US20030143226A1 - Human monoclonal antibodies against oxidized ldl receptor and medicinal use thereof - Google Patents

Human monoclonal antibodies against oxidized ldl receptor and medicinal use thereof Download PDF

Info

Publication number
US20030143226A1
US20030143226A1 US10/220,511 US22051102A US2003143226A1 US 20030143226 A1 US20030143226 A1 US 20030143226A1 US 22051102 A US22051102 A US 22051102A US 2003143226 A1 US2003143226 A1 US 2003143226A1
Authority
US
United States
Prior art keywords
human
monoclonal antibody
ldl receptor
oxidized ldl
lox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/220,511
Other languages
English (en)
Inventor
Yuko Kobayashi
Hiroyuki Tsuji
Masafumi Kamada
Tatsuya Sawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Fremont Inc
Original Assignee
Abgenix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abgenix Inc filed Critical Abgenix Inc
Assigned to ABGENIX, INC. reassignment ABGENIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAWAMURA, TATSUYA, KOBAYASHI, YUKO, KAMADA, MASAFUMI, TSUJI, HIROYUKI
Publication of US20030143226A1 publication Critical patent/US20030143226A1/en
Assigned to AMGEN FREMONT INC. reassignment AMGEN FREMONT INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ABGENIX, INC., ATHLETICS MERGER SUB, INC.
Priority to US11/740,857 priority Critical patent/US7993643B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man

Definitions

  • the present invention relates to human monoclonal antibodies binding to human oxidized LDL receptor (hereinafter, sometimes referred to as “LOX-1”) or to portions thereof; cells producing these human monoclonal antibodies; and pharmaceutical compositions comprising a substance inhibiting the interaction between a human monoclonal antibody, or the oxidized LDL receptor, and the ligand thereof.
  • LOX-1 human oxidized LDL receptor
  • VLDL very low-density lipoprotein
  • LPL lipoprotein lipase
  • HTGL hepatic triglyceride lipase
  • IDL intermediate density lipoprotein
  • LDL is oxidized by cells, such as vascular endothelial cells, various chemical and physical factors, and other factors such as heat, resulting in the generation of modified LDL, which is also referred to as “oxidized LDL”, in blood. Since the vascular flow normally contains a sufficient amount of antioxidants, oxidized LDL is hardly generated therein. Even when oxidized LDL is generated, most of it is metabolized in the liver.
  • oxidized LDL is produced in the vascular endothelium and vascular wall through chemical modifications due to cell-independent actions, such as the action of Fe 3+ , as well as chemical modifications by cells, such as vascular endothelial cells and macrophagess.
  • cell-independent actions such as the action of Fe 3+
  • chemical modifications by cells such as vascular endothelial cells and macrophagess.
  • oxidized LDL generated in the vascular endothelium and vascular wall accumulates within macrophages.
  • oxidized LDL results due to the incorporation of oxidized LDL, generated as described above, into cells via the cell surface scavenger receptor on macrophages, which serves as a receptor for various modified LDLs (oxidized LDL, acetyl LDL, succinyl LDL, and malondialdehyde LDL) (Nature, Vol.343, p.531-535, 1990; Nature, Vol.343, p.570-572, 1990; Proc. Natl. Acad. Sci. USA, Vol.87, p.9133-9137, 1990; Proc. Natl. Acad. Sci. USA, Vol.87, p.8810-8814, 1990; Curr. Opin. Lipodol., Vol.2, p.295-300, 1991; and J. Clin. Invest., Vol.90, p.1450-1457, 1992).
  • modified LDLs oxidized LDL, acetyl LDL, succinyl LDL, and malon
  • the macrophage scavenger receptor is not down regulated in an intracellular cholesterol-dependent manner.
  • macrophages migrating into the vascular endothelium or vascular wall take in a large quantity of modified LDL and accumulate a large quantity of cholesterol to become “foamy cells” (See section 4 “Inflammatory Cells: 1. Scavenger Receptor” in “The molecular atherosclerology”, pp. 249-258, 1995, Medical Review Co.).
  • such macrophage accumulation is based on the following characteristics of oxidized LDL; its chemotactic effect on macrophages and monocytes in the vascular flow; the accumulation of monocytes and macrophages on vascular endothelial cells; the induction of the migration of the accumulated monocytes and macrophages into the vascular endothelium and vascular wall; the induction of the differentiation of migrated monocytes into macrophages; and the suppression of the migration of completely differentiated macrophages.
  • Ox-LDL Receptor and LOX-1 A recently identified oxidized LDL receptor (also referred to as the Ox-LDL Receptor and LOX-1; Nature, Vol.386, p.73-77, 1997; Biochemical Study on Lipids, Vol.39, p.83-84, 1997; Genomics, Vol.54, No.2, p.191-199, 1998; Biochem. J., Vol.339, Part 1, p.177-184, 1999; Biochem. J., Vol.330, Part 3, p.1417-1422, 1998) expressed on the surface of vascular endothelial cells has been demonstrated to be deeply involved in such accumulations of monocytes and macrophages on vascular endothelial cells.
  • LOX-1 oxidized LDL receptor
  • LOX-1 is expressed in macrophages as well as in vascular endothelial cells and the expression levels are elevated following TNF ⁇ stimulation (FEBS Lett., Vol.440, No.1-2, p.29-32, 1998);
  • oxidized LDL receptor LOX-1
  • apoptotic cells cells programmed to die through apoptosis
  • senescent erythrocytes and activated blood platelets
  • LOX-1 oxidized LDL receptor
  • an objective of the present invention is to provide a human monoclonal antibody against human oxidized LDL receptor (LOX-1), such antibody being extremely useful in the treatment of the various diseases described above; a pharmaceutical composition to treat the above-mentioned diseases, which comprises a substance (for example, any monoclonal antibody against oxidized LDL receptor, or a synthetic low-molecular-weight chemical substance) that inhibits the interaction between the oxidized LDL receptor and a ligand thereof, or with a human monoclonal antibody; and methods for treating or preventing the above diseases.
  • LOX-1 human oxidized LDL receptor
  • the present inventors conducted exhaustive studies related to human monoclonal antibodies against human oxidized LDL receptor (LOX-1) to achieve the above-mentioned objective
  • LOX-1 human oxidized LDL receptor
  • the present inventors succeeded, for the first time in the world, in preparing a variety of human monoclonal antibodies that bind to human oxidized LDL receptor, in particular, various human monoclonal antibodies that bind to human oxidized LDL receptor and inhibit the incorporation of in-vivo oxidized LDL receptor ligands (such as oxidized LDL) into cells.
  • the present inventors found that the human monoclonal antibodies of the present invention, which bind to human oxidized LDL receptor (LOX-1), not only significantly inhibit the human oxidized LDL receptor-mediated incorporation of various in-vivo ligands (oxidized LDL, and such) into cells, but also have therapeutic, suppressive, and/or preventive effects on various diseases (for example, arteriosclerosis, thrombocytopenia, kidney disease, various types of inflammation (for example, myocardial ischemic reperfusion injury, inflammatory reactions after percutaneous transluminal coronary recanalization (PTCR) or percutaneous transluminal coronary angioplasty (PTCA)), vascular restenosis after PTCA and PTCR, and such) and thrombogenesis in blood vessels, and thus completed the present invention.
  • diseases for example, arteriosclerosis, thrombocytopenia, kidney disease, various types of inflammation (for example, myocardial ischemic reperfusion injury, inflammatory reactions after percutaneous transluminal coronary recanal
  • the monoclonal antibodies of the present invention are derived from humans, they do not-induce severe host immunorejections due to antigenicity, e.g., HAMA (human anti-mouse antigenicity), which is a major therapeutic problem (side effect) in medical treatments that use antibody pharmaceuticals comprised of antibodies derived from non-human mammals, such as mice. Therefore, the present invention dramatically elevates the value of antibodies as pharmaceuticals.
  • HAMA human anti-mouse antigenicity
  • the human anti-human oxidized LDL receptor (LOX-1) monoclonal antibodies of the present invention do not induce host immunorejection as caused by HAMA, and therefore, can be used as antibody pharmaceuticals for treating and preventing the above-mentioned diseases, by suppressing and inhibiting the onset and/or progress of the diseases.
  • compositions comprising a substance having the activity to inhibit inhibit the interaction between human oxidized LDL receptor and a ligand thereof (the binding of the ligand of oxidized LDL receptor or oxidized LDL receptor-mediated incorporation of the ligand into cells) are extremely useful in the treatment and/or prevention of various disease symptoms such as described above.
  • the present invention provides:
  • the human monoclonal antibody according to any one of (1) to (3), or a portion thereof, wherein the dissociation rate constant (kd) between the human monoclonal antibody and human oxidized LDL receptor is 1.0 ⁇ 10 ⁇ 2 (1/Sec) or lower;
  • the human monoclonal antibody according to (11), or a portion thereof which is obtained by immunizing a transgenic non-human mammal having the ability to produce human antibodies with cells expressing human oxidized LDL receptor, a soluble membrane fraction from the cells, the entire human oxidized LDL receptor or a portion thereof;
  • the cell according to (14) which is a fused cell that has obtained the ability to produce the human monoclonal antibody as a result of cell fusion between a mammalian B cell and mammalian myeloma cell;
  • the cell according to (14) which is a transgenic cell transformed by introducing into the cell either or both DNAs encoding a heavy chain and a light chain of the human monoclonal antibody;
  • a pharmaceutical composition comprising the human monoclonal antibody according to any one of (1) to (13), or a portion thereof, and a pharmaceutically acceptable carrier;
  • a pharmaceutical composition for suppressing or preventing thrombus formation wherein the pharmaceutical composition comprises a substance that has the activity of inhibiting the binding of an in-vivo ligand of human oxidized LDL receptor, or the incorporation of the ligand into cells expressing the oxidized LDL receptor;
  • the pharmaceutical composition according to (29), wherein the monoclonal antibody, or a portion thereof, is the human monoclonal antibody according to any one of (1) to (13), or a portion thereof.
  • the term “mammal” refers to a human, cow, goat, rabbit, mouse, rat, hamster, or guinea pig; preferably a human, rabbit, rat, hamster, or mouse; and more preferably a human, rabbit, rat, hamster, or mouse.
  • mammal other than a human and “non-human mammal” refers to any mammal, such as those mentioned above except humans.
  • amino acid refers to any amino acid existing in nature, and preferably, the following amino acids represented by the three letter or single letter codes used to represent amino acids:
  • human oxidized-LDL receptor (often called “human LOX-1”) as used in the present invention refers to a human oxidized-LDL receptor (ox-LDL receptor) having the structure and functions described in previous reports, sequence listings, and such (SEQ ID NO: 2; Nature, Vol.386, p.73-77, 1997; Genomics, Vol.54, No.2, p.191-199, 1998; Biochem. J., Vol.339, Part 1, P.177-184, 1999; Genbank Accesion No. NP 002534).
  • human oxidized-LDL receptor (often called “human LOX-1”) includes mutants of the natural human oxidized-LDL receptor, which have substantially the same amino acid sequence as that of the native primary structure (amino acid sequence) described in the above-mentioned reports.
  • mutants of the natural human oxidized-LDL receptor having substantially the same amino acid sequence refers to the following mutant proteins
  • such proteins include a mutant protein having an amino acid sequence wherein one or more amino acids, preferably 1 to 10 amino acids, particularly preferably 1 to 5 amino acids, in the amino acid sequence of the natural human oxidized-LDL receptor have been substituted, deleted and/or modified, and a mutant protein having an amino acid sequence wherein one or more amino acids, preferably 1 to 10 amino acids, particularly preferably 1 to 5 amino acids, have been added to the amino acid sequence, so long as the protein has substantially the same biological properties as the natural human oxidized-LDL receptor.
  • mutants having a combination of two or more of the above alterations, including a substitution, deletion, modification, and addition, is also included.
  • the human oxidized-LDL receptor of the present invention can be produced by methods known in the technical field of the instant invention, such as recombinant technology, chemical synthesis, and cell culture, or by modified methods thereof.
  • the human oxidized-LDL receptor also referred to as “human LOX-1”) of the present invention, also includes “a portion” of the human oxidized-LDL receptor.
  • the term “a portion” as used herein refers to a polypeptide comprising any arbitrary partial amino acid sequence derived from the above-defined human oxidized-LDL receptor.
  • portion refers to the extracellular domain of the human oxidized-LDL receptor defined above, or an arbitrary portion thereof.
  • a portion of the human oxidized-LDL receptor (preferably, the extracellular domain of the human oxidized-LDL receptor, or any portion thereof) can be produced according to methods known in the technical field of the present invention, or modified methods thereof, including recombinant technology and chemical synthesis. It can also be produced by appropriately digesting the human oxidized-LDL receptor isolated by the cell culture method with proteases and such.
  • the “substance” of the present invention specifically the “substance that has the activity to inhibit the binding between an in-vivo ligand of human oxidized-LDL receptor and the oxidized-LDL receptor or to inhibit the incorporation of the ligand by the oxidized-LDL receptor expressing cell”, encompasses naturally occurring substances and artificially prepared arbitrary substances.
  • the substances can be categorized into “proteinaceous substances” and “non-proteinaceous substances”.
  • in-vivo ligand of oxidized LDL receptor refers to any in-vivo ligand to which an oxidized LDL receptor binds, for example, oxidized LDL, modified LDL (acetylated LDL, succinylated LDL, and such), an apoptotic cell, a senescent erythrocyte, or an activated blood platelet.
  • proteinaceous substance includes polypeptides, polyclonal antibodies, monoclonal antibodies, and portions of the monoclonal antibodies.
  • the substance is an antibody
  • a monoclonal antibody is preferable.
  • the substance includes not only monoclonal antibodies derived from a non-human mammal, but also recombinant chimeric monoclonal antibodies, recombinant humanized monoclonal antibodies, and the above-mentioned “human monoclonal antibodies”.
  • the substance when it is a polypeptide, it includes the following polypeptides, fragments of the polypeptides (oligopeptides), fused polypeptides, and chemically modified peptides thereof.
  • Oligopeptides include peptides consisting of 5 to 30 amino acids, preferably 5 to 20 amino acids.
  • the chemically modified peptides can be designed depending on various purposes, so as to increase the half-life in blood when it is injected to a living body, or to enhance resistance to degradation or absorption in the digestive tract when it is administered orally
  • non-proteinaceous substance includes DNA, RNA, and chemically synthesized compounds.
  • DNA refers to DNA comprising a partial nucleotide sequence, or a chemically modified sequence, of a DNA that is useful as an antisense DNA pharmaceutical, designed based on the nucleotide sequence of the DNA (including cDNA and genomic DNA) encoding the above-mentioned oxidized LDL receptor (LOX-1).
  • the antisense DNA can inhibit the transcription of DNA encoding LOX-1 to mRNA or the translation of the mRNA to the protein by hybridizing to the DNA or RNA encoding LOX-1.
  • partial nucleotide sequence refers to a partial nucleotide sequence comprising an arbitrary number of nucleotide residues in an arbitrary region.
  • the partial nucleotide sequence includes a partial nucleotide sequence comprising 5 to 100 consecutive nucleotides, preferably a partial nucleotide sequence comprising 5 to 70 consecutive nucleotides, more preferably a partial nucleotide sequence comprising 5 to 50 consecutive nucleotides, still more preferably a partial nucleotide sequence comprising 5 to 30 consecutive nucleotides.
  • residues in a partial nucleotide sequence of the DNA can be modified chemically to increase the half-life (stability) in blood and intercellular membrane permeability of the DNA when injected to a patient, or to increase its resistance to decomposition in digestive organs or to enhance the absorption of the DNA when given orally.
  • Such chemical modifications include, for example, chemical modification of a phosphate bond, ribose, nucleotide, sugar moiety in oligonucleotides, and 3′ and 5′ ends of oligonucleotides.
  • the modification of a phosphate bond includes modification of one or more bonds to any one of a phosphodiester bond (D-oligo), phosphorothioate bond, phosphorodithioate bond (S-oligo), methyl phosphonate (MP-oligo), phosphoroamidate bond, non-phosphate bond or methyl phosphonothioate bond, or combinations thereof.
  • Modification of ribose includes modification to 2′-fluororibose or 2′-O-methylribose.
  • Modification of a nucleotide includes modification to a 5-propynyluracil or 2-aminoadenine.
  • RNA refers to “RNA comprising a partial nucleotide sequence, or a chemically modified sequence, of a RNA that is useful as an antisense RNA pharmaceutical, designed based on the nucleotide sequence of the RNA encoding the above-mentioned oxidized LDL receptor (LOX-1).
  • the antisense RNA can inhibit the transcription of DNA encoding LOX-1 to mRNA or the translation of the mRNA to the protein by hybridizing to the DNA or RNA encoding LOX-1.
  • partial nucleotide sequence refers to a partial nucleotide sequence comprising an arbitrary number of nucleotide residues in an arbitrary region.
  • the partial nucleotide sequence includes a partial nucleotide sequence comprising 5 to 100 consecutive nucleotides, preferably a partial nucleotide sequence comprising 5 to 70 consecutive nucleotides, more preferably a partial nucleotide sequence comprising 5 to 50 consecutive nucleotides, still more preferably a partial nucleotide sequence comprising 5 to 30 consecutive nucleotides.
  • the antisense RNA may be modified chemically. Residues in a partial nucleotide sequence of the RNA can be chemically modified to increase the half-life in blood and intracellular membrane permeability of the RNA when injected to a patient, or to increase its resistance to decomposition in digestive organs or to enhance the absorption of the RNA when given orally. Such chemical modifications include for example, the same chemical modifications used to modify the above-mentioned antisense DNA.
  • a “chemically-synthesized compound” is an arbitrary compound, other than DNA, RNA or a proteinaceous substance, and has a molecular weight of about 100 to 1000 Da or smaller, preferably a molecular weight of about 100 to 800 Da, more preferably a molecular weight of 100 to 600 Da.
  • the “human monoclonal antibody” of this invention is a human monoclonal antibody that binds to the human oxidized-LDL receptor defined above.
  • the human monoclonal antibody includes a human immunoglobulin in which all the regions, including the variable region and constant region of the heavy chain (H chain), and the variable region and constant region of the light chain (L chain) constituting the immunoglobulin, are from genes encoding a human immunoglobulin.
  • the L chain includes the human ⁇ chain and the human ⁇ chain.
  • a human monoclonal antibody that binds to the human oxidized-LDL receptor of the present invention is a monoclonal antibody having any one of the features selected from the group consisting of (1) to (13) described above.
  • monoclonal antibody refers to a variety of monoclonal antibodies with various properties and industrial utilities described below in the examples and as indicated in the drawings.
  • the human monoclonal antibody of the present invention is a human monoclonal antibody that binds to the human oxidized-LDL receptor, described in any one of (2) to (13) above.
  • the human monoclonal antibody of the invention is the human monoclonal antibody binding to the human TGF- ⁇ type II receptor of either (10) or (11) of the present invention.
  • a “human monoclonal antibody” of the present invention can be prepared by immunizing a human antibody-producing transgenic non-human mammal with any one of the immunogens (antigens) below:
  • cell lysate prepared by solubilizing the cells of (i) or (ii), or polypeptide fragments of human oxidized-LDL receptor purified from the cell lysate;
  • a human monoclonal antibody of the present invention can also be obtained from the culture supernatant of the “recombinant cells” of the present invention, which produce recombinant human monoclonal antibodies.
  • the recombinant cells are prepared using DNA recombinant technology, by transforming host cells with cDNAs encoding the heavy chain or light chain of the human monoclonal antibody of the present invention.
  • a human monoclonal antibody of the present invention may be any one of the isotypes including IgG (IgG1, IgG2, IgG3, and IgG4), IgM, IgA (IgA1 and IgA2), IgD, or IgE; preferably IgG (IgG1, IgG2, IgG3, and IgG4); and more preferably IgG1, IgG2, or IgG4. IgG1 and IgG4 are particularly preferred.
  • a human monoclonal antibody of the present invention can be produced by immunizing human antibody-producing transgenic non-human mammals, such as the human antibody-producing transgenic mice described below, with any one of the immunogens (antigens) described above as (i) to (vi).
  • Such human monoclonal antibodies can be prepared according to conventional methods for preparing monoclonal antibodies.
  • human antibody producing transgenic non-human mammals are immunized, for example, with an antigen mentioned above together with Freund's adjuvant, if necessary.
  • Polyclonal antibodies can be obtained from the serum obtained from the immunized animal.
  • Monoclonal antibodies are produced as follows: Hybridomas (fused cells) are produced by fusing the antibody-producing cells, obtained from the immunized animal, and myeloma cells, incapable of producing autoantibodies. Then, the hybridomas are cloned, and clones producing the monoclonal antibodies showing specific affinity to the antigen used for immunizing the mammal are screened.
  • a monoclonal antibody can be produced as follows: Immunizations are performed by injecting or implanting, once or several times, an immunogen of any one of (i) to (iii) above, if necessary, with Freund's adjuvant, subcutaneously, intramuscularly, intravenously, through the footpad, or intraperitoneally into the human antibody-producing transgenic non-human mammal (particularly preferred are the “human antibody-producing transgenic mouse” described below). Usually, immunizations are performed once to four times every one to fourteen days after the first immunization Antibody-producing cells are obtained from the immunized mammal in about one to five days after the last immunization. The number of times and interval of the immunizations can be appropriately altered according to the properties of the used immunogen.
  • Hybridomas that secrete human monoclonal antibodies can be prepared according to the method by Köhler and Milstein (Nature, Vol.256, pp.495-497 (1975)) or a modified method thereof.
  • hybridomas are prepared by fusing antibody-producing cells from the spleen, lymph node, bone marrow, or tonsil (preferably spleen) of a human antibody-producing transgenic non-human mammal immunized as mentioned above, with myelomas that lack the autoantibody-producing ability and which are derived from, preferably, mammal, such as mouse, rat, guinea pig, hamster, rabbit, or human, or more preferably, mouse, rat, or human.
  • mammal such as mouse, rat, guinea pig, hamster, rabbit, or human, or more preferably, mouse, rat, or human.
  • mouse-derived myeloma P3/X63-AG8.653 (653, ATCC No. CRL1580), P3/NSI/1-Ag4-1 (NS-1), P3/X63-Ag8.U1 (P3U1), SP2/0-Agl4 (Sp2/0, Sp2), PAI, F0, or BW5147; rat-derived myeloma 210RCY3-Ag.2.3.; or human-derived myeloma U-266AR1, GM1500-6TG-A1-2, UC729-6, CEM-AGR, D1R11, or CEM-T15 can be used as a myeloma for the cell fusion.
  • Monoclonal antibody producing cells can be screened by culturing the cells, for example, in microtiter plates and by measuring the reactivity of the culture supernatant in wells wherein the growth of hybridoma is observed, towards the immunogen used for the immunization mentioned above, for example, by an enzyme immunoassay, such as radio immunoassay (RIA) and enzyme-linked immuno-solvent assay (ELISA).
  • an enzyme immunoassay such as radio immunoassay (RIA) and enzyme-linked immuno-solvent assay (ELISA).
  • a monoclonal antibody can be produced from hybridoma by cultivating the hybridoma in vitro or in vivo, such as in the ascites of a mouse, rat, guinea pig, hamster, or rabbit, preferably a mouse or rat, more preferably a mouse, and isolating the antibody from the resulting culture supernatant or ascites fluid of the mammal.
  • a monoclonal antibody can be obtained in a large quantity by cloning genes encoding a monoclonal antibody from a hybridoma or “recombinant cell” producing a recombinant human monoclonal antibody of the present invention described below, generating a transgenic animal, such as a cow, goat, sheep, or pig wherein the genes encoding the monoclonal antibody are integrated into the endogenous genome using a transgenic animal generating technique, and recovering the monoclonal antibody derived from the human monoclonal antibody gene from milk of the transgenic animals (Nikkei Science, April, pp.78-84 (1997)).
  • Monoclonal antibody-producing cells can be cultured in vitro depending on numerous conditions, such as the properties of cells that are cultured, the objective of the test/study, and the culture method, using known nutrient media or any nutrient media derived from known basal media for growing, maintaining, and storing hybridomas to produce monoclonal antibodies in the culture supernatant.
  • basal media examples include low calcium concentration media, such as Ham'F12 medium, MCDB153 medium, and low calcium concentration MEM medium; and high calcium concentration media, such as MCDB104 medium, MEM medium, D-MEM medium, RPMI1640 medium, ASF104 medium, and RD medium.
  • the basal media can contain, for example, sera, hormones, cytokines, and/or various inorganic or organic substances depending on the objective.
  • Monoclonal antibodies can be isolated and purified from the culture supernatant or ascites mentioned above by saturated ammonium sulfate precipitation, euglobulin precipitation method, caproic acid method, caprylic acid method, ion exchange chromatography (DEAE or DE52), affinity chromatography using an anti-immunoglobulin column or protein A column.
  • the human monoclonal antibodies of the present invention also include monoclonal antibodies comprising the heavy chains and/or the light chains, wherein either or both of the chains have deletions, substitutions or additions of one or more amino acids to the sequences thereof.
  • one or more amino acids refers to one or more amino acid residues, and specifically indicates one to ten amino acid residues, preferably one to five amino acid residues.
  • a partial modification (deletion, substitution, insertion, and addition) of the amino acid sequence described above can be introduced into the human monoclonal antibodies of the present invention by partially modifying the nucleotide sequence encoding the amino acid sequence.
  • the partial modification of a nucleotide sequence can be performed by conventional methods, such as site-specific mutagenesis (Proc. Natl. Acad. Sci. USA, Vol.81, p.5662-5666, 1984).
  • the “human antibody-producing transgenic non-human mammal” of the present invention in the particular preferable embodiment, the human antibody-producing transgenic mouse, can be prepared according to conventional methods in literature (Nature Genetics, Vol.7, p.13-21, 1994; Nature Genetics, Vol.15, p.146-156, 1997; Published Japanese Translation of International Publication No. Hei 4-504365; Published Japanese Translation of International Publication No Hei 7-509137; Nikkei Science, June, p40-50, 1995; International Publication WO94/25585; Nature, Vol.368, p.856-859, 1994; Published Japanese Translation of International Publication No. Hei 6-500233; and such).
  • the human antibody-producing transgenic mice can be produced, specifically, for example, via the following processes.
  • Other human antibody-producing non-human transgenic mammals can be produced in the same manner.
  • Preparing knockout mice whose endogenous immunoglobulin heavy chain gene locus has been functionally inactivated The inactivation can be accomplished by substituting at least a portion of the endogenous mouse immunoglobulin heavy chain gene locus with a drug-resistance gene (e.g., the neomycin resistance gene, and such) through homologous recombination.
  • a drug-resistance gene e.g., the neomycin resistance gene, and such
  • the knockout mice mentioned above can be prepared by substituting any suitable region of the mouse endogenous immunoglobulin gene locus with a foreign marker gene (e.g., neomycin resistance gene, and such) through homologous recombination so that the immunoglobulin gene locus can be inactivated, so as not to cause a rearrangement of the gene locus.
  • a foreign marker gene e.g., neomycin resistance gene, and such
  • PPS positive-negative selection
  • the functional inactivation of the immunoglobulin heavy chain locus can be achieved, for example, by introducing a lesion into a portion of the J region or a portion of the C region (e.g., the C ⁇ region, for example).
  • the functional inactivation of the immunoglobulin light chain ( ⁇ chain, for example) can also be achieved, for example, by introducing a lesion into a portion of the J region, a portion of the C region, or a region extending from the J region to the C region.
  • the transgenic mouse can be prepared according to conventional methods used for producing transgenic animals (for example, see “Newest Manual of Animal Cell Experiment”, LIC press, Chapter 7, pp.361-408, (1990)). Specifically, for example, a transgenic mouse can be produced as follows: Hypoxanthine-guanine phosphoribosyl transferase (HPRT) ⁇ negative embryonic stem cells (ES cells), obtained from a normal mouse blastocyst, are fused by spheroplast fusion method with a yeast cell containing a YAC vector, wherein the gene encoding human immunoglobulin heavy chain locus or light chain locus, or its fragment and a HPRT gene have been inserted.
  • HPRT Hypoxanthine-guanine phosphoribosyl transferase
  • ES cells negative embryonic stem cells
  • ES cells wherein the foreign gene has been integrated into the mouse endogenous genome are screened by the HAT selection method. Then, the screened ES cells screened are microinjected into a fertilized egg (blastocyst) obtained from another normal mouse (Proc. Natl. Acad. Sci. USA, Vol.77, No.12, pp.7380-7384 (1980); U.S. Pat. No. 4,873,191). The blastocyst is transplanted into the uterus of another normal mouse that serves as the foster mother. Then, chimeric transgenic mice are born from the foster mother mouse. By mating the chimeric transgenic mice with normal mice, heterozygous transgenic mice are obtained. By mating the heterozygous transgenic mice with each other, homozygous transgenic mice can be obtained according to Mendel's laws.
  • portion of a monoclonal antibody refers to a partial region of the human monoclonal antibody of the present invention as mentioned above, and specifically, includes F(ab′) 2 , Fab′, Fab, Fv (variable fragment of antibody), sFv, dsFv (disulfide stabilized Fv), or dAb (single domain antibody) (Exp. Opin. Ther. Patents, Vol.6, No.5, pp.441-456 (1996)).
  • F(ab′) 2 ” and “Fab′” can be produced by treating immunoglobulin (monoclonal antibody) with a protease, such as pepsin and papain, and refer to antibody fragments generated by digesting immunoglobulin near the disulfide bonds existing between the hinge regions in each of the two H chains.
  • a protease such as pepsin and papain
  • papain cleaves IgG upstream of the disulfide bonds existing between the hinge regions in each of the two H chains to generate two homologous antibody fragments, in which an L chain composed of V L (L chain variable region) and C L (L chain constant region), and an H chain fragment composed of V H (H chain variable region) and C H ⁇ 1 ( ⁇ 1 region in the constant region of H chain) are connected at their C terminal regions through a disulfide bond.
  • Fab′ cleaves IgG downstream of the disulfide bonds existing between the hinge regions in each of the two H chains to generate an antibody fragment slightly larger than the fragment wherein the two above-mentioned Fab′ are connected at the hinge region. This antibody fragment is called F(ab′) 2 .
  • association rate constant (ka) refers to a value representing the intensity (degree) of association of the monoclonal antibody with the target antigen thereof, which is determined based on the kinetics of the antigen-antibody reaction.
  • dissociation rate constant (kd) refers to a value representing the intensity (degree) of dissociation of the monoclonal antibody from the target antigen thereof, which is determined based on the kinetics of the antigen-antibody reaction.
  • dissociation constant (Kd) is calculated by dividing the “dissociation rate constant (kd)” by the “association rate constant (ka)”.
  • the constants can be determined according to various methods. Such methods can be practiced conveniently with a commercially available assay kit, such as Biacore X (Amersham-Pharmacia), or a similar kit, according to the instructions and the experiment manual attached to the kit.
  • the ka, kd, and Kd values determined with such a kit are given in 1/M.Sec, 1/Sec, and M (mole), respectively.
  • the lower the Kd value the higher the neutralizing activity the antibody has.
  • the human monoclonal antibodies of the present invention include human monoclonal antibodies having a ka, kd, or Kd value such as that described below:
  • a human monoclonal antibody reactive to human oxidized LDL receptor or a portion thereof, wherein the association rate constant (ka) between the human monoclonal antibody and the human oxidized LDL receptor is 1.0 ⁇ 10 4 (1/M.Sec) or higher, preferably 1.0 ⁇ 10 5 (1/M.Sec) or higher.
  • a human monoclonal antibody reactive to human oxidized LDL receptor or a portion thereof, wherein the dissociation rate constant (kd) between the human monoclonal antibody and the human oxidized LDL receptor is 1.0 ⁇ 10 ⁇ 2 (1/Sec) or lower, preferably 1.0 ⁇ 10 ⁇ 4 (1/Sec) or lower.
  • a human monoclonal antibody reactive to human oxidized LDL receptor or a portion thereof, wherein the dissociation constant (Kd) between the human monoclonal antibody and the human oxidized LDL receptor is 1.0 ⁇ 10 ⁇ 2 (1/Sec) or lower, preferably 1.0 ⁇ 10 ⁇ 7 (M) or lower, more preferably 1.0 ⁇ 10 ⁇ 9 (M) or lower.
  • Kd dissociation constant
  • the term “monoclonal antibody-producing cell” or “recombinant cell” producing the recombinant human monoclonal antibody of this invention refers to any cell producing the above-described human monoclonal antibody of this invention.
  • Human monoclonal antibody-producing B cell obtainable from the above-described human antibody-producing transgenic non-human mammal produced by immunizing the animal with the above-defined immunogen (antigen).
  • a recombinant cell that produces a recombinant human monoclonal antibody obtained by transforming a cell other than a B cell and hybridoma (e.g. Chinese hamster ovarian (CHO) cell, Baby hamster kidney (BHK) cell, and such) with genes (either the heavy chain-encoding gene or the light chain-encoding gene, or both) encoding the human monoclonal antibody isolated from the human monoclonal antibody producing B cell or hybridoma.
  • hybridoma e.g. Chinese hamster ovarian (CHO) cell, Baby hamster kidney (BHK) cell, and such
  • genes either the heavy chain-encoding gene or the light chain-encoding gene, or both
  • the recombinant human monoclonal antibody-producing recombinant cell of (3) refers to a recombinant cell producing a recombinant product of the human monoclonal antibody produced by the B cell of (1) or hybridoma of (2).
  • composition means (1) a composition useful as a pharmaceutical, comprising a human monoclonal antibody that binds to the human oxidized-LDL receptor, or a portion thereof, and a “pharmaceutically acceptable carrier”, and (2) a composition useful as a pharmaceutical comprising a substance that inhibits the binding between an in-vivo ligand of human oxidized-LDL receptor and the oxidized-LDL receptor or the incorporation of the ligand by the oxidized-LDL receptor expressing cell as an active ingredient and a “pharmaceutically acceptable carrier”.
  • the “pharmaceutically acceptable carrier” includes excipients, diluents, expanders, disintegrating agents, stabilizers, preservatives, buffers, emulsifiers, aromatics, colorants, sweeteners, viscosity increasing agents, flavors, dissolving agents, or other additives.
  • a pharmaceutical composition can be formulated into tablets, pills, powders, granules, injections, solutions, capsules, troches, elixirs, suspensions, emulsions, or syrups.
  • the pharmaceutical composition can be administered orally or parenterally.
  • Other forms for parenteral administration include solutions for external application, suppositories for rectal administration, and pessaries, prescribed by usual methods and comprising one or more active ingredients.
  • the dosage can vary depending on the age, sex, weight, and symptoms of a patient, effects of treatment, administration route, period of treatment, and the kind of active ingredient (protein or antibody mentioned above) contained in the pharmaceutical composition.
  • the pharmaceutical composition can be administered to an adult in a dose of 10 ⁇ g to 1000 mg (or 10 ⁇ g to 500 mg) per one administration.
  • a lower dosage may be sufficient in some cases, and a higher dosage may be necessary in other cases.
  • an injection can be produced by dissolving or suspending the antibody in a non-toxic, pharmaceutically acceptable carrier, such as physiological saline or commercially available distilled water for injections, by adjusting the concentration to 0.1 ⁇ g antibody/ml carrier to 10 mg antibody/ml carrier.
  • a non-toxic, pharmaceutically acceptable carrier such as physiological saline or commercially available distilled water for injections
  • the injection thus produced can be administered to a human patient in need of treatment in a dose of 1 ⁇ g to 100 mg/kg body weight, preferably 50 ⁇ g to 50 mg/kg body weight, once or more times a day.
  • suitable, medically appropriate administration routes include intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, or intraperitoneal injection, preferably intravenous injection.
  • the injection can be also prepared as a non-aqueous diluent (for example, propylene glycol; polyethylene glycol; vegetable oil, such as olive oil; and alcohols, such as ethanol), suspension, or emulsion.
  • a non-aqueous diluent for example, propylene glycol; polyethylene glycol; vegetable oil, such as olive oil; and alcohols, such as ethanol
  • the injection can be sterilized by filtration with a bacteria-non-penetratable filter, by mixing a bacteriocide, or by irradiation.
  • the injection can be prepared at the time of use. Namely, it is freeze-dried to make a sterile solid composition, and can be dissolved in sterile distilled water for injections, or another solvent, before use.
  • compositions of the present invention are useful for inhibiting the binding between oxidized LDL receptor and its in-vivo ligands (various modified LDL such as oxidized LDL, apoptotic cells, senescent erythrocytes, activated blood platelets, and such), which are involved in various clinical conditions and disease onset, and for inhibiting the oxidized LDL receptor-mediated incorporation of the ligands into cells.
  • oxidized LDL receptor various in-vivo ligands
  • in-vivo ligands variant modified LDL such as oxidized LDL, apoptotic cells, senescent erythrocytes, activated blood platelets, and such
  • the pharmaceutical composition comprising the above-mentioned human monoclonal antibody, which is one of pharmaceutical compositions of the present invention, is derived from humans, the composition does not induce host immunorejections caused by HAMA, and thus can be used to treat or prevent the various diseases described below.
  • the pharmaceutical composition of the present invention is useful as an pharmaceutical to treat or prevent various diseases—for example, arteriosclerosis, thrombocytopenia, kidney disease, various types of inflammation (for example, myocardial ischemic reperfusion injury, inflammatory reactions after percutaneous transluminal coronary recanalization (PTCR) or percutaneous transluminal coronary angioplasty (PTCA)), and vessel restenosis after PTCA and PTCR caused by the interaction (binding or incorporation) of oxidized LDL receptor with its in-vivo ligands, and various diseases, such as thrombus formation in blood vessels such as arteries, and symptoms thereof, by suppressing or inhibiting the onset and/or progress of the diseases.
  • various diseases for example, arteriosclerosis, thrombocytopenia, kidney disease, various types of inflammation (for example, myocardial ischemic reperfusion injury, inflammatory reactions after percutaneous transluminal coronary recanalization (PTCR) or percutaneous transluminal coronary angioplasty (PTCA)
  • inflammation refers to a fundamental local pathological reaction accompanied by infiltration of leukocytes, via rolling on and adhesion to the vascular endothelia, from the vascular flow to extravascular tissues, which is associated with damage or dysfunction of biological tissues. Inflammation is caused by various factors including, but not limited to, internal factors, or external factors, such as bacterial infection, injury, physical stimulation (for example, heat, cold, irradiation, electric stimulation, and such), or chemical substances.
  • inflammation can be categorized roughly into two classes—acute inflammation and chronic inflammation—based on the rates of development and progress of the symptoms.
  • acute inflammation is characterized by relatively rapid development and rapid progress of an inflammatory reaction, followed by an explicit termination of the inflammatory reaction.
  • chronic inflammation is characterized by relatively slow or gradual development, or unrecognizable development, of an inflammatory reaction that is persistent and lasts for several weeks to several years, followed by an inexplicit termination of the inflammatory reaction.
  • inflammation refers to both acute and chronic inflammation.
  • inflammation refers to inflammation in tissues such as brain, eyes, trachea, blood vessels, lungs, liver, heart, pancreas, stomach, intestine, mesentery, kidneys, skin, nasal mucosa, and joints.
  • such inflammation includes, for example, encephalitis, bronchitis, vasculitis, pulmonitis, hepatitis, myocarditis, pancreatitis, enteritis, gastritis, peritonitis, nephritis (e.g., glomerular nephritis), arthritis (e.g., rheumatic arthritis), inflammation associated with postischemic reperfusion injury (e.g., myocardial ischemic reperfusion injury), inflammation caused by post-transplantation immunorejection, burns, inflammation associated with multi-organ failure, inflammation after PTCA or PTCR, and inflammation associated with arteriosclerosis.
  • encephalitis e.g., bronchitis, vasculitis, pulmonitis, hepatitis, myocarditis, pancreatitis, enteritis, gastritis, peritonitis, nephritis (e.g., glomerular nephriti
  • the therapeutic effects of the pharmaceutical compositions of the present invention on various disease symptoms can be tested and assessed by giving the pharmaceutical compositions (human antibodies, synthetic low-molecular-weight compounds, and such) of the present invention to known disease animal models according to conventional methods.
  • the effect on arteriosclerosis and vascular restenosis can be evaluated using a restenosis rat model, in which pseudo-restenosis is caused by PTCA with a balloon catheter inserted into the aorta.
  • inflammation and tissue injury can be assessed using rat disease models in which inflammation and tissue injury (for example, lung injury) are induced by giving LPS to rats.
  • the therapeutic effects of the human antibodies of the present invention on various kidney diseases and arteriosclerosis can be tested by giving the antibodies of the present invention to a rat model of glycerol-induced acute renal disorder, rat GBM nephritis model, rat model of angiotensin II-induced arteriosclerosis (high-blood pressure-induced arteriosclerosis model), or ApoE-knockout mouse (hyperlipidemic arteriosclerosis model).
  • a DNA encoding the human oxidized-LDL receptor used in the present invention can be prepared by conventional methods, such as cloning cDNA from mRNA encoding the human oxidized-LDL receptor, isolating genomic DNA and splicing it, conducting PCR using the cDNA or mRNA sequence as a template, chemical synthesis, and so on.
  • a DNA encoding the human oxidized-LDL receptor of this invention can be prepared by cleaving (digesting) each DNA encoding the human oxidized-LDL receptor as prepared above with an appropriate restriction enzyme, and ligating the obtained DNA fragments, in combination with a linker DNA or Tag if necessary, using an appropriate DNA polymerase and such.
  • cDNA encoding the human oxidized-LDL receptor (hereinafter referred to as the desired protein) can be cloned from mRNA by, for example, the method described below.
  • the mRNA encoding the desired protein is prepared from tissues or cells expressing and producing the desired protein.
  • mRNA can be prepared by isolating total RNA by a known method, such as the guanidine-thiocyanate method (Biochemistry, Vol.18, p5294, 1979), the hot phenol method, or the AGPC method, and subjecting it to affinity chromatography using oligo-dT cellulose or poly-U Sepharose.
  • cDNAs are synthesized, for example, by well-known methods using reverse transcriptase, such as the method by Okayama et al. (Mol. Cell. Biol. Vol.2, p.161 (1982); ibid. Vol.3, p.280 (1983)) or the method by Hoffman et al. (Gene Vol.25, p.263 (1983)), and converted into double-stranded cDNAs.
  • a cDNA library is prepared by transforming E. coli with plasmid vectors, phage vectors, or cosmid vectors having those cDNAs or by transfecting E. coli after in vitro packaging.
  • the plasmid vectors used in this invention are not limited so long as they may be replicated and maintained in hosts. Any phage vector that can be replicated in hosts can also be used. Examples of the cloning vectors typically used include pUC19, ⁇ gt10, ⁇ gt11, and so on. When the vector is applied to immunological screening, as mentioned below, a vector having a promoter that enables the expression of a gene encoding the desired protein in a host is preferably used.
  • cDNA can be inserted into a plasmid according to, for example, the method by Maniatis et al. (Molecular Cloning, A Laboratory Manual, second edition, Cold Spring Harbor Laboratory, p.1.53, 1989).
  • cDNA can be inserted into a phage vector according to, for example, the method by Hyunh et al. (DNA cloning, a practical approach, Vol.1, p49 (1985)). These methods can be easily performed using a commercially available cloning kit (for example, a product from TAKARA).
  • the recombinant plasmid or phage vector thus obtained is introduced into an appropriate host cell, such as a prokaryote (for example, E. coli : HB101, DH5 ⁇ , Y1090, DH10B, MC1061/P3, etc).
  • a prokaryote for example, E. coli : HB101, DH5 ⁇ , Y1090, DH10B,
  • phrases for introducing a plasmid into a host are, the calcium chloride method, the calcium chloride/rubidium chloride method, and the electroporation method, described in Molecular Cloning, A Laboratory Manual (second edition, Cold Spring Harbor Laboratory, p.1.74 (1989)).
  • Phage vectors can be introduced into host cells by, for example, a method in which the phage DNAs are introduced into grown hosts after in vitro packaging. In vitro packaging can be easily performed with a commercially available in vitro packaging kit (for example, a product from STRATAGENE or AMERSHAM).
  • the cDNA encoding the desired protein can be isolated from the cDNA library prepared according to the method mentioned above by combining general cDNA screening methods.
  • a clone comprising the desired cDNA can be screened by a known colony hybridization method (Crunstein et al. Proc. Natl. Acad Sci. USA, Vol.72, p.3961 (1975)) or plaque hybridization method (Molecular Cloning, A Laboratory Manual, second edition, Cold Spring Harbor Laboratory, p.2.108 (1989)), using 32 P-labeled chemically synthesized oligonucleotides as probes, which correspond to the amino acid sequence of the desired protein.
  • a clone having a DNA fragment encoding a specific region within the desired protein can be screened by amplifying the region by PCR with synthetic PCR primers.
  • the desired clone can be screened by an antigen-antibody reaction using an antibody against the desired protein.
  • a screening method using the PCR method is preferably used when many clones are subjected to screening.
  • the nucleotide sequence of the obtained DNA can be determined by the Maxam-Gilbert method (Maxam et al. Proc. Natl. Acad. Sci. USA, Vol.74, p.560 (1977)) or the dideoxynucleotide synthetic chain termination method using phage M13 (Sanger et al. Proc. Natl. Acad. Sci. USA, Vol.74, pp.5463-5467 (1977)).
  • the whole or a part of the gene encoding the desired protein can be obtained by excising the clone obtained as mentioned above with restriction enzymes and so on.
  • the DNA encoding the desired protein can be isolated from the genomic DNA derived from cells mentioned above expressing the desired protein using the following methods.
  • Such cells are solubilized preferably by SDS or proteinase K, and the DNAs are deproteinized by repeating phenol extraction.
  • RNAs are digested preferably with ribonuclease.
  • the DNAs obtained are partially digested with appropriate restriction enzymes, and the obtained DNA fragments are amplified with an appropriate phage or cosmid to generate a library.
  • clones having the desired sequence are detected, for example, by radioactively labeled DNA probes, and the whole or a portion of the gene encoding the desired protein is obtained from the clones by excision with restriction enzymes, etc.
  • a DNA encoding a desired protein can be prepared by conventional FCR methods, using known mRNA or cDNA of the desired protein as a template (Gene Amplification PCR method, Basics and Novel Development, Kyoritsu Publishers, 1992, etc).
  • a DNA encoding a desired protein can also be produced by chemical synthesis, according to usual methods, based on the nucleotide sequence encoding the protein.
  • the human oxidized-LDL receptor of the present invention or a portion thereof (preferably, extracellular domain) can be prepared as a recombinant protein according to conventional recombinant technology, using DNA obtained by digesting the human oxidized-LDL receptor-encoding DNA (the cDNA or the genomic DNA comprising introns) prepared by the method indicated above with appropriate restriction enzymes and ligating the resulting DNA fragment (s) encoding the human oxidized-LDL receptor, according to need, with a linker DNA or Tag using an appropriate DNA polymerase or other enzymes.
  • DNA obtained by digesting the human oxidized-LDL receptor-encoding DNA (the cDNA or the genomic DNA comprising introns) prepared by the method indicated above with appropriate restriction enzymes and ligating the resulting DNA fragment (s) encoding the human oxidized-LDL receptor, according to need, with a linker DNA or Tag using an appropriate DNA polymerase or other enzymes.
  • the preparation of the protein is described as follows: the DNA construct as prepared above is inserted into a vector, described below in detail, to obtain an expression vector; a host cell, which will be described hereinafter, is transformed with the expression vector to obtain a transformant; the resulting transformant cells are cultured for the production and accumulation of the desired protein in the culture supernatant; the protein accumulated in the culture supernatant can be purified easily by using column chromatography, etc.
  • the expression vector used for producing the recombinant human oxidized-LDL receptor (or extracellular domain thereof) is not particularly limited so long as it can be retained by replication or self-multiplication in various prokaryotic and/or eukaryotic host cells, including plasmid vectors and phage vectors (Cloning Vectors: A laboratory Manual, Elsevier, N.Y., 1985).
  • the expression vector can be easily prepared by ligating, according to conventional methods, a DNA encoding the human oxidized-LDL receptor (or extracellular domain) with a recombination vector available in the art (plasmid DNA and bacteriophage DNA).
  • plasmid DNA and bacteriophage DNA include E. coli -derived plasmids such as pBR322, pBR325, pUC12, pUC13, and pUC19; yeast-derived plasmids, such as pSH19 and pSH15; and Bacillus subtilis -derived plasmids, such as pUB110, pTP5, and pC194.
  • phages are bacteriophages, such as ⁇ phage; and an animal or insectvirus (pVL1393, Invitrogen), such as a retrovirus, vaccinia virus, and nuclear polyhedrosis virus.
  • a plasmid vector is useful for expressing the DNA encoding the human oxidized-LDL receptor of this invention or its soluble extracellular domain, for expressing the human oxidized-LDL receptor on host cell surface, and for producing the soluble extracellular domain of the human oxidized-LDL receptor.
  • the plasmid vector is not limited so long as it expresses a gene encoding the human oxidized-LDL receptor or its soluble extracellular domain in various prokaryotic and/or eukaryotic host cells and produces the polypeptide. Examples thereof include pMAL C2, pcDNA3.1( ⁇ ), pEF-BOS (Nucleic Acids Res. Vol.18,p.5322 (1990) and so on), pME18S (Experimental Medicine: SUPPLEMENT, “Handbook of Genetic Engineering” (1992) and so on), etc.
  • an expression vector When bacteria, particularly E. coli are used as host cells, an expression vector generally comprises, at least, a promoter/operator region, an initiation codon, a DNA encoding the protein of the present invention, a termination codon, a terminator region, and a replicon.
  • an expression vector preferably comprises, at least, a promoter, an initiation codon, a DNA encoding the human oxidized-LDL receptor (or its extracellular domain) of the present invention, and a termination codon. It may also comprise a DNA encoding a signal peptide, enhancer sequence, 5′- and 3′-untranslated regions of the gene encoding the human oxidized-LDL receptor of the present invention, splicing junctions, polyadenylation site, selectable marker region, and replicon.
  • the expression vector may also contain, if necessary, a gene for gene amplification (marker) that is usually used according to purposes.
  • a promoter/operator region to express the human oxidized-LDL receptor (or its extracellular domain) of the present invention in bacteria comprises a promoter, an operator, and a Shine-Dalgarno (SD) sequence (for example, AAGG).
  • SD Shine-Dalgarno
  • the host belongs to the genus Escherichia, it preferably comprises the Trp promoter, the lac promoter, the recA promoter, the ⁇ PL promoter, the lpp promoter, the tac promoter, or the like.
  • suitable promoters for expressing the human oxidized-LDL receptor (or its extracellular domain) of the present invention in yeast include the PH05 promoter, the PGK promoter, the GAP promoter, the ADH promoter, and so on.
  • yeast When the host belongs to the genus Bacillus, examples thereof are the SL01 promoter, the SP02 promoter, the penP promoter, and so on.
  • promoters When the host is a eukaryotic cell, such as mammalian cell, examples of suitable promoters therefore include SV40-derived promoters, retrovirus promoters, heat shock promoters, and so on. As a matter of course, the promoter is not limited to the above examples. In addition, the use of an enhancer is also effective for the expression.
  • a preferable initiation codon is, for example, a methionine codon (ATG).
  • a commonly used termination codon (for example, TAG, TAA, TGA) is exemplified as a termination codon.
  • a replicon is a DNA that is capable of-replicating the whole DNA sequence in host cells, and includes natural plasmids, artificially modified plasmids (DNA fragments prepared from natural plasmids), synthetic plasmids, and so on.
  • preferable plasmids are pBR322 or its artificial derivatives (DNA fragments prepared by treating pBR322 with appropriate restriction enzymes) for E.
  • yeast 2 ⁇ plasmid or yeast chromosomal DNA for yeast and pRSVneo ATCC 37198, pSV2dhfr ATCC 37145, pdBPV-MMTneo ATCC 37224, pSV2neo ATCC 37149, pSV2bsr, and such for mammalian cells.
  • enhancer sequence those that are routinely used in the art, such as those derived from SV40, can be used.
  • selectable markers can be used according to conventional methods. Examples thereof include resistance genes for antibiotics, such as tetracycline, ampicillin, or kanamycin.
  • genes suitable for gene amplification include the dihydrofolate reductase (DHFR) gene, the thymidine kinase gene, the neomycin resistance gene, the glutamate synthase gene, the adenosine deaminase gene, the ornithine decarboxylase gene, the hygromycin-B-phosphotransferase gene, the aspartate transcarbamylase gene, etc.
  • DHFR dihydrofolate reductase
  • thymidine kinase gene the neomycin resistance gene
  • glutamate synthase gene the glutamate synthase gene
  • the adenosine deaminase gene the ornithine decarboxylase gene
  • the hygromycin-B-phosphotransferase gene the aspartate transcarbamylase gene, etc.
  • the expression vector of the present invention can be prepared by contiguously and circularly ligating at least the above-mentioned promoter, initiation codon, DNA encoding the protein of the present invention, termination codon, and terminator region, to an appropriate replicon.
  • appropriate DNA fragments for example, linkers and other restriction sites
  • Transformants of the present invention can be prepared by introducing the expression vector mentioned above into host cells.
  • Host cells used in the present invention are not limited so long as they are compatible with the expression vector mentioned above and can be transformed. Examples thereof include various cells, such as wild-type cells or artificially established recombinant cells available in the technical field of the present invention (for example, bacteria (Escherichia and Bacillus), yeast (Saccharomyces, Pichia, and such), animal cells, or insect cells).
  • bacteria Esscherichia and Bacillus
  • yeast Sacharomyces, Pichia, and such
  • animal cells or insect cells.
  • E. coli or animal cells are preferably used. Specific examples are E. coli (DH5 ⁇ , DH10B, TB1, HB101, XL-2Blue, and such); mouse-derived cells (COP, L, C127, Sp2/0, NS-1, NIH 3T3, and such); rat-derived cells, hamster-derived cells (BHK, CHO, and such); monkey-derived cells (COS1, COS3, COS7, CV1, Velo, and such); and human-derived cells (Hela, diploid fibroblast-derived cells, myeloma, Namalwa, and such).
  • E. coli DH5 ⁇ , DH10B, TB1, HB101, XL-2Blue, and such
  • mouse-derived cells COP, L, C127, Sp2/0, NS-1, NIH 3T3, and such
  • rat-derived cells hamster-derived cells
  • BHK, CHO, and such monkey-derived cells
  • An expression vector can be introduced (transformed (transduced)) into host cells by known methods.
  • Transformation can be performed, for example, according to the method by Cohen et al. (Proc. Natl. Acad. Sci. USA, Vol.69, p.2110 (1972)), the protoplast method (Mol. Gen. Genet., Vol.168, p.111 (1979)), or the competent method (J. Mol. Biol., Vol.56, p.209 (1971)) when the hosts are bacteria ( E. coli, Bacillus subtilis, and such); the method by Hinnen et al. (Proc. Natl. Acad. Sci. USA, Vol.75, p.1927 (1978)), or the lithium method (J.
  • An extracellular domain of the human oxidized-LDL receptors (soluble human oxidized-LDL receptors) of the present invention can be produced by cultivating transformants (hereinafter, the term includes “transductants”) comprising an expression vector prepared as mentioned above in nutrient media.
  • the nutrient media preferably comprises a carbon source, an inorganic nitrogen source, or an organic nitrogen source necessary for the growth of host cells (transformants).
  • suitable carbon sources include glucose, dextran, soluble starch, and sucrose; and examples of suitable inorganic or organic nitrogen sources include ammonium salts, nitrates, amino acids, corn steep liquor, peptone, casein, meet extract, soybean cake, and potato extract.
  • the media may comprise other nutrients (for example, an inorganic salt (for example, calcium chloride, sodium dihydrogenphosphate, and magnesium chloride), vitamins, antibiotics (for example, tetracycline, neomycin, ampicillin, kanamycin, and so on)).
  • Cultivation is performed by methods known in the art. Cultivation conditions, such as temperature, pH of the media, and cultivation time, may be appropriately selected so that the protein of the present invention is produced in large quantities.
  • a liquid media comprising an above-mentioned nutrient source is appropriate.
  • a medium with pH 5 to 8 is preferably used.
  • examples of preferable media include LB media, M9 media (Miller et al. Exp Mol. Genet Cold Spring Harbor Laboratory, p.431 (1972)), YT medium, and so on. Using these media, cultivation can usually be performed at 14 to 43° C. for about 3 to 24 hours with aeration and stirring, if necessary.
  • cultivation can be performed usually at 30 to 40° C. for about 16 to 96 hours with aeration and stirring, if necessary.
  • a suitable media is Burkholder minimal media (Bostian, Proc. Natl. Acad. Sci. USA, Vol.77, p.4505 (1980)).
  • the pH of the media is preferably 5 to 8, Cultivation can usually be performed at 20 to 35° C. for about 14 to 144 hours with aeration and stirring, if necessary.
  • examples of media include MEM media containing about 5 to 20% fetal bovine serum (Science, Vol.122, p. 501 (1952)), DMEM media (Virology, Vol. 8, p. 396 (1959)), RPMI1640 media (J. Am. Med. Assoc.,Vol.199, p.519 (1967)), 199 media (Proc. Soc. Exp. Biol. Med., Vol.73, p.1 (1950)), HamF12 media, and so on.
  • the pH of the media is preferably about 6 to 8. Cultivation can usually be performed at about 30 to 40° C. for about 15 to 72 hours with aeration and stirring, if necessary.
  • a suitable media is Grace's media containing fetal bovine serum (Proc. Natl. Acad. Sci. USA, Vol.82, p.8404 (1985)).
  • the pH thereof is preferably about 5 to 8.
  • Cultivation can usually be performed at about 20 to 40° C. for 15 to 100 hours with aeration and stirring, if necessary.
  • An extracellular domain-of the human oxidized-LDL receptor (soluble human oxidized-LDL receptor) of the present invention can be produced by cultivating transformants as mentioned above (in particular animal cells or E. coli ) and allowing them to secrete the protein into the culture supernatant. Namely, a culture filtrate (supernatant) is obtained by methods, such as filtration or centrifugation of the obtained culture, and the desired protein is purified and isolated from the culture filtrate by methods commonly used in order to purify and isolate natural or synthetic proteins.
  • isolation and purification methods include methods utilizing affinity, such as affinity column chromatography; methods utilizing solubility, such as salting out and solvent precipitation method; methods utilizing the difference in molecular weight, such as dialysis, ultrafiltration, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis; methods utilizing charges, such as ion exchange chromatography and hydroxylapatite chromatography; methods utilizing the difference in hydrophobicity, such as reverse phase high performance liquid chromatography; and methods utilizing the difference in isoelectric points, such as isoelectric focusing.
  • affinity such as affinity column chromatography
  • solubility such as salting out and solvent precipitation method
  • methods utilizing the difference in molecular weight such as dialysis, ultrafiltration, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  • methods utilizing charges such as ion exchange chromatography and hydroxylapatite chromatography
  • the cells are first harvested by usual methods, such as filtration or centrifugation, and are suspended in an appropriate buffer. After the cell wall and/or cell membrane and such are disrupted by methods such as lysis with sonication, lysozymes, or freeze thawing, the membrane fraction comprising the desired protein is obtained by methods such as centrifugation and filtration The membrane fraction is solubilized with a detergent, such as Triton-X100, to obtain the crude extract. Finally, the protein is isolated and purified from the crude extract by usual methods such as those illustrated above.
  • FIG. 1 is a diagram showing the reactivity (binding activity) of human anti-human LOX-1 monoclonal antibodies to human LOX-1, which was analyzed by ELISA using human LOX-Fc chimeric protein.
  • the vertical axis indicates fluorescence intensity, and the horizontal axis indicates the type of human anti-human LOX-1 monoclonal antibody tested.
  • FIG. 2 is a diagram showing the reactivity (binding activity) of human anti-human LOX-1 monoclonal antibodies to human LOX-1, which was analyzed by cell ELISA using human LOX-1-expressing recombinant CHO cells.
  • the vertical axis indicates fluorescence intensity, and the horizontal axis indicates the type of human anti-human LOX-1 monoclonal antibody tested.
  • FIG. 3 is a diagram showing the inhibitory activity of the human anti-human LOX-1 monoclonal antibodies on the incorporation of oxidized LDL in the test of oxidized LDL incorporation into recombinant CHO cells expressing human LOX-1.
  • the vertical axis indicates fluorescence intensity as an index of the quantity of oxidized LDL incorporated into cells, and the horizontal axis indicates the concentration of human anti-human LOX-1 monoclonal antibody added.
  • FIG. 4 is table showing characteristics of various human monoclonal antibodies against anti-human oxidized LDL receptor (LOX-1).
  • Circle significant antigen-binding activity (reactivity).
  • Circle significant inhibitory activity on oxidized LDL incorporation
  • FIG. 5 is a diagram showing reactivity (binding activity) of human anti-human LOX-1 monoclonal antibodies to human LOX-1 on the surface of cells of natural human cell line HeLa S-3, which was analyzed by cell ELISA.
  • the vertical axis indicates fluorescence intensity, and the horizontal axis indicates the type of human anti-human LOX-1 monoclonal antibody tested.
  • FIG. 6 is a diagram showing the inhibitory activity of the human anti-human LOX-1 monoclonal antibodies on the incorporation of oxidized LDL into cells of human-derived natural cell line HeLa S-3.
  • the vertical axis indicates the percentage (%) of oxidized LDL incorporated into cells, and the horizontal axis indicates the concentration of the human anti-human LOX-1 monoclonal antibody added.
  • FIG. 7 is a diagram showing the inhibitory activity of the human anti-human LOX-1 monoclonal antibodies on the incorporation of oxidized LDL into cells of human-derived natural cell line HeLa S-3.
  • the vertical axis indicates the fluorescence intensity as an index of the quantity of oxidized LDL incorporated into cells, and the horizontal axis indicates the concentration of human anti-human LOX-1 monoclonal antibody added.
  • FIG. 8 is a diagram showing the inhibitory activity of the human anti-human LOX-1 monoclonal antibodies on the incorporation of oxidized LDL into recombinant CHO cells expressing bovine LOX-1.
  • the vertical axis indicates the fluorescence intensity as an index of the quantity of oxidized LDL incorporated into cells, and the horizontal axis indicates the concentration of human anti-human LOX-1 monoclonal antibody added.
  • FIG. 9 is a diagram showing the therapeutic effects of anti-LOX-1 antibodies on thrombocytopenia.
  • FIG. 10 is a diagram showing the inhibitory activity of the anti-LOX-1 antibodies on leukocyte infiltration into tissues.
  • FIG. 11 is a diagram showing the inhibitory activity of the anti-LOX-1 antibodies on leukocyte infiltration into tissues.
  • FIG. 12 is a diagram showing the inhibitory activity of the anti-LOX-1 antibodies on protein leakage as a parameter representing the progress of inflammatory reaction associated with leukocyte infiltration into tissues.
  • FIG. 13 is a diagram showing the inhibitory activity of the anti-LOX-1 antibodies on vascular restenosis after PTCA.
  • FIG. 14 is a diagram showing the inhibitory activity of the anti-LOX-1 antibodies on arterial thrombus formation.
  • the dark regions schematically indicate the duration of vascular occlusion (thrombus formation) and the white regions schematically indicate the duration of blood flow.
  • FIG. 15 is a diagram showing the inhibitory activity of anti-LOX-1 antibody on arterial thrombus formation.
  • the vertical axis indicates the duration of blood flow (sound of blood stream).
  • oxidized LDL receptor is also referred to as “LOX-1”.
  • a cDNA (SEQ ID NO: 3) encoding bovine oxidized LDL receptor LOX-1 (bLOX-1) was prepared according to the same method as described in previous reports (Nature, Vol.386, p.73-77, 1997; Unexamined Published Japanese Patent Application (JP-A) Hei 9-98787).
  • the obtained cDNA was amplified by PCR using a pair of primers (5′-GGGGATCCTGATCTCATAAAGAAACAG-3′ (SEQ ID NO: 5) and 5′-GCGGATCCTGTGCTCTCAATAGATTCGC-3′ (SEQ ID NO: 6)
  • the prepared cDNA fragment comprises cDNA encoding the extracellular region of bovine LOX-1 (nucleotide No. 215 to 844 in SEQ ID NO: 3) in which both ends comprise a BamHI site.
  • the plasmid pCd51neg1 (see DNA and Cell Biol., Vol.9, p.347-353, 1990; a generous gift from Dr. B. Seed at the Massachusetts General Hospital) (SEQ ID NO: 7) comprising genomic DNA containing exons encoding the hinge region of human IgG1, C ⁇ 12 and C ⁇ 13, was linearized by BamHI digestion.
  • CHO-K1 cells cultured to become a sub-confluent monolayer in HamF12 medium containing 10% FBS (fetal bovine serum) were co-transfected with pBLOX-Fc (1 ⁇ g) and expression plasmid vector pSVbsr (10 ng; Funakoshi; containing bsr (blasticidin S-resistance) gene and viral promoter derived from SV40) using lipofectamine (GIBCO).
  • FBS fetal bovine serum
  • bLOX-1-Fc the transformed CHO-K1 cells were cultured to be confluent in a HamF12 medium containing blasticidin-S (10 ⁇ g/ml, Funakoshi), and after the medium was changed to CHO-SFM-II (GIBCO/BRL), the cells were further cultured for 3 days. This step was repeated several times, and then, 800 ml of culture supernatant was collected.
  • bLOX-Fc was purified from the culture supernatant using the Affi-Gel Protein A MAPS-II kit (Bio-Rad) by the following procedure.
  • the culture supernatant was loaded onto a Protein A-agarose gel column pre-equilibrated with a binding buffer. Then, the column was washed with the binding buffer (15 bed volume), and eluted with an elution buffer (5 bed volume) The elute was recovered and dialyzed against a phosphate buffer. The outer dialysate was changed twice or more.
  • the resulting purified bLOX-Fc was concentrated by ultrafiltration with Centriprep (Amicon). The concentration of purified bLOX-Fc was determined to be 866 ⁇ g/ml using BCA protein assay kit (PIERCE).
  • the purified bLOX-Fc was electrophoresed on a 12.5% SDS agarose gel (Daiichi Pure Chemicals). After electrophoresis, the sample was transferred onto an Immobilon membrane (Millipore). The membrane was incubated in Block Ace (Snow Bland) overnight for blocking, and then incubated with biotin-labeled goat anti-human IgG antibody as a primary antibody. The membrane was then treated with an ABC kit (Vector), and the band was visualized using the Konica Immunostain kit.
  • bLOX-Fc was also prepared from recombinant cells derived from host cells, the monkey kidney cell line COS7.
  • Recombinant CHO cells Choinese Hamster Ovarian cell
  • bovine LOX-1 amino acid sequence: SEQ ID NO: 4, GenBank Accession No. BAA19005; nucleotide sequence: SEQ ID NO: 3, GenBank Accession No. D89049
  • a cell membrane fraction was prepared as an antigen from CHO cells expressing bovine LOX-1, which had been prepared as described above.
  • the fraction was prepared by the same procedure used to prepare the antigen (a cell membrane fraction of recombinant CHO cell expressing human LOX-1) in the preparation of human anti-human oxidized LDL receptor monoclonal antibody described hereinafter.
  • mice Normal mice were immunized with the obtained cell membrane fraction according to the same method as used to prepare human anti-human LOX-1 monoclonal antibody as described hereinafter. Thus, mouse anti-bovine LOX-1 monoclonal antibodies (also having cross-reactivity to human LOX-1) were prepared.
  • a cDNA (SEQ ID NO: 1) encoding the entire human LOX-1 was prepared by PCR according to a conventional method.
  • the cDNA was synthesized by PCR according to the conventional method using, as a template, single-stranded DNA prepared from commercially available human placental mRNA (Clontech; Cat. No. #6501) with reverse transcriptase and using primers designed based on the full-length human LOX-1 cDNA (Nature, Vol.386, p.73-77, 1997; JP-A Hei 9-98787).
  • PCR was carried out as follows: 1 cycle (at 94° C. for 2 minutes); 30 cycles (at 94° C. for 30 seconds, at 65° C. for 30 seconds, and at 72° C. for 90 seconds); and 1 cycle (at 72° C. for 7 minutes).
  • DNA polymerase used was commercially available KOD DNA polymerase (TOYOBO).
  • cDNA was prepared based on the above-mentioned human mRNA using a commercially available cDNA preparation kit (SuperScript Lambda System; Gibco BRL). The resulting cDNA was ligated to commercially available lambda arms ( ⁇ ZipLox; Gibco BRL) and then in-vitro packaged using commercially available GigaPack Gold (Amersham). Using the resulting lambda phage particles, a cDNA library comprising phage plaques containing recombinant phages was prepared using Y1090 as host cells.
  • the cDNA library was plated on a agar plate (4 ⁇ 10 4 plaques/plate) and then a replica was prepared by transferring the plaques onto a nylon membrane (Hybond N+, Amersham).
  • the human LOX-1 cDNA fragment obtained as described above was labeled with [ 32 P]dCTP (Quickprime; Pharmacia) to prepare a probe solution for plaque hybridization.
  • First and second screening of the replica was carried out using the probe solution, and thus a number of positive clones were obtained.
  • plasmid DNAs were treated by in-vivo excision according to the instruction manual provided by GIBCO-BRL, and then the DNAs were recovered as plasmid DNAs (plasmid: M13K07; Gibco BRL).
  • the nucleotide sequence of human LOX- 1 cDNA inserted in each clone was determined using a commercially available kit (Dye Primer Cycle Sequencing FS Core Kit; Perkin Elmer Applied Biosystems) and a sequencer (ABI Prism 373A; Perkin Elmer Applied Biosystems). According to the sequencing results, the obtained cDNAs were confirmed to encode the entire human LOX-1.
  • a chimeric protein (hLOX-Fc) comprising the soluble region of human LOX-1 (65 th to 273 rd amino acid region) and human IgG-Fc was prepared from recombinant cells derived from monkey kidney cell line COS7 as a host with the isolated human cDNA in the same way as in Example ⁇ 1-1>.
  • the recombinant expression vector was introduced into Chinese hamster ovarian cells (CHO cell) by electroporation (960° F., 320 V) according to the conventional method.
  • the cells were cultured in RPMI1640 medium containing geneticin (0.8 mg/ml; Gibco BRL) and 10% FCS to select drug-resistant transformants.
  • a cDNA encoding the extracellular region of human LOX-1 (65 th to 273 rd amino acid region) was prepared by PCR using the full-length cDNA as a template and using a pair of primers designed based on the cDNA sequence encoding the full-length human LOX-1.
  • the resulting CDNA was inserted into a commercially available expression vector, pFLAGCMV-1 (Kodak).
  • FLAG refers to a peptide sequence tag that is attached to the N terminus of a protein encoded by a gene of interest to be inserted into a vector.
  • FLAG is attached to the N terminus of a recombinant protein of interest, which is obtained by culturing transformants prepared through transformation with a recombinant protein expression vector constructed by inserting the gene of interest into a plasmid.
  • the recombinant protein prepared in this Example is a soluble human LOX-1 recombinant protein containing a FLAG peptide at the N terminus.
  • pFLAGCMV in which the cDNA encoding the extracellular region of human LOX-1 obtained as described above had been inserted, was introduced into cells of monkey kidney cell line COS7 by electroporation (960 ⁇ F, 300 V) according to the conventional method. The cells were cultured in FCS-coated culture dishes containing serum-free ASF104 medium (Ajinomoto), and then the culture supernatant was recovered.
  • the recovered culture supernatant was loaded onto a column filled with anti-FLAG antibody affinity gel (Kodak). After the column was washed with TBS, elution was carried out with 0.1 M glycine-HCl (pH 3.0; 0.9 ml/fraction). Immediately after elution, the eluate was neutralized with 1 M Tris-HCl (pH 9.0). The recovered elution fractions were subjected to SDS-gel electrophoresis to identify fractions containing FLAG-attached soluble human LOX-1 protein (FLAG-hLOX-1).
  • FLAG-bLOX-1 containing a FLAG peptide at the N terminus of the extracellular region of bovine oxidized LDL receptor (amino acid No: 61-270) was prepared by the same procedure as described above.
  • the human LOX-1-expressing CHO cells prepared as described above were treated with 5 mM EDTA-PBS (at room temperature for 5 minutes), and then were suspended in a buffer containing protease inhibitors (25 mM HEPES (pH 7.4), 10 mM MgCl 2 , 0.25 M sucrose, and protease inhibitor (containing 10 U/ml aprotinine, 2 ⁇ g/ml pepstatin, 50 ⁇ g/ml leupeptin, and 0.35 mg/ml PMSF)).
  • protease inhibitors 25 mM HEPES (pH 7.4)
  • 10 mM MgCl 2 0.25 M sucrose
  • protease inhibitor containing 10 U/ml aprotinine, 2 ⁇ g/ml pepstatin, 50 ⁇ g/ml leupeptin, and 0.35 mg/ml PMSF
  • the Supernatant was recovered and ultracentrifuged at 100,000 g for 1 hour at 4° C.
  • the precipitated membrane fraction was collected, and then suspended in phosphate buffer.
  • the resulting suspension was stored at ⁇ 20° C.
  • the suspension was used as an antigen (immunogen) in preparing human antibodies of the present invention described hereinafter.
  • the monoclonal antibodies prepared in this Example were prepared according to a typical method as described in “JIKKEN IGAKU (supplement); Handbook for Cell Engineering, (T. Kuroki et al. eds., Yodosha Co., pp 66-74, 1992)”, “Introductory Manual for Monoclonal Antibody Experiments (T. Ando et al., Kodansha, 1991)”, etc.
  • Human oxidized LDL receptor used as the immunogen was the membrane fraction prepared from human LOX-1-expressing CHO cells prepared as described above.
  • the human antibody-producing transgenic mouse which had been created by the above-mentioned method, was used as the animal to be immunized (Nature Genetics, Vol.7, p.13-21, 1994; Nature Genetics, Vol.15, p.146-156, 1997; Published Japanese Translation of International Publication No. Hei 4-504365; Published Japanese Translation of International Publication No. Hei 7-509137; Nikkei Science, June issue, pp. 40-50, 1995, and such).
  • lymph nodes were collected from the below-knee region, inguinal region, and iliac bone of each mouse.
  • the obtained lymph node cells were fused with mouse myeloma P3/X63-AG8.653 cells (ATCC No: CRL-1580) by mixing them at a ratio of 5:1 and using polyethylene glycol 1500 (Boehringer-Manheim) as a fusing agent.
  • Many hybridomas were obtained by drug selection in an Excel301 medium containing HAT (Sigma) and 10% FCS.
  • Hybridomas producing human monoclonal antibodies against human oxidized LDL receptor were obtained by screening the hybridomas prepared as described above by ELISA as described below.
  • COS7 cells expressing soluble recombinant human LOX-Fc chimera protein prepared as described above were cultured, and then the soluble recombinant human LOX-FC chimera protein (hLOX-Fc) was purified from the collected culture supernatant using a Protein A column (Pharmacia).
  • hLOX-Fc 50 ⁇ l/well; 4 Ag/ml in PBS was added to each well of 96-well ELISA microtiter plates (Coaster), and the plates were incubated at 37° C. for one hour to allow the microtiter plate to adsorb hLOX-Fc.
  • each hybridoma culture 50 ⁇ l was added to each well, and the plates were incubated for one hour. Then, each well was washed three times with the phosphate buffer containing 0.1% Tween20.
  • TMB tetramethylbenzidine
  • TMB tetramethylbenzidine
  • oxidized LDL from the resulting purified LDL, a solution in which the concentrations of purified LDL and copper sulfate (CuSO 4 ) had been adjusted to 3 mg/ml and 75 M, respectively, was incubated in a CO 2 incubator for 20 hours. Then, the solution was dialyzed against a 0.15 M sodium chloride solution containing EDTA (the outer dialysate was changed more than once) to obtain human oxidized LDL.
  • the concentration of protein estimated with a BCA protein assay kit (PIERCE) was 2.32 mg/ml.
  • the obtained human oxidized LDL was labeled with a commercially available labeling substance (abbreviated as “DiI”; 1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine-perclorate Funakoshi) according to the manual for the experiment procedure to prepare DiI-human oxidized LDL.
  • DiI labeling substance
  • the culture supernatant (180 ⁇ l/well) was transferred from each well to another 96-well microplate and subjected to fluorescence analysis using a Fluoroscan II (Labsystems) (emission wavelength: 590 nm; excitation wavelength: 544 nm).
  • H chain human monoclonal antibody
  • commercially available peroxidase-conjugated anti-human IgG-Fc antibody or anti-human IgM antibody was used as the secondary antibody.
  • hybridoma clones (1 to 2 ⁇ 10 6 cell/ml each) conditioned in ASF104 medium (Ajinomoto) containing 10% Ultra Low Bovine IgG FBS (GIBCO-BRL), was plated and cultured in Integra Cell Line 1000 (INTEGRA CL1000, Integra Bioscience). After a7 to 10-day culture, when the density of culture cells reached about 1 ⁇ 10 8 cells/ml, the supernatant of each hybridoma culture was recovered.
  • hybridoma cultures were centrifuged (at 3,000 rpm for ten minutes) and each of the obtained supernatants was loaded onto a HiTrapProteinG Column (HiTrap affinity column Protein G; Amersham Pharmacia). Then, the column was washed with phosphate buffer, and a solution (pH 2.0) consisting of 100 mM citric acid and 150 mM NaCl was loaded onto the Protein G column to elute the antibody. The elution was neutralized by adding a solution (pH 9.0) containing 750 mM Tris-HCl, and then filtered with a filter (Millipore) to remove the white precipitation. The obtained filtrate was dialyzed against phosphate buffer (overnight), and filtered with a filter (Millipore). Thus, the human anti-human LOX-1 monoclonal antibodies were purified.
  • HeLa S-3 cells (1 ⁇ 10 4 cells/well; ATCC CLL-2.2; DAINIPPON PHARMACEUTICAL) were plated on a collagen Type I-coated 96-well microtiter plate containing Ham's F12 medium with 10% FCS, and then incubated at 37° C. for 2 days. The culture supernatant was discarded, and the wells were washed with Ham's F12 culture medium containing 0.1% BSA. Recombinant human TNF ⁇ (10 ng/ml ⁇ 200 ⁇ l/well) was added to each well, and then the plate was incubated at 37° C. for 6 hours.
  • Control experiments were carried out by the same procedure using a microtiter plate except that HeLa S-3 cells had been cultured in Ham's F12 culture medium without 10% FCS.
  • HeLa S-3 cells were confirmed to express human LOX-1 at a significantly high level.
  • HeLa S-3 cells (1 ⁇ 10 4 cells/well; ATCC CLL-2.2; DAINIPPON PHARMACEUTICAL) were plated on a collagen Type I-coated 96-well microtiter plate containing Ham's F12 culture medium with 10% FCS, and incubated at 37° C. for 2 days. After the culture supernatant was discarded, each well was washed with Ham's F12 medium containing 0.1% BSA. Recombinant human TNF ⁇ (10 ng/ml ⁇ 200 ⁇ l/well) was added to each well, and the plate was incubated at 37° C. for 6 hours. Then, according to the conventional method, poly (A) RNA was prepared from the total RNA obtained from the cells. The poly(A) + RNA was subjected to agarose gel electrophoresis, and then the RNA was transferred onto a nylon membrane according to the conventional method.
  • prehybridization 2 (18 ml of hybridization solution containing salmon sperm DNA for 3 hours (65° C.));
  • HeLa S-3 cells (5 ⁇ 10 4 cells/well; ATCC CLL-2.2; DAINIPPON PHARMACEUTICAL) were plated on a collagen Type I-coated 24-well microtiter plate containing Ham's F12 culture medium with 10% FCS and incubated at 37° C. for 2 days. After the culture supernatant was discarded, each well was washed with Ham's F12 medium containing 0.1% BSA. Recombinant human TNF ⁇ (10 ng/ml ⁇ 200 ⁇ l/well) was added to each well, and the plate was incubated at 37° C. for 6 hours.
  • association rate constant (ka), dissociation rate constant (kd), and dissociation constant (Kd) of the binding between the various human monoclonal antibodies against anti-human oxidized-LDL receptor (LOX-1) prepared as described above and human LOX-1 were determined using the commercially available assay kit Biacore X (Amersham-Pharmacia).
  • the human LOX-FC chimeric protein prepared as described above was used as human LOX-1 to be immobilized on a sensor chip.
  • 0.01 M HBS buffer containing 0.15 M NaCl, 3 mM EDTA, and 0.005% Detergent P20, pH 7.0
  • 0.01 M HBS buffer containing 0.15 M NaCl, 3 mM EDTA, and 0.005% Detergent P20, pH 7.0
  • Phosphate buffer was injected to the flow cell at a flow rate of 20 ⁇ l/minute, and each of the purified human anti-human LOX-1 monoclonal antibody prepared in the above Example (10 to 50 ⁇ g/ml, 60 ⁇ l) was added thereto.
  • the standard assay condition comprised the association phase for three minutes and dissociation phase for 10 minutes.
  • the human anti-human LOX-1 monoclonal antibodies of the present invention exhibited various types of cross-reactivity profiles.
  • LPS lipopolysaccharide
  • Anti-bovine LOX-1 monoclonal antibodies having cross-reactivity to rat LOX-1 were prepared by the same methods as described above (Biochem. J., Vol.330, Pt.3, p.1417-1422, 1998; GenBank Accession Nos. BAA25785 and AB005900 (SEQ ID NOs: 14 and 15)).
  • the cross-reactivity to rat LOX-1 was tested using the rat LOX-1-expressing recombinant CHO cells prepared in Example 1 by the same procedure as used in cell ELISA (Part 2) of Example 3.
  • the anti-LOX-1 antibodies (2, 5, and 10 mg/kg) or physiological saline (5 mg/kg) were given by intravenous injection to Sprague-Dawley rats (6-7 week-old male; each group contained 6 individuals; SLC), and then the rats were anesthetized with pentobarbital (30 to 50 mg/kg, i.p.).
  • One hour after intravenous injection of antibody (or physiological saline), LPS (lipopolysaccharide; Sigma) dissolved in physiological saline was given through the airway at a dose of 1 mg/kg.
  • Physiological saline was given to the control group of normal rats through the airway.
  • the BALF was allowed to stand on ice, and then centrifuged at 1000 rpm for 10 minutes at 4° C. After centrifugation, the resulting supernatant was discarded by decantation, and 0.5 ml of the BALF recovering solution was added to the precipitate and gently suspended. The number of leukocytes in the suspension was counted with an automatic hemocyte counter Sysmex F800 (Nihon Kohden).
  • Either an anti-LOX-1 antibody (10 mg/kg) or physiological saline (10 mg/kg) was given by intravenous injection to Sprague-Dawley rats (200 g; SLC).
  • One hour after intravenous injection of the antibody (or physiological saline), LPS (lipopolysaccharide; Sigma) dissolved in physiological saline was given to the footpad of the rats at a dose of 1 mg/kg.
  • Physiological saline was given to the control group of normal rats to the footpad.
  • Sprague-Dawley rats male, approximately 300 g; SLC
  • pentobarbital (30 to 50 mg/kg, i.p.)
  • the carotid artery and external carotid artery were exposed by surgery, and then both arteries were ligated temporarily to stop the blood flow.
  • the external artery was punctured, and a 2F balloon catheter (Baxter) was inserted into the artery.
  • Shear stress was given to the vascular endothelium of the artery by using the pressure of 0.4-ml air sent into the artery; the air bubble was allowed to move three times back and forth.
  • the antibody (10 mg/kg) was given by intravenous injection 4 times every 3 days.
  • the rats were again anesthetized with pentobarbital (30 to 50 mg/kg, i.p.), and then rat tissues were fixed by refusing 4% formaldehyde/phosphate buffer.
  • the carotid artery was excised from the rats.
  • the carotid artery was embedded in paraffin, and 6 sections were prepared from a single sample. The sections were stained by Elastica-van Gieson staining.
  • the thickening of vascular endothelium in each section was evaluated using the NIH analyzing system to estimate the areal ratio between the endothelium and media. Two sections showing significant thickening were selected and the averaged value of the two was defined as the thickening level of the sample.
  • the anti-LOX-1 monoclonal antibody (10 mg/kg) prepared in the Example described above was given by intravenous injection, one hour before the irradiation with the xenon lamp.
  • the anti-LOX-1 antibody significantly suppressed the thrombus formation.
  • human monoclonal antibodies of the present invention binding to human oxidized LDL receptor (hLOX-1) are derived from humans, they have no antigenicity towards humans, which is a major therapeutic problem (side effect) in medical treatment using antibody pharmaceuticals comprised of antibodies derived from non-human mammals, such as mice.
  • HAMA human anti-mouse antigenicity
  • HAMA human anti-mouse antigenicity
  • human LOX-1 for example, modified LDLs such as oxidized LDLs, senescent erythrocytes, apoptotic
  • LOX-1 ligands for example, arteriosclerosis, thrombocytopenia, kidney disease, various types of inflammation (for example, myocardial ischemic reperfusion injury, inflammatory reactions after percutaneous transluminal coronary recanalization (PTCR) or percutaneous transluminal coronary angioplasty (PTCA)), vessel restenosis after PTCA and PTCR, and thrombus formation in the blood vessels (e.g., artery)by suppressing and inhibiting the onset and/or progress of the diseases.
  • PTCR percutaneous transluminal coronary recanalization
  • PTCA percutaneous transluminal coronary angioplasty

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Pain & Pain Management (AREA)
  • Obesity (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
US10/220,511 2000-03-02 2001-03-02 Human monoclonal antibodies against oxidized ldl receptor and medicinal use thereof Abandoned US20030143226A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/740,857 US7993643B2 (en) 2000-03-02 2007-04-26 Uses of human monoclonal antibodies against oxidized LDL receptor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000057745 2000-03-02
JP2000-057745 2000-03-02
JP2000-333116 2000-10-31
JP2000333116 2000-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/740,857 Division US7993643B2 (en) 2000-03-02 2007-04-26 Uses of human monoclonal antibodies against oxidized LDL receptor

Publications (1)

Publication Number Publication Date
US20030143226A1 true US20030143226A1 (en) 2003-07-31

Family

ID=26586651

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/220,511 Abandoned US20030143226A1 (en) 2000-03-02 2001-03-02 Human monoclonal antibodies against oxidized ldl receptor and medicinal use thereof
US11/740,857 Expired - Fee Related US7993643B2 (en) 2000-03-02 2007-04-26 Uses of human monoclonal antibodies against oxidized LDL receptor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/740,857 Expired - Fee Related US7993643B2 (en) 2000-03-02 2007-04-26 Uses of human monoclonal antibodies against oxidized LDL receptor

Country Status (6)

Country Link
US (2) US20030143226A1 (fr)
EP (1) EP1418234A4 (fr)
JP (1) JP2013237670A (fr)
AU (1) AU784677B2 (fr)
CA (1) CA2401993A1 (fr)
WO (1) WO2001064862A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185039A1 (en) * 2002-08-30 2004-09-23 Heinz Kohler Therapeutic applications of noncovalent dimerizing antibodies
US20040209294A1 (en) * 2002-09-02 2004-10-21 National Food Research Institute Method to produce a receptor chip using biotinylated protein
US20050287154A1 (en) * 1998-05-04 2005-12-29 Heinz Kohler Autophilic antibodies and method of making and using same
EP1975614A1 (fr) * 2005-12-22 2008-10-01 Shionogi Co., Ltd. Procédé de prédiction de pronostic de syndrome coronaire aigu
US20090208418A1 (en) * 2005-04-29 2009-08-20 Innexus Biotechnology Internaltional Ltd. Superantibody synthesis and use in detection, prevention and treatment of disease
US20090274710A1 (en) * 1997-09-19 2009-11-05 Innexus Biotechnology International Limited Trans-membrane-antibody induced inhibition of apoptosis
WO2010010119A1 (fr) * 2008-07-22 2010-01-28 Ablynx Nv Séquences d’acides aminés dirigées contre des récepteurs de désactiveurs multicibles et polypeptides
TWI556826B (zh) * 2007-02-23 2016-11-11 貝勒研究協會 經由樹突狀細胞凝集素樣氧化型低密度脂蛋白受體-1(lox-1)之人類抗原呈現細胞活化
CN108064243A (zh) * 2014-10-01 2018-05-22 免疫医疗有限公司 对lox1具有特异性的结合蛋白及其用途
US9982046B2 (en) 2013-06-21 2018-05-29 Novartis Ag Methods of treating cardiovascular disorders with lectin-like oxidized LDL receptor 1 antibodies
US9988455B2 (en) 2013-06-21 2018-06-05 Novartis Ag Methods of treating cardiovascular disorders with lectin-like oxidized LDL receptor 1 antibodies
US10434141B2 (en) 2016-05-31 2019-10-08 Abcentra, Llc Methods for treating systemic lupus erythematosus with an anti-apolipoprotein B antibody
US10858422B2 (en) 2016-05-31 2020-12-08 Abcentra, Llc Methods for treating systemic lupus erythematosus with an anti-apolipoprotein B antibody

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704709B2 (ja) * 2004-08-24 2011-06-22 株式会社テクノメディカ 抗8−ヒドロキシ−2’−デオキシグアノシンモノクローナル抗体及びそれを産生するハイブリドーマ
CN102675461A (zh) * 2006-07-28 2012-09-19 盐野义制药株式会社 针对可溶型lox-1的单克隆抗体
TWI422594B (zh) 2007-02-02 2014-01-11 Baylor Res Inst 經由樹狀細胞去唾液酸糖蛋白受體(dc-asgpr)接合抗原呈現細胞之藥劑
EP2444492A4 (fr) 2009-06-18 2013-12-18 Hiroshima Bio Medical Co Ltd Anticorps anti-lox-1 issu du poulet
CA2884430A1 (fr) * 2012-09-07 2014-03-13 Baylor Research Institute Compositions de vaccin contre le vih et procedes associes
JP6362209B2 (ja) * 2013-12-27 2018-07-25 国立研究開発法人国立循環器病研究センター 抗血液凝固剤
IL300029A (en) 2014-05-16 2023-03-01 Baylor Res Institute Methods and preparations for the treatment of autoimmune and inflammatory conditions
CN107216390B (zh) * 2017-07-05 2020-08-21 吉林大学 抗lox-1人源单链抗体及其制备方法和应用
WO2022018195A1 (fr) 2020-07-23 2022-01-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Procédés de pronostic et de surveillance de la forme critique d'une infection à coronavirus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620687A (en) * 1993-02-25 1997-04-15 Zymogenetics, Inc. Inhibition of intimal hyperplasia using antibodies to PDGF beta receptors
US5945308A (en) * 1998-04-03 1999-08-31 Incyte Pharmaceuticals, Inc. Human oxidized LDL receptor
US5962260A (en) * 1994-11-30 1999-10-05 Nippon Chemiphar Co., Ltd. Recombinant production of human and bovine receptors for modified low-density lipoprotein
US20010053539A1 (en) * 1990-06-28 2001-12-20 The General Hospital Corporation Fusion proteins with immunoglobulin portions, the preparation and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8928874D0 (en) * 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
EP1690935A3 (fr) 1990-01-12 2008-07-30 Abgenix, Inc. Génération d'anticorps xenogéniques
EP0464533B1 (fr) 1990-06-28 1998-07-29 Hoechst Aktiengesellschaft Protéines fusionnées avec des portions d'immunoglobulines, leurs production et utilisation
JPH09121859A (ja) 1995-11-01 1997-05-13 Hagiwara Yoshihide ヒト抗体遺伝子を含む新規プラスミド
JPH11127855A (ja) 1997-10-27 1999-05-18 Japan Energy Corp 組換え型抗ヒトTNF−αヒトモノクローナル抗体
JP2002017353A (ja) * 1997-12-19 2002-01-22 Japan Tobacco Inc 変性ldlの定量方法
JP4497586B2 (ja) * 1998-08-06 2010-07-07 達也 沢村 酸化ldl受容体に対する抗体を含んでなる医薬組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053539A1 (en) * 1990-06-28 2001-12-20 The General Hospital Corporation Fusion proteins with immunoglobulin portions, the preparation and use thereof
US5620687A (en) * 1993-02-25 1997-04-15 Zymogenetics, Inc. Inhibition of intimal hyperplasia using antibodies to PDGF beta receptors
US5962260A (en) * 1994-11-30 1999-10-05 Nippon Chemiphar Co., Ltd. Recombinant production of human and bovine receptors for modified low-density lipoprotein
US5945308A (en) * 1998-04-03 1999-08-31 Incyte Pharmaceuticals, Inc. Human oxidized LDL receptor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274710A1 (en) * 1997-09-19 2009-11-05 Innexus Biotechnology International Limited Trans-membrane-antibody induced inhibition of apoptosis
US20050287154A1 (en) * 1998-05-04 2005-12-29 Heinz Kohler Autophilic antibodies and method of making and using same
US7569674B2 (en) 1998-05-04 2009-08-04 Innexus Biotechnology International Limited Autophilic antibodies
US20040185039A1 (en) * 2002-08-30 2004-09-23 Heinz Kohler Therapeutic applications of noncovalent dimerizing antibodies
US20100167340A1 (en) * 2002-09-02 2010-07-01 National Food Research Institute Method to produce a receptor chip using biotinylated protein
US20040209294A1 (en) * 2002-09-02 2004-10-21 National Food Research Institute Method to produce a receptor chip using biotinylated protein
US8759007B2 (en) 2002-09-02 2014-06-24 National Food Research Institute Method to produce a receptor chip using biotinylated protein
US20090208418A1 (en) * 2005-04-29 2009-08-20 Innexus Biotechnology Internaltional Ltd. Superantibody synthesis and use in detection, prevention and treatment of disease
US20110045504A1 (en) * 2005-12-22 2011-02-24 Noriaki Kume Prognostic Prediction Method for Acute Coronary Syndrome
EP1975614A1 (fr) * 2005-12-22 2008-10-01 Shionogi Co., Ltd. Procédé de prédiction de pronostic de syndrome coronaire aigu
EP1975614A4 (fr) * 2005-12-22 2010-06-09 Shionogi & Co Procédé de prédiction de pronostic de syndrome coronaire aigu
AU2006328412B2 (en) * 2005-12-22 2011-11-24 Shionogi & Co., Ltd. Prognostic prediction method for acute coronary syndrome
TWI556826B (zh) * 2007-02-23 2016-11-11 貝勒研究協會 經由樹突狀細胞凝集素樣氧化型低密度脂蛋白受體-1(lox-1)之人類抗原呈現細胞活化
AU2009273251B2 (en) * 2008-07-22 2014-12-18 Ablynx Nv Amino acid sequences directed against multitarget scavenger receptors and polypeptides
US9034325B2 (en) 2008-07-22 2015-05-19 Ablynx N.V. Amino acid sequences directed against multitarget scavenger receptors and polypeptides
WO2010010119A1 (fr) * 2008-07-22 2010-01-28 Ablynx Nv Séquences d’acides aminés dirigées contre des récepteurs de désactiveurs multicibles et polypeptides
US9982046B2 (en) 2013-06-21 2018-05-29 Novartis Ag Methods of treating cardiovascular disorders with lectin-like oxidized LDL receptor 1 antibodies
US9988455B2 (en) 2013-06-21 2018-06-05 Novartis Ag Methods of treating cardiovascular disorders with lectin-like oxidized LDL receptor 1 antibodies
US10870698B2 (en) 2013-06-21 2020-12-22 Novartis Ag Nucleic acids encoding lectin-like oxidized LDL receptor 1 antibodies
CN108064243A (zh) * 2014-10-01 2018-05-22 免疫医疗有限公司 对lox1具有特异性的结合蛋白及其用途
US11078284B2 (en) 2014-10-01 2021-08-03 Medimmune Limited Antibodies specific for LOX1 and use in treatment of cardiovascular disorders
US10434141B2 (en) 2016-05-31 2019-10-08 Abcentra, Llc Methods for treating systemic lupus erythematosus with an anti-apolipoprotein B antibody
US10858422B2 (en) 2016-05-31 2020-12-08 Abcentra, Llc Methods for treating systemic lupus erythematosus with an anti-apolipoprotein B antibody

Also Published As

Publication number Publication date
JP2013237670A (ja) 2013-11-28
AU3606301A (en) 2001-09-12
US20080241134A1 (en) 2008-10-02
US7993643B2 (en) 2011-08-09
AU784677B2 (en) 2006-05-25
CA2401993A1 (fr) 2001-09-07
EP1418234A4 (fr) 2005-03-16
WO2001064862A1 (fr) 2001-09-07
EP1418234A1 (fr) 2004-05-12

Similar Documents

Publication Publication Date Title
US7993643B2 (en) Uses of human monoclonal antibodies against oxidized LDL receptor
US7579186B1 (en) Human monoclonal antibody against TGF-β type II receptor and medicinal use thereof
US7541438B2 (en) Monoclonal antibody against connective tissue growth factor and medicinal uses thereof
US8071104B2 (en) Neovascular-targeted immunoconjugates
JP2002525094A (ja) Tie2アンタゴニスト抗体
JP4497586B2 (ja) 酸化ldl受容体に対する抗体を含んでなる医薬組成物
JPWO2002033094A1 (ja) Vplfの活性を阻害する抗体
AU2006203702B2 (en) Human monoclonal antibodies against oxidized LDL receptor and medicinal use thereof
EP0974651A1 (fr) Proteine physiologiquement active provenant de mammiferes
US6740735B1 (en) DNA encoding human apoB48R: a monocyte-macrophage apolipoprotein B48 receptor gene and protein
PL193670B1 (pl) Sposób przygotowania bydlęcego CD14 z serwatki siary bydlęcej, sposób bezpośredniej aktywacji komórek B in vitro, sposób bezpośredniej indukcji wzrostu i różnicowania komórek B in vitro do komórek wydzielających immunoglobulinę na wysokim poziomie, sposób przygotowania czystego białka lub ko-i/lub posttranslacyjnie zmodyfikowanej postaci białka, zastosowanie polipeptydu, sposób wytwarzania mieszanki dla niemowląt, sposób wytwarzania szczepionki oraz zestaw do przygotowania szczepienia
JP4537507B2 (ja) 結合組織増殖因子に対するモノクローナル抗体及びその医薬用途
WO2006019193A1 (fr) Utilisation d'un inhibiteur et d'un promoteur
JP2004121001A (ja) TGF−βII型受容体に対する高親和性モノクローナル抗体
EP1004665A1 (fr) Proteines du type recepteurs accepteurs
AU2004202578B2 (en) Extracellular matrix signalling molecules
JP2000037190A (ja) 哺乳動物由来組織特異的生理活性タンパク

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABGENIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOBAYASHI, YUKO;TSUJI, HIROYUKI;KAMADA, MASAFUMI;AND OTHERS;REEL/FRAME:013566/0989;SIGNING DATES FROM 20020913 TO 20021010

AS Assignment

Owner name: AMGEN FREMONT INC., CALIFORNIA

Free format text: MERGER;ASSIGNORS:ATHLETICS MERGER SUB, INC.;ABGENIX, INC.;REEL/FRAME:017870/0378

Effective date: 20060331

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION