also develops from the nerve ridge or neural tube ectoderm. Mesenchymal cells (specifically, embryonic mesenchymal cells in embryonic bodies) have recombination ability, which develops into any type of connective or supporting tissue of smooth muscle, vascular endothelium and blood cells at different locations. As used herein, the term "isolated cell" refers to a cell that has been removed from an individual that was originally seen or a progeny of such a cell. Optionally, the cells are cultured in vitro, for example, in the presence of other cells. Optionally, cells (eg, a population of isolated target stem cells produced by the methods disclosed herein) are introduced into the second individual or reintroduced into the individual (eg, allograft) of the individual (or passaged cells) )in. As used herein, with respect to isolated cell populations, the term "isolated population" refers to a population of cells that have been removed and isolated from a mixed or heterologous population of cells. In certain embodiments, the isolated population is a substantially pure population of cells as compared to a heterologous population of cells that are thereby isolated or enriched. In certain embodiments, the isolated population is a population of isolated reprogrammed cells that are substantially purely re-compared to a heterogeneous population of cells comprising reprogrammed cells and cells that produce reprogrammed cells. The programmed cell population. The term "substantially pure" with respect to a particular target stem cell population means that the cell population is at least about 75%, preferably at least about 85%, more preferably at least about 90%, and most preferably at least about 95, relative to the cells that make up the total stem cell population. %pure. Reaffirming that the term "substantially pure" or "substantially purified" with respect to a target stem cell population isolated using the methods disclosed herein means that the target stem cell population contains less than about 20%, more preferably less than about 15%, 10%. , 8%, 7%, optimally less than about 5%, 4%, 3%, 2%, 1% or less than 1% as defined by the terminology of 152717. Doc •39- 201130978 Cells of non-target stem cell populations. In certain embodiments, the invention encompasses a method of expanding a population of target stem cells wherein the target population of expanded stem cells is a substantially pure target population of stem cells. As used herein, "proliferation" refers to increasing the number of cells in a population (growth) by means of cell division. Cell proliferation is generally thought to be caused by coordinated activation of multiple signal transduction pathways that are responsive to the environment, including growth factors and other cleavage materials. Cell proliferation can also be promoted by relieving the effects of intracellular or extracellular signals and blocking or negatively affecting cell proliferation. The term "regeneration" means that a cell population, organ or tissue grows after a disease or trauma. The terms "update" or "self-renewal" or "proliferation" are used interchangeably herein and refer to the process by which a cell produces more copies of itself (eg, cell replication). In certain embodiments, the reprogrammed cells can be renewed by me by long-term and/or splitting into the same undifferentiated cells (e.g., pluripotent or non-specific cell types) over many months to years. In some cases, proliferation refers to the expansion of reprogrammed cells by repeated splitting into two identical daughter cells by a single cell. As used herein, the term "lineage" refers to a cell having a common ancestry or a cell having a common developmental fat, such as a cell derived from the same target stem cell population or a progeny thereof. As used herein, the term "pure cell line" refers to a cell line that can be maintained in culture and has the potential to immortalize. The pure cell line may be a stem cell strain (e.g., a target stem cell population cell line) or derived from a target stem cell population, and a pure line 152717 is used in the case of a pure cell line containing the target stem cell population. Doc -40· 5.  201130978 Cell line' The term refers to a population of target stem cells that have been cultured under in vitro conditions that allow proliferation without differentiation for months to years. Such pure stem cell lines (e. g., target stem cell populations) may have the potential to differentiate from primitive stem cells following several cell lines. "In cell individualogenesis, the adjective "differentiation" is a relative term. A "differentiated cell" is a cell that has progressed further down the developmental path than the cell to which it is compared. Because, 匕, stem cells can differentiate into lineage-restricted precursor cells (such as mesoderm stem cells), which in turn can further down-divide into other types of precursor cells (such as cardiomyocyte precursors) along the pathway, and then differentiate into end-stage differentiated cells, It has a characteristic role in a certain tissue type, and "T flb or may not maintain the ability to further proliferate. The term "differentiation" in the context of the present invention means the formation of a cell which exhibits a marker associated with a cell which is known to be (4) alienated and which is close to a terminally differentiated cell which cannot be further differentiated. The progression of cells from a less defined cell to a cell that is increasingly committed to a particular cell type, and ultimately to a terminally differentiated cell, is referred to as progressive differentiation or progressive typing. Cells that are more specific (e.g., have progressed along the progressive differentiation pathway) but have not yet been terminally differentiated are referred to as partial differentiation. Differentiation is a developmental process whereby the cells exhibit a specific phenotype, such as obtaining - or a variety of features or functions different from other cell types. In the case of one or two conditions, a differentiated phenotype is a cell phenotype (so-called terminally differentiated cell) at the mature end point in some developmental pathways. In many, but not all, tissues, the differentiation process is accompanied by a σ in the cell cycle. In such cases, the terminal divides the cell loss or greatly limits its ability to proliferate. However, we note that in the context of this specification, the term "differentiation" refers to the fate or merit in its I527I7. Doc •41– 201130978 Cells that are more specific in their energy than their pre-developmental points, and include terminally differentiated cells and cells that are more specialized than their previous point of development, although they are not terminally differentiated. Cells develop from unshaped cells (e.g., stem cells) to cells of a particular differentiated cell type with increased degree of conformation, and eventually develop into terminally differentiated cells. This is called progressive differentiation or progressive typing. Cells that "differentiate" relative to progenitor cells have one or more phenotypic differences relative to the progenitor cells. Phenotypic differences include, but are not limited to, morphological differences and differences in gene expression and biological activity, including not only the presence or absence of performance markers, but also differences in the amount of labeling and differences in the co-expression patterns of a panel of markers. As used herein, the term "differentiation" refers to the development of cells from the original stage to cells that are more mature (i.e., less primitive) cells. As used herein, the term "directed differentiation" refers to forcing cells to differentiate from undifferentiated (e. g., more primitive cells) to more mature cell types (i.e., less primitive cells) via genetic and/or environmental manipulation. In certain embodiments, cells reprogrammed as disclosed herein are directed to differentiate into specific cell types, such as neuronal cell types, myocyte types, and the like. As referred to herein, the term "medium" is a medium that maintains a tissue or population of cells, or a population of cells (e.g., "medium") that contain nutrients that maintain cell viability and support proliferation. The cell culture medium may contain any of the following in a suitable combination: salts, buffers, amino acids, grape vinegar or other sugars, antibiotics, serum or serum substitutes, and other components such as peptide growth factors, and the like. Cell culture media commonly used for a particular cell type are known to those skilled in the art. The "phenotype" refers to one or a large number of general biological characteristics, which are in the environment 152717. Doc 5 •42· 201130978 Conditions and factors ♦ $ # $ κ 疋 景 景 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义 定义As used herein, "marker" describes the characteristics and/or phenotype of a cell. It can be used to select cells that contain relevant features. The label should be characterized by the individual cells, ie the cell type or the morphological, functional or biochemical (enzymatic) characteristics characteristic of the molecule expressed by the cell type. Such labels are preferably proteins' and more preferably have antigenic epitopes of the antibody or other binding molecules known in the art. However, the label may consist of any knife found in the cell including, but not limited to, proteins (peptides and polypeptides), sorbitan, nucleic acids and steroids. Examples of morphological features or characteristics include, by definition, shape, size, and ratio of nuclear to cytoplasm. Examples of functional features or characteristics include, but are not limited to, the ability to adhere to or exclude a particular dye from a particular substrate, the ability to migrate under specific conditions, and the ability to differentiate along a particular line 4 line. The mark can be detected by any method available to those skilled in the art. As used herein, as used in connection with contacting a peripheral blood sample in vivo, the term "contacting" can include administering an individual mobilizing agent in the form of a composition, as appropriate, via a suitable route of administration such that the compound contacts the peripheral blood sample in vivo. As used herein, the term "contacting", as associated with ex vivo contact with a peripheral blood sample, can include, as the case may be, administering a mobilizing agent to the peripheral blood sample in the form of a composition such that the mobilizing agent contacts the peripheral blood sample ex vivo. As used herein, the terms "administering," "introducing," and "transplanting" are used interchangeably and refer to a method or pathway by which a human target stem cell population is at least partially localized to a desired site. The group is placed in a 152717. Doc •43· 201130978 In the body. The human target stem cell population can be administered by any suitable route that results in delivery to a desired location in the individual, wherein at least a portion of the human target stem cell population remains viable. The stage of cell survival after administration to an individual can be as short as a few hours, such as twenty-four hours to several days, up to several years. As used herein, the term "donor" is used to collect an individual to be transplanted an organ, tissue or cell. As used herein, the term "recipient" refers to an individual who will receive a transplanted organ, tissue or cell. As used herein, the term "transplantation" refers to a method of integrating free (unattached) cells, tissues or organs into a tissue after transplantation into an individual. § "Allografts" refers to transplanted cells, tissues or organs derived from different animals of the same species. As used herein, the term "Xen〇graft; xen〇transplant" refers to a transplanted cell, tissue or organ derived from an animal of a different species. In some embodiments, xenografting is the surgical transplantation of tissue from a species to a different species, genus or family. For example, transplanting from human to human is a xenotransplantation. "Heterotransplantation" refers to the method of transplanting living cells, tissues or organs from one species to another, such as from pigs to humans. The terms "subject" and "individua" are used interchangeably herein and refer to an animal, such as a human, from which it can be isolated and collected according to the methods and compositions described herein. The target stem cell population, and optionally the individual can be transplanted (eg, the target stem cell population can be implanted into the individual), for example, for treatment, including prophylactic treatment of the disease. For treatment to 152717. Doc 201130978 Special animal diseases (such as human individuals) have specific disease conditions, terminology. "Solid" means a specific animal. The term "non-human animal" Xiao "non-human ritual animal" is used interchangeably herein and includes mammals such as: mouse milk, rabbit, sheep, I seedling 'dog, cow, pig, and non-human primate. The π individual also covers any vertebrate, including (but not) mammals, reptile amphibians and fish. However, the individual is preferably a mammal, such as a human, or other mammal, such as a domestic mammal, such as a dog lick and the like, or a productive mammal, such as a cow, sheep, pig, and the like. The term "tissue" refers to a group or layer of similarly specialized cells that interact with certain functions. The term "tissue specificity" refers to the source or definition of the cellular characteristics of a particular tissue. As used herein, the term "agent" means any compound or substance such as, but not limited to, a small molecule, a nucleic acid, a polypeptide, a, a drug, an ion, and the like. "Pharmaceutical" can be any chemical substance, entity or part, including (without limitation) synthetic and naturally occurring proteinaceous and non-proteinaceous entities. In certain embodiments, the agent is a nucleic acid, a nucleic acid analog, a protein, an antibody, a peptide, an aptamer, a nucleic acid vesicle, an amino acid, or a carbohydrate, including, without limitation, oligo-acid, ribonuclease, DNAzymes, glycoproteins, siRNAs, lipoproteins, and modifications and combinations thereof. In certain embodiments, the agent is a small molecule having a chemical moiety. "For example, the chemical moiety includes an unsubstituted or substituted alkyl, aromatic or heterocyclic moiety, including a macrolide, a Lactobacillus. Uptomycin and related natural products or analogs thereof. The compounds are known to have the desired activity and/or properties, or may be selected from the collection of different compounds 152717. Doc •45- 201130978 Library. As used herein, the term "small molecule" refers to a chemical agent that may include, but is not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs. , aptamers, nucleotides, nucleotide analogs, organic or inorganic compounds having a molecular weight of less than about 10,000 g/mole (for example, including heteroorganic and organometallic compounds), having a molecular weight of less than about 5, 〇〇〇 克 /莫An organic or inorganic compound of the ear, an organic or inorganic compound having a molecular weight of less than about L000 g/mole, an organic or inorganic compound having a molecular weight of less than about 500 g/mol, and salts, esters, and other pharmaceutically acceptable forms. Special compound. The term "disease" or "condition" is used interchangeably herein and refers to any alternation of the state of the body or organs that disrupts or interferes with the effects of the function and/or causes the person being afflicted or contacted by the person. Symptoms, such as discomfort, dysfunction, pain or even death ^^ or illness can also be associated with dither (diStemper), ailing, ailment, disease (10) force, illness, disease, disease (Ulness) ), illness (c〇mpUint), discomfort (indisposition) or infection (affection). As used herein, the term "pathology" refers to a condition, such as a change in the structure and function of a cell, tissue or organ, which contributes to a disease or condition. For example, the pathology can be associated with a particular nucleic acid sequence or "pathological nucleic acid" (which refers to a nucleic acid sequence that contributes, in whole or in part, to pathology, for example, the pathological nucleic acid can be encoded to have a specific pathogenic or pathologically relevant mutation or The nucleic acid sequence of the polymorphic gene is related). Pathology may be associated with the expression of a pathological or pathological polypeptide that contributes, in whole or in part, to a pathology associated with a particular disease or condition. Doc . 46- 5 201130978 Off. In another embodiment, the pathology is associated, for example, with other factors such as ischemia and the like. As used herein, the term "treating" includes reducing or alleviating at least one adverse effect or symptom of a condition, disease or condition. As used herein, the phrase "parenteral administration" means a mode of administration, usually by injection, in addition to enteral and topical administration, and includes, but is not limited to, intravenous, intramuscular, intraarterial, intralesional , heart, indoor, intracapsular, intraocular, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, sub-keratinous, intra-articular, subcapsular, subarachnoid, intraspinal, intracerebral spinal cord and intrasternal injection And infusion. As used herein, the phrase "systemic administration" and "peripheral administration" means that the target stem cell population or its differentiated progeny and/or its progeny and/or compounds and/or other substances are not directly administered to the individual. It is allowed to enter the animal system and is therefore subject to metabolism and other similar processes, such as subcutaneous or intravenous administration. The phrase "medically acceptable" is used in this context to refer to contact with humans and animal tissues without undue toxicity, irritation, allergic reactions or other problems or complications, and reasonable. The compounds/substances, compositions and/or dosage forms that are commensurate with the benefits/risk ratios. As used herein, '"pharmaceutically acceptable carrier" means a pharmaceutically acceptable substance, composition or vehicle, such as a liquid or solid, a filler, a diluent, an excipient 'solvent or encapsulating material, It involves carrying or transferring the target medicament from one organ or body part to another organ or body part. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation. As used herein, the term "drug" or "compound" refers to the individual who is involved in 152717. Doc -47· 201130978 A chemical entity or biological product, or chemical entity or combination of biological products, that treats or prevents or controls a disease or condition. Chemical entities or biological products are preferably, but not necessarily, low molecular weight compounds, but may also be larger compounds, such as nucleic acids, amino acids or carbohydrate oligomers, including (not limited to) proteins, oligonucleotides, ribose Nucleases, DNAzymes, glycoproteins, siRNAs, lipoproteins, aptamers, and modifications and combinations thereof. As used herein, the term "transplantation" refers to the introduction of a new cell (eg, a target stem cell population or a differentiated progeny thereof) or tissue (such as a differentiated cell produced from a target stem cell population) or an organ into a host (ie, a transplant recipient or transplanted individual). The term "regulation" is used consistently with its use in the art, for example to mean causing or contributing to qualitative or quantitative changes, changes or modifications of a process, path or related phenomenon. Without limitation, this change may be reduced or varied for the relative strength or activity of different components or branches of the process, path or phenomenon. A "modulator" is an agent that causes or contributes to a sputum or quantitative change, change, or modification of a process, pathway, or related phenomenon. The terms "decreasing," "decreasing," or "suppressing" are used herein generally to mean reducing a statistically significant amount. However, for the avoidance of doubt, reducing "or decreasing" or "suppressing" means reducing at least (four), such as by at least about 2%, or at least about 3%, or at least about 40%, compared to the degree of reference. , or at least about 50%, up to about 60%, or at least about 70% or at least about 80%, or at least about 9 inches. / + n 90/0 or up to and including 100% reduction (- such as 'there is no sub-presentation compared to the reference sample), or 10-100 °/ to the reference level. Any reduction between. 152717. Doc 5 •48· 201130978 The terms “increase”, “enhance” or “energy” are used throughout this document to mean increasing the static mass. • To avoid any doubt, the term “increase” or “improve” or "Activation" means an increase of at least 10% compared to the degree of reference, for example by at least about 2%, or at least about 30%, or at least about 40%, or at least about 5%, or more than the reference level, or At least about 6%, or to /' force 70/. , or at least about 8%, or at least about or at most and including any increase between 100% increase or 丨0-100%, or at least about 2 times 'or at least about 3 times' compared to the degree of reference or At least about 4 times, or at least about 5 times or at least about 10 times increased, or any increase between 2 times and 10 times or more. The term "statistically significant" or "significant" refers to statistical significance and generally means two standard deviations (2SD) below or below the normal value. This term refers to statistical evidence of differences. It is defined as the probability of rejecting the null hypothesis when the null hypothesis is actually true. The P value is often used to make a decision. As used herein, the term "substantially" means at least about 60%, or preferably at least about 70%, or at least about 8%, or at least about 90%. Up to about 95%, at least about 97%, or at least about 99% or 99% above or 70°/. The ratio of any integer between 1〇〇%. The singular forms "a", "the", "the" and "the" are used in the singular terms. Thus, for example, reference to "the method" includes one or more methods, and/or steps of the type described herein and/or it will become apparent to those skilled in the art in reading the disclosure and the like. . It should be understood that the foregoing embodiments and the following examples are illustrative only and should not be considered as 152717. Doc -49· 201130978 _ for the material of the present invention. Various changes and modifications to the disclosed embodiments may be made without departing from the spirit of this (4) and Fan Ming. Those who are familiar with the technology will be aware of all patents, patent applications and publications. The disclosure is hereby expressly incorporated by reference to the extent of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure. In the case of the application for the disclosure of the disclosure of the application for the application of the singularity of the singer, the singer of the singer In the previous invention or because of any of its (4), the inventor has not authorized the disclosure in advance of this disclosure. All statements regarding the date or the contents of such documents are based on the information available to the applicant and do not constitute Any recognition of the correctness of the date or content of such documents. Washing device: One aspect of the present invention is the use of centrifugal panning to separate different target stem cell populations from peripheral blood into a subset of stem cells. Without wishing to be bound by theory, in a panning process, a peripheral blood sample is introduced into a generally funnel-shaped separation chamber located on a rotary centrifuge, and then a liquid panning buffer or a low density liquid stream is introduced into the peripheral blood sample. In the chamber. Because the flow rate of the liquid panning buffer increases as it passes through the chamber (usually in a stepwise manner), the liquid purges smaller, slower settled cells into the panning boundary of the chamber' while larger and faster settled cell migration In the chamber area to balance the centrifugal force and the sinking (drag) force. Therefore, since peripheral blood such as mobilized peripheral blood contains many different stem cell populations, one aspect of the present invention relates to the use of panning to separate such different stem cell populations present in peripheral blood into different populations, wherein the self-size is larger The stem cells fractionate smaller stem cells. 1527l7. Doc 5 201130978 In some aspects of the invention, any panning device can be used to fractionate peripheral blood samples into portions comprising different stem cell populations. In some embodiments, commercially available panning devices can be used, such as Gambro BCT, Inc. Manufactured ELUTRA® centrifuge. ELUTRA CELL SEPARATION SYSTEM® allows cell populations to be separated into multiple fractions based on size and density, allowing cell enrichment, elimination, concentration and washing to be performed in a closed functional system. ELUTRA CELL SEPARATION SYSTEM® can directly concentrate the stem cell population from leukocyte deionization products without the need for antibodies or pretreatment in less than one hour. ELUTRA CELL SEPARATION SYSTEM® uses a countercurrent centrifugal panning method in which fluid flows through the cell layer in a centrifugal field to separate the cell population. In some embodiments, other panning devices can be used including, but not limited to, COBE® Spectra separation systems, TRIMA® systems, and TRIMA ACCEL® systems (also by Gambro BTC Inc. Manufactured), as well as other commercially available panning devices used to separate blood components. In certain embodiments, a cell separator such as a COBE® Spectra separation system is used to fractionate peripheral blood. The COBE® SPECTRATM centrifuges are described in U.S. Patent Nos. 4,425,172; 4,708,712; and 6,022,306 each incorporated herein by reference. In this embodiment, the peripheral blood sample is drawn into a cell separator, such as a COBE® Spectra separation system, and the anticoagulant solution is optionally added to the blood to keep it from coagulation during the procedure. The blood/anticoagulant mixture is circulated through a centrifuge to separate peripheral blood samples into a population of stem cells, as well as monocytes from other blood components and plasma. The system will detach the isolated stem cells to 1527l7. Doc -51· 201130978 Store the collection bag and return other blood components and plasma to the patient. All tubing sets and needles used are sterile, so there is no risk of disease transmission. Other blood separation devices can be used, such as those described in the following: U.S. Patent No. 5,722,926, issued March 3, 1998, and U.S. Patent No. 5,951,877, issued on September 14, 1999; U.S. Patent No. 6,053,856 issued January 25, 2002; U.S. Patent No. 6,334,842 issued Jan. 1, 2002; U.S. Patent Application Serial No. 1/884,877, filed on Jan. 1, 2004; 848; U.S. Patent No. 6,22,326; U.S. Patent No. 6,589,526; U.S. Patent Application Serial No. 2/8/35,585; US Patent No. 2/8/18 18756 and 2009/0104626. The entire disclosures of each of these U.S. patents and patent applications are hereby incorporated by reference. Without being bound by theory, leukocyte desorption refers to a type of separation procedure that separates white blood cells from other particles and typically uses a centrifuge. The resulting collected or isolated leukocytes can then be further separated into subsets of desired cells (e. g., monocytes, lymphocytes, and granulocytes) for collection or culture as necessary, although it will be appreciated that other cells may also need to be collected. However, the collected leukocyte deposition products are often contaminated with platelets and red blood cells, which can interfere with various cell isolation and/or cell selection techniques and later culture of selected cells for therapeutic use. Therefore, it is necessary to separate white blood cells into desired subsets and to remove or reduce the number of platelets and red blood cells. Several methods have been proposed for separating or fractionating white blood cells from other particles and purifying the selected subset. One such method is a centrifugal elutriation method. In a common form of panning, cell batches are introduced into a rotating centrifuge at 152717. Doc -52- 5 201130978 Generally in the funnel-shaped separation chamber. The liquid panning buffer or low density liquid stream is then introduced into a chamber containing the cell batch. Because the flow rate of the liquid panning buffer increases as it passes through the chamber (usually in a stepwise manner), the liquid purges the smaller size of the slower settling cells into the panning boundary of the chamber, while the larger and faster settled cells migrate. In the chamber area to balance the centrifugal force and the sinking (drag) force. A relatively long panning time may be required to achieve optimal separation and purification of selected cells to relevant subsets. These long periods of time require liquid flushing buffer to continue to flow into the chamber. This in turn may require larger volumes of bags and/or multiple smaller bags to accommodate the liquid or buffer required for optimal cell separation. The use of larger volumes of panning buffer also adds additional expense to each separation method. Preferably, the panning process as used herein separates peripheral blood samples into various target stem cell populations that do not affect the function or viability of the stem cells. I is collected from peripheral blood obtained from any individual, such as a human individual, including an adult or a non-newborn child. In addition, the collection may include one or more, a set step or a collection phase. For example, one person may be subjected to at least two, at least three, or at least five collections (eg, using a separation method). In _ _ _, the total number of nucleated cells per kilogram of human body weight (four) may be one million (1 χΐ〇 6) or more than one million (eg lxl07, lxl 〇 8 ' 1X109 ' 1x10, 0 ' lxl 〇 n ' Ϊ́χΐ〇12 ^ 1X10- ix10u .  1χ10,5Ίχι〇^ιχι〇->1χ1〇^1χ10^1><1〇20)〇^^ In the preferred embodiment, the body weight and age of the donor are m φ ΐΙΛ. ^ ^ m The number of cells collected by A can be equal to or greater than lxlol 5 total nucleated cells, 152717.doc - 53- 201130978 or at least about lxl〇M, lxl〇丨3, lx1〇〗 2, 1χ1〇11, ιχι〇ι〇1χ109, lxio8' lxl〇7, lxl06, lxl〇5 total nucleated cells. Depending on the condition and quantity and quality of the stem cells collected by human donors, it is better to be at the age of "adult" or "mature" (unless used in other ways to produce different meanings in specific situations, otherwise used herein) "Adult adulthood" refers to and includes adult and non-neonatal) and/or human individual donors at a certain minimum body weight to collect stem cells. For example, when the individual is in the range of 10 to 200 kg of body weight according to one embodiment of the present invention, dry fines can be collected in any range within the range, such as 20 to 40 kg. Additionally or alternatively, 'in accordance with an embodiment of the present invention, an individual may be required to have a range of 2-80 years old (eg, 2_10, 1〇15, 12_18, 16 20^20-26 '26-30' 30-35' 30-40 '40-45 '40-5〇55-60, 60-65, 60-70 and 70-80 years old) - age. Flow Rate: In certain embodiments, the rate of liquid panning buffer flow determines the size of the target stem cells that are separated from the remaining stem cells. In certain embodiments, a target stem cell population of small stem cells (e.g., including but not limited to VSELs) can be separated from other stem cells in peripheral blood when the wash flow rate is at least about 50 ml/min. In certain embodiments, the target stem cell population of stem cells larger than the VSEL size can be separated from other stem cells in the peripheral blood when the panning flow rate is at least 7 ml/min. In certain embodiments, the target stem cell population of the stem cells can be separated from other stem cells in the peripheral blood when the panning flow rate is at least about 90 ml/min. In a certain embodiment, when the panning flow rate is at least about >90 ml/min or about 1527 l7.doc • 54 - 5 201130978 105 ml/min, the stem cell population of the stem cells can be combined with the peripheral blood. Other stem cells are isolated. In certain embodiments, a flow rate of less than about 20 ml/min can be used to collect platelets from peripheral blood. In certain embodiments, a flow rate of between about 2 ml/min to about 20 ml/min can be used to collect platelets. In certain embodiments, the first portion is collected at a flow rate of about 2 〇 ml/min or 2 〇 ml/min. In certain embodiments, between 2 〇 ml / deduction to about 50 cc / min, such as about at least 2 〇 ml / min, or at least 30 ml / min, or about 40 ml / min or about 50 ml / The second fraction is collected at a flow rate of one minute, in some embodiments, between 51 ml/min and about 70 ml/min, such as about at least 51 ml/min, or at least 60 ml/min, or about 65 ml. The third fraction was collected at a flow rate of /min or about 7 〇ml/min. In certain embodiments, between 7 liters per minute to about 90 milliliters per minute, such as about at least 71 milliliters per minute, or at least 80 milliliters per minute, or about 85 milliliters per minute or about 9 milliliters per minute. The fourth part was collected at the flow rate. In certain embodiments, between about 91 ml/min to about 105 ml/min or greater than 1 〇5 ml/min, such as about at least 91 ml/min, or at least 95 ml/min, or about 1 〇〇. Collect the fifth part at ML/min, or at a flow rate of approximately 105 ml/min. Alternatively, in certain embodiments, the fifth portion can be collected in sub-partial form, for example, the cells can be collected at one or more of the following flow rates; at least about 95 ml/min, or at least about 100 ml/min, or about 1 〇5. ML/min, or greater than 105 ml/min. This embodiment can be adapted to collect sub-portions comprising substantially different populations of target stem cells, such as _ subsections of the cells collected therein 152717.doc • 55· 201130978 is another sub-HSC containing cells and the collected cells Part contains essentially MSC. In certain embodiments, a relatively long panning time may be required to achieve optimal separation and purification of selected stem cells to a relevant subset of stem cells (e. g., a target stem cell population). These long periods of time require liquid panning (4) continuous flow in the middle chamber. This in turn may require larger volumes of bags and/or multiple smaller bags to accommodate the amount of liquid or buffer required for optimal cell separation. Again, the use of larger volumes of panning buffer adds additional expense to each separation process. In certain embodiments, as set forth in U.S. Patent No. 4,939, the disclosure of which is incorporated herein by reference in its entirety, Cell size and continuous analysis of the separated fractions with respect to other important cellular characteristics such as specific density, morphology, and cell surface markers. As used herein, the term "optimal setting" refers to a setting that results in a fractional separation: in a portion of a cell swab, there is an optimal number of cells that have specific values and cell characteristics that are within a particular range of values. For example, the optimal setting for the fractionation of blood samples around Chiang (such as mobilized peripheral blood samples) is shown in Table 1 in the rpm of the rpm (corresponding to the 825^ operation of the ELUTRA® device from the periphery of humans) The best setting for blood separation of different target stem cell populations 152717.doc •56- 201130978

部分 最佳設置 (流動速率) 目標 細胞群 預淘洗 產率 後淘洗 產率 產率增大 (增濃倍數) 部分1 >20ml/min 血小板 部分2 50 ml/min VSEL 0.001% 0.3% 30倍 部分3 70 ml/min 部分4 90 ml/min WBC 及 RBC 部分5 >90 ml/min HSC 及 MSC 如下為使用在2400 rpm之離心速度下操作之ELUTRA® 裝置自獲自人類的周邊血液分離不同目標幹細胞群之流動 速率的另一適合組合: 血小板 35 ml/min VSEL 50 ml/min VSEL 70 ml/min 紅J&L球,* -些 HSC 90 ml/min 純HSC 100 ml/min MSCs 110 ml/min MSCs 120 ml/min 一般技術者將能夠依據用以用ELUTRA®收集特定幹細 胞群之本文所揭示之流動速率及離心速度來選擇適用於使 用除ELUTRA®外之淘洗裝置收集彼等幹細胞群的流動速 率。使用本文所揭示之流動速率及離心速度,以及此項技 術中之常識,諸如下文提及之斯托克等式(Stoke’s equation),選擇在另一淘洗裝置上收集所需幹細胞群之適 當流動速率將為常規事務。 因此,在某些實施例中,部分中之所需目標幹細胞群可 152717.doc -57- 201130978 小於藉由淘洗分離方法獲得之部分中細胞總數之1 %,例 如在部分2情況下’其中所需目標群為VSEL(極小胚胎樣 細胞)’其構成部分2中總細胞之0.3%,但與預淘洗周邊血 液樣本相比增濃3〇倍。 在某些實施例中’第二部分(部分2)或自約50毫升/分鐘 之流動速率收集之部分包含至少約0.05%或至少約0.1 〇/〇, 或至少約0.2%,或約0.3% ’或至少約〇 4%,或大於〇.40/0 VSEL。在某些實施例中,第二部分(部分2)或自約5〇毫升/ 分鐘之流動速率收集之細胞部分可分離成不同細胞亞群, 例如分離成實質上純VSEL群。相對於構成總細胞群之細 胞’貫質上純VSEL群包含至少約75%,較佳至少約85%, 更佳至少約90%及最佳至少約95% VSEL。 在某些實施例中’第五部分(部分5)或自大於9〇毫升/分 鐘’諸如約105毫升/分鐘或大於1〇5毫升/分鐘之流動速率 收集之部分包含至少約1 % ’或至少約2%,或至少約3〇/〇, 或約4%或至少約5%,或大於5% HSC或MSC細胞。在某些 貫施例中’第五部分(部分5)或自約ι〇5毫升/分鐘或大於 105毫升/分鐘之流動速率收集之細胞部分可經進一步分級 分離’使得可將HSC及MSC群與非HSC細胞及非MSC細胞 分離’且進一步可將HSC細胞與MSC群分離。因此,第五 部分(部分5)或自約>90毫升/分鐘,諸如ι〇5毫升/分鐘或大 於105毫升/分鐘之流動速率收集的細胞部分可經分離成細 胞亞群’例如分離成實質上純HSC細胞群及分離成實質上 純MSC細胞群。相對於構成總細胞群之細胞,實質上純 152717.doc -58· ⑤ 201130978 HSC群包含至少約75%,較佳至少約85%,更佳至少約鄉 及最佳至少約95% HSCe類似地,相對於構成總細胞群之 細胞,實質上純MSC群包含至少約75%,較佳至少約 85%,更佳至少約90%及最佳至少約95%MS(> 在本發b月巾涵蓋將周4血液分級分離成部分之數目不受 限。換言d邊血液可經受任何數目之不同流動速率以 產生任何數目之部分。舉例而言,周邊蠱液可分離成至少 4或至夕5’或至少6’或至少7,或至少8 ’或至少9,或 至少10’或至少U’或至少12 ’或大於12個不同部分。舉 例而言,在某些實施例中,可藉由使周邊血液經受至少 4’或至少5,或至少6,或至少7’或至少8 ,或至少9 ,或 至少10,或至少11,戎$小19 ,·+、〇· μ , 忒至^ 12 或大於12個不同流動速率 將周邊血液分離成多個不同部分。 在某些實施例t,藉由如下目標收集體積來測定目標幹 細胞群之所需產率: 目標幹細胞之產率=標幹細胞群之目標收集艚積 目標幹細~~ 可如美國專利第6,022,306號(其係以引用的方式併入本 文中)之表1中所討論來計算目標流動速率。 在某些實施例中’如美國專利第7,2〇1,嶋(其係以全 文引用的方式併人本文中)中所揭示,離淘洗法分離具 有不同沈降速度之細胞粒子。斯把克^律描述球粒之沈降 速度(SV),如下: 152717.doc •59· 201130978 sv = 2y2(pp-pm)g 9η r為粒子半徑,Partial optimal setting (flow rate) Increase in panning yield after target pre-panning rate of target cell population (concentration factor) Part 1 > 20ml/min Platelet fraction 2 50 ml/min VSEL 0.001% 0.3% 30 Multiples 3 70 ml/min Part 4 90 ml/min WBC and RBC Part 5 > 90 ml/min HSC and MSC are as follows for separation from peripheral blood obtained from humans using the ELUTRA® device operating at a centrifuge speed of 2400 rpm Another suitable combination of flow rates for different target stem cell populations: platelets 35 ml/min VSEL 50 ml/min VSEL 70 ml/min red J&L balls, * - some HSC 90 ml/min pure HSC 100 ml/min MSCs 110 Ml/min MSCs 120 ml/min The average skilled person will be able to select the suitable flow rate and centrifugation speed for the collection of specific stem cell populations using ELUTRA® for the collection of their stem cells using a panning device other than ELUTRA®. The flow rate of the group. Using the flow rates and centrifugation speeds disclosed herein, as well as common knowledge in the art, such as the Stoke's equation mentioned below, choose to collect the appropriate flow of the desired stem cell population on another panning device. The rate will be a regular transaction. Thus, in certain embodiments, the desired target stem cell population in the fraction may be 152717.doc -57 - 201130978 less than 1% of the total number of cells in the fraction obtained by the panning separation method, for example in the case of section 2 The desired target group is VSEL (very small embryo-like cells), which is 0.3% of the total cells in component 2, but is 3 times more concentrated than the pre-panning peripheral blood sample. In certain embodiments the 'second portion (Part 2) or portion collected from a flow rate of about 50 ml/min comprises at least about 0.05% or at least about 0.1 〇/〇, or at least about 0.2%, or about 0.3%. 'Or at least about 4%, or greater than 〇.40/0 VSEL. In certain embodiments, the second portion (Part 2) or a portion of the cells collected from a flow rate of about 5 〇 ml/min can be separated into different subpopulations of cells, for example, into a substantially pure VSEL population. The permeabilized VSEL population comprising at least about 75%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% VSEL, relative to the cells comprising the total cell population. In certain embodiments, the fifth portion (portion 5) or portion from a flow rate greater than 9 〇 ml/min, such as about 105 ml/min or greater than 1 〇5 ml/min, comprises at least about 1% 'or At least about 2%, or at least about 3 〇/〇, or about 4% or at least about 5%, or greater than 5% HSC or MSC cells. In some embodiments, the fifth part (part 5) or the fraction of cells collected from a flow rate of about 5 ml/min or more than 105 ml/min can be further fractionated' so that the HSC and MSC population can be Separation from non-HSC cells and non-MSC cells' and further separation of HSC cells from MSC population. Thus, the fifth portion (Part 5) or a portion of the cells collected from a flow rate of about 90 ml/min, such as ι 5 ml/min or greater than 105 ml/min, can be separated into a subpopulation of cells 'for example, The substantially pure HSC cell population is isolated and isolated into a substantially pure MSC cell population. Relatively pure to the cells constituting the total cell population, substantially pure 152717.doc -58·5 201130978 HSC population comprises at least about 75%, preferably at least about 85%, more preferably at least about township and optimally at least about 95% HSCe is similarly The substantially pure MSC population comprises at least about 75%, preferably at least about 85%, more preferably at least about 90% and most preferably at least about 95% MS relative to the cells comprising the total cell population (> in the present month b) The towel covers the number of fractionation of the blood of the week 4 into sections. In other words, the d-side blood can be subjected to any number of different flow rates to produce any number of fractions. For example, the peripheral sputum can be separated into at least 4 or until eve. 5' or at least 6' or at least 7, or at least 8' or at least 9, or at least 10' or at least U' or at least 12' or greater than 12 different portions. For example, in some embodiments, By subjecting the peripheral blood to at least 4' or at least 5, or at least 6, or at least 7' or at least 8, or at least 9, or at least 10, or at least 11, 戎$19, ·+, 〇·μ, 忒^ 12 or greater than 12 different flow rates separate the peripheral blood into a plurality of different portions. In some embodiments t, The desired yield of the target stem cell population is determined by collecting the volume as follows: Yield of the target stem cell = target of the stem cell population Collection of the target dry tissue ~~ can be as described in U.S. Patent No. 6,022,306 (which is incorporated by reference) The target flow rate is calculated as discussed in Table 1 herein. In certain embodiments, 'as in U.S. Patent No. 7,2,1, which is incorporated by reference in its entirety herein. It is revealed that cell particles with different sedimentation velocities are separated from the panning method. The sedimentation velocity (SV) of the spheroids is described as follows: 152717.doc •59· 201130978 sv = 2y2(pp-pm)g 9η r For the particle radius,

Pp為粒子密度,Pp is the particle density,

Pm為液體介質之密度, η為介質黏度,且 茗為重力或離心加速度。 因為在斯托克等式中將粒子半徑升至二次幂,且粒子密 度不升高’所以細胞大小而非其密度極大地影響其沈降速 率。此解釋為何在離心淘洗期間較大粒子一般保留於腔室 中’而較小粒子被釋放(若粒子具有類似密度)。 如美國專利第3,825,175號(以全文引用的方式併入本文 中)中所述,離心淘洗法具有許多限制。在大部分此等方 法中,粒子必須以個別、間斷批次引入流體介質流中以允 許充分的粒子分離。因此,一些淘洗法僅允許以粒子批次 形式分離且需要其他流體介質以輸送粒子。另外,流動力 (flow force)必須與離心力精確平衡以允許適當粒子分離 (particle segregation)。因此,本發明涵蓋如美國專利申請 案2_/_756(以全文引用的方式併人本文中)中所揭示 之離心淘洗法。 用於藉由淘洗法增濃幹細胞亞群之周邊血液樣本 在某些實施例中,自哺乳動物個體(諸如人類個體)獲得 用於如本文所揭示之方法的岡,惠‘,六以丄 心乃次的周邊血液樣本。在某些實施例 152717.doc ⑤ • 60 - 201130978 中’先前已投與人類個體調動劑以增大周邊血液中循環幹 細胞之產率或數目。經調動方法在此項技術中為已知且包 括(不限於)如美國專利第6,261,549號及美國專利申請案 2009/01 55225(以全文引用的方式併入本文中)中所揭示之 方法。 在某些實施例中,投與個體之調動劑包括(但不限 於)G-CSF、GM-CSF、地塞米松(dexamethasone)、CXCR4 受體抑制劑、介白素-1(IL_i)、介白素_3(il-3)、介白素_8 (IL-8)、PIXY-321(GM-CSF/IL-3融合蛋白)、巨噬細胞炎症 蛋白、幹細胞因子、血小板生成素及生長相關致癌基因, 其呈單一調動劑形式或呈此等調動劑之任何組合形式。其 他調動劑包括例如(但不限於)CXCR4抑制劑,諸如 AMD31GG、ALX4G-4C、T22、T134、T14G及 TAK-779,其 係揭示於美國專利第7,169,75G號中,該專利係以全文引用 的方式併入本文中。 在某些實施例中,周邊金液樣本為經調動周邊血液樣 本。在某些實施例中,在投與調動劑後至少2日自個體收 集或獲得周邊在某些實施财,在投與個體有效量 之調動劑後4日或4日以下自個體收集或獲得周邊血液樣 本0 在某些實施例中’在根據如本文所揭示之方法分離多個 目標幹細胞群㈣洗法之前,例如藉Μΐϋ其他方 法(例如化學溶解淋巴細胞)來預處理周邊血液樣本或經調 動周邊血液樣本。因此’在某些實施例中,用於根據如本 152717.doc -61 - 201130978 文所揭示之方法的淘洗法的起始物質為析離產物,而非周 邊血液樣本自身’其中析離產物自周邊企液樣本處理獲 得。 適用於使用如本文所揭示之方法自周邊血液收集多種幹 細胞群的個體可為任何年齡之任何個體,諸如任何人類個 體。在某些實施例中,個體為諸如年齡為約1至18歲之兒 童°在某些實施例中’個體為成年個體^在某些實施例 中,個體為健康個體。在某些實施例中,個體易患疾病 (例如糖尿病、心血管疾病等),諸如在與個體將在未來某 日期可能發生疾病之增大風險相關之基因中具有突變或遺 傳標記(諸如SNP等)的個體。在某些實施例中,如上文所 討論,在個體中獲得周邊血液樣本之前投與個體調動劑。 在某些實施财,個體較佳至少1G歲,或至少_,或至 少約3〇歲實施例中,個體較佳小於約⑼歲,或小 於約50歲’或小於約4〇歲,或小於約3〇歲或小於約2〇 歲。 發明者已發現宜調節用於析離之血球比容範圍以.增強 收集之細胞群的特I舉例而言,在—個實施例中,選 血球比容範圍以提高V亂比例。在另—實施例中,選 血球比容範圍以增強所收集之VSEL的超低溫保、存,其, 如藉由最小化粒細胞收集來達成。在另-實施例中,選; 血球比谷ϋ以確保㈣收集多個幹細料,諸如稽 與朦。在—個實施例中,血球比容範圍經選擇為2-3% 在另實施例中’血球比容範IS經選擇為3-4% 〇 152717.doc •62- (|) 201130978 使用自周邊jk液增濃之幹細胞群 在某些實施例中,在幹細胞庫(stem ceU bank)中儲存增 濃之目標幹細胞群以備將來之用,例如用於最初提供細胞 (例如該等細胞用於隨後之同種異體移植程序中)之個體的 疾病治療或再生醫藥或療法方案。在此等實施例中,處理 藉由如本文所揭示之方法獲得之目標幹細胞以便在細胞庫 中中長期儲存。此程序之優勢在於可儲存不同目標幹細胞 群,使得可選擇最適用於隨後程序之目標幹細胞群以用於 再生療法程序。另外,在一些情況下,在組織工程改造及 再生療法中,可能需要使用不同目標幹細胞群之不同比率 組合以用於不同組織工程改造或再生療法程序。因此,本 發明提供調整目標幹細胞群之用途以備將來之用的能力。 在某些實施例_,藉由如本文所揭示之方法獲自周邊血 液之不同幹細胞群可經超低溫保存(例如冷凍)於液氮溫度 下且長期儲存,其能夠解凍即用,例如用於治療目的,諸 如再生療法或醫藥。在某些實施例中,獲自周邊血液之部 分可在超低溫保存之前進一步分離成幹細胞亞群。在某些 實施例中,可將在各部分中獲得之不同目標幹細胞群在超 低溫保存之前進一步純化及擴增(例如藉由活體外培養來 增殖)以產生實質上純目標幹細胞群。 若冷;東’則幹細胞群可儲存於1 〇% 、50% FCS、 40% RPMI 1640培養基中。一旦解凍,即可在生長因子及, 或滋養層(feeder layer)存在下離體培養及擴增幹細胞群歷 時適當時間段’隨後植入有需要之個體中。 152717.doc -63· 201130978 超低溫保存幹細胞之方法為一般技術者通常已知且揭示於 美國專利申請案 2008/0220520、2009/0022693、2008/0241113 及 2005/0106554 及美國專利 5,759,764 及 7,112,576 及 7,604,930中,其係以全文引用的方式併入本文中。 對於超低溫保存,可將藉由本文所揭示之方法獲自周邊 血液之各幹細胞群懸浮於DPBS中且可置於冰上至少約15 分鐘以為超低溫保存作準備。該準備過程可包括將超低溫 保存介質添加至目標幹細胞群或實質上純目標幹細胞群 中,接著利用控制速率冷凍器或其他適合之冷凍系統(監 測床結(dump-freeze)之冷床系統或冷床容器(Nalgene))使 混合物經受若干降溫步驟以將目標幹細胞群或實質上純目 標幹細胞群之溫度降至約-90°C之最終溫度。適合之控制 速率冷减器包括(但不限於)Cryomed Thermo Form控制速 率冷束器7454(Thermo Electron,Corp.)、平面控制速率冷 〉東器 Kryo 10/16(TS Scientific)、Gordinier、Bio-Cool--FTS 系統及 Asymptote EF600、BIOSTOR CBS 2100系列。 超低溫保存介質可製備為包含介質及DMSO。可將約3 ml DPBS添加至容器(諸如50 ml圓錐形管)中。可將約1 ml 人類血清白蛋白(HSA)添加至約3 ml DPBS中,接著在冰上 冷卻約十分鐘。將約1 ml冷卻99% DMSO添加至HSA及 DPBS中以製備最終超低溫保存介質。接著可將超低溫保 存介質及目標幹細胞群或實質上純目標幹細胞群置於冰上 約15分鐘,隨後將超低溫保存介質添加至細胞樣本中。分 批處理可用於將超低溫保存介質等分至細胞樣本中。舉例 152717.doc • 64· ⑤ 201130978 而言’可將約100 μΐ目標幹細胞群或實質上純目標幹細胞 群之單一等分試樣與約3 DPBS、1 ml HSA及約1 mi 99% DMSO合併。可將約200 μΐ MSC細胞懸浮液之約2個等 分試樣與約6 ml DPBS、2 ml HSA及約2 ml 99% DMSO合 併。可將細胞樣本之約5個等分試樣與約15 ml DPBS '約5 ml HSA及約5 ml 99% DMSO合併。可將細胞樣本之約1〇個 等分試樣與約30 ml DPBS、約10 ml HSA及約10 ml 99% D M S Ο合併。 在一個替代性實施例中,可使用其他超低溫保存介質。 舉例而言,含超低溫保存劑之超低溫保存介質可用以維持 解凍後高細胞生存力結果,諸如Cry〇St〇r CSio或CS5 (Biolife)、補充有丙二醇及蔗糖(vitr〇life)之胚胎超低溫保 存介質’或SAGE介質(Cooper Surgical)。甘油可與諸如 DMSO之其他超低溫保存劑一起使用,或可於含適合蛋白 質之介質中約10%之濃度下單獨使用。 在另一實施例中,可將超低溫保存介質添加至目標幹細 胞群或實質上純目標幹細胞群中。可將超低溫保存介質逐 滴添加至懸浮於DPBS中之目標幹細胞群或實質上純目標 幹細胞群中,直至懸浮經血幹細胞與超低溫保存介質之總 混合物體積達到超低溫保存細胞混合物之最終所需體積為 止。可將最終超低溫保存細胞介質轉移至2χ5⑹有條碼之 冷凌瓶(cryoquat)中,其具有儲存於5 W小瓶之蓋中的qc 樣本。使用移液管移除約200 μ1樣本等分試樣,且等分至 QC蓋子t。在填充蓋子之後,將剩餘4.8⑹樣品添加至5 152717.doc -65- 201130978 ml小瓶中。應將樣本遞送以用於傳染病及其他分析。應將 冷凍小瓶置於CRYOMED®冷凍器中且藉由受控速率將其 降溫至處於或低於約_85t之溫度。應在液氮蒸氣中 在-150°C或-150eC以下將超低溫保存樣品轉移至儲存用料 斗中。傳染病測試呈陽性之任何樣本均應進行檢疫。傳染 病測試呈陰性之任何樣本均可轉移至不同的永久儲存器 中。 可在控制速率冷凍器中程式化以下降溫步驟,其首先降 低超低溫保存劑與目標幹細胞群或實質上純目標幹細胞群 之混合物《可對與超低溫保存劑合併之目標幹細胞群或實 質上純目標幹細胞群進行控制速率降溫以為冷凍器中之最 終儲存作準備。可將控制速率降低設計為維持細胞生存 力。Cryo-Med冷凍器(Thermo Electron Corp.)、液氮圓筒 及攜帶型Cryo-Med冷凍器可用於控制速率降低以為冷凍器 中之最終儲存作準備。可使細胞在冷凍小瓶或冷凍袋中經 受控制速率降低以達約-9〇°c之溫度。 對於收集於冷凍袋中之目標幹細胞群或實質上純目標幹 細胞群之樣本,可使細胞經受以下控制速率降低型態:在 約4°C下等待、每分鐘i.〇°C至-6.0°C (樣本)、每分鐘25 ye 至^^^以腔室广每分鐘他代至心心代⑽室卜每分鐘 1 .〇°C至-45.0°C (腔室)、每分鐘1〇.0。〇至_9〇 ye (腔室)及結 束(樣本處於或低於_85.0°C )。 對於收集於冷束小瓶中之目標幹細胞群或實質上純目標 幹細胞群之樣本,可使細胞經受以下控制速率降低型態: 152717.doc -66 - ⑤ 201130978 在4.0°C下等待、每分鐘l.Ot:至-3.0°C (樣本)、每分鐘 10.0°C 至-20.0°C (腔室)、每分鐘 1.〇。(:至-40.(TC (腔室)、每 分鐘10.0°C至-90.0°C (腔室)及結束。 一旦超低溫保存藥劑與目標幹細胞群或實質上純目標幹 細胞群之混合物處於或低於約_85°C,即將超低溫保存小 瓶轉移至低溫儲存單元中且在處於或低於約_135。(:之溫度 下儲存於液氮蒸氣中,或者可將小瓶儲存於液氮之液相 中。舉例而言,適合之低溫儲存單元包括(但不限於)LN2 冷;東器 MVE 1830(Chart Industries)。 亦可藉由流式細胞量測術分析目標幹細胞群或實質上純 目標幹細胞群之新鮮樣本及先前超低溫保存之目標幹細胞 群或實質上純目標幹細胞群之解凍樣本以分析細胞表面標 記、細胞生存力及其他細胞特徵。亦可在細胞溶解之後例 如使用免疫墨點分析及其類似分析來分析目標幹細胞群或 實質上純目標幹細胞群之新鮮樣本的樣本。 超低溫保存之目標幹細胞群或實質上純目標幹細胞群可 根據本文所述之解凍方法來解凍。在必須解凍目標幹細胞 群或實質上純目標幹細胞群之情況下,目標幹細胞群或實 質上純目標幹細胞群可能在解凍後或在培養細胞以評估某 一細胞繼代後立即需要流式細胞量測術分析。可在37。〇水 浴中在未使細胞完全解凍之情況下攪拌超低溫保存樣本。 可將細胞轉移至約1 ml冷卻洗滌介質中且藉由倒置來混 合。可在2000 rpm下離心樣本歷時約七分鐘。可移除上清 液且將細胞再懸浮於約100 μΐ洗滌介質(25% HSA、 152717.doc • 67 · 201130978 DNAse、肝素及HBSS w/Ca++及Mg++)中。 在某些實施例中,接者可在Bl〇〇d Bank Serofuge中將再 懸浮之細胞離心約1分鐘,可傾析上清液且將細胞再懸浮 於約1.2 ml鞘液(Sheath fluid)中且渴動。 亦在本發明之範疇内的是藉由如本文所揭示之方法獲得 的目標幹細胞群或實質上純目標幹細胞群之全部或部分的 中長期儲存,諸如在細胞庫中之中長期儲存。細胞庫中細 胞之此中長期儲存係揭示於美國專利申請案第 2003/0054331號及國際專利公開案第评〇 〇3/〇24215號中, 該等案係以全文引用的方式經併入。在處理結束時,可藉 由一般技術者已知之任何方法將如本文所揭示之目標幹細 胞群或實質上純目標幹細胞群加載至傳遞裝置(諸如注射 器)中,以便置於接受者個體中。在某些實施例中,可將 使用如本文所揭示之方法獲得的目標幹細胞群懸浮於適用 於輸注於個體中之短期儲存介質中,諸如美國專利第 5,955,257號(以全文引用的方式併入本文中)中揭示之介 質在某些實施例中,使用如本文所揭示之方法増濃的目 標幹細胞群可經儲存(例如用於供者(例如異源性)或另一個 體之將來治療用途)或直接移植(例如用以促進手術後癒 合)。 心 在本發明之一個態樣中,藉由如本文所揭示之方法收集 的複數個幹細胞群可經進一步分選成至少兩個亞群,其^ 分別超低溫保存或超低溫保存在一起(例如在同一小瓶 中)。在某些實施例中’至少兩個幹細胞亞群可為兩個幹 152717.doc •68· 201130978 細胞亞群。舉例而言,可將部分2分選成至少兩個細胞亞 群,例如(但不限於)(1)幹細胞群或VSEL增濃之群及(2)非 幹細胞群或VSEL消除之群。在另一實例中,可將部分5分 選成至少兩個細胞亞群,例如(但不限於)(1) HSC幹細胞群 或HSC增濃之群及(2) MSC幹細胞群或MSC增濃之群,及 (3)非幹細胞群或HSC或MSC消除之群。此外,亦預想兩個 亞群(亦即上述(1)及(2))(及視情況選用之群(3))可超低溫保 存在一起。在某些實施例中,部分之幹細胞向亞群之此分 選可藉由正或負分選或其組合來達成。 在某些實施例十,細胞表面蛋白之標記可用以正向選擇 或負向選擇或移除幹細胞。此等標記之實例在此項技術中 為熟知且展示於表2中。 表2 : 表2 細胞類型 標記 造血幹細胞(HSC) C34+、CD45+、CXCR4+ 内皮祖細胞 CD34+、CD45+、CD133+、KDR+ 極小胚胎樣細胞 (VSEL) CD34+、CD133+、CXCR4+、SSEA4+ 間葉幹細胞(MSC) CD34·、CD45·、CD90+、CD105+、CD106+、CD44+ 在某些實施例中,藉由如本文所揭示之方法獲得的目標 幹細胞群或實質上純目標幹細胞群可視情況在適合培養基 存在下包裝於適合容器中。在某些實施例中,包裝進一步 包含用於所需目的之書面說明書,諸如將目標幹細胞群或 實質上純目標幹細胞群植入個體以便改良或治療疾病或用 152717.doc -69· 201130978 於再生醫藥或療法之治療方案的方法(及視情況選用之儲 存方法及/或解凍方法(若超低溫保存))。 細胞療法: 在本發明之一個實施例中’當個體需要此細胞療法時, 可將藉由如本文所揭示之方法自個體之周邊血液收集的目 標幹細胞群引入或移植回至個體。 包含藉由如本文所揭示之方法自個體之周邊血液收集的 目標幹細胞群之幹細胞組合物可用以經由增強受損組織來 修復、治療或改善各種審美或功能病狀(例如缺陷)。藉由 如本文所揭示之方法自個體之周邊血液收集的目標幹細胞 群為重建或加強受損組織提供重要資源,因此代表自單一 來源之個體收集醫學上適用之多個幹細胞群的能力。在一 個較佳貫施例中,藉由如本文所揭示之方法自個體之周邊 血液收集的目標幹細胞群可用於組織工程改造及再生醫藥 中以替代已因發育缺陷、損傷、疾病或老齡化耗損而受損 之身體部分。藉由如本文所揭示之方法自個體之周邊血液 收集的目標幹細胞群提供不同系統,其中多個不同幹細胞 群可分化成不同細胞且產生相同個體或基因型之特定系。 藉由如本文所揭示之方法自個體之周邊血液收集的目標幹 細胞群因此提供個別化幹細胞療法之顯著優勢。 另外,此等藉由如本文所揭示之方法自個體之周邊血液 收集的目標幹細胞群及其組合物可用於在無疾病或外傷存 在下藉由將塊體添加至軟組織區、開口、凹陷戍空隙諸如 以便「平滑化(smoothing)」來加強不與損傷相關之軟組 152717.doc ⑤ 201130978 織。本發明亦涵蓋多次及連續投與藉由如本文所揭示之方 法自個體之周邊血液收集的目標幹細胞群。 對於基於幹細胞之治療,藉由如本文所揭示之方法自個 體之周邊灰液收集的目標幹細胞群較佳自自體或異源人類 或動物來源收集。自體動物或人類來源為更佳^接著如本 文所述來製備及分離幹細胞組合物。為根據本發明將藉由 如本文所揭示之方法自個體之周邊血液收集的目標幹細胞 群及/或其組合物引入或移植於人類或動物接受者中,製 備單核細胞懸浮液。此等懸浮液在生理學上可接受之載 劑、賦形劑或稀釋劑中含有藉由如本文所揭示之方法自個 體之周邊a液收集的目標幹細胞群之濃度。或者,幹細胞 懸浮液可在無血清無菌溶液(諸如超低溫保存溶液)中。亦 可使用增濃之幹細胞製劑。接著可將幹細胞懸浮液例如經 由注射引入供者組織之一或多個部位。 濃縮或增濃之幹細胞可以醫藥學上或生理學上可接受之 含有理學上可接受之載劑、賦形劑或稀釋劑之製劑或組合 物的形式投與,且投與相關接受者生物體(包括人類及非 人類動物)之組織。含幹細胞之組合物可藉由將細胞再懸 浮於適合液體或溶液(諸如無菌生理鹽水或其他生理學上 可接受之可注射水性液體)中來製備。此等組合物中所用 之組分之量可通常由熟習此項技術者決定。 在某些實施例中,藉由如本文所揭示之方法自個體之周 邊血液收集的目標幹細胞群或其組合物可如下投與:將幹 細胞懸浮液置於吸附或黏附材料(例如膠原蛋白海綿基質) 152717.doc -71 - 201130978 上,及將含幹細胞之材料插入相關部位中或插於相關部位 上。或者,藉由如本文所揭示之方法自個體之周邊血液收 集的目標幹細胞群可藉由非經腸注射途徑,包括皮下、靜 脈内、肌肉内及胸骨内來投與。其他投藥模式包括(但不 限於)鼻内、鞘内、皮内、經皮、經腸及舌下。在一個實 施例中’藉由所揭示之方法自個體之周邊血液收集的目標 幹細胞群可藉由内窥鏡手術投與。 對於可注射投藥,可將包含藉由如本文所揭示之方法自 個體之周邊血液收集的目標幹細胞群之組合物懸浮於無菌 溶液或懸浮液中或可再懸浮於醫藥學上及生理學上可接受 之水性或油性媒劑中,其可含有防腐劑、穩定劑及使得 溶液或懸浮液與接受者體液(亦即血液)等張之材料。適用 之賦形劑的非限制性實例包括水、磷酸鹽緩衝鹽水 7.4)、〇」5職化鈉水溶液、右旋糖、甘油、稀釋乙醇及 其類似物’及其混合物。說明性穩^劑為聚乙二醇、蛋白 質、酿、胺基酸、無機酸及有機酸,其可單獨或者以混合 物形式使用。所用量以及投藥途徑係個別決定且對應於熟 習此項技術者已知之類似類型應用或適應症中之使用量。 按照本發明’可將藉由如本文所揭示之方法自個體之周 邊血液收集的目標幹細胞群投與身體組織,包括上皮組織 (例如皮膚、内腔等)、肌肉組織(例如平滑肌)、血液'、腦 部及各種諸如與泌尿线相關之彼等器官(例 如膀胱、尿道、輸尿管、腎臟等)。 根據本文所述之—般治療方法,藉由如本文所揭示之方 1527I7.doc -72- ⑤ 201130978 法自個體之周邊血液收集的目標幹細胞群可包含其他細胞 (例如包含目標幹細胞群之細胞部分)且可例如經由靜脈内 (i.v)導管如任何其他靜脈内流體輸注於個體血流中來投與 個體。或者,然而,可產生細胞之個別化混合物以便提供 對個體之治療需要特定的細胞療法混合物。諸如經由析離 方法獲得之综合細胞混合物可經表徵、分選及分離為不同 細胞群。諸如VSEL、MSC及HSC標記或組織特異性標記 之細胞標記可用以表型式表徵自周邊血液收集之細胞群。 使用此等標記,可能基於細胞類型來分離及分選。因此將 細胞混合物轉型至細胞群中,其可廣泛分為兩部分:幹細 胞部分及非幹細胞部分。非幹細胞部分可進一步分為袓細 胞或纖維母細胞部分及功能細胞或完全分化細胞部分。一 旦分選周邊血液細胞混合物’即可分別超低溫保存及儲存 幹細胞及非幹細胞部分。以此方式,可產生個體之不同細 胞群的集合庫或儲存庫。或者,在使用之前,幹細胞與非 幹細胞部分可超低溫保存在一起,接著經分選及分離。 在某些實施例中’藉由如本文所揭示之方法自個體之周 邊血液收集的目標幹細胞群可用以產生或分化成自胚層 (亦即内胚層、中胚層及外胚層)產生之任何細胞類型之 群°其包括(但不限於)分化細胞、神經祖細胞或分化細 胞、神經膠質祖細胞或分化細胞、募樹突神經膠質祖細胞 或分化細胞、皮膚祖細胞或分化細胞、肝袓細胞或分化細 胞、肌肉祖細胞或分化細胞、骨祖細胞或分化細胞、間葉 幹細胞或祖細胞、胰腺祖細胞或分化細胞、祖細胞或分化 152717.doc •73· 201130978 軟骨細胞、基質祖細胞或分化細胞、培養擴增幹細胞或祖 細胞、培養分化幹細胞或祖細胞或其組合。尤其關注造血 細胞,其可包括可涉及紅血球、淋巴或骨髓單核細胞系之 任何有核細胞’以及肌母細胞及纖維母細胞。亦關注祖細 胞,諸如造血、神經、基質、肌肉(包括平滑肌)、肝、 肺、腸月及間葉祖細胞。亦關注分化細胞,諸如成骨細 胞、肝細胞、粒細胞、軟骨細胞、肌細胞、脂肪細胞、神 經元細胞、胰腺細胞或其組合及混合物。 在某些實施例中,藉由如本文所揭示之方法自個體之周 邊血液收集的目標幹細胞群可經組合、重組或混配成適於 治療個體疾病及/或再生特定組織之細胞的細胞療法混合 物。可使用藉由如本文所揭示之方法自個體之周邊血液收 集的目標幹細胞群、組織特異性祖細胞及視情況選用之功 能細胞的組合’例如以增強移植幹細胞之植入。因此,在 一個實施例中,本發明提供使用單獨之藉由如本文所揭示 之方法自個體之周邊血液收集的一或多個目標幹細胞群的 自體混合物或其與其他功能細胞之組合來增強移植幹細胞 之植入的方法及產品。在某些實施例中’細胞療法產品可 包含約10%至約90%藉由如本文所揭示之方法自個體之周 邊血液收集的特定目標幹細胞群、約丨〇%至約8〇%,或約 10%至約60% ’或約1〇%至約4〇%,或約10%至約90%藉由 如本文所揭示之方法自個體之周邊血液收集的目標幹細胞 群。在某些實施例中,目標幹細胞群亦可包含非幹細胞 群’諸如約5%至約50%功能細胞、約5%至約40%功能細 152717.doc 201130978 胞、約5%至約30%功能細胞、約5%至約2〇%功能細胞或約 5%至約1 〇%功能細胞。因此,在某些實施例中,分離之目 才示幹細胞群提供自特定個體之不同幹細胞類型集合庫,其 可維持於培養物中及/或超低溫保存以備將來之用,例如 供單獨使用,或選擇性重組(例如習知混合)以用於再生療 法中之個別化自體性治療應用。 上述細胞療法產品之適合實例為HSC與MSC之自體混合 物或自體幹細胞群或與造血系統之其他功能細胞的其他習 知混合。另一實例為包含PBSC '心肌祖細胞及視情況選 用之心肌細胞之自體混合物的細胞療法產品。 因此,在另一實施例中,提供一種治療有需要之患者的 方法,其包含投與個體單獨或組合形式(分別或呈混合物) 之藉由如本文所揭示之方法自個體之周邊血液收集的一或 多個目標幹細胞群之自體混合物。 幹細胞保存(Stem Cell Banking) 在本發明之另一態樣中,可將藉由如本文所揭示之方法 自個體之周邊血液收集的目標幹細胞群儲存於細胞庫中以 支持 了 選保健保險模型(elective heaithcare insurance model)以有效保護未來疾病之群的成員。可選擇個別個體 以在其處於健康狀態時自周邊血液收集其自己的幹細胞 群,處理及保藏,以便未來分配用於其保健需要。 因此’在一個實施例中’將藉由如本文所揭示之方法自 個體之周邊血液收集的目標幹細胞群「保存」於幹細胞庫 或儲藏庫或儲存設施,或保存保管目標幹細胞群之任何地 152717.doc •75· 201130978 方以備將來之用。可以在諸如核攻擊之災難性事件的情況 下將藉由如本文所揭示之方法自個體之周邊血液收集的目 標幹細胞群保持安全之方式設計儲存設施。在某些實施例 中,儲存設施可為地下、在洞中或在儲倉中。在其他實施 例中’其可在山腰或在外太空中。可將儲存設施裝入諸如 鉛之遮蔽材料中。 根據另一實施例,提供一種以四個步驟進行幹細胞保存 之方法。步驟A包括投與個體一或多種調動劑以增大個體 周邊血液中幹細胞群之量。步驟B包括藉由如本文所揭示 之方法使用淘洗法自周邊血液收集至少一群目標幹細胞 群’其中該個體不具有即刻感知之健康病狀,例如無個體 需要使用其自身目標幹細胞群之其自體移植來治療之病 狀。步驟C包括保藏藉由如本文所揭示之方法自周邊血液 收集之至少一群目標幹細胞群作為保藏細胞群。步驟D包 括提取藉由如本文所揭示之方法收集之保藏目標幹細胞群 以便將目標幹細胞自體移植於個體中。 目標幹細胞群用於個人化醫學診斷及預後性檢定之用途。 本發明之另一態樣係關於在不使用正向選擇法之情況下 藉由如本文所揭示之方法自個體周邊血液獲得之目標幹細 胞群的用it ’其用於個人化醫學應用,諸如自體性治療用 途,以及評估人膳食、藥物遺傳學、神經化學物質及/或 生活方式對幹細胞群之功能及生存力之影響的個人化檢定 中。此等檢定目前在此項技術中為熟知,肖包括高產量筛 選’其中使化合物、藥劑或環境刺激物與幹細胞接觸且可 I52717.doc • 76· ⑤ 201130978 量測化合物、藥劑或環境刺激物之功能或生存力對功能 (例如分化潛能、增殖、存活)及生存力之影響,且將於果 與參考對照樣本(例如不存在化合物,或陽性對照樣本, 諸如存在BMP6或其他生長因子及其類似物)相比。 在本發明之一個實施例中,在不使用正向選擇法之情況 - 下藉由如本文所揭示之方法自個體周邊血液獲得的目標幹 細胞群可用作個別化檢定以便研究及理解個體自身之幹細 胞群生長及分化之信號傳導路徑。藉由如本文所揭示之方 法獲得的個體之目標幹細胞的用途適用於幫助開發用於先 天性及成年心臟衰竭之治療應用。此等藉由如本文所揭示 之方法獲得之個體的目標幹細胞之用途使得在無費時動物 模型之需要及複雜性的情況下研究特異性分化成不同系 (例如成骨系或心臟系)可行。在另一實施例中,藉由如本 文所揭示之方法獲得之個體之目標幹細胞可經遺傳修飾以 攜帶特定疾病及/或病理特性及特定疾病或病症表型。 在一個實施例中,檢定包含藉由如本文所揭示之方法獲 得的複數個個體之不同目標幹細胞群,或其分化子代。在 一個實施例中,該檢定可用於研究個體之不同目標幹細胞 群的分化路徑,例如(但不限於)沿心肌細胞系、平滑肌 系、内皮系及此等系之亞群的分化。 在另一貫施例中’該檢定可用以研究個體之不同目標幹 、’田胞群的病理特徵,例如與疾病或病症相關之疾病及/或 基因特徵。在某些實施例令,疾病或病症為創傷癒合病 症月病或心血管病症或疾病。在某些實施例中,個體之 152717.doc •77- 201130978 不同目標幹細胞群已被遺傳工程改造以包含與疾病或病症 相關之特徵。遺傳工程改造幹細胞之此等方法為熟習此項 技術者所熟知,且包括藉助於轉染,藉由例如(但不限於) 使用病毒載體或藉由此項技術中已知之其他方法將核酸引 入細胞中》 在一個實施例中,可使用此等目標幹細胞以較密切調整 個體治療。舉例而言,藉由施予對於投藥所施予或提出之 各種藥物方案,可基於該個體之不同基因組成及該個體所 遇之環境因素來直接確定潛在藥物相互作用問題。以此方 式,可改變投藥之方案、劑量或時序以獲得良好作用。 在某些實施例中,因為目標幹細胞對個體之基因組成具 有特異性,所以使用MSC為目標幹細胞群之藥物遺傳學分 析提供工具。舉例而言,個體之目標幹細胞可具有產生不 同病理特徵之特定變異體。舉例而言,因為幹細胞來自個 體(例如自體),所以其可具有不良病理特徵,例如突變及/ 或多形現象,纟有助於疾病病s,或引起對治療藥物之不 良或增強反應。因此’藉由本文所揭示之方法獲得的目標 幹細胞可用以評估個體之幹細胞對特定化合物、藥劑之反 應,且在一些情況下適用於確定治療方案(例如有效治療 藥物、劑量及持續時間)及在一些情況下確定疾病預後。 在此實施射’纟發明之方法可用以針對緩解病理之藥劑 或積極影響目標幹細胞之增殖或功能之藥劑來篩選目標幹 細胞。 在替代性實施例中,本發明之方法可用㈣選與其他個 152717.doc -78· 201130978 體之幹細胞(例如無突變及/或多形現象)相比,對個體之目 標幹細胞群引起不同反應(由於固有基因組成或特定突變 及/或多形現象)之藥劑,因此該等方法可用以例如評估與 其他人及/或幹細胞群相比,特定藥物及/或藥劑對個體之 幹細胞群的影響,因此充當個人化醫藥及/或藥物遺傳學 之高產量筛選《目標幹細胞反應於藥劑(尤其是藥理學藥 劑)之方式(包括反應時序)為細胞生理狀態之重要反映。 在某些實施例中,個體之不同目標幹細胞群可在提供靶 向系分化以及純系均質及操縱外部環境之能力的優勢之實 驗系統中輕易操縱。此外,由於實驗改變人類生殖系之倫 理不可接受性,因此ES細胞轉殖基因途徑不可用於涉及操 縱人類基因之實驗中。人類個體之不同目標幹細胞群中之 基因歡向允許在因倫理問題而不可活體内測試系統之領域 中的重要應用’且可適當概括特定個體之人類生物學或疾 病過程。 在另一實施例中,個體之不同目標幹細胞群可用以製備 cDNA集合庫,其相對未經優先表現於其他系之細胞中的 cDNA污染。 個體之不同目標幹細胞群亦可用以製備對心肌細胞及其 前驅體之標記具有特異性之抗體。可藉由向脊椎動物注射 免疫原形式之本發明細胞來製備多株抗體。單株抗體之製 造係描述於諸如以下之標準參考文獻中:美國專利第 4,491,632號;第 4,472,500號及第 4,444,887號,及Enzymology 73B:3 (1981)中之方法。特異性抗體分子亦可藉由使免疫 152717.doc •79· 201130978 力健全細胞或病毒粒子之集合庫與目標抗原接觸且長出積 極選擇之純系來產生。參看Marks等人,New Eng. J. Med. 335:730,1996及McGuiness等人,Nature Biotechnol. 14:1449, 1996。如歐洲專利申請案1,094,108 A中所述,另一替代方 案為將隨機DNA片段重裝配成抗體編碼區域。 及自終端分化之個體之不同目標幹細胞群及其他系細胞 分離前驅細胞’抗體又可用以鑑別或救援(例如恢復表型) 來自混合細胞群之所需表型的細胞,以達成在免疫診斷期 間使用組織樣本共染色(costaining)之目的。 在另一實施例中,個體之不同目標幹細胞群可用於檢查 在個體之不同目標幹細胞群分化期間及之後的基因表現概 況。可將基因之表現集與來自同一或不同個體或此項技術 中已知之對照幹細胞株樣本的幹細胞群之其他子集相比。 可使用此項技術中已知之偵測特異性mRNA的任何適合之 定性或定量方法。mRNA可藉由例如與微陣列雜交、組織 切片中之原位雜交,藉由逆轉錄酶_PCR,或含有聚A+ mRNA之北方墨點法(Northern blot)來偵測《熟習此項技術 者可輕易使用此等方法以測定兩個樣本之間mRNA轉錄物 之分子大小或量的差異。 偵測及比較樣本中mRNA表現量之任何適合方法均可與 本發明之方法關聯使用。舉例而言,樣本中之mRNA表現 量可藉由自樣本產生所表現序列標籤(EST)之集合庫來測 定。集合庫内EST之相對呈現的列舉可用以估計起始樣本 内基因轉錄物之相對呈現》接著可將測試樣本之EST分析 152717.doc 201130978 結果與參考樣本之EST分析相比以測定所選聚核苷酸(特定 言之對應於一或多種本文所述之差異表現基因的聚核苷 酸)之相對表現量。 或者,可使用基因表現系列分析(SAGE)方法(Velculescu 等人,Science (1995) 270:484)在測試樣本中進行基因表 現簡3之,SAGE包括自各轉錄物内之特定位置分離不 同的短序列標籤。序列標籤經_接、選殖及定序。起始樣 本内特定轉錄物之頻率係由相關序列標籤遇到序列群之次 數來反映。 亦可使用差異顯示(DD)方法分析測試樣本中之基因表 現。在DD中,結合關於經表現基因内片段長度或片段位 置之資訊,由特定序列定界符(例如限制酶位點)界定之片 段係用作不同的基因標識符。接著可依據與所有可能片段 之集合池内之基因相關的片段之相對呈現來評估樣本内經 表現基因之相對呈現。進行DD之方法及組合物在此項技 術中為熟知,參看例如美國專利第5,776,683號;及美國專 利第5,807,680號。或者,可使用基於核苷酸相互作用之特 異性的雜交分析來評估樣本中之基因表現。寡核苷酸或 cDNA可用以選擇性地鑑別或捕捉特異性序列組成之dNA 或RNA,且疋性或疋量地測定與已知捕捉序列雜交之rna 或cDNA之量,以提供關於樣本中細胞訊息集合池内特定 sil息之相對呈現的資訊。雜交分析可經設計以允許藉由使 用例如具有高密度格式(包括過濾器、載玻片或微晶片)之 基於陣列之技術,或使用光譜分析(例如質譜法)之基於溶 152717.doc 201130978 液之技術來並行篩選數百至數千個基因的相對表現。下文 較詳細地描述本發明之診斷方法中陣列的一種例示性用 途0 可與陣列進行雜交,其中陣列可根據此項技術中已知之 任何適合方法產生。舉例而言,美國專利第5,134,854號及 美國專利第5,445,934號中描述使用光引導合成技術製造寡 核苷酸之大陣列的方法。使用電腦控制系統,經由在許多 反應位點同時偶合,將異質單體陣列轉化為異質聚合物陣 列。或者,例如PCT公開申請案第w〇 95/355〇5號中所 述,藉由將預合成之寡核苷酸沈積於固體基板上來產生微 陣列。此項技術中亦熟知自樣本與陣列之雜交收集資料的 方法。舉例而言,可使用可偵測螢光標記產生細胞樣本之 聚核苷酸,且藉由掃描微陣列中可偵測標記之存在來偵測 樣本中之聚核苷酸雜交。此項技術中已知偵測裝置上之螢 光標記目標的方法及裝置。一般而言,此等偵測裝置包括 顯微鏡及在基板處引導光之光源。光子計數器_來自基 板之螢光,而x-y平移台改變基板位置。美國專利第 5,631,734號中描述可用於標的方法中之共焦㈣裝置。掃 描雷射顯微鏡係描述於Shalon等人,Gen〇me Res (Η%) 6:639中。使用適當激發線對各所用榮光團進行掃描。接 著將自掃描產生之數位影像組合以便隨後分析。對於任何 特定陣列元件,將來自-個樣本之螢光信號的比率盘來自 另一樣本之螢光信號相比,且測定相對信_度。此項技 術中熟知分析自與㈣之雜交收集之f料的方^舉例而 152717.doc 201130978 言’當雜交偵測包括螢光標記時,資料分析可包括以下步 驟:自所收集之資料測定隨基板位置而變之螢光強度,移 除離群值(亦即偏離預定統計分佈之資料),及自其餘資料 計算目標之相對結合親和力。所得資料可以影像形式顯 示’各區域中之強度根據目標與探針之間的結合親和力而 變。模式匹配可手動進行或可使用電腦程式進行。例如美 國專利第5,800,992號描述用於製備基板基質(例如陣列)、 設計與此等基質一起使用之寡核苷酸、標記探針、雜交條 件、掃描雜交基質及分析所產生之模式(包括比較分析)的 方法。 在使用藉由如本文所揭示之方法獲得的目標幹細胞中, 使幹細胞群或幹細胞群組合與相關藥劑接觸,且藉由監測 輸出參數(諸如標記表現、細胞生存力、分化特徵、多能 能力及其類似參數)來評估藥劑作用。在檢定中使用之 刖,目標幹細胞可使用如本文所揭示之方法新鮮分離,或 在某些實施例中經培養、超低溫保存或遺傳工程改造。目 標幹細胞可為純系培養物之以環境方式誘導之變異體:例 如分為獨立培養物且在不同條件下生長,例如有或無病 毒;存在或不存在其他細胞因子或其組合。或者,目標幹 細胞可為具有所需病理特徵之變異體。舉例而言,因為目 標幹細胞來自個體(亦即自體),所以其具有所需病理特 徵例如突變及/或多形現象,其有助於疾病病理。因 此,藉由如本文所揭示之方法獲得之目標幹細胞集合池可 用以評估個體之目標幹細胞對特定化合物、藥劑之反應, 152717.doc -83- 201130978 且在一些情況下可適用於疾病預後。在此實施例中,本發 明之方法可用以針對緩解病理之藥劑篩選目標幹細胞群。 在替代性實施例中,本發明之方法可用以篩選藥劑,其 中包含特定突變及/或多形現象之一些目標幹細胞群與無 突變及/或多形現象之同一類型幹細胞相比所作的反應不 同。因此,該等方法可用以例如評估與其他人及/或細胞 相比,特定藥物及/或藥劑對個體之目標幹細胞群的作 用’因此充當個人化醫藥及/或藥物遺傳學之高產量篩 選。細胞對藥劑(尤其是藥理學藥劑)之反應方式(包括反應 時點)為細胞生理狀態之重要反映。 用於篩選法之藥劑可選自化學物質、小分子、化學實 體、核酸序列、作用劑、核酸類似物或蛋白質或多肽或其 片段之類似物之群。在某些實施例中,核酸為dNA或 RNA ’且核酸類似物例如可為pna、pCPNA及LNA。核酸 可為單股或雙股’且可選自包含編碼相關蛋白質之核酸、 寡核苷酸、PNA等之群◊此等核酸序列包括例如(但不限 於)編碼充當以下之蛋白質的核酸序列:轉錄抑制劑、反 義分子、核糖核酸酶、小抑制性核酸序列,例如(但不限 於)RNAi、shRNAi、siRNA、微 RNAi(mRNAi)、反義寡核 苷酸等。蛋白質及/或肽藥劑或其片段可為任何相關蛋白 質,例如(但不限於)突變蛋白、治療蛋白或截短蛋白’其 中在細胞中蛋白質通常不存在或表現量較低。相關蛋白質 可選自包含以下之群:突變蛋白、遺傳工程改造之蛋白 質、肽、合成肽、重組蛋白、嵌合蛋白、抗體、人類化蛋 152717.doc •84· ⑤ 201130978 人類化抗體、嵌合抗體、經修飾之蛋白質及其片 又。可將藥劑施用於介質,纟中其接觸細胞(諸如幹細胞 及’或間葉細胞)且誘導其作用。或者,由於將核酸序列引 #月匕及其轉錄中’使得在細胞内產生核酸及/或蛋白質 藥J所以藥劑可為細胞内的,亦即在細胞(諸如幹細胞 或間葉細胞)内。藥劑亦涵蓋對細胞進行之任何作用及/ 或事件。作為—個非限制性實例,作用可包含觸發細胞生 理變化之任何作用’例如(但不限於)熱休克、電離輻射、 、休克電脈衝、光及/或波長曝光、uv曝光、壓力、拉 ^ a大及/或減小之氧氣暴露、暴露於反應性氧物 質(R^S)、缺血性條件、螢光曝光等。環境刺激物亦包括 疋義之固有%境刺激物。暴露於藥劑可為連續或間斷 術语「藥劑」係指任何化學物質、實體或部分,包括 (不限於)合成及天然存在之非蛋白f性實體。在某些實施 例中’相關化合物為具有化學部分之小分子。舉例而言, :學部分包括,經取代或經取代之院基、芳族或雜環基部 裒内S曰、萊普黴素及相關天然產物或其類似 已头八有所茜活性及/或特性之化合物,或其可選自 不同化合物之集合庫。 在某些實施例中,藥劑為包括以下之相關藥劑:涵蓋聚 多化學類別(主要為有機分子)之已知及未知化合物,立可 包括有機金屬分子、無機分子、基因序列等。本發明之重 要態樣為評估候選藥物,包括毒性測試及其類似測試。候 152717.doc •85- 201130978 選藥劑亦包括包含結構相互作用(特定言之氫鍵結)必需之 官能基的有機分子,且通常包括至少一個胺基、羰基、羥 基或羧基,經常包括至少兩個功能性化學基團。候選藥劑 經常包含經一或多個上述官能基取代之環碳或雜環結構及/ 或芳族或聚芳族結構。候選藥劑亦見於生物分子中,包括 肽、聚核苷酸、醣、脂肪酸、類固醇、嘌呤、嘧啶、其衍 生物、結構類似物或組合。 亦包括藥理學上活性藥物、遺傳活性分子等作為藥劑。 相關化合物包括例如化學治療劑、激素或激素拮抗劑、生 長因子或重組生長因子及其片段及變異體。適用於本發明 之醫藥劑的實例為以下中所述者:「The Pharmacological Basis of Therapeutics,」Goodman 及 Gilman,McGraw-Hill, New York,N_Y·,(1996),第九版,於以下章節:Water, Salts and Ions ; Drugs Affecting Renal Function and Electrolyte Metabolism ; Drugs Affecting Gastrointestinal Function ; Chemotherapy of Microbial Diseases ; Chemotherapy of Neoplastic Diseases ; Drugs Acting on Blood-Forming organs ; Hormones and Hormone Antagonists ; Vitamins, Dermatology及Toxicology,所有均以引用的方式併入本文 中。亦包括毒素,及生物及化學戰劑,例如參看Somani, S. Μ·(編),「Chemical Warfare Agents,」Academic Press, New York, 1992)。 藥劑包括所有類別之上述分子,且可進一步包含未知含 量之樣本。關注源自天然來源(諸如植物)之天然存在之化 152717.doc -86 - ⑤ 201130978 合物的複雜混合物。儘管許多樣本將包含化合物溶液但 亦可敎可溶解於適合溶财之㈣樣本。相關樣本包括 環境樣本’例如地下水、海水、採礦廢料等;生物樣本, 例如自作物、組織樣本等製備之溶解物;製造樣本,例如 在製備醫藥期間之時程;以及製備用於分析之化合物集人 庫;及其類似樣本。相關樣本包括經評估潛在治療價值之 化合物,亦即藥物候選物。 參數為目標幹細胞之可定量分量,特定言之為理想地在 高產量系統中可精確量測之分量。參數可為任何細胞纽分 或細胞產⑯’包括細胞表面決定子、受體、蛋白質或其構 形或轉譯後㈣、脂質、碳水化合物、有機或無機分子、 核酸(例如mRNA、DNA等)或源、自此細胞組分之部分,或 其組合。儘管大多數參數將提供定量讀出,但在—些情況 下半定量或定性結果將為可接受的。讀出可包括單一測定 值’或可包括平均值、中值或方差等。在特徵上,對於來 自大量相同檢定之各參數,將獲得參數讀出值之範圍。預 期可變性且將制標準料法與心提供單-值之常見統 計法獲得各組測試參數之值範圍。 包括候選藥劑之化合物係'獲自多種來源,包括合成或天 然化合物集合庫。舉例而言’眾多方法可用於隨機及引導 合成多種有機化合物(包括生物分子),包括表現隨機化寡 核苦西文及寡肽。或者,呈細菌、真菌、植物及動物提取物 形式之天然化合物的集合庫為可得或輕易產生。另外,天 然或合成產生之集合庫及化合物係經由習知化學、物理及 152717.doc *87- 201130978 生物化學方法來輕易修飾,且可用以產生組合性集合庫。 可對已知藥理學藥劑進行引導或隨機化學修飾:、:如醯 化、烷基化、酿化、醯胺化等’以產生結構類似物。 通常與無藥劑之細胞結合,藉由將藥劑添加至至少一個 =通常複數個幹細胞樣本中,針對對幹細胞群之作用筛選 藥劑。量測反應於藥劑之參數變化,且藉由與參考培養物 (例如存在及不存在藥劑,以其他藥劑獲得)相比來評估結 果。 ’。 在某些實施例中,藥劑宜以溶液或輕易可溶形式添加至 培養物中幹細胞之培養基中。藥劑可在流通系統(flQW_ through system)t,以間斷或連續流形式,或替代性地, 藉由添加化合物大丸劑單獨或增量式添加至另外靜止溶液 中。在流通系統中,使用兩種流體,其中一者為生理學上 中性溶液’且另一者為與所添加之測試化合物相同:溶 液》使第-流體在幹細胞上通過,接著通過第二流體。在 單一溶液法中,將測試化合物大丸劑添加至包圍細胞之培 養基體積中。培養基組分之總體濃度不應因添加大丸劑或 在流通法中之兩個溶液之間而顯著變化。在某些實施例 中,藥劑調配物不包括其他組分,諸如防腐劑,其可對總 體調配物具有顯著影響。因此,較佳調配物基本上由生物 學上活性化合物及生理學上可接受之載劑(例如水、乙 醇、DMS0等)組成。然而,若化合物為無溶劑之液體,則 調配物可基本上由化合物本身組成。 複數種檢定可用不同藥劑濃度平行運作以獲得對各種濃Pm is the density of the liquid medium, η is the viscosity of the medium, and 茗 is gravity or centrifugal acceleration. Since the particle radius is raised to a second power in the Stoke equation and the particle density does not rise', the cell size, rather than its density, greatly affects its rate of settling. This explains why larger particles generally remain in the chamber during centrifugation and smaller particles are released (if the particles have similar densities). Centrifugal panning has many limitations, as described in U.S. Patent No. 3,825,175, the disclosure of which is incorporated herein in its entirety. In most of these methods, particles must be introduced into the fluid medium stream in individual, intermittent batches to allow for adequate particle separation. Therefore, some panning methods only allow separation in the form of batches of particles and require other fluid media to transport the particles. In addition, the flow force must be precisely balanced with the centrifugal force to allow for proper particle segregation. Thus, the present invention encompasses a centrifugal elutriation process as disclosed in U.S. Patent Application Serial No. 2//756, which is incorporated herein by reference in its entirety. Peripheral blood samples for enriching a subset of stem cells by panning. In certain embodiments, a method for a method as disclosed herein is obtained from a mammalian individual (such as a human individual). The heart is the peripheral blood sample. In some embodiments 152717. Doc 5 • 60 - 201130978 'The human individual mobilizer has been previously administered to increase the yield or number of circulating stem cells in the peripheral blood. The methods of mobilization are known in the art and include, without limitation, the methods disclosed in U.S. Patent No. 6,261,549, and U.S. Patent Application Serial No. 2009/01. . In certain embodiments, the mobilizing agent administered to the individual includes, but is not limited to, G-CSF, GM-CSF, dexamethasone, CXCR4 receptor inhibitor, interleukin-1 (IL_i), mediator White _3 (il-3), interleukin _8 (IL-8), PIXY-321 (GM-CSF/IL-3 fusion protein), macrophage inflammatory protein, stem cell factor, thrombopoietin and growth A related oncogene, either in the form of a single mobilizer or in any combination of such mobilizers. Other mobilizing agents include, for example, but are not limited to, CXCR4 inhibitors, such as AMD31GG, ALX4G-4C, T22, T134, T14G, and TAK-779, which are disclosed in U.S. Patent No. 7,169,75, the disclosure of which is incorporated herein by reference. The manner of full reference is incorporated herein. In some embodiments, the peripheral gold sample is a mobilized peripheral blood sample. In certain embodiments, the individual is collected or obtained from the individual at least 2 days after administration of the mobilizer, and in some implementations, the individual is collected or obtained from the individual 4 or 4 days after the administration of the effective amount of the mobilizer. Blood Sample 0 In certain embodiments 'pre-treatment of peripheral blood samples or mobilization prior to separation of multiple target stem cell populations according to methods disclosed herein, for example, by other methods (eg, chemically lysing lymphocytes) Peripheral blood samples. Thus 'in some embodiments, for use according to this 152717. Doc-61 - 201130978 The starting material for the panning process disclosed in the method is the separation product, rather than the peripheral blood sample itself, in which the separation product is obtained from the peripheral liquid sample treatment. An individual suitable for collecting a plurality of stem cell populations from peripheral blood using methods as disclosed herein can be any individual of any age, such as any human individual. In certain embodiments, the individual is a child such as a child between about 1 and 18 years old. In some embodiments, the individual is an adult individual. In certain embodiments, the individual is a healthy individual. In certain embodiments, the individual is predisposed to a disease (eg, diabetes, cardiovascular disease, etc.), such as a mutation or genetic marker (such as a SNP, etc.) in a gene associated with an increased risk that the individual will develop a disease at a future date. Individuals. In certain embodiments, as discussed above, the individual mobilizer is administered prior to obtaining a peripheral blood sample in the individual. In certain embodiments, the individual is preferably at least 1 G, or at least _, or at least about 3 years old, preferably less than about (9) years old, or less than about 50 years old or less than about 4 years old, or less than About 3 years old or less than about 2 years old. The inventors have found that it is desirable to adjust the hematocrit range for separation. To enhance the specificity of the collected cell population, for example, in one embodiment, the hematocrit range is selected to increase the V disorder ratio. In another embodiment, the hematocrit range is selected to enhance the cryopreservation of the collected VSELs, as achieved by minimizing granulocyte collection. In another embodiment, the blood cell is selected to ensure that (4) a plurality of dry fines, such as 稽 and 朦, are collected. In one embodiment, the hematocrit range is selected to be 2-3%. In another embodiment, the hematocrit range IS is selected to be 3-4% 〇 152717. Doc •62- (|) 201130978 Use of stem cell populations enriched from peripheral jk fluids In some embodiments, the enriched target stem cell population is stored in a stem cell bank for future use, for example A disease treatment or regenerative medicine or therapy regimen is initially provided to an individual of a cell, such as the cells used in a subsequent allograft procedure. In such embodiments, the target stem cells obtained by the methods as disclosed herein are processed for long term storage in the cell bank. The advantage of this procedure is that it can store different target stem cell populations, allowing the selection of target stem cell populations that are most suitable for subsequent procedures for regenerative therapy procedures. In addition, in some cases, in tissue engineering and regenerative therapies, it may be desirable to use different ratio combinations of different target stem cell populations for different tissue engineering or regenerative therapy procedures. Thus, the present invention provides the ability to modulate the use of a target stem cell population for future use. In certain embodiments, different stem cell populations obtained from peripheral blood by methods as disclosed herein can be cryopreserved (eg, frozen) at liquid nitrogen temperature and stored for long periods of time, which can be thawed, eg, for treatment Purpose, such as regenerative therapy or medicine. In certain embodiments, portions obtained from peripheral blood can be further separated into a subset of stem cells prior to cryopreservation. In certain embodiments, different target stem cell populations obtained in each fraction can be further purified and expanded (e.g., propagated by in vitro culture) prior to cryopreservation to produce a substantially pure target stem cell population. If cold; East', the stem cell population can be stored in 1%, 50% FCS, 40% RPMI 1640 medium. Once thawed, the stem cell population can be cultured and expanded ex vivo in the presence of growth factors and/or feeder layers for a suitable period of time' subsequently implanted into the individual in need. 152717. Doc-63·201130978 The method of cryopreserving stem cells is generally known and disclosed in U.S. Patent Application Nos. 2008/0220520, 2009/0022693, 2008/0241113, and 2005/0106554, and U.S. Patent Nos. 5,759,764 and 7,112,576 and 7,604,930. This is incorporated herein by reference in its entirety. For cryopreservation, each stem cell population obtained from peripheral blood by the methods disclosed herein can be suspended in DPBS and placed on ice for at least about 15 minutes in preparation for cryopreservation. The preparation process can include adding the cryopreservation medium to the target stem cell population or to a substantially pure target stem cell population, followed by a controlled rate freezer or other suitable refrigeration system (dump-freeze cold bed system or cold) The bed container (Nalgene) subjects the mixture to several temperature reduction steps to reduce the temperature of the target stem cell population or substantially pure target stem cell population to a final temperature of about -90 °C. Suitable control rate reducers include, but are not limited to, Cryomed Thermo Form controlled rate cold beam 7554 (Thermo Electron, Corp. ), plane control rate is cold 〉 East Kryo 10/16 (TS Scientific), Gordinier, Bio-Cool--FTS system and Asymptote EF600, BIOSTOR CBS 2100 series. The cryopreservation medium can be prepared to contain the medium and DMSO. Approximately 3 ml of DPBS can be added to a container (such as a 50 ml conical tube). About 1 ml of human serum albumin (HSA) can be added to about 3 ml of DPBS and then cooled on ice for about ten minutes. About 1 ml of cooled 99% DMSO was added to HSA and DPBS to prepare a final cryopreservation medium. The cryopreservation medium and the target stem cell population or the substantially pure target stem cell population can then be placed on ice for about 15 minutes, and then the cryopreservation medium is added to the cell sample. Batch processing can be used to aliquot cryopreservation media into cell samples. Example 152717. Doc • 64· 5 201130978 For a single aliquot of approximately 100 μΐ target stem cell population or substantially pure target stem cell population can be combined with approximately 3 DPBS, 1 ml HSA and approximately 1 mi 99% DMSO. Approximately 2 aliquots of approximately 200 μΐ MSC cell suspension can be combined with approximately 6 ml DPBS, 2 ml HSA, and approximately 2 ml 99% DMSO. Approximately 5 aliquots of the cell sample can be combined with about 15 ml DPBS 'about 5 ml HSA and about 5 ml 99% DMSO. Approximately one aliquot of the cell sample can be combined with about 30 ml DPBS, about 10 ml HSA, and about 10 ml 99% D M S 。. In an alternative embodiment, other cryogenic storage media can be used. For example, cryopreservation media containing cryopreservation agents can be used to maintain high cell viability results after thawing, such as cryopreservation of embryos supplemented with Cry〇St〇r CSio or CS5 (Biolife), supplemented with propylene glycol and sucrose (vitr〇life) Medium' or SAGE medium (Cooper Surgical). Glycerin can be used with other cryopreservatives such as DMSO, or can be used alone at a concentration of about 10% in a medium containing a suitable protein. In another embodiment, the cryopreservation medium can be added to a target stem cell population or a substantially pure target stem cell population. The cryopreservation medium can be added dropwise to the target stem cell population or substantially pure target stem cell population suspended in DPBS until the total volume of the suspended hematopoietic stem cells and cryopreservation medium reaches the final desired volume of the cryopreservation cell mixture. The final cryopreserved cell medium can be transferred to a 2χ5(6) barcoded cryoquat bottle with a qc sample stored in a 5 W vial cap. Approximately 200 μl sample aliquots were removed using a pipette and aliquoted to the QC lid t. After filling the lid, there will be 4. 8 (6) sample was added to 5 152717. Doc -65- 201130978 ml in a vial. Samples should be delivered for use in infectious diseases and other analyses. The frozen vial should be placed in a CRYOMED® freezer and cooled to a temperature of at or below about _85 t by a controlled rate. The cryopreserved sample should be transferred to a storage hopper at -150 ° C or below -150 °C in liquid nitrogen vapor. Any sample that is positive for an infectious disease test should be quarantined. Any sample that is negative for the infectious disease test can be transferred to a different permanent storage. The step of lowering the temperature can be programmed in a controlled rate freezer, which first reduces the mixture of the cryopreservative and the target stem cell population or the substantially pure target stem cell population. "A target stem cell population or a substantially pure target stem cell that can be combined with a cryopreservation agent." The group is controlled to cool down to prepare for final storage in the freezer. Control rate reduction can be designed to maintain cell viability. Cryo-Med Freezer (Thermo Electron Corp. The liquid nitrogen cylinder and the portable Cryo-Med freezer can be used to control the rate reduction to prepare for the final storage in the freezer. The cells can be subjected to a controlled rate reduction in a frozen vial or freezer bag to a temperature of about -9 °C. For samples of the target stem cell population collected in the freezer bag or a substantially pure target stem cell population, the cells can be subjected to the following controlled rate reduction profile: waiting at about 4 ° C, per minute i. 〇°C to -6. 0 ° C (sample), 25 ye to ^ ^ ^ per minute to the chamber wide every minute from generation to heart (10) room per minute 1 . 〇°C to -45. 0 ° C (chamber), 1 每 per minute. 0. 〇 to _9〇 ye (chamber) and end (sample at or below _85. 0 ° C). For samples of target stem cell populations or substantially pure target stem cell populations collected in cold bundle vials, the cells can be subjected to the following controlled rate reduction profile: 152717. Doc -66 - 5 201130978 at 4. Wait at 0 ° C, l. Ot: to -3. 0 ° C (sample), per minute 10. 0°C to -20. 0 ° C (chamber), per minute 1. Hey. (: to -40. (TC (chamber), 10. per minute. 0°C to -90. 0 ° C (chamber) and end. Once the mixture of cryopreservative agent and target stem cell population or substantially pure target stem cell population is at or below about _85 °C, the cryopreservation vial is transferred to the cryogenic storage unit and is at or below about 135. (The temperature is stored in liquid nitrogen vapor, or the vial can be stored in the liquid nitrogen liquid. For example, suitable low temperature storage units include (but are not limited to) LN2 cold; East MVE 1830 (Chart Industries Cell surface markers can also be analyzed by flow cytometry to analyze fresh samples of target stem cell populations or substantially pure target stem cell populations and previously cryopreserved target stem cell populations or substantially pure target stem cell populations. Cell viability and other cellular characteristics. Samples of fresh samples of target stem cell populations or substantially pure target stem cell populations can also be analyzed after cell lysis, for example, using immunoblot analysis and similar assays. Target cell population or parenchyma for cryopreservation The upper target stem cell population can be thawed according to the thawing method described herein. In the case where the target stem cell population must be thawed or substantially pure target stem cell population, the target stem cell population or the substantially pure target stem cell population may be after thawing or in culture. Cells were analyzed by flow cytometry immediately after evaluation of a cell. The cryopreservation sample can be stirred in a 37. water bath without completely thawing the cells. The cells can be transferred to about 1 ml of cooled wash medium and mixed by inversion. The sample can be centrifuged at 2000 rpm for about seven Minutes. The supernatant can be removed and the cells resuspended in approximately 100 μL of wash medium (25% HSA, 152717. Doc • 67 · 201130978 DNAse, heparin and HBSS w/Ca++ and Mg++). In certain embodiments, the resuspended cells can be centrifuged in a Blöd Bank Serofuge for about 1 minute, the supernatant can be decanted and the cells resuspended at about 1. 2 ml of Sheath fluid and thirsty. Also within the scope of the present invention is medium to long term storage of all or part of a target stem cell population or a substantially pure target stem cell population obtained by a method as disclosed herein, such as long term storage in a cell bank. The medium- and long-term storage of the cells in the cell bank is disclosed in U.S. Patent Application Serial No. 2003/005433, the entire disclosure of which is incorporated herein by reference. At the end of the treatment, the target population of stem cells or the substantially pure target stem cell population as disclosed herein can be loaded into a delivery device (such as an injector) by any method known to those of ordinary skill in the art for placement in the recipient individual. In certain embodiments, a population of target stem cells obtained using the methods disclosed herein can be suspended in a short-term storage medium suitable for infusion into an individual, such as U.S. Patent No. 5,955,257, incorporated herein by reference in its entirety. Media disclosed in the above) In certain embodiments, a population of target stem cells that are concentrated using methods as disclosed herein can be stored (eg, for donor (eg, heterologous) or future therapeutic use of another body) Or direct transplantation (for example to promote healing after surgery). In one aspect of the invention, a plurality of stem cell populations collected by a method as disclosed herein can be further sorted into at least two subpopulations, each of which is cryopreserved or cryopreserved separately (eg, in the same In the vial). In certain embodiments, at least two stem cell subpopulations can be two stems 152717. Doc •68· 201130978 Cell subgroup. For example, portion 2 can be sorted into at least two cell subpopulations such as, but not limited to, (1) a population of stem cells or a population of VSEL enrichment and (2) a population of non-stem cells or a population eliminated by VSEL. In another example, portion 5 can be sorted into at least two subpopulations of cells, such as, but not limited to, (1) HSC stem cell population or HSC enriched population and (2) MSC stem cell population or MSC enriched Groups, and (3) non-stem cell populations or groups eliminated by HSCs or MSCs. In addition, it is envisaged that two subgroups (ie, (1) and (2) above) (and groups (3) as appropriate) may be kept at a low temperature. In some embodiments, the sorting of a portion of the stem cells to the subpopulation can be achieved by positive or negative sorting or a combination thereof. In certain embodiments, the labeling of cell surface proteins can be used to positively select or negatively select or remove stem cells. Examples of such labels are well known in the art and are shown in Table 2. Table 2: Table 2 Cell type labeled hematopoietic stem cells (HSC) C34+, CD45+, CXCR4+ endothelial progenitor cells CD34+, CD45+, CD133+, KDR+ minimal embryonic-like cells (VSEL) CD34+, CD133+, CXCR4+, SSEA4+ mesenchymal stem cells (MSC) CD34· , CD45·, CD90+, CD105+, CD106+, CD44+ In certain embodiments, the target stem cell population obtained by the methods disclosed herein or the substantially pure target stem cell population can be packaged in a suitable container in the presence of a suitable medium, as appropriate. . In certain embodiments, the package further comprises written instructions for the desired purpose, such as implanting a target stem cell population or a substantially pure target stem cell population into the individual for improvement or treatment of the disease or using 152717. Doc -69· 201130978 Method of treatment for regenerative medicine or therapy (and storage methods and/or thawing methods (if cryopreservation) as appropriate). Cell Therapy: In one embodiment of the invention 'When an individual desires such cell therapy, a population of target stem cells collected from peripheral blood of the individual by methods as disclosed herein can be introduced or transplanted back into the subject. A stem cell composition comprising a population of target stem cells collected from peripheral blood of an individual by a method as disclosed herein can be used to repair, treat or ameliorate various aesthetic or functional conditions (e.g., defects) via enhancement of damaged tissue. The target stem cell population collected from the peripheral blood of an individual by the methods disclosed herein provides an important resource for reconstructing or enhancing damaged tissue and thus represents the ability to collect a plurality of medically applicable stem cell populations from individuals of a single source. In a preferred embodiment, a population of target stem cells collected from peripheral blood of an individual by methods as disclosed herein can be used in tissue engineering and regenerative medicine to replace depletion due to developmental defects, injury, disease, or aging. And the damaged part of the body. A population of target stem cells collected from peripheral blood of an individual by a method as disclosed herein provides a different system in which a plurality of different stem cell populations can differentiate into different cells and produce a particular line of the same individual or genotype. The target stem cell population collected from the peripheral blood of the individual by the methods as disclosed herein thus provides significant advantages in individualized stem cell therapy. Additionally, such target stem cell populations and compositions thereof collected from peripheral blood of an individual by methods as disclosed herein can be used to add bulk to soft tissue regions, openings, depressions, voids in the absence of disease or trauma. Such as to "smoothing" to strengthen the soft group 152717 not related to damage. Doc 5 201130978 Weaving. The invention also encompasses multiple and continuous administration of a population of target stem cells collected from peripheral blood of an individual by methods as disclosed herein. For stem cell based treatment, the target stem cell population collected from the peripheral gray matter of the individual by methods as disclosed herein is preferably collected from an autologous or heterologous human or animal source. The autologous animal or human source is preferred. The stem cell composition is then prepared and isolated as described herein. A mononuclear cell suspension is prepared according to the present invention by introducing or transplanting a target stem cell population and/or a composition thereof collected from peripheral blood of an individual by a method as disclosed herein into a human or animal recipient. Such suspensions contain, in a physiologically acceptable carrier, excipient or diluent, the concentration of the target stem cell population collected from the peripheral a fluid of the individual by methods as disclosed herein. Alternatively, the stem cell suspension can be in a serum free sterile solution such as a cryopreservation solution. Concentrated stem cell preparations can also be used. The stem cell suspension can then be introduced into one or more sites of the donor tissue, e.g., via injection. The concentrated or concentrated stem cells can be administered in the form of a pharmaceutically or physiologically acceptable formulation or composition containing a physiologically acceptable carrier, excipient or diluent, and administered to the recipient organism. Organizations (including humans and non-human animals). Compositions containing stem cells can be prepared by resuspending the cells in a suitable liquid or solution, such as sterile saline or other physiologically acceptable injectable aqueous liquid. The amount of the components used in such compositions can generally be determined by those skilled in the art. In certain embodiments, a population of target stem cells or compositions thereof collected from peripheral blood of an individual by a method as disclosed herein can be administered by placing a stem cell suspension in an adsorbent or adherent material (eg, a collagen sponge matrix). ) 152717. On doc-71 - 201130978, insert the material containing stem cells into the relevant part or insert it into the relevant part. Alternatively, a population of target stem cells collected from peripheral blood of an individual by a method as disclosed herein can be administered by parenteral injection, including subcutaneous, intravenous, intramuscular, and intrasternal. Other modes of administration include, but are not limited to, intranasal, intrathecal, intradermal, transdermal, enteral, and sublingual. In one embodiment, the target stem cell population collected from the peripheral blood of the individual by the disclosed method can be administered by endoscopic surgery. For injectable administration, a composition comprising a population of target stem cells collected from peripheral blood of an individual by a method as disclosed herein may be suspended in a sterile solution or suspension or may be resuspended in pharmaceutically and physiologically acceptable form. The aqueous or oily vehicle to be received may contain a preservative, a stabilizer, and a material which causes the solution or suspension to be isotonic with the body fluid of the recipient (i.e., blood). Non-limiting examples of suitable excipients include water, phosphate buffered saline. 4), 〇"5 aqueous sodium solution, dextrose, glycerin, diluted ethanol and its analogs' and mixtures thereof. Illustrative stabilizers are polyethylene glycol, protein, brewing, amino acids, inorganic acids, and organic acids, which may be used singly or in the form of a mixture. The amount and route of administration are determined individually and correspond to the amount of use in a similar type of application or indication known to those skilled in the art. According to the present invention, a target stem cell population collected from peripheral blood of an individual by a method as disclosed herein can be administered to body tissues, including epithelial tissues (e.g., skin, lumen, etc.), muscle tissue (e.g., smooth muscle), blood. , the brain and various organs such as the urinary line (eg bladder, urethra, ureter, kidney, etc.). According to the general treatment method described herein, by the method disclosed herein as 1527I7. Doc -72- 5 201130978 The target stem cell population collected from the peripheral blood of an individual may comprise other cells (eg, a portion of the cell comprising the target stem cell population) and may be, for example, via intravenous (i. v) The catheter, such as any other intravenous fluid, is infused into the bloodstream of the individual to be administered to the individual. Alternatively, however, an individualized mixture of cells can be produced to provide a specific cell therapy mixture for the treatment of the individual. The integrated cell mixture, such as obtained by the separation method, can be characterized, sorted, and separated into different cell populations. Cell markers such as VSEL, MSC, and HSC markers or tissue-specific markers can be used to phenotypically characterize cell populations collected from peripheral blood. Using these markers, it is possible to separate and sort based on cell type. Therefore, the cell mixture is transformed into a cell population, which can be broadly divided into two parts: a stem cell fraction and a non-stem cell fraction. The non-stem cell fraction can be further divided into a sputum cell or a fibroblast fraction and a functional cell or a fully differentiated cell fraction. Once the peripheral blood cell mixture is sorted, the stem cells and non-stem cells can be cryopreserved and stored separately. In this way, a collection or repository of different cell populations of individuals can be generated. Alternatively, the stem cells and non-stem cell fractions can be cryopreserved together prior to use, followed by sorting and separation. In certain embodiments, 'a population of target stem cells collected from peripheral blood of an individual by methods as disclosed herein can be used to produce or differentiate into any cell type produced by the germ layer (ie, endoderm, mesoderm, and ectoderm). Groups including, but not limited to, differentiated cells, neural progenitor or differentiated cells, glial progenitor or differentiated cells, dendritic glial progenitor or differentiated cells, dermal progenitor or differentiated cells, hepatocytes or Differentiated cells, muscle progenitor cells or differentiated cells, osteoprogenitor or differentiated cells, mesenchymal stem cells or progenitor cells, pancreatic progenitor cells or differentiated cells, progenitor cells or differentiation 152717. Doc •73· 201130978 Chondrocytes, stromal progenitor cells or differentiated cells, cultured expanded stem or progenitor cells, cultured differentiated stem or progenitor cells or a combination thereof. Of particular interest are hematopoietic cells, which may include any nucleated cells' and myoblasts and fibroblasts that may be involved in red blood cell, lymphoid or myeloid mononuclear cell lines. Progenitor cells are also of interest, such as hematopoiesis, nerves, stroma, muscle (including smooth muscle), liver, lung, intestine and mesenchymal progenitor cells. Also directed are differentiated cells, such as osteoblasts, hepatocytes, granulocytes, chondrocytes, myocytes, adipocytes, neuronal cells, pancreatic cells, or combinations and mixtures thereof. In certain embodiments, a population of target stem cells collected from peripheral blood of an individual by methods as disclosed herein can be combined, recombinantly or compounded into cell therapy suitable for treating a disease in a subject and/or regenerating cells of a particular tissue. mixture. Combinations of target stem cell populations, tissue-specific progenitor cells, and optionally functional cells collected from peripheral blood of an individual by methods as disclosed herein can be used, e.g., to enhance implantation of transplanted stem cells. Thus, in one embodiment, the invention provides for the use of an autologous mixture of one or more target stem cell populations collected from peripheral blood of an individual, or a combination thereof with other functional cells, by a method as disclosed herein alone. Methods and products for implanting stem cells. In certain embodiments, the 'cell therapy product can comprise from about 10% to about 90% of a particular target stem cell population collected from peripheral blood of the individual by a method as disclosed herein, from about 丨〇% to about 8%, or From about 10% to about 60% 'or from about 1% to about 4%, or from about 10% to about 90% of the target stem cell population collected from the peripheral blood of the individual by a method as disclosed herein. In certain embodiments, the target stem cell population may also comprise a non-stem cell population such as from about 5% to about 50% functional cells, from about 5% to about 40% functional fine 152717. Doc 201130978 cells, from about 5% to about 30% functional cells, from about 5% to about 2% functional cells or from about 5% to about 1% functional cells. Thus, in certain embodiments, the isolated subject indicates that the stem cell population provides a pool of different stem cell types from a particular individual that can be maintained in culture and/or cryopreserved for future use, such as for individual use, Or selective recombination (eg, conventional mixing) for use in individualized autologous therapeutic applications in regenerative therapies. Suitable examples of such cell therapy products are automixes of HSCs and MSCs or autologous stem cell populations or other conventional blends with other functional cells of the hematopoietic system. Another example is a cell therapy product comprising an autologous mixture of PBSC 'myocardial progenitor cells and optionally cardiomyocytes. Accordingly, in another embodiment, a method of treating a patient in need thereof, comprising administering to an individual, individually or in combination (either separately or in a mixture), is collected from peripheral blood of the individual by a method as disclosed herein. An autologous mixture of one or more target stem cell populations. Stem Cell Banking In another aspect of the invention, a population of target stem cells collected from peripheral blood of an individual by a method as disclosed herein can be stored in a cell bank to support a health care insurance model ( Elective heaithcare insurance model) is a member of the group that effectively protects future diseases. Individual individuals can be selected to collect their own stem cell population from peripheral blood while they are in a healthy state, to process and preserve it for future distribution for their health care needs. Thus, 'in one embodiment, 'the target stem cell population collected from the peripheral blood of the individual by the method disclosed herein is "saved" to the stem cell bank or reservoir or storage facility, or any place where the target cell population is preserved 152717 . Doc •75· 201130978 For future use. The storage facility can be designed in a manner that keeps the target stem cell population collected from the peripheral blood of the individual safe by means of a catastrophic event such as a nuclear attack. In some embodiments, the storage facility can be underground, in a hole, or in a storage bin. In other embodiments, 'it can be on the mountainside or in outer space. The storage facility can be loaded into a masking material such as lead. According to another embodiment, a method of stem cell preservation in four steps is provided. Step A involves administering one or more mobilizers to the individual to increase the amount of stem cells in the blood surrounding the individual. Step B includes collecting at least one population of target stem cells from peripheral blood using a panning method by a method as disclosed herein wherein the individual does not have an immediate perceived health condition, for example, no individual needs to use his own target stem cell population Body transplantation to treat the condition. Step C includes preserving at least one population of target stem cells collected from peripheral blood as a deposited cell population by methods as disclosed herein. Step D includes extracting a deposited target stem cell population collected by a method as disclosed herein to autologously transplant the target stem cells into the individual. The target stem cell population is used for personalized medical diagnosis and prognostic testing. Another aspect of the present invention relates to a target stem cell population obtained from individual peripheral blood by a method as disclosed herein without using a positive selection method, which is used for personalized medical applications, such as self. Therapeutic uses, as well as individualized assays that assess the effects of human diet, pharmacogenetics, neurochemicals, and/or lifestyle on the function and viability of stem cell populations. Such assays are currently well known in the art, and Shaw includes high yield screening' where compounds, agents or environmental stimuli are contacted with stem cells and can be I52717. Doc • 76· 5 201130978 Measure the effects of functional or viability of a compound, agent or environmental stimulator on function (eg differentiation potential, proliferation, survival) and viability, and will be compared to a reference control sample (eg no compound present) , or a positive control sample, such as the presence of BMP6 or other growth factors and their analogs. In one embodiment of the invention, a target stem cell population obtained from individual peripheral blood by a method as disclosed herein can be used as an individualized assay to study and understand the individual's own, without the use of a positive selection method. Signal transduction pathway for stem cell population growth and differentiation. The use of target stem cells of an individual obtained by the methods disclosed herein is useful for assisting in the development of therapeutic applications for congenital and adult heart failure. The use of the target stem cells of the individual obtained by the methods as disclosed herein makes it possible to study the specific differentiation into different lines (e.g., osteogenesis or heart line) without the need and complexity of the time-consuming animal model. In another embodiment, a subject stem cell of an individual obtained by a method as disclosed herein can be genetically modified to carry a particular disease and/or pathological property and a particular disease or disorder phenotype. In one embodiment, the assay comprises a population of different target stem cells of a plurality of individuals obtained by a method as disclosed herein, or a differentiated progeny thereof. In one embodiment, the assay can be used to study the differentiation pathways of different target stem cell populations of an individual, such as, but not limited to, differentiation along cardiomyocyte lines, smooth muscle lines, endothelial lines, and subpopulations of such lines. In another embodiment, the assay can be used to study the pathological characteristics of different target stems, 'field populations', such as diseases and/or genetic characteristics associated with the disease or condition. In certain embodiments, the disease or condition is a monthly or cardiovascular condition or disease of a wound healing condition. In some embodiments, the individual is 152717. Doc •77- 201130978 Different target stem cell populations have been genetically engineered to contain characteristics associated with the disease or condition. Such methods of genetically engineering stem cells are well known to those skilled in the art and include the introduction of nucleic acids into cells by means of transfection, for example by, but not limited to, the use of viral vectors or other methods known in the art. In one embodiment, such target stem cells can be used to more closely adjust individual treatment. For example, by administering various drug regimens administered or presented for administration, the potential drug interaction problem can be directly determined based on the different genetic makeup of the individual and the environmental factors the individual is experiencing. In this way, the dosage regimen, dose or timing can be changed to achieve good results. In certain embodiments, MSCs are used as a tool for pharmacogenetic analysis of target stem cell populations because the target stem cells are specific to the individual's genetic makeup. For example, an individual's target stem cells can have specific variants that produce different pathological features. For example, because stem cells are derived from an individual (e. g., autologous), they may have undesirable pathological features, such as mutations and/or polymorphisms, which may contribute to the disease s or cause a poor or enhanced response to the therapeutic agent. Thus, the target stem cells obtained by the methods disclosed herein can be used to assess the response of an individual's stem cells to a particular compound, agent, and in some cases, to a therapeutic regimen (eg, effective therapeutic agent, dosage, and duration) and In some cases, the prognosis of the disease is determined. The method of performing the invention herein can be used to screen for target stem cells for agents that alleviate pathology or agents that positively affect the proliferation or function of target stem cells. In an alternative embodiment, the method of the present invention can be used with (iv) and the other 152717. Doc -78· 201130978 The stem cells of the body (eg, no mutations and/or polymorphisms) are agents that cause different responses to the individual target stem cell population (due to inherent genetic makeup or specific mutations and/or polymorphism). Such methods can be used, for example, to assess the effect of a particular drug and/or agent on an individual's stem cell population compared to other human and/or stem cell populations, thus acting as a high yield screening for personalized medicine and/or pharmacogenetics. The manner in which stem cells react to agents (especially pharmacological agents), including the timing of the reaction, is an important reflection of the physiological state of the cell. In certain embodiments, individual target stem cell populations of an individual can be easily manipulated in an experimental system that provides the advantages of target line differentiation and the ability to homogenize and manipulate the external environment. In addition, because of experimental changes in the ethical unacceptability of the human germline, the ES cell transgene pathway cannot be used in experiments involving the manipulation of human genes. The genetic traits in different target stem cell populations of human individuals allow for important applications in the field of inability to test systems in vivo due to ethical issues' and can properly generalize the human biology or disease process of a particular individual. In another embodiment, a different population of target stem cells of an individual can be used to prepare a pool of cDNA pools that are contaminated with respect to cDNA that is not preferentially expressed in cells of other lines. Individual target stem cell populations can also be used to prepare antibodies specific for the signature of cardiomyocytes and their precursors. Multiple antibodies can be prepared by injecting vertebrate cells of the invention in immunogenic form. The production of monoclonal antibodies is described in, for example, the following standard references: U.S. Patent Nos. 4,491,632; 4,472,500 and 4,444,887, and Enzymology 73B:3 (1981). Specific antibody molecules can also be made by immunization 152717. Doc •79· 201130978 A pool of robust cells or virions is brought into contact with the target antigen and produced by a pure selection of positive selections. See Marks et al., New Eng.  J.  Med.  335:730,1996 and McGuiness et al., Nature Biotechnol.  14:1449, 1996. Another alternative is to reassemble random DNA fragments into antibody coding regions as described in European Patent Application 1,094,108 A. And different target stem cell populations from the terminally differentiated individuals and other lineage cells to separate the precursor cells' antibodies can be used to identify or rescue (eg, restore phenotype) cells from the desired phenotype of the mixed cell population to achieve during the immunodiagnosis Use tissue samples for costaining purposes. In another embodiment, different target stem cell populations of the individual can be used to examine gene expression profiles during and after differentiation of different target stem cell populations in the individual. The set of genes can be compared to other subsets of stem cell populations from the same or different individuals or samples of control stem cell strains known in the art. Any suitable qualitative or quantitative method known in the art for detecting specific mRNA can be used. mRNA can be detected by, for example, hybridization with a microarray, in situ hybridization in tissue sections, by reverse transcriptase-PCR, or by Northern blotting containing poly A+ mRNA. These methods are readily used to determine the difference in molecular size or amount of mRNA transcripts between two samples. Any suitable method for detecting and comparing the amount of mRNA expression in a sample can be used in conjunction with the methods of the present invention. For example, the amount of mRNA expression in a sample can be determined by generating a pool of expressed sequence tags (ESTs) from the sample. An enumeration of the relative presentation of ESTs in the pool can be used to estimate the relative presentation of gene transcripts in the starting sample. The EST analysis of the test sample can then be performed 152717. Doc 201130978 The results are compared to the EST analysis of the reference sample to determine the relative amount of expression of the selected polynucleotide (specifically, the polynucleotide corresponding to one or more of the differentially expressed genes described herein). Alternatively, gene expression can be performed in a test sample using the Gene Expression Series Analysis (SAGE) method (Velculescu et al., Science (1995) 270:484), which includes the separation of different short sequences from specific positions within each transcript. label. Sequence tags are ligated, cloned, and sequenced. The frequency of a particular transcript within the starting sample is reflected by the number of times the relevant sequence tag encounters the sequence group. The differential display (DD) method can also be used to analyze the gene expression in the test sample. In DD, in conjunction with information about the length or location of fragments within the expressed gene, fragments defined by specific sequence delimiters (e. g., restriction enzyme sites) are used as different gene identifiers. The relative presentation of the expressed genes within the sample can then be assessed based on the relative presentation of the fragments associated with the genes within the pool of all possible fragments. Methods and compositions for performing DD are well known in the art, see, for example, U.S. Patent No. 5,776,683; and U.S. Patent No. 5,807,680. Alternatively, hybridization analysis based on the specificity of nucleotide interactions can be used to assess gene expression in a sample. Oligonucleotides or cDNAs can be used to selectively identify or capture dNAs or RNAs of specific sequence composition, and to measure the amount of rna or cDNA that hybridizes to known capture sequences in an inert or quantitative manner to provide information about the cells in the sample. Information about the relative presentation of specific silos in the pool of messages. Hybridization assays can be designed to allow for the use of, for example, array-based techniques with high density formats (including filters, slides or microchips) or by spectral analysis (e.g., mass spectrometry) based on 152717. Doc 201130978 Liquid technology to screen the relative performance of hundreds to thousands of genes in parallel. An exemplary use of an array in a diagnostic method of the invention described in greater detail below can be hybridized to an array, wherein the array can be produced according to any suitable method known in the art. A method of making a large array of oligonucleotides using light-directed synthesis techniques is described in U.S. Patent No. 5,134,854 and U.S. Patent No. 5,445,934. The heterogeneous monomer array is converted to a heterogeneous polymer array by simultaneous coupling at a number of reaction sites using a computer controlled system. Alternatively, the microarray is produced by depositing a pre-synthesized oligonucleotide on a solid substrate, as described in PCT Publication No. WO 95/355-5. Methods for collecting data from the hybridization of samples and arrays are also well known in the art. For example, a polynucleotide that produces a sample of cells can be detected using a fluorescent label, and the hybridization of the polynucleotide in the sample can be detected by scanning for the presence of a detectable label in the microarray. Methods and apparatus for detecting a fluorescently-marked object on a device are known in the art. Generally, such detection devices include a microscope and a light source that directs light at the substrate. The photon counter_ is fluorescent from the substrate, and the x-y translation stage changes the substrate position. A confocal (four) device that can be used in the subject method is described in U.S. Patent No. 5,631,734. Scanning laser microscopy is described in Shalon et al., Gen 〇me Res (Η%) 6:639. Each glory used is scanned using a suitable excitation line. The digital images produced by the scan are then combined for subsequent analysis. For any particular array element, the ratio plate of the fluorescent signal from one sample is compared to the fluorescent signal from the other sample and the relative signal is measured. In this technique, it is well known to analyze the material collected from the hybridization with (4). For example, 152717. Doc 201130978 言 “When hybridization detection includes fluorescent markers, data analysis can include the following steps: determining the fluorescence intensity as a function of substrate position from the collected data, removing outliers (ie, deviating from a predetermined statistical distribution) Data), and the relative binding affinity of the remaining data calculation targets. The resulting data can be displayed in image form. The intensity in each region varies depending on the binding affinity between the target and the probe. Pattern matching can be done manually or using a computer program. For example, U.S. Patent No. 5,800,992 describes the preparation of substrate matrices (e.g., arrays), oligonucleotides designed for use with such matrices, labeled probes, hybridization conditions, scanning hybrid matrices, and patterns generated by analysis (including comparative analysis). )Methods. In the target stem cells obtained by the method as disclosed herein, the stem cell population or stem cell population combination is contacted with the relevant agent, and by monitoring output parameters (such as marker expression, cell viability, differentiation characteristics, pluripotency, and It is similar to the parameter) to evaluate the effect of the agent. For use in assays, target stem cells can be freshly isolated using methods as disclosed herein, or in certain embodiments cultured, cryopreserved, or genetically engineered. The target stem cells can be environmentally induced variants of the pure lineage culture: for example, divided into independent cultures and grown under different conditions, such as with or without virus; presence or absence of other cytokines or combinations thereof. Alternatively, the target stem cell can be a variant having the desired pathological characteristics. For example, because target stem cells are derived from an individual (i.e., autologous), they have desirable pathological features such as mutations and/or polymorphisms that contribute to disease pathology. Thus, a pool of target stem cells obtained by a method as disclosed herein can be used to assess the response of an individual's target stem cells to a particular compound, agent, 152717. Doc -83- 201130978 and in some cases may be suitable for disease prognosis. In this embodiment, the method of the present invention can be used to screen a target stem cell population for an agent that alleviates pathology. In an alternative embodiment, the method of the invention can be used to screen for agents in which some target stem cell populations comprising specific mutations and/or polymorphisms are reacted differently than stem cells of the same type without mutation and/or polymorphism. . Thus, such methods can be used, for example, to assess the effect of a particular drug and/or agent on a target stem cell population of an individual as compared to other humans and/or cells' thus acting as a high yield screening for personalized medicine and/or pharmacogenetics. The way in which a cell reacts to an agent (especially a pharmacological agent) (including the point in time of the reaction) is an important reflection of the physiological state of the cell. The agent for the screening method may be selected from the group consisting of a chemical substance, a small molecule, a chemical entity, a nucleic acid sequence, an agent, a nucleic acid analog, or a protein or a polypeptide or a fragment thereof. In certain embodiments, the nucleic acid is dNA or RNA' and the nucleic acid analogs can be, for example, pna, pCPNA, and LNA. The nucleic acid can be single or double stranded' and can be selected from the group consisting of a nucleic acid encoding an associated protein, an oligonucleotide, a PNA, etc., such nucleic acid sequences include, for example, but not limited to, a nucleic acid sequence encoding a protein that: Transcription inhibitors, antisense molecules, ribonucleases, small inhibitory nucleic acid sequences such as, but not limited to, RNAi, shRNAi, siRNA, microRNAi (mRNAi), antisense oligonucleotides, and the like. The protein and/or peptide agent or fragment thereof can be any related protein, such as, but not limited to, a mutein, a therapeutic protein or a truncated protein' wherein the protein is typically absent or less expressed in the cell. Related proteins may be selected from the group consisting of muteins, genetically engineered proteins, peptides, synthetic peptides, recombinant proteins, chimeric proteins, antibodies, humanized eggs 152717. Doc •84· 5 201130978 Humanized antibodies, chimeric antibodies, modified proteins and their tablets. The agent can be administered to a medium in which it contacts cells (such as stem cells and ' or mesenchymal cells) and induces its effects. Alternatively, the agent may be intracellular, i.e., within a cell (such as a stem cell or a mesenchymal cell), by introducing the nucleic acid sequence into the transcript and causing it to produce nucleic acid and/or protein drug J in the cell. The agent also covers any effects and/or events on the cells. As a non-limiting example, the effect may include any effect that triggers a physiological change in the cell 'eg, but not limited to, heat shock, ionizing radiation, shock electrical pulse, light and/or wavelength exposure, uv exposure, pressure, pull ^ a large and/or reduced oxygen exposure, exposure to reactive oxygen species (R^S), ischemic conditions, fluorescent exposure, and the like. Environmental stimuli also include the intrinsic % of environmental stimuli. Exposure to a pharmaceutical agent may be continuous or intermittent. The term "agent" means any chemical substance, entity or moiety, including, without limitation, synthetic and naturally occurring non-protein f-type entities. In certain embodiments the 'related compound is a small molecule having a chemical moiety. For example, the study includes, by substitution or substitution, a substituted or substituted base, an aromatic or heterocyclic base, a sputum, a sputum, a related natural product, or the like, and/or A compound of a property, or a pool of different compounds thereof, may be selected. In certain embodiments, the agent is a related agent comprising: a known and unknown compound encompassing a poly-chemical class (mainly an organic molecule), which may include an organometallic molecule, an inorganic molecule, a gene sequence, and the like. An important aspect of the invention is the evaluation of candidate drugs, including toxicity tests and the like. Wait 152717. Doc •85- 201130978 Selective agents also include organic molecules containing functional groups necessary for structural interactions (specifically hydrogen bonding), and usually include at least one amine group, carbonyl group, hydroxyl group or carboxyl group, often including at least two functionalities Chemical group. Candidate agents often comprise a cyclic carbon or heterocyclic structure and/or an aromatic or polyaromatic structure substituted with one or more of the above functional groups. Candidate agents are also found in biomolecules, including peptides, polynucleotides, sugars, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Also included are pharmacologically active drugs, genetically active molecules, and the like as agents. Related compounds include, for example, chemotherapeutic agents, hormone or hormone antagonists, growth factors or recombinant growth factors, and fragments and variants thereof. Examples of pharmaceutical agents suitable for use in the present invention are those described in "The Pharmacological Basis of Therapeutics," Goodman and Gilman, McGraw-Hill, New York, N_Y., (1996), ninth edition, in the following sections: Water, Salts and Ions; Drugs Affecting Renal Function and Electrolyte Metabolism; Drugs Affecting Gastrointestinal Function; Chemotherapy of Microbial Diseases; Chemotherapy of Neoplastic Diseases; Drugs Acting on Blood-Forming organs; Hormones and Hormone Antagonists; Vitamins, Dermatology and Toxicology, All This is incorporated herein by reference. Also includes toxins, and biological and chemical warfare agents, see for example, Somani, S.  Μ·(ed.), “Chemical Warfare Agents,” Academic Press, New York, 1992). The agent includes all of the above classes of molecules and may further comprise a sample of unknown content. Concerned about the natural existence of natural sources (such as plants) 152717. Doc -86 - 5 201130978 Complex mixture of compounds. Although many samples will contain a solution of the compound, they can be dissolved in a sample suitable for dissolution (4). Related samples include environmental samples such as groundwater, seawater, mining waste, etc.; biological samples such as lysates prepared from crops, tissue samples, etc.; manufacturing samples, such as time courses during the preparation of medicines; and preparation of sets of compounds for analysis Human library; and similar samples. Related samples include compounds that have been evaluated for potential therapeutic value, i.e., drug candidates. The parameter is the quantifiable component of the target stem cell, specifically the component that is ideally accurately measured in a high-yield system. The parameter can be any cell nucleus or cell production 16' including cell surface determinants, receptors, proteins or their conformation or post-translation (4), lipids, carbohydrates, organic or inorganic molecules, nucleic acids (eg mRNA, DNA, etc.) or Source, part of the cellular component, or a combination thereof. Although most parameters will provide a quantitative readout, semi-quantitative or qualitative results will be acceptable in some cases. Readouts may include a single assay value' or may include an average, median or variance, and the like. Characteristically, for each parameter from a large number of identical assays, the range of parameter readout values will be obtained. The range of values for each set of test parameters is obtained by predicting variability and using the standard method and the heart to provide a single-value common statistical method. Compounds including candidate agents are obtained from a variety of sources, including libraries of synthetic or natural compounds. For example, numerous methods can be used to randomly and guide the synthesis of a variety of organic compounds, including biomolecules, including the performance of randomized oligonucleotides and oligopeptides. Alternatively, a collection of natural compounds in the form of bacterial, fungal, plant and animal extracts is available or readily produced. In addition, collections and compounds produced naturally or synthetically are via the well-known chemistry, physics and 152717. Doc *87- 201130978 Biochemical methods are easily modified and can be used to generate combinatorial collection libraries. Known pharmacological agents can be directed or randomly chemically modified: for example, deuterated, alkylated, brewed, guanylated, etc. to produce structural analogs. Typically, the agent is combined with a drug-free cell, and the agent is screened for the effect on the stem cell population by adding the agent to at least one = usually a plurality of stem cell samples. The change in parameters of the reaction is measured and the results are evaluated by comparison to a reference culture (e.g., in the presence and absence of a medicament, obtained with other agents). ’. In certain embodiments, the agent is preferably added to the culture medium of the stem cells in the culture in a solution or in a readily soluble form. The agent may be added to the additional static solution either in a discontinuous or continuous flow, or alternatively, by addition of a compound bolus, either separately or incrementally, in a flow-through system (flQW_through system). In a flow-through system, two fluids are used, one of which is a physiologically neutral solution' and the other is the same as the added test compound: Solution: passes the first fluid over the stem cells, then passes through the second fluid . In a single solution method, a test compound boluse is added to the volume of the culture medium surrounding the cells. The overall concentration of the media components should not vary significantly depending on the addition of the bolus or between the two solutions in the flow-through process. In certain embodiments, the formulation of the agent does not include other components, such as preservatives, which can have a significant effect on the overall formulation. Accordingly, preferred formulations consist essentially of a biologically active compound and a physiologically acceptable carrier (e.g., water, ethanol, DMS0, etc.). However, if the compound is a solvent-free liquid, the formulation may consist essentially of the compound itself. A plurality of tests can be operated in parallel with different drug concentrations to obtain various concentrations

152717.doc •88· CD 201130978 度之差異反應。如此項技術中已知,測定藥劑之有效濃度 通常使用由1:1G或其他對數單位稀釋度產生之濃度範圍。 列稀釋來進一步精化。通常 必要時,濃度可用第 等濃度之-充當陰性對照組,亦即在零濃度下或在藥劑债 測含量以下或處於或低於不得到可㈣表型變化之藥劑濃 度。 視情況,可操縱用㈣選之幹細胞群以表現所需基因產 物。基因療法可用以修飾細胞以置換基因產物或添加或剔 除基因產物。在某些實施例中,進行基因工程改造以在植 入個體巾之後有助於組織再生、治療錢纽良細胞存活 (例如預防排斥)。或者,在—個實施例中間葉細胞係在 用作幹細胞之滋養層之前經遺傳工程改造及轉染,或替代 性地,間葉細胞可在用作幹細胞之滋養層的同時經轉染。 此項技術中已知轉染細胞之技術。 熟%此項技術者可預想將有利特性傳至經轉染間葉細胞 或若將幹細胞用於移植(下文較詳細地討論),則較間接地 傳至接受者幹細胞及/或個體之眾多基因。視實施例而 定,所添加之基因可最終保留於受體細胞及所有其子代 t,或可僅暫時保留。舉例而言,可將編碼血管生成因子 之基因轉染至自平滑肌分離之袓細胞中。此等基因將適用 於當平滑肌組織再生時誘導側支血管形成。在一些情況 下’可此需要以一種以上基因轉染細胞。 在一些情況下’需要分泌基因產物。在此等情況下,基 因產物較佳含有有助於分泌蛋白質之分泌型信號序列。舉 152717.doc -89- 201130978 例而言,若所需基因產物為血管生成蛋白,則熟習此項技 術者可使用常規基因操縱(參看例如Nabel等人,1993)選擇 具有原生彳s號序列之血管生成蛋白,例如vegf,或可修 飾基因產物以含有此序列。 可使用多種技術將所需基因轉染至細胞中。較佳地,使 用表現載體將基因轉染至細胞中β適合之表現載體包括質 體載體(諸如可獲自Stratagene,Madison Wis.者)、病毒載 體(諸如複製缺陷型反轉錄病毒載體、疱疹病毒、腺病 毒、腺病毒相關病毒及慢病毒)及非病毒載體(諸如脂質體 或受體配位體)。 實例 將詳細參考本發明之實施例,其實例說明於一些隨附圖 式中。在某些實施例中’本發明包括Gambr〇 BCT,Inc., Lakewood,Colorado製造之ELUTRA®離心機。儘管與 ELUTRA®離心機組合描述本發明之實施例,但此參考僅 用於例示目的且不意欲以任何意義限制本發明。應瞭解, 其他離心機可用於本發明之實施例,包括(但不限 於)COBE® Spectra 析離系統、TRIMA® 系統及 TRIMA ACCEL®系統(亦由Gambro BTC Inc.製造),以及用以分離 血液組分之其他淘洗裝置。 實例1 對析離經調動PB細胞進行淘洗以分離/增濃MSC。在經 調動歷時G-CSF注射(480微克/日,皮下)之兩個連續曰及 在第三曰藉由析離收集總有核細胞(TNC)3-4小時之後研究 I52717.doc 201130978 28個供者之群。 藉由淘洗法進行以大小為主之MSC增濃:以約1:10(體 積/體積)之比率,以lxBDPharm溶解緩衝液溶解新鮮析離 之細胞以移除紅血球。洗滌之後,將細胞計數,且以 1 xlO8個細胞/毫升之濃度將2-2.5x101()個總有核細胞加載 於ELUTRA®細胞分離系統(CaridianBCT)上。接著以不同 流動速率將細胞收集於各袋中之900 ml PBS + 0.5% HS A培 養基中。通常以2400 rpm之離心速度收集六個部分。最 終,將所有部分之細胞均轉移至管中且在600xg下短暫離 心15分鐘。藉由評估SSC及FSC證實部分之大小特徵(圖 3) 。 CFU-F檢定:藉由在CFU-F檢定中塗鋪細胞來測試 ELUTRA®部分之可能的MSC增濃。將兩百萬個細胞/各部 分塗於100 mm組織培養皿上且補充10 mL DMEM+10% FBS培養基。將培養物保持在含5% C02之3 7°C恆溫箱中不 受干擾歷時兩週。兩週之後,以甲醇固定培養物且以 Giemsa染色。自部分4及5形成MSC之黏附群落特徵(圖 4) 〇 分級分離析離群之染色:使用流式細胞量測分析來測定 某些ELUTRA部分是否在MSC中增濃。使用兩組抗體染色 來自ELUTRA®部分之樣本:第1組:CD45、CD105、 CD90,及第2組:CD271。染色在冰上在含有0.5%人類血 清白蛋白之PBS中進行30分鐘。洗滌細胞且藉由FACS以 CD457CD105+、CD457CD90 +及 CD457CD271 +形式進行分 152717.doc -91 · 201130978 析。與析離產物起始群相比,部分4及5中特徵在於CD45·/ CD105+、CD457CD90+及CD271 +之細胞得到增濃(圖5)。 G-CSF經調動MSC至周邊血液中。圖6展示經調動後及 在所得析離產物中MSC比例增大。在本文中,藉由偵測表 現 CD457CD317CD105+/CD73+ 或 CD457CD347CD90+/CD105+/ CD29+之細胞來鑑別MSC。 參考文獻 在本文中及在整個說明書中引用之所有參考文獻、專利 及專利申請案均以全文引用的方式併入本文中。 【圖式簡單說明】 圖1.圖1展示顯示極小胚胎樣幹細胞(VSEL)可藉由析離 產物中各種細胞部分之以大小為主之分離(淘洗)來增濃的 圖。部分1(流動速率20 mL/min)、部分2(50 mL/min)、部 分3(70 mL/min)、咅p 分4(90 mL/min)、咅p 分5(>90 mL/min)。 部分2在VSEL方面高度增濃且可用以收集純化之VSEL群 以供臨床應用。 圖2.圖2為展示來自周邊血液之析離產物以大小為主分 離成5個個別部分之相片。 圖3A-F展示自析離人類周邊血液增濃MSC。使用 ELUTRA®細胞分離系統來分離G-CSF經調動析離血液。在 部分4及5中增濃MSC。圖3A-析離血液。圖3B-部分1。圖 3C-部分2。圖3D-部分3。圖3E-部分4及5。圖3F-部分6。 圖4A-E展示在CFU-F檢定中塗鋪之淘洗部分之細胞。自 部分4及5產生黏附細胞群落。圖4A-部分2。圖4B-部分3。 152717.doc -92· 201130978 圖4C-部分4及5。圖4D-部分4及5之較高放大率。圖4E-部 分4及5之較高放大率。 圖5A-B展示MSC經調動至周邊血液中。患者接受兩次連 續G-CSF皮下注射。在接受G-CSF注射前第0日,在接受第 二次G-CSF注射後第3日及在析離產物中監測間葉幹細胞之 經調動程度。圖5A :藉由評估CD45VCD317CD105+/CD73 + 細胞來評估MSC經調動。圖5B :藉由偵測CD457CD347 CD90+/CD105+/CD29+細胞來評估MSC經調動。分析一組 「n=28」供者樣本。 圖6A-B展示ELUTRA®部分中之MSC表型之FACS分析。 圖6A :與其他部分相比,部分4及5中之CD45_/CD105 +細 胞得到增濃。圖6B :部分4及5展示與析離產物起始群相 比,CD457CD105+、CD457CD90+及 CD271 +細胞之比例增 大0 152717.doc -93-152717.doc •88· CD 201130978 degree difference response. As is known in the art, determining the effective concentration of a pharmaceutical agent typically employs a concentration range resulting from a 1:1 G or other logarithmic unit dilution. The column is diluted to further refine. Usually, if necessary, the concentration can be used as the negative control, that is, at zero concentration or below the drug's debt level or at or below the concentration of the agent that does not have a phenotypic change. Depending on the situation, the stem cell population selected (iv) can be manipulated to express the desired genetic product. Gene therapy can be used to modify cells to replace gene products or to add or reject gene products. In certain embodiments, genetic engineering is performed to facilitate tissue regeneration, treatment of Qianxinliang cell survival (e.g., prevention of rejection) after implantation into an individual towel. Alternatively, in an embodiment the intermediate leaf cell line is genetically engineered and transfected prior to use as a trophoblast for stem cells, or alternatively, mesenchymal cells can be transfected while serving as a trophoblast for stem cells. Techniques for transfecting cells are known in the art. Those skilled in the art can envision the transfer of beneficial properties to transfected mesenchymal cells or, if stem cells are used for transplantation (discussed in more detail below), more indirectly to recipient stem cells and/or individual genes. . Depending on the embodiment, the added gene may ultimately remain in the recipient cell and all of its progeny t, or may be retained only temporarily. For example, a gene encoding an angiogenic factor can be transfected into a sputum cell isolated from smooth muscle. These genes will be useful for inducing collateral vessel formation when smooth muscle tissue is regenerated. In some cases, it may be desirable to transfect cells with more than one gene. In some cases, a gene product needs to be secreted. In such cases, the gene product preferably contains a secretory signal sequence that facilitates secretion of the protein. For example, if the desired gene product is an angiogenic protein, those skilled in the art can use conventional gene manipulation (see, for example, Nabel et al., 1993) to select a sequence having a native 彳s number. An angiogenic protein, such as vegf, or a modified gene product to contain this sequence. The desired gene can be transfected into cells using a variety of techniques. Preferably, the expression vector is used to transfect the gene into the cell. Suitable expression vectors include plastid vectors (such as those available from Stratagene, Madison Wis.), viral vectors (such as replication defective retroviral vectors, herpes viruses). , adenovirus, adeno-associated virus and lentivirus) and non-viral vectors (such as liposomes or receptor ligands). EXAMPLES Reference will be made in detail to the embodiments of the invention, examples of which are illustrated in the accompanying drawings. In certain embodiments, the invention includes an ELUTRA® centrifuge manufactured by Gambbr® BCT, Inc., Lakewood, Colorado. Although the embodiments of the present invention are described in combination with an ELUTRA® centrifuge, this reference is for illustrative purposes only and is not intended to limit the invention in any way. It will be appreciated that other centrifuges may be used in embodiments of the invention including, but not limited to, COBE® Spectra separation systems, TRIMA® systems, and TRIMA ACCEL® systems (also manufactured by Gambro BTC Inc.), as well as for separating blood. Other panning devices for the components. Example 1 The detached mobilized PB cells were panned to separate/enrich MSCs. I52717.doc 201130978 28 studies were performed after two consecutive doses of G-CSF injection (480 μg/day, subcutaneous) and 3-4 hours after total nucleated cells (TNC) were collected by separation in the third chamber. A group of donors. Size-based MSC enrichment was performed by panning: freshly isolated cells were solubilized in lxBDPharm lysis buffer at a ratio of about 1:10 (volume/volume) to remove red blood cells. After washing, the cells were counted and 2-2.5 x 101 () total nucleated cells were loaded onto an ELUTRA® Cell Separation System (Caridian BCT) at a concentration of 1 x 10 8 cells/ml. The cells were then collected at different flow rates in 900 ml PBS + 0.5% HS A medium in each bag. Six fractions are typically collected at a centrifuge rate of 2400 rpm. Finally, all of the cells were transferred to tubes and briefly centrifuged at 600 xg for 15 minutes. The size of the part was confirmed by evaluating the SSC and FSC (Fig. 3). CFU-F assay: The possible MSC enrichment of the ELUTRA® fraction was tested by plating the cells in the CFU-F assay. Two million cells/parts were applied to 100 mm tissue culture dishes and supplemented with 10 mL DMEM + 10% FBS medium. The culture was maintained in a 37 °C incubator containing 5% C02 for two weeks without interference. Two weeks later, the culture was fixed with methanol and stained with Giemsa. Adhesion community characteristics of MSCs formed from sections 4 and 5 (Fig. 4) 染色 Staining of fractionated isolates: Flow cytometric analysis was used to determine whether certain ELUTRA fractions were enriched in MSCs. Samples from the ELUTRA® section were stained using two sets of antibodies: Group 1: CD45, CD105, CD90, and Group 2: CD271. Staining was carried out on ice in PBS containing 0.5% human albumin for 30 minutes. The cells were washed and analyzed by FACS in the form of CD457CD105+, CD457CD90+ and CD457CD271+ by 152717.doc-91 · 201130978. The cells characterized by CD45·/CD105+, CD457CD90+ and CD271+ were partially enriched in parts 4 and 5 compared to the starting group of the isolated product (Fig. 5). G-CSF mobilizes the MSC into the peripheral blood. Figure 6 shows an increase in the proportion of MSCs after mobilization and in the resulting precipitated product. Herein, MSCs are identified by detecting cells expressing CD457CD317CD105+/CD73+ or CD457CD347CD90+/CD105+/CD29+. REFERENCES All references, patents, and patent applications, which are hereby incorporated by reference in their entirety herein in their entireties in the entireties in BRIEF DESCRIPTION OF THE DRAWINGS Figure 1. Figure 1 shows a graph showing that very small embryonic stem cells (VSELs) can be enriched by size-based separation (panning) of various cell fractions in the separation product. Part 1 (flow rate 20 mL/min), part 2 (50 mL/min), part 3 (70 mL/min), 咅p 4 (90 mL/min), 咅p 5 (>90 mL/ Min). Part 2 is highly enriched in VSEL and can be used to collect purified VSEL populations for clinical use. Fig. 2. Fig. 2 is a photograph showing the separation products from peripheral blood divided into five individual parts by size. Figures 3A-F show self-eutation of human peripheral blood enriched MSCs. The ELUTRA® cell separation system was used to separate G-CSF from mobilized and isolated blood. The MSCs were enriched in sections 4 and 5. Figure 3A - Separation of blood. Figure 3B - Part 1. Figure 3C - Part 2. Figure 3D - Part 3. Figure 3E - Parts 4 and 5. Figure 3F - Part 6. Figures 4A-E show cells of the panned portion that were plated in the CFU-F assay. Adhesion cell populations are produced from parts 4 and 5. Figure 4A - Part 2. Figure 4B - Part 3. 152717.doc -92· 201130978 Figure 4C - Parts 4 and 5. Figure 4D - Higher magnification of parts 4 and 5. Figure 4E - Higher magnification of parts 4 and 5. Figures 5A-B show that the MSC is mobilized into the peripheral blood. The patient received two consecutive injections of G-CSF subcutaneously. On the 0th day before the G-CSF injection, the degree of mobilization of mesenchymal stem cells was monitored on the 3rd day after the second G-CSF injection and in the isolated product. Figure 5A: Assessment of MSC mobilization by assessment of CD45VCD317CD105+/CD73+ cells. Figure 5B: Assessment of MSC mobilization by detection of CD457CD347 CD90+/CD105+/CD29+ cells. Analyze a set of "n=28" donor samples. Figures 6A-B show FACS analysis of MSC phenotypes in the ELUTRA® section. Figure 6A: CD45_/CD105+ cells in sections 4 and 5 were enriched compared to the other fractions. Figure 6B: Parts 4 and 5 show an increase in the proportion of CD457CD105+, CD457CD90+ and CD271+ cells compared to the starting group of the isolated product 0 152717.doc -93-

Claims (1)

201130978 七、申請專利範圍: 1. 一種自周邊血液分離目標細胞群之方法,其包含: (a) 使來自個體之周邊血液樣本在第一流動速率下流經 淘洗裝置之流體腔室,其中選擇該第一流動速率,以使 該周邊血液樣本中小於該目標細胞群之細胞流經該流體 腔室’且將該目標細胞群截留於該流體腔室中; (b) 將該第一流動速率提高至第二流動速率,以使該目 標細胞群流經該流體腔室;及 0)當該目標細胞群流經該流體腔室時,收集該目標細 胞群; 其中步驟(a)、(b)及(c)不包含採用正向選擇技術。 2. 如請求項1之方法,其中⑴選擇該第一流動速率,以使 該周邊血液樣本中小於極小胚胎樣幹細胞(VSEL)之細胞 流經該流體腔室,且將VSEL截留於該流體腔室中,及 (1〇選擇該第二流動速率,以使VSEL流經該流體腔室。 3. 如請求項2之方法,其中⑴該第一流動速率為約35 ml/min且該第二流動速率為約5〇_7〇 ml/min。 4. 如請求項1之方法,其中⑴選擇該第一流動速率,以使 該周邊血液樣本中小於間葉幹細胞(MSC)之細胞流經該 • 流體腔室且將MSC截留於該流體腔室中’及(Π)選擇該第 二流動速率,以使Msc流經該流體腔室。 5. 如請求項4之方法’其中⑴該第一流動速率為約1〇〇 ml/min且該第二流動速率為約i 1〇12〇 mi/min。 6. 如凊求項1之方法,其中⑴選擇該第一流動速率,以使 152717.doc 201130978 該周邊血液樣本中小於造血幹細胞(HSC)之細胞流經該 机體腔至且將Hsc截留於該流體腔室中,及(η)選擇該第 二流動速率,以使HSC流經該流體腔室。 青长項6之方法,其中⑴該第一流動速率為約9〇 ml/min且該第二流動速率為約100 ml/min。 8. 如4求項1至7中任一項之方法,其中該正向選擇技術為 免疫選擇法或免疫密度選擇法。 其中該周邊血液樣本為 其中該周邊血液樣本為 9. 如凊求項1至8中任一項之方法 人類周邊血液樣本。 10. 如請求項1至9中任一項之方法 經調動周邊企液樣本。 11. 如請求項10之方法,立中 具周邊血液樣本獲自已投與調 動劑4日或4日以下之個體。 12 ·如明求項1至11中任一項之方法,中將q隹 丹甲將该所收集之目 標細胞群經超低溫保存。 13. 如请求項1至12中任一頂之古、土 任項之方法’其中將該等所收集之 目標細胞群投與個體。 14. 如請求項丨3之方法,苴中 M m請收集之目標細胞群投與 最初提供該周邊血液之個體。 、 15·:=項13或14之方法,其中該等所收集之目標細胞群 在杈與該個體之前已於活體外擴增。 16. 如請求項15之方法’其中該個體為人類個體。 17. 如請求項13至15中任一項之方法 細胞群為VSEL。 其中遠所收集之目標 152717d〇C -2- ⑤ 201130978 18. 如請求項13至15中任一項之方法,其中該所收集之目標 細胞群為MSC。 19. 如請求項13至15中任一項之方法,其中該所收集之目標 細胞群為HSC。 20· —種自周邊血液分離目標細胞群之方法,其包含: - (a)使來自個體之周邊血液樣本在第一流動速率下流經 淘洗裝置之流體腔室,其中選擇該第—流動速率,以使 第一目標細胞群流經該流體腔室且經收集,而將該周邊 血液樣本之第一剩餘物截留於該流體腔室中;及 (b) 將該第一流動速率提高至第二流動速率,以使第二 目標細胞群流經該流體腔室且經收集,而將該周邊血液 樣本之第二剩餘物戴留於該流體腔室中; 其中步驟(a)及(b)不包含採用正向選擇技術。 21. 如s青求項20之方法’其進一步包含: (c) 將該第二流動速率提高至第三流動速率以使第三 目標細胞群流經該流體腔室且經收集,而將該周邊血液 樣本之第三剩餘物載留於該流體腔室中; 其中步驟(C)不包含採用正向選擇技術。 22. 如請求項21之方法,其進一步包含: (d) 將該第三流動速率提高至第四流動速率,以使第四 目標細胞群流經該流體腔室且經收集,而將該周邊血液 樣本之第四剩餘物戴留於該流體腔室中; 其中步驟(d)不包含採用正向選擇技術。 23. 如請求項22之方法,其進一步包含: 152717.doc 201130978 (e) 將該第四流動速率提高至第五流動速率,以使第五 目標細胞群流經該流體腔室且經收集,而將該周邊血液 樣本之第五剩餘物截留於該流體腔室中; 其中步驟(e)不包含採用正向選擇技術。 24. 如請求項23之方法,其進一步包含: (f) 將該第五流動速率提高至第六流動速率,以使第六 目標細胞群流經該流體腔室且經收集,而將該周邊血液 樣本之第六剩餘物截留於該流體腔室中; 其中步驟(f)不包含採用正向選擇技術。 25. 如凊求項24之方法,其進一步包含: (g) 將該第六流動速率提高至第七流動速率,以使第七 目標細胞群流經該流體腔室且經收集,而將該周邊血液 樣本之第七剩餘物截留於該流體腔室中; 其中步驟(g)不包含採用正向選擇技術。 26. 如請求項20之方法,其中⑴選擇該第一流動速率,以使 该第一目標細胞群為小於極小胚胎樣幹細胞(VSEL)之細 胞,及(ii)選擇該第二流動速率,以使該第二目標細胞群 為 VSEL。 27. 如請求項26之方法,其中⑴該第一流動速率為約35 ml/min且該第二流動速率為約5〇·7〇 mi/min。 28. 如請求項22之方法,其中⑴選擇該第三流動速率以使 該第一目標細胞群為小於造血幹細胞(HSC)之細胞,及 (Π)選擇該第四流動速率’以使該第二目標細胞群為 HSC。 152717.doc 201130978 29. 30. 31. 32. 33. 如請求項28之方法,其中⑴該第三流動速率為約9〇 ml/min且該第四流動速率為約100 ml/min » 如s青求項23之方法,其中⑴選擇該第四流動速率,以使 s亥第一目標細胞群為小於間葉幹細胞(MSC)之細胞,及 (1〇選擇該第五流動速率,以使該第二目標細胞群為 MSC。 如請求項30之方法,其中⑴該第三流動速率為約1〇〇 ml/min且該第四流動速率為約110-120 ml/min。 如請求項25之方法,其中: (I) 該第一流動速率為約35 ml/min且該第一目標細胞群 為血小板; (II) 該第二流動速率為約5〇 ml/min且該第二目標細胞 群為VSEL ; (iii)s玄第二流動速率為約7〇 mi/min且該第三目標細胞 群為VSEL ; (IV)該第四流動速率為約9〇 ml/min且該第四目標細胞 群為紅血球, (v) 該第五流動速率為約1〇〇 ml/min且該第五目標細胞 群為HSC ; (vi) s亥第六流動速率為約11 〇 ml/min且該第六目標細胞 群為MSC ;且 (vii) 該第七流動速率為約12〇 ml/min且該第七目標細 胞群為MSC。 如請求項20至32中任一項之方法,其中該正向選擇技術 152717.doc 201130978 為免疫選擇法或免疫密度選擇法。 其中該周邊血液樣本 其中該周邊血液樣本 液樣本獲自已投與調 其中將該所收集之目 34.如請求項20至33中任一項之方法 為人類周邊血液樣本。 35·如請求項20至34中任一項之方法 為經調動周邊血液樣本。 36. 如請求項35之方法,其中該周邊血 動劑4曰或4日以下之個體。 37. 如請求項20至36 t任一項之方法, 標細胞群經超低溫保存。 38. 如請求項2G至37中任-項之方法,其中將該等所收集之 目標細胞群中之至少一者投與個體。 39. 如請求項38之方法,其中胳兮埜β 具中將該4所收集之目標細胞群中 之至少-者投與最初提供該周邊血液之個體。 4〇.2”38或39之方法,其中該等所收集之目標細胞群 > 一者在投與該個體之前已於活體外擴增。 41.如請求項38至40中任—項之方法,1 體。 八中3亥個體為人類個 其中該等所收集之目 其中該等所收集之目 42. 如請求項38至41中任—項之方法 標細胞群中之至少一者為VSEL。 43. 如請求項38至41中任一項之方法 標細胞群中之至少一者為Msc。 44. 如請求項38至41中任—項之方法,其中 標細胞群中之至少-者為HSC。 斤收集之目 45. —種自周邊血液分離目標細胞群之 7故’其包含: 152717.doc 201130978 (a) 使來自個體之周邊血液樣本在第一流動速率下流經 淘洗裝置之流體腔室’其中選擇該第一流動速率,以使 第一目標細胞群流經該流體腔室且經收集,而將該周邊 血液樣本之第一剩餘物截留於該流體腔室中; (b) 將該第一流動速率提南至第二流動速率,以使第二 目標細胞群流經該流體腔室且經收集,而將該周邊血液 樣本之第二剩餘物截留於該流體腔室中;及 (c) 視情況重複步驟(b),直至收集到所需數目之目標 細胞群為止; 其中步驟(a)、(b)及(c)不包含採用正向選擇技術。 46. 如請求項2、3、17、26、27或42中任一項之方法,其中 該周邊血液樣本為血球比容範圍為約2-3%之人類周邊血 液樣本。 47. —種減少個體周邊血液VSEL之組合物中之粒細胞的方 法’其包含藉由析離程序將VSEL與其他體細胞分離,其 中該等分離之細胞的血球比容為2-3%。 48. —種提高在析離產物下游處理中所獲得VSEL之產率的方 法’其藉由選擇2-3%之血球比容範圍,藉此減少該收集 之析離產物中之粒細胞含量。 49. 一種VSEL產物’其藉由如請求項2、3、26或27中任一項 之方法產生。 50· —種MSC產物’其藉由如請求項4、5、30或31中任一項 之方法產生。 51. —種HSC產物,其藉由如請求項6、7、28或29中任一項 之方法產生。 152717.doc201130978 VII. Patent application scope: 1. A method for separating a target cell population from peripheral blood, comprising: (a) flowing a peripheral blood sample from an individual through a fluid chamber of a panning device at a first flow rate, wherein The first flow rate such that cells in the peripheral blood sample that are smaller than the target cell population flow through the fluid chamber and trap the target cell population in the fluid chamber; (b) the first flow rate Raising to a second flow rate to cause the target cell population to flow through the fluid chamber; and 0) collecting the target cell population as the target cell population flows through the fluid chamber; wherein steps (a), (b) And (c) does not include the use of positive selection techniques. 2. The method of claim 1, wherein (1) the first flow rate is selected such that cells of the peripheral blood sample that are smaller than minimal embryonic stem cells (VSELs) flow through the fluid chamber and trap VSELs in the fluid chamber In the chamber, and (1) selecting the second flow rate to cause the VSEL to flow through the fluid chamber. 3. The method of claim 2, wherein (1) the first flow rate is about 35 ml/min and the second The flow rate is about 5 〇 7 〇 ml / min. 4. The method of claim 1, wherein (1) the first flow rate is selected such that cells of the peripheral blood sample that are smaller than the mesenchymal stem cells (MSC) flow through the • a fluid chamber and trapping the MSC in the fluid chamber ' and (Π) selecting the second flow rate to cause Msc to flow through the fluid chamber. 5. The method of claim 4 wherein (1) the first The flow rate is about 1 〇〇 ml/min and the second flow rate is about i 1 〇 12 〇 mi / min. 6. The method of claim 1, wherein (1) the first flow rate is selected such that 152717. Doc 201130978 The cells in the peripheral blood sample that are smaller than hematopoietic stem cells (HSC) flow through the body cavity to Hsc is trapped in the fluid chamber, and (n) the second flow rate is selected to cause the HSC to flow through the fluid chamber. The method of claim 6, wherein (1) the first flow rate is about 9 〇 ml The second flow rate is about 100 ml/min. The method of any one of clauses 1 to 7, wherein the positive selection technique is an immunoselection method or an immunodense selection method. The blood sample is a method in which the peripheral blood sample is 9. The method of any one of claims 1 to 8 is a human peripheral blood sample. 10. The method of any one of claims 1 to 9 mobilizes a peripheral liquid sample. 11. The method of claim 10, wherein the peripheral blood sample is obtained from an individual who has been administered the mobilizer for 4 or less days. 12 · If the method of any one of items 1 to 11 is specified, Dan A. The collected target cell population is cryopreserved. 13. A method according to any one of claims 1 to 12, wherein the target cell population collected is administered to the individual. If you request the method of item 3, the target cell group collected by M m should be the most The method of providing the peripheral blood. The method of claim 13 or claim 14, wherein the collected target cell population has been expanded in vitro prior to the sputum and the individual. 16. The method of claim 15 Wherein the individual is a human individual. 17. The method of any one of claims 13 to 15 wherein the cell population is VSEL. wherein the remotely collected target 152717d〇C -2- 5 201130978 18. as claimed in claims 13 to 15 A method wherein the target cell population collected is MSC. The method of any one of claims 13 to 15, wherein the collected target cell population is HSC. 20. A method of isolating a target cell population from peripheral blood, comprising: - (a) flowing a peripheral blood sample from the individual through a fluid chamber of the panning apparatus at a first flow rate, wherein the first flow rate is selected So that the first target cell population flows through the fluid chamber and is collected to trap the first residue of the peripheral blood sample in the fluid chamber; and (b) increase the first flow rate to the first a second flow rate such that a second target population of cells flows through the fluid chamber and is collected, and the second remainder of the peripheral blood sample is retained in the fluid chamber; wherein steps (a) and (b) Does not include the use of positive selection techniques. 21. The method of claim 20, further comprising: (c) increasing the second flow rate to a third flow rate to cause a third target population of cells to flow through the fluid chamber and collecting A third residue of the peripheral blood sample is carried in the fluid chamber; wherein step (C) does not involve the use of a forward selection technique. 22. The method of claim 21, further comprising: (d) increasing the third flow rate to a fourth flow rate such that a fourth target population of cells flows through the fluid chamber and is collected, and the periphery is A fourth residue of the blood sample is worn in the fluid chamber; wherein step (d) does not involve the use of a positive selection technique. 23. The method of claim 22, further comprising: 152717.doc 201130978 (e) increasing the fourth flow rate to a fifth flow rate such that a fifth target population of cells flows through the fluid chamber and is collected, The fifth remainder of the peripheral blood sample is trapped in the fluid chamber; wherein step (e) does not involve the use of a positive selection technique. 24. The method of claim 23, further comprising: (f) increasing the fifth flow rate to a sixth flow rate such that the sixth target population of cells flows through the fluid chamber and is collected, and the periphery is The sixth residue of the blood sample is trapped in the fluid chamber; wherein step (f) does not involve the use of a forward selection technique. 25. The method of claim 24, further comprising: (g) increasing the sixth flow rate to a seventh flow rate such that the seventh target population of cells flows through the fluid chamber and is collected A seventh residue of the peripheral blood sample is trapped in the fluid chamber; wherein step (g) does not involve the use of a positive selection technique. 26. The method of claim 20, wherein (1) selecting the first flow rate such that the first target population of cells is less than cells of minimal embryonic stem cells (VSELs), and (ii) selecting the second flow rate to The second target cell population is made VSEL. 27. The method of claim 26, wherein (1) the first flow rate is about 35 ml/min and the second flow rate is about 5 〇 7 〇 mi/min. 28. The method of claim 22, wherein (1) selecting the third flow rate such that the first target population of cells is less than a hematopoietic stem cell (HSC) cell, and (Π) selecting the fourth flow rate 'to enable the first The second target cell population is HSC. The method of claim 28, wherein (1) the third flow rate is about 9 〇 ml/min and the fourth flow rate is about 100 ml/min » such as s The method of claim 23, wherein (1) selecting the fourth flow rate such that the first target cell population is smaller than the mesenchymal stem cells (MSC) cells, and (1) selecting the fifth flow rate to enable the The second target cell population is MSC. The method of claim 30, wherein (1) the third flow rate is about 1 〇〇 ml/min and the fourth flow rate is about 110-120 ml/min. The method, wherein: (I) the first flow rate is about 35 ml/min and the first target cell population is platelets; (II) the second flow rate is about 5 〇ml/min and the second target cell population Is VSEL; (iii) s second second flow rate is about 7 〇 mi / min and the third target cell population is VSEL; (IV) the fourth flow rate is about 9 〇 ml / min and the fourth target cell The group is red blood cells, (v) the fifth flow rate is about 1〇〇ml/min and the fifth target cell population is HSC; (vi) the sixth flow rate of shai About 11 〇ml/min and the sixth target cell population is MSC; and (vii) the seventh flow rate is about 12 〇ml/min and the seventh target cell population is MSC. As claimed in claims 20 to 32 A method, wherein the positive selection technique 152717.doc 201130978 is an immunoselection method or an immunodense selection method, wherein the peripheral blood sample wherein the peripheral blood sample liquid sample is obtained from a administered one of which is collected. The method of any one of claims 20 to 33 is a human peripheral blood sample. The method of any one of claims 20 to 34, wherein the method of claim 35, wherein The peripheral blood mobilizer is 4 曰 or less than 4 days. 37. The method of claim 20, wherein the standard cell population is cryopreserved. 38. The method of any one of claims 2G to 37 Wherein at least one of the target cell populations collected is administered to the individual. 39. The method of claim 38, wherein at least one of the four target cell populations collected in the scorpion beta Invest in individuals who originally provided the peripheral blood. The method of 4, 38 or 39, wherein the collected target cell populations > one has been expanded in vitro prior to administration of the individual. 41. As claimed in any of claims 38 to 40. Method, 1 body. Bazhong 3 hai individual is a human being, wherein the collected items are the items collected by the objects 42. At least one of the method target cell groups of any one of claims 38 to 41 is VSEL. 43. The method of any one of claims 38 to 41, wherein at least one of the target cell populations is Msc. 44. The method of any one of clauses 38 to 41, wherein at least one of the target cell populations is an HSC. The purpose of the collection is 45. The species from the peripheral blood separation target cell group 7 contains: 152717.doc 201130978 (a) The peripheral blood sample from the individual flows through the fluid chamber of the panning device at the first flow rate ' wherein the first flow rate is selected such that the first target population of cells flows through the fluid chamber and is collected, and the first residue of the peripheral blood sample is trapped in the fluid chamber; (b) The first flow rate is advanced to a second flow rate such that the second target population of cells flows through the fluid chamber and is collected, and the second remainder of the peripheral blood sample is trapped in the fluid chamber; c) Repeat step (b) as appropriate until the desired number of target cell populations are collected; where steps (a), (b) and (c) do not include the use of positive selection techniques. The method of any of claims 2, 3, 17, 26, 27 or 42, wherein the peripheral blood sample is a human peripheral blood sample having a hematocrit ranging from about 2-3%. 47. A method of reducing granulocytes in a composition of an individual peripheral blood VSEL comprising 'separating VSEL from other somatic cells by a separation procedure, wherein the isolated cells have a hematocrit of 2-3%. 48. A method of increasing the yield of a VSEL obtained in a downstream treatment of a separation product' by selecting a hematocrit range of 2-3%, thereby reducing the granulocyte content in the collected separation product. 49. A VSEL product' produced by the method of any one of claims 2, 3, 26 or 27. An MSC product is produced by the method of any one of claims 4, 5, 30 or 31. 51. An HSC product produced by the method of any one of claims 6, 7, 28 or 29. 152717.doc
TW099142523A 2009-12-04 2010-12-06 Method of isolation of stem cell populations from peripheral blood using sized-based separation (elutriation) TW201130978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099142523A TW201130978A (en) 2009-12-04 2010-12-06 Method of isolation of stem cell populations from peripheral blood using sized-based separation (elutriation)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US26686009P 2009-12-04 2009-12-04
TW99104517 2010-02-10
PCT/US2010/058974 WO2011069117A1 (en) 2009-12-04 2010-12-03 Method of isolation of stem cell populations from peripheral blood using sized-based separation (elutriation)
TW099142523A TW201130978A (en) 2009-12-04 2010-12-06 Method of isolation of stem cell populations from peripheral blood using sized-based separation (elutriation)

Publications (1)

Publication Number Publication Date
TW201130978A true TW201130978A (en) 2011-09-16

Family

ID=44115328

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099142523A TW201130978A (en) 2009-12-04 2010-12-06 Method of isolation of stem cell populations from peripheral blood using sized-based separation (elutriation)

Country Status (2)

Country Link
TW (1) TW201130978A (en)
WO (1) WO2011069117A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2773746A4 (en) * 2011-11-01 2015-08-05 Neostem Inc Adult mesenchymal stem cell (msc) compositions and methods for preparing the same
WO2013096778A1 (en) * 2011-12-21 2013-06-27 Lonza Walkersville Inc. Scalable process for therapeutic cell concentration and residual clearance
US11312940B2 (en) 2015-08-31 2022-04-26 University Of Louisville Research Foundation, Inc. Progenitor cells and methods for preparing and using the same
WO2017152073A1 (en) 2016-03-04 2017-09-08 University Of Louisville Research Foundation, Inc. Methods and compositions for ex vivo expansion of very small embryonic-like stem cells (vsels)
GB2565664A (en) * 2016-03-07 2019-02-20 Hitachi Chemical Advanced Therapeutics Solutions Llc A closed system for labelling and selecting live cells
US20180179490A1 (en) * 2016-12-27 2018-06-28 Miltenyi Biotec Gmbh CELL COMPOSITION DEPLETED FROM TCRab and CD45RA POSITIVE CELLS
WO2019081765A1 (en) * 2017-10-26 2019-05-02 Marti Guy Method and apparatus for mesenchymal stem cells purification
WO2020084135A1 (en) * 2018-10-26 2020-04-30 Stemselect Method and apparatus for mesenchymal stem cells isolation and purification
US11697799B2 (en) 2019-04-15 2023-07-11 Ossium Health, Inc. System and method for extraction and cryopreservation of bone marrow
EP4181675A4 (en) 2020-07-18 2024-04-24 Ossium Health, Inc. Permeation of whole vertebral bodies with a cryoprotectant using vacuum assisted diffusion
AU2021360590A1 (en) 2020-10-14 2023-06-15 Ossium Health, Inc. Systems and methods for extraction and cryopreservation of bone marrow
EP4262831A1 (en) 2020-12-18 2023-10-25 Ossium Health, Inc. Methods of cell therapies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201848B2 (en) * 2001-12-05 2007-04-10 Gambro Bct, Inc. Methods and apparatus for separation of particles
EP1795587A1 (en) * 2005-12-07 2007-06-13 Schuler, Gerold, Prof. Dr. Method for the direct culture of dendritic cells without a preceding centrifugation step
EP1974018A4 (en) * 2005-12-08 2010-01-27 Univ Louisville Res Found Very small embryonic-like (vsel) stem cells and methods of isolating and using the same
US20100095669A1 (en) * 2007-03-16 2010-04-22 Csir Wax Actuator and a Method of Actuating by Means of a Wax Actuator

Also Published As

Publication number Publication date
WO2011069117A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
TW201130978A (en) Method of isolation of stem cell populations from peripheral blood using sized-based separation (elutriation)
Amati et al. Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use
Ip et al. Mesenchymal stem cells use integrin β1 not CXC chemokine receptor 4 for myocardial migration and engraftment
Rebelatto et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue
US7585670B2 (en) Automated methods for isolating and using clinically safe adipose derived regenerative cells
WO2011069121A1 (en) Mesenchymal stem cells (mscs) isolated from mobilized peripheral blood
US20160113967A1 (en) Systems and methods for manipulation of regenerative cells from adipose tissue
US20080038231A1 (en) Processing procedure for peripheral blood stem cells
Lan et al. Stromal cell-derived factor-1 mediates cardiac allograft tolerance induced by human endometrial regenerative cell-based therapy
WO2007024441A2 (en) Compositions of cells enriched for combinations of various stem and progenitor cell populations, methods of use thereof and methods of private banking thereof
EP2760996B1 (en) Somatic stem cells
WO2006014156A1 (en) Systems and methods for isolating and using clinically safe adipose derived regenerative cells
TW200524647A (en) Tangential flow filtration devices and methods for stem cell enrichment
US20160158292A1 (en) Method and apparatus for recovery of umbilical cord tissue derived regenerative cells and uses thereof
EP1751661B1 (en) Method for selectively expanding, selecting and enriching stem/progenitor cell populations
WO2023184616A1 (en) Method for detecting cloned tcr sequence and use thereof
Nasti et al. The CD45+ fraction in murine adipose tissue derived stromal cells harbors immune‐inhibitory inflammatory cells
US11674131B2 (en) Indirect ultrasonic cavitation-derived perivascular cells and methods of use thereof
US20230149523A1 (en) Treatment of autoimmunity and transplant rejection through establishment and/or promotion of tolerogenic processes by fibroblast-mediated reprogramming of antigen presenting cells
Dannull et al. Transfecting Human Monocytes with RNA
JP2004147531A (en) Cell treating method
Pellegrini Myoblast Transplantation: Murine Studies
Larson Characterization of Stromal Cells Derived from Bone Marrow, Dermis, and Myocardium
Götherström Characterisation of human fetal mesenchymal stem cells
Duran et al. Research Article Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor