US20010017079A1 - Coating forming method using an electric arc welding for a swash plate of a swash plate compressor and the swash plate with the coating - Google Patents
Coating forming method using an electric arc welding for a swash plate of a swash plate compressor and the swash plate with the coating Download PDFInfo
- Publication number
- US20010017079A1 US20010017079A1 US09/790,918 US79091801A US2001017079A1 US 20010017079 A1 US20010017079 A1 US 20010017079A1 US 79091801 A US79091801 A US 79091801A US 2001017079 A1 US2001017079 A1 US 2001017079A1
- Authority
- US
- United States
- Prior art keywords
- swash plate
- coating
- shoes
- sliding contact
- metal material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/10—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
- F04B27/1036—Component parts, details, e.g. sealings, lubrication
- F04B27/1054—Actuating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2253/00—Other material characteristics; Treatment of material
- F05C2253/12—Coating
Definitions
- the present invention relates to a swash plate, which is used in a swash plate compressor that constitutes the refrigerating cycle of an air conditioner, for example, and is connected to a piston via a shoe. More particularly, the present invention relates to a coating forming method in which a metal material coating is formed on a surface of the swash plate slidably in contact with shoes.
- a mist of lubricating oil which is retained internally, is turned into mist by the gas (for example, refrigerant gas such as chlorofluorocarbon gas) that circulates while a compressor is in operation and is distributed to the sliding portions between the swash plate and the shoes.
- the gas for example, refrigerant gas such as chlorofluorocarbon gas
- the flame spraying method has excellent versatility as a metal coating forming method for the processed surface of a metal work, but it also has many problems such as in that the working environment is deteriorated in the field as well as the required working processes, time and cost are increased, as described above.
- the objective of the present invention is to provide: a coating forming method for a swash plate of a swash plate compressor, which not only has an excellent versatility as a forming method of a metal material coating on the sliding contact surface of a swash plate, with shoes, but also is able to maintain a proper working condition in the working field and to effectively reduce the required working processes, time and cost; and a swash plate having a coating formed by the present coating forming method on the sliding contact surface of a swash plate, with shoes.
- the first aspect of the present invention is a coating forming method for a swash plate of a swash plate compressor, wherein a welding padding method is used to form the coating on the swash plate, which is used in a swash plate compressor, is connected to pistons via shoes and has a coating of metal material on the sliding contact surface thereof, with the shoes.
- a coating is formed by directly padding the fused metal material onto the sliding contact surface of a swash plate, therefore, a large noise that is produced when the metal material is sprayed in a method such as a flame spraying method can be avoided and the degradation of yield of materials due to the powered metal material scattered around during spraying and the deterioration of working environment can be also avoided.
- the second aspect of the present invention provides a method in that the welding padding method in the first aspect of the present invention is a padding method using an electric arc welding.
- the third aspect of the present invention includes a swash plate having a coating formed, on the sliding contact surface of a swash plate, with the shoes, by the coating forming method described in the first or the second aspect.
- FIG. 1 is the longitudinal sectional view of a variable displacement type swash plate compressor.
- FIG. 2 is the enlarged sectional view of the vicinity of the circumferential part of a swash plate in contact with shoes.
- FIG. 3 is a pictorial illustration of a coating forming device.
- the swash plate compressor comprises a cylinder block 1 , a front housing 2 coupled to the front end of the cylinder block 1 , and a rear housing 4 coupled to the rear end of the cylinder block 1 via a valve forming body 3 , and all these parts are fixingly connected to each other, constituting the housing of the compressor.
- a crank chamber 5 In the housing, a crank chamber 5 , a suction chamber 6 , and a discharge chamber 7 are defined.
- Plural cylinder bores 1 a (only one is shown) are formed in the cylinder block 1 and a single-headed piston 8 is housed in each bore 1 a , allowed a reciprocating motion.
- the suction chamber 6 and the discharge chamber 7 are selectively communicated with each bore 1 a through various flapper valves equipped in the valve forming body 3 .
- a drive shaft 9 is rotatably supported and a swash plate 10 is housed as a cam plate.
- An insertion hole 10 a penetrates through the center of the swash plate 10 and the drive shaft 9 is inserted through the insertion hole 10 a .
- the swash plate 10 is operatively connected to the drive shaft 9 via a hinge device 13 and a lug plate 11 , and able to rotate synchronously with the drive shaft 9 and to move and incline against the drive shaft 9 with a sliding motion in the axial direction of the drive shaft 9 .
- each piston 8 reciprocates with a stroke corresponding to the inclination angle of the swash plate 10 , and in each bore 1 a , the refrigerant gas is sucked from the suction chamber 6 (a region with suction pressure Ps) and is compressed, the compressed refrigerant gas is discharged to the discharge chamber 7 (a region with discharge pressure Pd), and these processes are repeated in turn.
- the swash plate 10 is biased in the direction to come close to the cylinder block 1 (the direction to reduce an inclination angle of the swash plate) by an inclination angle reducing spring 14 .
- the minimum inclination angle ⁇ min of the swash plate 10 (to 3 to 5°, for example), however, is limited by a circlip 15 and so on which is fixed on the drive shaft 9 and restricts the inclination of the swash plate 10 to the direction in which the inclination angle decreases.
- the maximum inclination angle ⁇ max of the swash plate is limited, for example, by a counterweighted portion 10 b of the swash plate 10 which comes into contact with a limiting portion 11 a of the lug plate 11 .
- the inclination angle of the swash plate 10 is determined by the interactive balance between various moments such as the moment of the rotational motion based on the centrifugal force when the swash plate rotates, the moment of the spring force based on the biasing effect of the inclination angle reducing spring 14 , the moment of the inertia force of the reciprocating motion of the pistons 8 , the moment of the gas pressure, and so on.
- the moment of the gas pressure is produced by the interactive relation between the internal pressure of the cylinder bore 1 a and the internal pressure of the crank chamber 5 (crank pressure Pc), which is the back pressure of the piston 8 , and applied to both directions in which the inclination angle decreases and increases according to the crank pressure Pc.
- the moment of the gas pressure can be changed appropriately by adjusting the crank pressure Pc using a control valve 16 , which is not described here in detail, and the inclination angle of the swash plate 10 can be adjusted to any angle ⁇ between the minimum inclination angle ⁇ min and the maximum inclination angle ⁇ max.
- annular sliding contact surfaces 30 A and 30 B are formed respectively at the front side and the rear side of the circumferential part of the swash plate 10 .
- the annular sliding contact surfaces 30 A and 30 B at the front and rear sides slidably contact with a pair of shoes, 20 A and 20 B, respectively.
- a relatively heavy iron-base material (cast iron such as FCD700, for example) is used for the swash plate 10 in order to appropriately produce the moment of the rotational motion based on the centrifugal force when the swash plate rotates.
- an iron-base material (bearing steels, for example) is also used for the shoes 20 A and 20 B in consideration of the mechanical strength thereof, and so on.
- coatings 31 A and 31 B are formed at least on the sliding contact surfaces 30 A and 30 B of the swash plate 10 , as shown in FIG. 2, as sliding layers to improve the quality of sliding contact with the shoes 20 A and 20 B.
- Each coating 31 A and 31 B is made of a metal material other than the iron-base material that constitutes the base metal of the swash plate 10 and the shoes 20 A and 20 B.
- the metal materials that constitute the coatings 31 A and 31 B include, for example, an aluminum alloy that contains silicon and a metallic compound of aluminum and silicon (both are referred to as “Al—Si-base metal material” hereinafter). Physical properties such as the hardness or the melting point of an Al—Si-base metal material, as an aluminum-base material, differ variously according to the silicon content of the material.
- the silicon content of the Al—Si-base metal material to be used here is 10 ⁇ 20% by weight (about 17% by weight is preferable).
- the coatings 31 A and 31 B made of the above-mentioned Al—Si-base metal material, the burning due to the “friction phenomenon of the same metals” can be avoided and at the same time the quality of sliding contact between the swash plate 10 and the shoes 20 A and 20 B is improved. That is, by forming the coatings 31 A and 31 B, lubrication to a certain extent is ensured between the swash plate 10 and the shoes 20 A and 20 B even under oilless conditions.
- the iron-base material used for the swash plate 10 and the shoes 20 A and 20 B has a very high hardness and a relatively high melting point temperature of a thousand ° C. or more
- the Al—Si-base metal material that constitutes the coatings 31 A and 32 B has a relatively lower hardness than the iron-base material and a melting point temperature of 600 ⁇ 700° C., which is lower than that of the iron-base material. It is unquestionably true that the difference in physical properties of the Al—Si-base metal material against the iron-base material contributes to the improvement of the quality of sliding contact between the swash plate 10 and the shoes 20 A and 20 B.
- FIG. 3 shows a coating forming device exemplarily.
- the coating forming device comprises a rotating support mechanism 51 (indicated pictorially by an alternate long and two short line) and a shielded metal-arc welding means.
- the rotating support mechanism 51 is operatively connected to a motor M and the supported swash plate 10 is rotated at a low speed (e.g. 1 ⁇ 10 rpm), based on the drive force of the motor M, around the axial line L.
- a low speed e.g. 1 ⁇ 10 rpm
- the shielded metal-arc welding means comprises a welding rod 52 and a welding power source 53 that impresses voltage between the welding rod 52 and the swash plate 10 .
- the welding rod 52 comprises a core wire 52 a , which is made of the Al—Si-base metal material, and a flux (coating) 52 b , which is applied on the circumferential surface of the core wire 52 a .
- the welding rod 52 is supported by an elevating support mechanism 54 (indicated pictorially by an alternate long and two short line) and at the same time the elevating support mechanism 54 is operatively connected to an elevating means 55 .
- the welding rod 52 is set on the elevating support mechanism 54 , the welding rod 52 is placed at an eccentric position with respect to the axial line L of the swash plate 10 set on the rotating support mechanism 51 , opposing a part of the sliding contact surface 30 B of a swash plate thereover.
- the elevating support mechanism 54 is lifted or lowered together with the supported welding rod 52 in the vertical direction in the figure by the movement of the elevating means 55 , therefore, the welding rod 52 moves near to or away from a part of the sliding contact surface 30 B of a swash plate.
- the welding power source 53 is activated at the same time that the welding rod 52 is lowered to (brought near to) a part of the sliding contact surface 30 B of a swash plate by the elevating means 55 , an arc is generated between the welding rod 52 and the swash plate 10 .
- the heat of arc causes a part of the metal material of the welding rod 52 (core wire 52 a ) to melt and drop on the sliding contact surface 30 B of a swash plate (that is the surface is padded with melted metal).
- the metal material of the welding rod 52 that has dropped on the sliding contact surface 30 B of a swash plate is melted with the metal material of the sliding contact surface 30 B of a swash plate that has also been melted by the heat of the arc.
- the rotating support mechanism 51 rotates together with the swash plate 10 by the operation of the motor M, and the position of the welding rod 52 , which opposes a part of the sliding contact surface 30 B of a swash plate (that is the place on which the melted metal material of the welding rod 52 drops), changes continuously and in turn in the circumferential direction of the annular sliding contact surface 30 B.
- the melted metal material of the welding rod 52 drops on the entire circumference of the annular sliding contact surface 30 B (padding) is completed in one time and the coating 31 B made of Al—Si-base metal material is formed, the thickness of which (e.g. 70 ⁇ 100 ⁇ m) is the total of the required thickness (e.g. 50 ⁇ m) plus the thickness with cutting margin (e.g. 20 ⁇ 50 ⁇ m) for post processing on the entire circumference of the annular sliding contact surface 30 B.
- the thickness of which e.g. 70 ⁇ 100 ⁇ m
- the thickness with cutting margin e.g. 20 ⁇ 50 ⁇ m
- the required thickness of the coating 31 B is adjusted by cutting or polishing, as post processing, the coating formed by the above-mentioned welding padding method. Moreover, the coating 31 A made of the Al—Si-base metal material is formed also on the sliding contact surface 30 A at the front side of the swash plate 10 in the same procedure mentioned above.
- the coatings 31 A and 31 B made of the Al—Si-base metal material can be efficiently formed on the sliding contact surfaces 30 A and 30 B of the swash plate 10 by an easy procedure and in a short period of time.
- the present method does not require a special preparation (scabrous surface treatment or masking) for the sliding contact surfaces 30 A and 30 B of the swash plate 10 . Therefore, the required working processes, time, and cost can be considerably reduced.
- the coatings 31 A and 31 B on the sliding contact surfaces 30 A and 30 B are basically formed by physical bonding of two kinds of melted metals and do not require perfect chemical matching of two kinds of melted metals, therefore, the present method has an excellent versatility as a coating forming method.
- the coatings 31 A and 31 B are formed on the sliding contact surfaces 30 A and 30 B of a swash plate by direct padding the metal material, therefore, loud noise, which are generated when a metal material is sprayed in the flame spraying method can be avoided, and the degradation of the yield of the material, as well as the deterioration of the working environment, due to the powered metal material which is scattered around during spraying can be avoided.
- the coating forming (welding padding) is carried out by using a rod-shaped metal material (a welding rod 52 ), therefore, it is not necessary to use an expensive metal material, which is used in a powder formation such as in the flame spraying method, which is a treatment using powder. Moreover, a rod-shaped metal material is easier to handle than a powered metal and this makes the work of coating forming more efficient and improves the working environment.
- the electric arc welding method which is the most general welding method at the present time, is the best choice, at the present time, to carry out the coating forming on the swash plate 10 of a swash plate compressor by using the welding padding method, from the standpoint of the cost for introduction and the know-how of the coating forming device, and the like.
- Electric arc welding methods other than the shielded metal-arc welding method include gas shield arc welding, submerged arc welding, and so on.
- the gas shield arc welding includes mig welding, mag welding, tig welding, and so on.
- Each welding method may be used to carry out the coating forming (welding padding) on the sliding contact surfaces 30 A and 30 B of a swash plate.
- a copper-base material may be used for the welding rod 52 (core wire 52 a ).
- the coating forming method for the swash plate 10 made of the aluminum-base material rather than the iron-base material may be realized.
- the method of the present invention has not only an excellent versatility as a forming art of a metal material coating on the sliding contact surface of a swash plate, with the shoes, but also an excellent effect that enables the maintenance of a proper working environment in the field and an effective reduction in working processes, time, and cost.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-053513 | 2000-02-29 | ||
JP2000053513A JP2001239363A (ja) | 2000-02-29 | 2000-02-29 | 斜板式圧縮機の斜板における皮膜形成方法及び斜板 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010017079A1 true US20010017079A1 (en) | 2001-08-30 |
Family
ID=18574889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/790,918 Abandoned US20010017079A1 (en) | 2000-02-29 | 2001-02-22 | Coating forming method using an electric arc welding for a swash plate of a swash plate compressor and the swash plate with the coating |
Country Status (3)
Country | Link |
---|---|
US (1) | US20010017079A1 (ja) |
EP (1) | EP1130259A2 (ja) |
JP (1) | JP2001239363A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060285981A1 (en) * | 2005-06-21 | 2006-12-21 | Visteon Global Technologies, Inc. | Swash ring compressor with spherical bearing |
-
2000
- 2000-02-29 JP JP2000053513A patent/JP2001239363A/ja active Pending
-
2001
- 2001-02-22 US US09/790,918 patent/US20010017079A1/en not_active Abandoned
- 2001-02-22 EP EP01104209A patent/EP1130259A2/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060285981A1 (en) * | 2005-06-21 | 2006-12-21 | Visteon Global Technologies, Inc. | Swash ring compressor with spherical bearing |
Also Published As
Publication number | Publication date |
---|---|
JP2001239363A (ja) | 2001-09-04 |
EP1130259A2 (en) | 2001-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0776986B1 (en) | Swash plate of swash-plate compressor and combination of swash plate with shoes | |
JP3918516B2 (ja) | 斜板式圧縮機 | |
EP0844390B1 (en) | Swash plate type compressor using swash plate made of highly wear-resistant material | |
US20010015013A1 (en) | Method of producing swash plate type compressor piston | |
EP0959227A2 (en) | Piston and method of manufacture | |
JP2008274762A (ja) | 圧縮機用斜板及びその製造方法 | |
US20020031434A1 (en) | Swash plate for compresser | |
EP0943801B1 (en) | Swash plate compressor | |
KR100302852B1 (ko) | 압축기용 중공 피스톤 제조방법 | |
EP1167761A2 (en) | Swash plate type compressor | |
US20010017079A1 (en) | Coating forming method using an electric arc welding for a swash plate of a swash plate compressor and the swash plate with the coating | |
US6471113B1 (en) | Method of forming a coating on machine components | |
JP2002317757A (ja) | 容量可変型斜板式圧縮機における斜板 | |
KR100327084B1 (ko) | 사판식 압축기 | |
JP2001132639A (ja) | 圧縮機の構成部品における皮膜形成方法 | |
US20020174764A1 (en) | Swash plate type compressor | |
KR20000062865A (ko) | 기계부품에 필름을 형성하는 방법 | |
EP1148235A1 (en) | Method for manufacturing hollow piston of compressor | |
JP2002004063A (ja) | 金属皮膜形成方法 | |
JP2768536B2 (ja) | アキシャルプランジャポンプ | |
JP2000110716A (ja) | ピストン式圧縮機 | |
JPH1068380A (ja) | 斜板式圧縮機 | |
EP1079108A2 (en) | Method of forming hollow head portion of piston for swash plate type compressor | |
EP1126167A2 (en) | Method of producing swash plate type compressor piston | |
JP2001107861A (ja) | ピストン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KABUSHIKI KAISHA TOYODA JIDOSHOKKI SEISAKUSHO, JAP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUGIURA, MANABU;IWAMA, KAZUAKI;ISOMURA, NAOHIKO;AND OTHERS;REEL/FRAME:011657/0516 Effective date: 20010208 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |