US20020035110A1 - Anti-obesity 1,2,3,4,10,10-a-hexahydropy razino [1,2-a] indoles - Google Patents

Anti-obesity 1,2,3,4,10,10-a-hexahydropy razino [1,2-a] indoles Download PDF

Info

Publication number
US20020035110A1
US20020035110A1 US09/912,949 US91294901A US2002035110A1 US 20020035110 A1 US20020035110 A1 US 20020035110A1 US 91294901 A US91294901 A US 91294901A US 2002035110 A1 US2002035110 A1 US 2002035110A1
Authority
US
United States
Prior art keywords
compound
pyrazino
indole
hexahydro
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/912,949
Other languages
English (en)
Inventor
Jonathan Bentley
Paul Hebeisen
Marc Muller
Hans Richter
Stephan Roever
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vernalis Research Ltd
Hoffmann La Roche Inc
Original Assignee
Vernalis Research Ltd
Hoffmann La Roche Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vernalis Research Ltd, Hoffmann La Roche Inc filed Critical Vernalis Research Ltd
Assigned to VERNALIS RESEARCH LIMITED, A BRITISH COMPANY reassignment VERNALIS RESEARCH LIMITED, A BRITISH COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENTLEY, JONATHAN MARK
Assigned to F. HOFFMAN-LA ROCHE AG A SWISS COMPANY reassignment F. HOFFMAN-LA ROCHE AG A SWISS COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEBEISEN, PAUL, MULLER, MARC, RICHTER, HANS, ROVER, STEPHAN
Assigned to HOFFMANN-LA ROCHE INC. reassignment HOFFMANN-LA ROCHE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: F. HOFFMANN-LA ROCHE AG
Publication of US20020035110A1 publication Critical patent/US20020035110A1/en
Priority to US10/396,242 priority Critical patent/US6933387B2/en
Priority to US11/169,079 priority patent/US7253281B2/en
Priority to US11/649,132 priority patent/US20070106076A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • BMI body mass index
  • m 2 body weight index
  • Overweight is defined as a BMI in the range 25-30 kg/m 2
  • obesity is a BMI greater than 30 kg/m 2 .
  • body fat content is also be defined on the basis of body fat content: greater than 25% and 30% in males and females, respectively.
  • Orlistat a lipase inhibitor
  • Sibutramine a mixed 5-HT/noradrenaline reuptake inhibitor
  • fenfluramine Pierimin®
  • ReduxTM dexfenfluramine
  • mCPP m-chlorophenylpiperazine
  • TFMPP trifluoromethylphenylpiperazine
  • CA-2132887 and CA-2153937 disclose that tricyclic 1-aminoethylpyrrole derivatives and tricyclic 1-aminoethyl pyrazole derivatives bind to 5-HT 2C receptors and may be used in the treatment of obesity.
  • WO-A-98/30548 discloses aminoalkylindazole compounds as 5-HT 2C agonists for the treatment of CNS diseases and appetite regulation disorders.
  • the invention is concerned particularly with compounds of formula I and their pharmaceutically acceptable salts, solvates and esters
  • R 1 , R 2 , R 3 and R 4 are independently hydrogen, halogen, hydroxy, alkyl, cycloalkyl, aralkyl, aryl, alkoxy, alkoxy alkyl, hydroxy alkyl, alkoxy alkoxy alkyl, hydroxyalkoxy alkyl, halo alkyl, halo alkoxy, aryloxy, alkylcarbonyl, arylcarbonyl, alkylthio, arylthio, alkylsulfoxyl, arylsulfoxyl, alkylsulfonyl, arylsulfonyl, amino, nitro, cyano, alkoxycarbonyl, aryloxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonylamino, carboxy, heterocyclyl or R 3 and R 4 form together with the carbon atoms to which they are attached form a 5- to 7-membered
  • R 5 is hydrogen, alkyl or cycloalkyl
  • R 6 is hydrogen, alkyl, hydroxy alkyl, carbamoyl alkyl, alkoxycarbonyl alkyl, aryloxycarbonyl alkyl or —(CH 2 ) n —A;
  • R 7 is hydrogen, alkyl, cycloalkyl, hydroxyalkyl or alkoxyalkyl, whereby R 7 is not hydrogen when R 6 is hydrogen, alkyl, cycloalkyl or 1H-pyrrolo(2,3-b)pyridin-3-ylmethyl;
  • R 8 is hydrogen, alkyl or cycloalkyl
  • A is a heterocyclyl or cycloalkyl ring which ring can be unsubstituted or substituted on a ring carbon atom with a hydroxy, carboxy, oxo, alkanoyloxy alkyl, aryloxycarbonyl or alkylcarbamoyl substituent;
  • n 0, 1, 2 or 3;
  • [0017] are selectively active 5-HT 2 receptor agonists for use in treating obesity and in the use in treating Type I and Type II diabetes.
  • R 12 , R 13 and R 14 are independently hydrogen, halogen, trifluoromethyl, lower alkyl, lower alkoxy lower alkyl, lower alkoxy-lower alkoxy lower alkyl, halo lower alkoxy, lower alkyl-aminocarbonyl, di-lower alkyl aminocarbonyl or cyano and R 17 is lower alkyl or hydroxy lower alkyl;
  • R 22 and R 23 are hydrogen and the other is hydroxy lower alkyl, alkyl lower-alkylaminocarbonyl, di-lower alkylaminocarbonyl, alkoxy lower alkyl, lower alkylcarbonylamino or lower alkoxy-lower alkoxy lower alkyl; or
  • R 22 and R 23 taken together with the carbon atoms to which they are added to form a 4- to 6-membered saturated carbocyclic ring which ring is unsubstituted or lower alkyl substituted and R 27 is lower alkyl;
  • R 12 , R 13 and R 14 are independently hydrogen, halogen, trifluoromethyl, lower alkyl, lower alkoxy lower alkyl, lower alkoxy lower alkoxy lower alkyl, halo lower alkoxy, lower alkyl aminocarbonyl or di-lower alkyl aminocarbonyl, cyano; R 17 is lower alkyl or hydroxy-lower alkyl and
  • R 26 is (CH 2 ) n —Y, hydroxy lower alkyl, lower alkoxycarbonyl lower alkyl or carbamoyl lower alkyl;
  • Y is a saturated 3- to 6-membered carbocyclic ring or a 5- to 7-membered heterocyclic ring containing at most two hetero atoms selected from the group consisting of oxygen, sulfer or nitrogen, which rings can be unsubstituted or substituted on a ring carbon atom with an oxo; and
  • n 0, 1, 2 or 3.
  • the compounds of formula I were all active as 5-HT 2 receptor agonists as determined by the Assay Procedures A-D hereinafter described. In view of this activity, the compounds of this invention are active in treating obesity and diseases related to obesity such as those mentioned hereinbefore and particularly diabetes including Type I and Type II diabetes.
  • alkyl signifies a straight-chain or branched-chain alkyl group with 1 to 8 carbon atoms, preferably a straight or branched-chain alkyl group with 1-4 carbon atoms.
  • straight-chain and branched C 1 -C 8 alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert.-butyl, the isomeric pentyls, the isomeric hexyls, the isomeric heptyls and the isomeric octyls, preferably methyl, ethyl, propyl and isopropyl. Particularly preferred are methyl and ethyl.
  • the preferred alkyl groups are lower alkyl groups containing from 1 to 6 carbon atoms.
  • cycloalkyl or “carbocyclic” ring, alone or in combination, signifies a saturated cycloalkyl ring with 3 to 8, preferably 3 to 6 carbon atoms and most preferably a cycloalkyl ring with 4 to 6 carbon atoms.
  • C 3 -C 8 cycloalkyl examples include cyclopropyl, methyl-cyclopropyl, dimethylcyclopropyl, cyclobutyl, methyl-cyclobutyl, cyclopentyl, methyl-cyclopentyl, cyclohexyl, methylcyclohexyl, dimethyl-cyclohexyl, cycloheptyl and cyclooctyl, preferably cyclopropyl and particularly cyclopentyl.
  • alkoxy signifies a group of the formula alkyl-O— in which the term “alkyl” has the previously given significance, such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec.butoxy and tert.butoxy, preferably methoxy and ethoxy.
  • the preferred alkoxy group is a lower alkoxy? group containing from 1 to 6 carbon atoms.
  • aryloxy alone or in combination, signifies a group of the formula aryl-O—. Phenyloxy is an example of such an aryloxy group. The preferred aryl group is phenyl.
  • haloalkyl signifies an alkyl group as previously defined, with lower alky being preferred, wherein one or several hydrogen atoms, preferably one hydrogen atom have/has been replaced by halogen.
  • haloalkyl groups are trifluoromethyl, pentafluoroethyl and trichloromethyl. Preferred examples are trifluoromethyl and difluoromethyl.
  • haloalkoxy signifies an alkoxy group, with lower alkoxy being preferred, as previously defined, wherein one or several hydrogen atoms, preferably one hydrogen atom have/has been replaced by halogen.
  • haloalkoxy groups are trifluoromethoxy, pentafluoroethoxy and trichloromethoxy. A preferred example is trifluoromethoxy.
  • carbonyl refer to a group of the formula —C(O)—.
  • alkanoyl designates a monovalent alkanoyl substituent derived from an aliphatic hydrocarbon carboxylic acids having the terminal hydroxy group of the carboxylic acid moiety removed.
  • the monovalent alkanoyl groups contain from 2 to 10 carbon atoms with lower alkanoyl groups containing from 2 to 7 carbon atoms being preferred.
  • alkylthio signifies a group of the formula alkyl-S— in which the term “alkyl” has the previously given significance, such as methylthio, ethylthio, n-propylthio, isopropylthio. Preferred are methylthio and ethylthio.
  • arylthio alone or in combination, signifies a group of the formula aryl-S— in which the term “aryl” has the previously given significance. Phenylthio is an example of such an arylthio group.
  • aryl signifies a phenyl or naphthyl group which optionally carries one to three substituents each independently selected from alkyl, alkoxy, halogen, carboxy, alkoxycarbonyl, aminocarbonyl, hydroxy, amino, nitro and the like, such as phenyl, p-tolyl, 4-methoxyphenyl, 4-tert.butoxyphenyl, 4-fluorophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-hydroxyphenyl, 1-naphthyl and 2-naphthyl.
  • Preferred are phenyl, 4-fluorophenyl, 1-naphthyl and 2-naphthyl and particularly phenyl.
  • heterocyclyl signifies either a saturated 4- to 7-membered heterocyclic ring, partially unsaturated or aromatic 5- to 10-membered heterocycle, preferably a 5- or 6-membered ring.
  • the heterocyclic ring can contain from one to three hetero atoms selected from nitrogen, oxygen and sulphur. Generally, such rings containing from one to 2 heteroatoms are preferred, with one heteroatom being particularly preferred. If desired, they can be substituted on one to three carbon atoms by halogen, alkyl, alkoxy, oxo etc. and/or on a secondary nitrogen atom (i.e.
  • —NH— by alkyl, cycloalkyl, aralkoxycarbonyl, alkanoyl, phenyl or phenylalkyl or on a tertiary nitrogen atom (i.e. ⁇ N—) by oxido, with halogen, alkyl, cycloalkyl and alkoxy being preferred.
  • heterocyclyl groups are pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, pyrazoyl, imidazoyl (e.g.
  • 1,2,3,4-tetrahydro-2-quinolyl 1,2,3,4-tetrahydro-2-quinolyl
  • 1,2,3,4-tetrahydroisoquinolyl e.g. 1,2,3,4-tetrahydro-1-oxo-isoquinolyl
  • quinoxalinyl Preferred are oxazolidinone, cyclobutanonyl, [1,2,4]triazol-3-yl, [1,2,4]oxadiazol-3-yl, [1,2,4]triazol-3-one-5-yl, tetrazolyl, [1,3,4]oxadiazol-2-yl, [1,3,4]thiadiazol-2-yl, 1H-imidazol-2-yl, 1H-imidazol-4-yl.
  • heterocyclyl are [1,2,4]oxadiazol-3-yl or cyclobutanon-2-yl.
  • amino signifies a primary, secondary or tertiary amino group bonded via the nitrogen atom, with the secondary amino group carrying an alkyl or cycloalkyl substituent and the tertiary amino group carrying two similar or different alkyl or cycloalkyl substituents or the two nitrogen substitutents together forming a ring, such as, for example, —NH 2 , methylamino, ethylamino, dimethylamino, diethylamino, methyl-ethylamino, pyrrolidin-1-yl or piperidino etc., preferably amino, dimethylamino and diethylamino and particularly primary amino.
  • halogen signifies fluorine, chlorine, bromine or iodine and preferably fluorine, chlorine or bromine and particularly chlorine and bromine.
  • carboxyalkyl alone or in combination, signifies an alkyl group as previously described in which one hydrogen atom has been replaced by a carboxy group.
  • the carboxymethyl group is preferred and particularly carboxyethyl.
  • cycloalkanonyl refers to a cycloalkyl ring, wherein one carbon ring atom has been replaced by a —C(O)— group.
  • cycloalkanoyl designates a saturated carbocyclic ring which is substituted on one ring carbon atom with an oxo group.
  • the ring contains from 3 to 6 ring members and most perferably 4 to 6 ring members.
  • Compounds of formula I, wherein R 3 and R 4 form together with the carbon atoms to which they are attached a 5 -to 7-membered carbocyclic ring, which is optionally substituted by alkyl comprise one of the following moieties IAA, IBB or ICC:
  • salts refers to those salts which retain the biological effectiveness and properties of the free bases or free acids, which are not biologically or otherwise undesirable.
  • the salts are formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, preferably hydrochloric acid, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxylic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, N-acetylcystein and the like.
  • salts derived from an inorganic base include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium salts and the like.
  • Salts derived from organic bases include, but are not limited to salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, lysine, arginine, N-ethylpiperidine, piperidine, polymine resins and the like.
  • the compound of formula I can also be present in the form of zwitterions.
  • the invention expressly includes pharmaceutically acceptable salts, esters and solvates of compounds according to formula I which includes compounds of formuae I-A, I-B and I-C.
  • the compounds of formula I can be solvated, e.g. hydrated.
  • the solvation can be effected in the course of the manufacturing process or can take place e.g. as a consequence of hygroscopic properties of an initially anhydrous compound of formula I (hydration).
  • pharmaceutically acceptable salts also includes physiologically acceptable solvates.
  • “Pharmaceutically acceptable esters” means that compounds of general formula (I) may be derivatised at functional groups to provide derivatives which are capable of conversion back to the parent compounds in vivo. Examples of such compounds include physiologically acceptable and metabolically labile ester derivatives, such as methoxymethyl esters, methylthiomethyl esters and pivaloyloxymethyl esters. Additionally, any physiologically acceptable equivalents of the compounds of general formula (I), similar to the metabolically labile esters, which are capable of producing the parent compounds of general formula (I) in vivo, are within the scope of this invention.
  • the COOH groups of compounds according to formula I can be esterified.
  • the alkyl and aralkyl esters are examples of suitable esters.
  • the methyl, ethyl, propyl, butyl and benzyl esters are preferred esters.
  • the methyl and ethyl esters are especially preferred.
  • Further examples of pharmaceutically usable esters are compounds of formula I, wherein the hydroxy groups can be esterified. Examples of such esters are formate, acetate, propionate, butyrate, isobutyrate, valerate, 2-methylbutyrate, isovalerate and N,N-dimethylaminoacetate.
  • Preferred esters are acetate and N,N-dimethylaminoacetate.
  • lipase inhibitor refers to compounds which are capable of inhibiting the action of lipases, for example gastric and pancreatic lipases.
  • lipases for example gastric and pancreatic lipases.
  • orlistat and lipstatin as described in U.S. Pat. No. 4,598,089 are potent inhibitor of lipases.
  • Lipstatin is a natural product of microbial origin, and orlistat is the result of a hydrogenation of lipstatin.
  • Other lipase inhibitors include a class of compound commonly referred to as panclicins. Panclicins are analogues of orlistat (Mutoh et al, 1994).
  • lipase inhibitor refers also to polymer bound lipase inhibitors for example described in International Patent Application WO99/34786 (Geltex Pharmaceuticals Inc.). These polymers are characterized in that they have been substituted with one or more groups that inhibit lipases.
  • lipase inhibitor also comprises pharmaceutically acceptable salts of these compounds.
  • lipase inhibitor preferably refers to orlistat.
  • Orlistat is a known compound useful for the control or prevention of obesity and hyperlipidemia. See, U.S. Pat. No. 4,598,089, issued Jul. 1, 1986, which also discloses processes for making orlistat and U.S. Pat. No. 6,004,996, which discloses appropriate pharmaceutical compositions. Further suitable pharmaceutical compositions are described for example in International Patent Applications WO 00/09122 and WO 00/09123. Additional processes for the preparation of orlistat are disclosed in European Patent Applications Publication Nos. 185,359, 189,577, 443,449, and 524,495.
  • Orlistat is preferably orally administered from 60 to 720 mg per day in divided doses two to three times per day. Preferred is wherein from 180 to 360 mg, most preferably 360 mg per day of a lipase inhibitor is administered to a subject, preferably in divided doses two or, particularly, three times per day.
  • the subject is preferably an obese or overweight human, i.e. a human with a body mass index of 25 or greater.
  • the lipase inhibitor be administered within about one or two hours of ingestion of a meal containing fat.
  • treatment be administered to a human who has a strong family history of obesity and has obtained a body mass index of 25 or greater.
  • Orlistat can be administered to humans in conventional oral compositions, such as, tablets, coated tablets, hard and soft gelatin capsules, emulsions or suspensions.
  • carriers which can be used for tablets, coated tablets, dragees and hard gelatin capsules are lactose, other sugars and sugar alcohols like sorbitol, mannitol, maltodextrin, or other fillers; surfactants like sodium lauryle sulfate, Brij 96, or Tween 80; disintegrants like sodium starch glycolate, maize starch or derivatives thereof; polymers like povidone, crospovidone; talc; stearic acid or its salts and the like.
  • Suitable carriers for soft gelatin capsules are, for example, vegetable oils, waxes, fats, semi-solid and liquid polyols and the like.
  • the pharmaceutical preparations can contain preserving agents, solubilizers, stabilizing agents, wetting agents, emulsifying agents, sweetening agents, coloring agents, flavoring agents, salts for varying the osmotic pressure, buffers, coating agents and antioxidants. They can also contain still other therapeutically valuable substances.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods known in the pharmaceutical art. Preferably, orlistat is administered according to the formulation shown in the Examples and in U.S. Pat. No. 6,004,996, respectively.
  • the compounds of formula I can contain several asymmetric centres and can be present in the form of optically pure enantiomers, mixtures of enantiomers such as, for example, racemates, optically pure diastereioisomers, mixtures of diastereoisomers, diastereoisomeric racemates or mixtures of diastereoisomeric racemates.
  • the optically active forms can be obtained for example by resolution of the racemates, by asymmetric synthesis or asymmetric chromatography (chromatography with a chiral adsorbens or eluent).
  • Preferred compounds according to formula I are those,
  • R 1 , R 2 , R 3 and R 4 are independently selected from hydrogen, halogen, hydroxy, alkyl, cycloalkyl, aralkyl, aryl, alkoxy, alkoxyalkyl, haloalkyl, aryloxy, alkylcarbonyl, arylcarbonyl, alkylthio, arylthio, alkylsulfoxyl, arylsulfoxyl, alkylsulfonyl, arylsulfonyl, amino, nitro, cyano, alkoxycarbonyl, aryloxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonylamino, carboxy or heterocyclyl;
  • R 5 is hydrogen, alkyl or cycloalkyl
  • R 6 is hydrogen, alkyl, cycloalkyl, hydroxyalkyl, carbamoylalkyl, alkoxycarbonylalkyl, aryloxycarbonylalkyl or —(CH 2 ) n —A;
  • R 7 is hydrogen, alkyl or cycloalkyl, whereby R 7 is not hydrogen when R 6 is hydrogen, alkyl, cycloalkyl or 1H-pyrrolo(2,3-b)pyridin-3-ylmethyl;
  • R 8 is hydrogen
  • A is heterocyclyl, cycloalkanonyl or cycloalkyl substituted with hydroxy, carboxy, alkyloxycarbonyl, aryloxycarbonyl or carbamoyl;
  • n 0, 1, 2 or 3;
  • Preferred compounds according to formula I are those, wherein R 1 , R 2 , R 3 and R 4 are independently selected from hydrogen, halogen, hydroxy, alkyl, cycloalkyl, aralkyl, aryl, alkoxy, alkoxyalkyl, haloalkyl, aryloxy, alkylcarbonyl, arylcarbonyl, alkylthio, arylthio, alkylsulfoxyl, arylsulfoxyl, alkylsulfonyl, arylsulfonyl, amino, nitro, cyano, alkoxycarbonyl, aryloxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonylamino, carboxy or heterocyclyl.
  • R 3 and R 4 form together with the carbon atoms to which they are attached a 5-membered carbocyclic ring otionally substituted by alkyl, wherein these compounds compise the moiety of formula IA.
  • R 1 , R 2 , R 3 and R 4 are independently selected from hydrogen, halogen, alkyl, alkoxy, haloalkyl, haloalkoxy and cyano.
  • Particularly preferred compounds of formula I are those, wherein one or two of R 1 , R 2 , R 3 and R 4 are independently selected from chloro, bromo, methyl, trifluoromethyl and cyano and the others are hydrogen.
  • Preferred compounds of formula I are those, wherein R 5 is hydrogen, alkyl or cycloalkyl.
  • Another preferred embodiment of the invention comprises compounds of formula I, wherein R 5 is hydrogen or alkyl.
  • Particularly preferred are compounds according to formula I, wherein R 5 is hydrogen.
  • R 6 is hydrogen, alkyl, cycloalkyl, hydroxyalkyl, carbamoylalkyl, alkoxycarbonylalkyl, aryloxycarbonylalkyl or —(CH 2 ) n —A.
  • Particularly preferred are those compounds of formula I, wherein R 6 is hydrogen, hydroxyalkyl, carbamoylalkyl, alkyloxycarbonylalkyl or —(CH 2 ) n —A.
  • Very preferred are compounds of formula I, wherein R 6 is hydrogen.
  • a further preferred embodiment of the present invention are the compounds according to formula I, wherein A is oxazolidinone, cyclobutanonyl, [1,2,4] triazol-3-yl, [1,2,4]oxadiazol-3-yl, [1,2,4]triazol-3-one-5-yl, tetrazolyl, [1,3,4]oxadiazol-2-yl, [1,3,4]thiadiazol-2-yl, 1H-imidazol-2-yl or 1H-imidazol-4-yl.
  • Particularly preferred are 2-oxazolidin-2-one and cyclobutanon-2-yl.
  • Another preferred aspect of the present invention are compounds of formula I, wherein n is 0 or 1.
  • R 12 and R 13 are halo and R 14 is hydrogen and R 17 is lower alkyl, particularly methyl.
  • Another preferred embodiment of the compound of formula I-A are those compounds where R 12 is halogen, R 13 and R1 4 are hydrogen and R 17 is lower alkyl, particularly methyl or ethyl.
  • Another embodiment of the compound of formula I-A are those compounds where R 12 , R 13 and R 14 are halo, while R 17 is lower alkyl, particularly methyl.
  • Still another embodiment of the compound of formula I-A are those compounds where R 12 is hydrogen and R 13 and R 14 are independently hydrogen or lower alkyl and R 17 is lower alkyl, particularly methyl.
  • Still another embodiment of the compounds of formula I-A are those compounds where R 12 is hydrogen and R 13 and R 14 are halo or lower alkyl, while R 17 is lower alkyl, particularly methyl. While R 17 is lower alkyl, particularly methyl, a still further embodiment of the compound of formula I-A are those compounds where R 12 is hydrogen and one of R 13 and R 14 is trimethyl, trifluoromethoxy or cyano while the other is hydrogen halo or lower alkyl and R 17 is lower alkyl, particularly methyl.
  • R 17 is hydroxy lower alkyl while R 12 is hydrogen and one of R 13 and R 14 is trifluoromethyl, trifluoromethoxy or cyano while the other is hydrogen, halo or lower alkyl.
  • the compound of formula I-B has various preferred embodiments. Among the preferred embodiments are those compounds where R 22 and R 23 taken together with their attached carbon atoms form a carbocyclic ring, particularly the 4 to 6 membered saturated carbocyclic ring. Another embodiment of the compound of formula I-B are those compounds wherein one of R 22 and R 23 is hydrogen while the other is hydroxy, lower alkyl lower alkyl aminocarbonyl, di-lower alkyl amino carbonyl, lower alkoxy lower alkyl, lower alkylcarbonylamino or lower alkoxy lower alkoxy lower alkyl.
  • Preferred embodiments are where Y is a saturated 4 to 6 membered carboxylic ring or is a 5 to 7 membered heterocyclic ring containing at most two heteroaotms selected from the group consisting of oxygen or nitrogen.
  • the compounds of formula I-C were Y is a heterocyclic ring containing either one oxygen or one nitrogen atom in the ring are generally preferred.
  • Preferred compounds according to formula I are those, wherein R 7 is hydrogen or alkyl. Particularly preferred are methyl and ethyl.
  • Indoles of formula A can be prepared by methods known in the art, (e.g., T. L. Gilchrist, Heterocyclic chemistry, 1997 or The chemistry of heterocyclic compounds Vol 25, 1972 or Joule, J. A. Indoles, isoindoles, their reduced derivatives, and carbazoles. Rodd's Chem. Carbon Compd. 1997 or G. W. Gribble, J. Chem. Soc. Perkin 1 2000, 1045)
  • Indole-2-carboxylates of formula B can be prepared by methods known in the art (see above) or alternatively from indoles of formula A by first protecting the indole nitrogen with a suitable protecting group (PG; e.g., tert-butoxycarbonyl (Boc)), treating the protected indole derivative with a suitable base under anhydrous conditions (e.g., with lithium 2,2,6,6-tetramethylpiperidide in THF), reacting the intermediate anion with a chloroformate (e.g. ethyl chloroformate) and removing the protecting group (e.g., by treatment with acid for the Boc protecting group).
  • PG e.g., tert-butoxycarbonyl
  • Ra in scheme 1 is an alkyl group, preferably methyl or ethyl.
  • Pyrazinoindoles of formula D1 can be prepared by a process where the indole-2-carboxylate of formula B is first reacted with an alpha halo alkanenitrile (e.g., 2-bromo propionitrile) in a suitable solvent (e.g., DMF) with a suitable base (e.g., NaH).
  • a suitable solvent e.g., DMF
  • a suitable base e.g., NaH
  • the intermediate C is reduced and cyclized to the tetrahydro-pyrazino[1,2-a]indole D1 by reaction with a suitable reducing agent in a suitable solvent (e.g., LiAlH 4 in THF or diethylether).
  • R 7 ⁇ H
  • the latter reduction is preferably carried out stepwise, by subsequent treatment of intermediate C with (i) borane-dimethylsulfide complex in THF, (ii) potassium carbonate in methanol, (iii) borane-dimethylsulfide complex in THF.
  • R b in scheme 2 is an alkyl group, preferably a lower alkyl group, preferably methyl or ethyl.
  • Pyrazinoindoles of formula D1 can also be prepared by a process where the indole-2-carboxylate of formula B is first reacted with the hitherto unknown Boc-sulfamidate (II) in a suitable solvent (e.g., DMF or 2-methyl-2-butanol) with a suitable base (e.g., potassium tert-butylate or sodium hydride) followed by removal of the Boc protecting group and ring closure in the presence of base (e.g., potassium carbonate).
  • a suitable solvent e.g., DMF or 2-methyl-2-butanol
  • a suitable base e.g., potassium tert-butylate or sodium hydride
  • the stereochemistry of the carbon atom attached to R 7 in Boc-sulfamidate II is inverted (>90% e.e.) in this reaction sequence.
  • the intermediate amide (E1) is reduced with a suitable reducing agent in a suitable solvent (e.g., LiAlH 4 in diethyl ether or borane-dimethylsulfide complex in THF).
  • a suitable solvent e.g., LiAlH 4 in diethyl ether or borane-dimethylsulfide complex in THF.
  • R a in Scheme 3 is an alkyl group, preferably a lower alkyl group, preferably methyl or ethyl.
  • R c in scheme 5 is an alkyl group, preferably a lower alkyl group, preferably methyl or ethyl.
  • Intermediate E2 can also be prepared according to scheme 6, by a process where indole-2-carboxylate B is first reacted with an activated aminoethanol derivative (e.g. Boc-aziridine in a suitable solvent e.g. DMSO with a suitable base, e.g., KOH) followed by removal of the Boc protecting group and ring closure in the presence of base (e.g., potassium carbonate).
  • an activated aminoethanol derivative e.g. Boc-aziridine in a suitable solvent e.g. DMSO with a suitable base, e.g., KOH
  • base e.g., potassium carbonate
  • Indole derivatives F can be prepared starting from protected o-iodoanilines (a suitable protective group, PG 1 , is, N-methoxycarbonyl) by reaction with suitably substituted and optionally protected carbinols (preferred protective groups are silyl ethers, especially preferred is tert-butyl-dimethylsilyl).
  • a suitable catalyst e.g., bis-triphenylphosphine palladium dichloride and copper(I)iodide as co-catalyst
  • a suitable solvent e.g. triethylamine
  • the intermediate is treated with a base (e.g. LiOH in THF/water) to yield the indole derivative F1 (scheme 7).
  • Intermediates of formula G can be prepared according to scheme 8 by a process where the indole derivative of formula F2 is first reacted with the hitherto unknown Boc-sulfamidate (II) in a suitable solvent (e.g., DMF or 2-methyl-2-butanol) with a suitable base (e.g., NaH or potassium tert-butylate) followed by deprotection of the alcohol (e.g., with tetrabutylammoniumfluoride) in a solvent (e.g., THF) and oxidation of the alcohol (e.g., with manganese dioxide).
  • a suitable solvent e.g., DMF or 2-methyl-2-butanol
  • a suitable base e.g., NaH or potassium tert-butylate
  • deprotection of the alcohol e.g., with tetrabutylammoniumfluoride
  • THF tetrabutylammoniumfluoride
  • These intermediates of formula G can be further processed to compounds of formula D2 by either removal of the Boc protecting group (e.g., with trifluoroacetic acid) to yield an imine intermediate which is not isolated but reduced directly with lithium aluminium hydride to yield D2 as a separable mixture of epimers, or direct reductive amination (e.g., with sodium triacetoxyborohydride, molecular sieves and acetic acid in a suitable solvent, e.g., dichloromethane) followed deprotection of the intermediate J1 (e.g., with trifluoroacetic acid in dichloromethane) as depicted in scheme 10.
  • Boc protecting group e.g., with trifluoroacetic acid
  • imine intermediate which is not isolated but reduced directly with lithium aluminium hydride to yield D2 as a separable mixture of epimers
  • direct reductive amination e.g., with sodium triacetoxyborohydride, molecular sieves and acetic acid in
  • Substituents R 8 can be introduced as shown in scheme 11, starting from tetrahydropyrazino[1,2-a]indole D3. To that end, the amine nitrogen of D3 is protected, e.g., as the tert-butyl carbamate to generate compound J2, which is elaborated as follows:
  • Halogenation preferably with N-iodosuccinimide or N-bromosuccinimide in acetonitrile
  • yields halide L which is transformed into compound J1 by cross-coupling reaction, using methods known in the art (e.g., F. Diederich, P. J. Stang (eds.), Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, 1998)
  • the enantiomers of tetrahydropyrazino[1,2-a]indoles D1 can be obtained either by using a chiral sulfamidate (II) or by separation of the enantiomers by preparative chiral HPLC or by crystallisation with suitable chiral acids, separation of the diastereomeric salts and isolation of the enantiomers from these salts (scheme 12).
  • An alternative access to the enantiomers of tetrahydro-pyrazinoindoles D1 involves the separation of the enantiomers of the precursors C or G, e.g., by preparative chiral HPLC.
  • hexahydro-pyrazino[1,2-a]indoles of formula IA can be prepared from compounds of formula D2 by reduction with suitable reducing agents (e.g. NaBH 4 ) in suitable solvents or solvent mixtures, e.g., THF/TFA (scheme 13)
  • suitable reducing agents e.g. NaBH 4
  • suitable solvents or solvent mixtures e.g., THF/TFA (scheme 13)
  • Hexahydro-pyrazino[1.2-a]indoles of formula IB can also be prepared in a two-step process from intermediate E1 where the indole moiety is reduced to produced indoline-amide M, which is then reduced under suitable conditions, e.g., LiAlH 4 in diethyl ether (scheme 14).
  • c1) coupled with an amine R 12 —NH—R 12 (R 12 ⁇ H, alkyl) in the presence of a coupling agent, e.g., benzotriazol-1-yl-oxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) and a base, e.g., 4-ethylmorpholine, to yield amide T, or,
  • a coupling agent e.g., benzotriazol-1-yl-oxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) and a base, e.g., 4-ethylmorpholine
  • hexahydro-pyrazino[1.2-a]indoles of formula I can be prepared from compounds of formula IA by methods known in the art (e.g. March, Advanced Organic Chemistry, 4 th. edition, page 411ff, 768ff, 898ff, 900ff, 1212ff.) e.g., alkylation reactions, Mannich reactions, acylation followed by reduction etc. (scheme 17).
  • the hitherto unknown Boc-sulfamidate II can be prepared according to scheme 18, by treating a Boc-protected ethanolamine derivatives with thionylchloride in a suitable solvent e.g. THF or ethyl acetate in the presence of a suitable base, e.g. triethylamine or imidazole, and oxidising the intermediate (e.g., with sodium metaperiodate and ruthenium(IV)oxide) in a suitable solvent (e.g., ethyl acetate).
  • a suitable solvent e.g. THF or ethyl acetate
  • a suitable base e.g. triethylamine or imidazole
  • oxidising the intermediate e.g., with sodium metaperiodate and ruthenium(IV)oxide
  • a suitable solvent e.g., ethyl acetate
  • R 7 hydroxyalkyl
  • the hydroxyl is protected with a suitable protective group, preferably a silyl ether, most preferably a dimethyl-(1,1,2-trimethylpropyl)-silanyloxymethyl ether.
  • the dimethyl-(1,1,2-trimethylpropyl)-silanyloxymethyl ether is preferably deprotected during the conversion of intermediates C or E1 to tetrahydropyrazino[1,2-a]indole D1, by reaction with lithium aluminum hydride.
  • the compounds of formula (I) may be used in the treatment (including prophylactic treatment) of disorders associated with 5-HT 2 receptor function.
  • the compounds may act as receptor agonists or antagonists.
  • the compounds may be used in the treatment (including prophylactic treatment) of disorders associated with 5-HT 2B and/or 5-HT 2C receptor function.
  • the compounds may be used in the treatment (including prophylactic treatment) of disorders where a 5-HT 2C receptor agonist is required.
  • the compounds of formula (I) maybe used in the treatment or prevention of central nervous disorders such as depression, atypical depression, bipolar disorders, anxiety disorders, obsessive-compulsive disorders, social phobias or panic states, sleep disorders, sexual dysfunction, psychoses, schizophrenia, migraine and other conditions associated with cephalic pain or other pain, raised intracranial pressure, epilepsy, personality disorders, age-related behavioural disorders, behavioural disorders associated with dementia, organic mental disorders, mental disorders in childhood, aggressivity, age-related memory disorders, chronic fatigue syndrome, drug and alcohol addiction, obesity, bulimia, anorexia nervosa or premenstrual tension; damage of the central nervous system such as by trauma, stroke, neurodegenerative diseases or toxic or infective CNS diseases such as encephalitis or meningitis; cardiovascular disorders such as thrombosis; gastrointestinal disorders such as dysfunction of gastrointestinal motility; diabetes insipidus; and sleep apnea.
  • central nervous disorders such as depression, atypical depression, bipolar disorders, anxiety
  • a further aspect of the invention is a compound according to formula I for use as therapeutically active substance.
  • a compound of formula (I) in the manufacture of a medicament comprising a compound according to formula I for the treatment of disorders of the central nervous system, damage to the central nervous system, cardiovascular disorders, gastrointestinal disorders, diabetes insipidus, and sleep apnea.
  • the disorders of the central nervous system are selected from depression, atypical depression, bipolar disorders, anxiety disorders, obsessive-compulsive disorders, social phobias or panic states, sleep disorders, sexual dysfunction, psychoses, schizophrenia, migraine and other conditions associated with cephalic pain or other pain, raised intracranial pressure, epilepsy, personality disorders, age-related behavioural disorders, behavioural disorders associated with dementia, organic mental disorders, mental disorders in childhood, aggressivity, age-related memory disorders, chronic fatigue syndrome, drug and alcohol addiction, obesity, bulimia, anorexia nervosa and premenstrual tension.
  • the damage to the central nervous system is by trauma, stroke, neurodegenerative diseases or toxic or infective CNS diseases, particularly wherein the toxic or infective CNS disease is encephalitis or meningitis.
  • a further preferred embodiment of the present invention is the above mentioned use, wherein the cardiovascular disorder is thrombosis.
  • a compound of formula I in the manufacture of a medicament comprising a compound of formula I for the treatment of obesity.
  • a further preferred embodiment of the present invention is a process for the preparation of a compound of formula I, wherein R 1 to R 8 are defined as before, R b is alkyl and PG means a protecting group, comprising any one of the following steps:
  • Particularly preferred protecting groups are those, where N-PG signifies a carbamate or amide group.
  • deprotection can be performed as follows: a compound of formula J2, where PG is equal to Boc is deprotected with a mixture of dichloromethane and trifluoroacetic acid at room temperature; or
  • Alkylation agent means alkyl- or cycloakyl-halogenides, functionalised alkylhalogenides like hydroxylkylhalogenides, carbamoylhalogenides, alkoxycarbonylhalogenides, aryloxycarbonylalkylhalogenides or heterocyclylalkylhalogenides or the respective mesylates, tosylates or triflates instead of the halogenides.
  • alkylation agents are 2-(bromoethoxy)-tert-butyl-dimethylsilane, methyl bromoacetate and 2-bromoacetamide.
  • Acylation agent means the activated derivatives (e.g.
  • acylation agents are acetyl chloride and cyclopropylcarboxylic acid chloride; or
  • PG′ is hydrogen or an OH-protecting group preferably trimethylsilyl, tert-butyldimethylsilyl, acetyl, methoxymethyl or 2-tetrahydropyranyl; or
  • a pharmaceutical composition comprising a compound of formula (I) in combination with a pharmaceutically acceptable carrier or excipient and a method of making such a composition comprising combining a compound of formula (I) with a pharmaceutically acceptable carrier or excipient.
  • a further aspect of the present invention is the above pharmaceutical composition comprising further a therapeutically effective amount of a lipase inhibitor.
  • a lipase inhibitor is orlistat.
  • a method of treatment of obesity in a human in need of such treatment which comprises administration to the human a therapeutically effective amount of a compound according to formula I and a therapeutically effective amount of a lipase inhibitor, particularly preferred, wherein the lipase inhibitor is orlistat. Also subject of the present invention is the mentioned method, wherein the administration is simultaneous, separate or sequential.
  • a further preferred embodiment of the present invention is the use of a compound of the formula I in the manufacture of a medicament for the treatment and prevention of obesity in a patient who is also receiving treatment with a lipase inhibitor, particularly preferred, wherein the lipase inhibitor is orlistat.
  • the processes as described above may be carried out to give a compound of the invention in the form of a free base or as an acid addition salt. If the compound of the invention is obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid addition salt. Conversely, if the product of the process is a free base, an acid addition salt, particularly a pharmaceutically acceptable acid addition salt, may be obtained by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from basic compounds.
  • compositions of the present invention may be formulated in a conventional manner using one or more pharmaceutically acceptable carriers.
  • the active compounds of the invention may be formulated for oral, buccal, intranasal, parenteral (e.g., intravenous, intramuscular or subcutaneous) transdermal or rectal administration or in a form suitable for administration by inhalation or insufflation.
  • the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropylmethylcellulose); fillers (e.g. lactose, microcrystalline cellulose or calcium phosphate); lubricants (e.g. magnesium stearate, talc or silica); disintegrants (e.g. potato starch or sodium starch glycollate); or wetting agents (e.g. sodium lauryl sulfate).
  • binding agents e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropylmethylcellulose
  • fillers e.g. lactose, microcrystalline cellulose or calcium phosphate
  • lubricants e.g. magnesium stearate, talc or silica
  • disintegrants e.g. potato starch or sodium starch glycollate
  • Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use.
  • Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g. sorbitol syrup, methyl cellulose or hydrogenated edible fats); emulsifying agents (e.g. lecithin or acacia); non-aqueous vehicles (e.g. almond oil, oily esters or ethyl alcohol); and preservatives (e.g. methyl or propyl p-hydroxybenzoates or sorbic acid).
  • suspending agents e.g. sorbitol syrup, methyl cellulose or hydrogenated edible fats
  • emulsifying agents e.g. lecithin or acacia
  • non-aqueous vehicles e.g. almond oil, oily esters or ethyl alcohol
  • preservatives e.g
  • composition may take the form of tablets or lozenges formulated in conventional manner.
  • the active compounds of the invention may be formulated for parenteral administration by injection, including using conventional catheterization techniques or infusion.
  • Formulations for injection may be presented in unit dosage form e.g. in ampoules or in multi-dose containers, with an added preservative.
  • the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulating agents such as suspending, stabilizing and/or dispersing agents.
  • the active ingredient may be in powder form for reconstitution with a suitable vehicle, e.g. sterile pyrogen-free water, before use.
  • the active compounds of the invention may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • the active compounds of the invention are conveniently delivered in the form of a solution or suspension from a pump spray container that is squeezed or pumped by the patient or as an aerosol spray presentation from a pressurized container or a nebulizer, with the use of a suitable propellant, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • a suitable propellant e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • the pressurized container or nebulizer may contain a solution or suspension of the active compound.
  • Capsules and cartridges for use in an inhaler or insufflator may be formulated containing a powder mix of a compound of the invention and a suitable powder base such as lactose or starch.
  • a proposed dose of the active compounds of the invention for oral, parenteral or buccal administration to the average adult human for the treatment of the conditions referred to above is 0.1 to 500 mg of the active ingredient per unit dose which could be administered, for example, 1 to 4 times per day.
  • the affinity of the compounds for 5-HT 2C receptors in a CHO cell line was determined according to the procedure of D. Hoyer, G. Engel and H. O. Kalkman, European J. Pharmacol., 1985, 118, 13-23.
  • the affinity of the compounds for human 5-HT 2B receptors in a CHO cell line was determined according to the procedure of K. Schmuck, C. Ullmer, P. Engels and H. Lubbert, FEBS Lett., 1994, 342, 85-90.
  • Preferred compounds of formula I as described above have Ki (2C) values below 10000 nM; especially preferred compounds have Ki (2C) values below 1000 nM, particularly preferred compounds have Ki (2C) values below 100 nM. Most preferred compounds have Ki (2C) values below 30 nM.
  • the drug (dissolved in 50 ⁇ L of the assay buffer) was added at a rate of 70 ⁇ L/sec to each well of the FLIPR 96 well plate during fluorescence measurements. The measurements were taken at 1 sec intervals and the maximum fluorescent signal was measured (approx 10-15 secs after drug addition) and compared with the response produced by 10 ⁇ M 5-HT (defined as 100%) to which it was expressed as a percentage response (relative efficacy). Dose response curves were constructed using Graphpad Prism (Graph Software Inc.).
  • the compounds of formula (I) have activity at the h5-HT 2c receptor in the range of 10,000 to 0.01 nM.
  • Preferred compounds of formula I as described above have activity at the h5-HT2c receptor below 10000 nM; especially preferred compounds below 1000 nM, particularly preferred compounds below 100 nM. Most preferred compounds have activity at the h5-HT2c receptor below 30 nM.
  • the 5-HT 2c syndrome is a rapid screening method to asses the in vivo efficacy of 5-TH 2c agonists through their ability to induce three specific behaviours in rats.
  • the animals are dosed with either a positive control (mCPP), test compound or vehicle, either s.c. or p.o.
  • mCPP positive control
  • test compound test compound
  • vehicle either s.c. or p.o.
  • the animals are observed on an open bench, typically 30, 60 and 180 minutes and the degree of syndrome is assessed over a two minute period on a scale of 0-3 depending on the presence and severity of splayed limbs, hunched posture and retro-pulsion, the three specific behaviours which constitute the syndrome.
  • Data is analysed using Kruskal-Wallis Analysis of Variance followed with appropriate post-hoc tests. All statistical analysis are conducted using Excel version 7-0 (Microsoft Corp.) and Statistica version 5.0 (Stasoft, Inc.).
  • the anorectic drug d-fenfluramine normally serves as a positive control.
  • the route of drug administration, drug volume and injection-test-interval are dependent upon the compounds used.
  • a palatable wet mash made by adding powdered lab chow and water in a ration of 1:2 and mixing to a smooth consistency, is presented in 120 mL glass jars for 60 minutes each day. Intake is measured by weighing before and after each session. Care is taken to collect all spillage. Animals are allowed to habituate to the wet mash meal for 10 days. After drug administration, animals are allowed to consume the wet mash. Food consumption is assayed at pre-determined time points (typically, 1, 2 and 4 hours after administration).
  • Food intake data are subjected to one-way analysis of variance (ANOVA) with drug as a between-subjects factor. A significant main effect is followed up by the performance of Dunnett's test in order to asses which treatment mean(s) are significantly different from the control mean. All statistical analyses were performed using Statistica Software, Version 5.0 (Statsofr Inc.) and Microsoft Excel 7.0 (Microsoft Corp.).
  • Compound 8 can be prepared as described in Example 9.
  • Example 10 can be prepared as described in Example 11.
  • Lithium aluminiumhydride (4.0 g, 106 mmol) was suspended in diethylether (600 mL) and 4-bromo-1-cyanomethyl-1H-indole-2-carboxylic acid ethyl ester (13.0 g, 42 mmol) was added in portions. The mixture was boiled for 15 h, cooled to room temperature and added to saturated potassium sodium tartrate solution. Thorough washing of the filter-cake with ethyl acetate followed the filtration over Celite® to remove solids. The phases of the filtrate were separated and the water phase was extracted with ethylacetate. The organic phases were pooled, washed with brine, dried with MgSO 4 and the solvent was evaporated.
  • the reaction mixture was partitioned between ethyl acetate and 10% citric acid. The phases were separated and the organic phase was washed with sodium bicarbonate and brine, dried over magnesium sulfate, evaporated and purified by chromatography on silica gel with 3:1 hexane:ethyl acetate.
  • the intermediate sulfamidite was taken up in 60 mL ethyl acetate and 100 mL of a 10% solution of sodium metaperiodate was added. The mixture was cooled to 0° C. and 0.21 g ruthenium dioxide dihydrate was added and the mixture was stirred at this temperature for 45 min.
  • Lithium aluminium hydride (37 mg, 0.97 mmol) was added to a solution of (4R,10aS)-6-ethyl-4-methyl-3,4,10,10a-tetrahydro-2H-pyrazino[1,2-a]indol-1-one (56 mg, 0.24 mmol) in tetrahydrofuran (3 mL) and the resulting suspension was heated to reflux for 1 h. After cooling the reaction was quenched by careful addition of 1 M aqueous sodium potassium tartrate solution (5 mL).
  • the hydrazone mixture (7.6 g, 0.032 mol) was dissolved in toluene (45 ml), anhydrous p-toluenesulfonic acid (8.2 g, 0.048 mol) added and the mixture heated 1 h at reflux. The mixture was cooled to room temperature, poured into half-saturated aqueous sodium hydrogen carbonate and extracted twice with ethyl acetate. The combined organic phases were washed with brine, dried over magnesium sulfate and evaporated.
  • the hydrazone mixture (22 g, 0.073 mol) was dissolved in Eaton's reagent (230 ml) and the mixture heated 3 h at 50° C. The mixture was cooled to room temperature, diluted with dichloromethane and added to saturated aqueous sodium hydrogen carbonate. The phases were separated and the aqueous phase extracted twice with dichloromethane. The combined organic phases were washed with water, dried over magnesium sulfate and evaporated. The residue was taken up in diethyl ether, and hexane added whereupon part of the product precipitated.
US09/912,949 2000-07-31 2001-07-25 Anti-obesity 1,2,3,4,10,10-a-hexahydropy razino [1,2-a] indoles Abandoned US20020035110A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/396,242 US6933387B2 (en) 2000-07-31 2003-03-25 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles
US11/169,079 US7253281B2 (en) 2000-07-31 2005-06-28 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles
US11/649,132 US20070106076A1 (en) 2000-07-31 2007-01-03 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino [1,2-a] indoles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00116517.4 2000-07-31
EP00116517 2000-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/396,242 Continuation US6933387B2 (en) 2000-07-31 2003-03-25 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles

Publications (1)

Publication Number Publication Date
US20020035110A1 true US20020035110A1 (en) 2002-03-21

Family

ID=8169405

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/912,949 Abandoned US20020035110A1 (en) 2000-07-31 2001-07-25 Anti-obesity 1,2,3,4,10,10-a-hexahydropy razino [1,2-a] indoles
US10/396,242 Expired - Fee Related US6933387B2 (en) 2000-07-31 2003-03-25 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles
US11/169,079 Expired - Fee Related US7253281B2 (en) 2000-07-31 2005-06-28 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles
US11/649,132 Abandoned US20070106076A1 (en) 2000-07-31 2007-01-03 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino [1,2-a] indoles

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/396,242 Expired - Fee Related US6933387B2 (en) 2000-07-31 2003-03-25 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles
US11/169,079 Expired - Fee Related US7253281B2 (en) 2000-07-31 2005-06-28 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles
US11/649,132 Abandoned US20070106076A1 (en) 2000-07-31 2007-01-03 Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino [1,2-a] indoles

Country Status (20)

Country Link
US (4) US20020035110A1 (da)
EP (1) EP1325008B1 (da)
JP (1) JP4180365B2 (da)
KR (1) KR100539139B1 (da)
CN (1) CN1277828C (da)
AR (1) AR030306A1 (da)
AT (1) ATE305933T1 (da)
AU (2) AU2001283955B2 (da)
BR (1) BR0112918A (da)
CA (1) CA2417106C (da)
DE (1) DE60113865T2 (da)
DK (1) DK1325008T3 (da)
ES (1) ES2250459T3 (da)
GT (1) GT200100155A (da)
MX (1) MXPA03000906A (da)
PA (1) PA8523601A1 (da)
PE (1) PE20020366A1 (da)
UY (1) UY26863A1 (da)
WO (1) WO2002010169A1 (da)
ZA (1) ZA200300525B (da)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050026925A1 (en) * 2003-06-26 2005-02-03 Blench Toby Jonathan 5HT2c receptor agonists
US20050032930A1 (en) * 2003-07-02 2005-02-10 Christian Jackson Inkjet ink
US20050119308A1 (en) * 2002-03-29 2005-06-02 Koji Teshima Remedy for sleep disturbance
WO2014173903A1 (en) * 2013-04-23 2014-10-30 Laboratorios Del Dr. Esteve, S.A. PYRAZINO[1,2-a]INDOLE COMPOUNDS, THEIR PREPARATION AND USE IN MEDICAMENTS
US9963453B2 (en) 2013-04-23 2018-05-08 Laboratorios Del Dr. Esteve S.A. Substituted pyrazino[1,2-a]indoles as sigma receptor activity modulators

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001283955B2 (en) * 2000-07-31 2006-05-18 F. Hoffmann-La Roche Ag Piperazine derivatives
GB0106177D0 (en) * 2001-03-13 2001-05-02 Hoffmann La Roche Piperazine derivatives
EA008148B1 (ru) 2002-06-19 2007-04-27 Биовитрум Аб Новые соединения, их применение и получение
US7105526B2 (en) 2002-06-28 2006-09-12 Banyu Pharmaceuticals Co., Ltd. Benzimidazole derivatives
US7772188B2 (en) 2003-01-28 2010-08-10 Ironwood Pharmaceuticals, Inc. Methods and compositions for the treatment of gastrointestinal disorders
DE10319612A1 (de) 2003-05-02 2004-11-18 Bayer Healthcare Ag Substituierte Dihydrochinazoline
DE10320780A1 (de) * 2003-05-09 2005-01-20 Bayer Healthcare Ag Heterocyclyl-substituierte Dihydrochinazoline
WO2005028438A1 (ja) 2003-09-22 2005-03-31 Banyu Pharmaceutical Co., Ltd. 新規ピペリジン誘導体
DE10352499A1 (de) * 2003-11-11 2005-06-09 Bayer Healthcare Ag Substituierte Dihydrochinazoline II
WO2005097127A2 (en) 2004-04-02 2005-10-20 Merck & Co., Inc. Method of treating men with metabolic and anthropometric disorders
DE102004022672A1 (de) * 2004-05-07 2005-11-24 Bayer Healthcare Ag Substituierte Azachinazoline
JP5173190B2 (ja) 2004-08-25 2013-03-27 武田薬品工業株式会社 腹圧性尿失禁の予防・治療剤及びそのスクリーニング方法
CN101094689B (zh) 2004-11-01 2013-06-12 安米林药品有限责任公司 治疗肥胖以及肥胖相关疾病和病症的方法
DK2302055T3 (da) 2004-11-12 2014-10-13 Asuragen Inc Fremgangsmåder og sammensætninger involverende miRNA og miRNA-inhibitormolekyler
US7790712B2 (en) 2005-03-17 2010-09-07 Boehringer Ingelheim Pharmaceutical, Inc. Substituted [1,4]diazepino[1,2-A]indoles and azepino[1,2-A]indoles as anti-cytokine inhibitors
JP2008540368A (ja) * 2005-05-03 2008-11-20 エフ.ホフマン−ラ ロシュ アーゲー 5−ht2リガンドとしての四環式アザピラジノインドリン
US7737155B2 (en) 2005-05-17 2010-06-15 Schering Corporation Nitrogen-containing heterocyclic compounds and methods of use thereof
US8138206B2 (en) 2005-05-30 2012-03-20 Msd. K.K. Piperidine derivative
DE102005027517A1 (de) * 2005-06-15 2006-12-21 Bayer Healthcare Ag Verfahren zur Herstellung von Dihydrochinazolinen
JPWO2007018248A1 (ja) 2005-08-10 2009-02-19 萬有製薬株式会社 ピリドン化合物
EP1922336B1 (en) 2005-08-11 2012-11-21 Amylin Pharmaceuticals, LLC Hybrid polypeptides with selectable properties
BRPI0614649A2 (pt) 2005-08-11 2011-04-12 Amylin Pharmaceuticals Inc polipeptìdeos hìbridos com propriedades selecionáveis
DE602006017712D1 (de) 2005-08-24 2010-12-02 Banyu Pharma Co Ltd Phenylpyridonderivat
US20090264426A1 (en) 2005-09-07 2009-10-22 Shunji Sakuraba Bicyclic aromatic substituted pyridone derivative
CA2624030A1 (en) 2005-09-29 2007-04-12 Tianying Jian Acylated spiropiperidine derivatives as melanocortin-4 receptor modulators
KR20080080094A (ko) * 2005-10-14 2008-09-02 하. 룬트벡 아크티에 셀스카브 에스시탈로프람 및 부프로피온의 저용량 조합물을 이용한중추신경계 장애의 치료 방법
EP2332526A3 (en) 2005-10-21 2011-10-12 Novartis AG Combination of a renin-inhibitor and an anti-dyslipidemic agent and/or an antiobesity agent
CA2627139A1 (en) 2005-10-27 2007-05-03 Banyu Pharmaceutical Co., Ltd. Novel benzoxathiin derivative
EP1953165B1 (en) 2005-11-10 2012-02-01 Msd K.K. Aza-substituted spiro derivative
JP2009518351A (ja) 2005-12-09 2009-05-07 エフ.ホフマン−ラ ロシュ アーゲー 肥満症の処置に有用な三環性アミド誘導体
UA95788C2 (en) 2005-12-15 2011-09-12 Ф. Хоффманн-Ля Рош Аг Fused pyrrole derivatives
EP2727585A1 (en) 2006-05-16 2014-05-07 Takeda Pharmaceutical Company Limited In-vivo screening method
CA2664113C (en) 2006-09-22 2013-05-28 Merck & Co., Inc. Use of platencin and platensimycin as fatty acid synthesis inhibitors to treat obesity, diabetes and cancer
EP2072519A4 (en) 2006-09-28 2009-10-21 Banyu Pharma Co Ltd DIARYLKETIMINDERIVAT
US8431552B2 (en) 2007-01-16 2013-04-30 Chien-Hung Chen Composition for treating metabolic syndrome
FR2912145B1 (fr) * 2007-02-02 2009-03-06 Servier Lab Nouveaux derives tricycliques,leur procede de preparation et les compositions pharmaceutiques qui les contiennent
WO2008120653A1 (ja) 2007-04-02 2008-10-09 Banyu Pharmaceutical Co., Ltd. インドールジオン誘導体
MX2009011211A (es) * 2007-04-16 2009-10-30 Abbott Lab Indoles sustituidos en la posicion 7 inhibidores de mci-1.
US8969514B2 (en) 2007-06-04 2015-03-03 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases
EP2998314B1 (en) 2007-06-04 2020-01-22 Bausch Health Ireland Limited Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
WO2009063992A1 (ja) 2007-11-15 2009-05-22 Takeda Pharmaceutical Company Limited 縮合ピリジン誘導体およびその用途
EP2264026A4 (en) 2008-03-06 2012-03-28 Msd Kk ALKYLAMINOPYRIDINE DERIVATIVE
EP2254886B1 (en) 2008-03-28 2016-05-25 Nerviano Medical Sciences S.r.l. 3,4-dihydro-2h-pyrazino[1,2-a]indol-1-one derivatives active as kinase inhibitors, process for their preparation and pharmaceutical compositions comprising them
CN101981025A (zh) 2008-03-28 2011-02-23 万有制药株式会社 具有黑色素浓缩激素受体拮抗作用的二芳基甲基酰胺衍生物
CN102014847B (zh) * 2008-04-28 2013-12-04 可乐丽则武齿科株式会社 牙科用组合物及复合树脂
CA2666036C (en) 2008-05-16 2017-09-12 Chien-Hung Chen Novel compositions and methods for treating hyperproliferative diseases
WO2009149279A2 (en) 2008-06-04 2009-12-10 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders
EP2301936A1 (en) 2008-06-19 2011-03-30 Banyu Pharmaceutical Co., Ltd. Spirodiamine-diarylketoxime derivative
WO2010009319A2 (en) 2008-07-16 2010-01-21 Synergy Pharmaceuticals Inc. Agonists of guanylate cyclase useful for the treatment of gastrointestinal, inflammation, cancer and other disorders
US20110124674A1 (en) 2008-07-30 2011-05-26 Hiroyuki Kishino 5/5-or 5/6-membered condensed ring cycloalkylamine derivative
CN102264228A (zh) 2008-10-22 2011-11-30 默沙东公司 用于抗糖尿病药的新的环状苯并咪唑衍生物
PE20110852A1 (es) 2008-10-30 2011-11-25 Merck Sharp & Dohme Antagonistas del receptor de orexina de isonicotinamida
JP5557845B2 (ja) 2008-10-31 2014-07-23 メルク・シャープ・アンド・ドーム・コーポレーション 糖尿病用剤として有用な新規環状ベンゾイミダゾール誘導体
EP2379562A1 (en) 2008-12-16 2011-10-26 Schering Corporation Bicyclic pyranone derivatives as nicotinic acid receptor agonists
EP2379547A1 (en) 2008-12-16 2011-10-26 Schering Corporation Pyridopyrimidine derivatives and methods of use thereof
FI122466B (fi) * 2009-08-21 2012-01-31 Hollming Oy Menetelmä työstettävän metallikappaleen kuumentamiseksi ja induktiokuumennustyökalu
EP2510949A4 (en) 2009-12-11 2013-11-13 Astellas Pharma Inc THERAPEUTICS FOR FIBROMYALGIA
US8895596B2 (en) 2010-02-25 2014-11-25 Merck Sharp & Dohme Corp Cyclic benzimidazole derivatives useful as anti-diabetic agents
US9616097B2 (en) 2010-09-15 2017-04-11 Synergy Pharmaceuticals, Inc. Formulations of guanylate cyclase C agonists and methods of use
CN103476258B (zh) 2011-02-25 2017-04-26 默沙东公司 用作抗糖尿病药剂的新的环状氮杂苯并咪唑衍生物
US9580471B2 (en) 2011-03-01 2017-02-28 Synergy Pharmaceuticals, Inc. Process of preparing guanylate cyclase C agonists
AR088352A1 (es) 2011-10-19 2014-05-28 Merck Sharp & Dohme Antagonistas del receptor de 2-piridiloxi-4-nitrilo orexina
LT2825542T (lt) 2012-03-16 2016-12-27 Vitae Pharmaceuticals, Inc. Kepenų x receptoriaus moduliatoriai
HUE029402T2 (en) 2012-03-16 2017-02-28 Vitae Pharmaceuticals Inc Liver X receptor modulators
TWI579274B (zh) * 2012-04-20 2017-04-21 龍馬躍公司 製備1-芳基-5-烷基吡唑化合物的改良方法
WO2014022528A1 (en) 2012-08-02 2014-02-06 Merck Sharp & Dohme Corp. Antidiabetic tricyclic compounds
EP2970119B1 (en) 2013-03-14 2021-11-03 Merck Sharp & Dohme Corp. Novel indole derivatives useful as anti-diabetic agents
US9708367B2 (en) 2013-03-15 2017-07-18 Synergy Pharmaceuticals, Inc. Agonists of guanylate cyclase and their uses
AU2014235209B2 (en) 2013-03-15 2018-06-14 Bausch Health Ireland Limited Guanylate cyclase receptor agonists combined with other drugs
KR102272746B1 (ko) 2013-06-05 2021-07-08 보슈 헬스 아일랜드 리미티드 구아닐레이트 사이클라제 c의 초순수 작용제, 및 이의 제조 및 사용 방법
DK3572416T3 (da) 2014-01-24 2022-12-12 Turning Point Therapeutics Inc Diaryl-makrocykler som modulatorer af proteinkinaser
US9708272B2 (en) 2014-08-29 2017-07-18 Tes Pharma S.R.L. Inhibitors of α-amino-β-carboxymuconic acid semialdehyde decarboxylase
HUE051898T2 (hu) 2015-06-17 2021-03-29 Pfizer Triciklusos vegyületek és alkalmazásuk foszfodiészteráz inhibitorokként
WO2017004342A1 (en) 2015-07-02 2017-01-05 Tp Therapeutics, Inc. Chiral diaryl macrocycles as modulators of protein kinases
RU2019114228A (ru) 2016-10-14 2020-11-16 Тес Фарма С.Р.Л. ИНГИБИТОРЫ ДЕКАРБОКСИЛАЗЫ ПОЛУАЛЬДЕГИДА α-АМИНО-β-КАРБОКСИМУКОНОВОЙ КИСЛОТЫ
WO2019131902A1 (ja) 2017-12-27 2019-07-04 武田薬品工業株式会社 腹圧性尿失禁および便失禁の治療薬
KR20210111248A (ko) 2018-11-20 2021-09-10 테스 파마 에스.알.엘. α-아미노-β-카르복시뮤콘산 세미알데하이드 데카르복실라제의 저해제
TW202045476A (zh) 2019-02-13 2020-12-16 美商默沙東藥廠 5-烷基吡咯啶食慾素受體促效劑
EP4010314B1 (en) 2019-08-08 2024-02-28 Merck Sharp & Dohme LLC Heteroaryl pyrrolidine and piperidine orexin receptor agonists
WO2022040070A1 (en) 2020-08-18 2022-02-24 Merck Sharp & Dohme Corp. Bicycloheptane pyrrolidine orexin receptor agonists

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US652018A (en) * 1900-02-15 1900-06-19 John C Duner Gate.
US3317524A (en) 1965-02-04 1967-05-02 American Home Prod Substituted 1, 2, 3, 4-tetrahydro-pyrazino[1, 2-a]indoles
DE2162422A1 (de) 1971-12-16 1973-06-20 Merck Patent Gmbh Pyrazinoindol-derivate und verfahren zu ihrer herstellung
EP0572863A1 (de) * 1992-06-05 1993-12-08 F. Hoffmann-La Roche Ag ZNS Pyrazinoindole
US5622950A (en) * 1993-03-01 1997-04-22 Merck, Sharp & Dohme Ltd. Pyrrolo-pyridine derivatives
US5576319A (en) * 1993-03-01 1996-11-19 Merck, Sharp & Dohme Ltd. Pyrrolo-pyridine derivatives
CZ224195A3 (en) 1993-03-01 1996-03-13 Merck Sharp & Dohme The use of pyrrolopyridine derivatives for preparing pharmaceutical preparations
US6169086B1 (en) 1997-01-27 2001-01-02 Daiichi Pharmaceutical Co., Ltd. Pyrazole derivatives
JP2000169475A (ja) 1998-07-24 2000-06-20 Dai Ichi Seiyaku Co Ltd ピラゾ―ル誘導体およびその塩
CZ20012193A3 (cs) * 1998-12-17 2001-12-12 American Home Products Corporation Deriváty 2,3,4,4a-tetrahydro-1H-pyrazino(1,2-a)chinoxalin-5(6H)onu, způsob jejich výroby a jejich pouľití
GB9902047D0 (en) * 1999-01-29 1999-03-17 Cerebrus Ltd Chemical compounds XI
AU2001283955B2 (en) * 2000-07-31 2006-05-18 F. Hoffmann-La Roche Ag Piperazine derivatives

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050119308A1 (en) * 2002-03-29 2005-06-02 Koji Teshima Remedy for sleep disturbance
US7566728B2 (en) 2002-03-29 2009-07-28 Mitsubishi Tanabe Pharma Corporation Remedy for sleep disturbance
US8003669B2 (en) 2002-03-29 2011-08-23 Mitsubishi Tanabe Pharma Corporation Remedy for sleep disturbance
US20050026925A1 (en) * 2003-06-26 2005-02-03 Blench Toby Jonathan 5HT2c receptor agonists
US7208494B2 (en) 2003-06-26 2007-04-24 Hoffmann-La Roche Inc. 5HT2c receptor agonists
US20050032930A1 (en) * 2003-07-02 2005-02-10 Christian Jackson Inkjet ink
WO2014173903A1 (en) * 2013-04-23 2014-10-30 Laboratorios Del Dr. Esteve, S.A. PYRAZINO[1,2-a]INDOLE COMPOUNDS, THEIR PREPARATION AND USE IN MEDICAMENTS
US9879015B2 (en) 2013-04-23 2018-01-30 Laboratorios Del Dr. Esteve S.A. Pyrazino[1,2-a]indole compounds, their preparation and use in medicaments
US9963453B2 (en) 2013-04-23 2018-05-08 Laboratorios Del Dr. Esteve S.A. Substituted pyrazino[1,2-a]indoles as sigma receptor activity modulators

Also Published As

Publication number Publication date
PE20020366A1 (es) 2002-05-17
PA8523601A1 (es) 2002-10-24
BR0112918A (pt) 2003-07-01
JP2004505085A (ja) 2004-02-19
US20030216401A1 (en) 2003-11-20
CA2417106C (en) 2007-09-18
EP1325008A1 (en) 2003-07-09
US6933387B2 (en) 2005-08-23
MXPA03000906A (es) 2005-02-24
DK1325008T3 (da) 2006-02-13
EP1325008B1 (en) 2005-10-05
DE60113865T2 (de) 2006-07-20
AR030306A1 (es) 2003-08-20
DE60113865D1 (de) 2006-02-16
CA2417106A1 (en) 2002-02-07
KR20030020954A (ko) 2003-03-10
ES2250459T3 (es) 2006-04-16
US7253281B2 (en) 2007-08-07
KR100539139B1 (ko) 2005-12-26
AU8395501A (en) 2002-02-13
WO2002010169A1 (en) 2002-02-07
ZA200300525B (en) 2004-04-20
JP4180365B2 (ja) 2008-11-12
AU2001283955B2 (en) 2006-05-18
US20070106076A1 (en) 2007-05-10
US20050239789A1 (en) 2005-10-27
CN1452622A (zh) 2003-10-29
GT200100155A (es) 2002-05-16
CN1277828C (zh) 2006-10-04
ATE305933T1 (de) 2005-10-15
UY26863A1 (es) 2002-01-31

Similar Documents

Publication Publication Date Title
US6933387B2 (en) Anti-obesity 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indoles
AU2001283955A1 (en) Piperazine derivatives
US6583134B2 (en) Aza- indolyl derivatives for treating obesity
EP1147110B1 (en) Pyrazino(aza)indole derivatives
KR100644004B1 (ko) 아자-아릴피페라진
US6844345B2 (en) Piperazine derivatives
US20020183349A1 (en) Indoline derivatives and method of treating obesity
JP2004517852A (ja) インドール誘導体および5−ht2bおよび5−ht2c受容体リガンドとしてのそれらの使用
AU2002304833A1 (en) Tetrahydro-pyrazino (1,2-A) indoles for the treatment of central nervous disorders

Legal Events

Date Code Title Description
AS Assignment

Owner name: VERNALIS RESEARCH LIMITED, A BRITISH COMPANY, ENGL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BENTLEY, JONATHAN MARK;REEL/FRAME:012233/0367

Effective date: 20010718

Owner name: HOFFMANN-LA ROCHE INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:F. HOFFMANN-LA ROCHE AG;REEL/FRAME:012233/0238

Effective date: 20010723

Owner name: F. HOFFMAN-LA ROCHE AG A SWISS COMPANY, SWITZERLAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEBEISEN, PAUL;MULLER, MARC;RICHTER, HANS;AND OTHERS;REEL/FRAME:012233/0304

Effective date: 20010712

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION