US20020013390A1 - Stabilizer mixture - Google Patents

Stabilizer mixture Download PDF

Info

Publication number
US20020013390A1
US20020013390A1 US09/811,960 US81196001A US2002013390A1 US 20020013390 A1 US20020013390 A1 US 20020013390A1 US 81196001 A US81196001 A US 81196001A US 2002013390 A1 US2002013390 A1 US 2002013390A1
Authority
US
United States
Prior art keywords
stearate
tert
butyl
compound
stabilizer mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/811,960
Other languages
English (en)
Inventor
Francois Gugumus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/811,960 priority Critical patent/US20020013390A1/en
Publication of US20020013390A1 publication Critical patent/US20020013390A1/en
Priority to US10/085,221 priority patent/US20030013784A1/en
Priority to US10/914,704 priority patent/US7169835B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/30Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Definitions

  • the present invention relates to a stabilizer mixture containing a sterically hindered amine compound and two different Mg- and/or Zn-compounds, the use of this mixture for stabilizing an organic material, in particular a polyolefin, against degradation induced by light, heat or oxidation and the organic material thus stabilized.
  • the present invention relates to a stabilizer mixture containing
  • the stabilizer mixture is essentially free of perchloric acid
  • the two compounds in component (B) are different from the combination ZnO and Zn stearate and the combination ZnO and hydrotalcite.
  • the weight ratio of the two different compounds of component (B) is preferably 1:5 to 5:1, in particular 1:2 to 2:1.
  • the sterically hindered amine is preferably a compound containing at least one group of the formula (I) or (II)
  • G is hydrogen or methyl
  • G 1 and G 2 independently of one another, are hydrogen, methyl or together are a substituent ⁇ O.
  • n 1 is a number from 1 to 4
  • G and G 1 independently of one another, are hydrogen or methyl
  • G 11 is hydrogen, O, hydroxyl, C 1 -C 18 alkyl, C 3 -C 8 alkenyl, C 3 -C 8 alkynyl, C 7 -C 12 aralkyl, C 1 -C 18 alkoxy, C 5 -C 8 cycloalkoxy, C 7 -C 9 phenylaikoxy, C 1 -C 8 alkanoyl, C 3 -C 5 alkenoyl, C 1 -C 18 alkanoyloxy, glycidyl or a group of the formula —CH 2 CH(OH)—Z, in which Z is hydrogen, methyl or phenyl, G 1 , preferably being H, C 1 -C 4 alkyl, allyl, benzyl, acetyl or acryloyl, and G 12 , if no is 1, is hydrogen, C 1 -C 18 alkyl which is uninterrupted or interrupted by one or more oxygen atoms, cyanoethyl
  • G 12 if n 1 is 3, is a trivalent radical of an aliphatic, cycloaliphatic or aromatic tricarboxylic acid, which may be substituted in the aliphatic, cycloaliphatic or aromatic moiety by —COOZ 12 , of an aromatic tricarbamic acid or of a phosphorus-containing acid, or is a trivalent silyl radical,
  • G 12 if n 1 is 4, is a tetravalent radical of an aliphatic, cycloaliphatic or aromatic tetracarboxylic acid.
  • carboxylic acid radicals mentioned above are in each case taken to mean radicals of the formula (—CO) x R, where x is as defined above, and the meaning of R arises from the definition given.
  • Alkyl with up to 20 carbon atoms is, for example, methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl.
  • C 3 -C 8 alkenyl G 11 can be, for example, 1-propenyl, allyl, methallyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2-octenyl, or 4-tert-butyl-2-butenyl.
  • C 3 -C 8 alkynyl G 11 is preferably propargyl.
  • C 7 -C 12 aralkyl G 11 is, in particular, phenethyl, especially benzyl.
  • C 1 -C 18 alkoxy G 11 is, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, pentoxy, isopentoxy, hexoxy, heptoxy, octoxy, decyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy and octadecyloxy.
  • C 5 -C 8 cycloalkoxy G 11 is, for example, cyclopentoxy, cyclohexoxy, cycloheptoxy, cyclooctoxy, cyclodecyloxy and cyclododecyloxy.
  • C 7 -C 9 phenylalkoxy is, for example, benzyloxy.
  • C 1 -C 8 alkanoyl G 11 is, for example, formyl, propionyl, butyryl, octanoyl, but preferably acetyl and C 3 -C 5 alkenoyl G 11 is in particular acryloyl.
  • C 1 -C 18 alkanoyfoxy G 11 is, for example, formyloxy, acetyloxy, propionyloxy, butyryloxy, valeryloxy, lauroyloxy, palmitoyloxy and stearoyloxy.
  • G 12 is a monovalent radical of a carboxylic acid, it is, for example, an acetyl, caproyl, stearoyl, acryloyl, methacryloyl, benzoyl or ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl radical.
  • G 12 is a monovalent silyl radical, it is, for example, a radical of the formula —(C j H 2j )—Si(Z′) 2 Z′′, in which j is an integer in the range from 2 to 5, and Z′ and Z′′, independently of one another, are C 1 -C 4 alkyl or C 1 -C 4 alkoxy.
  • G 12 is a divalent radical of a dicarboxylic acid, it is, for example, a malonyl, succinyl, glutaryl, adipoyl, suberoyl, sebacoyl, maleoyl, itaconyl, phthaloyl, dibutylmalonyl, dibenzylmalonyl, butyl(3,5-di-tert-butyl-4-hydroxybenzyl)malonyl or bicycloheptenedicarbonyl radical or a group of the formula
  • G 12 is a trivalent radical of a tricarboxylic acid, it is, for exampel, a trimellitoyl, citryl or nitrilotriacetyl radical.
  • G 12 is a tetravalent radical of a tetracarboxylic acid, it is, for example, the tetravalent radical of butane-1,2,3,4-tetracarboxylic acid or of pyromellitic acid.
  • G 12 is a divalent radical of a dicarbamic acid, it is, for example, hexamethylenedicarbamoyl or 2,4-toluylenedicarbamoyl radical.
  • G and G 1 are hydrogen, G 11 is hydrogen or methyl, no is 2 and G 12 is the diacyl radical of an aliphatic dicarboxylic acid having 4-12 carbon atoms.
  • polyalkylpiperidine compounds from this class are the following compounds:
  • n 2 is the number 1, 2 or 3
  • G, G 1 and G 11 are as defined under (a′)
  • G 13 is hydrogen, C 1 -C 12 alkyl, C 2 -C 5 hydroxyalkyl, C 5 -C 7 cycloalkyl, C 7 -C 8 aralkyl, C 1 -C 18 alkanoyl, C 3 -C 5 alkenoyl, benzoyl or a group of the formula
  • G 14 if n 2 is 1, is hydrogen, C 1 -C 18 alkyl, C 3 -C 8 alkenyl, C 5 -C 7 cycloalkyl, C 1 -C 4 alkyl which is substituted by a hydroxyl, cyano, alkoxycarbonyl or carbamide group, glycidyl, a group of the formula —CH 2 —CH(OH)—Z or of the formula —CONH—Z, in which Z is hydrogen, methyl or phenyl;
  • G 14 if n 2 is 2, is C 2 -C 12 alkylene, C 6 -C 12 arylene, xylylene, a —CH 2 —CH(OH)—CH 2 group or a —CH 2 —CH(OH)—CH 2 —O—D—O— group, in which D is C 2 -C 10 alkylene, C 6 -C 15 arylene, C 6 -C 12 cycloalkylene, or, provided that G 13 is not alkanoyl, alkenoyl or benzoyl, G 14 can alternatively be 1-oxo-C 2 -C 12 alkylene, a divalent radical of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid or dicarbamic acid or alternatively the group —CO—, G 14 , if n 2 is 3, is a group
  • G 13 and G 14 together can be the divalent radical of an aliphatic, cycloaliphatic or aromatic 1,2- or 1,3-dicarboxylic acid.
  • Any C 5 -C 7 cycloalkyl substituents are, in particular, cyclohexyl.
  • C 7 -C 8 aralkyl G 13 is, in particular, phenylethyl or especially benzyl.
  • C 2 -C 5 hydroxyalkyl G 13 is, in particular, 2-hydroxyethyl or 2-hydroxypropyl.
  • C 1 -C 18 alkanoyl G 13 is, for example, formyl, acetyl, propionyl, butyryl, octanoyl, dodecanoyl, hexadecanoyl, octadecanoyl, but preferably acetyl, and C 3 -C 5 alkenoyl G 13 is, in particular, acryloyl.
  • C 2 -C 8 alkenyl G 14 is, for example, allyl, methallyl, 2-butenyl, 2-pentenyl, 2-hexenyl or 2-octenyl.
  • G 14 as a hydroxyl-, cyano-, alkoxycarbonyl- or carbamide-substituted C 1 -C 4 alkyl can be, for example, 2-hydroxyethyl, 2-hydroxypropyl, 2-cyanoethyl, methoxycarbonylmethyl, 2-ethoxycarbonylethyl, 2-aminocarbonylpropyl or 2-(dimethylaminocarbonyl)ethyl.
  • Any C 2 -C 12 alkylene radicals are, for example, ethylene, propylene, 2,2-dimethylpropylene, tetramethylene, hexamethylene, octamethylene, decamethylene or dodecamethylene.
  • Any C 6 -C 15 arylene substituents are, for example, o-, m- or p-phenylene, 1,4-naphthylene or 4,4′-diphenylene.
  • C 6 -C 12 cycloalkylene is, in particular, cyclohexylene.
  • G 14 as 1 -oxo-C 2 -C 12 alkylene is preferably a group
  • polyalkylpiperidine compounds from this class are the following compounds:
  • n 3 is the number 1 or 2
  • G, G 1 and G 11 are as defined under (a′)
  • G 15 if n 3 is 1, is C 2 -C 8 alkylene, C 2 -C 8 hydroxyalkylene or C 4 -C 22 acyloxyalkylene, and if n 3 is 2, G 15 is the (—CH 2 ) 2 C(CH 2 —) 2 group.
  • C 2 -C 8 alkylene or C 2 -C 8 hydroxyalkylene G 15 is, for example, ethylene, 1-methylethylene, propylene, 2-ethylpropylene or 2-ethyl-2-hydroxymethylpropylene.
  • C 4 -C 22 acyloxyalkylene G 15 is, for example, 2-ethyl-2-acetoxymethylpropylene.
  • polyalkylpiperidine compounds from this class are the following compounds:
  • n 4 is the number 1 or 2
  • G, G 1 and G 11 are as defined under (a′)
  • G 16 is hydrogen, C 1 -C 12 alkyl, allyl, benzyl, glycidyl or C 2 -C 6 alkoxyalkyl
  • G 17 if n 4 is 1, is hydrogen, C 1 -C 12 alkyl, C 3 -C 5 alkenyl, C 7 -C 9 aralkyl, C 5 -C 7 cycloalkyl, C 2 -C 4 hydroxyalkyl, C 2 -C 6 alkoxyalkyl, C 6 -C 10 aryl, glycidyl or a group of the formula —(CH 2 ) p —COO—Q or —(CH 2 ) p —O—CO—Q, in which p is 1 or 2, and Q is C 1 -C 4 alkyl or phenyl, and G 17 , if n is 2, is C
  • a compound of the formula (Id-3) is preferred.
  • Any C 1 -C 12 alkyl substituents are, for example, methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl.
  • Any C 1 -C 18 alkyl substituents can be, for example, the abovementioned groups and in addition, for example, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl.
  • Any C 2 -C 6 alkoxyalkyl substituents are, for example, methoxymethyl, ethoxymethyl, propoxymethyl, tert-butoxymethyl, ethoxyethyl, ethoxypropyl, n-butoxyethyl, tert-butoxyethyl, isopropoxyethyl or propoxypropyl.
  • C 3 -C 5 alkenyl G 17 is, for example, 1-propenyl, allyl, methallyl, 2-butenyl or 2-pentenyl.
  • C 7 -C 5 aralkyl G 17 , T 1 and T 2 are, in particular, phenethyl or especially benzyl. If T 1 and T 2 together with the carbon atom form a cycloalkane ring, this can be, for example, a cyclopentane, cyclohexane, cyclooctane or cyclododecane ring.
  • C 2 -C 4 hydroxyalkyl G 17 is, for example, 2-hydroxyethyl, 2-hydroxypropyl, 2-hydroxybutyl or 4-hydroxybutyl.
  • C 6 -C 10 aryl G 17 , T 1 and T 2 are, in particular, phenyl or a- or ,-naphthyl, which are unsubstituted or substituted by halogen or C 1 -C 4 alkyl.
  • C 2 -C 12 alkylene G 17 is, for example, ethylene, propylene, 2,2-dimethylpropylene, tetramethylene, hexamethylene, octamethylene, decamethylene or dodecamethylene.
  • C 4 -C 12 alkenylene G 17 is, in particular, 2-butenylene, 2-pentenylene or 3-hexenylene.
  • C 6 -C 12 arylene G 17 is, for example, o-, m- or p-phenylene, 1,4-naphthylene or 4,4′-diphenylene.
  • C 2 -C 12 alkanoyl D′′ is, for example, propionyl, butyryl, octanoyl, dodecanoyl, but preferably acetyl.
  • C 2 -C 10 alkylene, C 6 -C 15 arylene or C 6 -C 12 cycloalkylene D′ have, for example, one of the definitions given for D under (b′).
  • polyalkylpiperidine compounds from this class are the following compounds:
  • n 5 is the number 1 or 2
  • G 18 is a group of the formula
  • G and G 11 are as defined under (a′), and G 1 and G 2 are hydrogen, methyl or, together, are a substituent ⁇ O,
  • E is —O— or —ND′′′—
  • A is C 2 -C 6 alkylene or —(CH 2 ) 3 —O— and
  • x 1 is the number 0 or 1
  • D′′′ is hydrogen, C 1 -C 12 alkyl, C 2 -C 5 hydroxyalkyl or C 5 -C 7 cycloalkyl,
  • G 19 is identical to G 18 or is one of the groups —N(G 21 )(G 22 ), —OG 23 , —N(H)(CH 2 OG 23 ) or —N(CH 2 OG 23 ) 2 ,
  • G 21 is C 1 -C 12 alkyl, cyclohexyl, benzyl or C 1 -C 4 -hydroxyalkyl or a group of the formula
  • G 22 is C 1 -C 12 alkyl, cyclohexyl, benzyl or C 1 -C 4 hydroxyalkyl, and
  • G 23 is hydrogen, C 1 -C 12 alkyl or phenyl, or G 21 and G 22 together are C 4 -C 5 alkylene or
  • C 4 -C 5 oxaalkylene for example —CH 2 CH 2 —O—CH 2 CH 2 —, or a group of the formula —CH 2 CH 2 —N(G 11 )—CH 2 CH 2 —.
  • Any C 1 -C 12 alkyl substituents are, for example, methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl.
  • Any hydroxyalkyl substituents are, for example, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxybutyl or 4-hydroxybutyl.
  • Any C 5 -C 7 cycloalkyl substituents are, for example, cyclopentyl, cyclohexyl or cycloheptyl. Cyclohexyl is preferred.
  • C 2 -C 6 alkylene A is, for example, ethylene, propylene, 2,2-dimethylpropylene, tetramethylene or hexamethylene.
  • G 21 and G 22 together are C 4 -C 5 alkylene or oxaalkylene, they are, for example, tetramethylene, pentamethylene or 3-oxapentamethylene.
  • polyalkylpiperidine compounds from this class are the compounds of the following formulae:
  • R′ has the same meaning as in compound 76.
  • a preferred example from this class is the following compound:
  • Examples of 2,2,6,6-polyalkylpiperidine compounds from this class are the compounds of the following formulae, where m 1 to m 14 is a number from 2 to about 200, preferably 2 to 100, for example 2 to 50,2 to 40 or 3 to 40 or 4 to 10.
  • the end group bonded to the —O— can be, for example, hydrogen or a group —CO—(CH 2 ) 2 —COO—Y or —CO—(CH 2 ) 4 —COO—Y, respectively, with Y being hydrogen or C 1 -C 4 alkyl and the end group bonded to the diacyl can be, for example, —O—Y or a group
  • the end group bonded to the amino residue can be, for example, a group
  • the end group bonded to the diacyl residue can be, for example, Cl.
  • the end group bonded to the triazine residue can be, for example, chlorine or a group
  • the end group bonded to the diamino group can be, for example, hydrogen or a group
  • Suitable amino groups are typically: pyrrolidin-1-yl, morpholino, —NH 2 , —N(C 1 -C 8 alkyl) 2 and —NY′(C 1 -C 8 alkyl) wherein Y′ is hydrogen or a group of the formula
  • the end group bonded to the 2,2,6,6-tetramethylpiperidin-4-ylamino residue can be, for example, hydrogen and the end group bonded to the 2-hydroxypropylene residue can be, for example,
  • the end group bonded to the —O— can be, for example, hydrogen or
  • the end group bonded to the diacyl residue can be, for example, —OCH 3 or Cl.
  • the end group bonded to the —O— can be, for example, hydrogen or
  • the end group bonded to the diacyl radical can be, for example, —OCH 3 or Cl.
  • the end group bonded to the —O— can be, for example, hydrogen or
  • the end group bonded to the diacyl radical can be, for example, —OCH 3 or Cl.
  • the end group bonded to the —CH 2 — can be, for example, hydrogen and the end group bonded to the ester residue can be, for example,
  • the end group bonded to the —CH 2 — can be, for example, hydrogen and the end group bonded to the ester residue can be, for example,
  • the end group bonded to the —CH 2 — can be, for example, hydrogen and the end group bonded to the amide residue can be, for example,
  • the end group bonded to the triazine residue can be, for example, chlorine or a group
  • the end group bonded to the diamino residue can be, for example, hydrogen or a group
  • Suitable amino groups are typically: pyrrolidin-1-yl, morpholino, —NH 2 , —N(C 1 -C 8 alkyl) 2 and —NY′(C 1 -C 8 alkyl) wherein Y′ is hydrogen or a group of the formula
  • Preferred is also a compound which corresponds to compound 92 wherein the 2,2,6,6-tetramethyl-4-piperidyl groups are replaced by 1,2,2,6,6-pentamethyl-4-piperidyl groups.
  • the end group bonded to the diamino residue can be, for example, hydrogen and the end group bonded to the —CH 2 CH 2 — residue can be, for example,
  • the end group bonded to the diamino residue can be, for example, hydrogen and the end group bonded to the diacyl residue can be, for example, Cl.
  • R′′ is a group of the formula
  • R′′′ is a group of the formula (95-1), and m′ 15 and m′′ 15 are each a number from 0 to 200, preferably 0 to 100, in particular 0 to 50, with the proviso that m′ 15 +m′′ 15 is a number from 2 to 200, preferably 2 to 100, in particular 2 to 50.
  • the end group bonded to the diamino residue can be, for example, hydrogen and the end group bonded to the —CH 2 CH 2 — group can be, for example, halogen, in particular Cl or Br.
  • polymeric compounds are:
  • n 16 and m 16 * are a number from 2 to 50, for example 2 to 25.
  • the compounds of the formulae (96-I) and (96-II) can be obtained together as a mixture and therefore, can also be employed as such.
  • the (96-I):(96-II) weight ratio is, for example, from 20:1 to 1:20 or from 1:10 to 10:1.
  • the terminal group bonded to the nitrogen can be, for example, hydrogen and the terminal group bonded to the 2-hydroxypropylene radical can be, for example, a
  • the terminal group bonded to the dimethylene radical can be, for example, —OH, and the terminal group bonded to the oxygen can be, for example, hydrogen.
  • the terminal groups can also be polyether radicals.
  • G 24 , G 25 , G 26 , G 27 and G 28 independently of one another, are a direct bond or C 1 -C 10 alkylene, G 11 is as defined under (a′) and m 17 is a number from 1 to 50, for example 2to25.
  • the end group bonded to the >C ⁇ O group can be, for example,
  • m 18 is a number in the range from 2 to 200, preferably 2 to 100, in particular 2 to 50.
  • the end group bonded to the —CH 2 — residue can be, for example, hydrogen and the end group bonded to the —CH(CO 2 R IV )— residue can be, for example, —CH ⁇ CH—COOR IV .
  • G 11 is as defined under (a′)
  • G 29 and G 32 independently of one another, are a direct bond or a —N(X 1 )—CO—X 2 —CO—N(X 3 )— group, where X 1 and X 3 , independently of one another, are hydrogen, C 1 -C 8 alkyl, C 5 -C 12 cycloalkyl, phenyl, C 7 -C 9 phenylalkyl or a group of the formula (99-1)
  • X 2 is a direct bond or C 1 -C 4 alkylene
  • G 30 , G 31 , G34 and G 35 independently of one another, are hydrogen, C 1 -C 30 alkyl, C 5 -C 12 cycloalkyl or phenyl
  • G 33 is hydrogen, C 1 -C 30 alkyl, C 5 -C 12 cycloalkyl, C 7 -Cgphenylalkyl, phenyl or a group of the formula (99-1)
  • m 19 is a number from 1 to 50.
  • the end group bonded to the 2,5-dioxopyrrolidine ring can be, for example, hydrogen
  • the end group bonded to the —C(G 34 )(G 35 )— radical can be, for example,
  • G 11 is hydrogen or methyl
  • mlg is a number from 1 to 25.
  • m′ 20 , m′′ 20 and m′′′ 20 are a number from 2 to 12
  • G 36 is hydrogen, C 1 -C 12 alkyl, C 5 -C 12 cycloalkyl, phenyl or C 7 -C 9 phenylalkyl
  • G 11 is as defined under (a′).
  • a preferred product has the Chemical Abstracts-CAS No. 136 504-96-6 (Compound 100-A).
  • the above reaction product can be represented for example by a compound of the formula 100-1, 100-2 or 100-3. It can also be in the form of a mixture of these three compounds.
  • m 20 is preferably 1 to 20.
  • G 1 is as defined under (a′)
  • G 37 is C 10 -alkyl, C 5 -C 12 cycloalkyl, C 1 -C 4 alkyl-substituted C 5 -C 12 cycloalkyl, phenyl or C 1 -C 10 alkyl-substituted phenyl
  • G 38 is C 3 -C 10 alkylene and m 21 is a number from 1 to 50, for example 2 to 25.
  • the terminal group bonded to the silicon atom can be, for example, (G 37 ) 3 Si—O—, and the terminal group bonded to the oxygen can be, for example, —Si(G 37 ) 3 .
  • the compounds of the formula (101) can also be in the form of cyclic compounds if m 21 is a number from 3 to 10, i.e. the free valences shown in the structural formula then form a direct bond.
  • m 21 being a number from 1 to 20.
  • alkyl examples are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, 2-ethylbutyl, n-pentyl, isopentyl, 1-methylpentyl, 1,3-dimethylbutyl, n-hexyl, 1-methylhexyl, n-heptyl, isoheptyl, 1,1,3,3-tetramethylbutyl, 1-methylheptyl, 3-methylheptyl, n-octyl, 2-ethyl-hexyl, 1,1,3-trimethylhexyl, 1,1,3,3-tetramethylpentyl, nonyl, decyl, undecyl, 1-methylundecyl, dodecyl, 1,1,3,3,5,5-hexamethylhexyl,
  • n 6 is the number 1 or 2
  • G and G 11 are as defined under (a′)
  • G 14 is as defined under (b′)
  • G 14 cannot be —CONH—Z and —CH 2 —CH(OH)—CH 2 —O—D—O—.
  • radicals G 39 independently of one another, are a group of the formula (Ii-1)
  • G 40 is C 1 -C 12 alkyl or C 5 -C 12 cycloaklky
  • G 41 is C 2 -C 12 alkylene
  • G 42 is hydrogen, C 1 -C 8 alkyl, —O—, —CH 2 CN, C 3 -C 6 alkenyl, C 7 -C 9 phenylalkyl, C 7 -C 9 phenylalkyl which is substituted on the phenyl radical by C 1 -C 4 alkyl; or C 1 -C 8 acyl.
  • Alkyl is for example C 1 -C 4 alkyl, in particular methyl, ethyl, propyl or butyl.
  • Cycloaklyl is preferably cyclohexyl.
  • Alkylene is for example ethylene, propylene, trimethylene, tetramethylene, pentamethylene, 2,2-dimethyltrimethylene or hexamethylene.
  • Alkenyl is preferably allyi.
  • Phenylalkyl is preferably benzyl.
  • Acyl is preferably acetyl.
  • the steicaly hinered amine(component (A)) is preferably one of the above compounds 1 to 106.
  • the compounds 5,10, 13,14, 24, 25, 36-a, 36-b, 49-a-I, 49-a-II, 49-e, 63, 75, 76, 80-a, 81, 84-1, 84-2, 92, 93, 96-I, 96-I, 97-I, 97-II, 99-I, 100-A, 101-I, 105 and 106 are of interest.
  • the compounds 5, 10, 13, 14, 36-a, 36-b, 36-d, 49-a-I, 49-a-II, 49-d, 49-e, 63, 69-a, 76, 80-a, 81, 84-1, 84-2, 92, 96-I, 96-II, 97-II, 99-I, 99-II, 99-III, 100-A, 101-I and 105 are preferred and the compounds 13, 14, 36-a, 36-b, 49-a-I, 49-a-II, 63, 76, 81, 84-1, 92, 96-I, 96-II, 100-A and 101-I are particularly preferred.
  • the organic salt of zinc or magnesium defined in component (B) is preferably a compound of the formula MeL 2 in which Me is zinc or magnesium and L is an anion of an organic acid or of an enol.
  • the organic acid can, for example, be a sulfonic acid, sulfinic acid, phosphonic acid or phosphinic acid, but is preferably a carboxylic acid.
  • the acid can be aliphatic, aromatic, araliphatic or cycloaliphatic; it can be linear or branched; it can be substituted by hydroxyl or alkoxy groups; it can be saturated or unsaturated and it preferably contains 1 to 24 carbon atoms.
  • Examples of carboxylic acids of this type are formic, acetic, propionic, butyric, isobutyric, caprioic, 2-ethylcaproic, caprylic, capric, lauric, paimitic, stearic, behenic, oleic, iactic, ricinoleic, 2-ethoxypropionic, benzoic, salicylic, 4-butylbenzoic, toluic, 4-dodecylbenzoic, phenylacetic, naphthylacetic, cyclohexanecarboxylic, 4-butylcyclohexanecarboxylic or cyclohexylacetic acid.
  • the carboxylic acid can also be a technical mixture of carboxylic acids, for example technical mixtures of fatty acids or mixtures of alkylated benzoic acids.
  • Examples of organic acids containing sulfur or phosphorus are methanesulfonic, ethanesulfonic, ⁇ , ⁇ -dimethylethanesulfonic, n-butanesulfonic, n-dodecanesulfonic, benzenesulfonic, toluenesulfonic, 4-nonylbenzenesulfonic, 4-dodecylbenzenesulfonic or cyclohexanesulfonic acid, dodecanesulfinic, benzenesulfinic or naphthalenesulfinic acid, butylphosphonic acid, phenylphosphonic acid, monomethyl or monoethyl phenylphosphonate, monobutyl benzylphosphonate, dibutylphosphinic acid or diphenylphosphinic acid.
  • L is an enolate anion, it is preferably an anion of a ⁇ -dicarbonyl compound or of an o-acylphenol.
  • ⁇ -dicarbonyl compounds are acetylacetone, benzoylacetone, dibenzoylmethane, ethyl acetoacetate, butyl acetoacetate, lauryl acetoacetate or ⁇ -acetylcyclohexanone.
  • o-acylphenols are 2-acetylphenol, 2-butyroylphenol, 2-acetyl-1 -naphthol, 2-benzoylphenol or salicylaldehyde.
  • the enolate is preferably the anion of a P-dicarbonyl compound having 5 to 20 carbon atoms.
  • Organic salts of zinc or magnesium are preferably an acetylacetonate or an aliphatic monocarboxylate having, for example, 1 to 24 carbon atoms.
  • Magnesium acetate, laurate and stearate, zinc formate, acetate, oenanthate, laurate and stearate as well as zinc acetylacetonate and magnesium acetylacetonate are some of the particular preferred examples.
  • Zinc stearate, magnesium stearate, zinc acetylacetonate, magnesium acetylacetonate, zinc acetate and magnesium acetate are of special interest.
  • the inorganic salt of zinc or magnesium is for example zinc oxide, magnesium oxide, zinc hydroxide, magnesium hydroxide, or a carbonate containing compound such as
  • the natural hydrotalcite is held to possess a structure Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4 H 2 O.
  • a typical empirical formula of a synthetic hydrotalcite is
  • Examples of the synthetic product include:
  • Preferred synthetic hydrotalcites are L-55R®II from ®REHEIS as well as ®ZHT-4A and ®DHT-4A from ®Kyowa Chemical Industry Co.
  • the two different compounds of component (B), which are present in a weight ratio of 1:10 to 10:1 are for example:
  • Mg-stearate and hydrotalcite (®DHT-4A)
  • hydrotalcite (®REHEIS) and Mg-stearate
  • hydrotalcite (®REHEIS) and Zn-stearate
  • hydrotalcite (®REHEIS) and Mg-oxide
  • dolomite (®Microdol Super) and Zn-stearate
  • dolomite (®Microdol Super) and Mg-stearate
  • dolomite (®Microdol Super) and Zn-oxide
  • dolomite (®Microdol Super) and Mg-hydroxide
  • a preferred embodiment of this invention relates to a stabilizer mixture wherein the two different compounds of component (B) are selected from the group consisting of hydrotalcite, dolomite, Zn-hydroxide-carbonate, Mg-hydroxide-carbonate, Zn-oxide, Mg-oxide, Zn-hydroxide, Mg-hydroxide, Zn-stearate, Mg-stearate, Zn-acetylacetonate, Mg-acetylacetonate, Zn-acetate and Mg-acetate.
  • the two different compounds of component (B) are selected from the group consisting of hydrotalcite, dolomite, Zn-hydroxide-carbonate, Mg-hydroxide-carbonate, Zn-oxide, Mg-oxide, Zn-hydroxide, Mg-hydroxide, Zn-stearate, Mg-stearate, Zn-acetylacetonate, Mg-acetylacetonate, Zn-acetate and Mg
  • component (B) does not contain Zn-oxide.
  • Mg-stearate and Mg-hydroxide is also preferred.
  • a further preferred embodiment of this invention relates to a stabilizer mixture containing additionally
  • the pigment (component (C1)) may be an inorganic or organic pigment.
  • inorganic pigments are titanium dioxide, zinc oxide, carbon black, cadmium sulfide, cadmium selenide, chromium oxide, iron oxide, lead oxide and so on.
  • organic pigments examples include azo pigments, anthraquinones, phthalocyanines, tetrachloroisoindolinones, quinacridones, isoindolines, perylenes, pyrrolopyrroles (such as Pigment Red 254) and so on.
  • a particularly preferred pigment is titanium dioxide, optionally in combination with an organic pigment.
  • UV absorber component (C2)
  • examples of the UV absorber are a 2-(2′-hydroxyphenyl)benzotriazole, a 2-hydroxybenzophenone, an ester of substituted or unsubstituted benzoic acid, an acrylate, an oxamide, a 2-(2-hydroxyphenyl)-1,3,5-triazine, a monobenzoate of resorcinol or a formamidine.
  • the 2-(2′-hydroxyphenyl)benzotriazole is e.g. 2-(2′-hydroxy-5′-methylphenyl)-benzotriazole, 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)benzotriazole, 2-(5′-tert-butyl-2′-hydroxyphenyl)benzotriazole, 2-(2′-hydroxy-5′-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole, 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)-5-chloro-benzotriazole, 2-(3′-tert-butyl-2′-hydroxy-5′-methylphenyl)-5-chloro-benzotriazole, 2-(3′-sec-butyl-5′-tert-butyl-2′-hydroxyphenyl)benzotriazole, 2-(2′-hydroxy-4′-octyl
  • the 2-hydroxybenzophenone is for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, 4,2′,4′-trihydroxy or 2′-hydroxy-4,4′-dimethoxy derivatives.
  • 2-Hydroxy-4-octyloxybenzophenone is preferred.
  • the ester of a substituted or unsubstituted benzoic acid is for example 4-tert-butyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl) resorcinol, benzoyl resorcinol, 2,4-di-tertbutylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyi-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate or 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.
  • the acrylate is for example ethyl ⁇ -cyano- ⁇ , ⁇ -diphenylacrylate, isooctyl ⁇ -cyano- ⁇ , ⁇ -di-phenylacrylate, methyl ⁇ -carbomethoxycinnamate, methyl ⁇ -cyano- ⁇ -methyl-p-methoxycinnamate, butyl ⁇ -cyano- ⁇ -methyl- ⁇ -methoxy-cinnamate, methyl ⁇ -carbomethoxy-p-methoxycinnamate or N-( ⁇ -carbomethoxy-o-cyanovinyl)-2-methylindoline.
  • the oxamide is for example 4,4′-dioctyloxyoxanilide, 2,2′-diethoxyoxanilide, 2,2′-dioctyloxy-5,5′-di-tert-butoxanilide, 2,2′-didodecyloxy-5,5′-di-tert-butoxanilide, 2-ethoxy-2′-ethyloxanilide, N,N′-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2′-ethoxanilide or its mixture with 2-ethoxy-2′-ethyl-5,4′-di-tert-butoxanilide or mixtures of ortho- and para-methoxy—disubstituted oxanilides or mixtures of o- and p-ethoxy-disubstituted oxanilides.
  • the 2-(2-hydroxyphenyl)-1,3,5-triazine is for example 2,4,6-tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1 ,3,5-triazine, 2,4-bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4-dimethylphenyl)-1 ,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(4-methylphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-
  • the monobenzoate of resorcinol is for example the compound of the formula
  • the formamidine is for example the compound of the formula
  • the UV absorber is in particular a 2-(2′-hydroxyphenyl)benzotriazole, a 2-hydroxybenzophenone or a hydroxyphenyltriazine.
  • a further preferred embodiment of this invention relates to a stabilizer mixture containing additionally an organic salt of Ca or an inorganic salt of Ca.
  • Examples of an organic salt of Ca are Ca-stearate, Ca-laurate, Ca-lactate and Ca-stearoyl-lactate.
  • Examples of an inorganic salt of Ca are CaO and Ca(OH) 2 .
  • the stabilizer mixture according to this invention is suitable for stabilizing organic materials against degradation induced by light, heat or oxidation.
  • organic materials are the following:
  • Polymers of monoolefins and diolefins for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE—HMW), high density and ultrahigh molecular weight polyethylene (HDPE—UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE).
  • HDPE high density polyethylene
  • HDPE—HMW high density and high molecular weight polyethylene
  • HDPE—UHMW high density and ultrahigh molecular weight polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density poly
  • Polyolefins i.e. the polymers of monoolefins exemplified in the preceding paragraph, preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
  • These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either ⁇ - or ⁇ -coordinated.
  • These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(lll) chloride, alumina or silicon oxide.
  • These catalysts may be soluble or insoluble in the polymerisation medium.
  • the catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups la, Ila and/or Ilia of the Periodic Table.
  • the activators may be modified conveniently with further ester, ether, amine or silyl ether groups.
  • These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (—Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
  • Copolymers of monoolefins and diolefins with each other or with other vinyl monomers for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts
  • Hydrocarbon resins for example C 5 -C 9
  • hydrogenated modifications thereof e.g. tackifiers
  • mixtures of polyalkylenes and starch
  • Copolymers of styrene or ⁇ -methylstyrene with dienes or acrylic derivatives for example styrene/butadiene, styrene/acrylonitrile, styrene/alkyl methacrylate, styrene/butadiene/alkyl acrylate, styrene/butadiene/alkyl methacrylate, styrenelmaleic anhydride, styrene/acrylonitrile/methyl acrylate; mixtures of high impact strength of styrene copolymers and another polymer, for example a polyacrylate, a diene polymer or an ethylene/propylene/diene terpolymer; and block copolymers of styrene such as styrene/butadiene/styrene, styrene/isoprene/styrene, styren
  • Graft copolymers of styrene or ⁇ -methylstyrene for example styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile copolymers; styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; styrene, acrylonitrile and methyl methacrylate on polybutadiene; styrene and maleic anhydride on polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; styrene and maleimide on polybutadiene; styrene and alkyl acrylates or methacrylates on polybutadiene; styrene and acrylonitrile on ethylene/propylene/diene terpolymers; styrene and alkyl
  • Halogen-containing polymers such as polychioroprene, chlorinated rubbers, chlorinated and brominated copolymer of isobutylene-isoprene (halobutyl rubber), chlorinated or sulfochlorinated polyethylene, copolymers of ethylene and chlorinated ethylene, epichlorohydrin homo- and copolymers, especially polymers of halogen-containing vinyl compounds, for example polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, as well as copolymers thereof such as vinyl chloride/vinylidene chloride, vinyl chloride/vinyl acetate or vinylidene chloride/vinyl acetate copolymers.
  • halogen-containing polymers such as polychioroprene, chlorinated rubbers, chlorinated and brominated copolymer of isobutylene-isoprene (halobutyl rubber), chlorinated or
  • Copolymers of the monomers mentioned under 9) with each other or with other unsaturated monomers for example acrylonitrile/butadiene copolymers, acrylonitrile/alkyl acrylate copolymers, acrylonitrile/alkoxyalkyl acrylate or acrylonitrile/vinyl halide copolymers or acrylonitrile/alkyl methacrylate/butadiene terpolymers.
  • Polymers derived from unsaturated alcohols and amines or the acyl derivatives or acetals thereof for example polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, polyvinyl benzoate, polyvinyl maleate, polyvinyl butyral, polyallyl phthalate or polyallyl melamine; as well as their copolymers with olefins mentioned in 1) above.
  • Polyacetals such as polyoxymethylene and those polyoxymethylenes which contain ethylene oxide as a comonomer; polyacetals modified with thermoplastic polyurethanes, acrylates or MBS.
  • Polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams for example polyamide 4, polyamide 6, polyamide 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, polyamide 11, polyamide 12, aromatic polyamides starting from m-xylene diamine and adipic acid; polyamides prepared from hexamethylenediamine and isophthalic or/and terephthalic acid and with or without an elastomer as modifier, for example poly-2,4,4,-trimethylhexamethylene terephthalamide or poly-m-phenylene isophthalamide; and also block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers; or with polyethers, e.g. with polyethylene glycol, polypropylene glycol or polytet
  • Polyesters derived from dicarboxylic acids and diols and/or from hydroxycarboxylic acids or the corresponding lactones for example polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethylolcyclohexane terephthalate and polyhydroxybenzoates, as well as block copolyether esters derived from hydroxyl-terminated polyethers; and also polyesters modified with polycarbonates or MBS.
  • Crosslinkable acrylic resins derived from substituted acrylates for example epoxy acrylates, urethane acrylates or polyester acrylates.
  • Crosslinked epoxy resins derived from aliphatic, cycloaliphatic, heterocyclic or aromatic glycidyl compounds, e.g. products of diglycidyl ethers of bisphenol A and bisphenol F, which are crosslinked with customary hardeners such as anhydrides or amines, with or without accelerators.
  • Natural polymers such as cellulose, rubber, gelatin and chemically modified homologous derivatives thereof, for example cellulose acetates, cellulose propionates and cellulose butyrates, or the cellulose ethers such as methyl cellulose; as well as rosins and their derivatives.
  • Blends of the aforementioned polymers for example PP/EPDM, Polyamide/EPDM or ABS, PVC/EVA, PVC/ABS, PVC/MBS, PC/ABS, PBTP/ABS, PC/ASA, PC/PBT, PVC/CPE, PVC/acrylates, POM/thermoplastic PUR, PC/thermoplastic PUR, POM/acrylate, POM/MBS, PPO/HIPS, PPO/PA 6.6 and copolymers, PA/HDPE, PA/PP, PA/PPO, PBT/PC/ABS or PBT/PET/PC.
  • polyblends for example PP/EPDM, Polyamide/EPDM or ABS, PVC/EVA, PVC/ABS, PVC/MBS, PC/ABS, PBTP/ABS, PC/ASA, PC/PBT, PVC/CPE, PVC/acrylates, POM/thermoplastic PUR, PC/thermoplastic PUR, POM/acrylate, POM/MBS
  • Naturally occurring and synthetic organic materials which are pure monomeric compounds or mixtures of such compounds, for example mineral oils, animal and vegetable fats, oil and waxes, or oils, fats and waxes based on synthetic esters (e.g. phthalates, adipates, phosphates or trimellitates) and also mixtures of synthetic esters with mineral oils in any weight ratios, typically those used as spinning compositions, as well as aqueous emulsions of such materials.
  • synthetic esters e.g. phthalates, adipates, phosphates or trimellitates
  • Aqueous emulsions of natural or synthetic rubber e.g. natural latex or latices of carboxylated styrene/butadiene copolymers.
  • This invention therefore additionally relates to a composition
  • a composition comprising an organic material subject to degradation induced by light, heat or oxidation and the stabilizer mixture described above; with the proviso that the organic material is essentially free of perchloric acid.
  • a further embodiment of the present invention is a method for stabilizing an organic material against degradation induced by light, heat or oxidation, which comprises incorporating into the organic material the stabilizer mixture described above; with the proviso that the organic material is essentially free of perchloric acid.
  • the organic material is preferably a synthetic polymer, in particular from one of the above groups.
  • Polyolefins are preferred and polyethylene, polypropylene and copolymers thereof are particularly preferred.
  • the components (A), (B) and optionally (C1) and/or (C2) may be added to the organic material to be stabilized either individually or mixed with one another.
  • the sterically hindered amine compound (component (A)) is present in the organic material in an amount of preferably 0.01 to 5%, in particular 0.01 to 1% or 0.05 to 1%, relative to the weight of the organic material.
  • the two different Mg and/or Zn salts (component (B)), together, are present in the organic material in an amount of preferably 0.005 to 1%, in particular 0.05 to 0.2%, relative to the weight of the organic material.
  • the pigment (component (C1)) is optionally present in the organic material in an amount of preferably 0.01 to 10%, in particular 0.05 tol %, relative to the weight of the organic material.
  • the UV absorber (component (C2)) is optionally present in the organic material in an amount of preferably 0.01 to 1%, in particular 0.05 to 0.5%, relative to the weight of the organic material.
  • the total amount of component (C3) (the pigment in combination with the UV absorber) is preferably 0.01 to 10%, relative to the weight of the organic material.
  • the weight ratio of the UV absorber to the pigment is for example 2:1 to 1:10.
  • titanium dioxide is preferably present in the organic material in an amount of 0.01 to 5%, relative to the weight of the organic material, and the organic pigment may be present in an amount of, for example, 0.01 to 2%, relative to the weight of the organic material.
  • the weight ratio of the components (A):(B) is preferably 10:1 to 1:10.
  • the weight ratio of the components (A):(C1) is preferably 10:1 to 1:10.
  • the weight ratio of the components (A):(C2) is preferably 20:1 to 1:2.
  • the weight ratio of the components (A):(C3) is preferably 10:1 to 1:10.
  • the above components can be incorporated into the organic material to be stabilized by known methods, for example before or during shaping or by applying the dissolved or dispersed compounds to the organic material, if necessary with subsequent evaporation of the solvent.
  • the components can be added to the organic material in the form of a powder, granules or a masterbatch, which contains these components in, for example, a concentration of from 2.5 to 25% by weight.
  • the components (A), (B) and optionally (Cl) and/or (C2) can be melt blended with each other before incorporation in the organic material. They can be added to a polymer before or during the polymerization or before the crosslinking.
  • the materials stabilized according to this invention can be used in a wide variety of forms, for example as films, fibres, tapes, moulding compositions, profiles or as binders for paints, adhesives or putties.
  • the stabilized material may additionally also contain various conventional additives, for example:
  • Alkvlated monophenols for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butyl-phenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-( ⁇ -methylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tri-cyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methyl-phenol, 2,4-dimethyl-6-(1′-methylundec-1
  • Alkylthiomethylohenols for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-di-dodecylthiomethyl-4-nonylphenol.
  • Tocopherols for example ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol and mixtures thereof (Vitamin E).
  • Hydroxylated thiodiphenvl ethers for example 2,2′-thiobis(6-tert-butyl-4-methylphenol), 2,2′-thiobis(4-octylphenol), 4,4′-thiobis(6-tert-butyl-3-methylphenol), 4,4′-thiobis(6-tert-butyl-2-methylphenol), 4,4′-thiobis-(3,6-di-sec-amylphenol), 4,4′-bis-(2,6-dimethyl-4-hydroxyphenyl) disulfide.
  • 2,2′-thiobis(6-tert-butyl-4-methylphenol 2,2′-thiobis(4-octylphenol), 4,4′-thiobis(6-tert-butyl-3-methylphenol), 4,4′-thiobis(6-tert-butyl-2-methylphenol), 4,4′-thiobis-(3,6-di-sec-amylphenol), 4,4′-bis-(2,
  • Alkviidenebisihenols for example 2,2′-methylenebis(6-tert-butyl-4-methylphenol), 2,2′-methylenebis(6-tert-butyl-4-ethylphenol), 2,2′-methylenebis[4-methyl-6-( ⁇ -methylcyclohexyl)phenol], 2,2′-methylenebis(4-methyl-6-cyclohexyl-phenol), 2,2′-methylenebis(6-nonyl-4-methylphenol), 2,2′-methylenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(4,6-di-tert-butylphenol), 2,2′-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2′-methylenebis[6-( ⁇ -methylbenzyl)-4-nonylphenol], 2,2′-methylenebis[6-( ⁇ , ⁇ -dimethylbenzyl)-4-non
  • O—, N— and S-benzyl compounds for example 3,5,3′,5′-tetra-tert-butyl-4,4′-dihydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithiotereph-thalate, bis(3,5-di-tert-butyl-4-hydroxybenzyl)sulfide, isooctyl-3,5di-tert-butyl-4-hydroxybenzylmercaptoacetate.
  • S-benzyl compounds for example 3,5,3′,5′-tetra-tert-butyl-4,4
  • 1.8. Hydroxybenzvlated malonates for example dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2-hydroxybenzyl)-malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)-malonate, di-dodecylmercaptoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.
  • Hydroxybenzvlated malonates for example dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2-hydroxybenzyl)-malonate, di-octadecyl-2-(3-tert-but
  • Aromatic hydroxvbenzvl compounds for example 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.
  • Triazine Compounds for example 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazine, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1 ,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1 ,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyan
  • Benzvlphosphonates for example dimethyl-2,5-di-tert-butyl-4-hydroxybenzyl-phosphonate, diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-5-tert-butyl-4-hydroxy3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.
  • esters of ⁇ -(3.5-di-tert-butvl-4-hvdroxyphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris-(hydroxyethyl) isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7
  • esters of ⁇ -(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabi
  • esters of ⁇ -(3.5-dicyclohexyl-4-hvdroxyphenyl)propionic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris-(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]oct
  • esters of 3.5-di-tert-butlyi-4-hydroxvphenvl acetic acid with mono- or polyhydric alcohols e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris-(hydroxyethyl)isocyanurate, N,N′-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
  • Aminic antioxidants for example N,N′-di-isopropyl-p-phenylenediamine, N,N′-di-sec-butyl-p-phenylenediamine, N,N′-bis(1,4-dimethylpentyl)-p-phenylenediamine, N,N′-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N′-bis(1-methylheptyl)-p-phenylenediamine, N,N′-dicyclohexyl-p-phenylenediamine, N,N′-diphenyl-p-phenylenediamine, N,N′-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl-N′-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N′-phenyl-N-phenyl
  • Nickel compounds for example nickel complexes of 2,2′-thio-bis-[4-(1,1,3,3-tetramethylbutyl)phenol], such as the 1:1 or 1:2 complex, with or without additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphenyl undecylketoxime, nickel complexes of 1 -phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands.
  • additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithioc
  • Metal deactivators for example N,N′-diphenyloxamide, N-salicylal-N′-salicyloyl hydrazine, N,N′-bis(salicyloyl) hydrazine, N,N′-bis(3,5-di-tert-butyl-4-hydroxy-phenylpropionyl) hydrazine , 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)-oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenyl-hydrazide, N,N′-diacetyladipoyl dihydrazide, N,N′-bis(salicyloyl)oxalyl dihydrazide, N,N′-bis(salicyloyl)thiopropionyl dihydrazide.
  • Phosphites and phosphonites for example triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)-pentaerythritol diphosphite, diisodecyloxypentaerythritol diphosphite, diis
  • Hydroxylamines for example, N,N-dibenzylhydroxylamine, N,N-diethylhydroxyl-amine, N,N-dioctylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-ditetradecylhy-droxylamine, N,N-dihexadecylhydroxylamine, N,N-dioctadecylhydroxylamine, N-hexadecyl-N-octadecylhydroxylamine, N-heptadecyl-N-octadecylhydroxylamine, N,N-dialkylhydroxylamine derived from hydrogenated tallow amine.
  • Nitrones for example, N-benzyl-alpha-phenyl-nitrone, N-ethyl-alpha-methyl-nitrone, N-octyl-alpha-heptyl-nitrone, N-lauryl-alpha-undecyl-nitrone, N-tetradecyl-alpha-tridecyl-nitrone, N-hexadecyl-alpha-pentadecyl-nitrone, N-octadecyl-alpha-heptadecyl-nitrone, N-hexadecyl-alpha-heptadecyl-nitrone, N-ocatadecyl-alpha-pentadecyl-nitrone, N-heptadecyl-alpha-heptadecyl-nitrone, N-octadecyl-alpha-hexadecyl-nitron
  • Thiosynergists for example, dilauryl thiodipropionate or distearyl thiodipropionate.
  • Peroxide scavengers for example esters of ⁇ -thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis( ⁇ -dodecylmercapto)propionate.
  • esters of ⁇ -thiodipropionic acid for example the lauryl, stearyl, myristyl or tridecyl esters
  • mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole zinc dibutyldithiocarbamate
  • dioctadecyl disulfide pentaerythritol tetrakis( ⁇ -dodecylmercap
  • Basic co-stabilisers for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or tin pyrocatecholate.
  • Basic co-stabilisers for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium
  • Nucleating agents for example, inorganic substances such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate; polymeric compounds such as ionic copolymers (“ionomers”).
  • inorganic substances such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals
  • organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate
  • polymeric compounds such as ionic copolymers (“ionomers
  • Fillers and reinforcing aaents for example, calcium carbonate, silicates, glass fibres, glass bulbs, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black, graphite, wood flour and flours or fibers of other natural products, synthetic fibers.
  • additives for example, plasticisers, lubricants, emulsifiers, pigments, rheology additives, catalysts, flow-control agents, optical brighteners, flameproofing agents, antistatic agents and blowing agents.
  • [0428] is one of the preferred conventional additives which may additionally be incorporated into the organic material to be stabilized.
  • the weight ratio of the total amount of components (A), (B) and optionally (C1) and/or (C2) to the total amount of the conventional additives can be, for example, 100:1 to 1:100.
  • the plaques are mounted on sample holders and subjected to natural weathering in Florida (45° South, direct, approximately 140 kLy/year). Periodically, the carbonyl content of the samples is measured with an infrared spectrophotometer. The exposure time corresponding to formation of a carbonyl absorbance of, for example, 0.5 (T 0.5 ) is a measure for the efficiency of the stabilizer system.
  • the synergistic effect of the two coadditivs is determined by a comparison of the calculated T 0.5 value with the actually measured T 0.5 value.
  • the T 0.5 values are calculated on the basis of the additivity law (B. Ranby and J. F.
  • TABLE 4 Sterically hindered amine compound 0.05% of the compound 81)
  • UV absorber 0.05% of the compound of the formula Polymer and exposure period are different from those used for Table 3.
  • the plaques are mounted on sample holders and exposed in a WEATHER-OMETER Ci 65 (black panel temperature 63 ⁇ 2° C., without water-spraying). Periodically, these samples are removed from the exposure apparatus and their carbonyl content is measured with an infrared spectrophotometer. The exposure time corresponding to formation of a carbonyl absorbance of 0.5 is a measure for the stabilizing efficiency of the light stabilizer.
  • UV absorber 0.05% of the compound of the formula T 0.5 measured 0.05% of (hours to 0.5 carbonyl absorbance) the sterically 0.1% of Mg stearate + 0.2% of hindered amine 0.1% of hydrotalcite 0.2% of hydrotalcite compound (® DHT-4A) Mg stearate (® DHT-4A) T 0.5 calculated Compound 13 3520 3060 1880 2470 Compound 10 3420 3300 2000 2650 Compound 14 3720 3360 1880 2620 Compound 36-b 2700 2700 1620 2160 Compound 36-a 2780 2920 1720 2320 Compound 63 2340 2280 1900 2090 Compound 49-e 2420 2300 1680 1990 Compound 80-a 2540 2320 1920 2120 Compound 49-a-I 2840 3040 1980 2510
  • UV absorber 0.05% of the compound of the formula T 0.5 measured 0.05% of (hours to 0.5 carbonyl absorbance) the sterically 0.1% of Mg stearate + 0.2% of hindered amine 0.1% of hydrotalcite 0.2% of hydrotalcite compound (® DHT-4A) Mg stearate (® DHT-4A) T 0.5 calculated Compound 81 3320 2840 1300 2070 Compound 84-1 2400 2140 1920 2030 Compound 76 2560 2420 2100 2260 Compound 92 2180 2000 2000 2000 2000 Compound 97-II 2160 2000 1360 1680 Compound 101-I 3080 3080 2600 2840 Compound 100-A 2480 2300 2280 2290 Mixture of 2080 2000 1900 1950 compounds 96-I and 96-II
  • the blend is compounded in an extruder at temperatures of 180°-220° C.
  • the granules obtained on extrusion and granulation are transformed into films at 220°-260° C. in a second extruder equipped with a flat sheet die.
  • the films are cut into ribbons which are drawn to achieve a stretch ratio of 1:6.
  • the tapes obtained with this procedure are finally 50 ⁇ m thick and 2.5 mm wide.
  • the tapes are mounted without tension on sample holders and exposed in a WEATHER-OMETER Ci 65 (black panel temperature 63 ⁇ 2° C., without water-spraying). Periodically, the tensile strength of the exposed tapes is measured. The exposure time corresponding to a loss of 50% (T 50 ) of the initial tensile strength is a measure for the stabilizing efficiency of the stabilizer system.
  • TABLE 7 T 50 measured (hours to 50% retained tensile strength) 0.05% of Mg-stearate + Sterically 0.05% of 0.1% of 0.1% of hindered hydrotalcite Mg- hydrotalcite amine compound (® DHT-4A) stearate (® DHT-4a) T 50 calculated 0.05% of the 2440 1150 1920 1535 compound 13 0.10% of the 7200 2760 4300 3530 compound 10 0.20% of the 15000 7000 10000 8500 compound 14
  • the material thus obtained is compression molded in a laboratory press between two aluminum foils for 6 minutes at 260° C. to a 0.5 mm thick film which is cooled immediately to room temperature in a water-cooled press. Samples of 60 mm ⁇ 25 mm are cut out of these 0.5 mm films and are exposed in a WEATHER-OMETER Ci 65 (black panel temperature 63 ⁇ 2° C., without water-spraying). Periodically, these samples are removed from the exposure apparatus and their carbonyl content is measured with an infrared spectrophotometer.
  • the material thus obtained is compression molded in a laboratory press between two aluminum foils for 6 minutes at 210° C. to a 0.5 mm thick film which is cooled immediately to room temperature in a water-cooled press. Samples of 60 mm ⁇ 25 mm are cut out of these 0.5 mm films and are exposed in a WEATHER-OMETER Ci 65 (black panel temperature 63 ⁇ 2° C., without water-spraying). Periodically, these samples are removed from the exposure apparatus and their carbonyl content is measured with an infrared spectrophotometer.
  • the material thus obtained is compression molded in a laboratory press between two aluminum foils for 6 minutes at 210° C. to a 0.5 mm thick film which is cooled immediately to room temperature in a water-cooled press. Samples of 60 mm ⁇ 25 mm are cut out of these 0.5 mm films and are exposed in a WEATHER-OMETER Ci 65 (black panel temperature 63 ⁇ 2° C., without water-spraying). Periodically, these samples are removed from the exposure apparatus and their carbonyl content is measured with an infrared spectrophotometer.
  • the material thus obtained is compression molded in a laboratory press between two aluminum foils for 6 minutes at 260° C. to a 0.5 mm thick film which is cooled immediately to room temperature in a water-cooled press. Samples of 60 mm ⁇ 25 mm are cut out of these 0.5 mm films and are exposed in a WEATHER-OMETER Ci 65 (black panel temperature 63 ⁇ 2° C., without water-spraying). Periodically, these samples are removed from the exposure apparatus and their carbonyl content is measured with an infrared spectrophotometer.
  • UV absorber 0.1% of T 0.1 measured 0.1% of (hours to 0.1 carbonyl absorbance) the sterically 0.05% of Mg stearate + 0.1% of hindered amine 0.05% of hydrotalcite 0.1% of hydrotalcite compound (® DHT-4A) Mg stearate (® DHT-4A) T 0.1 calculated Compound 81 3160 3160 1540 2350 Compound 84-1 2420 2440 2160 2300 Compound 101-I 3220 3300 2860 3080 Compound 100-A 3660 2700 2580 2640

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hydrogenated Pyridines (AREA)
US09/811,960 1997-12-23 2001-03-19 Stabilizer mixture Abandoned US20020013390A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/811,960 US20020013390A1 (en) 1997-12-23 2001-03-19 Stabilizer mixture
US10/085,221 US20030013784A1 (en) 1997-12-23 2002-02-28 Stabilizer mixture
US10/914,704 US7169835B2 (en) 1997-12-23 2004-08-09 Stabilizer mixture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP97811018.7 1997-12-23
EP97811018 1997-12-23
US21119798A 1998-12-14 1998-12-14
US09/811,960 US20020013390A1 (en) 1997-12-23 2001-03-19 Stabilizer mixture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US21119798A Continuation 1997-12-23 1998-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/085,221 Continuation US20030013784A1 (en) 1997-12-23 2002-02-28 Stabilizer mixture

Publications (1)

Publication Number Publication Date
US20020013390A1 true US20020013390A1 (en) 2002-01-31

Family

ID=8230545

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/811,960 Abandoned US20020013390A1 (en) 1997-12-23 2001-03-19 Stabilizer mixture
US10/085,221 Abandoned US20030013784A1 (en) 1997-12-23 2002-02-28 Stabilizer mixture
US10/914,704 Expired - Lifetime US7169835B2 (en) 1997-12-23 2004-08-09 Stabilizer mixture

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/085,221 Abandoned US20030013784A1 (en) 1997-12-23 2002-02-28 Stabilizer mixture
US10/914,704 Expired - Lifetime US7169835B2 (en) 1997-12-23 2004-08-09 Stabilizer mixture

Country Status (10)

Country Link
US (3) US20020013390A1 (enExample)
JP (2) JP4950372B2 (enExample)
BE (1) BE1012882A5 (enExample)
CA (1) CA2256800C (enExample)
DE (1) DE19859096A1 (enExample)
ES (1) ES2155364B1 (enExample)
FR (1) FR2772773B1 (enExample)
GB (1) GB2332678B (enExample)
IT (1) IT1304793B1 (enExample)
NL (1) NL1010890C2 (enExample)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254280A1 (en) * 2001-10-20 2004-12-16 Eric Richter Blends of waxes and polymer additives
EP1897914A4 (en) * 2005-06-29 2008-07-02 Adeka Corp RESIN ADDITIVE COMPOSITION AND RESIN COMPOSITION
CN101796119A (zh) * 2007-08-28 2010-08-04 巴斯夫欧洲公司 稳定剂混合物
CN101838428A (zh) * 2010-03-15 2010-09-22 湖北工业大学 聚氯乙烯用环保无毒固体有机锡热稳定剂及其制造方法
WO2018013181A1 (en) 2016-07-13 2018-01-18 Chevron Oronite Company Llc Synergistic lubricating oil composition containing mixture of antioxidants
US10246563B2 (en) 2015-03-30 2019-04-02 Adeka Corporation Photostabilizer master batch and method for manufacturing same
US11840617B2 (en) 2018-02-02 2023-12-12 Adeka Corporation Stabilizer composition, vinyl chloride resin composition containing same, and article molded therefrom

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016390A1 (en) 1997-12-23 2002-02-07 Francois Gugumus Stabilizer mixtures
GB2347427B (en) * 1997-12-23 2001-07-18 Ciba Sc Holding Ag Stabilizer mixtures comprising a sterically hindered amine
US20030191239A1 (en) * 2000-05-31 2003-10-09 Francois Gugumus Stabilizer mixtures
US6828364B2 (en) * 2000-07-14 2004-12-07 Ciba Specialty Chemicals Corporation Stabilizer mixtures
DE10123732A1 (de) * 2001-05-15 2002-11-21 Basf Ag Stabilisierte Metallocen-Polyolefine
ZA200301683B (en) 2002-03-04 2004-09-06 Ciba Sc Holding Ag Synergistic combinations of UV absorbers for pigmented polyolefins.
US20030225191A1 (en) * 2002-04-12 2003-12-04 Francois Gugumus Stabilizer mixtures
US20060014862A1 (en) * 2004-07-15 2006-01-19 Dzikowicz Robert T Vulcanizing latex compounds without the use of metal oxide activators or a zinc based accelerator
ES2373109T3 (es) * 2006-05-30 2012-01-31 Borealis Technology Oy Un compuesto que contiene silicio como inhibidor de la corrosión en composiciones poliolefínicas.
US8748518B2 (en) * 2007-05-25 2014-06-10 Clariant Finance (Bvi) Limited Stabilization of polycarbonates
JP5651918B2 (ja) 2007-12-21 2015-01-14 住友化学株式会社 ポリプロピレン系樹脂組成物及び成形体
JP5487611B2 (ja) 2007-12-21 2014-05-07 住友化学株式会社 ポリプロピレン系樹脂組成物及びそれからなる成形体
WO2009080427A1 (de) * 2007-12-21 2009-07-02 Basf Se Verfahren zur herstellung von uv-absorbierenden hybridmaterialien
DE102009041841A1 (de) 2008-12-17 2010-07-08 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg UV- und Licht-Schutzfolie
US9045615B2 (en) * 2011-08-24 2015-06-02 Fina Technology, Inc. Metal carboxylate additives for thermoplastics
EP2840112B1 (en) * 2013-08-21 2019-04-10 Baerlocher GmbH Stabilized polymer compositions and methods of making same
KR102242620B1 (ko) * 2013-11-26 2021-04-21 가부시키가이샤 아데카 광안정제 조성물 및 그 수지 조성물
JP6859660B2 (ja) * 2016-10-28 2021-04-14 Toto株式会社 樹脂材料および成形体
WO2018221610A1 (ja) * 2017-06-02 2018-12-06 凸版印刷株式会社 樹脂成型体、積層体及び化粧シート
SG11201912421SA (en) * 2017-07-06 2020-01-30 Basf Se A polyethylene pipe
CN110713638B (zh) * 2018-07-11 2020-12-11 北京化工大学 一种水滑石/环氧天然橡胶/丁苯橡胶复合材料及制备方法
US11661531B2 (en) 2019-01-31 2023-05-30 Synthomer Adhesives Technology LLC Hygiene adhesives comprising low volatile tackifier compositions

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621211B2 (ja) * 1985-08-13 1994-03-23 旭電化工業株式会社 塩化ビニル樹脂組成物
US4806312A (en) * 1985-08-28 1989-02-21 Miles Inc. Multizone analytical element having detectable signal concentrating zone
JP2553537B2 (ja) 1987-01-23 1996-11-13 東燃化学 株式会社 ポレプロピレン繊維防糸用組成物
DE3871855D1 (de) * 1987-05-05 1992-07-16 Ciba Geigy Ag Gegen lichtschaedigung stabilisierte polyolefine.
EP0290386B1 (de) * 1987-05-05 1992-06-10 Ciba-Geigy Ag Stabilisierung von organischen Polymeren gegen Lichtabbau
IT1215455B (it) * 1987-05-05 1990-02-14 Ciba Geigy Spa Composizione stabilizzante per polietilene comprendente composti contenenti gruppi piperidinici e composti metallici
DE3851931T2 (de) 1987-09-21 1995-03-16 Ciba Geigy Ag Stabilisierung einer Beschichtung mit sterisch gehinderten N-hydroxysubstituierten Aminen.
EP0344321A4 (en) * 1987-10-20 1990-02-20 Ferro Corp RESIN PREPARATION.
US5141980A (en) * 1989-06-23 1992-08-25 Elf Atochem North America, Inc. Composition usable for the thermal and ultaviolet stabilization of thermoplastic resins and thermoplastic resins containing such a stabilizing composition
DE59010370D1 (de) * 1989-10-06 1996-07-18 Ciba Geigy Ag Stabilisierte chlorhaltige Polymerzusammensetzungen
EP0429731A1 (en) 1989-12-01 1991-06-05 At Plastics Inc. Composition for use in films
JPH03177447A (ja) * 1989-12-06 1991-08-01 Mitsui Toatsu Chem Inc ポリプロピレン系樹脂組成物
US5025050A (en) * 1990-03-16 1991-06-18 Ethyl Corporation Ultraviolet-radiation stabilizer and flame retardant systems
IT1248698B (it) * 1990-06-06 1995-01-26 Ciba Geigy Spa Composti piepridin-triazinici contenenti gruppi silossanici,atti all'impiego come stabilizzanti per materiali organici
IT1246170B (it) * 1990-07-24 1994-11-16 Ciba Geigy Spa Composizione stabilizzante per polipropilene comprendente composti triazinici contenenti gruppi piperidinici e composti metallici
US5283273A (en) * 1990-11-30 1994-02-01 Ciba-Geigy Corporation Stabilized chlorine-containing polymers
GB2252324A (en) 1990-12-20 1992-08-05 Bp Chem Int Ltd Stabilizer composition
FR2675149B1 (fr) * 1991-04-09 1994-06-24 Rhone Poulenc Chimie Compositions de polymere halogene stabilisees a l'aide d'un additif mineral.
IT1258271B (it) 1992-04-06 1996-02-22 Enichem Sintesi Processo per l'ottenimento di forme granulari di addittivi per polimeri organici.
DE59308266D1 (de) * 1992-05-13 1998-04-23 Ciba Geigy Ag Stabilisierte chlorhaltige Polymerzusammensetzungen
US5324798A (en) * 1992-12-28 1994-06-28 Union Carbide Chemicals & Plastics Technology Corporation Polymer finishing process
KR950018227A (ko) * 1993-12-27 1995-07-22 사토 아키오 폴리프로필렌수지조성물
KR100351202B1 (ko) 1994-03-22 2002-11-23 시바 스페셜티 케미칼스 홀딩 인크. Hdpe의안정화방법
IT1269953B (it) * 1994-06-27 1997-04-16 Ciba Geigy Spa Films di poliolefine o copolimeri di olefine con migliorata stabilita' alla luce e resistenza agli insetticidi
FR2725451B1 (fr) * 1994-10-06 1998-04-17 Sandoz Sa Nouvelle composition stabilisante pour les matieres polymeres
ES2134083B1 (es) 1994-12-09 2000-05-01 Sumitomo Chemical Co Pelicula de resina de poliolefinas de cubrimiento y metodo para cultivo de plantas.
DK1327661T3 (da) * 1995-10-13 2006-01-02 Crompton Vinyl Additives Gmbh Stabilisatorkombinationer til chlorholdige polymerer
JP3176932B2 (ja) * 1995-10-18 2001-06-18 チッソ株式会社 オレフィン(共)重合体組成物とその製造方法及びオレフィン(共)重合用触媒とその製造方法
DE59712513D1 (de) 1996-03-22 2006-01-19 Wolfgang Wehner Stabilisatorkombination für chlorhaltige Polymere
US5891235A (en) * 1996-05-24 1999-04-06 Mizusawa Industrial Chemicals, Ltd. Additive for resins, process for its preparation and olefin resin composition using this additive
US5929147A (en) * 1996-06-18 1999-07-27 Montell North America Inc. Embrittlement-resistant polyolefin composition and flexible articles therefrom
US5834541A (en) * 1997-05-02 1998-11-10 Montell North America Inc. Olefin polymer composition having low smoke generation and fiber and film prepared therefrom
US6262161B1 (en) * 1997-06-26 2001-07-17 The Dow Chemical Company Compositions having improved ignition resistance

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254280A1 (en) * 2001-10-20 2004-12-16 Eric Richter Blends of waxes and polymer additives
EP1897914A4 (en) * 2005-06-29 2008-07-02 Adeka Corp RESIN ADDITIVE COMPOSITION AND RESIN COMPOSITION
US20090088513A1 (en) * 2005-06-29 2009-04-02 Adeka Corporation Resin additive composition and resin composition
CN101796119A (zh) * 2007-08-28 2010-08-04 巴斯夫欧洲公司 稳定剂混合物
US20110130493A1 (en) * 2007-08-28 2011-06-02 Basf Se Stabilizer mixture
CN101796119B (zh) * 2007-08-28 2013-06-12 巴斯夫欧洲公司 稳定剂混合物
US8822575B2 (en) 2007-08-28 2014-09-02 Basf Se Stabilizer mixture
CN101838428A (zh) * 2010-03-15 2010-09-22 湖北工业大学 聚氯乙烯用环保无毒固体有机锡热稳定剂及其制造方法
US10246563B2 (en) 2015-03-30 2019-04-02 Adeka Corporation Photostabilizer master batch and method for manufacturing same
WO2018013181A1 (en) 2016-07-13 2018-01-18 Chevron Oronite Company Llc Synergistic lubricating oil composition containing mixture of antioxidants
US10077410B2 (en) 2016-07-13 2018-09-18 Chevron Oronite Company Llc Synergistic lubricating oil composition containing mixture of antioxidants
US11840617B2 (en) 2018-02-02 2023-12-12 Adeka Corporation Stabilizer composition, vinyl chloride resin composition containing same, and article molded therefrom

Also Published As

Publication number Publication date
GB2332678A (en) 1999-06-30
NL1010890C2 (nl) 1999-08-02
JP2009132943A (ja) 2009-06-18
ITMI982776A1 (it) 2000-06-22
FR2772773B1 (fr) 2006-01-27
JPH11255957A (ja) 1999-09-21
NL1010890A1 (nl) 1999-06-24
DE19859096A1 (de) 1999-06-24
US7169835B2 (en) 2007-01-30
JP4726969B2 (ja) 2011-07-20
ES2155364B1 (es) 2002-07-01
ES2155364A1 (es) 2001-05-01
US20030013784A1 (en) 2003-01-16
IT1304793B1 (it) 2001-03-29
GB9827567D0 (en) 1999-02-10
BE1012882A5 (fr) 2001-05-08
JP4950372B2 (ja) 2012-06-13
GB2332678B (en) 2000-09-27
US20050006628A1 (en) 2005-01-13
FR2772773A1 (fr) 1999-06-25
CA2256800C (en) 2008-08-26
CA2256800A1 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
US7169835B2 (en) Stabilizer mixture
EP1263855B1 (en) Stabilizer mixtures for polyolefins
US6881772B2 (en) Stabilizer mixtures
US7652081B2 (en) Stabilizer mixtures
US6566427B1 (en) Stabilizer mixtures
US20090312464A1 (en) Stabilizer mixtures
EP1077227B1 (en) Stabilizer mixtures
EP0911362A1 (en) Stabilized polyolefin
US5965641A (en) Ozone-resistant long-term stabilisers
EP0916698A1 (en) Stabilized polyolefin
GB2347427A (en) Stabilizing polyolefins with a mixture comprising a sterically hindered amine

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION