US20040019353A1 - Spinal plate system for stabilizing a portion of a spine - Google Patents
Spinal plate system for stabilizing a portion of a spine Download PDFInfo
- Publication number
- US20040019353A1 US20040019353A1 US10/351,283 US35128303A US2004019353A1 US 20040019353 A1 US20040019353 A1 US 20040019353A1 US 35128303 A US35128303 A US 35128303A US 2004019353 A1 US2004019353 A1 US 2004019353A1
- Authority
- US
- United States
- Prior art keywords
- plate
- spinal
- spinal plate
- adjustable
- length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000087 stabilizing effect Effects 0.000 title claims description 4
- 230000006835 compression Effects 0.000 claims abstract description 361
- 238000007906 compression Methods 0.000 claims abstract description 361
- 230000033001 locomotion Effects 0.000 claims abstract description 141
- 239000007943 implant Substances 0.000 claims abstract description 44
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 43
- 238000003780 insertion Methods 0.000 claims description 95
- 230000037431 insertion Effects 0.000 claims description 95
- 230000007246 mechanism Effects 0.000 claims description 90
- 230000008878 coupling Effects 0.000 claims description 65
- 238000010168 coupling process Methods 0.000 claims description 65
- 238000005859 coupling reaction Methods 0.000 claims description 65
- 125000006850 spacer group Chemical group 0.000 claims description 60
- 238000000926 separation method Methods 0.000 claims description 41
- 230000001045 lordotic effect Effects 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 238000005452 bending Methods 0.000 claims description 13
- 230000013011 mating Effects 0.000 claims description 5
- 239000000523 sample Substances 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 2
- 230000035515 penetration Effects 0.000 claims 1
- 230000004927 fusion Effects 0.000 abstract description 7
- 230000008468 bone growth Effects 0.000 abstract description 5
- 230000003278 mimic effect Effects 0.000 abstract 1
- 238000013459 approach Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- -1 but not limited to Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000003462 Bender reaction Methods 0.000 description 1
- MYDKVEXLVBGVLK-UHFFFAOYSA-N C1C2=CC=C1C2 Chemical compound C1C2=CC=C1C2 MYDKVEXLVBGVLK-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 208000029549 Muscle injury Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000004705 lumbosacral region Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1728—Guides or aligning means for drills, mills, pins or wires for holes for bone plates or plate screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1757—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7059—Cortical plates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8004—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
- A61B17/8009—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones the plate having a ratchet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8033—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers
- A61B17/8047—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers wherein the additional element surrounds the screw head in the plate hole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/808—Instruments for holding or positioning bone plates, or for adjusting screw-to-plate locking mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/8875—Screwdrivers, spanners or wrenches
- A61B17/8886—Screwdrivers, spanners or wrenches holding the screw head
- A61B17/8888—Screwdrivers, spanners or wrenches holding the screw head at its central region
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/8875—Screwdrivers, spanners or wrenches
- A61B17/8894—Screwdrivers, spanners or wrenches holding the implant into or through which the screw is to be inserted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
- A61B90/92—Identification means for patients or instruments, e.g. tags coded with colour
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
- A61B90/94—Identification means for patients or instruments, e.g. tags coded with symbols, e.g. text
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1735—Guides or aligning means for drills, mills, pins or wires for rasps or chisels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8023—Variable length plates adjustable in both directions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8085—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with pliable or malleable elements or having a mesh-like structure, e.g. small strips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/809—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with bone-penetrating elements, e.g. blades or prongs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8625—Shanks, i.e. parts contacting bone tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/0046—Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
- A61B2017/00469—Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable for insertion of instruments, e.g. guide wire, optical fibre
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/0046—Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
- A61B2017/00473—Distal part, e.g. tip or head
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00858—Material properties high friction or non-slip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/92—Impactors or extractors, e.g. for removing intramedullary devices
- A61B2017/922—Devices for impaction, impact element
Definitions
- the present invention generally relates to bone fixation systems.
- An embodiment of the invention relates to a compression plate for a spinal fixation system.
- the compression plate may be installed using an anterior procedure.
- the compression plate may be used in conjunction with one or more spinal implants that fuse vertebrae together.
- An intervertebral disc may be subject to degeneration caused by trauma, disease, and/or aging.
- a degenerated intervertebral disc may have to be partially or fully removed from a spinal column. Partial or full removal of an intervertebral disc may destabilize a spinal column. Destabilization of a spinal column may alter a natural separation distance between adjacent vertebrae. Maintaining a natural separation distance between vertebrae may help prevent pressure from being applied to nerves that pass between vertebral bodies. Excessive pressure applied to the nerves may cause pain and/or nerve damage.
- a spinal implant may be inserted in a space created by removal or partial removal of an intervertebral disc between adjacent vertebrae. A spinal implant may maintain the height of the spine and restore stability to the spine. Intervertebral bone growth may fuse the implant to adjacent vertebrae.
- a spinal implant may be inserted during a spinal fixation procedure using an anterior, lateral, or posterior spinal approach.
- an anterior approach may result in an easier approach, less muscle damage, less tissue damage, and/or less bone removal than other approaches.
- a discectomy may be performed to remove or partially remove a defective and/or damaged intervertebral disc.
- a discectomy creates a disc space for a spinal implant.
- a spinal implant may be inserted into the disc space.
- One or more spinal implants may be inserted between a pair of vertebrae.
- Spinal implants may be inserted into disc spaces prepared between more than one pair of vertebrae during a spinal fusion procedure.
- a spinal plate may be coupled to vertebrae after insertion of one or more spinal implants.
- a spinal plate may stabilize the vertebrae and inhibit backout of the spinal implant from between vertebrae.
- a spinal plate may share a compressive load applied to one or more spinal implants inserted between vertebrae.
- Fasteners e.g., bone screws
- Spinal plates may stabilize sections of cervical spine and/or sections of lumbar spine.
- Fastening systems may attach a spinal plate to vertebrae without allowing fasteners of the fastening systems to back out from the vertebrae.
- a fastening system may include a fastener and a retainer. The retainer may be positioned in an opening of the spinal plate. Backout of fasteners from the spinal plate may be inhibited without immovably fixing the fasteners or the retainers to the spinal plate.
- U.S. Pat. No. 6,331,179 to Freid et al. and U.S. Pat. No. 6,454,679 to Wagner et al. both of which are incorporated by reference as if fully set forth herein, describe bone plate systems including fasteners and retainers.
- U.S. Pat. No. 6,328,738 to Suddaby which is incorporated by reference as if fully set forth herein, describes an anterior cervical fusion compression plate and screw guide.
- the anterior cervical fusion compression plate has a pair of slideable inserts. Each insert is situated in a recess at an end of the plate to allow vertebral compression.
- a pliers-like tool is used to move the inserts toward the center of the plate.
- central screws are tightened to fix the position of the inserts. Lateral screws may be driven into the inserts to anchor the vertebrae to the plate.
- An adjustable-length spinal compression plate may be used to stabilize vertebrae and/or apply a compressive load to a spinal implant positioned in a disc space between a pair of vertebrae.
- One or more fasteners may couple a first plate to a vertebra above a spinal implant.
- One or more fasteners may couple a second plate to a vertebra below a spinal implant.
- the first plate may be coupled to the second plate so that the first plate is able to move toward and/or away from the second plate.
- motion of the first plate relative to the second plate may be restricted to allow only unidirectional motion (i.e., only compression of the spinal compression plate) during use.
- Movement of the first plate toward the second plate may allow the spinal plate system to accommodate settling and/or subsidence of the vertebrae while maintaining a compressive load on the spinal implant.
- three or more plates may be coupled together to form an adjustable-length spinal compression plate that spans two or more vertebral levels.
- Plates of a spinal plate system may be curved to maintain a lordotic curvature of a human spine during compression of the spinal plate system. Plates may be provided with preformed curvatures to accommodate lordotic and/or radial vertebrae curvature. In some embodiments, a plate of a spinal compression plate may have one or more grooves to facilitate bending of the spinal compression plate to achieve a desired lordotic curvature.
- Plates of a spinal plate system may be available in various sizes. The size of a plate utilized may depend on the number of vertebrae to be immobilized and/or the size of a patient. Plates may have an anterior side, a posterior side, and two ends. A spinal plate system may be coupled to vertebrae using one or more openings through the plates. Openings may be located at various positions along the plate. A spinal plate system may have a center opening. An opening in a spinal compression plate may have a regular or an irregular shape. An opening in a spinal compression plate may be substantially circular or elongated. In some embodiments, a portion of a plate may form a wall of an opening. Alternatively, a liner, a cover, and/or a coating may form a wall of an opening.
- Plates of a spinal plate system may be coupled together using coupling mechanisms to form a spinal compression plate.
- a coupling mechanism may include one or more coupling members and one or more coupling cavities.
- a coupling mechanism may include mating slots and extensions that allow movement of a plate of a spinal compression plate relative to another plate of the spinal compression plate.
- a portion of a first plate may overlay a portion of a second plate.
- one or more mating surfaces of plates of a spinal compression plate may have friction texturing. Plates may be coupled so that the plates can move in a longitudinal direction during use.
- a spinal compression plate may be compressed along a longitudinal axis during use. Movement of the plates may be restricted by the size of a coupling cavity.
- a spinal compression plate may compress longitudinally during use; however, the spinal compression plate may be inhibited from expanding longitudinally during use.
- a movement mechanism may inhibit expansion during use.
- a movement mechanism may include one or more protrusions on the spinal compression plate. Protrusions may be positioned on surfaces of the plates that normally contact each other. Some embodiments include a protrusion on a first plate that engages one or more protrusions (e.g., serrations) on a second plate to maintain a distance between the vertebrae after compression. In some embodiments, at least a portion of a serrated surface of a movement mechanism may be curved to increase an area of the movement mechanism and thus enhance stability of a spinal compression plate.
- a probe may be inserted into an opening in a spinal compression plate to release a movement mechanism (e.g., a ratcheting system) to allow expansion of the spinal compression plate.
- a movement mechanism e.g., a ratcheting system
- an opening in a spinal compression plate may be used for monitoring the amount of compression of a spinal compression plate in a patient after insertion of the spinal compression plate.
- a portion of a first plate may extend into an opening in the second plate. The position of the portion of the first plate relative to the opening in the second plate may be monitored using x-ray imaging to determine the amount of compression of the spinal compression plate.
- Some spinal plate systems may include an engagement mechanism that inhibits separation of a first plate from a second plate of the spinal compression plate.
- An engagement mechanism may inhibit separation of the plates while allowing the plates to adjust for lordotic alignment as the spinal compression plate is compressed.
- an engagement mechanism may include a protruding member of a first plate that engages serrations in a second plate.
- a spinal compression plate may freely compress and expand unencumbered by a movement mechanism.
- a first plate may not include protrusions to engage protrusions on a second plate.
- a second plate may not have protrusions to engage protrusions on a first plate. Compression and expansion of a spinal compression plate may allow the plate to accommodate natural vertebral movement.
- a coupling cavity may restrict the range of motion of a first plate relative to a second plate of a spinal compression plate and/or inhibit separation of the first plate from the second plate.
- portions of the first plate that engage the second plate and/or portions of the second plate that engage the first plate may be textured to alter frictional properties of the first plate relative to the second plate.
- a spacer may set an initial separation between a first plate and a second plate of a spinal compression plate.
- the spacer may have an insertion end, an alignment portion, and a guidepost.
- the spacer may couple to a spinal compression plate.
- a fastener guide may be coupled to a guidepost of the spacer.
- a positioner may be used to help position a spinal compression plate in a desired location in a patient.
- the position may have an engagement end, and alignment portion, and a guidepost.
- a fastener guide may be coupled to a guidepost of a positioner.
- a plate insertion instrument may couple with a guide opening of a spinal compression plate to allow positioning of the spinal compression plate within a patient.
- an engagement end of the plate insertion instrument may be press-fit into the guide opening of the spinal compression plate.
- a plate insertion instrument may be attached to a portion of a spacer or positioner that is coupled to the spinal compression plate.
- Spinal plate systems may be utilized in conjunction with implants and/or other medical devices. In certain instances, it may be beneficial for a spinal plate system to share at least some of the load experienced by a spinal plate system with a medical device. Bone growth may be increased around and through an implant that is carrying a load. Therefore, spinal plate systems may be designed to share a portion of the load from surrounding vertebrae with a spinal implant positioned between the vertebrae.
- a portion of a plate forms a wall of an opening.
- a recess may be positioned in a wall to engage a retainer that inhibits removal of a fastener from a plate.
- a recess may be biased to allow the fastener to enter a vertebra at a desired angle. Allowing a fastener to enter a spinal compression plate at an angle may facilitate establishment of a secure connection between the spinal compression plate and the vertebra.
- a recess may have a larger height than a height of the portion of a retainer that fits within the recess. The greater height of the recess may allow for some angulation adjustment of a fastener positioned through the retainer into a vertebra.
- openings on a superior end of a spinal compression plate may allow for greater angulation of fasteners than openings on an inferior end of the spinal compression plate.
- a portion of an opening may have a spherically shaped contour to permit a fastener to be “obliquely angulated” relative to a plate.
- an “obliquely angulated” fastener refers to a fastener that may be positioned at a wide range of angles relative to a plate. In some embodiments, a range of angles may be from 0° to about 20° from an axis perpendicular to a plate.
- a fastener may be secured in a plate using a retainer, such as a ring.
- a retainer may be positioned in an opening of a spinal compression plate.
- the opening of the spinal compression plate may be elongated to allow longitudinal movement of the retainer in the opening.
- An inner surface of a retainer may be shaped to accept head of a fastener while an outer surface of the retainer may be shaped to fit in an opening of the plate.
- a serrated surface of a retainer may contact a serrated surface of an elongated opening of a plate to provide unidirectional longitudinal movement of the retainer in the opening.
- a surface of a retainer may be textured (e.g., scored, peened, implanted with particles) to increase a frictional coefficient relative to a surface defining the opening so that motion of the retainer relative to the plate is inhibited but not prevented.
- a fastener may include a head and a shank.
- An outer surface of a fastener head may be tapered such that an upper portion of the fastener head is larger than a lower portion of the fastener head.
- a retainer may have projections extending from an inner surface of the ring. The projections may engage a fastener head should the fastener move in a direction that would result in removal of the fastener from the opening.
- An outer surface of a retainer may include protrusions that engage a wall of an opening.
- an inner surface of a retainer may include projections.
- a retainer may have a gap that allows the retainer to radially expand and/or contract.
- a retainer may engage a fastener to inhibit backout of the fastener from a plate.
- Engaging a retainer with a fastener may inhibit a fastener head from rising above an upper surface of the plate even if the fastener loosens in the bone.
- Retaining a fastener below the upper surface of a plate may inhibit contact of adjacent tissue with the fastener and/or fastener head during use. Damage of adjacent tissue may be minimized or eliminated by inhibiting contact of adjacent tissue with the fastener and/or fastener head during use.
- a retainer may be positioned in an opening of a spinal compression plate prior to surgical insertion of the compression plate in a patient.
- a spinal compression plate may be positioned adjacent to a portion of the spine that requires spinal fixation. Holes may be drilled, tapped, and/or otherwise formed in a portion of a vertebra underlying each opening.
- Fasteners may be inserted through the openings and into the holes.
- Fastener heads may be positioned in the openings so that retainers surround at least a portion of the fastener heads.
- a fastener may be held within the opening by a retainer.
- a spinal compression plate with a pre-positioned retainer may reduce concerns about positioning and/or dropping retainers during surgery.
- FIG. 1 depicts a perspective view of an embodiment of a spinal compression plate.
- FIG. 2 depicts a perspective view of an embodiment of a spinal compression plate.
- FIG. 3 depicts a perspective cross-sectional view of a posterior side of a spinal compression plate.
- FIG. 4 depicts a perspective cross-sectional view of a spinal compression plate in an expanded position.
- FIG. 5 depicts a perspective cross-sectional view of a spinal compression plate, including an inset view showing a magnified portion of spinal plates.
- FIG. 6 depicts an exploded view of an embodiment of a spinal compression plate.
- FIG. 7 depicts an embodiment of a plate insertion instrument.
- FIG. 8 depicts an engagement end of the plate insertion instrument shown in FIG. 7.
- FIG. 9 depicts a cross-sectional view of a serrated retainer.
- FIG. 10 depicts a perspective view of an embodiment of spinal compression plate.
- FIG. 11 depicts a perspective view of an embodiment of a spinal compression plate.
- FIG. 12 depicts a top view of the spinal compression plate shown in FIG. 11.
- FIG. 13 depicts a top view of an embodiment of a spinal compression plate shown in an expanded position.
- FIG. 14 depicts a perspective view of an embodiment of a multi-level spinal compression plate.
- FIG. 15 depicts a side view of an embodiment of a spinal compression plate.
- FIG. 16 depicts a top view of an embodiment of a spinal compression plate with a spacer.
- FIG. 17 depicts a side view of an embodiment of spinal compression plate with a spacer.
- FIG. 18 depicts a perspective view of a spacer and a positioner aligned for insertion in a spinal compression plate.
- FIG. 19 depicts a perspective view of a handle for engaging a guidepost.
- FIG. 20 depicts a perspective view of a fastener guide.
- FIG. 21 depicts a perspective view of an embodiment of a spinal compression plate.
- FIG. 22 depicts a perspective cross-sectional view of an embodiment of a spinal plate system.
- FIG. 23 depicts a perspective view of an embodiment of a fastener.
- FIG. 24 depicts a cross-sectional view of an embodiment of a portion of a spinal compression plate.
- FIG. 25 depicts a perspective view of an embodiment of a retainer for a spinal compression plate.
- FIG. 26 depicts a perspective view of an embodiment of a retainer for a spinal compression plate.
- FIG. 27 depicts a perspective view of an embodiment of a retainer for a spinal compression plate.
- FIG. 28 depicts a perspective view of an embodiment of a retainer for a spinal compression plate.
- FIG. 29 depicts a side view of an embodiment of a spinal plate system coupled to two adjacent vertebrae.
- FIG. 30 depicts a front view of a fastener insertion instrument with a cross-sectional inset view that shows details of a tip of the fastener insertion instrument.
- a spinal plate system may be used to stabilize a portion of a spine.
- a spinal plate system may include a spinal compression plate and fasteners that couple the spinal compression plate to vertebrae.
- Components of a spinal plate system may include materials such as, but not limited to, stainless steel, titanium, titanium alloys, ceramics, and/or polymers. Some components of a spinal plate system may be made of materials that may be autoclaved and/or chemically sterilized. Some components of a spinal plate system may be formed of materials unable to be autoclaved and/or chemically sterilized. Components unable to be autoclaved and/or chemically sterilized may be made of sterile materials and placed in working relation to other sterile components during assembly of a spinal plate system.
- Spinal plate systems may typically be used to correct problems in lumbar and cervical portions of a spine resulting from injury and/or disease.
- a spinal plate system may be implanted anterior to a spine to maintain distraction between adjacent vertebral bodies in a cervical portion of the spine.
- a spinal compression plate of a spinal plate system may provide stability to one or more vertebral levels.
- a spinal compression plate may also facilitate bone fusion (e.g., spinal fusion).
- a spinal compression plate may be used in conjunction with a spinal implant inserted in an intervertebral space between vertebrae.
- Spinal compression plates may accommodate settling and/or subsidence of a vertebra or vertebrae.
- Spinal compression plates may allow stress to be applied to a spinal implant. Stress applied to a spinal implant may promote bone growth between the spinal implant and the vertebrae.
- FIG. 1 and FIG. 2 depict embodiments of spinal compression plates.
- Spinal compression plates 30 may be used to provide stability to a single vertebral level.
- a single vertebral level includes a first vertebra and a second vertebra adjacent to the first vertebra.
- An intervertebral disc and/or a spinal implant may be located between the vertebrae.
- Spinal compression plate 30 may include first plate 32 , second plate 34 , coupling member 36 , coupling cavity 38 , and/or openings 40 .
- spinal compression plate 30 may also include one or more protrusions or spikes on a lower surface that penetrate vertebral surfaces when the spinal compression plate is installed.
- first plate 32 and/or second plate 34 may include an opening to couple spinal compression plate 30 to an implant, bone graft, or other material positioned between vertebrae.
- Coupling member 36 may join first plate 32 and second plate 34 while allowing movement of the first plate toward the second plate.
- coupling member 36 may be coupled to second plate 34 .
- Coupling member 36 may be positioned in coupling cavity 38 of first plate 32 .
- Coupling member 36 may have a head height that is reduced or eliminated by recessed surface 42 of coupling cavity 38 of first plate 32 .
- coupling member 36 is a pin positioned through coupling cavity 38 of first plate 32 into an opening of second plate 34 .
- Coupling member 36 may be press-fit, welded, threaded, glued, or otherwise fixed to second plate 34 .
- Coupling member 36 may inhibit separation of first plate 32 from second plate 34 .
- coupling member 36 may be positioned in first plate 32 .
- Second plate 34 may have coupling cavity 38 .
- coupling cavity 38 may be a closed slot.
- coupling cavity 38 may be an open slot.
- slot generally refers to an elongated opening of any size or shape, including an opening that deviates from an opening having a regular shape (such as a square or a circle) by elongation along at least one axis. Movement of coupling member 36 in coupling cavity 38 may allow longitudinal movement of first plate 32 relative to second plate 34 .
- Coupling cavity 38 may include recessed surface 42 . Recessed surface 42 may minimize or eliminate extension of coupling member 36 above spinal compression plate 30 .
- a longitudinal length of coupling cavity 38 may limit motion of first plate 32 relative to second plate 34 .
- a portion of first plate 32 may contact a portion of second plate 34 to provide a boundary for a range of motion of the first plate relative to the second plate.
- FIG. 1 depicts spinal compression plate 30 in a fully compressed position.
- FIG. 2 depicts spinal compression plate 30 in an expanded position.
- first plate 32 may be able to move about 8 mm relative to second plate 34 .
- first plate 32 may be able to move about 4 mm relative to second plate 34 .
- a range of motion of first plate 32 relative to second plate 34 may be smaller than about 4 mm or greater than about 8 mm.
- Spinal compression plate 30 may include openings 40 extending through the plate. Fasteners inserted into openings 40 may couple spinal compression plate 30 to vertebrae. Portions of first plate 32 and second plate 34 may form walls 44 of openings 40 . In some embodiments, walls 44 of openings 40 may be formed by liners, coatings, and/or coverings to modify frictional and/or other physical properties of the openings relative to fasteners inserted into the openings.
- Openings 40 may be placed at various locations on first plate 32 and/or second plate 34 .
- openings 40 may be placed along midline axes of first plate 32 and second plate 34 .
- Openings 40 may be symmetrically positioned about a midline axis of a plate near an end of the plate.
- openings 40 may be positioned randomly or asymmetrically.
- center openings may be positioned proximate a midpoint of spinal compression plate 30 .
- a first center opening may be located in first plate 32 .
- a second center opening, corresponding to the first center opening in first plate 32 may be located in second plate 34 .
- the first center opening may at least partially align with the second center opening of assembled spinal compression plate 30 .
- the first center opening and/or the second center opening may be elongated to accommodate movement of the first plate relative to the second plate.
- retainer 46 may be positioned in opening 40 of spinal compression plate 30 .
- opening 40 may have an irregular shape to facilitate insertion of retainer 46 into the opening.
- Retainers 46 may include, but are not limited to, rings, c-rings, one or more crescents, annuli, cinctures, tabs, tangs, ridges, and/or shelves.
- a portion of a retainer may be threaded.
- Retainer 46 may fit between wall 44 of opening 40 and a fastener.
- wall 44 of opening 40 may engage retainer 46 .
- wall 44 of opening 40 may be smooth.
- wall 44 of opening 40 may be biased to engage a portion of a fastener used to couple spinal compression plate 30 to bone.
- Wall 44 of opening 40 may be curved and/or angled to allow angulation of a fastener into bone.
- Wall 44 may have one or more indentions configured to engage a portion or portions of retainer 46 .
- one or more indentions may form recess 48 .
- a portion of retainer 46 may fit in recess 48 .
- the shape of a portion of retainer 46 that fits in recess 48 may inhibit removal of the retainer from spinal compression plate 30 .
- retainer 46 may be free to rotate in opening 40 .
- a wall of opening 40 defining recess 48 may have a spherical contour that corresponds to a contour of a spherical portion of a retainer.
- the spherical portion of the retainer may have a height that is less than a height of the recessed portion to allow for some polyaxial motion of the retainer when the retainer is positioned in recess 48 .
- the polyaxial motion allowed by recess 48 and a retainer may allow a fastener positioned in the retainer to be angled in a conic range of motion.
- the range of motion of the fastener may be up to about 15° relative to a central axis normal to the center of an opening.
- the range of motion of the fastener may be up to about 9° relative to a central axis normal to the center of the opening. In some embodiments, the range of motion of the fastener may be up to about 3° relative to a central axis normal to the center of the opening. Larger or smaller ranges of motion may be accommodated by controlling the difference between the height of the recess and the height of the spherical portion of the retainer that resides in recess.
- Retainer 46 may inhibit backout of a fastener from opening 40 .
- retainer 46 is a ring positioned in opening 40 . Shape of the ring and the shape of the opening may inhibit removal of the ring from the opening.
- Retainer 46 may include projections 50 . Projections 50 of retainer 46 may deflect outward when a head of a fastener is inserted into the retainer during coupling of spinal compression plate 30 to a vertebra. After a portion of a fastener head passes projections 50 , the projections may contract so that the projections extend over a portion of the head of the fastener. When a fastener is fully inserted into a vertebra, projections 50 may extend over a portion of a head of the fastener that is positioned in an opening of a spinal compression plate.
- Retainer 46 may engage a head of a fastener without the retainer binding to spinal compression plate 30 . Engagement of the fastener and retainer 46 may allow the fastener and retainer combination to pull spinal compression plate 30 against the vertebra. In some embodiments, fastener head may expand retainer 46 against wall 44 of opening 40 after the fastener and retainer combination pulls the spinal compression plate against the vertebra.
- first plate 32 may move freely toward and away from second plate 34 .
- a unidirectional movement mechanism may limit movement of first plate 32 toward second plate 34 .
- FIG. 2 depicts a spinal compression plate embodiment with a ratcheting mechanism as a uni-directional movement mechanism.
- Movement mechanism 52 may limit the direction that first plate 32 moves relative to second plate 34 (i.e., movement of the first plate may be uni-directional).
- movement mechanism 52 may inhibit the motion of first plate 32 relative to second plate 34 until a desired load is applied to spinal compression plate 30 .
- Inhibiting the motion of first plate 32 relative to second plate 34 until a desired load is applied to spinal compression plate 30 may accommodate normal motion of a patient without altering a distance between the first and second plates.
- First plate 32 may move closer to second plate 34 when adjacent vertebrae move closer together.
- movement mechanism 52 may accommodate settling and/or subsidence of vertebrae after insertion of a spinal compression plate into a patient.
- first plate 32 may include serrations.
- Second plate 34 may include a protrusion that fits in serrations of first plate 32 .
- second plate 34 may include serrations and first plate 32 may include a protrusion that fits in the serrations.
- the serrations may have an equilateral shape to allow movement of first plate 32 toward or away from second plate 34 .
- serration shape may facilitate movement of first plate 32 toward second plate 34 .
- serration shape may inhibit movement of first plate 32 away from second plate 34 .
- FIG. 3 depicts a portion of an embodiment of spinal compression plate 30 .
- a lower surface of first plate 32 may include serrations 54 .
- Protrusion 56 of second plate 34 may extend into a space between serrations 54 .
- Protrusion 56 may be located on a flexible arm.
- second plate 34 may include two or more protrusions 56 that engage serrations 54 .
- Orientation of serrations 54 and protrusion 56 may allow uni-directional movement of first plate 32 toward second plate 34 (i.e., inhibiting movement of the first plate away from the second plate).
- Serrations 54 and protrusion 56 may be sized so that first plate 32 is not able to move toward second plate 34 until a desired compressive load is applied to spinal compression plate 30 .
- an engagement mechanism may limit a range of motion of first plate 32 relative to second plate 34 .
- An engagement mechanism may include one or more protruding members 58 that extend through one or more openings 60 in second plate 34 into one or more chambers 62 of first plate 32 .
- Protruding members 58 may include, but are not limited to, pins, rivets, and/or screws. Protruding members 58 may inhibit rotation of first plate 32 relative to second plate 34 .
- protruding members 58 may provide one or more boundaries that limit a range of motion of first plate 32 relative to second plate 34 .
- Chamber 62 may be curved and/or angled to accommodate curvature of spinal compression plate 30 .
- protruding member 58 may be a guide pin. A guide pin may enter chamber 62 and facilitate coupling of first plate 32 and second plate 34 . Protruding member 58 may enhance stability of spinal compression plate 30 .
- spinal compression plate 30 may include one or more protrusions 64 .
- Protrusions 64 may be securely positioned in openings of first plate 32 and/or second plate 34 .
- Protrusions 64 may be, but are not limited to being, press-fit, welded, glued, and/or otherwise affixed to first plate 32 and/or second plate 34 .
- Protrusions 64 may be driven into a vertebra to initially couple spinal compression plate 30 to the vertebra. After spinal compression plate 30 is initially coupled to the vertebra, the spinal compression plate may be more securely coupled to the vertebra with fasteners.
- first plate 32 and/or second plate 34 may include indentions 66 , as shown in FIG. 2 and FIG. 3.
- Indentions 66 may facilitate proper positioning of first plate 32 and second plate 34 during an insertion procedure.
- Indentions 66 may provide an engagement surface for a spacer that sets a position of first plate 32 relative to second plate 34 (i.e., establishes a length of the spinal compression plate) prior to and/or during insertion of spinal compression plate 30 .
- FIG. 4 depicts a cross section of a perspective view of an embodiment of spinal compression plate 30 .
- First plate 32 and second plate 34 may have retainers 46 positioned in openings 40 . Movement of first plate 32 relative to second plate 34 may be limited by movement mechanism 52 . Movement mechanism 52 may include a protrusion on flexible arm 68 of second plate 34 that engages serrations 54 on first plate 32 .
- FIG. 5 depicts a cross section of a perspective view of spinal compression plate 30 , including a detailed view of a portion of the spinal compression plate.
- Movement mechanism 52 of spinal compression plate 30 may include protrusion 56 that extends from flexible arm 68 of second plate 34 and engages serrations 54 on a lower surface of first plate 32 .
- Protrusion 56 e.g., a tooth
- serrations 54 allow relative movement of first plate 32 and second plate 34 toward each other.
- protrusion 56 may have first angled surface 70 that engages angled surface 72 of serrations 54 . Contact of angled surface 70 of protrusion 56 with angled surface 72 of serrations 54 may allow second plate 34 to move toward first plate 32 . Protrusion 56 may also include straight surface 74 that engages straight surface 76 of a tooth of serrations 54 . If force is applied to second plate 34 to move the second plate away from first plate 32 , straight surface 74 of protrusion 56 may contact straight surface 76 of a tooth of serrations 54 . In some embodiments, contact of protrusions 56 and serrations 54 may inhibit movement of second plate 34 away from first plate 32 . When coupled to vertebrae, the relative movement of first plate 32 and second plate 34 may accommodate settling and/or subsidence of the vertebrae after insertion of spinal compression plate 30 .
- FIG. 6 depicts an exploded view of an embodiment of spinal compression plate 30 .
- Spinal compression plate 30 may include first plate 32 and second plate 34 .
- First plate 32 and second plate 34 may be coupled together with coupling members 36 in coupling cavities 38 proximate sides of the first plate.
- Coupling cavities 38 proximate sides of first plate 32 may inhibit rotation and/or torquing of spinal compression plate 30 during use.
- Coupling cavity 38 may have recessed surface 42 .
- One or more coupling members 36 may be used in each coupling cavity 38 .
- coupling cavity 38 is tapered.
- coupling member 36 may be placed through coupling cavity 38 into coupling member opening 78 .
- Coupling member 36 may be attached to coupling member opening 78 on second plate 34 using a weld, an adhesive, threading, and/or a frictional lock. As spinal compression plate 30 is compressed, tab 80 on second plate 34 may enter an undercut portion of first plate 32 .
- spinal compression plate 30 may include movement mechanism 52 .
- First plate 32 may have serrations 54 that engage protrusion 56 on flexible arm 68 of second plate 34 .
- a movement mechanism may inhibit first plate 32 from moving away from second plate 34 .
- first plate 32 and second plate 34 may be able to move freely relative to each other.
- First plate 32 and/or second plate 34 may include one or more guide openings 82 .
- Guide opening 82 may allow proper positioning of instrumentation (e.g., insertion instruments, drills, and/or tap guides) during an insertion procedure.
- FIG. 7 depicts an embodiment of a plate insertion instrument that may be positioned in a guide opening.
- Plate insertion instrument 84 may include actuator surface 86 , shaft 88 , handle 90 , slots 92 , and engagement end 94 .
- Engagement end 94 may fit in an opening (e.g., a guide opening) of a spinal compression plate.
- Slots 92 may be compressed when engagement end 94 is placed in an opening of a spinal compression plate to form a press-fit engagement between plate insertion instrument 84 and the spinal compression plate.
- Handle 90 of insertion instrument 84 may extend away from shaft 88 of the insertion instrument. Handle 90 may allow a spinal compression plate to be properly positioned on vertebrae within a surgical opening. When a spinal compression plate is properly positioned, a user may push or strike actuator surface 86 to drive at least one spike of the spinal compression plate into at least one vertebra.
- a tip of an engagement end of a plate insertion instrument may include a spike.
- FIG. 8 depicts spike 96 on engagement end 94 of a plate insertion instrument.
- Spike 96 may facilitate temporary placement of a spinal compression plate during insertion.
- a press-fit connection between a spinal compression plate and plate insertion instrument 84 may be removed by moving the plate insertion instrument away from the spinal compression plate.
- a tamp or other instrument may be held against a spinal compression plate to ensure that a press-fit connection between the spinal compression plate and an insertion instrument is removed when the insertion instrument is lifted from the spinal compression plate.
- a guide opening of a spinal compression plate may be used as a viewport to observe an implant positioned between adjacent vertebrae.
- a guide opening may help to reduce a weight of a spinal compression plate.
- a fastener may be positioned through a guide opening to couple a spinal compression plate to a spinal implant, a vertebra displacement construct, or other device to be positioned between vertebrae.
- a plate bender may be provided in an instrumentation set to allow a spinal compression plate to be bent to accommodate a lordotic angle of a patient.
- first plate 32 of spinal compression plate 30 may include grooves 98 . Grooves 98 may allow first plate 32 to be bent prior to fixation to a vertebra. Spinal compression plate 30 may be bent along grooves 98 to conform the plate to a vertebra or vertebrae.
- a second plate may include grooves that facilitate bending of the spinal compression plate.
- a spinal compression plate may be curved to correspond to a lordotic curvature and/or medio-lateral curvature of a spine. Bending of a spinal compression plate may allow proper lordotic curvature of a spine to be maintained.
- Several spinal compression plates with different lordotic curvatures may be provided to a surgeon who will install a spinal compression plate in a patient.
- Spinal compression plates may have various widths, lengths, and/or curvatures. The surgeon may choose a spinal compression plate that will provide a desired lordotic curvature for the patient.
- Indicia may be etched or otherwise marked (e.g., color coded) on a spinal compression plate to indicate an amount of curvature in the plate.
- spinal compression plates may be provided with lordotic angles from about 0° to about 18° in about 3° increments.
- a spinal compression plate may have a length of about 28 mm, a maximum width of about 15 mm, and a 12° lordotic curvature.
- a width of a spinal compression plate may affect intrusion of the spinal compression plate into surrounding tissue.
- a spinal compression plate may have a width less than about 40 mm.
- a spinal compression plate may have a width less than about 35 mm. Larger or smaller widths may be used to accommodate specific needs.
- width of a spinal compression plate may vary along a midline axis of the spinal compression plate. Variance along a midline axis may reduce intrusion of a spinal compression plate into surrounding tissue, reduce the weight of the plate, and/or improve viewing of the intervertebral space during insertion.
- openings may be formed in a spinal compression plate to reduce weight and/or increase visibility of a surgical site.
- a height of a spinal compression plate may affect a profile of the spinal compression plate on the spine.
- an average height of greater than about 6.0 mm may be used.
- spinal compression plates may have an average height of less than about 6.0 mm.
- a height of a spinal compression plate may be less than about 5.0 mm, less than about 3.5 mm, or less than about 2.7 mm.
- a height of a spinal compression plate may vary along a length and/or width of the spinal compression plate.
- spinal compression plate embodiments may be curved to accommodate radial curvature of vertebrae.
- Spinal compression plates may be provided with varying amounts of radial curvature.
- spinal compression plates may be provided in large, medium and small radial curvature sizes.
- An indication of the radial curvature provided by a spinal compression plate may be etched or otherwise marked on the spinal compression plate.
- spinal compression plate 30 may include at least one center opening 100 positioned proximate a center of the spinal compression plate.
- center opening 100 may be positioned proximate a center of first plate 32 and/or second plate 34 .
- a center opening in first plate 32 may align or partially align with a center opening in second plate 34 .
- Center openings may include, but are not limited to substantially oval, circular, square, and rectangular shapes, oblong shapes, irregular shapes, and open or closed slots.
- An oblong or elongated opening may be defined as an opening that deviates from an opening having a regular shape (such as a square or circle) by elongation along at least one axis.
- a first axis of center opening 100 may be larger than a second axis of the center opening, allowing a large center opening without significant loss in structural strength of spinal compression plate 30 .
- center opening 100 may have recess 102 .
- a back portion of a retainer may fit in recess 102 of center opening 100 .
- Shapes of recess 102 , of center opening 100 and of a retainer positioned in the center opening may inhibit removal of the retainer from spinal compression plate 30 .
- the retainer may be free to rotate in recess 102 .
- center opening 100 may be elongated.
- a retainer in an elongated or oblong center opening may slide freely in a longitudinal direction. The retainer may inhibit backout of a fastener positioned in center opening.
- a fastener positioned in center opening 100 of the spinal compression plate may couple the spinal compression plate to a vertebra or a spinal implant.
- a retainer may have restricted movement in an opening of a spinal compression plate.
- FIG. 9 depicts a cross-sectional view of serrated retainer 46 taken essentially along line 9 - 9 of spinal compression plate 30 in FIG. 12.
- Serrations 106 on a surface of center opening 100 may engage serrations 108 on a bottom surface of retainer 46 .
- Engagement of serrations 106 , 108 may restrict longitudinal movement of retainer 46 in opening 100 .
- longitudinal movement of retainer 46 may be unidirectional.
- movement of retainer 46 may occur only after a compressive load on a spinal compression plate reaches a certain threshold.
- FIG. 10 depicts a perspective view of an embodiment of spinal compression plate 30 .
- Spinal compression plate 30 may include first plate 32 and second plate 34 .
- Second plate 34 may be similar to a second plate in a spinal compression plate with uni-directional movement, shown in FIG. 6. Without serrations on movement mechanism 52 to engage protrusion 56 on flexible arm 68 of second plate 34 , first plate 32 may freely move toward and/or away from the second plate to accommodate motion of vertebrae.
- movement mechanism 52 on first plate 32 may have serrations, but second plate 34 may not have flexible arm 68 and/or protrusion 56 . Movement of first plate 32 relative to second plate 34 may be limited by coupling cavity 38 and coupling member opening 78 .
- a coupling member positioned in coupling cavity 38 may define a minimum and/or maximum separation between first plate 32 and second plate 34 while inhibiting separation of first plate 32 from second plate 34 and/or rotation of the first plate relative to the second plate.
- a spinal compression plate embodiment may include an internal tongue and groove, a pin in slot, and/or other types of connections between first plate 32 and second plate 34 to inhibit rotation of the first plate relative to the second plate.
- FIG. 11 depicts a perspective view of spinal compression plate 30 with tongue and groove connections between first plate 32 and second plate 34 .
- Extensions 110 of second plate 34 may fit securely in open slot coupling cavities 38 of first plate 32 to form spinal compression plate 30 .
- an “extension” generally refers to an elongated portion of a body.
- An elongated portion of a body may be defined as a portion of a body that deviates from a regular shape (such as a square or circle) by elongation along at least one axis.
- a first axis of an extension may be larger than a second axis of the extension.
- Extensions 110 may have stepped portions 112 that mate with stepped portions 114 of coupling cavities 38 .
- Stepped portions 112 , 114 may enhance stability of spinal compression plate 30 by inhibiting torque moments applied to first plate 32 and/or second plate 34 during expansion or compression of the spinal compression plate.
- stepped portions 112 , 114 may be textured with a friction texturing to reduce slippage between first plate 32 and second plate 34 .
- the friction texturing may be, but is not limited to, scored surfaces, peened surfaces, and/or surfaces with particles implanted into the surfaces.
- Spinal compression plate 30 may have movement mechanism 52 on first plate 32 .
- a lower surface of movement mechanism 52 may have serrations 54 .
- Movement mechanism 52 may have extended portion 116 that fits in cavity 118 of second plate 34 .
- An edge of extended portion 116 of movement mechanism 52 may be substantially flat.
- Sides of movement mechanism 52 may be curved to allow extended portion 116 to approach openings 40 of second plate 34 .
- Extended portion 116 of movement mechanism 52 may increase a serrated surface area of the movement mechanism and thus enhance coupling stability between first plate 32 and second plate 34 .
- Protrusion 56 on an upper surface of flexible arm 68 of second plate 34 may engage serrations 54 on first plate 32 to provide uni-directional movement of the first plate toward second plate 34 .
- a shape of serrations 54 may allow spinal compression plate 30 to compress and/or expand.
- movement mechanism 52 may not be serrated.
- second plate 34 may not have protrusion 56 and/or flexible arm 68 .
- cross pin 120 may extend from an upper surface of first plate 32 through stepped portion 114 of coupling cavity 38 into a longitudinal slot in stepped portion 112 of extension 110 of second plate 34 . A length of the longitudinal slot in stepped portion 112 of extension 110 may limit a range of motion of first plate 32 relative to second plate 34 .
- Spinal compression plate 30 may have slot 122 in movement mechanism 52 of first plate 32 .
- protrusion 56 may be disengaged from serrations 54 by insertion of a tip of a probe (e.g., a screwdriver blade) in slot 122 .
- a user may slide first plate 32 and second plate 34 apart while applying a slight pressure to flexible arm 68 of second plate 34 .
- the probe may be removed from slot 122 (i.e., to release flexible arm 68 ) when a desired separation between first plate 32 and second plate 34 is achieved.
- slot 122 may be used as a viewport to monitor compression of spinal compression plate 30 after a spinal stabilization procedure.
- a length of slot 122 may be a known distance (e.g., 8 mm, 6 mm, 4 mm, or other length) so that a scale factor can be calculated for lengths determined from x-ray images taken of the spinal compression plate.
- an end of flexible arm 68 may be visible in slot.
- Distance from the end of flexible arm 68 to an end of slot 122 may be determined from the x-ray image to provide a value for the initial separation distance. At a later time, another x-ray image may be taken. Distance from the end of flexible arm 68 to the end of slot 122 may be determined from the x-ray image to provide a second distance. The difference between the initial separation distance and the second distance measures the amount of compression of the spinal compression plate. Additional x-ray images may be taken at subsequent times to monitor the amount of compression as a function of time.
- FIG. 12 depicts a top view of a spinal compression plate embodiment with first plate 32 and second plate 34 of spinal compression plate 30 coupled with mating open slot coupling cavities 38 and extensions 110 .
- Spinal compression plate 30 has irregularly shaped openings 40 and elongated center opening 100 .
- Irregularly shaped opening 40 may be configured to facilitate insertion of a retainer into the opening.
- a portion of opening 40 may have a larger radius of curvature than another portion of the opening.
- FIG. 13 depicts an expanded top view of an embodiment of a spinal compression plate that may be used to immobilize two vertebral levels.
- Multi-level spinal compression plate 30 may include two or more plates.
- spinal compression plate 30 may include first plate 32 , second plate 34 , and third plate 124 .
- Plates 32 , 34 , 124 may be coupled to vertebrae when using spinal compression plate 30 to stabilize a spine.
- Fasteners positioned in openings 40 of first plate 32 , second plate 34 , and third plate 124 may couple spinal compression plate 30 to vertebrae.
- First plate 32 and third plate 124 may be coupled to second plate 34 using coupling members 36 in coupling cavities 38 . Portions of first plate 32 and third plate 124 may overlap portions of second plate 34 .
- spinal compression plate 30 may be compressed from an expanded form to accommodate vertebral settling and/or subsidence.
- spinal compression plate 30 may have one or more movement mechanisms to restrict movement between plates 32 , 34 , and 124 . Serrations on a plate may engage one or more protrusions on another plate. In an embodiment, a movement mechanism may allow a spinal compression plate to compress and may restrict movement of the plates away from each other.
- second plate 34 may have protrusions on opposing sides to engage first plate 32 and third plate 124 .
- first plate 32 may have serrations to engage a protrusion on second plate 34 .
- Third plate 124 may not have serrations. First plate 32 may move only toward second plate 34 , and third plate 124 may move toward and away from the second plate. In an embodiment, first plate 32 , second plate 34 , and third plate 124 may be allowed to compress or expand to accommodate movement of vertebrae.
- plates of a multi-level spinal compression plate may be coupled together without coupling members (e.g., with mating slots and extensions).
- FIG. 14 depicts uni-directional multi-level spinal compression plate 30 with first plate 32 , second plate 34 , and third plate 124 .
- Multi-level spinal compression plate 30 may be used to span three vertebral levels. In other embodiments, multi-level spinal compression plates may be used to span four vertebral levels. Extensions 110 of first plate 32 and third plate 124 may fit securely in open slot coupling cavities 38 . In some embodiments, plates of spinal compression plate 30 may move freely with respect to each other.
- FIG. 15 depicts a side view of an embodiment of multi-level spinal compression plate 30 .
- First plate 32 and third plate 124 may include overlay sections 126 that are shaped to conform to underlay sections 128 on second plate 34 .
- Upper and lower surfaces of the plates may be curved to correspond to a desired lordotic curvature.
- Distance 130 indicates an initial separation between first plate 32 and second plate 34 .
- Distance 132 indicates an initial separation between second plate 34 and third plate 124 .
- a maximum compression of spinal compression plate 30 may be equal to the sum of distance 130 and distance 132 .
- FIG. 16 depicts an embodiment of spinal compression plate 30 with spacer 134 .
- First plate 32 and second plate 34 may be positioned for a desired length of spinal compression plate 30 prior to insertion of the spinal compression plate in a patient.
- Spacer 134 may position first plate 32 relative to second plate 34 to establish an initial (i.e., maximum) separation distance between the first plate and the second plate.
- Spacer 134 may have a length that allows for an initial separation distance of about 8 mm. In some embodiments, spacer 134 may allow a pre-set initial separation of about 4 mm.
- Spacers 134 of various lengths may be included in an instrumentation set provided with spinal compression plate 30 .
- FIG. 17 depicts a side view of an embodiment of spinal compression plate 30 .
- Spinal compression plate 30 may be expanded before insertion to accommodate settling and/or subsidence after installation of the spinal compression plate.
- Protrusion 56 positioned on underlay section 128 of first plate 32 may engage serrations 54 on overlay section 126 of second plate 34 .
- Spinal compression plate 30 may have a curvature to accommodate lordotic curvature of a spine.
- Spinal compression plate 30 may have spacer 134 , coupling cavity 38 , one or more coupling members 36 , and/or movement mechanism 52 to restrict movement between first plate 32 and second plate 34 .
- Spacer 134 depicted in FIG. 16 and FIG. 17 may be used to establish an initial separation distance between first plate 32 and second plate 34 of spinal compression plate 30 (i.e., establish an initial length of an adjustable-length spinal compression plate). Spacer 134 may be removed from spinal compression plate 30 before insertion of the plate into a patient. In other embodiments, a spacer used to establish an initial separation distance between plates of a spinal compression plate may remain coupled to the spinal compression plate during a portion of an insertion procedure. In some embodiments, a spacer may be used during an insertion procedure to guide placement of a spinal compression plate in a patient. In certain embodiments, a portion of a spacer may be used to position a fastener guide for placement and angulation of holes for fasteners.
- FIG. 18 depicts spacer 136 aligned for coupling to spinal compression plate 30 .
- Spacer 136 may include body 138 and guidepost 140 .
- Pin 142 may couple guidepost 140 to spacer 136 (i.e., inhibit removal of the guidepost from the spacer) while allowing rotational and longitudinal movement of the guidepost. Rotational movement of guidepost 140 in spacer 136 may be unrestricted, while longitudinal movement of the guidepost in the spacer may be limited.
- Insertion end 144 of guidepost 140 may be sized for insertion into opening 146 of spinal compression plate 30 .
- Alignment portion 148 of spacer 136 may be sized for positioning in indention 66 of spinal compression plate 30 .
- Positioning of alignment portion 148 in indention 66 may promote coupling of spacer 136 to spinal compression plate 30 .
- Separator 150 of spacer 136 may fit in cavity 118 to establish an initial separation distance between first plate 32 and second plate 34 of spinal compression plate 30 .
- separator 150 may overlay arm 68 of second plate 34 .
- insertion end 144 of guidepost 140 may be pointed. Insertion end 144 of guidepost 140 may have sharpness sufficient to penetrate a vertebra of a patient to temporarily couple spinal compression plate 30 to the vertebra.
- opening 146 of spinal compression plate 30 may have a smooth inner surface.
- insertion end 144 of guidepost 140 may be keyed or threaded to temporarily attach to the spinal compression plate.
- insertion end 144 of guidepost 140 may be threaded above a pointed region. Opening 146 may have threading complementary to threading of insertion end 144 of guidepost 140 . Insertion end 144 of guidepost 140 may be fastened (e.g., threaded) into opening 146 to affix spacer 136 to spinal compression plate 30 .
- Placement of alignment portion 148 in indention 66 , and insertion of insertion end 144 in opening 146 of expanded spinal compression plate 30 may hold securing end 152 of separator 150 against second plate 34 .
- Securing end 152 of separator 150 may fit in cavity 118 of second plate 34 .
- Securing end 152 may have a shape complementary to a shape of cavity 118 .
- An edge of movement mechanism 52 of first plate 32 may have a shape complementary to groove 156 , such that the projection fits securely in the groove.
- FIG. 18 depicts positioner 158 aligned above opening 160 of first plate 32 of spinal compression plate 30 .
- Positioner 158 may have body 138 with alignment portion 148 and guidepost 140 .
- Insertion end 144 of guidepost 140 may be pointed and/or threaded. Insertion end 144 of guidepost 140 may be inserted through opening 160 of first plate 32 .
- Positioner 158 may be secured to spinal compression plate 30 in a manner similar to that described for spacer 136 .
- insertion end 144 of guidepost 140 may penetrate a vertebra of a patient.
- Positioner 158 may hold spinal compression plate 30 in place temporarily during insertion of the plate.
- Guidepost 140 may be used to position a fastener guide for placement and angulation of holes for fasteners.
- Handle 162 may be affixed to guidepost 140 .
- Handle 162 may be used to position a spinal compression plate that guidepost 140 is coupled to during an insertion procedure. After positioner 158 is secured to spinal compression plate 30 , insertion end 164 of handle 162 may be affixed to attachment end 166 of guidepost 140 .
- Release 168 may be activated to disconnect handle 162 from guidepost 140 after positioning spinal compression plate 30 . In some embodiments, release 168 may be pulled towards a grip of handle 162 to release disconnect the handle from a guidepost positioned in insertion end 164 .
- a fastener guide for positioning an instrument designed to facilitate insertion of fasteners in bone may be affixed to a guidepost.
- An embodiment of a fastener guide is depicted in FIG. 20.
- Fastener guide 170 may include guidepost holder 172 with through hole 174 .
- a guidepost of a positioner or spacer may fasten securely in through hole 174 of guidepost holder 172 .
- a body of a positioner or a spacer may fit securely in slot 176 of fastener guide 170 .
- Fastener guide 170 may have hollow guide members 178 . Distal openings of hollow guide members 178 may align with fastener openings in a spinal compression plate.
- hollow guide member 178 An instrument inserted in hollow guide member 178 may pass through a fastener opening in a spinal compression plate to form a hole for a fastener. After one or more holes are formed as needed, fastener guide 170 may be removed from a guidepost of a spacer or a positioner. In some embodiments, a tap may be inserted through hollow guide member 178 to form threading in a vertebra.
- FIG. 21 depicts spinal compression plate 30 that may be used for stabilizing two vertebral levels.
- Spinal compression plate 30 may include first plate 32 , second plate 34 , and third plate 124 .
- Plates 32 , 34 , 124 may include openings 40 to couple spinal compression plate 30 to vertebrae.
- Spinal compression plate 30 may include movement mechanism 52 with serrations 54 .
- Movement mechanism 52 may include arm 68 with protrusion 56 .
- Serrations 54 of extension 180 may engage protrusion 56 .
- a portion of movement mechanism 52 may be positioned on an upper surface of second plate 34 .
- Arm 68 may have a thin section to promote deflection of the arm.
- protrusion 56 may advance and move over serrations 54 . As a load on spinal compression plate 30 decreases, forces may promote expansion of the plate. In certain embodiments, a protrusion may inhibit expansion of spinal compression plate 30 during use.
- movement mechanism 52 may be positioned on a lower side of spinal compression plate 30 . As shown in the embodiment in FIG. 21, movement mechanism 52 may be positioned on lateral sides of spinal compression plate 30 . In certain embodiments, movement mechanism 52 may be located in coupling cavity 38 .
- FIG. 22 depicts a perspective cross-sectional view of an embodiment of spinal compression plate 30 including fasteners 182 and retainers 46 positioned in openings 40 of the spinal compression plate.
- Spinal compression plate 30 may have a curvature to match a curvature of one or more vertebrae.
- Spinal compression plate 30 may have spacer 134 pre-set to an initial separation distance between first plate 32 and second plate 34 .
- openings may be biased or angled to allow angulation of fasteners 182 into a vertebra.
- Fasteners 182 placed in spinal compression plate 30 may be positioned in vertebral bone in converging or diverging orientations relative to one another.
- fasteners 182 may be placed into a vertebra so that shanks of the fasteners are oriented parallel or substantially parallel to each other.
- a range of motion of a fastener may be up to 15° relative to a central axis normal to a center of opening 40 and/or center opening 100 .
- a range of motion of a fastener may be up to about 6° relative to a central axis normal to a center of opening 40 and/or center opening 100 .
- a range of motion of a fastener may be up to about 3° relative to a central axis normal to a center of opening 40 and/or a center of center opening 100 . Adjusting a difference between a height of a recess in an opening and a height of a portion of a retainer positioned in the recess may result in a larger or smaller range of motion of a fastener in the opening.
- Fasteners used to couple a plate to a vertebra may include, but are not limited to, screws, nails, rivets, trocars, pins, and/or barbs.
- FIG. 23 depicts an embodiment of fastener 182 .
- Fastener 182 may include head 184 and shank 186 .
- Shank 186 may have threading 188 to engage a vertebra.
- Head 184 may include tapered section 190 , engagement section 192 , and fastening section 194 .
- Head 184 may include tool portion 196 and recessed portion 197 (the recessed portion depicted in FIG. 22) to engage an insertion and/or removal device.
- Tool portion 196 may be a shape including, but not limited to, hexagonal, star-shaped, or square.
- recessed portion 197 may have threading to engage an insertion tool and/or a removal tool.
- Engagement section 192 may be located at an interface of tapered section 190 and fastening section 194 .
- Retainer projections may engage engagement section 192 to inhibit removal of fastener 182 from a spinal compression plate.
- Rescue fasteners may be provided in an instrumentation set.
- a rescue fastener may be positioned in a deformed fastener opening in a vertebra.
- the rescue fastener thread may have the same thread pitch as regular fasteners.
- the rescue fasteners may have a larger thread major diameter and the same thread minor diameter as regular fasteners. For example, if a regular fastener has about a 4 mm major thread diameter and about a 2.5 mm minor thread diameter, a corresponding rescue fastener may have about a 4.5 mm major thread diameter and about a 2.5 mm minor thread diameter.
- Rescue fasteners may be distinguished from regular fasteners in an instrumentation set.
- Rescue fasteners may be a distinctly different color than regular fasteners. For example, rescue fasteners may be blue while other fasteners may be silver. Different thread lengths may be indicated by different shades of a rescue fastener.
- a retainer may be positioned on a head of a fastener.
- An opening in a spinal compression plate for a fastener may include a recess to engage the retainer.
- the fastener may be inserted into the spinal compression plate with the retainer coupled to the fastener.
- the retainer may be compressed.
- the retainer may expand into a recess of the opening.
- FIG. 24 depicts a cross-sectional view of opening 40 of spinal compression plate 30 .
- Opening 40 may be defined by wall 44 .
- Wall 44 may include recess 48 .
- a portion of a retainer e.g., a ring
- Recess 48 may have lower shoulder 198 and upper shoulder 200 .
- Lower shoulder 198 and upper shoulder 200 may engage a portion of a retainer to inhibit removal of the retainer from opening 40 .
- a retainer may be able to swivel in an opening in a spinal compression plate.
- a reduced width of opening 40 proximate upper and lower surfaces of the opening may inhibit removal of a retainer and/or inhibit a retainer from falling out of the opening.
- a width of opening 40 proximate upper and lower surfaces of a spinal compression plate may be less than or about equal to an outer width of a retainer to inhibit removal of the retainer from the plate.
- a portion of a retainer that fits in recess 48 may be thinner than a height of the recess to allow some angulation of a fastener positioned through the retainer into a vertebra.
- a thickness of a portion of a retainer that fits in recess 48 may allow up to about 15° of angulation of a fastener positioned in the retainer.
- a thickness of a portion of a retainer that fits in recess 48 may allow less than about 6° of angulation, less than about 2° of angulation, or substantially no angulation of a fastener positioned in the retainer.
- FIG. 25 depicts an embodiment of retainer 46 in the form of a ring.
- Retainer 46 may have projections 50 , fingers 202 , upper surface 204 , lower surface 206 , inner surface 208 , and outer surface 210 .
- Retainer 46 may be substantially circular to surround at least a portion a fastener head.
- Retainer 46 may have width 212 suited to an intended application of the retainer. For example, width 212 of retainer 46 designed for insertion in an elongated opening of a spinal compression plate may exceed a width of a retainer designed for use in a substantially circular opening of a spinal compression plate. Increased width 212 of retainer 46 may enhance stability of the retainer in a recess of an opening. Enhanced stability may be advantageous for a retainer in an elongated opening.
- a portion of retainer 46 may be deflectable.
- Retainers 46 capable of deflection may allow entry of fasteners, positioning of retainers in openings, and/or removal of retainers from openings.
- Retainer 46 may include gap 214 to facilitate deflection.
- a retainer positioned in an opening may radially expand as a fastener enters the opening.
- a retainer may contract and couple to a fastener during insertion of the fastener into the spinal compression plate.
- projections 50 may be spaced around retainer 46 .
- Projections 50 may include tapered inner surface 216 to facilitate fastener entry.
- outer surface 218 of projections 50 of retainer 46 may be tapered to increase deflection capability of the projections.
- fingers 202 may inhibit removal of a fastener from retainer 46 during use.
- indentions 220 may be positioned on outer surface 210 of retainer 46 . Indentions 220 may increase a deflection capability of retainer 46 .
- retainer 46 may contain one or more partial slots to facilitate expansion and contraction of the retainer. Partial slots may approach, extend down to, or extend beyond a half-height of retainer 46 .
- retainer 46 may have single deflectable portion 222 depicted in FIG. 27.
- FIG. 28 depicts retainer 46 as a ring with projections 50 and outer projections 224 .
- one or more outer projections 224 of retainer 46 may include overhang 226 .
- Overhang 226 of outer projections 224 may engage a recess in an opening in a spinal compression plate.
- Valleys 228 between projections 50 and outer projections 224 may allow deflection of the projections and the outer projections.
- a retainer may be positioned in each opening of the spinal compression plate prior to insertion of the plate into a patient.
- retainers may be positioned in spinal compression plates before the plates are sent to a surgeon or hospital for insertion into a patient.
- retainers may be provided to a surgeon independently of spinal compression plates. Before insertion of a spinal compression plate, the surgeon, or support personnel, may place retainers in openings in the spinal compression plate.
- FIG. 29 depicts an embodiment of spinal compression plate 30 coupled to adjacent vertebrae 230 .
- a fastener driven through a center opening in spinal compression plate 30 may couple the spinal compression plate to spinal implant 232 .
- at least a portion of vertebral load may be transferred to a spinal implant. Maintaining at least a portion of the vertebral load on an implant may increase bone growth and increase fusion between an implant and surrounding vertebrae.
- Spinal implant 232 may include, but is not limited to, a bone implant (e.g., allograft), metal implants, and/or carbon fiber implants.
- Fasteners 182 positioned in openings 40 may couple spinal compression plate 30 to vertebrae 230 .
- holes may be drilled, tapped, and/or otherwise formed in vertebrae for attachment of a spinal compression plate.
- the spinal compression plate may be positioned adjacent to the vertebrae.
- a fastener may be positioned in an opening in a spinal compression plate.
- a fastener positioned in an opening in a spinal compression plate may be advanced to drive the fastener into a vertebra. As the fastener is advanced into the vertebra, the fastener head may engage a retainer. Movement of the fastener head into the retainer may couple the fastener to the spinal compression plate.
- FIG. 30 depicts an embodiment of insertion tool 234 .
- Insertion tool 234 may include outer shaft 236 and inner shaft 238 .
- Outer shaft 236 may include handle 240 .
- Handle 240 may be a grip that allows a user to securely hold insertion tool 234 and easily apply sufficient torque to a fastener to drive the fastener into a vertebra.
- Outer shaft 236 may have sufficient length to allow handle 240 to be operated above an incision in a patient while maintaining good visibility of the operating area.
- An end of outer shaft 236 may include drive section 242 and tapered section 244 .
- Drive section 242 may mate with a tool portion of a fastener. When drive section 242 is placed in a tool portion of a fastener, rotation of handle 240 will rotate the fastener.
- Tapered section 244 may contact portions of a retainer during insertion or removal of a fastener. Tapered section 244 may force fingers of a retainer outwards. Tapered section 244 may allow a fastener to be removed from the retainer.
- a portion of inner shaft 238 may interact with a stop in handle 240 or another portion of outer shaft 236 to inhibit separation of the inner shaft from the outer shaft, while still allowing for some axial movement of the inner shaft relative to the outer shaft.
- Inner shaft 238 may have knob 246 at a first end and threaded section 248 at a second end. Threaded section 248 may mate with threading in a recessed portion of a fastener.
- knob 246 may be moved away from drive section 242 of outer shaft 236 .
- Drive section 242 may be placed in a recessed portion of a fastener.
- Knob 246 may be moved toward drive section 242 and rotated so that threaded section 248 of inner shaft 238 engages threading in a recessed portion of the fastener. Attaching threaded section 248 of inner shaft 238 to threading in a recessed portion of the fastener couples the fastener to insertion tool 234 and inhibits unintentional separation of the fastener from the insertion tool.
- Insertion tool 234 may be used to position the fastener through a retainer positioned in a spinal compression plate.
- Handle 240 of insertion tool 234 may be rotated to drive the fastener into a vertebra.
- Handle 240 may be rotated until interaction of the fastener with the retainer and/or the spinal compression plate draws the spinal compression plate against the vertebra.
- Knob 246 may be rotated in a direction to separate threading of inner shaft 238 from threading in the recessed portion of the fastener. Insertion tool 234 may then be removed from the fastener.
- drive section 242 of insertion tool 234 may be placed in the opening of the fastener to be removed.
- Knob 246 may be rotated to engage threading of inner shaft 238 with threading in a recessed portion of the fastener.
- Knob 246 may include indicia that indicate the proper rotational direction to turn the knob to couple inner shaft 238 to the fastener.
- tapered section 244 of outer shaft 236 may force fingers of the retainer outwards.
- a spinal compression plate may be used to stabilize a portion of a spine.
- a discectomy may be performed to remove all or a portion of a damaged intervertebral disc.
- the approach to the intervertebral disc may be an anterior or lateral approach.
- One or more spinal implants may be inserted into the disc space formed by the discectomy.
- a spinal compression plate having an appropriate lordotic and radial curvature may be chosen. If needed, plate benders may be used to adjust the curvature of the spinal compression plate to conform to the curvature of vertebrae that the spinal compression plate is to be attached to.
- a separation distance between a first plate and a second plate may be chosen. In some embodiments, no separation is desired, and a fully compressed spinal compression plate may be inserted into a patient. In other embodiments, a spacer may be used to establish the desired separation distance. In some embodiments, a spacer and a positioner may be coupled to the spinal compression plate.
- the spinal compression plate may be attached to a handle and/or a plate insertion instrument.
- the handle and/or plate insertion instrument may be used to position the spinal compression plate at a desired location on the vertebrae so that the spinal compression plate will inhibit expulsion of the spinal implant or spinal implants from the vertebrae.
- the spinal compression plate may be temporarily coupled to the vertebrae.
- pointed ends of portions of the spacer and/or the positioner may temporarily fix the spinal compression plate to the vertebrae.
- protruding members positioned in openings of the spinal compression plate may be used to temporarily fix the spinal compression plate to the vertebrae.
- a guide may be used to form openings in the vertebrae for fasteners.
- a surgeon may form openings for the fasteners without the use of a guide.
- a fastener may be attached to a fastener insertion tool.
- the fastener may be inserted into an opening in the spinal compression plate.
- the fastener insertion tool may be used to drive the fastener into an opening in a vertebra.
- the fastener insertion tool may be disconnected from the fastener.
- a portion of a retainer in the opening may extend over a head of the fastener. Should the fastener loosen within the opening in the vertebra, contact between the portion of the retainer and the fastener head will inhibit backout of the fastener from the opening in the spinal compression plate.
- the fastener insertion tool may be used to insert additional fasteners into openings in the spinal compression plate to secure the plate to the vertebrae.
- the spacer and the positioner may be removed from the spinal compression plate.
- the surgery opening may be closed.
- a first plate of the spinal compression plate may move towards a second plate. Movement of the first plate towards the second plate may accommodate subsidence and/or settling of the vertebrae.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Pathology (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/351,283 US20040019353A1 (en) | 2002-02-01 | 2003-01-23 | Spinal plate system for stabilizing a portion of a spine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35327202P | 2002-02-01 | 2002-02-01 | |
US10/351,283 US20040019353A1 (en) | 2002-02-01 | 2003-01-23 | Spinal plate system for stabilizing a portion of a spine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040019353A1 true US20040019353A1 (en) | 2004-01-29 |
Family
ID=27663191
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/351,283 Abandoned US20040019353A1 (en) | 2002-02-01 | 2003-01-23 | Spinal plate system for stabilizing a portion of a spine |
US10/351,288 Abandoned US20040092939A1 (en) | 2002-02-01 | 2003-01-24 | Spinal plate system for stabilizing a portion of a spine |
US11/738,319 Expired - Fee Related US8128628B2 (en) | 2002-02-01 | 2007-04-20 | Spinal plate system for stabilizing a portion of a spine |
US13/406,881 Expired - Fee Related US8814869B2 (en) | 2002-02-01 | 2012-02-28 | Spinal plate system for stabilizing a portion of a spine |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/351,288 Abandoned US20040092939A1 (en) | 2002-02-01 | 2003-01-24 | Spinal plate system for stabilizing a portion of a spine |
US11/738,319 Expired - Fee Related US8128628B2 (en) | 2002-02-01 | 2007-04-20 | Spinal plate system for stabilizing a portion of a spine |
US13/406,881 Expired - Fee Related US8814869B2 (en) | 2002-02-01 | 2012-02-28 | Spinal plate system for stabilizing a portion of a spine |
Country Status (6)
Country | Link |
---|---|
US (4) | US20040019353A1 (fr) |
EP (2) | EP1478287A4 (fr) |
JP (1) | JP4390562B2 (fr) |
AU (1) | AU2003208956B8 (fr) |
CA (1) | CA2474437A1 (fr) |
WO (1) | WO2003063714A2 (fr) |
Cited By (180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030135216A1 (en) * | 2000-05-25 | 2003-07-17 | Sevrain Lionel C. | Anchoring system for fixing objects to bones |
US20030149434A1 (en) * | 2000-11-28 | 2003-08-07 | Paul Kamaljit S. | Bone support assembly |
US20030212399A1 (en) * | 2002-02-25 | 2003-11-13 | Dinh Dzung H. | Methods and apparatuses for promoting fusion of vertebrae |
US20030229348A1 (en) * | 2000-05-25 | 2003-12-11 | Sevrain Lionel C. | Auxiliary vertebrae connecting device |
US20040049279A1 (en) * | 2000-05-25 | 2004-03-11 | Sevrain Lionel C. | Inter-vertebral disc prosthesis for rachis through anterior surgery thereof |
US20040087949A1 (en) * | 2002-10-31 | 2004-05-06 | Bono Frank S. | Snap-in washers and assemblies thereof |
US20040106924A1 (en) * | 2001-02-15 | 2004-06-03 | Ralph James D. | Longitudinal plate assembly having an adjustable length |
US20040111089A1 (en) * | 2002-12-04 | 2004-06-10 | Stevens Peter M. | Bone alignment implant and method of use |
US20040127899A1 (en) * | 2002-12-31 | 2004-07-01 | Konieczynski David D. | Bone plate and screw system allowing bi-directional attachment |
US20040127900A1 (en) * | 2002-12-31 | 2004-07-01 | Konieczynski David D. | Resilient bone plate and screw system allowing bi-directional assembly |
US20040153078A1 (en) * | 2003-01-30 | 2004-08-05 | Grinberg Alexander D | Anterior buttress staple |
US20040204710A1 (en) * | 2003-04-09 | 2004-10-14 | Tushar Patel | Drill guide and plate inserter |
US20040204717A1 (en) * | 2003-04-09 | 2004-10-14 | Jonathan Fanger | Guide for spinal tools, implants, and devices |
US20040204716A1 (en) * | 2003-04-09 | 2004-10-14 | Jonathan Fanger | Drill guide with alignment feature |
US20040267274A1 (en) * | 2003-06-27 | 2004-12-30 | Tushar Patel | Tissue retractor and drill guide |
US20050010227A1 (en) * | 2000-11-28 | 2005-01-13 | Paul Kamaljit S. | Bone support plate assembly |
US20050033294A1 (en) * | 2003-08-06 | 2005-02-10 | Benjamin Garden | Systems and techniques for stabilizing the spine and placing stabilization systems |
US20050049593A1 (en) * | 2003-09-03 | 2005-03-03 | Duong Lan Anh Nguyen | Bone plate with captive clips |
US20050049595A1 (en) * | 2003-09-03 | 2005-03-03 | Suh Sean S. | Track-plate carriage system |
US20050071008A1 (en) * | 2003-09-30 | 2005-03-31 | Kirschman David Louis | Spinal fusion system and method for fusing spinal bones |
US20050075736A1 (en) * | 2003-10-03 | 2005-04-07 | Howmedica Osteonics Corp. | Expandable augment trial |
US20050124990A1 (en) * | 2003-12-09 | 2005-06-09 | Michael Teague | Bone plate holder and screw guide |
US20050177160A1 (en) * | 2004-02-10 | 2005-08-11 | Baynham Bret O. | Dynamic cervical plate |
US20050234476A1 (en) * | 2003-12-29 | 2005-10-20 | Whitmore Willet F Iii | Template grid needle/instrument guide and method for minimally invasive procedures |
US20050240184A1 (en) * | 2002-01-08 | 2005-10-27 | Osman Said G | Method for postoperatively compressing a bone graft |
US20050283248A1 (en) * | 2003-08-05 | 2005-12-22 | Gordon Charles R | Expandable intervertebral implant with spacer |
US20050283155A1 (en) * | 2004-06-21 | 2005-12-22 | Michael Jacene | Instruments and methods for holding a bone plate |
WO2006049998A1 (fr) * | 2004-10-28 | 2006-05-11 | Biodynamics, L.L.C. | Plaque vissee ajustable |
US20060116683A1 (en) * | 2004-12-01 | 2006-06-01 | Barrall Benjamin S | Unidirectional translation system for bone fixation |
US20060122604A1 (en) * | 2004-12-08 | 2006-06-08 | Depuy Spine, Inc. | Locking bone screw and spinal plate system |
US20060155283A1 (en) * | 2005-01-07 | 2006-07-13 | Depuy Spine Sarl | Occipital plate and guide systems |
GB2422783A (en) * | 2005-02-02 | 2006-08-09 | Dr Ahmad Fahmi Juanroyee | Internal fixation plate |
US20060195100A1 (en) * | 2003-09-30 | 2006-08-31 | X-Spine Systems, Inc. | Spinal fusion system utilizing an implant plate having at least one integral lock |
US20060200134A1 (en) * | 2002-02-01 | 2006-09-07 | James Freid | Spinal plate system for stabilizing a portion of a spine |
WO2006098908A1 (fr) * | 2005-03-11 | 2006-09-21 | Synthes (U.S.A.) | Dispositif de fixation unidirectionnel |
US20060235398A1 (en) * | 2005-04-05 | 2006-10-19 | Sdgi Holdings, Inc. | Ratcheting fixation plate |
WO2006062696A3 (fr) * | 2004-12-08 | 2006-10-19 | Depuy Spine Inc | Plaques vertebrales hybrides |
US20070055250A1 (en) * | 2005-07-11 | 2007-03-08 | Kamran Aflatoon | Cervical plates with spacer mechanism |
US20070083204A1 (en) * | 2005-09-16 | 2007-04-12 | Sidebotham Christopher G | Multi-purpose bone plate system |
US20070093834A1 (en) * | 2005-10-06 | 2007-04-26 | Stevens Peter M | Bone alignment implant and method of use |
US20070123879A1 (en) * | 2003-02-05 | 2007-05-31 | Pioneer Laboratories, Inc. | Bone plate system |
US20070179504A1 (en) * | 2003-09-30 | 2007-08-02 | X-Spine Systems, Inc. | Spinal fusion system and method for fusing spinal bones |
US20070213729A1 (en) * | 2006-03-08 | 2007-09-13 | Sdgi Holdings, Inc. | Flexible bone plates and methods for dynamic spinal stabilization |
US20070276386A1 (en) * | 2003-09-29 | 2007-11-29 | Darin Gerlach | Bone plate systems using provisional fixation |
US20070276371A1 (en) * | 2004-02-10 | 2007-11-29 | Baynham Bret O | Dynamic cervical plate |
US20070281305A1 (en) * | 2006-06-05 | 2007-12-06 | Sean Wuxiong Cao | Detection of lymph node metastasis from gastric carcinoma |
US20080033438A1 (en) * | 2006-08-04 | 2008-02-07 | Roy Frizzell | Cervical Saddle Plate |
US20080065070A1 (en) * | 2002-02-01 | 2008-03-13 | Freid James M | Spinal plate system for stabilizing a portion of a spine |
US20080108998A1 (en) * | 2006-11-02 | 2008-05-08 | Warsaw Orthopedic Inc. | Uni-directional ratcheting bone plate assembly |
US20080140129A1 (en) * | 2003-07-07 | 2008-06-12 | Aesculap Implant Systems, Inc. | Spinal stabilization implant and method of application |
US20080147124A1 (en) * | 2006-10-31 | 2008-06-19 | Haidukewych George J | Bone plate system with slidable compression holes |
US20080172094A1 (en) * | 2001-12-24 | 2008-07-17 | Synthes (U.S.A) | Device for osteosynthesis |
US20080177263A1 (en) * | 2006-10-24 | 2008-07-24 | Aesculap Implant Systems, Inc | Dynamic stabilization device for anterior lower lumbar vertebral fusion |
US20080208259A1 (en) * | 2006-12-19 | 2008-08-28 | Small Bone Innovations, Inc. | Locking fixation system and lag tool |
US20080221681A1 (en) * | 2007-03-09 | 2008-09-11 | Warsaw Orthopedic, Inc. | Methods for Improving Fatigue Performance of Implants With Osteointegrating Coatings |
US20080221688A1 (en) * | 2007-03-09 | 2008-09-11 | Warsaw Orthopedic, Inc. | Method of Maintaining Fatigue Performance In A Bone-Engaging Implant |
US20080234741A1 (en) * | 2007-01-19 | 2008-09-25 | Landry Michael E | Artificial functional spinal unit system and method for use |
US20080234681A1 (en) * | 2004-02-10 | 2008-09-25 | Baynham Matthew G | Dynamic cervical plate |
US20080269807A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
US20080269752A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
EP1991171A2 (fr) * | 2006-02-21 | 2008-11-19 | Life Spine, Inc. | Structure permettant de reunir et de retenir des implants orthopediques en plusieurs parties |
US20090024170A1 (en) * | 2007-07-16 | 2009-01-22 | X-Spine Systems, Inc. | Implant plate screw locking system and screw having a locking member |
US20090043341A1 (en) * | 2007-08-09 | 2009-02-12 | Aesculap, Inc. | Dynamic extension plate for anterior cervical fusion and method of installation |
US20090062862A1 (en) * | 2007-07-03 | 2009-03-05 | Pioneer Surgical Technology, Inc. | Bone Plate System |
US20090076509A1 (en) * | 2007-09-13 | 2009-03-19 | Stryker Spine | Dynamic cervical plate |
US20090112320A1 (en) * | 2007-10-30 | 2009-04-30 | Kilian Kraus | Height-Adjustable Spinal Implant |
US20090182383A1 (en) * | 2008-01-14 | 2009-07-16 | Amedica Corporation | Bone fixation plate with anchor retaining member |
US20090192553A1 (en) * | 2008-01-25 | 2009-07-30 | Depuy Spine, Inc. | Anti-backout mechanism |
US20090326580A1 (en) * | 2008-06-25 | 2009-12-31 | Anderson Mark E | Spinal fixation device |
US20100082029A1 (en) * | 2006-04-03 | 2010-04-01 | Ib Medical, Llc | Static Compression Device |
US20100100131A1 (en) * | 2008-10-21 | 2010-04-22 | K2M, Inc. | Spinal buttress plate |
US7727266B2 (en) | 2004-06-17 | 2010-06-01 | Warsaw Orthopedic, Inc. | Method and apparatus for retaining screws in a plate |
US20100145386A1 (en) * | 2007-09-19 | 2010-06-10 | Stout Medical, Inc. | Implantable support device and method of use |
US20100185285A1 (en) * | 2009-01-19 | 2010-07-22 | Richard Perkins | Annular repair device and method |
US20100198221A1 (en) * | 2007-08-20 | 2010-08-05 | Synthes USA , LLC | Ratcheting Epiphysiodesis Plate |
US20100217393A1 (en) * | 2009-02-20 | 2010-08-26 | Theofilos Charles S | Interbody fusion system with intervertebral implant retention assembly |
US7785351B2 (en) | 2003-08-05 | 2010-08-31 | Flexuspine, Inc. | Artificial functional spinal implant unit system and method for use |
US20100292796A1 (en) * | 2009-05-14 | 2010-11-18 | Stout Medical Group, L.P. | Expandable support device and method of use |
US7909869B2 (en) | 2003-08-05 | 2011-03-22 | Flexuspine, Inc. | Artificial spinal unit assemblies |
US7909848B2 (en) | 2003-06-27 | 2011-03-22 | Depuy Spine, Inc. | Tissue retractor and guide device |
US7909860B2 (en) | 2003-09-03 | 2011-03-22 | Synthes Usa, Llc | Bone plate with captive clips |
US20110071573A1 (en) * | 2009-09-18 | 2011-03-24 | Robert Sixto | Disposable Orthopaedic Surgery Kit and Components |
US20110118742A1 (en) * | 2009-05-12 | 2011-05-19 | Urs Hulliger | Readjustable Locking Plate Hole |
US20110118784A1 (en) * | 2004-02-10 | 2011-05-19 | Baynham Bret O | Cervical Plate Ratchet Pedicle Screws |
US20110137314A1 (en) * | 2009-07-06 | 2011-06-09 | Zimmer, Gmbh | Periprosthetic bone plates |
US20110184415A1 (en) * | 2010-01-26 | 2011-07-28 | Westmark Medical, Llc | Bone screw retention mechanism |
US8034081B2 (en) | 2007-02-06 | 2011-10-11 | CollabComl, LLC | Interspinous dynamic stabilization implant and method of implanting |
US8062367B2 (en) | 2003-09-30 | 2011-11-22 | X-Spine Systems, Inc. | Screw locking mechanism and method |
US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
US8157844B2 (en) | 2007-10-22 | 2012-04-17 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8162994B2 (en) | 2007-10-22 | 2012-04-24 | Flexuspine, Inc. | Posterior stabilization system with isolated, dual dampener systems |
US8177823B2 (en) | 2005-06-30 | 2012-05-15 | Depuy Spine Sarl | Orthopedic clamping hook assembly |
US8182514B2 (en) | 2007-10-22 | 2012-05-22 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a fixed length elongated member |
US8187330B2 (en) | 2007-10-22 | 2012-05-29 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8267965B2 (en) | 2007-10-22 | 2012-09-18 | Flexuspine, Inc. | Spinal stabilization systems with dynamic interbody devices |
US8361130B2 (en) | 2006-10-06 | 2013-01-29 | Depuy Spine, Inc. | Bone screw fixation |
US8372152B2 (en) | 2003-09-30 | 2013-02-12 | X-Spine Systems, Inc. | Spinal fusion system utilizing an implant plate having at least one integral lock and ratchet lock |
US8523912B2 (en) | 2007-10-22 | 2013-09-03 | Flexuspine, Inc. | Posterior stabilization systems with shared, dual dampener systems |
US8623019B2 (en) | 2007-07-03 | 2014-01-07 | Pioneer Surgical Technology, Inc. | Bone plate system |
US8668723B2 (en) | 2011-07-19 | 2014-03-11 | Neurostructures, Inc. | Anterior cervical plate |
US8771324B2 (en) | 2011-05-27 | 2014-07-08 | Globus Medical, Inc. | Securing fasteners |
WO2014113003A1 (fr) * | 2013-01-16 | 2014-07-24 | Spinefrontier, Inc. | Système et procédé pour un ensemble implant de stabilisation rachidienne |
US8790379B2 (en) | 2010-06-23 | 2014-07-29 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US8858556B2 (en) | 2005-05-12 | 2014-10-14 | Joseph D. Stern | Revisable anterior cervical plating system |
US8882815B2 (en) | 2010-06-23 | 2014-11-11 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US8940051B2 (en) | 2011-03-25 | 2015-01-27 | Flexuspine, Inc. | Interbody device insertion systems and methods |
US20150045840A1 (en) * | 2012-02-06 | 2015-02-12 | Creaholic S.A. | Fastening device and tool for surgical holding systems |
US20150142055A1 (en) * | 2008-12-05 | 2015-05-21 | DePuy Synthes Products, LLC | Anchor-in-anchor system for use in bone fixation |
US9078706B2 (en) | 2003-09-30 | 2015-07-14 | X-Spine Systems, Inc. | Intervertebral fusion device utilizing multiple mobile uniaxial and bidirectional screw interface plates |
USD734853S1 (en) | 2009-10-14 | 2015-07-21 | Nuvasive, Inc. | Bone plate |
US9095387B2 (en) | 2011-04-13 | 2015-08-04 | Globus Medical, Inc. | Spine stabilization |
US20150245859A1 (en) * | 2012-10-19 | 2015-09-03 | Deroyal Industries, Inc. | Cervical Plate With Retaining Clip |
US9295508B2 (en) | 2012-02-03 | 2016-03-29 | Zimmer, Inc. | Bone plate for elastic osteosynthesis |
US20160143667A1 (en) * | 2014-11-24 | 2016-05-26 | Aesculap Ag | Pedicle screw system and spinal stabilization system |
US20160206351A1 (en) * | 2014-08-11 | 2016-07-21 | Corentec Co., Ltd. | Spine fixing apparatus |
US9486250B2 (en) | 2014-02-20 | 2016-11-08 | Mastros Innovations, LLC. | Lateral plate |
US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
USD779065S1 (en) | 2014-10-08 | 2017-02-14 | Nuvasive, Inc. | Anterior cervical bone plate |
US9615866B1 (en) | 2004-10-18 | 2017-04-11 | Nuvasive, Inc. | Surgical fixation system and related methods |
US9629664B2 (en) | 2014-01-20 | 2017-04-25 | Neurostructures, Inc. | Anterior cervical plate |
US20170202585A1 (en) * | 2015-11-13 | 2017-07-20 | Leith Medical LLC | Bone Fixation Systems, Apparatuses, and Methods with Anti-Back-Out Feature |
US9943341B2 (en) | 2013-07-16 | 2018-04-17 | K2M, Llc | Retention plate member for a spinal plate system |
US9987052B2 (en) | 2015-02-24 | 2018-06-05 | X-Spine Systems, Inc. | Modular interspinous fixation system with threaded component |
US10045804B2 (en) | 2008-03-26 | 2018-08-14 | Depuy Synthes, Inc. | Universal anchor for attaching objects to bone tissue |
US10076369B2 (en) | 2013-01-16 | 2018-09-18 | Spinefrontier, Inc | Bone fastener for a spinal fixation assembly |
US10154910B2 (en) | 2008-06-05 | 2018-12-18 | DePuy Synthes Products, Inc. | Articulating disc implant |
US10182851B2 (en) | 2014-11-24 | 2019-01-22 | FBC Device ApS | Angulating bone plate |
US10349982B2 (en) | 2011-11-01 | 2019-07-16 | Nuvasive Specialized Orthopedics, Inc. | Adjustable magnetic devices and methods of using same |
US10390867B2 (en) | 2009-09-18 | 2019-08-27 | Biomet C.V. | Bone plate system and method |
US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US10478232B2 (en) | 2009-04-29 | 2019-11-19 | Nuvasive Specialized Orthopedics, Inc. | Interspinous process device and method |
US10512547B2 (en) | 2017-05-04 | 2019-12-24 | Neurostructures, Inc. | Interbody spacer |
US10617453B2 (en) | 2015-10-16 | 2020-04-14 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US10646262B2 (en) | 2011-02-14 | 2020-05-12 | Nuvasive Specialized Orthopedics, Inc. | System and method for altering rotational alignment of bone sections |
US10660675B2 (en) | 2010-06-30 | 2020-05-26 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10729470B2 (en) | 2008-11-10 | 2020-08-04 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10743794B2 (en) | 2011-10-04 | 2020-08-18 | Nuvasive Specialized Orthopedics, Inc. | Devices and methods for non-invasive implant length sensing |
US10751094B2 (en) | 2013-10-10 | 2020-08-25 | Nuvasive Specialized Orthopedics, Inc. | Adjustable spinal implant |
US10835290B2 (en) | 2015-12-10 | 2020-11-17 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10918425B2 (en) | 2016-01-28 | 2021-02-16 | Nuvasive Specialized Orthopedics, Inc. | System and methods for bone transport |
US20210059726A1 (en) * | 2019-08-30 | 2021-03-04 | K2M, Inc. | All in One Plate Holder and Spring Loaded Awl |
US10980641B2 (en) | 2017-05-04 | 2021-04-20 | Neurostructures, Inc. | Interbody spacer |
US11033307B2 (en) * | 2015-11-30 | 2021-06-15 | Seth K. WILLIAMS | Alignment guide for cervical spine plate |
US11039865B2 (en) | 2018-03-02 | 2021-06-22 | Stryker European Operations Limited | Bone plates and associated screws |
US11071629B2 (en) | 2018-10-13 | 2021-07-27 | Neurostructures Inc. | Interbody spacer |
US11076892B2 (en) | 2018-08-03 | 2021-08-03 | Neurostructures, Inc. | Anterior cervical plate |
US11123117B1 (en) * | 2011-11-01 | 2021-09-21 | Nuvasive, Inc. | Surgical fixation system and related methods |
US11191579B2 (en) | 2012-10-29 | 2021-12-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US11202707B2 (en) | 2008-03-25 | 2021-12-21 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant system |
US11207110B2 (en) | 2009-09-04 | 2021-12-28 | Nuvasive Specialized Orthopedics, Inc. | Bone growth device and method |
US11234849B2 (en) | 2006-10-20 | 2022-02-01 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant and method of use |
US11246694B2 (en) | 2014-04-28 | 2022-02-15 | Nuvasive Specialized Orthopedics, Inc. | System for informational magnetic feedback in adjustable implants |
US11304817B2 (en) | 2020-06-05 | 2022-04-19 | Neurostructures, Inc. | Expandable interbody spacer |
US11304729B2 (en) | 2009-02-23 | 2022-04-19 | Nuvasive Specialized Orthhopedics, Inc. | Non-invasive adjustable distraction system |
US11324538B2 (en) | 2019-12-04 | 2022-05-10 | Biomet Manufacturing, Llc | Active bone plate |
USRE49061E1 (en) | 2012-10-18 | 2022-05-10 | Nuvasive Specialized Orthopedics, Inc. | Intramedullary implants for replacing lost bone |
US11357549B2 (en) * | 2004-07-02 | 2022-06-14 | Nuvasive Specialized Orthopedics, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US11357547B2 (en) | 2014-10-23 | 2022-06-14 | Nuvasive Specialized Orthopedics Inc. | Remotely adjustable interactive bone reshaping implant |
US11382761B2 (en) | 2020-04-11 | 2022-07-12 | Neurostructures, Inc. | Expandable interbody spacer |
US11439449B2 (en) | 2014-12-26 | 2022-09-13 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for distraction |
US11577097B2 (en) | 2019-02-07 | 2023-02-14 | Nuvasive Specialized Orthopedics, Inc. | Ultrasonic communication in medical devices |
US11589901B2 (en) | 2019-02-08 | 2023-02-28 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device |
US11612416B2 (en) | 2015-02-19 | 2023-03-28 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for vertebral adjustment |
US11696836B2 (en) | 2013-08-09 | 2023-07-11 | Nuvasive, Inc. | Lordotic expandable interbody implant |
US11717419B2 (en) | 2020-12-10 | 2023-08-08 | Neurostructures, Inc. | Expandable interbody spacer |
US11737787B1 (en) | 2021-05-27 | 2023-08-29 | Nuvasive, Inc. | Bone elongating devices and methods of use |
US11744626B2 (en) | 2019-10-14 | 2023-09-05 | Leith Medical, LLC | Bone fixation system with fasteners and a removal tool for decoupling of the fasteners |
US11766252B2 (en) | 2013-07-31 | 2023-09-26 | Nuvasive Specialized Orthopedics, Inc. | Noninvasively adjustable suture anchors |
US11801187B2 (en) | 2016-02-10 | 2023-10-31 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for controlling multiple surgical variables |
US11806054B2 (en) | 2021-02-23 | 2023-11-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
US11839410B2 (en) | 2012-06-15 | 2023-12-12 | Nuvasive Inc. | Magnetic implants with improved anatomical compatibility |
US11857226B2 (en) | 2013-03-08 | 2024-01-02 | Nuvasive Specialized Orthopedics | Systems and methods for ultrasonic detection of device distraction |
US11871974B2 (en) | 2007-10-30 | 2024-01-16 | Nuvasive Specialized Orthopedics, Inc. | Skeletal manipulation method |
US11877779B2 (en) | 2020-03-26 | 2024-01-23 | Xtant Medical Holdings, Inc. | Bone plate system |
US20240074801A1 (en) * | 2011-08-17 | 2024-03-07 | Globus Medical, Inc. | Bone fixation plate system and method |
US11925389B2 (en) | 2008-10-13 | 2024-03-12 | Nuvasive Specialized Orthopedics, Inc. | Spinal distraction system |
US11980402B2 (en) | 2019-10-14 | 2024-05-14 | Leith Medical, Inc. | Apparatus for stabilization of a bone fracture site |
US12023073B2 (en) | 2021-08-03 | 2024-07-02 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6755833B1 (en) | 2001-12-14 | 2004-06-29 | Kamaljit S. Paul | Bone support assembly |
US7070599B2 (en) | 2002-07-24 | 2006-07-04 | Paul Kamaljit S | Bone support assembly |
AU2003237517A1 (en) * | 2002-06-07 | 2003-12-22 | Frank H. Boehm Jr. | Cervical spine stabilizing system and method |
WO2004045389A2 (fr) | 2002-11-19 | 2004-06-03 | Acumed Llc | Plaques vissees reglables |
US20040204712A1 (en) * | 2003-04-09 | 2004-10-14 | Eric Kolb | Bone fixation plates |
US7951176B2 (en) | 2003-05-30 | 2011-05-31 | Synthes Usa, Llc | Bone plate |
US11259851B2 (en) | 2003-08-26 | 2022-03-01 | DePuy Synthes Products, Inc. | Bone plate |
EP1658015A1 (fr) | 2003-08-26 | 2006-05-24 | Synthes GmbH | Plaque vissee pour os |
US8182518B2 (en) * | 2003-12-22 | 2012-05-22 | Life Spine, Inc. | Static and dynamic cervical plates and cervical plate constructs |
US11291484B2 (en) | 2004-01-26 | 2022-04-05 | DePuy Synthes Products, Inc. | Highly-versatile variable-angle bone plate system |
US8574268B2 (en) | 2004-01-26 | 2013-11-05 | DePuy Synthes Product, LLC | Highly-versatile variable-angle bone plate system |
US7740649B2 (en) | 2004-02-26 | 2010-06-22 | Pioneer Surgical Technology, Inc. | Bone plate system and methods |
US8900277B2 (en) | 2004-02-26 | 2014-12-02 | Pioneer Surgical Technology, Inc. | Bone plate system |
US8394130B2 (en) * | 2005-03-17 | 2013-03-12 | Biomet C.V. | Modular fracture fixation system |
US8062296B2 (en) * | 2005-03-17 | 2011-11-22 | Depuy Products, Inc. | Modular fracture fixation plate system with multiple metaphyseal and diaphyseal plates |
DE102005005647A1 (de) * | 2005-02-08 | 2006-08-17 | Henning Kloss | Wirbelsäulenfixateur |
US7993380B2 (en) * | 2005-03-31 | 2011-08-09 | Alphatel Spine, Inc. | Active compression orthopedic plate system and method for using the same |
GB2442189B (en) * | 2005-07-13 | 2010-11-17 | Acumed Llc | Bone plates with movable locking elements |
US20070123881A1 (en) * | 2005-10-26 | 2007-05-31 | Ralph James D | Off-set bone plates |
US8357181B2 (en) * | 2005-10-27 | 2013-01-22 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of implanting same |
FR2894129B1 (fr) * | 2005-12-07 | 2008-08-22 | Alain Tornier | Dispositif de stabilisation du rachis |
US20070173822A1 (en) * | 2006-01-13 | 2007-07-26 | Sdgi Holdings, Inc. | Use of a posterior dynamic stabilization system with an intradiscal device |
US8083795B2 (en) | 2006-01-18 | 2011-12-27 | Warsaw Orthopedic, Inc. | Intervertebral prosthetic device for spinal stabilization and method of manufacturing same |
US7695473B2 (en) * | 2006-01-18 | 2010-04-13 | Biodynamics Llc | Adjustable bone plate |
US20070276490A1 (en) * | 2006-05-15 | 2007-11-29 | Mateyka Richard J | Dynamic Spinal Plate Implant and Method of Use |
US8162952B2 (en) | 2006-09-26 | 2012-04-24 | Ebi, Llc | Percutaneous instrument assembly |
US8038699B2 (en) | 2006-09-26 | 2011-10-18 | Ebi, Llc | Percutaneous instrument assembly |
EP2224868B1 (fr) * | 2007-11-21 | 2014-07-30 | Globus Medical, Inc. | Système de stabilisation de colonne cervicale avec plaques extensibles |
US8480716B2 (en) | 2008-04-25 | 2013-07-09 | Pioneer Surgical Technology, Inc. | Bone plate system |
ES2574302T3 (es) * | 2008-08-08 | 2016-06-16 | Alphatec Spine, Inc. | Dispositivo para apófisis espinosa |
US9408649B2 (en) * | 2008-09-11 | 2016-08-09 | Innovasis, Inc. | Radiolucent screw with radiopaque marker |
JP5580403B2 (ja) * | 2009-04-23 | 2014-08-27 | ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 適応可能骨固定プレート |
US9433439B2 (en) * | 2009-09-10 | 2016-09-06 | Innovasis, Inc. | Radiolucent stabilizing rod with radiopaque marker |
US9655658B2 (en) | 2009-10-14 | 2017-05-23 | Ebi, Llc | Deformable device for minimally invasive fixation |
US20130012992A1 (en) * | 2009-10-26 | 2013-01-10 | Nasser Ani | Apparatus for compressing or decompressing a spinal disc and method of use thereof |
EP2542169B1 (fr) * | 2010-03-03 | 2019-12-11 | Lanx, Inc. | Système de plaque osseuse |
US8801712B2 (en) * | 2010-03-08 | 2014-08-12 | Innovasis, Inc. | Radiolucent bone plate with radiopaque marker |
EP2713918B1 (fr) | 2010-07-14 | 2022-06-01 | Synthes GmbH | Ensemble d'alegnement d'une plaque de fixation osseuse |
BR112012033588A2 (pt) * | 2010-07-21 | 2016-11-29 | Synthes Gmbh | dispositivo para osteossíntese. |
JP5868981B2 (ja) * | 2010-09-20 | 2016-02-24 | シンセス ゲゼルシャフト ミット ベシュレンクテル ハフツングSynthes Gmbh | 外科用植え込み片の2つ以上のセグメントを接続する方法 |
JP5856174B2 (ja) * | 2010-09-27 | 2016-02-09 | アピフィックス・リミテッド | ラチェット式脊椎デバイス |
US10342583B2 (en) * | 2010-10-01 | 2019-07-09 | K2M, Inc. | Dynamic plate with inserts |
US9510867B2 (en) * | 2010-10-15 | 2016-12-06 | Phygen, Llc | Fixation screw assembly |
US8940030B1 (en) | 2011-01-28 | 2015-01-27 | Nuvasive, Inc. | Spinal fixation system and related methods |
US8795334B2 (en) | 2011-01-28 | 2014-08-05 | Smith & Nephew, Inc. | Tissue repair |
US9333526B2 (en) | 2011-02-17 | 2016-05-10 | Frank A. Liporace | Device for coating bone plate |
US9480510B2 (en) | 2011-03-23 | 2016-11-01 | Spinecraft, LLC | Devices, systems and methods of attaching same to the spine |
US9198769B2 (en) | 2011-12-23 | 2015-12-01 | Pioneer Surgical Technology, Inc. | Bone anchor assembly, bone plate system, and method |
US9387025B2 (en) | 2012-04-04 | 2016-07-12 | Smith & Nephew, Inc. | Bone screw and self-retaining driver |
US10076364B2 (en) | 2012-06-29 | 2018-09-18 | K2M, Inc. | Minimal-profile anterior cervical plate and cage apparatus and method of using same |
US9011450B2 (en) | 2012-08-08 | 2015-04-21 | DePuy Synthes Products, LLC | Surgical instrument |
US8986327B2 (en) | 2012-10-18 | 2015-03-24 | Smith & Nephew, Inc. | Flexible anchor delivery system |
US9028498B2 (en) | 2013-03-14 | 2015-05-12 | Innovasis, Inc. | Modular bone fixation plate assembly |
WO2014145527A2 (fr) * | 2013-03-15 | 2014-09-18 | Lifenet Health | Implant médical de fixation et d'intégration à un tissu dur |
US9579128B2 (en) | 2013-07-19 | 2017-02-28 | K2M, Inc. | Translational plate and compressor instrument |
US10441329B2 (en) | 2013-10-28 | 2019-10-15 | Jace Medical, Llc | Orthopedic fixation device, system and method |
CN103720510B (zh) * | 2014-01-23 | 2015-12-02 | 宫锡和 | 电动多功能椎间融合器推进器 |
WO2015123693A1 (fr) * | 2014-02-14 | 2015-08-20 | Spectrum Spine Ip Holdings, Llc | Système de fusion d'accès minimal cervical |
US9408647B2 (en) * | 2014-02-27 | 2016-08-09 | Biomedical Enterprises, Inc. | Method and apparatus for use of a compressing plate |
US9962204B2 (en) * | 2014-04-12 | 2018-05-08 | Seyed Alireza Mirghasemi | Modular bone plate |
ES2974505T3 (es) | 2014-07-03 | 2024-06-27 | Acumed Llc | Placa ósea con junta móvil |
US10130487B2 (en) | 2014-08-22 | 2018-11-20 | Globus Medical, Inc. | Vertebral implants and related methods of use |
CN104287818B (zh) * | 2014-10-29 | 2017-04-19 | 刘忠军 | 一种长度可调的椎板 |
US10363072B2 (en) | 2015-02-18 | 2019-07-30 | Degen Medical, Inc. | Vertebral plate revision apparatuses, kits, and methods and osteosynthesis systems |
WO2017096098A1 (fr) | 2015-12-01 | 2017-06-08 | Revivo Medical, Llc | Appareil de fixation osseuse avec mécanisme de fixation d'attaches et procédés d'utilisation |
FR3052047B1 (fr) | 2016-06-02 | 2021-12-17 | Neosteo | Dispositif medical implantable pour la solidarisation de parties osseuses separees en vue de leur fusion |
US10624686B2 (en) | 2016-09-08 | 2020-04-21 | DePuy Synthes Products, Inc. | Variable angel bone plate |
US10820930B2 (en) | 2016-09-08 | 2020-11-03 | DePuy Synthes Products, Inc. | Variable angle bone plate |
US10905476B2 (en) | 2016-09-08 | 2021-02-02 | DePuy Synthes Products, Inc. | Variable angle bone plate |
US10582955B2 (en) | 2017-03-22 | 2020-03-10 | Zavation, Llc | Methods of implanting bone plate assemblies |
US10660677B2 (en) | 2017-03-22 | 2020-05-26 | Zavation Medical Products, Llc | Expandable bone plate assemblies |
US11026727B2 (en) | 2018-03-20 | 2021-06-08 | DePuy Synthes Products, Inc. | Bone plate with form-fitting variable-angle locking hole |
US10772665B2 (en) | 2018-03-29 | 2020-09-15 | DePuy Synthes Products, Inc. | Locking structures for affixing bone anchors to a bone plate, and related systems and methods |
US11013541B2 (en) | 2018-04-30 | 2021-05-25 | DePuy Synthes Products, Inc. | Threaded locking structures for affixing bone anchors to a bone plate, and related systems and methods |
US10925651B2 (en) | 2018-12-21 | 2021-02-23 | DePuy Synthes Products, Inc. | Implant having locking holes with collection cavity for shavings |
US11298244B2 (en) | 2019-01-31 | 2022-04-12 | K2M, Inc. | Interbody implants and instrumentation |
US11259852B2 (en) | 2019-08-28 | 2022-03-01 | DePuy Synthes Products, Inc. | Plate connection |
US11534307B2 (en) | 2019-09-16 | 2022-12-27 | K2M, Inc. | 3D printed cervical standalone implant |
JP2022553869A (ja) | 2019-11-07 | 2022-12-26 | フリーダム イノベーションズ,エルエルシー | 埋め込み可能なモジュール式整形外科用プレートシステム |
US20210369460A1 (en) * | 2020-05-27 | 2021-12-02 | DePuy Synthes Products, Inc. | Expandable medical implant for adolescent cranium defects |
US20230032203A1 (en) * | 2021-07-21 | 2023-02-02 | Choice Spine, Llc | Bone Screw Fixation System |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604414A (en) * | 1968-08-29 | 1971-09-14 | Nicomedes Borges | Bone setting device |
US5129903A (en) * | 1988-06-18 | 1992-07-14 | Luhr Hans Georg | Bone plate |
US5364396A (en) * | 1993-03-29 | 1994-11-15 | Robinson Randolph C | Distraction method and apparatus |
US5470333A (en) * | 1993-03-11 | 1995-11-28 | Danek Medical, Inc. | System for stabilizing the cervical and the lumbar region of the spine |
US5484439A (en) * | 1992-09-16 | 1996-01-16 | Alphatec Manufacturing, Inc. | Modular femur fixation device |
US5601553A (en) * | 1994-10-03 | 1997-02-11 | Synthes (U.S.A.) | Locking plate and bone screw |
US5616142A (en) * | 1994-07-20 | 1997-04-01 | Yuan; Hansen A. | Vertebral auxiliary fixation device |
US5622177A (en) * | 1993-07-08 | 1997-04-22 | Siemens Aktiengesellschaft | Ultrasound imaging system having a reduced number of lines between the base unit and the probe |
US5672177A (en) * | 1996-01-31 | 1997-09-30 | The General Hospital Corporation | Implantable bone distraction device |
US5735853A (en) * | 1994-06-17 | 1998-04-07 | Olerud; Sven | Bone screw for osteosynthesis |
US6235033B1 (en) * | 2000-04-19 | 2001-05-22 | Synthes (Usa) | Bone fixation assembly |
US6238396B1 (en) * | 1999-10-07 | 2001-05-29 | Blackstone Medical, Inc. | Surgical cross-connecting apparatus and related methods |
US6306136B1 (en) * | 1997-07-28 | 2001-10-23 | Dimso (Distribution Medicales Du Sud-Ouest) | Implant, in particular front cervical plate |
US6328738B1 (en) * | 1999-11-24 | 2001-12-11 | Loubert Suddaby | Anterior cervical fusion compression plate and screw guide |
US6331179B1 (en) * | 2000-01-06 | 2001-12-18 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US20020055741A1 (en) * | 1999-05-14 | 2002-05-09 | Schlapfer Fridolin J. | Bone fixation device with a rotation joint |
US6402756B1 (en) * | 2001-02-15 | 2002-06-11 | Third Millennium Engineering, Llc | Longitudinal plate assembly having an adjustable length |
US6454769B2 (en) * | 1997-08-04 | 2002-09-24 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US6454679B1 (en) * | 1998-06-09 | 2002-09-24 | Scott Brian Radow | Bipedal locomotion training and performance evaluation device and method |
US20020183755A1 (en) * | 2001-06-04 | 2002-12-05 | Michelson Gary K. | Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof |
US20020183756A1 (en) * | 2001-06-04 | 2002-12-05 | Michelson Gary K. | Dynamic, modular, single-lock anterior cervical plate system, having assembleable and moveable segments, instrumentation, and method for installation thereof |
US20020183757A1 (en) * | 2001-06-04 | 2002-12-05 | Michelson Gary K. | Dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments, instrumentation, and method for installation thereof |
US20020188296A1 (en) * | 2001-06-06 | 2002-12-12 | Michelson Gary K. | Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments, instrumentation, and method for installation thereof |
US20030114856A1 (en) * | 2001-12-14 | 2003-06-19 | Nathanson Jeremy J. | Internal osteotomy fixation device |
US20030130661A1 (en) * | 2002-01-08 | 2003-07-10 | Osman Said G. | Uni-directional dynamic spinal fixation device |
US6689134B2 (en) * | 2002-02-13 | 2004-02-10 | Third Millennium Engineering, Llc | Longitudinal plate assembly having an adjustable length |
US7008427B2 (en) * | 2000-05-25 | 2006-03-07 | Orthoplex, Llc | Inter-vertebral disc prosthesis for rachis through anterior surgery thereof |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1073714A (en) * | 1912-09-06 | 1913-09-23 | William John Shorten | Clasp. |
US2507681A (en) | 1946-03-14 | 1950-05-16 | Edwin R Sage | Ratchet mechanism for wrenches |
US3385299A (en) | 1965-10-23 | 1968-05-28 | New Res And Dev Lab Inc | Wound clip |
US3659595A (en) | 1969-10-22 | 1972-05-02 | Edward J Haboush | Compensating plates for bone fractures |
US4175880A (en) | 1977-09-16 | 1979-11-27 | Postalia Gmbh | Device for interlocking perforated writing material |
DE8624671U1 (de) * | 1986-09-15 | 1986-10-23 | Waldemar Link Gmbh & Co, 2000 Hamburg | Osteosyntheseplatte |
DE4007306C1 (en) | 1990-03-08 | 1991-05-23 | Eska Medical Luebeck Medizintechnik Gmbh & Co, 2400 Luebeck, De | Implant for use in bone surgery - comprises two plates geared to allow relative external adjustment after fixture |
SU1762907A1 (ru) * | 1990-12-10 | 1992-09-23 | Ж. Н. Кадыров | Устройство дл компрессионного накостного остеосинтеза |
JPH06202412A (ja) | 1992-12-26 | 1994-07-22 | Canon Inc | 画像形成装置 |
US5520690A (en) * | 1995-04-13 | 1996-05-28 | Errico; Joseph P. | Anterior spinal polyaxial locking screw plate assembly |
US5842822A (en) | 1996-07-19 | 1998-12-01 | Everett Industries Inc | Removable quasi-ratchet fastener |
FR2751203B1 (fr) * | 1996-07-22 | 1998-12-31 | Euros Sa | Plaque d'osteosynthese de rachis |
DE19637938A1 (de) * | 1996-09-17 | 1998-03-26 | Juergen Harms | Knochenplatte |
US5827286A (en) | 1997-02-14 | 1998-10-27 | Incavo; Stephen J. | Incrementally adjustable tibial osteotomy fixation device and method |
ATE225150T1 (de) | 1997-04-15 | 2002-10-15 | Synthes Ag | Teleskopierende wirbelprothese |
US6051007A (en) * | 1998-03-02 | 2000-04-18 | Corvascular, Inc. | Sternal closure device and instruments therefor |
US6533786B1 (en) | 1999-10-13 | 2003-03-18 | Sdgi Holdings, Inc. | Anterior cervical plating system |
EP1205154A3 (fr) * | 2000-11-08 | 2003-04-02 | Aesculap AG & Co. KG | Dispositif de plaque pour ostéosynthèse et méthode avec une plaque à extension |
US7044952B2 (en) * | 2001-06-06 | 2006-05-16 | Sdgi Holdings, Inc. | Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments |
US9101422B2 (en) | 2002-02-01 | 2015-08-11 | Zimmer Spine, Inc. | Spinal plate system for stabilizing a portion of a spine |
US20040019353A1 (en) | 2002-02-01 | 2004-01-29 | Freid James M. | Spinal plate system for stabilizing a portion of a spine |
CA2477152A1 (fr) | 2002-02-25 | 2003-09-04 | Dzung H. Dinh | Methodes et dispositifs destines a favoriser la fusion de vertebres |
US7591840B2 (en) * | 2005-01-21 | 2009-09-22 | Loubert Suddaby | Orthopedic fusion plate having both active and passive subsidence controlling features |
US7749256B2 (en) * | 2005-04-05 | 2010-07-06 | Warsaw Orthopedic, Inc. | Ratcheting fixation plate |
US7695473B2 (en) * | 2006-01-18 | 2010-04-13 | Biodynamics Llc | Adjustable bone plate |
US7641675B2 (en) * | 2006-03-08 | 2010-01-05 | Warsaw Orthopedic, Inc. | Flexible bone plates and methods for dynamic spinal stabilization |
US20080147125A1 (en) * | 2006-12-12 | 2008-06-19 | Dennis Colleran | Active Settling Plate and Method of Use |
US8500783B2 (en) * | 2008-04-30 | 2013-08-06 | Atlas Spine, Inc. | Dynamic cervical plate with spacer |
WO2010025405A1 (fr) * | 2008-08-29 | 2010-03-04 | Life Spine, Inc. | Plaques vertébrales dynamiques simple face |
-
2003
- 2003-01-23 US US10/351,283 patent/US20040019353A1/en not_active Abandoned
- 2003-01-24 US US10/351,288 patent/US20040092939A1/en not_active Abandoned
- 2003-02-03 AU AU2003208956A patent/AU2003208956B8/en not_active Ceased
- 2003-02-03 EP EP03707681A patent/EP1478287A4/fr not_active Withdrawn
- 2003-02-03 EP EP12165991.6A patent/EP2494933A3/fr not_active Withdrawn
- 2003-02-03 CA CA002474437A patent/CA2474437A1/fr not_active Abandoned
- 2003-02-03 JP JP2003563412A patent/JP4390562B2/ja not_active Expired - Fee Related
- 2003-02-03 WO PCT/US2003/003159 patent/WO2003063714A2/fr active Application Filing
-
2007
- 2007-04-20 US US11/738,319 patent/US8128628B2/en not_active Expired - Fee Related
-
2012
- 2012-02-28 US US13/406,881 patent/US8814869B2/en not_active Expired - Fee Related
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604414A (en) * | 1968-08-29 | 1971-09-14 | Nicomedes Borges | Bone setting device |
US5129903A (en) * | 1988-06-18 | 1992-07-14 | Luhr Hans Georg | Bone plate |
US5484439A (en) * | 1992-09-16 | 1996-01-16 | Alphatec Manufacturing, Inc. | Modular femur fixation device |
US5470333A (en) * | 1993-03-11 | 1995-11-28 | Danek Medical, Inc. | System for stabilizing the cervical and the lumbar region of the spine |
US5364396A (en) * | 1993-03-29 | 1994-11-15 | Robinson Randolph C | Distraction method and apparatus |
US5622177A (en) * | 1993-07-08 | 1997-04-22 | Siemens Aktiengesellschaft | Ultrasound imaging system having a reduced number of lines between the base unit and the probe |
US5735853A (en) * | 1994-06-17 | 1998-04-07 | Olerud; Sven | Bone screw for osteosynthesis |
US5616142A (en) * | 1994-07-20 | 1997-04-01 | Yuan; Hansen A. | Vertebral auxiliary fixation device |
US5601553A (en) * | 1994-10-03 | 1997-02-11 | Synthes (U.S.A.) | Locking plate and bone screw |
US5672177A (en) * | 1996-01-31 | 1997-09-30 | The General Hospital Corporation | Implantable bone distraction device |
US6306136B1 (en) * | 1997-07-28 | 2001-10-23 | Dimso (Distribution Medicales Du Sud-Ouest) | Implant, in particular front cervical plate |
US6454769B2 (en) * | 1997-08-04 | 2002-09-24 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US6454679B1 (en) * | 1998-06-09 | 2002-09-24 | Scott Brian Radow | Bipedal locomotion training and performance evaluation device and method |
US20020055741A1 (en) * | 1999-05-14 | 2002-05-09 | Schlapfer Fridolin J. | Bone fixation device with a rotation joint |
US6238396B1 (en) * | 1999-10-07 | 2001-05-29 | Blackstone Medical, Inc. | Surgical cross-connecting apparatus and related methods |
US6328738B1 (en) * | 1999-11-24 | 2001-12-11 | Loubert Suddaby | Anterior cervical fusion compression plate and screw guide |
US6331179B1 (en) * | 2000-01-06 | 2001-12-18 | Spinal Concepts, Inc. | System and method for stabilizing the human spine with a bone plate |
US6235033B1 (en) * | 2000-04-19 | 2001-05-22 | Synthes (Usa) | Bone fixation assembly |
US20030199876A1 (en) * | 2000-04-19 | 2003-10-23 | Synthes (Usa) | Bone fixation assembly |
US7008427B2 (en) * | 2000-05-25 | 2006-03-07 | Orthoplex, Llc | Inter-vertebral disc prosthesis for rachis through anterior surgery thereof |
US6402756B1 (en) * | 2001-02-15 | 2002-06-11 | Third Millennium Engineering, Llc | Longitudinal plate assembly having an adjustable length |
US20020183755A1 (en) * | 2001-06-04 | 2002-12-05 | Michelson Gary K. | Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof |
US20020183756A1 (en) * | 2001-06-04 | 2002-12-05 | Michelson Gary K. | Dynamic, modular, single-lock anterior cervical plate system, having assembleable and moveable segments, instrumentation, and method for installation thereof |
US20020183757A1 (en) * | 2001-06-04 | 2002-12-05 | Michelson Gary K. | Dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments, instrumentation, and method for installation thereof |
US7097645B2 (en) * | 2001-06-04 | 2006-08-29 | Sdgi Holdings, Inc. | Dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments |
US20020188296A1 (en) * | 2001-06-06 | 2002-12-12 | Michelson Gary K. | Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments, instrumentation, and method for installation thereof |
US20030114856A1 (en) * | 2001-12-14 | 2003-06-19 | Nathanson Jeremy J. | Internal osteotomy fixation device |
US6932820B2 (en) * | 2002-01-08 | 2005-08-23 | Said G. Osman | Uni-directional dynamic spinal fixation device |
US20030130661A1 (en) * | 2002-01-08 | 2003-07-10 | Osman Said G. | Uni-directional dynamic spinal fixation device |
US6689134B2 (en) * | 2002-02-13 | 2004-02-10 | Third Millennium Engineering, Llc | Longitudinal plate assembly having an adjustable length |
Cited By (384)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7008427B2 (en) | 2000-05-25 | 2006-03-07 | Orthoplex, Llc | Inter-vertebral disc prosthesis for rachis through anterior surgery thereof |
US20030229348A1 (en) * | 2000-05-25 | 2003-12-11 | Sevrain Lionel C. | Auxiliary vertebrae connecting device |
US20040006343A1 (en) * | 2000-05-25 | 2004-01-08 | Sevrain Lionel C. | Auxiliary vertebrae connecting device |
US20040049279A1 (en) * | 2000-05-25 | 2004-03-11 | Sevrain Lionel C. | Inter-vertebral disc prosthesis for rachis through anterior surgery thereof |
US20030135216A1 (en) * | 2000-05-25 | 2003-07-17 | Sevrain Lionel C. | Anchoring system for fixing objects to bones |
US20050010227A1 (en) * | 2000-11-28 | 2005-01-13 | Paul Kamaljit S. | Bone support plate assembly |
US20030149434A1 (en) * | 2000-11-28 | 2003-08-07 | Paul Kamaljit S. | Bone support assembly |
US7727265B2 (en) | 2000-11-28 | 2010-06-01 | Paul Kamaljit S | Bone support plate assembly |
US20040106924A1 (en) * | 2001-02-15 | 2004-06-03 | Ralph James D. | Longitudinal plate assembly having an adjustable length |
US7794482B2 (en) | 2001-12-24 | 2010-09-14 | Synthes Usa, Llc | Device for osteosynthesis |
US20080172094A1 (en) * | 2001-12-24 | 2008-07-17 | Synthes (U.S.A) | Device for osteosynthesis |
US7645295B2 (en) | 2002-01-08 | 2010-01-12 | Said G. Osman | Method for postoperatively compressing a bone graft |
US20050240184A1 (en) * | 2002-01-08 | 2005-10-27 | Osman Said G | Method for postoperatively compressing a bone graft |
US20100137909A1 (en) * | 2002-01-08 | 2010-06-03 | Osman Said G | Method for postoperatively compressing a bone graft |
US8002810B2 (en) | 2002-01-08 | 2011-08-23 | Zimmer Spine, Inc. | Method for postoperatively compressing a bone graft |
US8128628B2 (en) | 2002-02-01 | 2012-03-06 | Zimmer Spine, Inc. | Spinal plate system for stabilizing a portion of a spine |
US20080065070A1 (en) * | 2002-02-01 | 2008-03-13 | Freid James M | Spinal plate system for stabilizing a portion of a spine |
US9101422B2 (en) | 2002-02-01 | 2015-08-11 | Zimmer Spine, Inc. | Spinal plate system for stabilizing a portion of a spine |
US20060200134A1 (en) * | 2002-02-01 | 2006-09-07 | James Freid | Spinal plate system for stabilizing a portion of a spine |
US8814869B2 (en) | 2002-02-01 | 2014-08-26 | Zimmer Spine, Inc. | Spinal plate system for stabilizing a portion of a spine |
US7186254B2 (en) | 2002-02-25 | 2007-03-06 | Dinh Dzung H | Methods and apparatus for promoting fusion of vertebrae |
US20070162021A1 (en) * | 2002-02-25 | 2007-07-12 | Dinh Dzung H | Methods and apparatuses for promoting fusion of vertebrae |
US20030212399A1 (en) * | 2002-02-25 | 2003-11-13 | Dinh Dzung H. | Methods and apparatuses for promoting fusion of vertebrae |
US20040087949A1 (en) * | 2002-10-31 | 2004-05-06 | Bono Frank S. | Snap-in washers and assemblies thereof |
US7306602B2 (en) * | 2002-10-31 | 2007-12-11 | Depuy Actomed, Inc. | Snap-in washers and assemblies thereof |
US7811312B2 (en) | 2002-12-04 | 2010-10-12 | Morphographics, Lc | Bone alignment implant and method of use |
US8641742B2 (en) | 2002-12-04 | 2014-02-04 | Peter M. Stevens | Methods for bone alignment |
US20040111089A1 (en) * | 2002-12-04 | 2004-06-10 | Stevens Peter M. | Bone alignment implant and method of use |
US8133230B2 (en) | 2002-12-04 | 2012-03-13 | Peter M. Stevens | Bone alignment implant and method of use |
US20080161816A1 (en) * | 2002-12-04 | 2008-07-03 | Peter M. Stevens | Bone alignment implant and method of use |
US20050273105A1 (en) * | 2002-12-31 | 2005-12-08 | Depuy Spine, Inc. | Bone plate and screw system allowing bi-directional assembly |
US7175624B2 (en) * | 2002-12-31 | 2007-02-13 | Depuy Spine, Inc. | Bone plate and screw system allowing bi-directional assembly |
US20040127899A1 (en) * | 2002-12-31 | 2004-07-01 | Konieczynski David D. | Bone plate and screw system allowing bi-directional attachment |
US20040127900A1 (en) * | 2002-12-31 | 2004-07-01 | Konieczynski David D. | Resilient bone plate and screw system allowing bi-directional assembly |
US9351774B2 (en) | 2002-12-31 | 2016-05-31 | DePuy Synthes Products, Inc. | Resilient bone plate and screw system allowing bi-directional assembly |
US7914561B2 (en) | 2002-12-31 | 2011-03-29 | Depuy Spine, Inc. | Resilient bone plate and screw system allowing bi-directional assembly |
US8747441B2 (en) | 2002-12-31 | 2014-06-10 | Depuy Spine, Inc. | Resilient bone plate and screw system allowing bi-directional assembly |
US7981142B2 (en) | 2002-12-31 | 2011-07-19 | Depuy Spine, Inc. | Bone plate and screw system allowing bi-directional assembly |
US20040153078A1 (en) * | 2003-01-30 | 2004-08-05 | Grinberg Alexander D | Anterior buttress staple |
US8172885B2 (en) * | 2003-02-05 | 2012-05-08 | Pioneer Surgical Technology, Inc. | Bone plate system |
US20070123879A1 (en) * | 2003-02-05 | 2007-05-31 | Pioneer Laboratories, Inc. | Bone plate system |
US7935123B2 (en) * | 2003-04-09 | 2011-05-03 | Depuy Acromed, Inc. | Drill guide with alignment feature |
US20040204710A1 (en) * | 2003-04-09 | 2004-10-14 | Tushar Patel | Drill guide and plate inserter |
US20040204717A1 (en) * | 2003-04-09 | 2004-10-14 | Jonathan Fanger | Guide for spinal tools, implants, and devices |
US20040204716A1 (en) * | 2003-04-09 | 2004-10-14 | Jonathan Fanger | Drill guide with alignment feature |
US8394107B2 (en) | 2003-04-09 | 2013-03-12 | Depuy Spine, Inc. | Guide for spinal tools, implants, and devices |
US20110015685A1 (en) * | 2003-04-09 | 2011-01-20 | Depuy Spine, Inc. | Guide for spinal tools, implants, and devices |
US7776047B2 (en) | 2003-04-09 | 2010-08-17 | Depuy Spine, Inc. | Guide for spinal tools, implants, and devices |
US20040267274A1 (en) * | 2003-06-27 | 2004-12-30 | Tushar Patel | Tissue retractor and drill guide |
US7909829B2 (en) | 2003-06-27 | 2011-03-22 | Depuy Spine, Inc. | Tissue retractor and drill guide |
US7909848B2 (en) | 2003-06-27 | 2011-03-22 | Depuy Spine, Inc. | Tissue retractor and guide device |
US8211145B2 (en) * | 2003-07-07 | 2012-07-03 | Aesculap, Inc. | Spinal stabilization implant and method of application |
US20080140129A1 (en) * | 2003-07-07 | 2008-06-12 | Aesculap Implant Systems, Inc. | Spinal stabilization implant and method of application |
US8257440B2 (en) | 2003-08-05 | 2012-09-04 | Gordon Charles R | Method of insertion of an expandable intervertebral implant |
US7909869B2 (en) | 2003-08-05 | 2011-03-22 | Flexuspine, Inc. | Artificial spinal unit assemblies |
US8052723B2 (en) | 2003-08-05 | 2011-11-08 | Flexuspine Inc. | Dynamic posterior stabilization systems and methods of use |
US8118870B2 (en) | 2003-08-05 | 2012-02-21 | Flexuspine, Inc. | Expandable articulating intervertebral implant with spacer |
US7799082B2 (en) | 2003-08-05 | 2010-09-21 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8118871B2 (en) | 2003-08-05 | 2012-02-21 | Flexuspine, Inc. | Expandable articulating intervertebral implant |
US7794480B2 (en) | 2003-08-05 | 2010-09-14 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8123810B2 (en) | 2003-08-05 | 2012-02-28 | Gordon Charles R | Expandable intervertebral implant with wedged expansion member |
US8147550B2 (en) | 2003-08-05 | 2012-04-03 | Flexuspine, Inc. | Expandable articulating intervertebral implant with limited articulation |
US8753398B2 (en) | 2003-08-05 | 2014-06-17 | Charles R. Gordon | Method of inserting an expandable intervertebral implant without overdistraction |
US8172903B2 (en) | 2003-08-05 | 2012-05-08 | Gordon Charles R | Expandable intervertebral implant with spacer |
US7785351B2 (en) | 2003-08-05 | 2010-08-31 | Flexuspine, Inc. | Artificial functional spinal implant unit system and method for use |
US20050283248A1 (en) * | 2003-08-05 | 2005-12-22 | Gordon Charles R | Expandable intervertebral implant with spacer |
US7753958B2 (en) | 2003-08-05 | 2010-07-13 | Gordon Charles R | Expandable intervertebral implant |
US8647386B2 (en) | 2003-08-05 | 2014-02-11 | Charles R. Gordon | Expandable intervertebral implant system and method |
US8603168B2 (en) | 2003-08-05 | 2013-12-10 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US9579124B2 (en) | 2003-08-05 | 2017-02-28 | Flexuspine, Inc. | Expandable articulating intervertebral implant with limited articulation |
US7708778B2 (en) | 2003-08-05 | 2010-05-04 | Flexuspine, Inc. | Expandable articulating intervertebral implant with cam |
US20050033294A1 (en) * | 2003-08-06 | 2005-02-10 | Benjamin Garden | Systems and techniques for stabilizing the spine and placing stabilization systems |
US7625375B2 (en) * | 2003-08-06 | 2009-12-01 | Warsaw Orthopedic, Inc. | Systems and techniques for stabilizing the spine and placing stabilization systems |
US9414870B2 (en) * | 2003-09-03 | 2016-08-16 | DePuy Synthes Products, Inc. | Translatable carriage fixation system |
US20100121329A1 (en) * | 2003-09-03 | 2010-05-13 | Ryan Christopher J | Translatable carriage fixation system |
US20050049593A1 (en) * | 2003-09-03 | 2005-03-03 | Duong Lan Anh Nguyen | Bone plate with captive clips |
US10368927B2 (en) | 2003-09-03 | 2019-08-06 | DePuy Synthes Products, Inc. | Bone plate with captive clips |
US7909860B2 (en) | 2003-09-03 | 2011-03-22 | Synthes Usa, Llc | Bone plate with captive clips |
US20120283782A1 (en) * | 2003-09-03 | 2012-11-08 | Ryan Christopher J | Translatable carriage fixation system |
US20110137344A1 (en) * | 2003-09-03 | 2011-06-09 | Rathbun David S | Bone plate with captive clips |
US20050049595A1 (en) * | 2003-09-03 | 2005-03-03 | Suh Sean S. | Track-plate carriage system |
US8262659B2 (en) | 2003-09-03 | 2012-09-11 | Synthes Usa, Llc | Translatable carriage fixation system |
US9408646B2 (en) | 2003-09-03 | 2016-08-09 | DePuy Synthes Products, Inc. | Bone plate with captive clips |
US7857839B2 (en) | 2003-09-03 | 2010-12-28 | Synthes Usa, Llc | Bone plate with captive clips |
US20060079901A1 (en) * | 2003-09-03 | 2006-04-13 | Ryan Christopher J | Translatable carriage fixation system |
US9220548B2 (en) | 2003-09-03 | 2015-12-29 | DePuy Synthes Products, Inc. | Bone plate with captive clips |
US7666185B2 (en) * | 2003-09-03 | 2010-02-23 | Synthes Usa, Llc | Translatable carriage fixation system |
US20070276386A1 (en) * | 2003-09-29 | 2007-11-29 | Darin Gerlach | Bone plate systems using provisional fixation |
US7905910B2 (en) | 2003-09-29 | 2011-03-15 | Smith & Nephew, Inc. | Bone plates and bone plate assemblies |
US7909858B2 (en) | 2003-09-29 | 2011-03-22 | Smith & Nephew, Inc. | Bone plate systems using provisional fixation |
US8795370B2 (en) | 2003-09-30 | 2014-08-05 | X-Spine Systems, Inc. | Fusion system and method for fusing spinal bones |
US8062367B2 (en) | 2003-09-30 | 2011-11-22 | X-Spine Systems, Inc. | Screw locking mechanism and method |
US20060195100A1 (en) * | 2003-09-30 | 2006-08-31 | X-Spine Systems, Inc. | Spinal fusion system utilizing an implant plate having at least one integral lock |
US20050071008A1 (en) * | 2003-09-30 | 2005-03-31 | Kirschman David Louis | Spinal fusion system and method for fusing spinal bones |
US9078706B2 (en) | 2003-09-30 | 2015-07-14 | X-Spine Systems, Inc. | Intervertebral fusion device utilizing multiple mobile uniaxial and bidirectional screw interface plates |
US8372152B2 (en) | 2003-09-30 | 2013-02-12 | X-Spine Systems, Inc. | Spinal fusion system utilizing an implant plate having at least one integral lock and ratchet lock |
US8282682B2 (en) | 2003-09-30 | 2012-10-09 | X-Spine Systems, Inc. | Fusion system and method for fusing spinal bones |
US8821553B2 (en) | 2003-09-30 | 2014-09-02 | X-Spine Systems, Inc. | Spinal fusion system utilizing an implant plate having at least one integral lock |
US20070179504A1 (en) * | 2003-09-30 | 2007-08-02 | X-Spine Systems, Inc. | Spinal fusion system and method for fusing spinal bones |
US7655028B2 (en) | 2003-09-30 | 2010-02-02 | X-Spine Systems, Inc. | Spinal fusion system and method for fusing spinal bones |
US7547327B2 (en) * | 2003-10-03 | 2009-06-16 | Howmedica Osteonics Corp. | Expandable augment trial |
US20050075736A1 (en) * | 2003-10-03 | 2005-04-07 | Howmedica Osteonics Corp. | Expandable augment trial |
US20050124990A1 (en) * | 2003-12-09 | 2005-06-09 | Michael Teague | Bone plate holder and screw guide |
US7588576B2 (en) * | 2003-12-09 | 2009-09-15 | Michael Teague | Bone plate holder and screw guide |
US20050234476A1 (en) * | 2003-12-29 | 2005-10-20 | Whitmore Willet F Iii | Template grid needle/instrument guide and method for minimally invasive procedures |
US20080234681A1 (en) * | 2004-02-10 | 2008-09-25 | Baynham Matthew G | Dynamic cervical plate |
US8328854B2 (en) | 2004-02-10 | 2012-12-11 | Atlas Spine, Inc. | Cervical plate ratchet pedicle screws |
US20050177160A1 (en) * | 2004-02-10 | 2005-08-11 | Baynham Bret O. | Dynamic cervical plate |
US8002809B2 (en) | 2004-02-10 | 2011-08-23 | Atlas Spine, Inc. | Dynamic cervical plate |
US20070276371A1 (en) * | 2004-02-10 | 2007-11-29 | Baynham Bret O | Dynamic cervical plate |
US7815666B2 (en) | 2004-02-10 | 2010-10-19 | Atlas Spine, Inc. | Dynamic cervical plate |
US20110118784A1 (en) * | 2004-02-10 | 2011-05-19 | Baynham Bret O | Cervical Plate Ratchet Pedicle Screws |
US7727266B2 (en) | 2004-06-17 | 2010-06-01 | Warsaw Orthopedic, Inc. | Method and apparatus for retaining screws in a plate |
US8672984B2 (en) | 2004-06-17 | 2014-03-18 | Warsaw Orthopedic, Inc. | Method and apparatus for retaining screw in a plate |
US7604638B2 (en) | 2004-06-21 | 2009-10-20 | Depuy Spine, Inc. | Instruments and methods for holding a bone plate |
US20050283155A1 (en) * | 2004-06-21 | 2005-12-22 | Michael Jacene | Instruments and methods for holding a bone plate |
US8298271B2 (en) | 2004-06-21 | 2012-10-30 | Depuy Spine, Inc. | Instruments and methods for holding a bone plate |
US20100069967A1 (en) * | 2004-06-21 | 2010-03-18 | Michael Jacene | Instruments and Methods For Holding A Bone Plate |
US11712268B2 (en) | 2004-07-02 | 2023-08-01 | Nuvasive Specialized Orthopedics, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US11357549B2 (en) * | 2004-07-02 | 2022-06-14 | Nuvasive Specialized Orthopedics, Inc. | Expandable rod system to treat scoliosis and method of using the same |
US9615866B1 (en) | 2004-10-18 | 2017-04-11 | Nuvasive, Inc. | Surgical fixation system and related methods |
WO2006049998A1 (fr) * | 2004-10-28 | 2006-05-11 | Biodynamics, L.L.C. | Plaque vissee ajustable |
US7621914B2 (en) * | 2004-10-28 | 2009-11-24 | Biodynamics, Llc | Adjustable bone plate |
US20060100625A1 (en) * | 2004-10-28 | 2006-05-11 | Ralph James D | Adjustable bone plate |
US20060116683A1 (en) * | 2004-12-01 | 2006-06-01 | Barrall Benjamin S | Unidirectional translation system for bone fixation |
US7635364B2 (en) | 2004-12-01 | 2009-12-22 | Synthes Usa, Llc | Unidirectional translation system for bone fixation |
US20060122604A1 (en) * | 2004-12-08 | 2006-06-08 | Depuy Spine, Inc. | Locking bone screw and spinal plate system |
US20110190827A1 (en) * | 2004-12-08 | 2011-08-04 | Depuy Spine, Inc. | Hybrid spinal plates |
US7935137B2 (en) | 2004-12-08 | 2011-05-03 | Depuy Spine, Inc. | Locking bone screw and spinal plate system |
US11026725B2 (en) | 2004-12-08 | 2021-06-08 | DePuy Synthes Products, Inc. | Hybrid spinal plates |
US8460348B2 (en) | 2004-12-08 | 2013-06-11 | Depuy Spine, Inc. | Locking bone screw and spinal plate system |
US9226775B2 (en) | 2004-12-08 | 2016-01-05 | DePuy Synthes Products, Inc. | Locking bone screw and spinal plate system |
US8940025B2 (en) | 2004-12-08 | 2015-01-27 | DePuy Synthes Products, LLC | Hybrid spinal plates |
US7931678B2 (en) | 2004-12-08 | 2011-04-26 | Depuy Spine, Inc. | Hybrid spinal plates |
WO2006062696A3 (fr) * | 2004-12-08 | 2006-10-19 | Depuy Spine Inc | Plaques vertebrales hybrides |
US20110172719A1 (en) * | 2004-12-08 | 2011-07-14 | Depuy Spine, Inc. | Locking Bone Screw and Spinal Plate System |
US20060155283A1 (en) * | 2005-01-07 | 2006-07-13 | Depuy Spine Sarl | Occipital plate and guide systems |
GB2422783B (en) * | 2005-02-02 | 2007-02-21 | Dr Ahmad Fahmi Juanroyee | Plate to plate connection system (PPCS) |
GB2422783A (en) * | 2005-02-02 | 2006-08-09 | Dr Ahmad Fahmi Juanroyee | Internal fixation plate |
US7479143B2 (en) | 2005-03-11 | 2009-01-20 | Synthes (U.S.A.) | Unidirectional fixation device |
WO2006098908A1 (fr) * | 2005-03-11 | 2006-09-21 | Synthes (U.S.A.) | Dispositif de fixation unidirectionnel |
US20060217724A1 (en) * | 2005-03-11 | 2006-09-28 | Suh Sean S | Unidirectional fixation device |
US20060235398A1 (en) * | 2005-04-05 | 2006-10-19 | Sdgi Holdings, Inc. | Ratcheting fixation plate |
US7749256B2 (en) | 2005-04-05 | 2010-07-06 | Warsaw Orthopedic, Inc. | Ratcheting fixation plate |
US10383665B2 (en) | 2005-05-12 | 2019-08-20 | Globus Medical, Inc. | Revisable anterior cervical plating system |
US9662146B2 (en) | 2005-05-12 | 2017-05-30 | Joseph D. Stern | Revisable anterior cervical plating system |
US9095381B2 (en) | 2005-05-12 | 2015-08-04 | Joseph D. Stern | Revisable anterior cervical plating system |
US9668782B2 (en) | 2005-05-12 | 2017-06-06 | Joseph D. Stern | Revisable anterior cervical plating system |
US8858556B2 (en) | 2005-05-12 | 2014-10-14 | Joseph D. Stern | Revisable anterior cervical plating system |
US8177823B2 (en) | 2005-06-30 | 2012-05-15 | Depuy Spine Sarl | Orthopedic clamping hook assembly |
US20070055250A1 (en) * | 2005-07-11 | 2007-03-08 | Kamran Aflatoon | Cervical plates with spacer mechanism |
US8454665B2 (en) * | 2005-09-16 | 2013-06-04 | Christopher G. Sidebotham | Multi-purpose bone plate system |
US20070083204A1 (en) * | 2005-09-16 | 2007-04-12 | Sidebotham Christopher G | Multi-purpose bone plate system |
US20070093834A1 (en) * | 2005-10-06 | 2007-04-26 | Stevens Peter M | Bone alignment implant and method of use |
EP1991171A4 (fr) * | 2006-02-21 | 2012-03-21 | Life Spine Inc | Structure permettant de reunir et de retenir des implants orthopediques en plusieurs parties |
EP1991171A2 (fr) * | 2006-02-21 | 2008-11-19 | Life Spine, Inc. | Structure permettant de reunir et de retenir des implants orthopediques en plusieurs parties |
US20100076495A1 (en) * | 2006-03-08 | 2010-03-25 | Lindemann Gary S | Flexible bone plates and methods for dynamic spinal stabilization |
US7641675B2 (en) | 2006-03-08 | 2010-01-05 | Warsaw Orthopedic, Inc. | Flexible bone plates and methods for dynamic spinal stabilization |
US8118869B2 (en) | 2006-03-08 | 2012-02-21 | Flexuspine, Inc. | Dynamic interbody device |
US7998179B2 (en) | 2006-03-08 | 2011-08-16 | Warsaw Orthopedic, Inc. | Flexible bone plates and methods for dynamic spinal stabilization |
US20070213729A1 (en) * | 2006-03-08 | 2007-09-13 | Sdgi Holdings, Inc. | Flexible bone plates and methods for dynamic spinal stabilization |
US20100082029A1 (en) * | 2006-04-03 | 2010-04-01 | Ib Medical, Llc | Static Compression Device |
US8328853B2 (en) * | 2006-04-03 | 2012-12-11 | Ib Medical, Llc | Static compression device |
US20100114176A1 (en) * | 2006-04-03 | 2010-05-06 | Ibrahim Zaki G | Static Compression Device |
US10398477B2 (en) | 2006-04-03 | 2019-09-03 | Ib Medical, Llc | Static compression device |
US7901440B2 (en) | 2006-04-03 | 2011-03-08 | Ib Medical, Llc | Method of compressing adjacent pieces of bone |
US20070281305A1 (en) * | 2006-06-05 | 2007-12-06 | Sean Wuxiong Cao | Detection of lymph node metastasis from gastric carcinoma |
US20080033438A1 (en) * | 2006-08-04 | 2008-02-07 | Roy Frizzell | Cervical Saddle Plate |
US9119676B2 (en) | 2006-10-06 | 2015-09-01 | DePuy Synthes Products, Inc. | Bone screw fixation |
US8361130B2 (en) | 2006-10-06 | 2013-01-29 | Depuy Spine, Inc. | Bone screw fixation |
US11234849B2 (en) | 2006-10-20 | 2022-02-01 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant and method of use |
US11672684B2 (en) | 2006-10-20 | 2023-06-13 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant and method of use |
US20080177263A1 (en) * | 2006-10-24 | 2008-07-24 | Aesculap Implant Systems, Inc | Dynamic stabilization device for anterior lower lumbar vertebral fusion |
US8262710B2 (en) | 2006-10-24 | 2012-09-11 | Aesculap Implant Systems, Llc | Dynamic stabilization device for anterior lower lumbar vertebral fusion |
US20080147124A1 (en) * | 2006-10-31 | 2008-06-19 | Haidukewych George J | Bone plate system with slidable compression holes |
US20080108998A1 (en) * | 2006-11-02 | 2008-05-08 | Warsaw Orthopedic Inc. | Uni-directional ratcheting bone plate assembly |
US8206390B2 (en) | 2006-11-02 | 2012-06-26 | Warsaw Orthopedic, Inc. | Uni-directional ratcheting bone plate assembly |
US20080208259A1 (en) * | 2006-12-19 | 2008-08-28 | Small Bone Innovations, Inc. | Locking fixation system and lag tool |
US8597358B2 (en) | 2007-01-19 | 2013-12-03 | Flexuspine, Inc. | Dynamic interbody devices |
US9066811B2 (en) | 2007-01-19 | 2015-06-30 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8940022B2 (en) | 2007-01-19 | 2015-01-27 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US7959677B2 (en) | 2007-01-19 | 2011-06-14 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8377098B2 (en) | 2007-01-19 | 2013-02-19 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US20080234741A1 (en) * | 2007-01-19 | 2008-09-25 | Landry Michael E | Artificial functional spinal unit system and method for use |
US8034081B2 (en) | 2007-02-06 | 2011-10-11 | CollabComl, LLC | Interspinous dynamic stabilization implant and method of implanting |
US20080221681A1 (en) * | 2007-03-09 | 2008-09-11 | Warsaw Orthopedic, Inc. | Methods for Improving Fatigue Performance of Implants With Osteointegrating Coatings |
US20080221688A1 (en) * | 2007-03-09 | 2008-09-11 | Warsaw Orthopedic, Inc. | Method of Maintaining Fatigue Performance In A Bone-Engaging Implant |
US8734494B2 (en) * | 2007-04-19 | 2014-05-27 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
US9254153B2 (en) | 2007-04-19 | 2016-02-09 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
US20080269752A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
US20080269807A1 (en) * | 2007-04-19 | 2008-10-30 | Stryker Trauma Gmbh | Hip fracture device with static locking mechanism allowing compression |
US8398636B2 (en) | 2007-04-19 | 2013-03-19 | Stryker Trauma Gmbh | Hip fracture device with barrel and end cap for load control |
US8361126B2 (en) | 2007-07-03 | 2013-01-29 | Pioneer Surgical Technology, Inc. | Bone plate system |
US10898247B2 (en) | 2007-07-03 | 2021-01-26 | Pioneer Surgical Technology, Inc. | Bone plate system |
US9655665B2 (en) | 2007-07-03 | 2017-05-23 | Pioneer Surgical Technology, Inc. | Bone plate systems |
US20090062862A1 (en) * | 2007-07-03 | 2009-03-05 | Pioneer Surgical Technology, Inc. | Bone Plate System |
US9381046B2 (en) | 2007-07-03 | 2016-07-05 | Pioneer Surgical Technology, Inc. | Bone plate system |
US10226291B2 (en) | 2007-07-03 | 2019-03-12 | Pioneer Surgical Technology, Inc. | Bone plate system |
US8623019B2 (en) | 2007-07-03 | 2014-01-07 | Pioneer Surgical Technology, Inc. | Bone plate system |
US20090024170A1 (en) * | 2007-07-16 | 2009-01-22 | X-Spine Systems, Inc. | Implant plate screw locking system and screw having a locking member |
US7963982B2 (en) | 2007-07-16 | 2011-06-21 | X-Spine Systems, Inc. | Implant plate screw locking system and screw having a locking member |
US8728130B2 (en) | 2007-07-16 | 2014-05-20 | X-Spine Systems, Inc. | Implant plate screw locking system and screw having a locking member |
US20090043341A1 (en) * | 2007-08-09 | 2009-02-12 | Aesculap, Inc. | Dynamic extension plate for anterior cervical fusion and method of installation |
US10524844B2 (en) * | 2007-08-20 | 2020-01-07 | DePuy Synthes Products, Inc. | Ratcheting epiphysiodesis plate |
US20100198221A1 (en) * | 2007-08-20 | 2010-08-05 | Synthes USA , LLC | Ratcheting Epiphysiodesis Plate |
US8388663B2 (en) | 2007-09-13 | 2013-03-05 | Stryker Spine | Dynamic cervical plate |
US20160106484A1 (en) * | 2007-09-13 | 2016-04-21 | Stryker European Holdings I, Llc | Dynamic cervical plate |
US20090076509A1 (en) * | 2007-09-13 | 2009-03-19 | Stryker Spine | Dynamic cervical plate |
US9241750B2 (en) | 2007-09-13 | 2016-01-26 | Stryker Spine | Dynamic cervical plate |
US10555763B2 (en) * | 2007-09-13 | 2020-02-11 | Stryker European Holdings I, Llc | Dynamic cervical plate |
US20100145386A1 (en) * | 2007-09-19 | 2010-06-10 | Stout Medical, Inc. | Implantable support device and method of use |
US8187330B2 (en) | 2007-10-22 | 2012-05-29 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8157844B2 (en) | 2007-10-22 | 2012-04-17 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a variable length elongated member |
US8267965B2 (en) | 2007-10-22 | 2012-09-18 | Flexuspine, Inc. | Spinal stabilization systems with dynamic interbody devices |
US8162994B2 (en) | 2007-10-22 | 2012-04-24 | Flexuspine, Inc. | Posterior stabilization system with isolated, dual dampener systems |
US8182514B2 (en) | 2007-10-22 | 2012-05-22 | Flexuspine, Inc. | Dampener system for a posterior stabilization system with a fixed length elongated member |
US8523912B2 (en) | 2007-10-22 | 2013-09-03 | Flexuspine, Inc. | Posterior stabilization systems with shared, dual dampener systems |
US11871974B2 (en) | 2007-10-30 | 2024-01-16 | Nuvasive Specialized Orthopedics, Inc. | Skeletal manipulation method |
US20090112320A1 (en) * | 2007-10-30 | 2009-04-30 | Kilian Kraus | Height-Adjustable Spinal Implant |
US8182535B2 (en) * | 2007-10-30 | 2012-05-22 | Kilian Kraus | Height-adjustable spinal implant |
US20090182383A1 (en) * | 2008-01-14 | 2009-07-16 | Amedica Corporation | Bone fixation plate with anchor retaining member |
US20090192553A1 (en) * | 2008-01-25 | 2009-07-30 | Depuy Spine, Inc. | Anti-backout mechanism |
US8282675B2 (en) | 2008-01-25 | 2012-10-09 | Depuy Spine, Inc. | Anti-backout mechanism |
US11202707B2 (en) | 2008-03-25 | 2021-12-21 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant system |
US12076241B2 (en) | 2008-03-25 | 2024-09-03 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant system |
US10045804B2 (en) | 2008-03-26 | 2018-08-14 | Depuy Synthes, Inc. | Universal anchor for attaching objects to bone tissue |
US10154910B2 (en) | 2008-06-05 | 2018-12-18 | DePuy Synthes Products, Inc. | Articulating disc implant |
US20090326580A1 (en) * | 2008-06-25 | 2009-12-31 | Anderson Mark E | Spinal fixation device |
US8425514B2 (en) | 2008-06-25 | 2013-04-23 | Westmark Medical, Llc. | Spinal fixation device |
US11925389B2 (en) | 2008-10-13 | 2024-03-12 | Nuvasive Specialized Orthopedics, Inc. | Spinal distraction system |
US9301785B2 (en) * | 2008-10-21 | 2016-04-05 | K2M, Inc. | Spinal buttress plate |
US20100100131A1 (en) * | 2008-10-21 | 2010-04-22 | K2M, Inc. | Spinal buttress plate |
US11974782B2 (en) | 2008-11-10 | 2024-05-07 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10729470B2 (en) | 2008-11-10 | 2020-08-04 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US20150142055A1 (en) * | 2008-12-05 | 2015-05-21 | DePuy Synthes Products, LLC | Anchor-in-anchor system for use in bone fixation |
US9480507B2 (en) * | 2008-12-05 | 2016-11-01 | DePuy Synthes Products, Inc. | Anchor-in-anchor system for use in bone fixation |
US20100185285A1 (en) * | 2009-01-19 | 2010-07-22 | Richard Perkins | Annular repair device and method |
US8182533B2 (en) * | 2009-01-19 | 2012-05-22 | Richard Perkins | Annular repair device and method |
US20100217393A1 (en) * | 2009-02-20 | 2010-08-26 | Theofilos Charles S | Interbody fusion system with intervertebral implant retention assembly |
US8523947B2 (en) | 2009-02-20 | 2013-09-03 | Spartan Cage Holding, Llc | Interbody fusion system with intervertebral implant retention assembly |
US8187329B2 (en) | 2009-02-20 | 2012-05-29 | Spartan Cage Holding, Llc | Interbody fusion system with intervertebral implant retention assembly |
US11918254B2 (en) | 2009-02-23 | 2024-03-05 | Nuvasive Specialized Orthopedics Inc. | Adjustable implant system |
US11304729B2 (en) | 2009-02-23 | 2022-04-19 | Nuvasive Specialized Orthhopedics, Inc. | Non-invasive adjustable distraction system |
US10478232B2 (en) | 2009-04-29 | 2019-11-19 | Nuvasive Specialized Orthopedics, Inc. | Interspinous process device and method |
US11602380B2 (en) | 2009-04-29 | 2023-03-14 | Nuvasive Specialized Orthopedics, Inc. | Interspinous process device and method |
US20110118742A1 (en) * | 2009-05-12 | 2011-05-19 | Urs Hulliger | Readjustable Locking Plate Hole |
US9855082B2 (en) * | 2009-05-12 | 2018-01-02 | DePuy Synthes Products, Inc. | Readjustable locking plate hole |
US10799275B2 (en) * | 2009-05-12 | 2020-10-13 | DePuy Synthes Products, Inc. | Readjustable locking plate hole |
US20180078296A1 (en) * | 2009-05-12 | 2018-03-22 | DePuy Synthes Products, Inc. | Readjustable Locking Plate Hole |
US20100292796A1 (en) * | 2009-05-14 | 2010-11-18 | Stout Medical Group, L.P. | Expandable support device and method of use |
US8382842B2 (en) | 2009-05-14 | 2013-02-26 | Stout Medical Group, L.P. | Expandable support device and method of use |
US8808333B2 (en) | 2009-07-06 | 2014-08-19 | Zimmer Gmbh | Periprosthetic bone plates |
US11123118B2 (en) | 2009-07-06 | 2021-09-21 | Zimmer Gmbh | Periprosthetic bone plates |
US20110137314A1 (en) * | 2009-07-06 | 2011-06-09 | Zimmer, Gmbh | Periprosthetic bone plates |
US9668794B2 (en) | 2009-07-06 | 2017-06-06 | Zimmer Gmbh | Periprosthetic bone plates |
US11207110B2 (en) | 2009-09-04 | 2021-12-28 | Nuvasive Specialized Orthopedics, Inc. | Bone growth device and method |
US11944358B2 (en) | 2009-09-04 | 2024-04-02 | Nuvasive Specialized Orthopedics, Inc. | Bone growth device and method |
US8496690B2 (en) * | 2009-09-18 | 2013-07-30 | Biomet C.V. | Orthopaedic surgical components |
US10390867B2 (en) | 2009-09-18 | 2019-08-27 | Biomet C.V. | Bone plate system and method |
US9757171B2 (en) | 2009-09-18 | 2017-09-12 | Biomet C.V. | Disposable orthopedic surgery kit and components |
US11045234B2 (en) | 2009-09-18 | 2021-06-29 | Biomet C.V. | Bone plate system and method |
US20110071573A1 (en) * | 2009-09-18 | 2011-03-24 | Robert Sixto | Disposable Orthopaedic Surgery Kit and Components |
USD734853S1 (en) | 2009-10-14 | 2015-07-21 | Nuvasive, Inc. | Bone plate |
USD754857S1 (en) | 2009-10-14 | 2016-04-26 | Nuvasive, Inc. | Bone plate |
US8425576B2 (en) | 2010-01-26 | 2013-04-23 | Westmark Medical, Llc. | Bone screw retention mechanism |
US20110184415A1 (en) * | 2010-01-26 | 2011-07-28 | Westmark Medical, Llc | Bone screw retention mechanism |
US9788873B2 (en) | 2010-06-23 | 2017-10-17 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US8790379B2 (en) | 2010-06-23 | 2014-07-29 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US9510879B2 (en) | 2010-06-23 | 2016-12-06 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US11406433B2 (en) | 2010-06-23 | 2022-08-09 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US10716605B2 (en) | 2010-06-23 | 2020-07-21 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US8992583B2 (en) | 2010-06-23 | 2015-03-31 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US9763713B2 (en) | 2010-06-23 | 2017-09-19 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US8882815B2 (en) | 2010-06-23 | 2014-11-11 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US10507049B2 (en) | 2010-06-23 | 2019-12-17 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US11497530B2 (en) | 2010-06-30 | 2022-11-15 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10660675B2 (en) | 2010-06-30 | 2020-05-26 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10646262B2 (en) | 2011-02-14 | 2020-05-12 | Nuvasive Specialized Orthopedics, Inc. | System and method for altering rotational alignment of bone sections |
US11406432B2 (en) | 2011-02-14 | 2022-08-09 | Nuvasive Specialized Orthopedics, Inc. | System and method for altering rotational alignment of bone sections |
US8940051B2 (en) | 2011-03-25 | 2015-01-27 | Flexuspine, Inc. | Interbody device insertion systems and methods |
US10188437B2 (en) | 2011-04-13 | 2019-01-29 | Globus Medical, Inc. | Spine stabilization |
US9095387B2 (en) | 2011-04-13 | 2015-08-04 | Globus Medical, Inc. | Spine stabilization |
US11723700B2 (en) * | 2011-04-13 | 2023-08-15 | Globus Medical, Inc. | Spine stabilization |
US10905475B2 (en) * | 2011-04-13 | 2021-02-02 | Globus Medical, Inc. | Spine stabilization |
US20210128208A1 (en) * | 2011-04-13 | 2021-05-06 | Globus Medical, Inc. | Spine stabilization |
US9629672B2 (en) | 2011-04-13 | 2017-04-25 | Globus Medical, Inc. | Spine stabilization |
US10231763B2 (en) | 2011-05-27 | 2019-03-19 | Globus Medical, Inc. | Securing fasteners |
US11172967B2 (en) | 2011-05-27 | 2021-11-16 | Globus Medical Inc. | Securing fasteners |
US11986224B2 (en) | 2011-05-27 | 2024-05-21 | Globus Medical, Inc. | Securing fasteners |
US8771324B2 (en) | 2011-05-27 | 2014-07-08 | Globus Medical, Inc. | Securing fasteners |
US9636156B2 (en) | 2011-05-27 | 2017-05-02 | Globus Medical, Inc. | Securing fasteners |
US11478283B2 (en) | 2011-07-19 | 2022-10-25 | Howmedica Osteonics Corp. | Anterior cervical plate |
US10912591B2 (en) | 2011-07-19 | 2021-02-09 | Howmedica Osteonics Corp. | Anterior cervical plate |
US8668723B2 (en) | 2011-07-19 | 2014-03-11 | Neurostructures, Inc. | Anterior cervical plate |
US9918749B2 (en) | 2011-07-19 | 2018-03-20 | Howmedica Osteonics Corp. | Anterior cervical plate |
US9113964B2 (en) | 2011-07-19 | 2015-08-25 | Howmedica Osteonics Corp. | Anterior cervical plate |
US9101407B2 (en) | 2011-07-19 | 2015-08-11 | Howmedica Osteonics Corp. | Anterior cervical plate |
US20240074801A1 (en) * | 2011-08-17 | 2024-03-07 | Globus Medical, Inc. | Bone fixation plate system and method |
US10743794B2 (en) | 2011-10-04 | 2020-08-18 | Nuvasive Specialized Orthopedics, Inc. | Devices and methods for non-invasive implant length sensing |
US11445939B2 (en) | 2011-10-04 | 2022-09-20 | Nuvasive Specialized Orthopedics, Inc. | Devices and methods for non-invasive implant length sensing |
US11123107B2 (en) | 2011-11-01 | 2021-09-21 | Nuvasive Specialized Orthopedics, Inc. | Adjustable magnetic devices and methods of using same |
US10349982B2 (en) | 2011-11-01 | 2019-07-16 | Nuvasive Specialized Orthopedics, Inc. | Adjustable magnetic devices and methods of using same |
US11123117B1 (en) * | 2011-11-01 | 2021-09-21 | Nuvasive, Inc. | Surgical fixation system and related methods |
US11918255B2 (en) | 2011-11-01 | 2024-03-05 | Nuvasive Specialized Orthopedics Inc. | Adjustable magnetic devices and methods of using same |
US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
US10070905B2 (en) | 2012-02-03 | 2018-09-11 | Zimmer, Inc. | Flexible plate fixation of bone fractures |
US10022168B2 (en) | 2012-02-03 | 2018-07-17 | Zimmer, Inc. | Bone plate for elastic osteosynthesis |
US9295508B2 (en) | 2012-02-03 | 2016-03-29 | Zimmer, Inc. | Bone plate for elastic osteosynthesis |
US9700361B2 (en) | 2012-02-03 | 2017-07-11 | Zimmer, Inc. | Bone plate for elastic osteosynthesis |
US20150045840A1 (en) * | 2012-02-06 | 2015-02-12 | Creaholic S.A. | Fastening device and tool for surgical holding systems |
US10213242B2 (en) * | 2012-02-06 | 2019-02-26 | Creaholic S.A. | Fastening device and tool for surgical holding systems |
US11839410B2 (en) | 2012-06-15 | 2023-12-12 | Nuvasive Inc. | Magnetic implants with improved anatomical compatibility |
USRE49720E1 (en) | 2012-10-18 | 2023-11-07 | Nuvasive Specialized Orthopedics, Inc. | Intramedullary implants for replacing lost bone |
USRE49061E1 (en) | 2012-10-18 | 2022-05-10 | Nuvasive Specialized Orthopedics, Inc. | Intramedullary implants for replacing lost bone |
US20150245859A1 (en) * | 2012-10-19 | 2015-09-03 | Deroyal Industries, Inc. | Cervical Plate With Retaining Clip |
US11191579B2 (en) | 2012-10-29 | 2021-12-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US11871971B2 (en) | 2012-10-29 | 2024-01-16 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US11213330B2 (en) | 2012-10-29 | 2022-01-04 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
WO2014113003A1 (fr) * | 2013-01-16 | 2014-07-24 | Spinefrontier, Inc. | Système et procédé pour un ensemble implant de stabilisation rachidienne |
US10076369B2 (en) | 2013-01-16 | 2018-09-18 | Spinefrontier, Inc | Bone fastener for a spinal fixation assembly |
US11766341B2 (en) | 2013-02-20 | 2023-09-26 | Tyler Fusion Technologies, Llc | Expandable fusion device for positioning between adjacent vertebral bodies |
US11369484B2 (en) | 2013-02-20 | 2022-06-28 | Flexuspine Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US11857226B2 (en) | 2013-03-08 | 2024-01-02 | Nuvasive Specialized Orthopedics | Systems and methods for ultrasonic detection of device distraction |
US9943341B2 (en) | 2013-07-16 | 2018-04-17 | K2M, Llc | Retention plate member for a spinal plate system |
US11766252B2 (en) | 2013-07-31 | 2023-09-26 | Nuvasive Specialized Orthopedics, Inc. | Noninvasively adjustable suture anchors |
US11696836B2 (en) | 2013-08-09 | 2023-07-11 | Nuvasive, Inc. | Lordotic expandable interbody implant |
US11576702B2 (en) | 2013-10-10 | 2023-02-14 | Nuvasive Specialized Orthopedics, Inc. | Adjustable spinal implant |
US10751094B2 (en) | 2013-10-10 | 2020-08-25 | Nuvasive Specialized Orthopedics, Inc. | Adjustable spinal implant |
US9629664B2 (en) | 2014-01-20 | 2017-04-25 | Neurostructures, Inc. | Anterior cervical plate |
US9775652B2 (en) | 2014-02-20 | 2017-10-03 | Mastros Innovations, Llc | Lateral plate |
US9486250B2 (en) | 2014-02-20 | 2016-11-08 | Mastros Innovations, LLC. | Lateral plate |
US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US11253373B2 (en) | 2014-04-24 | 2022-02-22 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
US11246694B2 (en) | 2014-04-28 | 2022-02-15 | Nuvasive Specialized Orthopedics, Inc. | System for informational magnetic feedback in adjustable implants |
US20160206351A1 (en) * | 2014-08-11 | 2016-07-21 | Corentec Co., Ltd. | Spine fixing apparatus |
US9999455B2 (en) * | 2014-08-11 | 2018-06-19 | Corentec Co., Ltd. | Spine fixing apparatus |
USD779065S1 (en) | 2014-10-08 | 2017-02-14 | Nuvasive, Inc. | Anterior cervical bone plate |
USD798455S1 (en) | 2014-10-08 | 2017-09-26 | Nuvasive, Inc. | Anterior cervical bone plate |
US11357547B2 (en) | 2014-10-23 | 2022-06-14 | Nuvasive Specialized Orthopedics Inc. | Remotely adjustable interactive bone reshaping implant |
US9848915B2 (en) * | 2014-11-24 | 2017-12-26 | Aesculap Ag | Pedicle screw system and spinal stabilization system |
US10182851B2 (en) | 2014-11-24 | 2019-01-22 | FBC Device ApS | Angulating bone plate |
US10548646B2 (en) | 2014-11-24 | 2020-02-04 | FBC Device ApS | Angulating bone plate |
US20160143667A1 (en) * | 2014-11-24 | 2016-05-26 | Aesculap Ag | Pedicle screw system and spinal stabilization system |
US11963705B2 (en) | 2014-12-26 | 2024-04-23 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for distraction |
US11439449B2 (en) | 2014-12-26 | 2022-09-13 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for distraction |
US11890043B2 (en) | 2014-12-26 | 2024-02-06 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for distraction |
US12076051B2 (en) | 2015-02-19 | 2024-09-03 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for vertebral adjustment |
US11612416B2 (en) | 2015-02-19 | 2023-03-28 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for vertebral adjustment |
US9987052B2 (en) | 2015-02-24 | 2018-06-05 | X-Spine Systems, Inc. | Modular interspinous fixation system with threaded component |
US10617453B2 (en) | 2015-10-16 | 2020-04-14 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US11596456B2 (en) | 2015-10-16 | 2023-03-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable devices for treating arthritis of the knee |
US10736679B2 (en) * | 2015-11-13 | 2020-08-11 | Leith Medical LLC | Bone fixation systems, apparatuses, and methods with anti-back-out feature |
US20170202585A1 (en) * | 2015-11-13 | 2017-07-20 | Leith Medical LLC | Bone Fixation Systems, Apparatuses, and Methods with Anti-Back-Out Feature |
US10105169B2 (en) * | 2015-11-13 | 2018-10-23 | Leith Medical LLC | Bone fixation systems, apparatuses, and methods with anti-back-out feature |
US20190015139A1 (en) * | 2015-11-13 | 2019-01-17 | Leith Medical LLC | Bone Fixation Systems, Apparatuses, and Methods with Anti-Back-Out Feature |
US11617605B2 (en) | 2015-11-13 | 2023-04-04 | Leith Medical LLC | Bone fixation system with fasteners and a removal tool for decoupling of the fasteners |
US11033307B2 (en) * | 2015-11-30 | 2021-06-15 | Seth K. WILLIAMS | Alignment guide for cervical spine plate |
US11504162B2 (en) | 2015-12-10 | 2022-11-22 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10835290B2 (en) | 2015-12-10 | 2020-11-17 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device for distraction device |
US10918425B2 (en) | 2016-01-28 | 2021-02-16 | Nuvasive Specialized Orthopedics, Inc. | System and methods for bone transport |
US11801187B2 (en) | 2016-02-10 | 2023-10-31 | Nuvasive Specialized Orthopedics, Inc. | Systems and methods for controlling multiple surgical variables |
US10512547B2 (en) | 2017-05-04 | 2019-12-24 | Neurostructures, Inc. | Interbody spacer |
US10980641B2 (en) | 2017-05-04 | 2021-04-20 | Neurostructures, Inc. | Interbody spacer |
US11039865B2 (en) | 2018-03-02 | 2021-06-22 | Stryker European Operations Limited | Bone plates and associated screws |
US11076892B2 (en) | 2018-08-03 | 2021-08-03 | Neurostructures, Inc. | Anterior cervical plate |
US11071629B2 (en) | 2018-10-13 | 2021-07-27 | Neurostructures Inc. | Interbody spacer |
US11577097B2 (en) | 2019-02-07 | 2023-02-14 | Nuvasive Specialized Orthopedics, Inc. | Ultrasonic communication in medical devices |
US11589901B2 (en) | 2019-02-08 | 2023-02-28 | Nuvasive Specialized Orthopedics, Inc. | External adjustment device |
US20210059726A1 (en) * | 2019-08-30 | 2021-03-04 | K2M, Inc. | All in One Plate Holder and Spring Loaded Awl |
US11793558B2 (en) * | 2019-08-30 | 2023-10-24 | K2M, Inc. | All in one plate holder and spring loaded awl |
US11744626B2 (en) | 2019-10-14 | 2023-09-05 | Leith Medical, LLC | Bone fixation system with fasteners and a removal tool for decoupling of the fasteners |
US11980402B2 (en) | 2019-10-14 | 2024-05-14 | Leith Medical, Inc. | Apparatus for stabilization of a bone fracture site |
US11324538B2 (en) | 2019-12-04 | 2022-05-10 | Biomet Manufacturing, Llc | Active bone plate |
US11877779B2 (en) | 2020-03-26 | 2024-01-23 | Xtant Medical Holdings, Inc. | Bone plate system |
US11382761B2 (en) | 2020-04-11 | 2022-07-12 | Neurostructures, Inc. | Expandable interbody spacer |
US11304817B2 (en) | 2020-06-05 | 2022-04-19 | Neurostructures, Inc. | Expandable interbody spacer |
US11717419B2 (en) | 2020-12-10 | 2023-08-08 | Neurostructures, Inc. | Expandable interbody spacer |
US11944359B2 (en) | 2021-02-23 | 2024-04-02 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
US11806054B2 (en) | 2021-02-23 | 2023-11-07 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
US12004784B2 (en) | 2021-02-23 | 2024-06-11 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant, system and methods |
US11737787B1 (en) | 2021-05-27 | 2023-08-29 | Nuvasive, Inc. | Bone elongating devices and methods of use |
US12023073B2 (en) | 2021-08-03 | 2024-07-02 | Nuvasive Specialized Orthopedics, Inc. | Adjustable implant |
Also Published As
Publication number | Publication date |
---|---|
EP2494933A2 (fr) | 2012-09-05 |
WO2003063714A3 (fr) | 2003-09-04 |
US8128628B2 (en) | 2012-03-06 |
WO2003063714A2 (fr) | 2003-08-07 |
EP1478287A4 (fr) | 2009-08-12 |
EP2494933A3 (fr) | 2013-10-30 |
AU2003208956B2 (en) | 2009-02-26 |
JP2005515823A (ja) | 2005-06-02 |
AU2003208956B8 (en) | 2009-03-26 |
JP4390562B2 (ja) | 2009-12-24 |
EP1478287A2 (fr) | 2004-11-24 |
US8814869B2 (en) | 2014-08-26 |
US20040092939A1 (en) | 2004-05-13 |
CA2474437A1 (fr) | 2003-08-07 |
US20120158059A1 (en) | 2012-06-21 |
US20080065070A1 (en) | 2008-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8814869B2 (en) | Spinal plate system for stabilizing a portion of a spine | |
US9101422B2 (en) | Spinal plate system for stabilizing a portion of a spine | |
AU2003208956A1 (en) | Spinal plate system for stabilizing a portion of a spine | |
US7303564B2 (en) | Spinal plate extender system and method | |
US9968382B2 (en) | Spinal stabilization system and method | |
US10426538B2 (en) | Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure | |
US20060095035A1 (en) | Instruments and methods for reduction of vertebral bodies | |
CA2537905A1 (fr) | Systemes et techniques permettant de stabiliser la colonne vertebrale et de mettre en place des systemes de stabilisation | |
AU2002322554A1 (en) | Spinal stabilization system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SPINAL CONCEPTS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FREID, JAMES M.;WAGNER, ERIK J.;AGRICOLA, JON P.;AND OTHERS;REEL/FRAME:014397/0674 Effective date: 20030725 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ABBOTT SPINE, INC., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:SPINAL CONCEPTS, INC.;REEL/FRAME:023281/0383 Effective date: 20050420 |
|
AS | Assignment |
Owner name: ZIMMER SPINE AUSTIN, INC., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT SPINE INC.;REEL/FRAME:023369/0583 Effective date: 20081215 |
|
AS | Assignment |
Owner name: ZIMMER SPINE, INC., MINNESOTA Free format text: MERGER;ASSIGNOR:ZIMMER SPINE AUSTIN, INC.;REEL/FRAME:023377/0791 Effective date: 20090828 |