US20030029272A1 - Iron powder composition - Google Patents

Iron powder composition Download PDF

Info

Publication number
US20030029272A1
US20030029272A1 US09/852,024 US85202401A US2003029272A1 US 20030029272 A1 US20030029272 A1 US 20030029272A1 US 85202401 A US85202401 A US 85202401A US 2003029272 A1 US2003029272 A1 US 2003029272A1
Authority
US
United States
Prior art keywords
powder
lubricant
powder composition
atoms
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/852,024
Other languages
English (en)
Inventor
Hilmar Vidarsson
Per Knutsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoganas AB
Original Assignee
Hoganas AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoganas AB filed Critical Hoganas AB
Assigned to HOGANAS AB reassignment HOGANAS AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KNUTSSON, PER, VIDARSSON, HILMAR
Priority to US10/201,974 priority Critical patent/US6755885B2/en
Publication of US20030029272A1 publication Critical patent/US20030029272A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/68Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F2003/145Both compacting and sintering simultaneously by warm compacting, below debindering temperature

Definitions

  • the present invention relates to metal powder compositions. Particularly the invention relates to iron-based compositions suitable for compaction at elevated temperatures.
  • the powder metallurgy art generally uses different standard temperature regimes for the compaction of a metal powder to form a metal component. These include chill-pressing (pressing below ambient temperatures), cold-pressing (pressing at ambient temperatures), hot-pressing (pressing at temperatures above those at which the metal powder is capable of retaining work-hardening), and warm-pressing (pressing at temperatures between cold-pressing and hot-pressing).
  • the lubricant according to the U.S. Pat. No. 5,744,433 contains an oligomer of amide type, which has a weight-average molecular weight Mw of 30,000 at the most. Very high densities and green strengths may be obtained by warm compacting powder compositions when the lubricant has a molecular weight above 4000, the preferred lubricant molecule having a molecular weight of about 6500. It has however been found that this lubricant has a tendency of sticking to the die wall, which requires frequent cleaning of the die. Another disadvantage is that the obtained green bodies are stained.
  • the amide lubricant consists of the reaction product of a monocarboxylic acid, a dicarboxylic acid and a diamine.
  • the only lubricant tested according to this patent is ADVAWAX® 450, the composition of which is not described in detail but the reaction product obtained includes i.a. ethylene bisstearamide according to Chemis-CIVS.
  • Our experience of this product is that it is difficult to obtain a constant composition and quality, which in turn may result in components of varying quality. This is may cause problems when the lubricant is used in large scale industrial production.
  • An object of the present invention is to reduce or eliminate current problems associated with large scale production.
  • a second object is to provide a new type of lubricant useful in metal compositions intended for compaction at elevated temperatures.
  • a third object is to provide a metal powder for producing components without stains.
  • a fourth object is to provide a metal composition including lubricant, which during the compaction of the metal powder does not deposit on the die wall.
  • a powder composition comprising an iron-based powder and new oligomer amide type lubricant.
  • the composition may also include one or more additives, such as binders, flow agents, processing aids and hard phases.
  • the warm compaction may be performed by mixing an iron-based powder with the oligomer amide type lubricant and optionally a binder, preheating the powder composition and compacting the metal-powder composition in a pre-heated tool.
  • the new amide type lubricant used according to the present invention may be represented by the following formula
  • D is —H, COR, CNHR, wherein R is a straight or branched aliphatic or aromatic group including 2-21 C atoms
  • C is the group —NH(CH) n CO—
  • A is alkylen having 4-16 C atoms optionally including up to 4 O atoms
  • m is an integer 1-10
  • n is an integer 5-11.
  • D is COR, wherein R is an aliphatic group 16-20 C atoms, C is —NH(CH) n CO— wherein n is 5 or 11; B is amino; A is alkylene having 6-14 C atoms optionally including up to 3 O atoms, and m is an integer 2-5.
  • Examples of preferred lubricants to be used in the iron based compositions according to the present invention are:
  • the preferred lubricants have a molecular weight between 1000 and 5000, most preferably between 1500 and 3000.
  • the lubricant molecule may be prepared according standard procedures for amide oligomer as described in e.g. “Principles of Polymerization” third edition by George Odian (John Wiley & Sons, Inc.).
  • iron-based powder encompasses powder essentially made up of pure iron; iron powder that has been prealloyed with other substances improving the strength, the hardening properties, the electromagnetic properties or other desirable properties of the end products; and particles of iron mixed with particles of such alloying elements (diffusion annealed mixture or purely mechanical mixture).
  • alloying elements are copper, molybdenum, chromium, manganese, phosphorus, carbon in the form of graphite, and tungsten, which are used either separately or in combination, e.g. in the form of compounds (Fe 3 P and FeMo).
  • the lubricants according to the invention are used in combination with iron-based powders having high compressability.
  • such powders have a low carbon content, preferably below 0.04% by weight.
  • Such powders include e.g. Distaloy AE, Astaloy Mo and ASC 100.29, all of which are commercially available from Hoganas AB, Sweden.
  • This lubricant which is added to the iron-based powder is preferably in the form of a solid powder, can make up 0.1-1% by weight of the metal-powder composition, preferably 0.2-0.8% by weight, based on the total amount of the metal-powder composition.
  • the possibility of using the lubricant according to the present invention in low amounts is an especially advantageous feature of the invention, since it enables high densities to be achieved.
  • the new powder composition may contain one or more additives such as binders, flow agents, processing aids and hard phases.
  • the binder may be added to the powder composition in accordance with the method described in U.S. Pat. No. 5,368,630 (which is hereby incorporated by reference) and may be organic compounds such as cellulose ester resins, hydroxyalkyl cellulose resins having 1-4 carbon atoms in the alkyl group, or thermoplastic phenolic resins.
  • a type of flow agent which can be used according to the present invention, is disclosed in the U.S. Pat. No. 5,782,954 (which is hereby incorporated by reference).
  • the flow agent which is preferably a silicon dioxide, is used in an amount from about 0.005 to about 2 percent by weight, preferably from about 0.01 to about 1 percent by weight, and more preferably from about 0.025 to about 0.5 percent by weight, based on the total weight of the metallurgical composition.
  • the flow agent should have an average particle size below about 40 nanometers.
  • Preferred silicon oxides are the silicon dioxide materials, both hydrophilic and hydrophobic forms, commercially available as the Aerosil line of silicon dioxides, such as the Aerosil 200 and R812 products, from Degussa Corporation.
  • the processing aids used in the metal-powder composition may consist of talc, forsterite, manganese sulphide, sulphur, molybdenum disulphide, boron nitride, tellurium, selenium, barium difluoride and calcium difluoride, which are used either separately or in combination.
  • the hard phases used in the metal-powder composition may consist of carbides of tungsten, vanadium, titanium, niobium, chromium, molybdenum, tantalum and zirconium, nitrides of aluminium, titanium, vanadium, molybdenum and chromium, Al 2 O 3 , and various ceramic materials.
  • the iron-based powder was Distaloy AE available from Höganäs AB, Sweden. This powder was mixed with 0.3% by weight of ultrafine graphite and 0.6% by weight of a lubricant according to the present invention. A flow enhancing agent Aerosil® 200 was added in an amount of 0.06% by weight.
  • the new oligomer amide type lubricant according to the present invention is superior not only as regards the ejection force, the ejection energy, the springback but also when it comes to the appearance of the compacted component. Additionally the lubricant does not deposit on the die wall.
  • the lubricant according to the present invention is superior as regards the ejection force, the ejection energy and the springback.
  • the iron-based powder was Distaloy AE available from Höganäs AB, Sweden.
  • This powder was mixed with 0.3% by weight of ultrafine graphite and 0.6% by weight of a lubricant according to the present invention.
  • a flow enhancing agent Aerosil was added in an amount of 0.06% by weight.
  • the following example discloses a comparison of densities of green bodies obtained with the oligomer amide lubricants which are used according to the present invention and which have different molecular weights.
  • the iron-based powder was Distaloy AE available from Höganäs AB, Sweden.
  • This powder was mixed with 0.3% by weight of ultrafine graphite and 0.6% by weight of a lubricant according to the present invention.
  • a flow enhancing agent Aerosil was added in an amount of 0.06% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)
  • Powder Metallurgy (AREA)
US09/852,024 2001-04-17 2001-05-10 Iron powder composition Abandoned US20030029272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/201,974 US6755885B2 (en) 2001-04-17 2002-07-25 Iron powder composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0101344A SE0101344D0 (sv) 2001-04-17 2001-04-17 Iron powder composition
SE0101344-0 2001-04-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2002/000762 Continuation WO2002083345A1 (en) 2001-04-17 2002-04-17 Iron powder composition including an amide type lubricant and a method to prepare it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/201,974 Continuation-In-Part US6755885B2 (en) 2001-04-17 2002-07-25 Iron powder composition

Publications (1)

Publication Number Publication Date
US20030029272A1 true US20030029272A1 (en) 2003-02-13

Family

ID=20283795

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/852,024 Abandoned US20030029272A1 (en) 2001-04-17 2001-05-10 Iron powder composition

Country Status (18)

Country Link
US (1) US20030029272A1 (ko)
EP (1) EP1390171B1 (ko)
JP (1) JP3908167B2 (ko)
KR (1) KR100838925B1 (ko)
CN (1) CN1265920C (ko)
AT (1) ATE281899T1 (ko)
AU (1) AU2002253770B2 (ko)
BR (1) BR0208914B1 (ko)
CA (1) CA2443481C (ko)
DE (1) DE60201903T2 (ko)
ES (1) ES2229129T3 (ko)
MX (1) MXPA03009487A (ko)
PL (1) PL198679B1 (ko)
RU (1) RU2288072C2 (ko)
SE (1) SE0101344D0 (ko)
TW (1) TWI247041B (ko)
WO (1) WO2002083345A1 (ko)
ZA (1) ZA200307072B (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060081089A1 (en) * 2004-10-19 2006-04-20 Federal-Mogul World Wide, Inc. Sintered alloys for cam lobes and other high wear articles
US20080025863A1 (en) * 2006-07-27 2008-01-31 Salvator Nigarura High carbon surface densified sintered steel products and method of production therefor
US20090131674A1 (en) * 2005-05-20 2009-05-21 Eduard Schmid Polymide oligomers and their use
US20100028646A1 (en) * 2005-05-20 2010-02-04 Ems-Chemie Ag Polyamide molding materials with an improved flowability, the production thereof and its use

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0201825D0 (sv) * 2002-06-14 2002-06-14 Hoeganaes Ab Warm compaction of steel powders
KR100861160B1 (ko) * 2004-06-10 2008-09-30 베일 인코 리미티드 극미 니켈 분말의 분산을 위한 방법 및 조성물
US7169208B2 (en) * 2004-06-10 2007-01-30 Inco Limited Method and composition for dispersing extra-fine nickel powder
JP5841089B2 (ja) * 2013-03-13 2016-01-13 株式会社豊田中央研究所 成形用粉末、潤滑剤濃化粉末および金属部材の製造方法
GB201409250D0 (en) * 2014-05-23 2014-07-09 H Gan S Ab Publ New product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US538630A (en) * 1895-04-30 thomas
US574433A (en) 1897-01-05 keithley
JP2733868B2 (ja) * 1990-09-25 1998-03-30 日立粉末冶金株式会社 粉末冶金用成形潤滑剤
US5368630A (en) 1993-04-13 1994-11-29 Hoeganaes Corporation Metal powder compositions containing binding agents for elevated temperature compaction
SE9401922D0 (sv) * 1994-06-02 1994-06-02 Hoeganaes Ab Lubricant for metal powder compositions, metal powder composition containing th lubricant, method for making sintered products by using the lubricant, and the use of same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060081089A1 (en) * 2004-10-19 2006-04-20 Federal-Mogul World Wide, Inc. Sintered alloys for cam lobes and other high wear articles
US7314498B2 (en) 2004-10-19 2008-01-01 Pmg Ohio Corp. Sintered alloys for cam lobes and other high wear articles
US20090131674A1 (en) * 2005-05-20 2009-05-21 Eduard Schmid Polymide oligomers and their use
US20100028646A1 (en) * 2005-05-20 2010-02-04 Ems-Chemie Ag Polyamide molding materials with an improved flowability, the production thereof and its use
US7786222B2 (en) 2005-05-20 2010-08-31 Ems-Chemie Ag Polyamide oligomers and their use
US7910652B2 (en) 2005-05-20 2011-03-22 Ems-Chemie Ag Polyamide molding materials with an improved flowability, the production thereof and its use
US8138259B2 (en) 2005-05-20 2012-03-20 Ems-Chemie Ag Polyamide molding materials with an improved flowability, the production thereof and its use
US20080025863A1 (en) * 2006-07-27 2008-01-31 Salvator Nigarura High carbon surface densified sintered steel products and method of production therefor
US7722803B2 (en) 2006-07-27 2010-05-25 Pmg Indiana Corp. High carbon surface densified sintered steel products and method of production therefor

Also Published As

Publication number Publication date
JP2004524449A (ja) 2004-08-12
RU2288072C2 (ru) 2006-11-27
AU2002253770B2 (en) 2004-05-27
ATE281899T1 (de) 2004-11-15
JP3908167B2 (ja) 2007-04-25
CA2443481A1 (en) 2002-10-24
TWI247041B (en) 2006-01-11
ES2229129T3 (es) 2005-04-16
DE60201903T2 (de) 2005-11-03
PL198679B1 (pl) 2008-07-31
PL366558A1 (en) 2005-02-07
KR100838925B1 (ko) 2008-06-16
EP1390171B1 (en) 2004-11-10
KR20030085110A (ko) 2003-11-01
CN1265920C (zh) 2006-07-26
BR0208914A (pt) 2004-04-20
BR0208914B1 (pt) 2012-02-07
CN1503706A (zh) 2004-06-09
EP1390171A1 (en) 2004-02-25
SE0101344D0 (sv) 2001-04-17
CA2443481C (en) 2007-03-13
RU2003133290A (ru) 2005-05-10
MXPA03009487A (es) 2004-02-12
ZA200307072B (en) 2004-09-10
WO2002083345A1 (en) 2002-10-24
DE60201903D1 (de) 2004-12-16

Similar Documents

Publication Publication Date Title
EP0762946B1 (en) Metal-powder composition containing a lubricant, method for making sintered products by using the lubricant, and the use of same
JPH07505924A (ja) 新規結合剤/潤滑剤を含有する鉄−基剤粉末組成物
EP1513639B1 (en) Composition and process for warm compaction of stainless steel powders
US20030029272A1 (en) Iron powder composition
US6511945B1 (en) Lubricant powder for powder metallurgy
AU2002253770A1 (en) Iron powder composition including an amide type lubricant and a method to prepare it
EP1387730B1 (en) Iron powder composition including an amide type lubricant and a method to prepare it
US6755885B2 (en) Iron powder composition
EP1554072B1 (en) Powder metallurgy lubricants, compositions, and methods for using the same
EP0996518B1 (en) Method for making sintered products and a metal powder composition therefor
EP1468585B1 (en) Improved powder metallurgy lubricant compositions and methods for using the same
US6872235B2 (en) Iron powder composition
CA2191722C (en) Lubricant for metal-powder compositions, metal-powder composition containing the lubricant, method for making sintered products by using the lubricant, and the use of same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOGANAS AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VIDARSSON, HILMAR;KNUTSSON, PER;REEL/FRAME:011977/0091

Effective date: 20010517

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION