US11525162B2 - Methods for simultaneous amplification of target loci - Google Patents
Methods for simultaneous amplification of target loci Download PDFInfo
- Publication number
- US11525162B2 US11525162B2 US16/829,133 US202016829133A US11525162B2 US 11525162 B2 US11525162 B2 US 11525162B2 US 202016829133 A US202016829133 A US 202016829133A US 11525162 B2 US11525162 B2 US 11525162B2
- Authority
- US
- United States
- Prior art keywords
- primers
- primer
- target
- loci
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6809—Methods for determination or identification of nucleic acids involving differential detection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6811—Selection methods for production or design of target specific oligonucleotides or binding molecules
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6848—Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6853—Nucleic acid amplification reactions using modified primers or templates
- C12Q1/6855—Ligating adaptors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2527/00—Reactions demanding special reaction conditions
- C12Q2527/107—Temperature of melting, i.e. Tm
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2531/00—Reactions of nucleic acids characterised by
- C12Q2531/10—Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
- C12Q2531/113—PCR
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2535/00—Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
- C12Q2535/122—Massive parallel sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2537/00—Reactions characterised by the reaction format or use of a specific feature
- C12Q2537/10—Reactions characterised by the reaction format or use of a specific feature the purpose or use of
- C12Q2537/143—Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/159—Microreactors, e.g. emulsion PCR or sequencing, droplet PCR, microcapsules, i.e. non-liquid containers with a range of different permeability's for different reaction components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Definitions
- U.S. Utility application Ser. No. 13/780,022, filed Feb. 28, 2013, is a continuation-in-part of U.S. Utility application Ser. No. 13/683,604 filed Nov. 21, 2012; a continuation-in-part of PCT Application No. PCT/US2012/58578, filed Oct. 3, 2012; a continuation-in-part of U.S. Utility application Ser. No. 13/335,043, filed Dec. 22, 2011, now U.S. Pat. No. 10,113,196; a continuation-in-part of U.S. Utility application Ser. No. 13/300,235, filed Nov. 18, 2011, now U.S. Pat. No. 10,017,812; and an continuation-in-part of U.S. Utility application Ser. No. 13/110,685 (now U.S. Pat. No. 8,825,412), filed May 18, 2011, and also claims the benefit of U.S. Provisional Application Ser. No. 61/634,431, filed Feb. 29, 2012.
- U.S. Utility application Ser. No. 13/683,604, filed Nov. 21, 2012 is a continuation-in-part of U.S. Utility application Ser. No. 13/300,235 (now U.S. Pat. No. 10,017,812), filed Nov. 18, 2011; is a continuation-in-part of U.S. Utility application Ser. No. 13/110,685 (now U.S. Pat. No. 8,825,412), filed May 18, 2011; and claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/675,020, filed. Jul. 24, 2012.
- PCT Application No. PCT/US2012/058578, filed Oct. 3, 2012 is a continuation-in-part of U.S. Utility application Ser. No. 13/300,235 (now U.S. Pat. No. 10,017,812), filed Nov. 18, 2011; and claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/683,331, filed Aug. 15, 2012; and U.S. Provisional Application Ser. No. 61/542,508, filed Oct. 3, 2011.
- U.S. Utility application Ser. No. 13/335,043, filed Dec. 22, 2011, is a continuation-in-part of U.S. Utility application Ser. No. 13/300,325 (now U.S. Pat. No. 10,017,812), filed Nov. 18, 2011; a continuation-in-part of U.S. Utility application Ser. No. 13/110,685 (now U.S. Pat. No. 8,825,412), filed May 18, 2011; and claims the benefit of U.S. Provisional Application Ser. No. 61/426,208, filed Dec. 22, 2010.
- the present invention generally relates to methods and compositions for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume.
- simultaneous amplification of many target nucleic acids in a sample of interest can be carried out by combining many oligonucleotide primers with the sample and then subjecting the sample to polymerase chain reaction (PCR) conditions in a process known in the art as multiplex PCR.
- PCR polymerase chain reaction
- Use of multiplex PCR can significantly simplify experimental procedures and shorten the time required for nucleic acid analysis and detection.
- non-target amplification products may be generated, such as amplified primer dimers. The risk of generating such products increases as the number of primers increases.
- These non-target amplicons significantly limit the use of the amplified products for further analysis and/or assays. Thus, improved methods are needed to reduce the formation of non-target amplicons during multiplex PCR.
- NPD Non-Invasive Prenatal Genetic Diagnosis
- current methods of prenatal diagnosis can alert physicians and parents to abnormalities in growing fetuses. Without prenatal diagnosis, one in 50 babies is born with serious physical or mental handicap, and as many as one in 30 will have some form of congenital malformation.
- standard methods have either poor accuracy, or involve an invasive procedure that carries a risk of miscarriage.
- Methods based on maternal blood hormone levels or ultrasound measurements are non-invasive, however, they also have low accuracies.
- Methods such as amniocentesis, chorion villus biopsy and fetal blood sampling have high accuracy, but are invasive and carry significant risks. Amniocentesis was performed in approximately 3% of all pregnancies in the US, though its frequency of use has been decreasing over the past decade and a half.
- chromosomes normal humans have two sets of 23 chromosomes in every healthy, diploid cell, with one copy coming from each parent.
- Aneuploidy a condition in a nuclear cell where the cell contains too many and/or too few chromosomes is believed to be responsible for a large percentage of failed implantations, miscarriages, and genetic diseases.
- Detection of chromosomal abnormalities can identify individuals or embryos with conditions such as Down syndrome, Klinefelter's syndrome, and Turner syndrome, among others, in addition to increasing the chances of a successful pregnancy. Testing for chromosomal abnormalities is especially important as the mother's age: between the ages of 35 and 40 it is estimated that at least 40% of the embryos are abnormal, and above the age of 40, more than half of the embryos are abnormal.
- the invention features methods of amplifying target loci in a nucleic acid sample.
- the method involves (i) contacting the nucleic acid sample with a library of test primers (such as non-immobilized primers) that simultaneously hybridize to at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci to produce a reaction mixture; and (ii) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products that include target amplicons.
- a library of test primers such as non-immobilized primers
- the method also includes determining the presence or absence of at least one target amplicon (such as at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target amplicons). In some embodiments, the method also includes determining the sequence of at least one target amplicon (such as at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target amplicons). In some embodiments, the method involves multiplex PCR and sequencing (such as high throughput sequencing).
- the method includes selecting the test primers from a library of candidate primers by removing one or more of the candidate primers based at least in part on the likelihood of dimer formation between candidate primers (such as ⁇ G values, undesirability scores, or interaction scores) prior to contacting the nucleic acid sample with the library of test primers.
- the method involves (i) contacting a sample comprising target human loci with a library of at least 50 (such as at least 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000) non-immobilized, non-identical primers that simultaneously hybridize to at least 50 (such as at least 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000) non-identical target human loci to produce a reaction mixture; wherein the primers do not include molecular inversion probes (MIPs); (ii) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products comprising target amplicons; wherein the annealing temperature for the reaction conditions is greater than a melting temperature (such
- the method includes empirically measuring or calculating (such as calculating with a computer) the melting temperature of at least 25, 50, 80, 90, 92, 94, 96, 98, 99, or 100% of the primers in the library and selecting an annealing temperature that satisfies any of these embodiments for PCR amplification of target loci.
- the method involves (i) contacting a sample comprising target human loci with a library of at least 2 (such as at least 5, 10, 25 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000) non-immobilized, non-identical primers that simultaneously hybridize to at least 2 (such as at least 5, 10, 25 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000) non-identical target human loci to produce a reaction mixture; wherein the primers do not include molecular inversion probes (MIPs); (ii) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products comprising target amplicons; wherein at least 2 (such as at least 5,
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C. greater than the melting temperature (such as the empirically measured or calculated T m ) of at least 2, 5, 10, 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers; (ii) the annealing temperature is between 1 and 15° C.
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C.
- the annealing temperature is between 1 and 15° C. (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15° C., inclusive) greater than the highest melting temperature (such as the empirically measured or calculated T m ) of the primers;
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C.
- the average melting temperature (such as the empirically measured or calculated T m ) of at least 2, 5, 10, 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers; or (vi) the annealing temperature is between 1 and 15° C.
- the average melting temperature (such as the empirically measured or calculated T m ) of at least 2, 5, 10, 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers.
- the length of the annealing step (per PCR cycle) is greater than 1, 3, 5, 8, 10, 15, 20, 30, 45, 60, 75, 90, 120, 150, or 180 minutes or (ii) the length of the annealing step (per PCR cycle) is between 5 and 180 minutes, such as 5 to 60, 10 to 60, 5 to 30, or 10 to 30 minutes, inclusive.
- any of the embodiments for annealing temperature are combined with any of the embodiments for annealing time.
- the annealing temperature is at least 3° C. greater than the melting temperature of at least 50 of the non-identical primers, the annealing temperature is at least 3° C.
- the annealing temperature is at least 8° C. greater than the highest melting temperature of the primers, the annealing temperature is at least 3° C. greater than the average melting temperature of the primers, the annealing temperature is at least 8° C. greater than the average melting temperature of the primers, the range of melting temperature of the primers is between 1 to 5° C., inclusive, the range of melting temperatures of the primers is less than 5° C., or any combination thereof.
- the method includes empirically measuring or calculating (such as calculating with a computer) the melting temperature of at least 25, 50, 80, 90, 92, 94, 96, 98, 99, or 100% of the primers in the library and selecting an annealing temperature that satisfies any of these embodiments for PCR amplification of target loci.
- a crowding agent such as PEG or glycerol is included in the reaction mixture.
- the method includes non-specifically amplifying nucleic acids in a sample comprising target human loci; contacting the amplified nucleic acids with a library of non-identical primers (such as non-immobilized primers) that simultaneously hybridize to at least 1,000 non-identical target human loci to produce a reaction mixture; wherein the primers do not include molecular inversion probes (MIPs); subjecting the reaction mixture to primer extension reaction conditions to produce amplified products comprising target amplicons; wherein at least 1,000 non-identical target human loci are simultaneously amplified; and sequencing the amplified products.
- a library of non-identical primers such as non-immobilized primers
- MIPs molecular inversion probes
- the non-specific amplification comprises universal polymerase chain reaction (PCR), whole genome application, ligation-mediated PCR, degenerate oligonucleotide primer PCR, or multiple displacement amplification.
- the method includes contacting a sample comprising target human loci with a library of non-identical primers (such as non-immobilized primers) that simultaneously hybridize to at least 1,000 non-identical target human loci to produce a reaction mixture; wherein the primers do not include molecular inversion probes (MIPs); subjecting the reaction mixture to primer extension reaction conditions to produce amplified products comprising target amplicons; wherein the annealing temperature for the reaction conditions is greater than the melting temperature of at least 1,000 of the non-identical primers; and wherein at least 1,000 non-identical target human loci are simultaneously amplified; and sequencing the amplified products.
- PCR polymerase chain reaction
- whole genome application ligation-mediated PCR
- degenerate oligonucleotide primer PCR or
- the method includes contacting a sample comprising target human loci with a library of non-identical primers (such as non-immobilized primers) that simultaneously hybridize to at least 1,000 non-identical target human loci to produce a reaction mixture in which the concentration of each primer is less than 20 nM; wherein the primers do not include molecular inversion probes (MIPs); subjecting the reaction mixture to primer extension reaction conditions to produce amplified products comprising target amplicons; wherein the length of the annealing step of the reaction conditions is greater than 10 minutes; and wherein at least 1,000 non-identical target human loci are simultaneously amplified; and sequencing the amplified products.
- a library of non-identical primers such as non-immobilized primers
- the method includes contacting a sample comprising target human loci with a library of non-identical primers (such as non-immobilized primers) that simultaneously hybridize to at least 1,000 non-identical target human loci to produce a reaction mixture; wherein the guanine-cytosine (GC) content of the primers is between 30% and 80%, inclusive; wherein the range of melting temperatures of the primers is less than 5° C.; wherein the length of the primers is between 15 to 75 nucleotides, inclusive; and wherein the primers do not include molecular inversion probes (MIPs); subjecting the reaction mixture to primer extension reaction conditions to produce amplified products comprising target amplicons; wherein at least 1,000 non-identical target human loci are simultaneously amplified; and sequencing the amplified products.
- a library of non-identical primers such as non-immobilized primers
- the method does not comprise using a microarray.
- the library includes a least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers.
- at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified.
- the ⁇ G values for each possible combination of two primers in the library are all equal to or greater than ⁇ 5 kcal/mol.
- the method simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the sample using at least 1,000 non-identical primer pairs (such as non-immobilized primer pairs) to produce a first set of amplified products; wherein each primer pair includes a forward primer and a reverse primer that hybridize to the same target human locus.
- the method also includes simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the first set of amplified products using at least 1,000 non-identical primer pairs (such as non-immobilized primer pairs) to produce a second set of amplified products; wherein each primer pair includes a forward primer and a reverse primer that hybridize to the same target human locus.
- the primer pairs used in the first and second round of PCR are the same.
- the primer pairs used in the first and second round of PCR are different.
- the forward primers used in the first and second round of PCR are the same, and the reverse primers used in the first and second round of PCR are different.
- the forward primers used in the first and second round of PCR are different, and the reverse primers used in the first and second round of PCR are the same.
- the method simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the sample using at least 1,000 non-identical primer pairs (such as non-immobilized primer pairs) to produce a first set of amplified products; wherein each primer pair includes an outer forward primer and an outer reverse primer that hybridize to the same target human locus; and simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the first set of amplified products using a universal reverse primer and at least 1,000 non-identical inner forward primers to produce a second set of amplified products; wherein each inner forward primer hybridizes to a region downstream from the corresponding outer forward primer.
- the method includes simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the sample using at least 1,000 non-identical primer pairs to produce a first set of amplified products; wherein each primer pair includes an outer forward primer and an outer reverse primer that hybridize to the same target human locus; and simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the first set of amplified products using a universal forward primer and at least 1,000 non-identical inner reverse primers to produce a second set of amplified products; wherein each inner reverse primer hybridizes to a region upstream from the corresponding outer reverse primer.
- the method includes simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the sample using at least 1,000 non-identical forward primers and a universal reverse primer to produce a first set of amplified products; and simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the first set of amplified products using a universal forward primer and at least 1,000 non-identical reverse primers to produce a second set of amplified products.
- the method includes simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the sample using at least 1,000 non-identical reverse primers and a universal forward primer to produce a first set of amplified products; and simultaneously PCR-amplifying at least 1,000 non-identical target human loci in the first set of amplified products using a universal reverse primer and at least 1,000 non-identical forward primers to produce a second set of amplified products.
- at least 96% of the primer molecules are extended to form amplified products.
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C.
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C. greater than the highest melting temperature of the non-identical primers. In some embodiments, the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C.
- the range of melting temperature of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers is between 1 to 5° C., inclusive.
- the sample comprises maternal DNA from the pregnant mother of a fetus and fetal DNA, and wherein the method comprises determining the presence or absence of a fetal chromosome abnormality from the sequencing data.
- the sample is from an individual suspected of having cancer or an above normal risk for cancer; and wherein one or more of the target human loci comprises a polymorphism or other mutation associated with an above normal risk for cancer or associated with cancer.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified.
- at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- At least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the amplified products are target amplicons. In some embodiments, at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target loci are amplified. In some embodiments, at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the library of test primers includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 test primer pairs, wherein each pair of primers includes a forward test primer and a reverse test primer that hybridize to the same target locus.
- the library of test primers includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 individual test primers that hybridize to different target loci, wherein the individual primers are not part of primer pairs.
- the concentration of each test primer is less than 100, 75, 50, 25, 10, 5, 2, 1, 0.5, 0.1, or 0.05 nM.
- the guanine-cytosine (GC) content of the test primers is between 30 to 80%, such as between 20 to 70%, 40 to 70%, or 50 to 60%, inclusive.
- a maximum of 2 (such as 2, 1, or 0) of the bases in the last 5 bases at the 3′ end of the primers are guanines or cytosines. In some embodiments, there are at least 1 (such as 2 or 3) guanines or cytosines in the last 3 bases at the 3′ end of the primers.
- the melting temperature (T m ) of the test primers is between 40 to 80° C., such as 50 to 70° C., 55 to 65° C., 54 to 60.5° C., or 57 to 60.5° C., inclusive. In some embodiments, the range of melting temperatures of the test primers is less than 20, 15, 10, 5, 3, or 1° C.
- the length of the test primers is between 15 to 100 nucleotides, such as between 15 to 75 nucleotides, 15 to 40 nucleotides, 17 to 35 nucleotides, 18 to 30 nucleotides, or 20 to 65 nucleotides, inclusive.
- the test primers include a tag that is not target specific, such as a tag that forms an internal loop structure.
- the tag is between two DNA binding regions.
- the test primers include a 5′ region that is specific for a target locus, an internal region that is not specific for the target locus and forms a loop structure, and a 3′ region that is specific for the target locus.
- the length of the 3′ region is at least 7 nucleotides. In some embodiments, the length of the 3′ region is between 7 and 20 nucleotides, such as between 7 to 15 nucleotides, or 7 to 10 nucleotides, inclusive.
- the test primers include a 5′ region that is not specific for a target locus (such as a tag or a universal primer binding site) followed by a region that is specific for a target locus, an internal region that is not specific for the target locus and forms a loop structure, and a 3′ region that is specific for the target locus. In some embodiments, the range of the length of the test primers is less than 50, 40, 30, 20, 10, or 5 nucleotides.
- the length of the target amplicons is between 50 and 100 nucleotides, such as between 60 and 80 nucleotides, or 60 to 75 nucleotides, inclusive. In some embodiments, the length of the target amplicons is at least 100; 200; 300; 400; 500; 600; 700; 800; 900; 1,000; 1,200; 1,500; 2,000; or 3,000 nucleotides. In some embodiments, the length of the target amplicons is between 100 and 1,500 nucleotides, such as between 100 to 1,000; 100 to 500, 500 to 750, or 750 to 1,000 nucleotides, inclusive. In some embodiments, the range of the length of the target amplicons is less than 50, 25, 15, 10, or 5 nucleotides.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 or all of the target amplicons have a length that falls within the range of the average length of the amplicons ⁇ 5% of the average length, average length ⁇ 20%, average length ⁇ 20%, average length ⁇ 30%, or average length ⁇ 50%.
- the primer extension reaction conditions are polymerase chain reaction conditions (PCR).
- PCR polymerase chain reaction conditions
- the length of the annealing step is greater than 3, 5, 8, 10, 15, 20, 30, 45, 60, 75, 90, 120, 150, or 180 minutes.
- the length of the extension step is greater than 0.2, 0.5, 1, 3, 5, 8, 10, or 15 minutes.
- the test primers are used to simultaneously amplify at least 300 different target loci in a sample that includes maternal DNA from the pregnant mother of a fetus and fetal DNA to determine the presence or absence of a fetal chromosome abnormality.
- the method includes ligating a universal primer binding site to the DNA molecules in the sample; amplifying the ligated DNA molecules using at least 300 specific primers and a universal primer to produce a first set of amplified products; and amplifying the first set of amplified products using at least 300 pairs of specific primers to produce a second set of amplified products.
- the test primers are used to simultaneously amplify e.g. at least 100 (e.g., at least 300 or 1,000) different target loci in sample includes DNA from an alleged father of a fetus and to simultaneously amplify the target loci in a sample that includes maternal DNA from the pregnant mother of the fetus and fetal DNA to establish whether the alleged father is the biological father of the fetus.
- the test primers are used to simultaneously amplify e.g. at least 100 (e.g., at least 300 or 1,000) different target loci in one cell or multiple cells from an embryo to determine the presence or absence of a chromosome abnormality.
- cells from a set of two or more embryos are analyzed, and one embryo is selected for in vitro fertilization.
- the test primers are used to simultaneously amplify e.g. at least 100 (e.g., at least 300 or 1,000) different target loci in a forensic nucleic acid sample.
- the length of the annealing step is greater than 3, 5, 8, 10, 15, 20, 30, 45, 60, 75, 90, 120, 150, or 180 minutes
- the method involves using the test primers to simultaneously amplify e.g. at least 100 (e.g., at least 300 or 1,000) different target loci in a control nucleic acid sample to produce a first set of target amplicons and to simultaneously amplify the target loci in a test nucleic acid sample to produce a second set of target amplicons; and comparing the first and second sets of target amplicons to determine whether a target locus is present in one sample but absent in the other, or whether a target locus is present at different levels in the control sample and the test sample.
- the test primers to simultaneously amplify e.g. at least 100 (e.g., at least 300 or 1,000) different target loci in a control nucleic acid sample to produce a first set of target amplicons and to simultaneously amplify the target loci in a test nucleic acid sample to produce a second set of target amplicons; and comparing the first and second sets of target amplicons to determine whether a target locus is present
- the test sample is from an individual suspected of having a disease or phenotype of interest (such as cancer), or an increased risk (such as an above normal level of risk) for a disease or phenotype of interest; and wherein one or more of the target loci include a sequence (e.g., a polymorphism or other mutation) associated with an increased risk (such as an above normal level of risk) for the disease or phenotype of interest, or associated with the disease or phenotype of interest.
- the method involves using the test primers to simultaneously amplify e.g.
- RNA is mRNA.
- the test sample is from an individual suspected of having a disease or phenotype of interest (such as cancer) or an increased risk for the disease or phenotype of interest (such as cancer); and wherein one or more of the target loci includes a sequence (e.g., a polymorphism or other mutation) associated with an increased risk for the disease or phenotype of interest or associated with the disease or phenotype of interest.
- a disease or phenotype of interest such as cancer
- an increased risk for the disease or phenotype of interest such as cancer
- the test sample is from an individual diagnosed with a disease or phenotype of interest (such as cancer); and wherein a difference in the RNA expression level between the control sample and test sample indicates a target locus includes a sequence (e.g., a polymorphism or other mutation) associated with an increased or decreased risk for the disease or phenotype of interest.
- a sequence e.g., a polymorphism or other mutation
- the test primers are selected from a library of candidate primers based on one or more parameters, such as the selection of primers using any of the methods of the invention. In some embodiments, the test primers are selected from a library of candidate primers based at least in part on the ability of the candidate primers to form primer dimers.
- the invention features methods of selecting test primers from a library of candidate primers.
- the selection involves (i) calculating on a computer a score (such as an undesirability score) for most or all of the possible combinations of two candidate primers from the library, wherein each score (such as an undesirability score) is based at least in part on the likelihood of dimer formation between the two candidate primers; (ii) removing the candidate primer with the highest score (such as an undesirability score) from the library of candidate primers; and (iii) if the candidate primer removed in step (ii) is a member of a primer pair, then removing the other member of the primer pair from the library of candidate primers; and (iv) optionally repeating steps (ii) and (iii), thereby selecting a library of test primers.
- a score such as an undesirability score
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below a minimum threshold. In some embodiments, the selection method is performed until the number of candidate primers remaining in the library is reduced to a desired number. In various embodiments, a score (such as an undesirability score) is calculated for at least 80, 90, 95, 98, 99, or 99.5% of the possible combinations of candidate primers in the library.
- the candidate primers remaining in the library are capable of simultaneously amplifying at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci.
- the method also includes (v) contacting a nucleic acid sample that includes target loci with the candidate primers remaining in the library to produce a reaction mixture; and (vi) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products that includes target amplicons.
- the invention features methods of selecting test primers from a library of candidate primers.
- the selection of test primers are selected from a library of candidate primers involves (i) calculating on a computer a score (such as an undesirability score) for most or all of the possible combinations of two candidate primers from the library, wherein each score (such as an undesirability score) is based at least in part on the likelihood of dimer formation between the two candidate primers; (ii) removing from the library of candidate primers the candidate primer that is part of the greatest number of combinations of two candidate primers with a score (such as an undesirability score) above a first minimum threshold; (iii) if the candidate primer removed in step (ii) is a member of a primer pair, then removing the other member of the primer pair from the library of candidate primers; and (iv) optionally repeating steps (ii) and (iii), thereby selecting a library of test primers.
- a score such as an undesirability
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below the first minimum threshold. In some embodiments, the selection method is performed until the number of candidate primers remaining in the library is reduced to a desired number. In various embodiments, a score (such as an undesirability score) is calculated for at least 80, 90, 95, 98, 99, or 99.5% of the possible combinations of candidate primers in the library.
- the candidate primers remaining in the library are capable of simultaneously amplifying at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci.
- the method also includes (v) contacting a nucleic acid sample that includes target loci with the candidate primers remaining in the library to produce a reaction mixture; and (vi) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products that includes target amplicons.
- the selection method involves further reducing the number of candidate primers remaining in the library by decreasing the first minimum threshold used in step (ii) to a lower second minimum threshold and optionally repeating steps (ii) and (iii). In some embodiments, the selection method involves increasing the first minimum threshold used in step (ii) to a higher second minimum threshold and optionally repeating steps (ii) and (iii). In some embodiments, the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below the second minimum threshold, or until the number of candidate primers remaining in the library is reduced to a desired number.
- the score such as the undesirability score
- the method involves, prior to step (i), identifying or selecting primers that hybridize to the target loci.
- multiple primers (or primer pairs) hybridize to the same target locus, and the selection method is used to select a one primer (or one primer pair) for this target locus based on one or more parameters.
- the method involves, prior to step (ii), removing a primer pair from the library that produces a target amplicon that overlaps with a target amplicon produced by another primer pair.
- a candidate primer is selected out of a group of two or more candidate primers with equal scores (such as undesirability scores) for removal from the library of candidate primers based on one or more other parameters.
- the candidate primers remaining in the library are used as a library of test primers in any of the methods of the invention.
- the resulting library of test primers includes any of the primer libraries of the invention.
- the selection method selects candidate primers and divides them into different pools (e.g., 2, 3, 4, 5, 6, or more different pools). Each pool can be used to simultaneously amplify a large number of target loci (or a subset of target loci) in a single reaction volume.
- a graph coloring algorithm is used to divide candidate primers into different pools. If desired, this method can be used to minimize the number of different pools needed to amplify most or all of the target loci.
- most or all of the target loci are amplified by at least 2, 3, 4, 5, 6, or more different pools.
- most or all of the bases in the target loci are amplified by at least 2,3, 4, 5, 6, or more different pools.
- most or all of the bases in the target loci are amplified by at least 2, 3, 4, 5, 6, or more different primers or primer pairs in different pools.
- a particular base in a target locus may be amplified by at least 2, 3, 4, 5, 6, or more different primers or primer pairs; wherein each different primer or primer pair is in a different pool.
- Using different primers or primer pairs to amplify each base allows multiple independent measurements of the base to be made, thereby increasing the accuracy of the method. Dividing the different primers or primer pairs that amplify the same base into different pools prevents interference due to overlapping amplicons being formed by different primers or primer pairs.
- the invention features methods of selecting test primers from a library of candidate primers to form 2 or more different primer pools.
- the selection involves (i) calculating on a computer a score (such as an undesirability score) for most or all of the possible combinations of two candidate primers from the library, wherein each score (such as an undesirability score) is based at least in part on the likelihood of dimer formation between the two candidate primers; (ii) removing the candidate primer with the highest score (such as an undesirability score) from the library of candidate primers; and (iii) if the candidate primer removed in step (ii) is a member of a primer pair, then removing the other member of the primer pair from the library of candidate primers; and (iv) optionally repeating steps (ii) and (iii), thereby selecting a first pool.
- a score such as an undesirability score
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below a minimum threshold for the first pool. In some embodiments, the selection method is performed until the number of candidate primers remaining in the library is reduced to a desired number for the first pool. In some embodiments, after the first pool is selected those primers are removed from further consideration and steps of the method (such as steps (ii) and (iii)) are repeated with the remaining primers to select a second pool. If desired, this method may be repeated to select the desired number of primer pools.
- steps (ii) and (iii) are repeated with the remaining primers to select a second pool. If desired, this method may be repeated to select the desired number of primer pools.
- a score (such as an undesirability score) is calculated for at least 80, 90, 95, 98, 99, or 99.5% of the possible combinations of candidate primers in the library. In some embodiments, the score is based at least in part on the current coverage of the bases in the target locus (such as the number of other primer pools that have a primer or primer pair that amplifies a particular base in the target locus).
- one or more of the pools are each capable of simultaneously amplifying at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci.
- the method also includes separately contacting a nucleic acid sample that includes target loci with two or more of the pools to produce separate reaction mixtures; and (vi) subjecting the reaction mixtures to primer extension reaction conditions to produce amplified products that includes target amplicons.
- the invention features methods of selecting test primers from a library of candidate primers to form 2 or more different primer pools.
- the selection of test primers are selected from a library of candidate primers involves (i) calculating on a computer a score (such as an undesirability score) for most or all of the possible combinations of two candidate primers from the library, wherein each score (such as an undesirability score) is based at least in part on the likelihood of dimer formation between the two candidate primers; (ii) removing from the library of candidate primers the candidate primer that is part of the greatest number of combinations of two candidate primers with a score (such as an undesirability score) above a first minimum threshold; (iii) if the candidate primer removed in step (ii) is a member of a primer pair, then removing the other member of the primer pair from the library of candidate primers; and (iv) optionally repeating steps (ii) and (iii), thereby selecting a first pool.
- a score such as an
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below the first minimum threshold for the first pool. In some embodiments, the selection method is performed until the number of candidate primers remaining in the library is reduced to a desired number for the first pool. In various embodiments, the selection method involves further reducing the number of candidate primers remaining in the library by decreasing the first minimum threshold used in step (ii) to a lower second minimum threshold and optionally repeating steps (ii) and (iii). In some embodiments, the selection method involves increasing the first minimum threshold used in step (ii) to a higher second minimum threshold and optionally repeating steps (ii) and (iii).
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below the second minimum threshold, or until the number of candidate primers remaining in the library is reduced to a desired number for the first pool.
- the first pool after the first pool is selected those primers are removed from further consideration and steps of the method (such as steps (ii) and (iii)) are repeated with the remaining primers to select a second pool. If desired, this method may be repeated to select the desired number of primer pools.
- a score (such as an undesirability score) is calculated for at least 80, 90, 95, 98, 99, or 99.5% of the possible combinations of candidate primers in the library.
- the score is based at least in part on the current coverage of the bases in the target locus (such as the number of other primer pools that have a primer or primer pair that amplifies a particular base in the target locus).
- one or more of the pools are each capable of simultaneously amplifying at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci.
- the method also includes separately contacting a nucleic acid sample that includes target loci with two or more of the pools to produce separate reaction mixtures; and (vi) subjecting the reaction mixtures to primer extension reaction conditions to produce amplified products that includes target amplicons.
- At least 70, 80, 85, 90, 95, or 100% of the nucleotides in a region of interest are included in at least 1, 2, 3, or 4 different amplicons (i.e., amplicons with non-identical sequences that are formed by different primers or primer pairs).
- at least 70, 80, 85, 90, 95, or 100% of the nucleotides in at least 70, 80, 85, 90, 95, or 100% of the regions of interest are amplified by at least 1, 2, 3, or 4 different amplicons.
- the primers are divided into at least two different pools such the amplicons in each pool do not overlap with each other (which would cause interference during amplification).
- the score (such as the undesirability score) are based at least in part on one or more parameters selected from the group consisting of heterozygosity rate of the target locus, disease prevalence associated with a sequence (e.g., a polymorphism) at the target locus, disease penetrance associated with a sequence (e.g., a polymorphism) at the target locus, specificity of the candidate primer for the target locus, size of the candidate primer, melting temperature of the candidate primer, melting temperature of the target amplicon, GC content of the target amplicon, GC content of the 3′ end of the candidate primer, homopolymer length in the candidate primer, amplification efficiency of the target amplicon, and size of the target amplicon.
- the score (such as the undesirability score) are based at least in part on one or more parameters selected from the group consisting of heterozygosity rate of the target locus, specificity of the candidate primer for the target locus; size of the candidate primer, melting temperature of the candidate primer, melting temperature of the target amplicon, GC content of the target amplicon, GC content of the 3′ end of the candidate primer, homopolymer length in the candidate primer, amplification efficiency of the target amplicon, and size of the target amplicon; and the test primers are used to simultaneously amplify e.g.
- the method includes ligating a universal primer binding site to the DNA molecules in the sample; amplifying the ligated DNA molecules using e.g. at least 100 (e.g., at least 300 or 1,000) specific primers and a universal primer to produce a first set of amplified products; and amplifying the first set of amplified products using e.g. at least 100 (e.g., at least 300 or 1,000) pairs of specific primers to produce a second set of amplified products.
- At least 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primer pairs are used.
- at least 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the score (such as the undesirability score) are based at least in part on one or more parameters selected from the group consisting of heterozygosity rate of the target locus, specificity of the candidate primer for the target locus; size of the candidate primer, melting temperature of the candidate primer, melting temperature of the target amplicon, GC content of the target amplicon, GC content of the 3′ end of the candidate primer, homopolymer length in the candidate primer, amplification efficiency of the target amplicon, and size of the target amplicon; and the test primers are used to simultaneously amplify e.g.
- At least 100 (e.g., at least 300 or 1,000) different target loci in sample includes DNA from an alleged father of a fetus and to simultaneously amplify the target loci in a sample that includes maternal DNA from the pregnant mother of a fetus and fetal DNA to establish whether the alleged father is the biological father of the fetus.
- at least 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the score (such as the undesirability score) are based at least in part on one or more parameters selected from the group consisting of heterozygosity rate of the target locus, specificity of the candidate primer for the target locus; size of the candidate primer, melting temperature of the candidate primer, melting temperature of the target amplicon, GC content of the target amplicon, GC content of the 3′ end of the candidate primer, homopolymer length in the candidate primer, amplification efficiency of the target amplicon, and size of the target amplicon; and the test primers are used to simultaneously amplify e.g.
- At least 100 e.g., at least 300 or 1,000
- different target loci in one cell or multiple cells from an embryo to determine the presence or absence of a chromosome abnormality.
- cells from a set of two or more embryos are analyzed, and one embryo is selected for in vitro fertilization.
- at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the scores are based at least in part on one or more parameters selected from the group consisting of heterozygosity rate of the target locus, specificity of the candidate primer for the target locus; size of the candidate primer, melting temperature of the candidate primer, melting temperature of the target amplicon, GC content of the target amplicon, GC content of the 3′ end of the candidate primer, homopolymer length in the candidate primer, amplification efficiency of the target amplicon, and size of the target amplicon; and the test primers are used to simultaneously amplify e.g. at least 100 (e.g., at least 300 or 1,000) different target loci in a forensic nucleic acid sample.
- the length of the annealing step is greater than 3, 5, 8, 10, 15, 20, 30, 45, 60, 75, 90, 120, 150, or 180 minutes. In various embodiments, at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the scores are based at least in part on one or more parameters selected from the group consisting of heterozygosity rate of the target locus, disease prevalence associated with a sequence (e.g., a polymorphism) at the target locus, disease penetrance associated with a sequence (e.g., a polymorphism) at the target locus, specificity of the candidate primer for the target locus, size of the candidate primer, melting temperature of the candidate primer, melting temperature of the target amplicon, GC content of the target amplicon, GC content of the 3′ end of the candidate primer, homopolymer length in the candidate primer, amplification efficiency of the target amplicon, and size of the target amplicon; and the method involves using the test primers to simultaneously amplify e.g.
- the test sample is from an individual suspected of having a disease or phenotype of interest, or an increased risk for a disease or phenotype of interest; and wherein one or more of the target loci include a sequence (e.g., a polymorphism) at the target locus associated with an increased risk for the disease or phenotype of interest, or associated with the disease or phenotype of interest.
- a sequence e.g., a polymorphism
- at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the scores are based at least in part on one or more parameters selected from the group consisting of heterozygosity rate of the target locus, disease prevalence associated with a sequence (e.g., a polymorphism) at the target locus, disease penetrance associated with a sequence (e.g., a polymorphism) at the target locus, specificity of the candidate primer for the target locus, size of the candidate primer, melting temperature of the candidate primer, melting temperature of the target amplicon, GC content of the target amplicon, GC content of the 3′ end of the candidate primer, homopolymer length in the candidate primer, amplification efficiency of the target amplicon, and size of the target amplicon; and the method involves using the test primers to simultaneously amplify e.g.
- RNA is mRNA.
- the test sample is from an individual suspected of having a disease or phenotype of interest (such as cancer) or an increased risk for the disease or phenotype of interest (such as cancer); and wherein one or more of the target loci includes a sequence (e.g., a polymorphism or other mutation) associated with an increased risk for the disease or phenotype of interest or associated with the disease or phenotype of interest.
- a disease or phenotype of interest such as cancer
- an increased risk for the disease or phenotype of interest such as cancer
- the test sample is from an individual diagnosed with a disease or phenotype of interest (such as cancer); and wherein a difference in the RNA expression level between the control sample and test sample indicates a target locus includes a sequence (e.g., a polymorphism or other mutation) associated with an increased or decreased risk for the disease or phenotype of interest.
- a sequence e.g., a polymorphism or other mutation
- at least 300, 500; 750; 1,000; 2000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the invention features libraries of primers (such as non-immobilized primers).
- the primers are selected from a library of candidate primers using any of the methods of the invention.
- the library includes primers that simultaneously hybridize to at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci.
- the library includes primers that simultaneously amplify at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci.
- the library includes primers that simultaneously amplify at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci such that less than 60, 40, 30, 20, 10, 5, 4, 3, 2, 1, 0.5, 0.25, 0.1, or 0.05% of the amplified products are primer dimers.
- the library includes primers that simultaneously amplify at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci such that at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the amplified products are target amplicons.
- the library includes primers that simultaneously amplify target loci such that at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target loci out of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the library of primers includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers or primer pairs.
- the library of primers includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 primer pairs, wherein each pair of primers includes a forward test primer and a reverse test primer where each pair of test primers hybridize to a target locus.
- the library of primers includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 individual primers that each hybridize to a different target locus, wherein the individual primers are not part of primer pairs.
- the primers in the library are not immobilized (such as not immobilized to a solid support) or not part of a microarray.
- the primers are dissolved in solution (such as dissolved in the liquid phase).
- the library of primers consists essentially of, or consists of primers.
- ⁇ G values for each possible combination of two primers (each possible primer dimer) in a library are all equal to or greater than ⁇ 20, ⁇ 18, ⁇ 16, ⁇ 14, ⁇ 12, ⁇ 10, ⁇ 9, ⁇ 8, ⁇ 7, ⁇ 6, ⁇ 5, ⁇ 4, ⁇ 3, ⁇ 2, or ⁇ 1 kcal/mol.
- ⁇ G values for at least 80, 85, 90, 92, 94, 96, 98, 99, or 100% of the primers in the library for possible combinations of that primer with other primers in the library are all equal to or greater than ⁇ 20, ⁇ 18, ⁇ 16, ⁇ 14, ⁇ 12, ⁇ 10, ⁇ 9, ⁇ 8, ⁇ 7, ⁇ 6, ⁇ 5, ⁇ 4, ⁇ 3, ⁇ 2, or ⁇ 1 kcal/mol.
- the concentration of each primer is less than 100, 75, 50, 25, 10, 5, 2, 1, 0.5, 0.1, or 0.05 nM.
- the GC content of the primers is between 30 to 80%, such as between 40 to 70%, 20 to 70%, or 50 to 60%, inclusive. In some embodiments, the range of GC content of the primers is less than 30, 20, 10, or 5%.
- a maximum of 2 (such as 2, 1, or 0) bases in the last 5 bases at the 3′ end of the primers are guanines or cytosines.
- the melting temperature of the primers is between 40 to 80° C., such as 50 to 70° C., 55 to 65° C., 54 to 60.5° C., or 57 to 60.5° C., inclusive. In some embodiments, the range of melting temperature of the primers is less than 15, 10, 5, 3, or 1° C.
- the length of the primers is between 15 to 100 nucleotides, such as between 15 to 75 nucleotides, 15 to 40 nucleotides, 17 to 35 nucleotides, 18 to 30 nucleotides, or 20 to 65 nucleotides, inclusive.
- the primers include a tag that is not target specific, such as a tag that forms an internal loop structure.
- the tag is between two DNA binding regions.
- the primers include a 5′ region that is specific for a target locus, an internal region that is not specific for the target locus and forms a loop structure, and a 3′ region that is specific for the target locus.
- the length of the 3′ region is at least 7 nucleotides. In some embodiments, the length of the 3′ region is between 7 and 20 nucleotides, such as between 7 to 15 nucleotides, or 7 to 10 nucleotides, inclusive.
- the primers include a 5′ region that is not specific for a target locus (such as another tag or a universal primer binding site) followed by a region that is specific for a target locus, an internal region that is not specific for the target locus and forms a loop structure, and a 3′ region that is specific for the target locus. In some embodiments, the range of the length of the primers is less than 50, 40, 30, 20, 10, or 5 nucleotides.
- the length of the target amplicons is between 50 and 100 nucleotides, such as between 60 and 80 nucleotides, or 60 to 75 nucleotides, inclusive. In some embodiments, the range of the length of the target amplicons is less than 50, 25, 15, 10, or 5 nucleotides.
- the target loci are on two or more different chromosomes, such as two or more of chromosomes 13, 18, 21, X and Y. In some embodiments, the target loci are target human loci.
- the target loci includes a sequence (e.g., a polymorphism or other mutation) associated with an increased risk for the disease or phenotype of interest (such as cancer), or associated with the disease or phenotype of interest (such as cancer).
- the polymorphism or mutation is a driver mutation that has a causative role in the disease or phenotype of interest (such as cancer).
- the polymorphism or mutation is not a causative mutation. For example, in some cancers, multiple mutations accumulate but some of them are not causative mutations.
- Polymorphisms or mutations (such as those that are present at a higher frequency in subjects with a disease or phenotype of interest such as cancer than subjects without the disease or phenotype of interest such as cancer) that are not causative can still be useful for diagnosing the disease or phenotype.
- the polymorphisms or mutation is present at a higher frequency in subjects with a disease or disorder (such as cancer) than subjects (such as healthy or normal subjects) without the disease or disorder (such as cancer).
- the polymorphisms or mutation is indicative of cancer, such as a causative mutation.
- the polymorphism(s) or mutation(s) are directly detected.
- the polymorphism(s) or mutation(s) are indirectly detected by detection of one or more sequences (e.g., a polymorphic locus such as a SNP) that are linked to the polymorphism or mutation).
- the invention provides a composition that includes any of the primer libraries of the invention (such as non-immobilized primers).
- the composition includes one or more free nucleotides (such as deoxynucleotides, ATP, CTP, GTP, TTP, UTP, dATP, dCTP, dGTP, dTTP, dUTP an activated nucleotide or deoxynucleotide, or a non-naturally occurring nucleotide or deoxynucleotide).
- free nucleotides such as deoxynucleotides, ATP, CTP, GTP, TTP, UTP, dATP, dCTP, dGTP, dTTP, dUTP an activated nucleotide or deoxynucleotide, or a non-naturally occurring nucleotide or deoxynucleotide.
- the composition includes at least one primer (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers) with a polynucleotide sequence of a human nucleic acid and at least one primer (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers) with a polynucleotide sequence that is not found in a human (such as a universal primer, a primer that comprises a region or consists entirely of random nucleotides, or a primer with a region such as a tag or barcode of one or more nucle
- the composition includes at least one primer (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers) with the polynucleotide sequence of a human nucleic acid and one or more non-human or non-naturally occurring enzymes (e.g., ligase or polymerase from a species other than a human, such as a bacterial or non-naturally-occurring ligase or polymerase).
- ligase or polymerase from a species other than a human, such as a bacterial or non-naturally-occurring ligase or polymerase.
- the composition includes at least one primer (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers) with the polynucleotide sequence of a human nucleic acid and a buffer or additive that is non-naturally-occurring or is not found in a human.
- at least one primer e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers
- the composition comprises, consists essentially of, or consists of one or more of the following: primer(s), amplicon(s) free nucleotide(s), non-human or non-naturally occurring enzyme(s), buffer(s), additive(s), or any combination thereof.
- the composition comprises, consists essentially of, or consists of primers and one or more non-human or non-naturally occurring enzymes. Exemplary non-naturally occurring enzymes contain at least one sequence difference compared to naturally occurring (wild-type) enzymes.
- the invention provides a composition comprising at least 100 different amplicons (e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons) in solution in one reaction volume.
- at least 100 different amplicons e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons
- the amplicons are produced from the simultaneous PCR amplification of at least 100 different target loci (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical target loci) using at least 100 different primers or primer pairs (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers or primer pairs) in one reaction volume.
- target loci e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000;
- (i) less than 60% of the amplified products are primer dimers and at least 40% of the amplified products are target amplicons
- (ii) less than 40% of the amplified products are primer dimers and at least 60% of the amplified products are target amplicons
- (iii) less than 20% of the amplified products are primer dimers and at least 80% of the amplified products are target amplicons
- (iv) less than 10% of the amplified products are primer dimers and at least 90% of the amplified products are target amplicons
- (v) less than 5% of the amplified products are primer dimers and at least 95% of the amplified products are target amplicons.
- the length of the target amplicons is between 50 and 100 nucleotides, such as between 60 and 80 nucleotides, or 60 and 75 nucleotides, inclusive. In some embodiments, the range of the length of the target amplicons is less than 50, 25, 15, 10, or 5 nucleotides. In some embodiments, the range of the length of the target amplicons is between 5 to 50 nucleotides, such as 5 to 25 nucleotides, 5 to 15 nucleotides, or 5 to 10 nucleotides, inclusive. In some embodiments, the composition includes at least 1,000 different amplicons in solution in one reaction volume.
- the amplicons are produced from the simultaneous PCR amplification of at least 1,000 different target human loci using at least 1,000 different primers in one reaction volume; wherein (i) less than 20% of the amplicons are primer dimers, and (ii) at least 80% of the amplicons comprise one of the target human loci and are between 50 and 100 nucleotides in length, inclusive.
- the composition consists essentially of, or consists of one or more of the following: amplicons, primers (such as any of the primers disclosed herein), free nucleotide(s), non-human or non-naturally occurring enzyme(s), buffer(s), or any combination thereof.
- at least one amplicon or primer has a non-human or non-naturally occurring sequence, nucleotide, or linkage between nucleotides.
- the invention provides a composition comprising at least 100 different primers or primer pairs (e.g., at least 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers or primer pairs) and at least 100 different amplicons (e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons) in solution in one reaction volume.
- primers or primer pairs e.g., at least 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons
- the amplicons are produced from the simultaneous PCR amplification of at least 100 different target loci (e.g., at least 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical target loci) using the primers or primer pairs in one reaction volume.
- target loci e.g., at least 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical target loci
- (i) less than 60% of the amplified products are primer dimers and at least 40% of the amplified products are target amplicons
- (ii) less than 40% of the amplified products are primer dimers and at least 60% of the amplified products are target amplicons
- (iii) less than 20% of the amplified products are primer dimers and at least 80% of the amplified products are target amplicons
- (iv) less than 10% of the amplified products are primer dimers and at least 90% of the amplified products are target amplicons
- (v) less than 5% of the amplified products are primer dimers and at least 95% of the amplified products are target amplicons.
- the length of the target amplicons is between 50 and 100 nucleotides, such as between 60 and 80 nucleotides, or 60 and 75 nucleotides, inclusive. In some embodiments, the range of the length of the target amplicons is less than 50, 25, 15, 10, or 5 nucleotides. In some embodiments, the range of the length of the target amplicons is between 5 to 50 nucleotides, such as 5 to 25 nucleotides, 5 to 15 nucleotides, or 5 to 10 nucleotides, inclusive. In some embodiments, the composition comprising at least 1,000 different primers and at least 1,000 different amplicons in solution in one reaction volume.
- the amplicons are produced from the simultaneous PCR amplification of at least 1,000 different target human loci with the primers in one reaction volume; wherein (i) less than 20% of the amplicons are primer dimers, and (ii) at least 80% of the amplicons comprise one of the target loci and are between 50 and 100 nucleotides in length, inclusive.
- the composition consists essentially of, or consists of one or more of the following: amplicons, primers (such as any of the primers disclosed herein), free nucleotide(s), non-human or non-naturally occurring enzyme(s), buffer(s), or any combination thereof.
- at least one amplicon or primer has a non-human or non-naturally occurring sequence, nucleotide, or linkage between nucleotides.
- kits that include any of the primer libraries or compositions of the invention for amplifying target loci in a nucleic acid sample.
- the kits consists essentially of, or consists of primers, primers and instructions for using the primers, a composition of the invention, or a composition of the invention and instructions for using the composition.
- the kit includes instructions for using the library to amplify the target loci.
- the invention provides an apparatus, device, or composition that includes any of the primer libraries or compositions of the invention.
- the apparatus, device, or composition includes a physical structure (such as one or more reaction vessels, reaction chambers, or wells) that contains the primer library or composition of the invention (for example, the primers may be dissolved in a solution that is in the physical structure).
- the physical structure is a non-naturally occurring physical structure or a physical structure that does not naturally contain a primer library or composition of the invention (such as a physical structure that is not found in nature with nucleic acids in it).
- the invention features methods for determining a ploidy status of chromosome in a gestating fetus.
- the method involves contacting a nucleic acid sample with a library of primers that simultaneously hybridize to at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different polymorphic loci to produce a reaction mixture; wherein the nucleic acid sample includes maternal DNA from the mother of the fetus and fetal DNA from the fetus.
- the reaction mixture is subjected to primer extension reaction conditions to produce amplified products; the amplified products are measured with a high throughput sequencer to produce sequencing data; allele counts at the polymorphic loci are calculated on a computer based on the sequencing data; a plurality of ploidy hypotheses each pertaining to a different possible ploidy state of the chromosome are created on a computer; a joint distribution model for the expected allele counts at the polymorphic loci on the chromosome is built on a computer for each ploidy hypothesis; a relative probability of each of the ploidy hypotheses is determined on a computer using the joint distribution model and the allele counts; and the ploidy state of the fetus is called by selecting the ploidy state corresponding to the hypothesis with the greatest probability.
- the invention features methods for determining a ploidy status of a chromosome in a gestating fetus.
- a method for determining a ploidy status of a chromosome in a gestating fetus includes obtaining a first sample of DNA that comprises maternal DNA from the mother of the fetus and fetal DNA from the fetus, preparing the first sample by isolating the DNA so as to obtain a prepared sample, measuring the DNA in the prepared sample at a plurality of polymorphic loci on the chromosome, calculating, on a computer, allele counts at the plurality of polymorphic loci from the DNA measurements made on the prepared sample, creating, on a computer, a plurality of ploidy hypotheses each pertaining to a different possible ploidy state of the chromosome, building, on a computer, a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome
- the invention features methods of testing for an abnormal distribution of a chromosome in a sample that includes a mixture of maternal and fetal DNA.
- the method involves (i) contacting the sample with a library of primers that simultaneously hybridize to at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci to produce a reaction mixture; wherein the target loci are from a plurality of different chromosomes; and wherein the plurality of different chromosomes include at least one first chromosome suspected of having an abnormal distribution in the sample and at least one second chromosome presumed to be normally distributed in the sample; (ii) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products; (iii) sequencing the amplified products to obtain a plurality of sequence tags aligning to the target loc
- the invention provides methods for detecting the presence or absence of a fetal aneuploidy.
- the method involves (i) contacting a sample that includes a mixture of maternal and fetal DNA with a library of primers that simultaneously hybridize to at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different non-polymorphic target loci to produce a reaction mixture; wherein the target loci are from a plurality of different chromosomes; (ii) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products that includes target amplicons; (iii) quantifying on a computer a relative frequency of the target amplicons from the first and second chromosomes of interest; (iv) comparing on a computer the relative frequency of the target amplicons from the first and second chromosome
- a method for determining presence or absence of fetal aneuploidy in a maternal tissue sample comprising fetal and maternal genomic DNA, the method including (a) obtaining a mixture of fetal and maternal genomic DNA from said maternal tissue sample, (b) conducting massively parallel DNA sequencing of DNA fragments randomly selected from the mixture of fetal and maternal genomic DNA of step (a) to determine the sequence of said DNA fragments, (c) identifying chromosomes to which the sequences obtained in step (b) belong, (d) using the data of step (c) to determine an amount of at least one first chromosome in said mixture of maternal and fetal genomic DNA, wherein said at least one first chromosome is presumed to be euploid in the fetus, (e) using the data of step (c) to determine an amount of a second chromosome in said mixture of maternal and fetal genomic DNA, wherein said second chromosome is suspected to be aneuploid in the fetus, (f)
- the target loci include one or more SNPs in the homologous non-recombining region of chromosome X and/or chromosome Y.
- the method includes determining the relative amount of chromosome X and chromosome Y. In some embodiments, the method includes determining the number of copies of chromosome X and/or chromosome Y.
- the method also includes obtaining genotypic data from one or both parents of the fetus.
- obtaining genotypic data from one or both parents of the fetus includes preparing the DNA from the parents where the preparing comprises preferentially enriching the DNA at the plurality of polymorphic loci to give prepared parental DNA, optionally amplifying the prepared parental DNA, and measuring the parental DNA in the prepared sample at the plurality of polymorphic loci.
- building a joint distribution model for the expected allele count probabilities of the plurality of polymorphic loci on the chromosome is done using the obtained genetic data from the one or both parents.
- the sample e.g., the first sample
- the obtaining genotypic data from the mother is done by estimating the maternal genotypic data from the DNA measurements made on the prepared sample.
- a diagnostic box for helping to determine a ploidy status of a chromosome in a gestating fetus where the diagnostic box is capable of executing the preparing and measuring steps of any of the methods of the invention.
- the allele counts are probabilistic rather than binary.
- measurements of the DNA in the prepared sample at the plurality of polymorphic loci are also used to determine whether or not the fetus has inherited one or a plurality of disease linked haplotypes.
- building a joint distribution model for allele count probabilities is done by using data about the probability of chromosomes crossing over at different locations in a chromosome to model dependence between polymorphic alleles on the chromosome.
- building a joint distribution model for allele counts and the step of determining the relative probability of each hypothesis are done using a method that does not require the use of a reference chromosome.
- determining the relative probability of each hypothesis makes use of an estimated fraction of fetal DNA in the prepared sample.
- the DNA measurements from the prepared sample used in calculating allele count probabilities and determining the relative probability of each hypothesis comprise primary genetic data.
- selecting the ploidy state corresponding to the hypothesis with the greatest probability is carried out using maximum likelihood estimates or maximum a posteriori estimates.
- calling the ploidy state of the fetus also includes combining the relative probabilities of each of the ploidy hypotheses determined using the joint distribution model and the allele count probabilities with relative probabilities of each of the ploidy hypotheses that are calculated using statistical techniques taken from a group consisting of a read count analysis, comparing heterozygosity rates, a statistic that is only available when parental genetic information is used, the probability of normalized genotype signals for certain parent contexts, a statistic that is calculated using an estimated fetal fraction of the sample (e.g., the first sample) or the prepared sample, and combinations thereof.
- a confidence estimate is calculated for the called ploidy state.
- the method also includes taking a clinical action based on the called ploidy state of the fetus, wherein the clinical action is selected from one of terminating the pregnancy or maintaining the pregnancy.
- the method may be performed for fetuses at between 4 and 5 weeks gestation; between 5 and 6 weeks gestation; between 6 and 7 weeks gestation; between 7 and 8 weeks gestation; between 8 and 9 weeks gestation; between 9 and 10 weeks gestation; between 10 and 12 weeks gestation; between 12 and 14 weeks gestation; between 14 and 20 weeks gestation; between 20 and 40 weeks gestation; in the first trimester; in the second trimester; in the third trimester; or combinations thereof.
- a report displaying a determined ploidy status of a chromosome in a gestating fetus generated using the method.
- a kit for determining a ploidy status of a target chromosome in a gestating fetus designed to be used with any of the methods of the invention, the kit including a plurality of inner forward primers and optionally the plurality of inner reverse primers, where each of the primers is designed to hybridize to the region of DNA immediately upstream and/or downstream from one of the polymorphic sites on the target chromosome, and optionally additional chromosomes, where the region of hybridization is separated from the polymorphic site by a small number of bases, where the small number is selected from the group consisting of 1, 2, 3, 4, 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, 31 to 60, and combinations thereof.
- the invention features methods for establishing whether an alleged father is the biological father of a fetus that is gestating in a pregnant mother.
- the method involves, (i) simultaneously amplifying a plurality of polymorphic loci that includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different polymorphic loci on genetic material from the alleged father to produce a first set of amplified products; (ii) simultaneously amplifying the corresponding plurality of polymorphic loci on a mixed sample of DNA originating from a blood sample from the pregnant mother to produce a second set of amplified products; wherein the mixed sample of DNA includes fetal DNA and maternal DNA; (iii) determining on a computer the probability that the alleged father is the biological father of the fetus using genotypic measurements based on the
- the method further includes simultaneously amplifying the corresponding plurality of polymorphic loci on genetic material from the mother to produce a third set of amplified products; wherein the probability that the alleged father is the biological father of the fetus is determined using genotypic measurements based on the first, second, and third sets of amplified products.
- the invention provides methods of estimating relative likelihoods that each embryo from a set of embryos will develop as desired.
- the method involves contacting a sample from each embryo with a library of primers that simultaneously hybridize to at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci to produce a reaction mixture for each embryo, wherein the samples are each derived from one or more cells from an embryo.
- each reaction mixture is subjected to primer extension reaction conditions to produce amplified products.
- the method includes determining on a computer one or more characteristics of at least one cell from each embryo based on the amplified products; and estimating on a computer the relative likelihoods that each embryo will develop as desired, based on the one or more characteristics of the at least one cell for each embryo.
- the invention features methods of measuring the amount of two or more target loci in a nucleic acid sample.
- the method involves (i) using PCR to amplify a nucleic acid sample that includes a first standard locus, a second standard locus, a first target locus, and a second target locus to form amplified products; wherein the first standard locus and the first target locus have the same number of nucleotides but have a sequence that differs at one or more nucleotides; and wherein the second standard locus and the second target locus have the same number of nucleotides but have a sequence that differs at one or more nucleotides; (ii) sequencing the amplified products to determine a standard ratio that compares the relative amount of the amplified first standard locus compared to the amplified second standard locus; wherein the standard ratio indicates the difference in PCR efficiency for the amplification of the first standard locus and the second standard locus; (iii) determining
- the method involves determining the absolute amount of the first target locus and the second target locus in the sample. In various embodiments, the method further includes determining the presence or absence of a target locus (e.g, at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci) in the sample. In various embodiments, the method involves using any of the primer libraries of the invention.
- a target locus e.g, at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci
- the method involves simultaneously amplifying at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci.
- the invention features methods of quantitatively measuring a plurality of genetic targets in a sample for analysis.
- the method includes (i) mixing genetic material derived from the sample for analysis with a plurality of target specific amplification reagents, and a plurality of standard sequences corresponding to the target specific amplification reagent targets; (ii) amplifying target regions of the genetic material and the standard sequences to produce target amplicons and standard sequence amplicons; and (iii) measuring the quantity of target amplicons and standard sequence amplicons produced.
- the genetic material is present in a genetic library.
- the genetic targets are polymorphic loci (such as SNPs).
- the measuring of quantity is achieved by counting sequences.
- the method further includes determining the estimated copy number of at least one chromosome in a sample from which the genetic library was derived, wherein the determination involves comparing the number of sequence reads of a target amplicon with the number of sequence reads of a standard amplicon.
- the standard sequences and the genetic library include universal priming sites cable of being primed by the same primer.
- the mixing step includes at least 10; 100, 500; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target specific amplification reagents and at least 10; 100, 500; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 standard sequences.
- the method involves using any of the primer libraries of the invention.
- the method involves simultaneously amplifying at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target regions.
- the relative amounts of each of the standard sequences are known.
- the relative amounts of each of the sequences is has been calibrated with respect to a reference genome.
- the sample for analysis includes a mixture of fetal and maternal genomes.
- the sample for analysis is derived from the blood of a pregnant woman or derived from blood plasma.
- the reference genome has at least one aneuploidy, such as an aneuploidy at chromosome 13, 18, 21, X, or Y. In some embodiments, the reference genome is diploid.
- the invention features a mixture that includes a plurality of genetic standard sequences, wherein the relative amount of each genetic standard sequence in the mixture has been determined by calibration to a reference genome.
- the mixture includes at least 10; 100, 500; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 genetic standard sequences.
- the genetic standard sequences include a first universal priming site, a second universal priming site, a first target specific priming site, a second target specific priming site, and a marker sequence located between the first and second target specific priming sites, wherein the first target specific site and the second target specific priming site are located between the first and second universal priming sites.
- the calibration involves using any of the primer libraries of the invention. In various embodiments, the calibration involves simultaneously amplifying at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target regions.
- the reference genome has at least one aneuploidy, such as an aneuploidy at chromosome 13, 18, 21, X, or Y. In some embodiments, the reference genome is diploid.
- the invention features methods of producing a set of calibrated genetic standard sequences.
- the method includes (i) forming an amplification reaction mixture that includes a genetic library prepared from a reference genome, a plurality of target-specific amplification primer reagent sets, and a plurality of genetic standard sequences corresponding to the target specific amplification reagent sets, (ii) amplifying the genetic library and the genetic standard sequences to produce amplicons from the target sequences and amplicons from the genetic standard sequences, (iii) measuring the quantity of the amplicons from the target sequences and amplicons from the genetic standard sequences, and (iv) determining the relative amount of each of genetic standard sequences with respect to each other, whereby the plurality of genetic standard sequences is calibrated.
- the method involves using any of the primer libraries of the invention. In various embodiments, the method involves simultaneously amplifying at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different sequences.
- the reference genome has at least one aneuploidy, such as an aneuploidy at chromosome 13, 18, 21, X, or Y. In some embodiments, the reference genome is diploid.
- the invention provides a set of genetic standard sequences that have been calibrated according to any of the methods of the invention. In one aspect, the invention provides a set of genetic standard sequences that may be calibrated either before, during or after the method is performed.
- the invention features methods of measuring the number of copies of a gene of interest having at least one allele that has a deletion.
- the method includes (i) mixing genetic material derived from a sample for analysis with an amplification reagent specific for the gene of interest and not capable of significantly amplifying the deletion comprising allele of the gene of interest, a standard sequence corresponding to gene of interest, an amplification reagent specific for a reference sequence, and a standard sequence corresponding to the reference sequence; (ii) amplifying the gene sequence of interest, the standard sequence corresponding to the gene of interest, the reference sequence, and the standard sequence corresponding to the reference sequence to produce gene of interest amplicons, reference sequence amplicons, and standard sequence amplicons; and (iii) measuring the quantity of target amplicons and standard sequence amplicons produced.
- the measuring of quantity is achieved by counting sequence reads.
- the method further includes determining the estimated copy number of at least one chromosome in the sample from which the genetic library was derived, wherein the determination involves comparing the number of sequences of target amplicons with the number of sequences of a standard amplicons.
- the standard sequences and the genetic library include universal priming sites capable of being primed by the same primer.
- the relative amounts of each of the sequences have been calibrated with respect to reference genome.
- the method involves using any of the primer libraries of the invention. In various embodiments, the method involves simultaneously amplifying at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target regions.
- the reference genome is diploid. In some embodiments, the sample for analysis is derived from blood.
- preferentially enriching the DNA in the sample (e.g., the first sample) at the target loci (e.g., the plurality of polymorphic loci) includes obtaining a plurality of pre-circularized probes where each probe targets one of the loci (e.g., polymorphic loci), where the 3′ and 5′ end of the probes are preferably designed to hybridize to a region of DNA that is separated from the polymorphic site of the locus by a small number of bases, where the small number is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 to 25, 26 to 30, 31 to 60, or a combination thereof, hybridizing the pre-circularized probes to DNA from the sample (e.g., the first sample), filling the gap between the hybridized probe ends using DNA polymerase, circularizing the pre-circularized probe, and amplifying the circularized probe.
- each probe targets one of the loci (e.g., polymorphic loci)
- the preferentially enriching the DNA at the target loci includes obtaining a plurality of ligation-mediated PCR probes where each PCR probe targets one of the target loci (e.g., the polymorphic loci), and where the upstream and downstream PCR probes are designed to hybridize to a region of DNA on one strand of DNA that is preferably separated from the polymorphic site of the locus by a small number of bases, where the small number is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 to 25, 26 to 30, 31 to 60, or a combination thereof, hybridizing the ligation-mediated PCR probes to the DNA from the sample (e.g., the first sample), filling the gap between the ligation-mediated PCR probe ends using DNA polymerase, ligating the ligation-mediated PCR probes, and amplifying the ligated ligation-mediated PCR probe
- preferentially enriching the DNA at the target loci includes obtaining a plurality of hybrid capture probes that target the loci (e.g., the polymorphic loci), hybridizing the hybrid capture probes to the DNA in the sample (e.g., the first sample) and physically removing some or all of the unhybridized DNA from the sample (e.g., the first sample) of DNA.
- the hybrid capture probes are designed to hybridize to a region that is flanking but not overlapping the polymorphic site. In some embodiments, the hybrid capture probes are designed to hybridize to a region that is flanking but not overlapping the polymorphic site, and where the length of the flanking capture probe may be selected from the group consisting of less than about 120 bases, less than about 110 bases, less than about 100 bases, less than about 90 bases, less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, and less than about 25 bases.
- the hybrid capture probes are designed to hybridize to a region that overlaps the polymorphic site, and where the plurality of hybrid capture probes comprise at least two hybrid capture probes for each polymorphic loci, and where each hybrid capture probe is designed to be complementary to a different allele at that polymorphic locus.
- preferentially enriching the DNA a plurality of polymorphic loci includes obtaining a plurality of inner forward primers where each primer targets one of the polymorphic loci, and where the 3′ end of the inner forward primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases, where the small number is selected from the group consisting of 1, 2, 3, 4, 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, or 31 to 60 base pairs, optionally obtaining a plurality of inner reverse primers where each primer targets one of the polymorphic loci, and where the 3′ end of the inner reverse primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases, where the small number is selected from the group consisting of 1, 2, 3, 4, 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, or 31 to 60 base pairs,
- the method also includes obtaining a plurality of outer forward primers where each primer targets one of the target (e.g., polymorphic loci), and where the outer forward primers are designed to hybridize to the region of DNA upstream from the inner forward primer, optionally obtaining a plurality of outer reverse primers where each primer targets one of the target loci (e.g., polymorphic loci), and where the outer reverse primers are designed to hybridize to the region of DNA immediately downstream from the inner reverse primer, hybridizing the first primers to the DNA, and amplifying the DNA using the polymerase chain reaction.
- each primer targets one of the target (e.g., polymorphic loci)
- the outer reverse primers are designed to hybridize to the region of DNA upstream from the inner forward primer
- the method also includes obtaining a plurality of outer reverse primers where each primer targets one of the polymorphic loci, and where the outer reverse primers are designed to hybridize to the region of DNA immediately downstream from the inner reverse primer, optionally obtaining a plurality of outer forward primers where each primer targets one of the target loci (e.g., the polymorphic loci), and where the outer forward primers are designed to hybridize to the region of DNA upstream from the inner forward primer, hybridizing the first primers to the DNA, and amplifying the DNA using the polymerase chain reaction.
- preparing the sample further includes appending universal adapters to the DNA in the sample (e.g., the first sample) and amplifying the DNA in the sample (e.g., the first sample) using the polymerase chain reaction.
- at least a fraction of the amplicons that are amplified are less than 100 bp, less than 90 bp, less than 80 bp, less than 70 bp, less than 65 bp, less than 60 bp, less than 55 bp, less than 50 bp, or less than 45 bp, and where the fraction is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 99%.
- amplifying the DNA is done in one or a plurality of individual reaction volumes, and where each individual reaction volume contains more than 100 different forward and reverse primer pairs, more than 200 different forward and reverse primer pairs, more than 500 different forward and reverse primer pairs, more than 1,000 different forward and reverse primer pairs, more than 2,000 different forward and reverse primer pairs, more than 5,000 different forward and reverse primer pairs, more than 10,000 different forward and reverse primer pairs, more than 20,000 different forward and reverse primer pairs, more than 50,000 different forward and reverse primer pairs, or more than 100,000 different forward and reverse primer pairs.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primer pairs are used.
- preparing the sample further comprises dividing the sample (e.g., the first sample) into a plurality of portions, and where the DNA in each portion is preferentially enriched at a subset of the target loci (e.g., plurality of polymorphic loci).
- the inner primers are selected by identifying primer pairs likely to form undesired primer duplexes and removing from the plurality of primers at least one of the pair of primers identified as being likely to form undesired primer duplexes.
- the inner primers contain a region that is designed to hybridize either upstream or downstream of the targeted locus (e.g., the polymorphic locus), and optionally contain a universal priming sequence designed to allow PCR amplification.
- at least some of the primers additionally contain a random region that differs for each individual primer molecule.
- at least some of the primers additionally contain a molecular barcode.
- preferential enrichment results in average degree of allelic bias between the prepared sample and the sample (e.g., the first sample) of a factor selected from the group consisting of no more than a factor of 2, no more than a factor of 1.5, no more than a factor of 1.2, no more than a factor of 1.1, no more than a factor of 1.05, no more than a factor of 1.02, no more than a factor of 1.01, no more than a factor of 1.005, no more than a factor of 1.002, no more than a factor of 1.001 and no more than a factor of 1.0001.
- the plurality of polymorphic loci are SNPs.
- measuring the DNA in the prepared sample is done by sequencing.
- the nucleic acids in the sample are non-specifically amplified prior to amplification of the target loci (such as specific amplification of the target loci with a primer library of the invention).
- the non-specific amplification includes whole genome application (WGA), such as ligation-mediated PCR (LM-PCR), degenerate oligonucleotide primer PCR (DOP-PCR), or multiple displacement amplification (MDA).
- WGA whole genome application
- LM-PCR ligation-mediated PCR
- DOP-PCR degenerate oligonucleotide primer PCR
- MDA multiple displacement amplification
- the non-specific amplification includes universal PCR, such as adaptor-mediated universal PCR.
- the target loci are present on the same nucleic acid of interest (e.g, the same chromosome or the same region of a chromosome). In some embodiments, at least some of the target loci are present on different nucleic acids of interest (e.g, different chromosomes).
- the nucleic acid sample includes fragmented or digested nucleic acids. In some embodiments, the nucleic acid sample includes DNA, such as genomic DNA, cDNA, cell-free DNA (cfDNA), cell-free mitochondrial DNA (cf mDNA), cell-free DNA that originated from nuclear DNA (cf nDNA), cellular DNA, or mitochondrial DNA.
- nucleic acid sample includes RNA, such as cfRNA, cellular RNA, cytoplasmic RNA, coding cytoplasmic RNA, non-coding cytoplasmic RNA, mRNA, miRNA, mitochondrial RNA, rRNA, or tRNA.
- the nucleic acid sample includes DNA from a single cell, 2 cells, 3 cells, 4 cells, 5 cells, 6 cells, 7 cells, 8 cells, 9 cell, 10 cells, or more than 10 cells.
- the nucleic acid sample is a blood or plasma sample that is substantially free of cells.
- the nucleic acid sample includes or is derived from blood, plasma, saliva, semen, sperm, cell culture supernatant, mucus secretion, dental plaque, gastrointestinal tract tissue, stool, urine, hair, bone, body fluids, tears, tissue, skin, fingernails, blastomeres, embryos, amniotic fluid, chorionic villus samples, bile, lymph, cervical mucus, or a forensic sample.
- the target loci are segments of human nucleic acids.
- the target loci are segments of human nucleic acids found in the human genome.
- the target loci comprise or consist of single nucleotide polymorphisms (SNPs).
- the primers are DNA molecules.
- the DNA in the sample originates from maternal plasma.
- preparing the sample further comprises amplifying the DNA.
- preparing the sample further comprises preferentially enriching the DNA in the sample (e.g., the first sample) at the target loci (e.g., a plurality of polymorphic loci).
- the primer extension reaction or the polymerase chain reaction includes the addition of one or more nucleotides by a polymerase. In some embodiments, greater than or equal to 5, 10, 20, 30, 40, 50, or 60 cycles of PCR are performed. In some embodiments, the amplification of loci is performed using a polymerase (e.g., a DNA polymerase, RNA polymerase, or reverse transcriptase) with low 5′ ⁇ 3′ exonuclease and/or low strand displacement activity. In some embodiments, a DNA polymerase is used produce DNA amplicons using DNA as a template. In some embodiments, a RNA polymerase is used produce RNA amplicons using DNA as a template. In some embodiments, a reverse transcriptase is used produce cDNA amplicons using RNA as a template.
- a polymerase e.g., a DNA polymerase, RNA polymerase, or reverse transcriptase
- the primer extension reaction or the polymerase chain reaction does not include ligation-mediated PCR. In various embodiments, the primer extension reaction or the polymerase chain reaction does not include the joining of two primers by a ligase. In various embodiments, the primers do not include Linked Inverted Probes (LIPs), which can also be called pre-circularized probes, pre-circularizing probes, circularizing probes, Padlock Probes, or Molecular Inversion Probes (MIPs). In some embodiments, the primers are not loopable primers.
- LIPs Linked Inverted Probes
- MIPs Molecular Inversion Probes
- the primers do not form a loop structure, for example, the primers do not comprise a 3′ target specific portion, a stem (comprising a first loop forming region and a second loop forming region), and a loop portion.
- the primer library, composition, kit, or method does not include an array (such as a microarray) or do no use an array (such as a microarray).
- multiplex PCR and/or sequencing is performed without use of an array (such as a microarray).
- the primer library, composition, kit, or method comprises a microarray.
- the primers or the target loci do not comprise an STR allele (for example, the target loci may be non-polymorphic loci or the loci may comprise a polymorphism other than an STR allele). In some embodiments, some or all of the target loci comprise an STR allele.
- Single Nucleotide Polymorphism refers to a single nucleotide that may differ between the genomes of two members of the same species. The usage of the term should not imply any limit on the frequency with which each variant occurs.
- Sequence refers to a DNA sequence or a genetic sequence. It may refer to the primary, physical structure of the DNA molecule or strand in an individual. It may refer to the sequence of nucleotides found in that DNA molecule, or the complementary strand to the DNA molecule. It may refer to the information contained in the DNA molecule as its representation in silico.
- Locus refers to a particular region of interest on the DNA (or corresponding RNA) of an individual, which may refer to a SNP, the site of a possible insertion or deletion, or the site of some other relevant genetic variation.
- Disease-linked SNPs may also refer to disease-linked loci.
- Polymorphic Allele also “Polymorphic Locus,” refers to an allele or locus where the genotype varies between individuals within a given species. Some examples of polymorphic alleles include single nucleotide polymorphisms, short tandem repeats, deletions, duplications, and inversions.
- Polymorphic Site refers to the specific nucleotides found in a polymorphic region that vary between individuals.
- Genotypic Data refers to the data describing aspects of the genome of one or more individuals. It may refer to one or a set of loci, partial or entire sequences, partial or entire chromosomes, or the entire genome. It may refer to the identity of one or a plurality of nucleotides; it may refer to a set of sequential nucleotides, or nucleotides from different locations in the genome, or a combination thereof. Genotypic data is typically in silico, however, it is also possible to consider physical nucleotides in a sequence as chemically encoded genetic data. Genotypic Data may be said to be “on,” “of,” “at,” “from” or “on” the individual(s). Genotypic Data may refer to output measurements from a genotyping platform where those measurements are made on genetic material.
- Genetic Sample refers to physical matter, such as tissue or blood, from one or more individuals comprising DNA or RNA
- noisy Genetic Data refers to genetic data with any of the following: allele dropouts, uncertain base pair measurements, incorrect base pair measurements, missing base pair measurements, uncertain measurements of insertions or deletions, uncertain measurements of chromosome segment copy numbers, spurious signals, missing measurements, other errors, or combinations thereof.
- Confidence refers to the statistical likelihood that the called SNP, allele, set of alleles, ploidy call, or determined number of chromosome segment copies correctly represents the real genetic state of the individual.
- Ploidy Calling also “Chromosome Copy Number Calling,” or “Copy Number Calling” (CNC) may refer to the act of determining the quantity and/or chromosomal identity of one or more chromosomes present in a cell.
- Aneuploidy refers to the state where the wrong number of chromosomes (e.g., the wrong number of full chromosomes or the wrong number of chromosome segments, such as the presence of deletions or duplications of a chromosome segment) is present in a cell.
- a somatic human cell it may refer to the case where a cell does not contain 22 pairs of autosomal chromosomes and one pair of sex chromosomes.
- a human gamete it may refer to the case where a cell does not contain one of each of the 23 chromosomes.
- a single chromosome type it may refer to the case where more or less than two homologous but non-identical chromosome copies are present, or where there are two chromosome copies present that originate from the same parent.
- the deletion of a chromosome segment is a microdeletion.
- Ploidy State refers to the quantity and/or chromosomal identity of one or more chromosomes types in a cell.
- Chromosome may refer to a single chromosome copy, meaning a single molecule of DNA of which there are 46 in a normal somatic cell; an example is ‘the maternally derived chromosome 18’. Chromosome may also refer to a chromosome type, of which there are 23 in a normal human somatic cell; an example is ‘chromosome 18’.
- Chromosomal Identity may refer to the referent chromosome number, i.e. the chromosome type. Normal humans have 22 types of numbered autosomal chromosome types, and two types of sex chromosomes. It may also refer to the parental origin of the chromosome. It may also refer to a specific chromosome inherited from the parent. It may also refer to other identifying features of a chromosome.
- the State of the Genetic Material or simply “Genetic State” may refer to the identity of a set of SNPs on the DNA, to the phased haplotypes of the genetic material, and to the sequence of the DNA, including insertions, deletions, repeats and mutations. It may also refer to the ploidy state of one or more chromosomes, chromosomal segments, or set of chromosomal segments.
- Allelic Data refers to a set of genotypic data concerning a set of one or more alleles. It may refer to the phased, haplotypic data. It may refer to SNP identities, and it may refer to the sequence data of the DNA, including insertions, deletions, repeats and mutations. It may include the parental origin of each allele.
- Allelic State refers to the actual state of the genes in a set of one or more alleles. It may refer to the actual state of the genes described by the allelic data.
- Allelic Ratio or allele ratio refers to the ratio between the amount of each allele at a locus that is present in a sample or in an individual.
- allelic ratio may refer to the ratio of sequence reads that map to each allele at the locus.
- allele ratio may refer to the ratio of the amounts of each allele present at that locus as estimated by the measurement method.
- Allele Count refers to the number of sequences that map to a particular locus, and if that locus is polymorphic, it refers to the number of sequences that map to each of the alleles. If each allele is counted in a binary fashion, then the allele count will be whole number. If the alleles are counted probabilistically, then the allele count can be a fractional number.
- Allele Count Probability refers to the number of sequences that are likely to map to a particular locus or a set of alleles at a polymorphic locus, combined with the probability of the mapping. Note that allele counts are equivalent to allele count probabilities where the probability of the mapping for each counted sequence is binary (zero or one). In some embodiments, the allele count probabilities may be binary. In some embodiments, the allele count probabilities may be set to be equal to the DNA measurements.
- Allelic Distribution refers to the relative amount of each allele that is present for each locus in a set of loci.
- An allelic distribution can refer to an individual, to a sample, or to a set of measurements made on a sample. In the context of sequencing, the allelic distribution refers to the number or probable number of reads that map to a particular allele for each allele in a set of polymorphic loci.
- the allele measurements may be treated probabilistically, that is, the likelihood that a given allele is present for a give sequence read is a fraction between 0 and 1, or they may be treated in a binary fashion, that is, any given read is considered to be exactly zero or one copies of a particular allele.
- Allelic Distribution Pattern refers to a set of different allele distributions for different parental contexts. Certain allelic distribution patterns may be indicative of certain ploidy states.
- Allelic Bias refers to the degree to which the measured ratio of alleles at a heterozygous locus is different to the ratio that was present in the original sample, such as a sample of DNA.
- the degree of allelic bias at a particular locus is equal to the observed allelic ratio at that locus, as measured, divided by the ratio of alleles in the original DNA or RNA sample at that locus.
- Allelic bias may be defined to be greater than one, such that if the calculation of the degree of allelic bias returns a value, x, that is less than 1, then the degree of allelic bias may be restated as 1/x.
- Allelic bias maybe due to amplification bias, purification bias, or some other phenomenon that affects different alleles differently.
- Allelic imbalance for aneuploidy determinations refers to the difference between the frequencies of the alleles for a locus. It is an estimate of the difference in the copy of numbers of the homologs. Allelic imbalance can arise from the complete loss of an allele or from an increase in copy number of one allele relative to the other. Allelic imbalances can be detected by measuring the proportion of one allele relative to the other in fluids or cells from individuals that are constitutionally heterozygous at a given locus. (Mei et al, Genome Res, 10:1126-37 (2000)).
- the allele ratio of the A allele is n A /(n A +n B ), where n A and n B are the number of sequencing reads for alleles A and B, respectively.
- Allelic imbalance is the difference between the allele ratios of A and B for loci that are heterozygous in the germline.
- This definition is analogous to that for SNVs, where the proportion of abnormal DNA is typically measured using mutant allele frequency, or n m /(n m +n r ), where n m and n r are the number of sequencing reads for the mutant allele and the reference allele, respectively.
- the proportion of abnormal DNA for a CNV can be measured by the average allelic imbalance (AAI), defined as
- AAI average allelic imbalance
- /(H1+H2) is the fractional abundance, or homolog ratio, of homolog i.
- the maximum homolog ratio is the homolog ratio of the more abundant homolog.
- Primer also “PCR probe” refers to a single DNA molecule (a DNA oligomer) or a collection of DNA molecules (DNA oligomers) where the DNA molecules are identical, or nearly so, and where the primer contains a region that is designed to hybridize to a targeted locus (e.g, a targeted polymorphic locus or a nonpolymorphic locus), and may contain a priming sequence designed to allow PCR amplification.
- a primer may also contain a molecular barcode.
- a primer may contain a random region that differs for each individual molecule.
- the terms “test primer” and “candidate primer” are not meant to be limiting and may refer to any of the primers disclosed herein.
- Library of primers refers to a population of two or more primers.
- the library includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers.
- the library includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primer pairs, wherein each pair of primers includes a forward test primer and a reverse test primer where each pair of test primers hybridize to a target locus.
- the library of primers includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different individual primers that each hybridize to a different target locus, wherein the individual primers are not part of primer pairs.
- the library has both (i) primer pairs and (ii) individual primers (such as universal primers) that are not part of primer pairs.
- Different primers refers to non-identical primers.
- Different pools refers to non-identical pools.
- Different target loci refers to non-identical target loci.
- Hybrid Capture Probe refers to any nucleic acid sequence, possibly modified, that is generated by various methods such as PCR or direct synthesis and intended to be complementary to one strand of a specific target DNA sequence in a sample.
- the exogenous hybrid capture probes may be added to a prepared sample and hybridized through a denature-reannealing process to form duplexes of exogenous-endogenous fragments. These duplexes may then be physically separated from the sample by various means.
- Sequence Read refers to data representing a sequence of nucleotide bases that were measured using a clonal sequencing method. Clonal sequencing may produce sequence data representing single, or clones, or clusters of one original DNA molecule. A sequence read may also have associated quality score at each base position of the sequence indicating the probability that nucleotide has been called correctly.
- Mapping a sequence read is the process of determining a sequence read's location of origin in the genome sequence of a particular organism. The location of origin of sequence reads is based on similarity of nucleotide sequence of the read and the genome sequence.
- Matched Copy Error also “Matching Chromosome Aneuploidy” (MCA) refers to a state of aneuploidy where one cell contains two identical or nearly identical chromosomes. This type of aneuploidy may arise during the formation of the gametes in meiosis, and may be referred to as a meiotic non-disjunction error. This type of error may arise in mitosis. Matching trisomy may refer to the case where three copies of a given chromosome are present in an individual and two of the copies are identical.
- Unmatched Copy Error also “Unique Chromosome Aneuploidy” (UCA) refers to a state of aneuploidy where one cell contains two chromosomes that are from the same parent, and that may be homologous but not identical. This type of aneuploidy may arise during meiosis, and may be referred to as a meiotic error.
- Unmatching trisomy may refer to the case where three copies of a given chromosome are present in an individual and two of the copies are from the same parent, and are homologous, but are not identical. Note that unmatching trisomy may refer to the case where two homologous chromosomes from one parent are present, and where some segments of the chromosomes are identical while other segments are merely homologous.
- Homologous Chromosomes refers to chromosome copies that contain the same set of genes that normally pair up during meiosis.
- Identical Chromosomes refers to chromosome copies that contain the same set of genes, and for each gene they have the same set of alleles that are identical, or nearly identical.
- Allele Drop Out refers to the situation where at least one of the base pairs in a set of base pairs from homologous chromosomes at a given allele is not detected.
- Locus Drop Out refers to the situation where both base pairs in a set of base pairs from homologous chromosomes at a given allele are not detected.
- Homozygous refers to having similar alleles as corresponding chromosomal loci.
- Heterozygous refers to having dissimilar alleles as corresponding chromosomal loci.
- Heterozygosity Rate refers to the rate of individuals in the population having heterozygous alleles at a given locus.
- the heterozygosity rate may also refer to the expected or measured ratio of alleles, at a given locus in an individual, or a sample of DNA.
- HISNP Highly Informative Single Nucleotide Polymorphism
- Chromosomal Region refers to a segment of a chromosome, or a full chromosome.
- Segment of a Chromosome refers to a section of a chromosome that can range in size from one base pair to the entire chromosome.
- Chromosome refers to either a full chromosome, or a segment or section of a chromosome.
- Copies refers to the number of copies of a chromosome segment. It may refer to identical copies, or to non-identical, homologous copies of a chromosome segment wherein the different copies of the chromosome segment contain a substantially similar set of loci, and where one or more of the alleles are different. Note that in some cases of aneuploidy, such as the M2 copy error, it is possible to have some copies of the given chromosome segment that are identical as well as some copies of the same chromosome segment that are not identical.
- Haplotype refers to a combination of alleles at multiple loci that are typically inherited together on the same chromosome. Haplotype may refer to as few as two loci or to an entire chromosome depending on the number of recombination events that have occurred between a given set of loci. Haplotype can also refer to a set of single nucleotide polymorphisms (SNPs) on a single chromatid that are statistically associated.
- SNPs single nucleotide polymorphisms
- Haplotypic Data also “Phased Data” or “Ordered Genetic Data,” refers to data from a single chromosome in a diploid or polyploid genome, i.e., either the segregated maternal or paternal copy of a chromosome in a diploid genome.
- Phasing refers to the act of determining the haplotypic genetic data of an individual given unordered, diploid (or polyploidy) genetic data. It may refer to the act of determining which of two genes at an allele, for a set of alleles found on one chromosome, are associated with each of the two homologous chromosomes in an individual.
- Phased Data refers to genetic data where one or more haplotypes have been determined.
- Hypothesis refers to a possible ploidy state at a given set of chromosomes, or a set of possible allelic states at a given set of loci.
- the set of possibilities may comprise one or more elements.
- Copy Number Hypothesis also “Ploidy State Hypothesis,” refers to a hypothesis concerning the number of copies of a chromosome in an individual. It may also refer to a hypothesis concerning the identity of each of the chromosomes, including the parent of origin of each chromosome, and which of the parent's two chromosomes are present in the individual. It may also refer to a hypothesis concerning which chromosomes, or chromosome segments, if any, from a related individual correspond genetically to a given chromosome from an individual.
- Target Individual refers to the individual whose genetic state is being determined. In some embodiments, only a limited amount of DNA is available from the target individual. In some embodiments, the target individual is a fetus. In some embodiments, there may be more than one target individual. In some embodiments, each fetus that originated from a pair of parents may be considered to be target individuals. In some embodiments, the genetic data that is being determined is one or a set of allele calls. In some embodiments, the genetic data that is being determined is a ploidy call.
- the related individual refers to any individual who is genetically related to, and thus shares haplotype blocks with, the target individual.
- the related individual may be a genetic parent of the target individual, or any genetic material derived from a parent, such as a sperm, a polar body, an embryo, a fetus, or a child. It may also refer to a sibling, parent or a grandparent.
- Sibling refers to any individual whose genetic parents are the same as the individual in question. In some embodiments, it may refer to a born child, an embryo, or a fetus, or one or more cells originating from a born child, an embryo, or a fetus. A sibling may also refer to a haploid individual that originates from one of the parents, such as a sperm, a polar body, or any other set of haplotypic genetic matter. An individual may be considered to be a sibling of itself.
- Fetal refers to “of the fetus,” or “of the region of the placenta that is genetically similar to the fetus”.
- some portion of the placenta is genetically similar to the fetus, and the free floating fetal DNA found in maternal blood may have originated from the portion of the placenta with a genotype that matches the fetus.
- the genetic information in half of the chromosomes in a fetus is inherited from the mother of the fetus.
- the DNA from these maternally inherited chromosomes that came from a fetal cell is considered to be “of fetal origin,” not “of maternal origin.”
- DNA of Fetal Origin refers to DNA that was originally part of a cell whose genotype was essentially equivalent to that of the fetus.
- DNA of Maternal Origin refers to DNA that was originally part of a cell whose genotype was essentially equivalent to that of the mother.
- Child may refer to an embryo, a blastomere, or a fetus. Note that in the presently disclosed embodiments, the concepts described apply equally well to individuals who are a born child, a fetus, an embryo or a set of cells therefrom. The use of the term child may simply be meant to connote that the individual referred to as the child is the genetic offspring of the parents.
- Parent refers to the genetic mother or father of an individual. An individual typically has two parents, a mother and a father, though this may not necessarily be the case such as in genetic or chromosomal chimerism. A parent may be considered to be an individual.
- Parental Context refers to the genetic state of a given SNP, on each of the two relevant chromosomes for one or both of the two parents of the target.
- “Develop Normally,” refers to a viable embryo implanting in a uterus and resulting in a pregnancy, and/or to a pregnancy continuing and resulting in a live birth, and/or to a born child being free of chromosomal abnormalities, and/or to a born child being free of other undesired genetic conditions such as disease-linked genes.
- the term “develop as desired” is meant to encompass anything that may be desired by parents or healthcare facilitators. In some cases, “develop as desired” may refer to an unviable or viable embryo that is useful for medical research or other purposes.
- Insertion into a Uterus refers to the process of transferring an embryo into the uterine cavity in the context of in vitro fertilization.
- Maternal Plasma refers to the plasma portion of the blood from a female who is pregnant.
- Clinical Decision refers to any decision to take or not take an action that has an outcome that affects the health or survival of an individual.
- a clinical decision may refer to a decision to abort or not abort a fetus.
- a clinical decision may also refer to a decision to conduct further testing, to take actions to mitigate an undesirable phenotype, or to take actions to prepare for the birth of a child with abnormalities.
- Diagnostic Box refers to one or a combination of machines designed to perform one or a plurality of aspects of the methods disclosed herein.
- the diagnostic box may be placed at a point of patient care.
- the diagnostic box may perform targeted amplification followed by sequencing.
- the diagnostic box may function alone or with the help of a technician.
- Informatics Based Method refers to a method that relies heavily on statistics to make sense of a large amount of data. In the context of prenatal diagnosis, it refers to a method designed to determine the ploidy state at one or more chromosomes or the allelic state at one or more alleles by statistically inferring the most likely state, rather than by directly physically measuring the state, given a large amount of genetic data, for example from a molecular array or sequencing.
- the informatics based technique may be one disclosed in this patent. In an embodiment of the present disclosure it may be PARENTAL SUPPORTTM.
- Primary Genetic Data refers to the analog intensity signals that are output by a genotyping platform. In the context of SNP arrays, primary genetic data refers to the intensity signals before any genotype calling has been done. In the context of sequencing, primary genetic data refers to the analog measurements, analogous to the chromatogram, that comes off the sequencer before the identity of any base pairs have been determined, and before the sequence has been mapped to the genome.
- Secondary Genetic Data refers to processed genetic data that are output by a genotyping platform.
- the secondary genetic data refers to the allele calls made by software associated with the SNP array reader, wherein the software has made a call whether a given allele is present or not present in the sample.
- the secondary genetic data refers to the base pair identities of the sequences have been determined, and possibly also where the sequences have been mapped to the genome.
- Non-Invasive Prenatal Diagnosis or also “Non-Invasive Prenatal Screening” (NPS) refers to a method of determining the genetic state of a fetus that is gestating in a mother using genetic material found in the mother's blood, where the genetic material is obtained by drawing the mother's intravenous blood.
- Preferential Enrichment of DNA that corresponds to a locus refers to any method that results in the percentage of molecules of DNA in a post-enrichment DNA mixture that correspond to the locus being higher than the percentage of molecules of DNA in the pre-enrichment DNA mixture that correspond to the locus.
- the method may involve selective amplification of DNA molecules that correspond to a locus.
- the method may involve removing DNA molecules that do not correspond to the locus.
- the method may involve a combination of methods.
- the degree of enrichment is defined as the percentage of molecules of DNA in the post-enrichment mixture that correspond to the locus divided by the percentage of molecules of DNA in the pre-enrichment mixture that correspond to the locus.
- Preferential enrichment may be carried out at a plurality of loci.
- the degree of enrichment is greater than 20. In some embodiments of the present disclosure, the degree of enrichment is greater than 200. In some embodiments of the present disclosure, the degree of enrichment is greater than 2,000.
- the degree of enrichment may refer to the average degree of enrichment of all of the loci in the set of loci.
- Amplification refers to a method that increases the number of copies of a molecule, such as a molecule of DNA.
- Selective Amplification may refer to a method that increases the number of copies of a particular molecule of DNA, or molecules of DNA that correspond to a particular region of DNA. It may also refer to a method that increases the number of copies of a particular targeted molecule of DNA, or targeted region of DNA more than it increases non-targeted molecules or regions of DNA. Selective amplification may be a method of preferential enrichment.
- Universal Priming Sequence refers to a DNA sequence that may be appended to a population of target DNA molecules, for example by ligation, PCR, or ligation mediated PCR. Once added to the population of target molecules, primers specific to the universal priming sequences can be used to amplify the target population using a single pair of amplification primers. Universal priming sequences are typically not related to the target sequences.
- Universal Adapters, or ‘ligation adaptors’ or ‘library tags’ are DNA molecules containing a universal priming sequence that can be covalently linked to the 5-prime and 3-prime end of a population of target double stranded DNA molecules.
- the addition of the adapters provides universal priming sequences to the 5-prime and 3-prime end of the target population from which PCR amplification can take place, amplifying all molecules from the target population, using a single pair of amplification primers.
- Targeting refers to a method used to selectively amplify or otherwise preferentially enrich those molecules of DNA that correspond to a set of loci, in a mixture of DNA.
- Joint Distribution Model refers to a model that defines the probability of events defined in terms of multiple random variables, given a plurality of random variables defined on the same probability space, where the probabilities of the variable are linked. In some embodiments, the degenerate case where the probabilities of the variables are not linked may be used.
- Percent identity in reference to nucleic acid sequences refers to the degree of sequence identity between nucleic acid sequences.
- FIG. 1 Graphical representation of direct multiplexed mini-PCR method.
- FIG. 2 Graphical representation of semi-nested mini-PCR method.
- FIG. 3 Graphical representation of fully nested mini-PCR method.
- FIG. 4 Graphical representation of hemi-nested mini-PCR method.
- FIG. 5 Graphical representation of triply hemi-nested mini-PCR method.
- FIG. 6 Graphical representation of one-sided nested mini-PCR method.
- FIG. 7 Graphical representation of one-sided mini-PCR method.
- FIG. 8 Graphical representation of reverse semi-nested mini-PCR method.
- FIG. 9 Some possible workflows for semi-nested methods.
- FIG. 10 Graphical representation of looped ligation adaptors.
- FIG. 11 Graphical representation of internally tagged primers.
- FIG. 12 An example of some primers with internal tags.
- FIG. 12 discloses nucleotide sequences as SEQ ID NOS: 44,611, 44,612, 44,613, 44,614, 44,615, 44,616, 44,617, 44,618, 44,625, 44,620, 44,621, and 44,622, respectively, in order of appearance.
- FIG. 13 Graphical representation of a method using primers with a ligation adaptor binding region.
- FIG. 14 Simulated ploidy call accuracies for counting method with two different analysis techniques.
- FIG. 15 Ratio of two alleles for a plurality of SNPs in a cell line in Example 4.
- FIG. 16 Ratio of two alleles for a plurality of SNPs in a cell line in Example 4 sorted by chromosome.
- FIGS. 17 A- 17 D Ratio of two alleles for a plurality of SNPs in four pregnant women plasma samples, sorted by chromosome.
- FIG. 18 Fraction of data that can be explained by binomial variance before and after data correction.
- FIG. 19 Graph showing relative enrichment of fetal DNA in samples following a short library preparation protocol.
- FIG. 20 Depth of read graph comparing direct PCR and semi-nested methods.
- FIG. 21 Comparison of depth of read for direct PCR of three genomic samples.
- FIG. 22 Comparison of depth of read for semi-nested mini-PCR of three samples.
- FIG. 23 Comparison of depth of read for 1,200-plex and 9,600-plex reactions.
- FIG. 24 Read count ratios for six cells at three chromosomes.
- FIGS. 25 A- 25 C Allele ratios for two three-cell reactions ( FIGS. 25 B and 25 C ) and a third reaction run on 1 ng of genomic DNA at three chromosomes ( FIG. 25 A ).
- FIGS. 26 A and 26 B Allele ratios for two single-cell reactions ( FIGS. 26 A and 26 B ) at three chromosomes.
- FIG. 27 Comparison of two primer libraries showing the number of loci with a particular minor allele frequency that are targeted by each primer library.
- FIG. 28 A Graph of the electrophoresis of PCR products.
- FIGS. 28 B- 28 M are electropherograms of lanes 1-12, respectively, in FIG. 28 A .
- FIG. 29 Cartoon depiction of a method of the invention for the determination of a fetal aneuploidy ( FIG. 29 , step A).
- Maternal and paternal genotype data from blood or buccal swabs
- crossover frequency data from the HapMap database are utilized to generate ( FIG. 29 , step B) multiple independent hypotheses for each potential fetal ploidy state in silico ( FIG. 29 , step C).
- Each of these hypotheses is expanded to include sub-hypotheses with take into consideration the different possible crossover points.
- the data model predicts what the sequencing data would look like (the expected allele distributions) given each hypothetical fetal genotype and at different fetal cfDNA fractions, and is compared to the actual sequencing data; the likelihood for each hypothesis is determined using Bayesian statistics.
- the hypotheses with the highest likelihoods are determined ( FIG. 29 , step D).
- the individual likelihoods from FIG. 29 , step C are summed for each copy number hypothesis family (monosomy, disomy, or triploidy).
- the hypothesis with the maximum likelihood is called as the ploidy state, reveals the fetal fraction, and represents the sample-specific calculated accuracy.
- FIGS. 30 , 30 D -H Typical graphical representations of euploidy ( FIG. 30 ), monosomy ( FIG. 30 D ), and trisomy ( FIGS. 30 E- 30 H ).
- the x-axis represents the linear position of the individual polymorphic loci along each chromosome (as indicated below the plots)
- the y-axis represents the number of A allele reads as a fraction of the total (A+B) allele reads.
- Maternal and fetal genotypes, as well as the position on the y-axis around which the bands are centered, are indicated to the right of the plots.
- the plots may be color-coded according to maternal genotype, such that red (filled circles as shown in FIGS. 30 , 30 D -H) indicates a maternal genotype of AA, blue (filled squares as shown in FIGS. 30 , 30 D -H) indicates a maternal genotype of BB, and green (open triangles as shown in FIGS. 30 , 30 D -H) indicates a maternal genotype of AB.
- maternal allele contributions may be indicated in color in the “Fetal Genotype” column. Allele contributions are indicated as maternallfetal, such that alleles for which the mother is AA and the fetus is AB are indicated as AA
- 0% FF plot Generated plots when two chromosomes are present and the fetal cfDNA fraction is 0%. This plot is from a non-pregnant woman, and thus represents the pattern when the genotype is entirely maternal. Allele clusters are thus centered around 1 (AA alleles), 0.5 (AB alleles), and 0 (BB alleles).
- FIG. 30 , 12% FF plot Generated plot when two chromosomes are present and the fetal fraction is 12%.
- FIG. 30 26% FF Plot. Generated plot when two chromosomes are present and the fetal fraction is 26%.
- the pattern including two filled circles and two filled square peripheral bands and a trio of central open triangle bands, is readily apparent.
- FIG. 30 D Generated plot when one chromosome is present and the fetal fraction is 26%.
- FIG. 30 E Generated plot when three chromosomes are present and the fetal fraction is 27%. This pattern of two filled circles and filled square peripheral bands as well as two central open triangle bands indicates maternally-inherited meiotic trisomy. Bands are centered around 1 (AA
- FIG. 30 F Generated plot when three chromosomes are present and the fetal fraction is 14%. This pattern of three filled circles and three filled square peripheral bands, as well as two central open triangle bands, indicates paternally-inherited meiotic trisomy. Bands are centered around 1 (AA
- FIG. 30 G Generated plot when three chromosomes are present and the fetal fraction is 35%. This pattern of two filled circles and two filled square peripheral bands and four central open triangle bands indicates maternally-inherited mitotic trisomy. Bands are centered around 1 (AA
- FIG. 30 H Generated plot when three chromosomes are present and the fetal fraction is 25%.
- This pattern of two filled circles and two filled square peripheral bands as well as four central open triangle bands indicates paternally-inherited mitotic trisomy.
- This pattern can be distinguished from that of maternally-inherited mitotic trisomy (as in FIG. 30 G ) by the position of the internal peripheral bands. Specifically, bands are centered around 1 (AA
- FIGS. 31 A- 31 G Graphical representations of ( FIG. 31 A ) euploid, ( FIG. 31 B ) T13, ( FIG. 31 C ) T18, ( FIG. 31 D ) T21, ( FIG. 31 E ) 45,X, ( FIG. 31 F ) 47,XXY, and ( FIG. 31 G ) 47,XYY, test samples as indicated.
- Each chromosome is indicated at the top of the plot, fetal and maternal genotypes are indicated to the right of the plots, the x-axis represents the linear position of the SNPs along each chromosome, and the y-axis indicates the number of A allele reads as a fraction of the total reads. Note the altered cluster positioning based on fetal fraction, as described herein. Each spot represents a single SNP locus. Fetal and maternal genotypes are indicated to the right of the plot, and chromosome identities are indicated at the top of the plots.
- FIG. 32 The combined at-birth prevalence of sex chromosome aneuploidies is greater than that of autosomal aneuploidies.
- FIGS. 33 A- 33 F Illustrations of the calculation of an interaction score between primers in a primer library.
- FIG. 33 A shows the first two bases (dinucleotide) of a primer that align to the other primer for calculation of ⁇ G. Iterate over the remainder of the primer that aligns with the other primer by sliding the bases being observing one base to the right. Continue until ⁇ G has been calculated for all pairs of bases that align ( FIG. 33 B ). Shift the alignment of the two primers ( FIGS. 33 C and 33 D ). Determine ⁇ G for the new alignment ( FIGS. 33 E and 33 F ).
- FIG. 34 Table of the percentage of reads that map to target loci for genomic DNA samples and for samples of a single cell from a cell line for both mother and child samples.
- FIG. 35 Overlay of depth of read for a genomic and a single cell sample for different SNPs.
- FIG. 36 Table of the percentage of reads that map to target loci for blastoceol fluid and for a single blastocyst cell.
- FIG. 37 Graph of reference counts (counts of one allele, such as the “A” allele) divided by total counts for that locus for a single blastocyst cell.
- FIG. 38 is a graph showing the limit of detection for single nucleotide variants in a tumor biopsy using three different methods described in Example 23.
- FIG. 39 is a graph showing the limit of detection for single nucleotide variants in a plasma sample using three different methods described in Example 23.
- FIGS. 40 A and 40 B are graphs of the analysis of genomic DNA ( FIG. 40 A ) or DNA from a single cell ( FIG. 40 B ) using a library of approximately 28,000 primers designed to detect CNVs.
- the presence of two central bands instead of one central band indicates the presence of a CNV.
- the x-axis represents the linear position of the SNPs, and the y-axis indicates the fraction of A allele reads out of the total reads.
- FIGS. 41 A and 41 B are graphs of the analysis of genomic DNA ( FIG. 41 A ) or DNA from a single cell ( FIG. 41 B ) using a library of approximately 3,000 primers designed to detect CNVs.
- the presence of two central bands instead of one central band indicates the presence of a CNV.
- the x-axis represents the linear position of the SNPs, and the y-axis indicates the fraction of A allele reads out of the total reads.
- FIG. 42 is a graph illustrating the uniformity in depth of read (DOR) for these ⁇ 3,000 loci.
- FIG. 43 is a table comparing error call metrics for genomic DNA and DNA from a single cell.
- FIG. 44 is a graph of error rates for transition mutations and transversion mutations.
- FIG. 45 is a table of data (such as percent mapped reads and error rate) from multiplex PCR with various buffers.
- FIG. 46 is a graph illustrating the uniformity in DOR for multiplex PCR with buffers from FIG. 45 .
- FIG. 47 is a graph illustrating the normalized depth of read (DOR) for multiplex PCR with buffers from FIG. 45 with the DOR normalized to that of buffer 2 ⁇ MM.
- DOR normalized depth of read
- the present invention is based in part on the surprising discovery that often only a relatively small number of primers in a library of primers are responsible for a substantial amount of the amplified primer dimers that form during multiplex PCR reactions.
- Methods have been developed to select the most undesirable primers for removal from a library of candidate primers. By reducing the amount of primer dimers to a negligible amount ( ⁇ 0.1% of the PCR products), these methods allow the resulting primer libraries to simultaneously amplify a large number of target loci in a single multiplex PCR reaction. Because the primers hybridize to the target loci and amplify them rather than hybridizing to other primers and forming amplified primer dimers, the number of different target loci that can be amplified is increased.
- the annealing temperature can optionally be higher than the melting temperatures of the primers (in contrast to other methods that use an annealing temperature below the melting temperatures of the primers).
- a higher annealing temperature improves the specificity of the PCR amplification and reduces or prevents amplification of non-target loci.
- This primer library has also been used to amplify nucleic acids in a single cell.
- differences in amplification efficiency between target loci due to factors such as GC content may cause differing amounts of PCR products to be produced for target loci that are actually present in the same amount.
- the use of reference standards similar to the target loci allows the detection of such amplification bias so that it can be corrected for during the quantitation of the target loci.
- microarrays with hybridization probes are often used for detection since microarrays are less sensitive to interference from primer dimers (for example, microarrays can be used as a target specific detection that uses probes to hybridize to target amplicons but does not have probes to hybridize to undesired primer dimers).
- the high level of multiplexing with minimal non-target amplicons that has now been achieved allows PCR followed by sequencing to be used as an alternative to microarrays.
- the present multiplex PCR methods can be used with a non-target specific method of detection, such as sequencing that detects all amplified products (including both target amplicons and primer dimers, if any).
- a non-target specific method of detection such as sequencing that detects all amplified products (including both target amplicons and primer dimers, if any).
- the small amount of primer dimers that are produced allows detection of target amplicons by methods that detect all amplicons.
- the method includes multiplex PCR followed by sequencing without use of an array.
- the method includes multiplex PCR followed by an array for detection of the amplified products.
- the multiplex-PCR methods of the invention can be in a variety of applications, such as genotyping, detection of chromosomal abnormalities (such as a fetal chromosome aneuploidy), gene mutation and polymorphism (such as single nucleotide polymorphisms, SNPs) analysis, gene deletion analysis, determination of paternity, analysis of genetic differences among populations, forensic analysis, measuring predisposition to disease, quantitative analysis of mRNA, and detection and identification of infectious agents (such as bacteria, parasite, and viruses).
- the multiplex PCR methods can also be used for non-invasive prenatal testing, such as paternity testing or the detection of fetal chromosome abnormalities.
- Highly multiplexed PCR can often result in the production of a very high proportion of product DNA that results from unproductive side reactions such as primer dimer formation.
- the particular primers that are most likely to cause unproductive side reactions may be removed from the primer library to give a primer library that will result in a greater proportion of amplified DNA that maps to the genome.
- the step of removing problematic primers, that is, those primers that are particularly likely to firm dimers has unexpectedly enabled extremely high PCR multiplexing levels for subsequent analysis by sequencing. In systems such as sequencing, where performance significantly degrades by primer dimers and/or other mischief products, greater than 10, greater than 50, and greater than 100 times higher multiplexing than other described multiplexing has been achieved.
- primers for a library where the amount of non-mapping primer dimer or other primer mischief products are minimized.
- Empirical data indicate that a small number of ‘bad’ primers are responsible for a large amount of non-mapping primer dimer side reactions. Removing these ‘bad’ primers can increase the percent of sequence reads that map to targeted loci.
- One way to identify the ‘bad’ primers is to look at the sequencing data of DNA that was amplified by targeted amplification; those primer dimers that are seen with greatest frequency can be removed to give a primer library that is significantly less likely to result in side product DNA that does not map to the genome.
- an initial library of candidate primers is created by designing one or more primers or primer pairs to candidate target loci.
- a set of candidate target loci (such as SNPs) can selected based on publically available information about desired parameters for the target loci, such as frequency of the SNPs within a target population or the heterozygosity rate of the SNPs.
- the PCR primers may be designed using the Primer3 program (the worldwide web at primer3.sourceforge.net; libprimer3 release 2.2.3, which is hereby incorporated by reference in its entirety).
- the primers can be designed to anneal within a particular annealing temperature range, have a particular range of GC contents, have a particular size range, produce target amplicons in a particular size range, and/or have other parameter characteristics. Starting with multiple primers or primer pairs per candidate target locus increases the likelihood that a primer or prime pair will remain in the library for most or all of the target loci. In one embodiment, the selection criteria may require that at least one primer pair per target locus remains in the library. That way, most or all of the target loci will be amplified when using the final primer library.
- a primer pair from the library would produces a target amplicon that overlaps with a target amplicon produced by another primer pair, one of the primer pairs may be removed from the library to prevent interference.
- a score such as an “undesirability score” (higher score representing least desirability) is calculated (such as calculation on a computer) for most or all of the possible combinations of two primers from a library of candidate primers.
- a score (such as an undesirability score) is calculated for at least 80, 90, 95, 98, 99, or 99.5% of the possible combinations of candidate primers in the library.
- Each score (such as an undesirability score) is based at least in part on the likelihood of dimer formation between the two candidate primers.
- the score (such as the undesirability score) may also be based on one or more other parameters selected from the group consisting of heterozygosity rate of the target locus, disease prevalence associated with a sequence (e.g., a polymorphism) at the target locus, disease penetrance associated with a sequence (e.g., a polymorphism) at the target locus, specificity of the candidate primer for the target locus, size of the candidate primer, melting temperature of the candidate primer, melting temperature of the target amplicon, GC content of the target amplicon, GC content of the 3′ end of the candidate primer, homopolymer length in the candidate primer, amplification efficiency of the target amplicon, size of the target amplicon, number of SNPs within the candidate primer, location of SNPs within the candidate primer, distance from an end of the amplicon to the target bases within the amplicon, and the number of target loci in an amplicon.
- other parameters selected from the group consisting of heterozygosity rate of the
- the lower the number of SNPs with the candidate primer (such as 2, 1 or 0 SNPs) the better. In some embodiments, there are no SNPs in the candidate primer. In some embodiments, SNPs (if any) are preferably not in the last 5 nucleotides in the 3′ end of the candidate primer. In some embodiments, the target bases (the bases of interest in a target locus) are preferably near an end (the 3′ or 5′ end) of the amplicon; this may improve the quality of sequencing data (since bases near the end of an amplicon are sequenced more accurately), and/or allow shorter sequencing reads to be performed.
- a single amplicon includes 2 or more target loci (such as 2 or more nearby SNPs or variants).
- the specificity of the candidate primer for the target locus includes the likelihood that the candidate primer will mis-prime by binding and amplifying a locus other than the target locus it was designed to amplify.
- one or more or all the candidate primers that mis-prime are removed from the library.
- candidate primers that may mis-prime are not removed from the library.
- the optimal melting temperature for selection of the candidate primers is 57° C.
- the optimal size for selection of the candidate primers is a length of 24 nucleotides.
- the optimal GC content for selection of the candidate primers is 50%.
- the score (such as the undesirability score) may be calculated based on a weighted average of the various parameters. The parameters may be assigned different weights based on their importance for the particular application that the primers will be used for. An exemplary score (such as an undesirability score) for a primer is shown below in which the parameters are weighted by various factors.
- score (100)(number of SNPs in GC clamp)+(10)(number of SNPs in primer binding site)+(0.1)(distance of target base from amplicon end)+(0.1)(amplicon length)+(100)(interaction score)
- the score for a primer pair is the worse score out of the scores for the two primers in the pair.
- An exemplary score (such as an undesirability score or the score in Example 20) for a pairs of designs (in which each design is one primer pair so that a pair of designs includes two primer pairs with a total of 4 primers) is shown below.
- interaction score max ( ⁇ 1* ⁇ G value) as described herein;
- the score for a pair of designs is the worse score out of the scores for the four primers in the pair of designs.
- the primer with the highest score (such as the undesirability score) or any score representing least desirability is removed from the library. If the removed primer is a member of a primer pair that hybridizes to one target locus, then the other member of the primer pair may be removed from the library. The process of removing primers may be repeated as desired.
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below a minimum threshold (such as any threshold for which the primers remaining in the library all have at least that level of desirability). In some embodiments, the selection method is performed until the number of candidate primers remaining in the library is reduced to a desired number.
- the candidate primer that is part of the greatest number of combinations of two candidate primers with a score (such as an undesirability score) above a first minimum threshold (such as any threshold for which the primers remaining in the library all have at least that level of desirability) is removed from the library. This step ignores interactions equal to or below the first minimum threshold since these interactions are less significant. If the removed primer is a member of a primer pair that hybridizes to one target locus, then the other member of the primer pair may be removed from the library. The process of removing primers may be repeated as desired.
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below the first minimum threshold. If the number of candidate primers remaining in the library is higher than desired, the number of primers may be reduced by decreasing the first minimum threshold to a lower second minimum threshold (such as any threshold with a stricter cutoff than the first minimum threshold so that some of the least desirable primers are removed from the library) and repeating the process of removing primers.
- a lower second minimum threshold such as any threshold with a stricter cutoff than the first minimum threshold so that some of the least desirable primers are removed from the library
- the method can be continued by increasing the first minimum threshold to a higher second minimum threshold (such as any threshold with a less strict cutoff than the first minimum threshold) and repeating the process of removing primers using the original candidate primer library, thereby allowing more of the candidate primers to remain in the library.
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below the second minimum threshold, or until the number of candidate primers remaining in the library is reduced to a desired number.
- primer pairs that produce a target amplicon that overlaps with a target amplicon produced by another primer pair can be divided into separate amplification reactions. Multiple PCR amplification reactions may be desirable for applications in which it is desirable to analyze all of the candidate target loci (instead of omitting candidate target loci from the analysis due to overlapping target amplicons).
- the selection method selects candidate primers and divides them into different pools (e.g., 2, 3, 4, 5, 6, or more different pools). Each pool can be used to simultaneously amplify a large number of target loci (or a subset of target loci) in a single reaction volume.
- a graph coloring algorithm is used to divide candidate primers into different pools. If desired, this method can be used to minimize the number of different pools needed to amplify most or all of the target loci.
- most or all of the target loci are amplified by at least 2, 3, 4, 5, 6, or more different pools.
- most or all of the bases in the target loci are amplified by at least 2, 3, 4, 5, 6, or more different pools.
- most or all of the bases in the target loci are amplified by at least 2, 3, 4, 5, 6, or more different primers or primer pairs in different pools.
- a particular base in a target locus may be amplified by at least 2, 3, 4, 5, 6, or more different primers or primer pairs; wherein each different primer or primer pair is in a different pool.
- Using different primers or primer pairs to amplify each base allows multiple independent measurements of the base to be made, thereby increasing the accuracy of the method. Dividing the different primers or primer pairs that amplify the same base into different pools prevents interference due to overlapping amplicons being formed by different primers or primer pairs.
- the invention features methods of selecting test primers from a library of candidate primers to form 2 or more different primer pools.
- the selection involves (i) calculating on a computer a score (such as an undesirability score) for most or all of the possible combinations of two candidate primers from the library, wherein each score (such as an undesirability score) is based at least in part on the likelihood of dimer formation between the two candidate primers; (ii) removing the candidate primer with the highest or worst score (such as an undesirability score) from the library of candidate primers; and (iii) if the candidate primer removed in step (ii) is a member of a primer pair, then removing the other member of the primer pair from the library of candidate primers; and (iv) optionally repeating steps (ii) and (iii), thereby selecting a first pool.
- a score such as an undesirability score
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below a minimum threshold for the first pool. In some embodiments, the selection method is performed until the number of candidate primers remaining in the library is reduced to a desired number for the first pool. In some embodiments, after the first pool is selected those primers are removed from further consideration and steps of the method (such as steps (ii) and (iii)) are repeated with the remaining primers to select a second pool. If desired, this method may be repeated to select the desired number of primer pools. In some embodiments, the score is based at least in part on the current coverage of the bases in the target locus (such as the number of other primer pools that have a primer or primer pair that amplifies a particular base in the target locus).
- the invention features methods of selecting test primers from a library of candidate primers to form 2 or more different primer pools.
- the selection of test primers are selected from a library of candidate primers involves (i) calculating on a computer a score (such as an undesirability score) for most or all of the possible combinations of two candidate primers from the library, wherein each score (such as an undesirability score) is based at least in part on the likelihood of dimer formation between the two candidate primers; (ii) removing from the library of candidate primers the candidate primer that is part of the greatest number of combinations of two candidate primers with a score (such as an undesirability score) above a first minimum threshold; (iii) if the candidate primer removed in step (ii) is a member of a primer pair, then removing the other member of the primer pair from the library of candidate primers; and (iv) optionally repeating steps (ii) and (iii), thereby selecting a first pool.
- a score such as an
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below the first minimum threshold for the first pool. In some embodiments, the selection method is performed until the number of candidate primers remaining in the library is reduced to a desired number for the first pool. In various embodiments, the selection method involves further reducing the number of candidate primers remaining in the library by decreasing the first minimum threshold used in step (ii) to a lower second minimum threshold and optionally repeating steps (ii) and (iii). In some embodiments, the selection method involves increasing the first minimum threshold used in step (ii) to a higher second minimum threshold and optionally repeating steps (ii) and (iii).
- the selection method is performed until the score (such as the undesirability score) for the candidate primer combinations remaining in the library are all equal to or below the second minimum threshold, or until the number of candidate primers remaining in the library is reduced to a desired number for the first pool.
- the score is based at least in part on the current coverage of the bases in the target locus (such as the number of other primer pools that have a primer or primer pair that amplifies a particular base in the target locus).
- a library is formed by starting with a library of candidate primers and removing primers until the primers remaining in the library have the desired characteristics for use as a final primer library.
- candidate primers are added to a library (such as a library starting with no primers) to form a library with the desired characteristics.
- the candidate primer or primer pair with the most desirable score (such as the lowest undesirability score) is added to a library (such as a library starting with no primers).
- the process of adding candidate primers may be repeated as desired.
- the selection method is performed until the score (such as the undesirability score) for the candidate primers that have not been added to the library are all above a minimum threshold (such that all the candidate primers that have not been chosen for the library all have worse scores than the threshold).
- the selection method is performed until the number of candidate primers that have been added to the library reaches a desired number.
- the library of selected primers can then be used in any of the methods of the invention.
- most (such as at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5%) or all of the possible sets of two primer pairs (two primer pairs with a total of 4 primers) are considered for inclusion in a library.
- the set of two different candidate primer pair with the most desirable score (such as the lowest undesirability score) is added to a first pool (such as a first pool starting with no primers).
- the set of two different candidate primer pairs with the next most desirable score is added to the first pool if it is connected to at most two sets of two different candidate primer pairs in the first pool.
- connection for purposes of this step is meant that a single candidate primer pair in one set of two different candidate primer pairs is the same as a single candidate primer pair in another set of two different candidate primer pairs. If the set of two different candidate primer pairs is connected to more than two sets, it may be added to a different pool than the first pool. The process of set of two different candidate primer pair to pool(s) may be repeated as desired for the next set of two different candidate primer pairs with the next most desirable score. In some embodiments, the selection method is performed until the score (such as the undesirability score) for the candidate primers that have not been added to the pool(s) are all above a minimum threshold (such that all the candidate primers that have not been chosen for the pool(s) all have worse scores than the threshold).
- the score such as the undesirability score
- the selection method is performed until the number of candidate primers that have been added to the pool(s) reaches a desired number.
- the minimum threshold, the first minimum threshold, or the second minimum threshold is an interaction score equal to or about 20, 18, 16, 14, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 kcal/mol.
- deltaG_2 Gibbs energy (energy required to break the dimer) for a dimer that is extensible by PCR on both ends, i.e., the 3′ end of each primer anneals to the other primer;
- deltaG_1 Gibbs energy for a dimer that is extensible by PCR on at least one end.
- the improvement due to this procedure is substantial, enabling amplification of more than 80%, more than 90%, more than 95%, more than 98%, and even more than 99% on target products as determined by sequencing of all PCR products, as compared to 10% from a reaction in which the worst primers were not removed.
- more than 90%, and even more than 95% of amplicons may map to the targeted sequences.
- analysis of a pool of DNA that has been amplified using a non-optimized set of primers may be sufficient to determine problematic primers. For example, analysis may be done using sequencing, and those dimers which are present in the greatest number are determined to be those most likely to form dimers, and may be removed.
- the method of primer design may be used in combination with the mini-PCR method described elsewhere in this document.
- the primer design method may be used as part of a massive multiplexed PCR method.
- the primer contains an internal region that forms a loop structure with a tag.
- the primers include a 5′ region that is specific for a target locus, an internal region that is not specific for the target locus and forms a loop structure, and a 3′ region that is specific for the target locus.
- the loop region may lie between two binding regions where the two binding regions are designed to bind to contiguous or neighboring regions of template DNA.
- the length of the 3′ region is at least 7 nucleotides.
- the length of the 3′ region is between 7 and 20 nucleotides, such as between 7 to 15 nucleotides, or 7 to 10 nucleotides, inclusive.
- the primers include a 5′ region that is not specific for a target locus (such as a tag or a universal primer binding site) followed by a region that is specific for a target locus, an internal region that is not specific for the target locus and forms a loop structure, and a 3′ region that is specific for the target locus.
- Tag-primers can be used to shorten necessary target-specific sequences to below 20, below 15, below 12, and even below 10 base pairs.
- This can be serendipitous with standard primer design when the target sequence is fragmented within the primer binding site or, or it can be designed into the primer design. Advantages of this method include: it increases the number of assays that can be designed for a certain maximal amplicon length, and it shortens the “non-informative” sequencing of primer sequence. It may also be used in combination with internal tagging (see elsewhere in this document).
- the relative amount of nonproductive products in the multiplexed targeted PCR amplification can be reduced by raising the annealing temperature.
- the annealing temperature can be increased in comparison to the genomic DNA as the tags will contribute to the primer binding.
- the annealing times may be longer than 3 minutes, longer than 5 minutes, longer than 8 minutes, longer than 10 minutes, longer than 15 minutes, longer than 20 minutes, longer than 30 minutes, longer than 60 minutes, longer than 120 minutes, longer than 240 minutes, longer than 480 minutes, and even longer than 960 minutes.
- longer annealing times are used than in previous reports, allowing lower primer concentrations.
- longer than normal extension times are used, such as greater than 3, 5, 8, 10, or 15 minutes.
- the primer concentrations are as low as 50 nM, 20 nM, 10 nM, 5 nM, 1 nM, and lower than 1 uM. This surprisingly results in robust performance for highly multiplexed reactions, for example 1,000-plex reactions, 2,000-plex reactions, 5,000-plex reactions, 10,000-plex reactions, 20,000-plex reactions, 50,000-plex reactions, and even 100,000-plex reactions.
- the amplification uses one, two, three, four or five cycles run with long annealing times, followed by PCR cycles with more usual annealing times with tagged primers.
- the invention features a method of decreasing the number of target loci (such as loci that may contain a polymorphism or mutation associated with a disease or disorder or an increased risk for a disease or disorder such as cancer) that need to be detected for a diagnosis and/or increasing the disease load that is detected (e.g., increasing the number of polymorphisms or mutations that are detected).
- the method includes ranking (such as ranking from highest to lowest) loci by frequency or reoccurrence of a polymorphism or mutation (such as a single nucleotide variation, insertion, or deletion, or any of the other variations described herein) in each locus among subjects with the disease or disorder such as cancer.
- PCR primers are designed to some or all of the loci. During selection of PCR primers for a library of primers, primers to loci that have a higher frequency or reoccurrence (higher ranking loci) are favored over those with a lower frequency or reoccurrence (lower ranking loci). In some embodiments, this parameter is included as one of the parameters in the calculation of the scores (such as the undesirability scores) described herein. If desired, primers (such as primers to high ranking loci) that are incompatible with other designs in the library can be included in a different PCR library/pool.
- multiple libraries/pools (such as 2, 3, 4, 5 or more) are used in separate PCR reactions to enable amplification of all (or a majority) of the loci represented by all the libraries/pools. In some embodiment, this method is continued until sufficient primers are included in one or more libraries/pools such that the primers, in aggregate, enable the desired disease load to be captured for the disease or disorder (e.g., such as by detection of at least 80, 85, 90, 95, or 99% of the disease load).
- the library of candidate primers includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers or different primer pairs.
- only a relatively small number of candidate primers need to be removed from the library to achieve the desired reduction in primer dimers.
- less than 30, 20, 15, 10, 5, or 2% of the candidate primers are removed from the library prior to use of the resulting library for multiplex PCR amplification of target loci.
- a relatively large number of candidate primers are removed from the library to achieve the desired characteristics for the resulting library.
- At least 20, 30, 40, 50, 60, 70, 80, or 90% of the candidate primers are removed from the library prior to use of the resulting library for multiplex PCR amplification of target loci.
- at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers or different primer pairs remain in the library (after removal of some candidate primers from the library).
- the primers remaining in the library may be used in any of the methods of the invention.
- thermodynamic Nearest-Neighbors approach is used to calculate the likelihood of dimer formation between any two primers (see, e.g., Rahmann and Grafe (2004), “Mean and variance of the Gibbs free energy of oligonucleotides in the nearest neighbor model under varying conditions” Bioinformatics 20, 2928-2933; Allawi, H. T. & SantaLucia, J., Jr. (1998), “Thermodynamics of Internal C-T Mismatches in DNA”, Nucleic Acids Res.
- the following steps are performed.
- each primer in a set of candidate primers compare to every other candidate primer in the following way.
- Taking the first two bases (dinucleotide) that align to the other primer and vice versa determine the ⁇ H and ⁇ S values for the dinucleotide in one primer hybridizing to the dinucleotide in the other primer (see the “AT” hybridizing to “GA” in FIG. 33 A ).
- ⁇ H and ⁇ S values for various combinations of dinucleotides are known and can be determined, for example, using a thermodynamic look up table (such as the Unified NN model parameters according to Allawi and SantaLucia (1997) “Thermodynamics and NMR of internal G-T mismatches in DNA”. Biochemistry, 36: 10581-10594, which is hereby incorporated by reference in its entirety).
- ⁇ H and ⁇ S values to calculate ⁇ G for that interaction as follows or as described in any known equation for this.
- ⁇ G (1000.0* ⁇ H ⁇ (temperature*( ⁇ S+ 0.368*(numPhosphates/2)*log(saltConcentration))))/1000.0
- one or more of the following conditions are assumed for this calculation: temperature: of 60.0° C., primer concentration of 100 nM, or salt concentration of 100 mM. In some embodiments, other conditions are assumed for this calculation, such as the conditions that will be used for multiplex PCR with the pool. Iterate over the remainder of the primer that aligns with the other primer by sliding the bases being observing one base to the right. Continue until ⁇ G has been calculated for all dinucleotides that align ( FIG. 33 B ). The ⁇ G for that alignment of the primer pair is the sum of the ⁇ G values for the various dinucleotides.
- step 1 again for the new alignment ( FIGS. 33 E and 33 F ).
- the ⁇ G value for a combination of primers is the lowest ⁇ G value (the lowest numerical value, which is indicative of the greatest likelihood of primer dimer formation) out of the ⁇ G values for all possible alignments between the two primers. For example, if one alignment has a ⁇ G value of ⁇ 12 kcal/mol and another alignment has a ⁇ G value of ⁇ 2 kcal/mol then ⁇ 12 kcal/mol (worse value) is used as the ⁇ G value for that combination of primers.
- the interaction score For example, if one alignment has a ⁇ G value of ⁇ 12 kcal/mol and another alignment has a ⁇ G value of ⁇ 2 kcal/mol, then 12 kcal/mol is used as the interaction score. In this case, the interaction score with the largest numerical positive number indicates the least desirable combination of primers due to the greatest likelihood of primer dimer formation.
- deltaG_2 Gibbs energy (energy required to break the dimer) for a dimer that is extensible by PCR on both ends, i.e., the 3′ end of each primer anneals to the other primer;
- deltaG_1 Gibbs energy for a dimer that is extensible by PCR on at least one end.
- deltaG_2 is determined by performing steps 1-4 above for all the alignments in which a dimer is extensible by PCR on both ends.
- the deltaG_2 value is the lowest ⁇ G value (the lowest numerical value, which is indicative of the greatest likelihood of primer dimer formation) for all the alignments in which a dimer is extensible by PCR on both ends.
- deltaG_1 is determined by performing steps 1-4 above for all the alignments in which a dimer is extensible by PCR on at least one end (such as by PCR on one end or by PCR on both ends).
- the deltaG_1 value is the lowest ⁇ G value (the lowest numerical value, which is indicative of the greatest likelihood of primer dimer formation) for all the alignments in which a dimer is extensible by PCR on at least one end.
- possible loop structures or gaps in alignment between primers are also considered.
- ⁇ G values from step 4 for each possible combination of two primers (each possible primer dimer) in a library are all equal to or greater than ⁇ 20, ⁇ 18, ⁇ 16, ⁇ 14, ⁇ 12, ⁇ 10, ⁇ 9, ⁇ 8, ⁇ 7, ⁇ 6, ⁇ 5, ⁇ 4, ⁇ 3, ⁇ 2, or ⁇ 1 kcal/mol.
- ⁇ G values from step 4 for at least 80, 85, 90, 92, 94, 96, 98, 99, or 100% of the primers in the library for possible combinations of that primer with other primers in the library are all equal to or greater than ⁇ 20, ⁇ 18, ⁇ 16, ⁇ 14, ⁇ 12, ⁇ 10, ⁇ 9, ⁇ 8, ⁇ 7, ⁇ 6, ⁇ 5, ⁇ 4, ⁇ 3, ⁇ 2, or ⁇ 1 kcal/mol.
- possible combinations of two primers in a library that have positive ⁇ G values are ignored since these values are indicative of no likelihood to for primer dimers.
- the ⁇ G values are between ⁇ 20 and 0 kcal/mol, such as between ⁇ 15 and 0 kcal/mol, ⁇ 10 and 0 kcal/mol, ⁇ 8 and 0 kcal/mol, ⁇ 7 and 0 kcal/mol, ⁇ 6 and 0 kcal/mol, ⁇ 5.5 and 0 kcal/mol, ⁇ 5 and 0 kcal/mol, ⁇ 4.5 and 0 kcal/mol, ⁇ 4 and 0 kcal/mol, ⁇ 3.5 and 0 kcal/mol, ⁇ 3 and 0 kcal/mol, ⁇ 2.5 and 0 kcal/mol, ⁇ 2 and 0 kcal/mol, or ⁇ 1.5 and 0 kcal/mol, inclusive.
- the interaction scores from step 4 for each possible combination of two primers in a library are all equal to or less than 20, 18, 16, 14, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 kcal/mol. In some embodiments, the interaction scores from step 4 for at least 80, 85, 90, 92, 94, 96, 98, 99, or 100% of the primers in the library for possible combinations of that primer with other primers in the library are all equal to or less than 20, 18, 16, 14, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 kcal/mol. In some embodiments, possible combination of two primers in a library that have negative interaction scores are ignored since these values are indicative of no likelihood to for primer dimers.
- the interaction scores are between 20 and 0 kcal/mol, such as between 15 and 0 kcal/mol, 10 and 0 kcal/mol, 8 and 0 kcal/mol, 7 and 0 kcal/mol, 6 and 0 kcal/mol, 5.5 and 0 kcal/mol, 5 and 0 kcal/mol, 4.5 and 0 kcal/mol, 4 and 0 kcal/mol, 3.5 and 0 kcal/mol, 3 and 0 kcal/mol, 2.5 and 0 kcal/mol, 2 and 0 kcal/mol, or 1.5 and 0 kcal/mol, inclusive.
- the score (such as the undesirability score) for candidate primers is based at least in part on the ⁇ G value or the interaction score that indicates the likelihood of dimer formation between candidate primers as calculated using any of these methods.
- the invention features libraries of primers, such as primers selected from a library of candidate primers using any of the methods of the invention.
- the library includes primers that simultaneously hybridize (or are capable of simultaneously hybridizing) to or that simultaneously amplify (or are capable of simultaneously amplifying) at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci in one reaction volume.
- the library includes primers that simultaneously amplify (or are capable of simultaneously amplifying) between 1,000 to 2,000; 2,000 to 5,000; 5,000 to 7,500; 7,500 to 10,000; 10,000 to 20,000; 20,000 to 25,000; 25,000 to 30,000; 30,000 to 40,000; 40,000 to 50,000; 50,000 to 75,000; or 75,000 to 100,000 different target loci in one reaction volume, inclusive.
- the library includes primers that simultaneously amplify (or are capable of simultaneously amplifying) between 1,000 to 100,000 different target loci in one reaction volume, such as between 1,000 to 50,000; 1,000 to 30,000; 1,000 to 20,000; 1,000 to 10,000; 2,000 to 30,000; 2,000 to 20,000; 2,000 to 10,000; 5,000 to 30,000; 5,000 to 20,000; or 5,000 to 10,000 different target loci, inclusive.
- the library includes primers that simultaneously amplify (or are capable of simultaneously amplifying) the target loci in one reaction volume such that less than 60, 40, 30, 20, 10, 5, 4, 3, 2, 1, 0.5, 0.25, 0.1, or 0.5% of the amplified products are primer dimers.
- the amount of amplified products that are primer dimers is between 0.5 to 60%, such as between 0.1 to 40%, 0.1 to 20%, 0.25 to 20%, 0.25 to 10%, 0.5 to 20%, 0.5 to 10%, 1 to 20%, or 1 to 10%, inclusive.
- the primers simultaneously amplify (or are capable of simultaneously amplifying) the target loci in one reaction volume such that at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the amplified products are target amplicons.
- the amount of amplified products that are target amplicons is between 50 to 99.5%, such as between 60 to 99%, 70 to 98%, 80 to 98%, 90 to 99.5%, or 95 to 99.5%, inclusive.
- the primers simultaneously amplify (or are capable of simultaneously amplifying) the target loci in one reaction volume such that at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target loci are amplified.
- the amount target loci that are amplified is between 50 to 99.5%, such as between 60 to 99%, 70 to 98%, 80 to 99%, 90 to 99.5%, 95 to 99.9%, or 98 to 99.99% inclusive. In some embodiments, at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the library of primers includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 primer pairs, wherein each pair of primers includes a forward test primer and a reverse test primer where each pair of test primers hybridize to a target locus.
- the library of primers includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 individual primers that each hybridize to a different target locus, wherein the individual primers are not part of primer pairs.
- the library includes primers (such as at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers or different primer pairs) that simultaneously amplify (or are capable of simultaneously amplifying) the target loci (such as at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci) in one reaction volume such that one or more of the following: (i) less than 60, 40, 30, 20, 10, 5, 4, 3, 2, 1, 0.5, 0.25, 0.1, or 0.5% of the amplified products are primer dimers, (ii) at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99,
- the library includes at least 1,000 different primers or different primer pairs (such as at least 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers or different primer pairs) that simultaneously amplify (or are capable of simultaneously amplifying) at least 1,000 different target loci (such as at least 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci) in one reaction volume such that one or more of the following: (i) less than 60% of the amplified products are primer dimers and at least 40% of the amplified products are target amplicons, (ii) less than 40% of the amplified products are primer dimers and at least 60% of the amplified products are target amplicons, (iii) less than 20% of the amplified products are primer dimers and at least 80% of the ampl
- the library includes at least 1,000 different primers or different primer pairs (such as at least 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers or different primer pairs) that simultaneously amplify (or are capable of simultaneously amplifying) at least 1,000 different target loci (such as at least 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci) in one reaction volume such that one or more of the following: (i) less than 60% of the amplified products are primer dimers and at least 10% of the amplified products are target amplicons, (ii) less than 40% of the amplified products are primer dimers and at least 10% of the ampl
- At least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold. In some embodiments, one or more of these embodiments (e.g., percent of primer dimers, target amplicons, or amplified target loci) is achieved after greater than or equal to 5, 10, 20, 30, 40, 50, or 60 cycles of PCR are performed. In some embodiments for a library that amplifies human target loci, at least 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the amplified products map to the human genome.
- the concentration of each primer is less than 100, 75, 50, 25, 20, 10, 5, 2, 1, 0.5, 0.1, or 0.05 nM, or less than 500, 100, 10, or 1 uM. In various embodiments, the concentration of each primer is between 1 uM to 100 nM, such as between 1 uM to 1 nM, 1 to 75 nM, 1 to 20 nM, 1 to 10 nM, 2 to 50 nM or 5 to 50 nM, inclusive.
- the concentration of one or more universal primers is between 0.2 to 3 ⁇ M, such as between 0.5 and 2.5 ⁇ M, 0.5 to 1 ⁇ M, or 1 to 2.5 ⁇ M per primer, inclusive, and the concentration of each primer except the universal primer(s) is between 1 uM to 100 nM, such as between 1 uM to 1 nM, 1 to 75 nM, 1 to 20 nM, 1 to 10 nM, 2 to 50 nM or 5 to 50 nM, inclusive.
- the GC content of the primers is between 30 to 80%, such as between 20 to 70%, 40 to 70%, or 50 to 60%, inclusive.
- the range of GC content of the primers is less than 30, 20, 10, or 5%. In some embodiments, the range of GC content of the primers is between 5 to 30%, such as 5 to 20% or 5 to 10%, inclusive. In some embodiments, there is a high GC content in the 3′ end of the primers. In some embodiments, there are at least 2 (such as 3, 4, or 5) guanines or cytosines in the last 5 bases at the 3′ end of the primers. In some embodiments, there are at least 1 (such as 2 or 3) guanines or cytosines in the last 3 bases at the 3′ end of the primers.
- a maximum of 2 (such as 2, 1, or 0) bases in the last 5 bases at the 3′ end of the primers are guanines or cytosines.
- a maximum of 1 (such as 1 or 0) base in the last 5 bases at the 3′ end of the primers is a guanine or cytosine.
- the maximum length of a homopolymer (the same base in a row) in the primers is 12, 10, 8, 6, 5, 4, 3, or 2 consecutive nucleotides.
- the melting temperature (T m ) of the test primers is between 40 to 80° C., such as 50 to 70° C., 55 to 65° C., 54 to 60.5° C., or 57 to 60.5° C., inclusive.
- the T m is calculated using the Primer3 program (libprimer3 release 2.2.3) using the built-in SantaLucia parameters (the World Wide Web at primer3.sourceforge.net).
- the range of melting temperature of the primers is less than 15, 10, 5, 3, or 1° C.
- the range of melting temperature of the primers is between 1 to 15° C., such as between 1 to 10° C., 1 to 5° C., or 1 to 3° C., inclusive.
- the range of melting temperatures of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the primers is between 1 to 15° C., such as between 1 to 10° C., 1 to 5° C., 1 to 3° C., 2 to 5° C., 3 to 10° C., or 3 to 5° C., inclusive.
- the length of the primers is between 15 to 100 nucleotides, such as between 15 to 75 nucleotides, 15 to 40 nucleotides, 17 to 35 nucleotides, 18 to 30 nucleotides, 20 to 65 nucleotides, inclusive. In some embodiments, the range of the length of the primers is less than 50, 40, 30, 20, 10, or 5 nucleotides. In some embodiments, the range of the length of the primers is between 5 to 50 nucleotides, such as 5 to 40 nucleotides, 5 to 20 nucleotides, or 5 to 10 nucleotides, inclusive.
- the length of the target amplicons is between 50 and 100 nucleotides, such as between 60 and 80 nucleotides, or 60 to 75 nucleotides, inclusive. In some embodiments, the length of the target amplicons is between 30 and 400 nucleotides, such as between 30 and 200 nucleotides, or 100 and 400 nucleotides, inclusive. In some embodiments, the length of the target amplicons is at least 100; 200; 300; 400; 500; 600; 700; 800; 900; 1,000; 1,200; 1,500; 2,000; or 3,000 nucleotides.
- the length of the target amplicons is between 100 and 1,500 nucleotides, such as between 100 to 1,000; 100 to 500, 500 to 750, or 750 to 1,000 nucleotides, inclusive. Longer amplicons may be desirable, e.g., for applications in which is it desirable to screen for multiple potential mutations in one amplicon, such as carrier screening.
- one round of PCR is performed to produce relatively long amplicons (such as at least 250 or 500 nucleotides in length) and then a second round of PCR is performed to produce shorter amplicons (to amplify regions within the amplicons amplified in the first round of PCR, such as regions of less than 200 or 100 nucleotides in length).
- the range of the length of the target amplicons is less than 50, 25, 15, 10, or 5 nucleotides. In some embodiments, the range of the length of the target amplicons is between 5 to 50 nucleotides, such as 5 to 25 nucleotides, 5 to 15 nucleotides, or 5 to 10 nucleotides, inclusive.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 or all of the target amplicons have a length that falls within the range of the average length of the amplicons ⁇ 5% of the average length, average length ⁇ 20%, average length ⁇ 20%, or average length ⁇ 30%, or average length ⁇ 50%.
- library includes at least at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers that each includes a target specific sequence, such as a sequence that binds a target locus but does not substantially bind to other nucleic acids (such as non-target loci) in a sample, e.g., a biological sample, which naturally includes other nucleic acids.
- a target specific sequence such as a sequence that binds a target locus but does not substantially bind to other nucleic acids (such as non-target loci) in a sample, e.g., a biological sample, which naturally includes other nucleic acids.
- each primer binds and amplifies a target locus by at least 2, 4, 6, 8, 10, 20, 50-fold or more than one or more (or all) other nucleic acids (such as non-target loci) in a sample.
- the library includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target specific primers (e.g., primers that are specific for a target locus).
- part or all of the polynucleotide sequence is a non-random sequence for at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different primers in the library.
- library also includes a universal primer, a random primer, and a primer with a non-naturally occurring polynucleotide sequence, or a primer with a polynucleotide sequence not naturally found in a human in some embodiments, the universal or random primer has a non-naturally occurring polynucleotide sequence or a polynucleotide sequence not naturally found in a human.
- the composition includes at least one primer (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers) with a polynucleotide sequence of a human nucleic acid and at least one primer (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers) with a polynucleotide sequence that is not found in a human (such as a universal primer, a primer that comprises a region or consists entirely of random nucleotides, or a primer with a region such as a tag or barcode of one or more nucle
- At least one primer (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers) includes a region of one or more nucleotides that is not naturally part of the primer sequence (such as a region added to the 5′ end of the target specific sequence in the primer or an internal region added between the 5′ and 3′ ends of the primer).
- the primer is free of the nucleic acids (such as genes) which, in the naturally-occurring genome of the organism from which the nucleic acid of the invention is derived, flank the gene.
- the primer has been separated from one or more components that naturally accompany the corresponding sequence in nature (such as in the genome of a human).
- each primer is at least 90, 95, 98, 99, 99.9, or 100%, by weight, free from the molecules (such as proteins, nucleic acids, and naturally-occurring organic molecules) that naturally accompany the corresponding sequence in nature (such as in the genome of a human). Purity can be assayed by any appropriate method, e.g., by electrophoresis or HPLC analysis.
- the primers in the library are not immobilized (such as not immobilized to a solid support) or not part of a microarray. In some embodiments, the primers are dissolved in solution (such as dissolved in the liquid phase). In some embodiments, the library comprises a microarray. In some embodiments, the amplified products are detected using an array, such as an array with probes to one or more chromosomes of interest (e.g., chromosome 13, 18, 21, X, Y, or any combination thereof).
- At least one of the primers (such as at least 20, 40, 80, 90, 95, 98, 99, 99.5, or 100% of the primers) in a library are nucleic acid analogs that have a lower likelihood of primer dimerization compared to the naturally-occurring nucleic acids (see, e.g., U.S. Pat. Nos. 7,414,118 and 6,001,611; which are each hereby incorporated by reference in its entirety).
- Exemplary nucleic acid analogs have a modified pyrimidine nucleobase, or a purine or pyrimidine base that contains an exocyclic amine.
- the primer library includes a small number of primers (such as less than 5, 2, 1, or 0.5% of the primers in the library) that do not have one or more of the properties described herein.
- at least 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the primers in the library have one or more of the following properties: (i) ⁇ G values for possible combinations of that primer with other primers in the library are all equal to or greater than ⁇ 20, ⁇ 18, ⁇ 16, ⁇ 14, ⁇ 12, ⁇ 10, ⁇ 9, ⁇ 8, ⁇ 7, ⁇ 6, ⁇ 5, ⁇ 4, ⁇ 3, ⁇ 2, or ⁇ 1 kcal/mol; (ii) ⁇ G values for the possible combination of that primer with other primers in the library that have negative ⁇ G are between ⁇ 20 and 0 kcal/mol, such as between ⁇ 15 and 0 kcal/mol, ⁇ 10 and 0 kcal/mol, ⁇ 8 and
- the annealing temperature is between 1 and 15° C. (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15° C., inclusive) greater than the melting temperature (such as the empirically measured or calculated T m ) of the primers;
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C. greater than the highest melting temperature of the primers;
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C.
- the annealing temperature is between 1 and 15° C. (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15° C., inclusive) greater than the average melting temperature of the primers; and (xxviii) any combination thereof.
- the annealing temperature is between 1 and 15° C. (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15° C., inclusive) greater than the melting temperature (such as the empirically measured or calculated T m ) of the primers;
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C. greater than the highest melting temperature of the primers;
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C.
- the annealing temperature is between 1 and 15° C. (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15° C., inclusive) greater than the average melting temperature of the primers; and (xvii) any combination thereof.
- At least 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the primers in the library have one or more of the following properties: (i) ⁇ G values for possible combinations of that primer with other primers in the library are all equal to or greater than ⁇ 10 kcal/mol, (ii) the range of melting temperature of the primers is between 1 to 15° C., (iii) the length of the target amplicons is between 50 and 100 nucleotides, (iv) the concentration of each primer is less than 20 nM, (v) the length of the annealing step is greater than 5 minutes (such as greater than 10 minutes), (vi) the length of the annealing step is greater than 5 minutes (such greater than 10 minutes), and the concentration of each primer is less than 20 nM, and (vii) any combination thereof.
- At least 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the primers in the library have the following properties: (i) ⁇ G values for possible combinations of that primer with other primers in the library are all equal to or greater than ⁇ 10 kcal/mol and (ii) the range of melting temperature of the primers is between 1 to 15° C. In various embodiments, at least 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the primers in the library have the following properties: (i) the length of the target amplicons is between 50 and 100 nucleotides, and (ii) the concentration of each primer is less than 20 nM.
- At least 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the primers in the library have the following properties: (i) the length of the target amplicons is between 50 and 100 nucleotides and (ii) the length of the annealing step is greater than 5 minutes (such as greater than 10 minutes).
- At least 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the primers in the library have the following properties: (i) the length of the target amplicons is between 50 and 100 nucleotides, (ii) the length of the annealing step is greater than 5 minutes (such greater than 10 minutes), and (iii) the concentration of each primer is less than 20 nM, and (vii) any combination thereof.
- the annealing temperature is at least 5° C. (such as at least 6, 8, or 10° C.) greater than the melting temperature (such as the empirically measured or calculated T m ) of the primers; (ii) the annealing temperature is between 5 and 15° C., inclusive greater than the melting temperature of the primers; (iii) the annealing temperature is at least 5° C. (such as at least 6, 8, or 10° C.) greater than the highest melting temperature of the primers; (iv) the annealing temperature is at least 5° C.
- the annealing temperature is between 4 and 15° C. inclusive greater than the average melting temperature of the primers; and (vi) any combination thereof.
- at least 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the primers in the library have one or more of the following properties: (i) the annealing temperature is at least 5° C.
- the annealing temperature is between 5 and 15° C., inclusive greater than the melting temperature of the primers and the length of the annealing step is greater than 5 minutes (such greater than 10 minutes);
- the annealing temperature is at least 5° C. (such as at least 6, 8, or 10° C.) greater than the highest melting temperature of the primers and the length of the annealing step is greater than 5 minutes (such greater than 10 minutes);
- the annealing temperature is at least 5° C.
- the guanine-cytosine (GC) content of the primers is between 30% and 80%, inclusive; the range of melting temperatures of the primers is less than 5° C.; and the length of the primers is between 15 to 75 nucleotides, inclusive;
- some (such as at least 80, 90, or 95%) or all of the adaptors or primers include one or more linkages between adjacent nucleotides other than a naturally-occurring phosphodiester linkage. Examples of such linkages include phosphoramide, phosphorothioate, and phosphorodithioate linkages. In some embodiments, some (such as at least 80, 90, or 95%) or all of the adaptors or primers include a thiophosphate (such as a monothiophosphate) between the last 3′ nucleotide and the second to last 3′ nucleotide.
- a thiophosphate such as a monothiophosphate
- some (such as at least 80, 90, or 95%) or all of the adaptors or primers include a thiophosphate (such as a monothiophosphate) between the last 2, 3, 4, or 5 nucleotides at the 3′ end. In some embodiments, some (such as at least 80, 90, or 95%) or all of the adaptors or primers include a thiophosphate (such as a monothiophosphate) between at least 1, 2, 3, 4, or 5 nucleotides out of the last 10 nucleotides at the 3′ end.
- such primers are less likely to be cleaved or degraded, such primers may be desirable if a polymerase with proof-reading ability is used (to reduce or prevent the polymerase from removing nucleotides from the primers).
- any of the embodiments involving primers with at least one linkage other than a naturally-occurring phosphodiester linkage are used with a polymerase having proof-reader activity.
- the primers do not contain an enzyme cleavage site (such as a protease cleavage site).
- primers in the library are non-naturally occurring nucleic acids (such nucleic acids with one or more linkages between adjacent nucleotides other than a naturally-occurring phosphodiester linkage).
- the primers have any combination of two or more of the aspects or embodiments disclosed herein.
- the primer design methods of the invention have been used to generate several exemplary primer libraries to human target loci.
- the primer design methods of the invention were used to generate primer libraries.
- Each of these libraries is composed of three primers per target locus for 1,200; 2,686; or 10,984 different target loci, respectively.
- the methods of the invention can also be used to generate libraries to non-human target loci.
- the percent of the amplified products that were primer dimers was 11.13%, the median depth of read per target that was amplified was 799.5 ⁇ coverage, the percent of amplified products that were target amplicons out of the amplified products that were not primer dimers was 93.15% (this is the percent of on target reads when reads for amplified primer dimers are ignored); the number of target loci that were not amplified (failed assay count) was 246; the percent of target loci that were not amplified (failed assay percentage) was 9.16%; the percent of target loci that were amplified was 90.84%; and the total number of reads was 2,522,742.
- the ⁇ G values for each possible combination of two primers (each possible primer dimer) in the library are all equal to or greater than ⁇ 3.86 kcal/mol.
- This ⁇ 3.86 kcal/mol value was used as a threshold value to select candidate primers that all had a value equal to or greater than (more desirable than) this value from an initial library of candidate primers.
- the percent of the amplified products that were primer dimers was 5.50%, the median depth of read per target that was amplified was 1,286.5 ⁇ coverage, the percent of amplified products that were target amplicons out of the amplified products that were not primer dimers was 60.16% (this is the percent of on target reads when reads for amplified primer dimers were ignored); the number of target loci that were not amplified (failed assay count) was 3,712; the percent of target loci that were not amplified (failed assay percentage) was 33.79%; the percent of target loci that were amplified was 66.21%; and the total number of reads was 25,372,858.
- the percent of the amplified products that were primer dimers was 24.13%.
- This library has primers to human target loci on chromosome 1, chromosome 21, and the X chromosome.
- the median depth of read per target that was amplified was 436 ⁇ coverage; the percent of target loci that were not amplified (failed assay percentage) was 32.69%; and the percent of target loci that were amplified was 67.31%.
- the total number of reads was 808,106.
- the primer design methods of the invention were also used to generate a library for ⁇ 11,000 different target loci (such as amplifying 10,732 different target human loci using 10,732 different primer pairs).
- target loci such as amplifying 10,732 different target human loci using 10,732 different primer pairs.
- the percent of the amplified products that were primer dimers was 14.75%
- the median depth of read per target that was amplified was 72.27 ⁇ coverage
- the percent of the amplified products that were target amplicons was 84.32%
- the number of target loci that were not amplified (failed assay count) was 118
- the percent of target loci that were not amplified (failed assay percentage) was 1.10%
- the percent of target loci that were amplified was 98.9%
- the total number of reads was 6,345,782.
- the ⁇ G values for each possible combination of two primers (each possible primer dimer) in the library are all equal to or greater than ⁇ 4.28 kcal/mol.
- This ⁇ 4.28 kcal/mol value was used as a threshold value to select candidate primer that all had a value equal to or greater than (more desirable than) this value from an initial library of candidate primers.
- the following interaction cost histogram shows the number of candidate primers for each of the following ranges of ⁇ G values. This illustrates how the values for the candidate primers compares to the ⁇ 4.28 kcal/mol threshold value for the final library.
- the primer design methods of the invention were also used to generate a library for ⁇ 14,000 different target loci (such as amplify 13,392 different target human loci with 13,392 different primer pairs).
- the percent of the amplified products that were primer dimers was 0.56%
- the median depth of read per target that was amplified was 69.09 ⁇ coverage
- the percent of the amplified products that were target amplicons was 99.42%
- the number of target loci that were not amplified (failed assay count) was 44
- the percent of target loci that were not amplified (failed assay percentage) was 0.33%
- the percent of target loci that were amplified was 99.67%
- the total number of reads was 7,772,454.
- the primer design methods of the invention were also used to generate a library composed of three primers per target locus for 19,488 different target loci. Examples 15, 18, and 19 describe the use of this library.
- 99.4-99.7% of the sequencing reads mapped to the genome, of those, 99.99% of the reads mapped to target loci.
- For plasma samples with 10 million sequencing reads typically at least 19,350 of the 19,488 target loci (99.3%) were amplified and sequenced.
- FIG. 34 is a table of the percentage of reads that map to target loci for genomic DNA samples and for samples of a single cell from a cell line for both mother and child samples using this primer library.
- FIG. 35 is an overlay of depth of read for genomic and a single cell sample for different SNPs.
- FIG. 36 is a table of the percentage of reads that map to target loci for blastoceol fluid and for a single blastocyst cell. The blastoceol fluid produced no mapped reads, possibly due to no DNA being detected. For a single blastocyst, 50-80% of the reads mapped to target loci.
- FIG. 37 is a graph of reference counts (counts of one allele, such as the “A” allele) divided by total counts for that locus for a single blastocyst cell.
- the ⁇ G values for each possible combination of two primers (each possible primer dimer) in the library are all equal to or greater than ⁇ 3.86 kcal/mol.
- This ⁇ 3.86 kcal/mol value was used as a threshold value to select candidate primer that all had a value equal to or greater than (more desirable than) this value from an initial library of candidate primers.
- the primer design methods of the invention were used to generate a library for ⁇ 28,000 different target loci (such as amplifying 27,744 different loci with 27,744 different primer pairs). For multiplex PCR and sequencing of genomic DNA samples, 99% of the sequencing reads mapped to target loci. The number of different target human loci that were amplified was 23,776.
- the percent of the amplified products that were primer dimers was 0.63%, the median depth of read per target that was amplified was 20 ⁇ coverage, the percent of the amplified products that were target amplicons was 99.33%; the number of target loci that were not amplified (failed assay count) was 3,968; the percent of target loci that were not amplified (failed assay percentage) was 14.29%; the percent of target loci that were amplified was 85.71%; and the total number of reads was 4,456,636. For a single cell from a cell line, between 2 and 8% of the reads mapped to target loci.
- the primer design methods of the invention were used to generate a library for ⁇ 9,600 different target loci.
- the average depth of read was 751, and the median depth of read was 396.
- another experiment produced 3.7 million reads mapping to the genome (94%), and of those, 2.9 million reads (74%) mapped to targeted SNPs with an average depth of read of 344 and a median depth of read of 255.
- the primer design methods of the invention were used to generate a library for ⁇ 2,400 different target loci. As described in Example 12, when four portions were each amplified with ⁇ 2,400 primers, 4.5 million reads mapped to targeted SNPs, the average depth of read was 535 and the median depth of read was 412.
- any of the results may be improved by increasing the number of cells or the amount of nucleic acid template used for the analysis or by optimizing the conditions. For example, if results from single cell samples are not as good as desired for a particular application, a sample with more cells or more nucleic acids may be used instead (such as to decrease the percentage of primer dimers, increase the percentage of target amplicons, or increase the percentage of target loci that are amplified). Samples with more nucleic acids have more template molecules for the primers to bind (instead of primers binding each other and forming primer dimers).
- primers from any of the primer pools are used in combination with a universal primer to amplify the target loci.
- multiple rounds of PCR are performed in which each round of PCR uses primers from one of the primer pools and a universal primer.
- primers from two of the primer pools are used to amplify the target loci.
- multiple rounds of PCR are performed.
- primers from pools C and B are used for the first round of PCR and then primers from pools A and C are used for the second of PCR.
- primers from pools C and B are used for the first round of PCR and then primers from pools A and B are used for the second of PCR.
- a region that is not specific for a target locus is added to one or more primers of the invention.
- the nonspecific region is added to the 5′ end of the primer, to the 3′ end of the primer, or to an internal region of the primer.
- the primers are fragments (such as fragments of at least 10, 20, 30, 40, 50 or more contiguous nucleotides that are less than full-length).
- the invention provides a library of primers that includes at least 10; 20; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 20,000; 25,000; 30,000; 40,000; or 50,000 different primers.
- the invention provides a library of primers that includes at least 10; 20; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 20,000; 25,000; 30,000; 40,000; or 50,000 different primers.
- Percent identity in reference to nucleic acid sequences refers to the degree of sequence identity between nucleic acid sequences. Percent identity can be determined in various ways that are within the skill in the art, for instance, using publicly available computer software with the default parameters such as Smith Waterman Alignment (Smith and Waterman J. Mol. Biol. 147:195-7, 1981); “BestFit” (Smith and Waterman, Advances in Applied Mathematics, 482-489, 1981); Basic Local Alignment Search Tool (BLAST, Altschul, S. F., W. Gish, et al., J. Mol. Biol. 215: 403-410, 1990; available through the U.S.
- the length of comparison will generally be at least 20, 30, 40, 45, 50, or more nucleotides.
- percent identity is calculated by determining the number of matched positions in aligned nucleic acid sequences, dividing the number of matched positions by the total number of aligned nucleotides, and multiplying by 100.
- a matched position refers to a position in which identical nucleotides occur at the same position in aligned nucleic acid sequences.
- the percent identity over a particular length is determined by counting the number of matched positions over that length and dividing that number by the length followed by multiplying the resulting value by 100.
- Hybridization conditions resulting in a particular degree of stringency will vary depending upon the nature of the hybridization method and the composition and length of the hybridizing nucleic acid sequences. Generally, the temperature of hybridization and the ionic strength (such as the Na + concentration) of the hybridization buffer will determine the stringency of hybridization. Calculations regarding hybridization conditions for attaining particular degrees of stringency are discussed in Sambrook et al., (1989) Molecular Cloning, second edition, Cold Spring Harbor Laboratory, Plainview, N.Y. (chapters 9 and 11); Nucleic Acid Hybridization, A Practical Approach, Ed. Hames, B. D. and Higgins, S. J., IRL Press, 1985; Ausubel et al.
- very high stringency hybridization conditions includes an overnight incubation at 42° C. in a solution comprising 50% formamide, 5 ⁇ SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 ⁇ SSC at about 65° C.
- 5 ⁇ SSC 750 mM NaCl, 75 mM trisodium citrate
- 50 mM sodium phosphate pH 7.6
- 5 ⁇ Denhardt's solution 10% dextran sulfate
- 20 ⁇ g/ml denatured, sheared salmon sperm DNA followed by washing the filters in 0.1 ⁇ SSC at about 65° C.
- the following is an exemplary set of hybridization conditions and is not limiting:
- primers can be used in any of the primer libraries or methods of the invention.
- primers in the primer library are designed to determine whether or not recombination occurred at one or more known recombination hotspots (such as crossovers between homologous human chromosomes). Knowing what crossovers occurred between chromosomes allows more accurate phased genetic data to be determined for an individual.
- Recombination hotspots are local regions of chromosomes in which recombination events tend to be concentrated. Often they are flanked by “coldspots,” regions of lower than average frequency of recombination. Recombination hotspots tend to share a similar morphology and are approximately 1 to 2 kb in length. The hotspot distribution is positively correlated with GC content and repetitive element distribution.
- a partially degenerated 13-mer motif CCNCCNTNNCCNC plays a role in some hotspot activity. It has been shown that the zinc finger protein called PRDM9 binds to this motif and initiates recombination at its location. The average distance between the centers of recombination hot spots is reported to be ⁇ 80 kb. In some embodiments, the distance between the centers of recombination hot spots ranges between ⁇ 3 kb to ⁇ 100 kb.
- Public databases include a large number of known human recombination hotspots, such as the HUMHOT and International HapMap Project databases (see, for example, Nishant et al., “HUMHOT: a database of human meiotic recombination hot spots,” Nucleic Acids Research, 34: D25-D28, 2006, Database issue; Mackiewicz et al., “Distribution of Recombination Hotspots in the Human Genome—A Comparison of Computer Simulations with Real Data” PLoS ONE 8(6): e65272, doi:10.1371/journal.pone.0065272; and the world wide web at hapmap.ncbi.nlm.nih.gov/downloads/index.html.en, which are each hereby incorporated by reference in its entirety).
- primers in the primer library are clustered at or near recombination hotspots (such as known human recombination hotspots).
- the corresponding amplicons are used to determine the sequence within or near a recombination hotspot to determine whether or not recombination occurred at that particular hotspot (such as whether the sequence of the amplicon is the sequence expected if a recombination had occurred or the sequence expected if a recombination had not occurred).
- primers are designed to amplify part or all of a recombination hotspot (and optionally sequence flanking a recombination hotspot).
- long read sequencing such as sequencing using the Moleculo Technology developed by Illumina to sequence up to ⁇ 10 kb
- paired end sequencing is used to sequence part or all of a recombination hotspot.
- Knowledge of whether or not a recombination event occurred can be used to determine which haplotype blocks flank the hotspot. If desired, the presence of particular haplotype blocks can be confirmed using primers specific to regions within the haplotype blocks. In some embodiments, it is assumed there are no crossovers between known recombination hotspots.
- primers in the primer library are clustered at or near the ends of chromosomes.
- primers in the primer library are clustered at or near recombination hotspots and at or near the ends of chromosomes.
- the primer library includes one or more primers (such as at least 5; 10; 50; 100; 200; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; or 50,000 different primers or different primer pairs) that are specific for a recombination hotspot (such as a known human recombination hotspot) and/or are specific for a region near a recombination hotspot (such as within 10, 8, 5, 3, 2, 1, or 0.5 kb of the 5′ or 3′ end of a recombination hotspot).
- a recombination hotspot such as a known human recombination hotspot
- a region near a recombination hotspot such as within 10, 8, 5, 3, 2, 1, or 0.5 kb of the 5′ or 3′ end of a recombination hotspot.
- At least 1, 5, 10, 20, 40, 60, 80, 100, or 150 different primer (or primer pairs) are specific for the same recombination hotspot, or are specific for the same recombination hotspot or a region near the recombination hotspot. In some embodiments, at least 1, 5, 10, 20, 40, 60, 80, 100, or 150 different primer (or primer pairs) are specific for a region between recombination hotspots (such as a region unlikely to have undergone recombination); these primers can be used to confirm the presence of haplotype blocks (such as those that would be expected depending on whether or not recombination has occurred).
- At least 10, 20, 30, 40, 50, 60, 70, 80, or 90% of the primers in the primer library are specific for a recombination hotspot and/or are specific for a region near a recombination hotspot (such as within 10, 8, 5, 3, 2, 1, or 0.5 kb of the 5′ or 3′ end of the recombination hotspot).
- the primer library is used to determine whether or not recombination has occurred at greater than or equal to 5; 10; 50; 100; 200; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; or 50,000 different recombination hotspots (such as known human recombination hotspots).
- the regions targeted by primers to a recombination hotspot or nearby region are approximately evenly spread out along that portion of the genome.
- At least 1, 5, 10, 20, 40, 60, 80, 100, or 150 different primer are specific for the a region at or near the end of a chromosome (such as a region within 20, 10, 5, 1, 0.5, 0.1, 0.01, or 0.001 mb from the end of a chromosome).
- at least 10, 20, 30, 40, 50, 60, 70, 80, or 90% of the primers in the primer library are specific for the a region at or near the end of a chromosome (such as a region within 20, 10, 5, 1, 0.5, 0.1, 0.01, or 0.001 mb from the end of a chromosome).
- At least 1, 5, 10, 20, 40, 60, 80, 100, or 150 different primer (or primer pairs) are specific for a region within a potential microdeletion in a chromosome. In some embodiments, at least 10, 20, 30, 40, 50, 60, 70, 80, or 90% of the primers in the primer library are specific for a region within a potential microdeletion in a chromosome.
- At least 10, 20, 30, 40, 50, 60, 70, 80, or 90% of the primers in the primer library are specific for a recombination hotspot, a region near a recombination hotspot, a region at or near the end of a chromosome, or a region within a potential microdeletion in a chromosome.
- the primers have one or more of the properties described herein. Other embodiments are disclosed in U.S. Ser. No. 61/987,407, filed May 1, 2014 and 62/066,514, filed Oct. 21, 2014.
- the invention features a kit, such as a kit for amplifying target loci in a nucleic acid sample for detecting deletions and/or duplications of chromosome segments or entire chromosomes using any of the methods described herein).
- the kit can include any of the primer libraries of the invention.
- the kit comprises a plurality of inner forward primers and optionally a plurality of inner reverse primers, and optionally outer forward primers and outer reverse primers, where each of the primers is designed to hybridize to the region of DNA immediately upstream and/or downstream from one of the target sites (e.g., polymorphic sites) on the target chromosome(s) or chromosome segment(s), and optionally additional chromosomes or chromosome segments.
- the kit includes instructions for using the primer library to amplify the target loci, such as for detecting one or more deletions and/or duplications of one or more chromosome segments or entire chromosomes using any of the methods described herein.
- kits of the invention provide primer pairs for detecting chromosomal aneuploidy and CNV determination, such as primer pairs for massively multiplex reactions for detecting chromosomal aneuploidy such as CNV (CoNVERGe) (Copy Number Variant Events Revealed Genotypically) and/or SNVs.
- the kits can include between at least 100, 200, 250, 300, 500, 1000, 2000, 2500, 3000, 5000, 10,000, 20,000, 25,000, 28,000, 50,000, or 75,000 and at most 200, 250, 300, 500, 1000, 2000, 2500, 3000, 5000, 10,000, 20,000, 25,000, 28,000, 50,000, 75,000, or 100,000 primer pairs that are shipped together.
- the primer pairs can be contained in a single vessel, such as a single tube or box, or multiple tubes or boxes.
- the primer pairs are pre-qualified by a commercial provider and sold together, and in other embodiments, a customer selects custom gene targets and/or primers and a commercial provider makes and ships the primer pool to the customer neither in one tube or a plurality of tubes.
- the kits include primers for detecting both CNVs and SNVs, especially CNVs and SNVs known to be correlated to at least one type of cancer.
- Kits for circulating DNA detection include standards and/or controls for circulating DNA detection.
- the standards and/or controls are sold and optionally shipped and packaged together with primers used to perform the amplification reactions provided herein, such as primers for performing CoNVERGe.
- the controls include polynucleotides such as DNA, including isolated genomic DNA that exhibits one or more chromosomal aneuploidies such as CNV and/or includes one or more SNVs.
- the standards and/or controls are called PlasmArt standards and include polynucleotides having sequence identity to regions of the genome known to exhibit CNV, especially in certain inherited diseases, and in certain disease states such as cancer, as well as a size distribution that reflects that of cfDNA fragments naturally found in plasma.
- Exemplary methods for making PlasmArt standards are provided in the examples herein.
- genomic DNA from a source known to include a chromosomal aneuoploidy is isolated, fragmented, purified and size selected.
- artificial cfDNA polynucleotide standards and/or controls can be made by spiking isolated polynucleotide samples prepared as summarized above, into DNA samples known not to exhibit a chromosomal aneuploidy and/or SNVs, at concentrations similar to those observed for cfDNA in vivo, such as between, for example, 0.01% and 20%, 0.1 and 15%, or 0.4 and 10% of DNA in that fluid.
- These standards/controls can be used as controls for assay design, characterization, development, and/or validation, and as quality control standards during testing, such as cancer testing performed in a CLIA lab and/or as standards included in research use only or diagnostic test kits.
- the invention provides a composition comprising at least 100 different amplicons (e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons) in solution in one reaction volume.
- at least 100 different amplicons e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons
- the amplicons are produced from the simultaneous PCR amplification of at least 100 different target loci (e.g., at least 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical target loci) using at least 100 different primers or primer pairs (e.g., at least 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers or primer pairs) in one reaction volume.
- target loci e.g., at least 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers or primer pairs
- (i) less than 60% of the amplified products are primer dimers and at least 40% of the amplified products are target amplicons
- (ii) less than 40% of the amplified products are primer dimers and at least 60% of the amplified products are target amplicons
- (iii) less than 20% of the amplified products are primer dimers and at least 80% of the amplified products are target amplicons
- (iv) less than 10% of the amplified products are primer dimers and at least 90% of the amplified products are target amplicons
- (v) less than 5% of the amplified products are primer dimers and at least 95% of the amplified products are target amplicons.
- the length of the target amplicons is between 50 and 100 nucleotides, such as between 60 and 80 nucleotides, or 60 to 75 nucleotides, inclusive. In some embodiments, the range of the length of the target amplicons is less than 50, 25, 15, 10, or 5 nucleotides. In some embodiments, the range of the length of the target amplicons is between 5 to 50 nucleotides, such as 5 to 25 nucleotides, 5 to 15 nucleotides, or 5 to 10 nucleotides, inclusive.
- the composition includes at least 1,000 different amplicons in solution in one reaction volume; wherein the amplicons are produced from the simultaneous PCR amplification of at least 1,000 different target human loci using at least 1,000 different primers in one reaction volume; wherein (i) less than 20% of the amplicons are primer dimers, and (ii) at least 80% of the amplicons comprise one of the target human loci and are between 50 and 100 nucleotides in length, inclusive.
- the composition consists essentially of, or consists of one or more of the following: amplicons, primers (such as any of the primers disclosed herein), free nucleotide(s), non-human or non-naturally occurring enzyme(s), buffer(s), or any combination thereof.
- a large percentage or substantially all of the primers used for the multiplex PCR method are consumed during the PCR reaction or are removed from the reaction volume after the PCR amplification.
- at least 80, 90, 92, 94, 96, 98, 99, or 100% of the primer molecules are extended to form amplified products.
- for at least 80, 90, 92, 94, 96, 98, 99, or 100% of target loci at least 80, 90, 92, 94, 96, 98, 99, or 100% of the primer molecules to that target loci are extended to form amplified products.
- multiple cycles are performed until all or substantially all of the primers are consumed.
- a higher percentage of the primers can be consumed by decreasing the initial primer concentration and/or increasing the number of PCR cycles that are performed.
- at least 80, 90, 95, 96, 97, 98, 99, or 100% of the nucleic acids in the composition are amplicons (instead of unextended dimers).
- the invention provides a composition comprising at least 100 different primers or primer pairs (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical primers or primer pairs) and at least 100 different amplicons (e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons) in solution in one reaction volume.
- primers or primer pairs e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non
- the amplicons are produced from the simultaneous PCR amplification of at least 100 different target loci (e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical target loci) using the primers or primer pairs in one reaction volume.
- target loci e.g., at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical target loci
- (i) less than 60% of the amplified products are primer dimers and at least 40% of the amplified products are target amplicons
- (ii) less than 40% of the amplified products are primer dimers and at least 60% of the amplified products are target amplicons
- (iii) less than 20% of the amplified products are primer dimers and at least 80% of the amplified products are target amplicons
- (iv) less than 10% of the amplified products are primer dimers and at least 90% of the amplified products are target amplicons
- (v) less than 5% of the amplified products are primer dimers and at least 95% of the amplified products are target amplicons.
- the length of the target amplicons is between 50 and 100 nucleotides, such as between 60 and 80 nucleotides, or 60 to 75 nucleotides, inclusive. In some embodiments, the range of the length of the target amplicons is less than 50, 25, 15, 10, or 5 nucleotides. In some embodiments, the range of the length of the target amplicons is between 5 to 50 nucleotides, such as 5 to 25 nucleotides, 5 to 15 nucleotides, or 5 to 10 nucleotides, inclusive.
- the composition comprising at least 1,000 different primers and at least 1,000 different amplicons in solution in one reaction volume; wherein the amplicons are produced from the simultaneous PCR amplification of at least 1,000 different target human loci with the primers in one reaction volume; wherein (i) less than 20% of the amplicons are primer dimers, and (ii) at least 80% of the amplicons comprise one of the target loci and are between 50 and 100 nucleotides in length, inclusive.
- the composition consists essentially of, or consists of one or more of the following: amplicons, primers (such as any of the primers disclosed herein), free nucleotide(s), non-human or non-naturally occurring enzyme(s), buffer(s), or any combination thereof.
- the amplification of different target loci is substantially uniform.
- target loci such as nonpolymorphic target loci or polymorphic target loci that are amplified regardless of what allele is present at the polymorphic site
- target loci that were present in the same amount (or substantially the same amount) in the initial unamplified sample are also present in substantially the same amount in the PCR-amplified products.
- the target loci that is amplified the most out of these targets (which can be all of the targets or a subset of the targets for a library) is amplified less than 2,000; 1,500; 1,000; 500, 400, 300, 200, 100%, 50, 20, 10, 5, or 2% more than the target loci that is amplified the least out of these targets.
- the target amplicon in greatest abundance out of these target amplicons (which can be all of the target amplicons or a subset of the target amplicons produced by a library) is present in an amount that is less than 2,000; 1,500; 1,000; 500, 400, 300, 200, 100%, 50, 20, 10, 5, or 2% more than the target amplicon in least abundance out of these target amplicons.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target amplicons are present in an amount that is at least 5, 10, 15, 20, 40, 50, 60, 70, 80, or 90% of the amount of the target amplicon in greatest abundance.
- the uniformity can be increased by using primers with more similar primer lengths, target amplicon lengths, GC contents, melting temperatures, or any combination thereof. In some embodiments, the uniformity can be increased by using TMAC in the reaction volume during amplification. In some embodiments, having most or all the primers consumed in the PCR reaction increases the uniformity of amplification.
- the uniformity in DOR can be measured using standard methods such as depth of read slope (DOR slope), normalized median depth of read (nmDOR), or breadth of read (BOR).
- DOR slope represents the slope of the line in the linear portion of a list of loci sorted in descending DOR order. Closer to zero is better, as it represents a flat line.
- the uniformity in DOR can be measured using the Percent of reads in the 90 th -95 th Percentile. For this measurement, the loci are sorted in descending DOR order. In the ideal DOR distribution, the 90 th -95 th percentile should contain 5% of reads.
- the reads of all loci between the 90 th Percentile and 95 th percentile are counted and divided by the total reads for all loci.
- the magnitude of the DOR slope is less than 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005, or 0.000001. In some embodiments, the magnitude of the DOR slope is between 0 and 0.005, such as 0.000001 to 0.005, such as between 0.000005 to 0.00001, 0.00001 to 0.00005, 0.00005 to 0.0001, 0.0001 to 0.0005, 0.0005 to 0.001, or 0.001 to 0.005, inclusive.
- the percent of reads in the 90 th -95 th percentile is between 0.2 and 9%, such as between 1 to 8%, 2 to 7%, 0.2 to 1.0%, 1 to 2%, 2 to 3%, 2 to 4%, 3 to 4%, 4 to 5%, 5 to 6%, or 6 to 8%, or 7 to 9& inclusive.
- the invention features a composition comprising at least 100 different amplicons (e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons) with the magnitude of the DOR slope in any of these ranges or with a percent of reads in the 90 th -95 th percentile in any of these ranges.
- at least 100 different amplicons e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons
- the amplification method produces at least 100 different amplicons (e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons) with the magnitude of the DOR slope in any of these ranges or with a percent of reads in the 90 th -95 th percentile in any of these ranges.
- amplicons e.g., at least 300, 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 non-identical amplicons
- the invention features methods of amplifying target loci in a nucleic acid sample that involve (i) contacting the nucleic acid sample with a library of primers that simultaneously hybridize to least 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci to produce a reaction mixture; and (ii) subjecting the reaction mixture to primer extension reaction conditions (such as PCR conditions) to produce amplified products that include target amplicons.
- primer extension reaction conditions such as PCR conditions
- the method also includes determining the presence or absence of at least one target amplicon (such as at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target amplicons). In some embodiments, the method also includes determining the sequence of at least one target amplicon (such as at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target amplicons). In some embodiments, at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target loci are amplified.
- At least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, 99.5, or 100% of the target loci are amplified at least 5, 10, 20, 40, 50, 60, 80, 100, 120, 150, 200, 300, or 400-fold.
- the method involves multiplex PCR and sequencing (such as high throughput sequencing).
- long annealing times and/or low primer concentrations are used.
- the length of the annealing step is greater than 3, 5, 8, 10, 15, 20, 30, 45, 60, 75, 90, 120, 150, or 180 minutes.
- the length of the annealing step (per PCR cycle) is between 5 and 180 minutes, such as 5 to 60, 10 to 60, 5 to 30, or 10 to 30 minutes, inclusive.
- the length of the annealing step is greater than 5 minutes (such greater than 10, or 15 minutes), and the concentration of each primer is less than 20 nM.
- the length of the annealing step is greater than 5 minutes (such greater than 10, or 15 minutes), and the concentration of each primer is between 1 to 20 nM, or 1 to 10 nM, inclusive. In various embodiments, the length of the annealing step is greater than 20 minutes (such as greater than 30, 45, 60, or 90 minutes), and the concentration of each primer is less than 1 nM.
- the solution may become viscous due to the large amount of primers in solution. If the solution is too viscous, one can reduce the primer concentration to an amount that is still sufficient for the primers to bind the template DNA.
- less than 60,000 different primers are used and the concentration of each primer is less than 20 nM, such as less than 10 nM or between 1 and 10 nM, inclusive.
- more than 60,000 different primers are used and the concentration of each primer is less than 10 nM, such as less than 5 nM or between 1 and 10 nM, inclusive.
- the annealing temperature can optionally be higher than the melting temperatures of some or all of the primers (in contrast to other methods that use an annealing temperature below the melting temperatures of the primers) (Example 25).
- the melting temperature (T m ) is the temperature at which one-half (50%) of a DNA duplex of an oligonucleotide (such as a primer) and its perfect complement dissociates and becomes single strand DNA.
- T A is the temperature one runs the PCR protocol at. For prior methods, it is usually 5 C below the lowest T m of the primers used, thus close to all possible duplexes are formed (such that essentially all the primer molecules bind the template nucleic acid).
- the T A is higher than (T m ), where at a given moment only a small fraction of the targets have a primer annealed (such as only ⁇ 1-5%). If these get extended, they are removed from the equilibrium of annealing and dissociating primers and target (as extension increases T m quickly to above 70 C), and a new ⁇ 1-5% of targets has primers.
- the reaction long time for annealing one can get ⁇ 100% of the targets copied per cycle.
- the most stable molecule pairs (those with perfect DNA pairing between the primer and the template DNA) are preferentially extended to produce the correct target amplicons.
- the same experiment was performed with 57° C. as the annealing temperature and with 63° C. as the annealing temperature with primers that had a melting temperature below 63° C.
- the percent of mapped reads for the amplified PCR products was as low as 50% (with ⁇ 50% of the amplified products being primer-dimer).
- the annealing temperature was 63° C., the percentage of amplified products that were primer dimer dropped to ⁇ 2%.
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C. greater than the melting temperature (such as the empirically measured or calculated T m ) of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers.
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C.
- the melting temperature (such as the empirically measured or calculated T m ) of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers, and the length of the annealing step (per PCR cycle) is greater than 1, 3, 5, 8, 10, 15, 20, 30, 45, 60, 75, 90, 120, 150, or 180 minutes.
- the melting temperature such as the empirically measured or calculated T m
- the annealing temperature is between 1 and 15° C. (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15° C., inclusive) greater than the melting temperature (such as the empirically measured or calculated T m ) of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers.
- the annealing temperature is between 1 and 15° C.
- the melting temperature (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15° C., inclusive) greater than the melting temperature (such as the empirically measured or calculated T m ) of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers, and the length of the annealing step (per PCR cycle) is between 5 and 180 minutes, such as 5 to 60, 10 to 60, 5 to 30, or 10 to 30 minutes, inclusive.
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C. greater than the highest melting temperature (such as the empirically measured or calculated T m ) of the primers. In some embodiments, the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C. greater than the highest melting temperature (such as the empirically measured or calculated T m ) of the primers, and the length of the annealing step (per PCR cycle) is greater than 1, 3, 5, 8, 10, 15, 20, 30, 45, 60, 75, 90, 120, 150, or 180 minutes
- the annealing temperature is between 1 and 15° C. (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15° C., inclusive) greater than the highest melting temperature (such as the empirically measured or calculated T m ) of the primers. In some embodiments, the annealing temperature is between 1 and 15° C.
- the length of the annealing step is between 5 and 180 minutes, such as 5 to 60, 10 to 60, 5 to 30, or 10 to 30 minutes, inclusive.
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C. greater than the average melting temperature (such as the empirically measured or calculated T m ) of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers.
- the annealing temperature is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15° C.
- the average melting temperature (such as the empirically measured or calculated T m ) of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers, and the length of the annealing step (per PCR cycle) is greater than 1, 3, 5, 8, 10, 15, 20, 30, 45, 60, 75, 90, 120, 150, or 180 minutes.
- the average melting temperature such as the empirically measured or calculated T m
- the annealing temperature is between 1 and 15° C. (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15° C., inclusive) greater than the average melting temperature (such as the empirically measured or calculated T m ) of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers.
- the annealing temperature is between 1 and 15° C.
- the average melting temperature (such as the empirically measured or calculated T m ) of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; 100,000; or all of the non-identical primers, and the length of the annealing step (per PCR cycle) is between 5 and 180 minutes, such as 5 to 60, 10 to 60, 5 to 30, or 10 to 30 minutes, inclusive.
- the annealing temperature is between 50 to 70° C., such as between 55 to 60, 60 to 65, or 65 to 70° C., inclusive. In some embodiments, the annealing temperature is between 50 to 70° C., such as between 55 to 60, 60 to 65, or 65 to 70° C., inclusive, and either (i) the length of the annealing step (per PCR cycle) is greater than 3, 5, 8, 10, 15, 20, 30, 45, 60, 75, 90, 120, 150, or 180 minutes or (ii) the length of the annealing step (per PCR cycle) is between 5 and 180 minutes, such as 5 to 60, 10 to 60, 5 to 30, or 10 to 30 minutes, inclusive.
- one or more of the following conditions are used for empirical measurement of T m or are assumed for calculation of T m : temperature: of 60.0° C., primer concentration of 100 nM, and/or salt concentration of 100 mM. In some embodiments, other conditions are used, such as the conditions that will be used for multiplex PCR with the library. In some embodiments, 100 mM KCl, 50 mM (NH 4 ) 2 SO 4 , 3 mM MgCl 2 , 7.5 nM of each primer, and 50 mM TMAC, at pH 8.1 is used.
- the T m is calculated using the Primer3 program (libprimer3 release 2.2.3) using the built-in SantaLucia parameters (the world wide web at primer3.sourceforge.net, which is hereby incorporated by reference in its entirety).
- the T m values may be calculated using the method in Example 25.
- the calculated melting temperature for a primer is the temperature at which half of the primers molecules are expected to be annealed. As discussed above, even at a temperature higher than the calculated melting temperature, a percentage of primers will be annealed, and therefore PCR extension is possible.
- the empirically measured Tm (the actual Tm) is determined by using a thermostatted cell in a UV spectrophotometer.
- temperature is plotted vs. absorbance, generating an S-shaped curve with two plateaus. The absorbance reading halfway between the plateaus corresponds to Tm.
- the absorbance at 260 nm is measured as a function of temperature on an ultrospec 2100 pr UV/visible spectrophotometer (Amershambiosciences) (see, e.g., Takiya et al., “An empirical approach for thermal stability (Tm) prediction of PNA/DNA duplexes,” Nucleic Acids Symp Ser (Oxf); (48):131-2, 2004, which is hereby incorporated by reference in its entirety).
- absorbance at 260 nm is measured by decreasing the temperature in steps of 2° C. per minute from 95 to 20° C.
- a primer and its perfect complement (such as 2 uM of each paired oligomer) are mixed and then annealing is performed by heating the sample to 95° C., keeping it there for 5 minutes, followed by cooling to room temperature during 30 minutes, and keeping the samples at 95° C. for at least 60 minutes.
- melting temperature is determined by analyzing the data using SWIFT Tm software.
- the method includes empirically measuring or calculating (such as calculating with a computer) the melting temperature for at least 50, 80, 90, 92, 94, 96, 98, 99, or 100% of the primers in the library either before or after the primers are used for PCR amplification of target loci.
- the library comprises a microarray. In some embodiments, the library does not comprise a microarray.
- most or all of the primers are extended to form amplified products. Having all the primers consumed in the PCR reaction increases the uniformity of amplification of the different target loci since the same or similar number of primer molecules are converted to target amplicons for each target loci.
- at least 80, 90, 92, 94, 96, 98, 99, or 100% of the primer molecules are extended to form amplified products.
- at least 80, 90, 92, 94, 96, 98, 99, or 100% of target loci at least 80, 90, 92, 94, 96, 98, 99, or 100% of the primer molecules to that target loci are extended to form amplified products.
- multiple cycles are performed until this percentage of the primers are consumed. In some embodiments, multiple cycles are performed until all or substantially all of the primers are consumed. If desired, a higher percentage of the primers can be consumed by decreasing the initial primer concentration and/or increasing the number of PCR cycles that are performed.
- the PCR methods may be performed with microliter reaction volumes, for which it can be harder to achieve specific PCR amplification (due to the lower local concentration of the template nucleic acids) compared to nanoliter or picoliter reaction volumes used in microfluidics applications.
- the reaction volume is between 1 and 60 uL, such as between 5 and 50 uL, 10 and 50 uL, 10 and 20 uL, 20 and 30 uL, 30 and 40 uL, or 40 to 50 uL, inclusive.
- a method disclosed herein uses highly efficient highly multiplexed targeted PCR to amplify DNA followed by high throughput sequencing to determine the allele frequencies at each target locus.
- the ability to multiplex more than about 50 or 100 PCR primers in one reaction volume in a way that most of the resulting sequence reads map to targeted loci is novel and non-obvious.
- One technique that allows highly multiplexed targeted PCR to perform in a highly efficient manner involves designing primers that are unlikely to hybridize with one another.
- the PCR probes are selected by creating a thermodynamic model of potentially adverse interactions between at least 300; at least 500; at least 750; at least 1,000; at least 2,000; at least 5,000; at least 7,500; at least 10,000; at least 20,000; at least 25,000; at least 30,000; at least 40,000; at least 50,000; at least 75,000; or at least 100,000 potential primer pairs, or unintended interactions between primers and sample DNA, and then using the model to eliminate designs that are incompatible with other the designs in the pool.
- Another technique that allows highly multiplexed targeted PCR to perform in a highly efficient manner is using a partial or full nesting approach to the targeted PCR.
- Using one or a combination of these approaches allows multiplexing of at least 300, at least 800, at least 1,200, at least 4,000 or at least 10,000 primers in a single pool with the resulting amplified DNA comprising a majority of DNA molecules that, when sequenced, will map to targeted loci.
- Using one or a combination of these approaches allows multiplexing of a large number of primers in a single pool with the resulting amplified DNA comprising greater than 50%, greater than 60%, greater than 67%, greater than 80%, greater than 90%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, greater than 99%, or greater than 99.5% DNA molecules that map to targeted loci.
- the detection of the target genetic material may be done in a multiplexed fashion.
- the number of genetic target sequences that may be run in parallel can range from one to ten, ten to one hundred, one hundred to one thousand, one thousand to ten thousand, ten thousand to one hundred thousand, one hundred thousand to one million, or one million to ten million.
- Prior attempts to multiplex more than 100 primers per pool have resulted in significant problems with unwanted side reactions such as primer-dimer formation.
- PCR can be used to target specific locations of the genome.
- the original DNA is highly fragmented (typically less than 500 bp, with an average length less than 200 bp).
- both forward and reverse primers anneal to the same fragment to enable amplification. Therefore, if the fragments are short, the PCR assays must amplify relatively short regions as well.
- the polymorphic positions are too close the polymerase binding site, it could result in biases in the amplification from different alleles.
- PCR primers that target polymorphic regions such as those containing SNPs, are typically designed such that the 3′ end of the primer will hybridize to the base immediately adjacent to the polymorphic base or bases.
- the 3′ ends of both the forward and reverse PCR primers are designed to hybridize to bases that are one or a few positions away from the variant positions (polymorphic sites) of the targeted allele.
- the number of bases between the polymorphic site (SNP or otherwise) and the base to which the 3′ end of the primer is designed to hybridize may be one base, it may be two bases, it may be three bases, it may be four bases, it may be five bases, it may be six bases, it may be seven to ten bases, it may be eleven to fifteen bases, or it may be sixteen to twenty bases.
- the forward and reverse primers may be designed to hybridize a different number of bases away from the polymorphic site.
- PCR assay can be generated in large numbers, however, the interactions between different PCR assays makes it difficult to multiplex them beyond about one hundred assays.
- Various complex molecular approaches can be used to increase the level of multiplexing, but it may still be limited to fewer than 100, perhaps 200, or possibly 500 assays per reaction.
- Samples with large quantities of DNA can be split among multiple sub-reactions and then recombined before sequencing. For samples where either the overall sample or some subpopulation of DNA molecules is limited, splitting the sample would introduce statistical noise.
- a small or limited quantity of DNA may refer to an amount below 10 pg, between 10 and 100 pg, between 100 pg and 1 ng, between 1 and 10 ng, or between 10 and 100 ng.
- this method is particularly useful on small amounts of DNA where other methods that involve splitting into multiple pools can cause significant problems related to introduced stochastic noise, this method still provides the benefit of minimizing bias when it is run on samples of any quantity of DNA.
- a universal pre-amplification step may be used to increase the overall sample quantity.
- this pre-amplification step should not appreciably alter the allelic distributions.
- a method of the present disclosure can generate PCR products that are specific to a large number of targeted loci, specifically 1,000 to 5,000 loci, 5,000 to 10,000 loci or more than 10,000 loci, for genotyping by sequencing or some other genotyping method, from limited samples such as single cells or DNA from body fluids.
- PCR products that are specific to a large number of targeted loci, specifically 1,000 to 5,000 loci, 5,000 to 10,000 loci or more than 10,000 loci, for genotyping by sequencing or some other genotyping method, from limited samples such as single cells or DNA from body fluids.
- primer side products such as primer dimers, and other artifacts.
- primer dimers and other artifacts may be ignored, as these are not detected.
- n targets of a sample greater than 50, greater than 100, greater than 500, or greater than 1,000
- FLUIDIGM ACCESS ARRAY 48 reactions per sample in microfluidic chips
- DROPLET PCR by RAIN DANCE TECHNOLOGY
- Described here is a method to effectively and efficiently amplify many PCR reactions that is applicable to cases where only a limited amount of DNA is available.
- the method may be applied for analysis of single cells, body fluids, mixtures of DNA such as the free floating DNA found in maternal plasma, biopsies, environmental and/or forensic samples.
- the targeted sequencing may involve one, a plurality, or all of the following steps. a) Generate and amplify a library with adaptor sequences on both ends of DNA fragments. b) Divide into multiple reactions after library amplification. c) Generate and optionally amplify a library with adaptor sequences on both ends of DNA fragments. d) Perform 1000- to 10,000-plex amplification of selected targets using one target specific “Forward” primer per target and one tag specific primer. e) Perform a second amplification from this product using “Reverse” target specific primers and one (or more) primer specific to a universal tag that was introduced as part of the target specific forward primers in the first round.
- f) Perform a 1000-plex preamplification of selected target for a limited number of cycles. g) Divide the product into multiple aliquots and amplify subpools of targets in individual reactions (for example, 50 to 500-plex, though this can be used all the way down to singleplex. h) Pool products of parallel subpools reactions. i) During these amplifications primers may carry sequencing compatible tags (partial or full length) such that the products can be sequenced.
- RNA samples such as genomic DNA obtained from plasma.
- the amplified sample may be relatively free of primer dimer products and have low allelic bias at target loci. If during or after amplification the products are appended with sequencing compatible adaptors, analysis of these products can be performed by sequencing.
- One solution is to split the 5000-plex reaction into several lower-plexed amplifications, e.g. one hundred 50-plex or fifty 100-plex reactions, or to use microfluidics or even to split the sample into individual PCR reactions.
- the sample DNA is limited, such as in non-invasive prenatal diagnostics from pregnancy plasma, dividing the sample between multiple reactions should be avoided as this will result in bottlenecking.
- a method of the present disclosure can be used for preferentially enriching a DNA mixture at a plurality of loci, the method comprising one or more of the following steps: generating and amplifying a library from a mixture of DNA where the molecules in the library have adaptor sequences ligated on both ends of the DNA fragments, dividing the amplified library into multiple reactions, performing a first round of multiplex amplification of selected targets using one target specific “forward” primer per target and one or a plurality of adaptor specific universal “reverse” primers.
- a method of the present disclosure further includes performing a second amplification using “reverse” target specific primers and one or a plurality of primers specific to a universal tag that was introduced as part of the target specific forward primers in the first round.
- the method may involve a fully nested, hemi-nested, semi-nested, one sided fully nested, one sided hemi-nested, or one sided semi-nested PCR approach.
- a method of the present disclosure is used for preferentially enriching a DNA mixture at a plurality of loci, the method comprising performing a multiplex preamplification of selected targets for a limited number of cycles, dividing the product into multiple aliquots and amplifying subpools of targets in individual reactions, and pooling products of parallel subpools reactions. Note that this approach could be used to perform targeted amplification in a manner that would result in low levels of allelic bias for 50-500 loci, for 500 to 5,000 loci, for 5,000 to 50,000 loci, or even for 50,000 to 500,000 loci.
- the primers carry partial or full length sequencing compatible tags.
- the workflow may entail (1) extracting DNA such as plasma DNA, (2) preparing fragment library with universal adaptors on both ends of fragments, (3) amplifying the library using universal primers specific to the adaptors, (4) dividing the amplified sample “library” into multiple aliquots, (5) performing multiplex (e.g. about 100-plex, 1,000, or 10,000-plex with one target specific primer per target and a tag-specific primer) amplifications on aliquots, (6) pooling aliquots of one sample, (7) barcoding the sample, (8) mixing the samples and adjusting the concentration, (9) sequencing the sample.
- the workflow may comprise multiple sub-steps that contain one of the listed steps (e.g.
- step (2) of preparing the library step could entail three enzymatic steps (blunt ending, dA tailing and adaptor ligation) and three purification steps). Steps of the workflow may be combined, divided up or performed in different order (e.g. bar coding and pooling of samples).
- PCR assays can have the tags, for example sequencing tags, (usually a truncated form of 15-25 bases). After multiplexing, PCR multiplexes of a sample are pooled and then the tags are completed (including bar coding) by a tag-specific PCR (could also be done by ligation).
- the full sequencing tags can be added in the same reaction as the multiplexing.
- targets may be amplified with the target specific primers, subsequently the tag-specific primers take over to complete the SQ-adaptor sequence.
- the PCR primers may carry no tags.
- the sequencing tags may be appended to the amplification products by ligation.
- highly multiplex PCR followed by evaluation of amplified material by clonal sequencing may be used for various applications such as the detection of fetal aneuploidy.
- traditional multiplex PCRs evaluate up to fifty loci simultaneously
- the approach described herein may be used to enable simultaneous evaluation of more than 50 loci simultaneously, more than 100 loci simultaneously, more than 500 loci simultaneously, more than 1,000 loci simultaneously, more than 5,000 loci simultaneously, more than 10,000 loci simultaneously, more than 50,000 loci simultaneously, and more than 100,000 loci simultaneously.
- up to, including and more than 10,000 distinct loci can be evaluated simultaneously, in a single reaction, with sufficiently good efficiency and specificity to make non-invasive prenatal aneuploidy diagnoses and/or copy number calls with high accuracy.
- Assays may be combined in a single reaction with the entirety of a sample such as a cfDNA sample isolated from maternal plasma, a fraction thereof, or a further processed derivative of the cfDNA sample.
- the sample e.g., cfDNA or derivative
- the sample may also be split into multiple parallel multiplex reactions.
- the optimum sample splitting and multiplex is determined by trading off various performance specifications. Due to the limited amount of material, splitting the sample into multiple fractions can introduce sampling noise, handling time, and increase the possibility of error. Conversely, higher multiplexing can result in greater amounts of spurious amplification and greater inequalities in amplification both of which can reduce test performance.
- LM-PCR ligation mediated PCR
- MDA multiple displacement amplification
- DOP-PCR random priming is used to amplify the original material DNA.
- Each method has certain characteristics such as uniformity of amplification across all represented regions of the genome, efficiency of capture and amplification of original DNA, and amplification performance as a function of the length of the fragment.
- LM-PCR may be used with a single heteroduplexed adaptor having a 3-prime tyrosine.
- the heteroduplexed adaptor enables the use of a single adaptor molecule that may be converted to two distinct sequences on 5-prime and 3-prime ends of the original DNA fragment during the first round of PCR.
- sample DNA Prior to ligation, sample DNA may be blunt ended, and then a single adenosine base is added to the 3-prime end.
- the DNA Prior to ligation the DNA may be cleaved using a restriction enzyme or some other cleavage method.
- the 3-prime adenosine of the sample fragments and the complementary 3-prime tyrosine overhang of adaptor can enhance ligation efficiency.
- the extension step of the PCR amplification may be limited from a time standpoint to reduce amplification from fragments longer than about 200 bp, about 300 bp, about 400 bp, about 500 bp or about 1,000 bp. Since longer DNA found in the maternal plasma is nearly exclusively maternal, this may result in the enrichment of fetal DNA by 10-50% and improvement of test performance.
- a number of reactions were run using conditions as specified by commercially available kits; the resulted in successful ligation of fewer than 10% of sample DNA molecules. A series of optimizations of the reaction conditions for this improved ligation to approximately 70%.
- Mini-PCR method is desirable for samples containing short nucleic acids, digested nucleic acids, or fragmented nucleic acids, such as cfDNA.
- Traditional PCR assay design results in significant losses of distinct fetal molecules, but losses can be greatly reduced by designing very short PCR assays, termed mini-PCR assays.
- Fetal cfDNA in maternal serum is highly fragmented and the fragment sizes are distributed in approximately a Gaussian fashion with a mean of 160 bp, a standard deviation of 15 bp, a minimum size of about 100 bp, and a maximum size of about 220 bp.
- fragment start and end positions with respect to the targeted polymorphisms vary widely among individual targets and among all targets collectively and the polymorphic site of one particular target locus may occupy any position from the start to the end among the various fragments originating from that locus.
- mini-PCR may equally well refer to normal PCR with no additional restrictions or limitations.
- telomere length L is the distance between the 5-prime ends of the forward and reverse priming sites.
- Amplicon length that is shorter than typically used by those known in the art may result in more efficient measurements of the desired polymorphic loci by only requiring short sequence reads.
- a substantial fraction of the amplicons should be less than 100 bp, less than 90 bp, less than 80 bp, less than 70 bp, less than 65 bp, less than 60 bp, less than 55 bp, less than 50 bp, or less than 45 bp.
- the 3′ end of the inner forward and reverse primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases.
- the number of bases may be between 6 and 10 bases, but may equally well be between 4 and 15 bases, between three and 20 bases, between two and 30 bases, or between 1 and 60 bases, and achieve substantially the same end.
- Multiplex PCR may involve a single round of PCR in which all targets are amplified or it may involve one round of PCR followed by one or more rounds of nested PCR or some variant of nested PCR.
- Nested PCR consists of a subsequent round or rounds of PCR amplification using one or more new primers that bind internally, by at least one base pair, to the primers used in a previous round.
- Nested PCR reduces the number of spurious amplification targets by amplifying, in subsequent reactions, only those amplification products from the previous one that have the correct internal sequence. Reducing spurious amplification targets improves the number of useful measurements that can be obtained, especially in sequencing.
- Nested PCR typically entails designing primers completely internal to the previous primer binding sites, necessarily increasing the minimum DNA segment size required for amplification.
- the larger assay size reduces the number of distinct cfDNA molecules from which a measurement can be obtained.
- a multiplex pool of PCR assays are designed to amplify potentially heterozygous SNP or other polymorphic or non-polymorphic loci on one or more chromosomes and these assays are used in a single reaction to amplify DNA.
- the number of PCR assays may be between 50 and 200 PCR assays, between 200 and 1,000 PCR assays, between 1,000 and 5,000 PCR assays, or between 5,000 and 20,000 PCR assays (50 to 200-plex, 200 to 1,000-plex, 1,000 to 5,000-plex, 5,000 to 20,000-plex, more than 20,000-plex respectively).
- a multiplex pool of about 10,000 PCR assays are designed to amplify potentially heterozygous SNP loci on chromosomes X, Y, 13, 18, and 21 and 1 or 2 and these assays are used in a single reaction to amplify cfDNA obtained from a material plasma sample, chorion villus samples, amniocentesis samples, single or a small number of cells, other bodily fluids or tissues, cancers, or other genetic matter.
- the SNP frequencies of each locus may be determined by clonal or some other method of sequencing of the amplicons.
- Statistical analysis of the allele frequency distributions or ratios of all assays may be used to determine if the sample contains a trisomy of one or more of the chromosomes included in the test.
- the original cfDNA samples is split into two samples and parallel 5,000-plex assays are performed.
- the original cfDNA samples is split into n samples and parallel (10,000/n)-plex assays are performed where n is between 2 and 12, or between 12 and 24, or between 24 and 48, or between 48 and 96. Data is collected and analyzed in a similar manner to that already described. Note that this method is equally well applicable to detecting translocations, deletions, duplications, and other chromosomal abnormalities.
- tails with no homology to the target genome may also be added to the 3-prime or 5-prime end of any of the primers. These tails facilitate subsequent manipulations, procedures, or measurements.
- the tail sequence can be the same for the forward and reverse target specific primers.
- different tails may be used for the forward and reverse target specific primers.
- a plurality of different tails may be used for different loci or sets of loci. Certain tails may be shared among all loci or among subsets of loci. For example, using forward and reverse tails corresponding to forward and reverse sequences required by any of the current sequencing platforms can enable direct sequencing following amplification.
- the tails can be used as common priming sites among all amplified targets that can be used to add other useful sequences.
- the inner primers may contain a region that is designed to hybridize either upstream or downstream of the targeted locus (e.g, a polymorphic locus).
- the primers may contain a molecular barcode.
- the primer may contain a universal priming sequence designed to allow PCR amplification.
- a 10,000-plex PCR assay pool is created such that forward and reverse primers have tails corresponding to the required forward and reverse sequences required by a high throughput sequencing instrument such as the HISEQ, GAIIX, or MYSEQ available from ILLUMINA.
- a high throughput sequencing instrument such as the HISEQ, GAIIX, or MYSEQ available from ILLUMINA.
- included 5-prime to the sequencing tails is an additional sequence that can be used as a priming site in a subsequent PCR to add nucleotide barcode sequences to the amplicons, enabling multiplex sequencing of multiple samples in a single lane of the high throughput sequencing instrument.
- a 10,000-plex PCR assay pool is created such that reverse primers have tails corresponding to the required reverse sequences required by a high throughput sequencing instrument.
- a subsequent PCR amplification may be performed using a another 10,000-plex pool having partly nested forward primers (e.g. 6-bases nested) for all targets and a reverse primer corresponding to the reverse sequencing tail included in the first round.
- This subsequent round of partly nested amplification with just one target specific primer and a universal primer limits the required size of the assay, reducing sampling noise, but greatly reduces the number of spurious amplicons.
- the sequencing tags can be added to appended ligation adaptors and/or as part of PCR probes, such that the tag is part of the final amplicon.
- Fetal fraction affects performance of the test. There are a number of ways to enrich the fetal fraction of the DNA found in maternal plasma. Fetal fraction can be increased by the previously described LM-PCR method already discussed as well as by a targeted removal of long maternal fragments.
- an additional multiplex PCR reaction may be carried out to selectively remove long and largely maternal fragments corresponding to the loci targeted in the subsequent multiplex PCR. Additional primers are designed to anneal a site a greater distance from the polymorphism than is expected to be present among cell free fetal DNA fragments. These primers may be used in a one cycle multiplex PCR reaction prior to multiplex PCR of the target polymorphic loci.
- These distal primers are tagged with a molecule or moiety that can allow selective recognition of the tagged pieces of DNA.
- these molecules of DNA may be covalently modified with a biotin molecule that allows removal of newly formed double stranded DNA comprising these primers after one cycle of PCR. Double stranded DNA formed during that first round is likely maternal in origin. Removal of the hybrid material may be accomplish by the used of magnetic streptavidin beads. There are other methods of tagging that may work equally well.
- size selection methods may be used to enrich the sample for shorter strands of DNA; for example those less than about 800 bp, less than about 500 bp, or less than about 300 bp. Amplification of short fragments can then proceed as usual.
- the mini-PCR method described in this disclosure enables highly multiplexed amplification and analysis of hundreds to thousands or even millions of loci in a single reaction, from a single sample.
- the detection of the amplified DNA can be multiplexed; tens to hundreds of samples can be multiplexed in one sequencing lane by using barcoding PCR.
- This multiplexed detection has been successfully tested up to 49-plex, and a much higher degree of multiplexing is possible. In effect, this allows hundreds of samples to be genotyped at thousands of SNPs in a single sequencing run.
- the method allows determination of genotype and heterozygosity rate and simultaneously determination of copy number, both of which may be used for the purpose of aneuploidy detection.
- This method is particularly useful in detecting aneuploidy of a gestating fetus from the free floating DNA found in maternal plasma.
- This method may be used as part of a method for sexing a fetus, and/or predicting the paternity of the fetus. It may be used as part of a method for mutation dosage.
- This method may be used for any amount of DNA or RNA, and the targeted regions may be SNPs, other polymorphic regions, non-polymorphic regions, and combinations thereof.
- ligation mediated universal-PCR amplification of fragmented DNA may be used.
- the ligation mediated universal-PCR amplification can be used to amplify plasma DNA, which can then be divided into multiple parallel reactions. It may also be used to preferentially amplify short fragments, thereby enriching fetal fraction.
- the addition of tags to the fragments by ligation can enable detection of shorter fragments, use of shorter target sequence specific portions of the primers and/or annealing at higher temperatures which reduces unspecific reactions.
- the methods described herein may be used for a number of purposes where there is a target set of DNA that is mixed with an amount of contaminating DNA.
- the target DNA and the contaminating DNA may be from individuals who are genetically related.
- genetic abnormalities in a fetus (target) may be detected from maternal plasma which contains fetal (target) DNA and also maternal (contaminating) DNA; the abnormalities include whole chromosome abnormalities (e.g. aneuploidy) partial chromosome abnormalities (e.g. deletions, duplications, inversions, and translocations), polynucleotide polymorphisms (e.g.
- the target and contaminating DNA may be from the same individual, but where the target and contaminating DNA are different by one or more mutations, for example in the case of cancer.
- the DNA may be found in cell culture (apoptotic) supernatant.
- it is possible to induce apoptosis in biological samples e.g., blood
- biological samples e.g., blood
- amplification and/or sequencing A number of enabling workflows and protocols to achieve this end are presented elsewhere in this disclosure.
- the target DNA may originate from single cells, from samples of DNA consisting of less than one copy of the target genome, from low amounts of DNA, from DNA from mixed origin (e.g. pregnancy plasma: placental and maternal DNA; cancer patient plasma and tumors: mix between healthy and cancer DNA, transplantation etc), from other body fluids, from cell cultures, from culture supernatants, from forensic samples of DNA, from ancient samples of DNA (e.g. insects trapped in amber), from other samples of DNA, and combinations thereof.
- mixed origin e.g. pregnancy plasma: placental and maternal DNA
- cancer patient plasma and tumors mix between healthy and cancer DNA, transplantation etc
- other body fluids from cell cultures, from culture supernatants
- forensic samples of DNA from ancient samples of DNA (e.g. insects trapped in amber), from other samples of DNA, and combinations thereof.
- a short amplicon size may be used. Short amplicon sizes are especially suited for fragmented DNA (see e.g. A. Sikora, et al. Detection of increased amounts of cell-free fetal DNA with short PCR amplicons. Clin Chem. 2010 January; 56(1):136-8.)
- Short amplicon sizes may result in some significant benefits. Short amplicon sizes may result in optimized amplification efficiency. Short amplicon sizes typically produce shorter products, therefore there is less chance for nonspecific priming. Shorter products can be clustered more densely on sequencing flow cell, as the clusters will be smaller. Note that the methods described herein may work equally well for longer PCR amplicons. Amplicon length may be increased if necessary, for example, when sequencing larger sequence stretches. Experiments with 146-plex targeted amplification with assays of 100 bp to 200 bp length as first step in a nested-PCR protocol were run on single cells and on genomic DNA with positive results.
- the methods described herein may be used to amplify and/or detect SNPs, copy number, nucleotide methylation, mRNA levels, other types of RNA expression levels, other genetic and/or epigenetic features.
- the mini-PCR methods described herein may be used along with next-generation sequencing; it may be used with other downstream methods such as microarrays, counting by digital PCR, real-time PCR, Mass-spectrometry analysis etc.
- the mini-PCR amplification methods described herein may be used as part of a method for accurate quantification of minority populations. It may be used for absolute quantification using spike calibrators. It may be used for mutation/minor allele quantification through very deep sequencing, and may be run in a highly multiplexed fashion. It may be used for standard paternity and identity testing of relatives or ancestors, in human, animals, plants or other creatures. It may be used for forensic testing. It may be used for rapid genotyping and copy number analysis (CN), on any kind of material, e.g. amniotic fluid and CVS, sperm, product of conception (POC). It may be used for single cell analysis, such as genotyping on samples biopsied from embryos. It may be used for rapid embryo analysis (within less than one, one, or two days of biopsy) by targeted sequencing using min-PCR.
- CN genotyping and copy number analysis
- tumor biopsies are often a mixture of health and tumor cells.
- Targeted PCR allows deep sequencing of SNPs and loci with close to no background sequences. It may be used for copy number and loss of heterozygosity analysis on tumor DNA.
- Said tumor DNA may be present in many different body fluids or tissues of tumor patients. It may be used for detection of tumor recurrence, and/or tumor screening. It may be used for quality control testing of seeds. It may be used for breeding, or fishing purposes. Note that any of these methods could equally well be used targeting non-polymorphic loci for the purpose of ploidy calling.
- Some literature describing some of the fundamental methods that underlie the methods disclosed herein include: (1) Wang H Y, Luo M, Tereshchenko I V, Frikker D M, Cui X, Li J Y, Hu G, Chu Y, Azaro M A, Lin Y, Shen L, Yang Q, Kambouris M E, Gao R, Shih W, Li H. Genome Res. 2005 February; 15(2):276-83. Department of Molecular Genetics, Microbiology and Immunology/The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, N.J. 08903, USA. (2) High-throughput genotyping of single nucleotide polymorphisms with high sensitivity.
- the DNA in the sample may have ligation adapters, often referred to as library tags or ligation adaptor tags (LTs), appended, where the ligation adapters contain a universal priming sequence, followed by a universal amplification. In an embodiment, this may be done using a standard protocol designed to create sequencing libraries after fragmentation.
- the DNA sample can be blunt ended, and then an A can be added at the 3′ end.
- a Y-adaptor with a T-overhang can be added and ligated.
- other sticky ends can be used other than an A or T overhang.
- other adaptors can be added, for example looped ligation adaptors.
- the adaptors may have tag designed for PCR amplification.
- STA Specific Target Amplification
- Pre-amplification of hundreds to thousands to tens of thousands and even hundreds of thousands of targets may be multiplexed in one reaction volume. STA is typically run from 10 to 30 cycles, though it may be run from 5 to 40 cycles, from 2 to 50 cycles, and even from 1 to 100 cycles. Primers may be tailed, for example for a simpler workflow or to avoid sequencing of a large proportion of dimers. Note that typically, dimers of both primers carrying the same tag will not be amplified or sequenced efficiently.
- between 1 and 10 cycles of PCR may be carried out; in some embodiments between 10 and 20 cycles of PCR may be carried out; in some embodiments between 20 and 30 cycles of PCR may be carried out; in some embodiments between 30 and 40 cycles of PCR may be carried out; in some embodiments more than 40 cycles of PCR may be carried out.
- the amplification may be a linear amplification.
- the number of PCR cycles may be optimized to result in an optimal depth of read (DOR) profile. Different DOR profiles may be desirable for different purposes.
- a more even distribution of reads between all assays is desirable; if the DOR is too small for some assays, the stochastic noise can be too high for the data to be too useful, while if the depth of read is too high, the marginal usefulness of each additional read is relatively small.
- Primer tails may improve the detection of fragmented DNA from universally tagged libraries. If the library tag and the primer-tails contain a homologous sequence, hybridization can be improved (for example, melting temperature (T M ) is lowered) and primers can be extended if only a portion of the primer target sequence is in the sample DNA fragment. In some embodiments, 13 or more target specific base pairs may be used. In some embodiments, 10 to 12 target specific base pairs may be used. In some embodiments, 8 to 9 target specific base pairs may be used. In some embodiments, 6 to 7 target specific base pairs may be used. In some embodiments, STA may be performed on pre-amplified DNA, e.g. MDA, RCA, other whole genome amplifications, or adaptor-mediated universal PCR. In some embodiments, STA may be performed on samples that are enriched or depleted of certain sequences and populations, e.g. by size selection, target capture, directed degradation.
- T M melting temperature
- full nesting, semi-nesting, hemi-nesting, and/or subdividing into parallel reactions of smaller assay pools are all techniques that may be used to increase specificity.
- splitting a sample into three 400-plex reactions resulted in product DNA with greater specificity than one 1,200-plex reaction with exactly the same primers.
- splitting a sample into four 2,400-plex reactions resulted in product DNA with greater specificity than one 9,600-plex reaction with exactly the same primers.
- a DNA sample (dilution, purified or otherwise) produced by an STA reaction using tag-specific primers and “universal amplification”, i.e. to amplify many or all pre-amplified and tagged targets.
- Primers may contain additional functional sequences, e.g. barcodes, or a full adaptor sequence necessary for sequencing on a high throughput sequencing platform.
- These methods may be used for analysis of any sample of DNA, and are especially useful when the sample of DNA is particularly small, or when it is a sample of DNA where the DNA originates from more than one individual, such as in the case of maternal plasma.
- These methods may be used on DNA samples such as a single or small number of cells, genomic DNA, plasma DNA, amplified plasma libraries, amplified apoptotic supernatant libraries, or other samples of mixed DNA. In an embodiment, these methods may be used in the case where cells of different genetic constitution may be present in a single individual, such as with cancer or transplants.
- some of the DNA is from the recipient of a transplant (such as recipient cell-free or cellular DNA) and some of the DNA is from the donor of the transplant (such as cell-free or cellular DNA from the transplant).
- the method is used to amplify one or more loci that differ between the recipient and the donor (such as loci for which a different combination of alleles are present in the recipient compared to the donor).
- the recipient is homozygous for a first allele (such as AA) and the donor is homozygous for a second allele (such as BB) or is heterozygous with the first allele and a second allele (such as AB) at one or more loci.
- the method is used to measure the absolute or relative amount of DNA from the donor of the transplant (such as cell-free or cellular DNA from the transplant). In some embodiments, this method is used to prognose, diagnose, detect, or monitor a transplant status or outcome, such as transplant rejection, tolerance, non-rejection based allograft injury, transplant function, transplant survival, chronic transplant injury, or tittering of pharmacological immunosuppression.
- a transplant status or outcome such as transplant rejection, tolerance, non-rejection based allograft injury, transplant function, transplant survival, chronic transplant injury, or tittering of pharmacological immunosuppression.
- Protocol Variants (Variants and/or Additions to the Workflow Above)
- STA Specific target amplification of a plurality of target sequences with tagged primers is shown in FIG. 1 .
- 101 denotes double stranded DNA with a polymorphic locus of interest at X.
- 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
- 103 denotes the single stranded DNA that has been universally amplified with PCR primers hybridized.
- 104 denotes the final PCR product.
- STA may be done on more than 100, more than 200, more than 500, more than 1,000, more than 2,000, more than 5,000, more than 10,000, more than 20,000, more than 50,000, more than 100,000 or more than 200,000 targets.
- tag-specific primers amplify all target sequences and lengthen the tags to include all necessary sequences for sequencing, including sample indexes.
- primers may not be tagged or only certain primers may be tagged.
- Sequencing adaptors may be added by conventional adaptor ligation.
- the initial primers may carry the tags.
- primers are designed so that the length of DNA amplified is unexpectedly short.
- Prior art demonstrates that ordinary people skilled in the art typically design 100+ bp amplicons.
- the amplicons may be designed to be less than 80 bp.
- the amplicons may be designed to be less than 70 bp.
- the amplicons may be designed to be less than 60 bp.
- the amplicons may be designed to be less than 50 bp.
- the amplicons may be designed to be less than 45 bp.
- the amplicons may be designed to be less than 40 bp.
- the amplicons may be designed to be less than 35 bp.
- the amplicons may be designed to be between 40 and 65 bp.
- STA1 multiple aliquots of the product may be amplified in parallel with pools of reduced complexity with the same primers.
- the first amplification can give enough material to split. This method is especially good for small samples, for example those that are about 6-100 pg, about 100 pg to 1 ng, about 1 ng to 10 ng, or about 10 ng to 100 ng.
- the protocol was performed with 1200-plex into three 400-plexes. Mapping of sequencing reads increased from around 60 to 70% in the 1200-plex alone to over 95%.
- a second STA comprising a multiplex set of internal nested Forward primers ( 103 B, 105 b ) and one (or few) tag-specific Reverse primers ( 103 A).
- 101 denotes double stranded DNA with a polymorphic locus of interest at X.
- 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
- 103 denotes the single stranded DNA that has been universally amplified with Forward primer B and Reverse Primer A hybridized.
- 104 denotes the PCR product from 103 .
- 105 denotes the product from 104 with nested Forward primer b hybridized, and Reverse tag A already part of the molecule from the PCR that occurred between 103 and 104 .
- 106 denotes the final PCR product.
- the nested primer may overlap with the outer Forward primer sequence but introduces additional 3′-end bases. In some embodiments it is possible to use between one and 20 extra 3′ bases. Experiments have shown that using 9 or more extra 3′ bases in a 1200-plex designs works well.
- the primers for the second STA can alternatively be considered a multiplex set of internal nested Reverse primers and one (or a few) tag-specific Forward primers.
- STA step 1 After STA step 1, it is possible to perform a second multiplex PCR (or parallel m.p. PCRs of reduced complexity) with two nested primers carrying tags (A, a, B, b).
- 101 denotes double stranded DNA with a polymorphic locus of interest at X.
- 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
- 103 denotes the single stranded DNA that has been universally amplified with Forward primer B and Reverse Primer A hybridized.
- 104 denotes the PCR product from 103 .
- 105 denotes the product from 104 with nested Forward primer b and nested Reverse primer a hybridized.
- 106 denotes the final PCR product. In some embodiments, it is possible to use two full sets of primers. Experiments using a fully nested mini-PCR protocol were used to perform 146-plex amplification on single and three cells without step 102 of appending universal ligation adaptors and amplifying.
- STA is performed comprising a multiplex set of Forward primers (B) and one (or few) tag-specific Reverse primers (A).
- a second STA can be performed using a universal tag-specific Forward primer and target specific Reverse primer.
- 101 denotes double stranded DNA with a polymorphic locus of interest at X.
- 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
- 103 denotes the single stranded DNA that has been universally amplified with Reverse Primer A hybridized.
- 104 denotes the PCR product from 103 that was amplified using Reverse primer A and ligation adaptor tag primer LT.
- 105 denotes the product from 104 with Forward primer B hybridized.
- 106 denotes the final PCR product.
- target specific Forward and Reverse primers are used in separate reactions, thereby reducing the complexity of the reaction and preventing dimer formation of forward and reverse primers.
- primers A and B may be considered to be first primers, and primers ‘a’ and ‘b’ may be considered to be inner primers. This method is a big improvement on direct PCR as it is as good as direct PCR, but it avoids primer dimers.
- the primers for the first STA can be considered a multiplex set of Reverse primers and one (or few) tag-specific Forward primers
- the primers for the second STA can be considered a universal tag-specific Reverse primer and target specific Forward primer(s).
- STA is performed comprising a multiplex set of Forward primers (B) and one (or few) tag-specific Reverse primers (A) and (a).
- a second STA can be performed using a universal tag-specific Forward primer and target specific Reverse primer.
- 101 denotes double stranded DNA with a polymorphic locus of interest at X.
- 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
- 103 denotes the single stranded DNA that has been universally amplified with Reverse Primer A hybridized.
- 104 denotes the PCR product from 103 that was amplified using Reverse primer A and ligation adaptor tag primer LT.
- 105 denotes the product from 104 with Forward primer B hybridized.
- 106 denotes the PCR product from 105 that was amplified using Reverse primer A and Forward primer B.
- 107 denotes the product from 106 with Reverse primer ‘a’ hybridized.
- 108 denotes the final PCR product.
- primers ‘a’ and B may be considered to be inner primers, and A may be considered to be a first primer.
- both A and B may be considered to be first primers, and ‘a’ may be considered to be an inner primer.
- the designation of reverse and forward primers may be switched.
- target specific Forward and Reverse primers are used in separate reactions, thereby reducing the complexity of the reaction and preventing dimer formation of forward and reverse primers.
- This method is a big improvement on direct PCR as it is as good as direct PCR, but it avoids primer dimers. After first round of hemi nested protocol one typically sees ⁇ 99% non-targeted DNA, however, after second round there is typically a big improvement.
- STA may also be performed with a multiplex set of nested Forward primers and using the ligation adapter tag as the Reverse primer.
- a second STA may then be performed using a set of nested Forward primers and a universal Reverse primer.
- 101 denotes double stranded DNA with a polymorphic locus of interest at X.
- 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
- 103 denotes the single stranded DNA that has been universally amplified with Forward Primer A hybridized.
- 104 denotes the PCR product from 103 that was amplified using Forward primer A and ligation adaptor tag Reverse primer LT.
- 105 denotes the product from 104 with nested Forward primer a hybridized.
- 106 denotes the final PCR product.
- This method can detect shorter target sequences than standard PCR by using overlapping primers in the first and second STAs. The method is typically performed off a sample of DNA that has already undergone STA step 1 above—appending of universal tags and amplification; the two nested primers are only on one side, other side uses the library tag. The method was performed on libraries of apoptotic supernatants and pregnancy plasma. With this workflow around 60% of sequences mapped to the intended targets. Note that reads that contained the reverse adaptor sequence were not mapped, so this number is expected to be higher if those reads that contain the reverse adaptor sequence are mapped
- STA may be performed with a multiplex set of Forward primers and one (or few) tag-specific Reverse primer.
- 101 denotes double stranded DNA with a polymorphic locus of interest at X.
- 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
- 103 denotes the single stranded DNA with Forward Primer A hybridized.
- 104 denotes the PCR product from 103 that was amplified using Forward primer A and ligation adaptor tag Reverse primer LT, and which is the final PCR product.
- This method can detect shorter target sequences than standard PCR. However it may be relatively unspecific, as only one target specific primer is used. This protocol is effectively half of the one sided nested mini PCR
- STA may be performed with a multiplex set of Forward primers and one (or few) tag-specific Reverse primer.
- 101 denotes double stranded DNA with a polymorphic locus of interest at X.
- 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
- 103 denotes the single stranded DNA with Reverse Primer B hybridized.
- 104 denotes the PCR product from 103 that was amplified using Reverse primer B and ligation adaptor tag Forward primer LT.
- 105 denotes the PCR product 104 with hybridized Forward Primer A, and inner Reverse primer ‘b’.
- 106 denotes the PCR product that has been amplified from 105 using Forward primer A and Reverse primer ‘b’, and which is the final PCR product. This method can detect shorter target sequences than standard PCR.
- variants that are simply iterations or combinations of the above methods such as doubly nested PCR, where three sets of primers are used.
- Another variant is one-and-a-half sided nested mini-PCR, where STA may also be performed with a multiplex set of nested Forward primers and one (or few) tag-specific Reverse primer.
- the identity of the Forward primer and the Reverse primer may be interchanged.
- the nested variant can equally well be run without the initial library preparation that comprises appending the adapter tags, and a universal amplification step.
- additional rounds of PCR may be included, with additional Forward and/or Reverse primers and amplification steps; these additional steps may be particularly useful if it is desirable to further increase the percent of DNA molecules that correspond to the targeted loci.
- FIG. 9 a flow chart is given with some of the possible workflows. Note that the use of 10,000-plex PCR is only meant to be an example; these flow charts would work equally well for other degrees of multiplexing.
- ligate adaptors When adding universal tagged adaptors for example for the purpose of making a library for sequencing, there are a number of ways to ligate adaptors. One way is to blunt end the sample DNA, perform A-tailing, and ligate with adaptors that have a T-overhang. There are a number of other ways to ligate adaptors. There are also a number of adaptors that can be ligated. For example, a Y-adaptor can be used where the adaptor consists of two strands of DNA where one strand has a double strand region, and a region specified by a forward primer region, and where the other strand specified by a double strand region that is complementary to the double strand region on the first strand, and a region with a reverse primer. The double stranded region, when annealed, may contain a T-overhang for the purpose of ligating to double stranded DNA with an A overhang.
- the adaptor can be a loop of DNA where the terminal regions are complementary, and where the loop region contains a forward primer tagged region (LFT), a reverse primer tagged region (LRT), and a cleavage site between the two (See FIG. 10 ).
- 101 refers to the double stranded, blunt ended target DNA.
- 102 refers to the A-tailed target DNA.
- 103 refers to the looped ligation adaptor with T overhang ‘T’ and the cleavage site ‘Z’.
- 104 refers to the target DNA with appended looped ligation adaptors.
- 105 refers to the target DNA with the ligation adaptors appended cleaved at the cleavage site.
- LFT refers to the ligation adaptor Forward tag
- LRT refers to the ligation adaptor Reverse tag
- the complementary region may end on a T overhang, or other feature that may be used for ligation to the target DNA.
- the cleavage site may be a series of uracils for cleavage by UNG, or a sequence that may be recognized and cleaved by a restriction enzyme or other method of cleavage or just a basic amplification.
- These adaptors can be uses for any library preparation, for example, for sequencing.
- These adaptors can be used in combination with any of the other methods described herein, for example the mini-PCR amplification methods.
- the sequence read typically begins upstream of the primer binding site (a), and then to the polymorphic site (X).
- Tags are typically configured as shown in FIG. 11 , left.
- 101 refers to the single stranded target DNA with polymorphic locus of interest ‘X’, and primer ‘a’ with appended tag ‘b’.
- the primer binding site region of target DNA complementary to ‘a’
- Sequence tag ‘b’ is typically about 20 bp; in theory these can be any length longer than about 15 bp, though many people use the primer sequences that are sold by the sequencing platform company.
- the distance ‘d’ between ‘a’ and ‘X’ may be at least 2 bp so as to avoid allele bias.
- the window of allowable distance ‘d’ between ‘a’ and ‘X’ may vary quite a bit: from 2 bp to 10 bp, from 2 bp to 20 bp, from 2 bp to 30 bp, or even from 2 bp to more than 30 bp. Therefore, when using the primer configuration shown in FIG.
- sequence reads must be a minimum of 40 bp to obtain reads long enough to measure the polymorphic locus, and depending on the lengths of ‘a’ and ‘d’ the sequence reads may need to be up to 60 or 75 bp.
- the longer the sequence reads the higher the cost and time of sequencing a given number of reads, therefore, minimizing the necessary read length can save both time and money.
- decreasing the necessary sequence read length can also increase the accuracy of the measurements of the polymorphic region.
- the primer binding site (a) is split in to a plurality of segments (a′, a′′, a′′′ . . . ), and the sequence tag (b) is on a segment of DNA that is in the middle of two of the primer binding sites, as shown in FIG. 11 , 103 .
- This configuration allows the sequencer to make shorter sequence reads.
- a′+a′′ should be at least about 18 bp, and can be as long as 30, 40, 50, 60, 80, 100 or more than 100 bp.
- a′′ should be at least about 6 bp, and in an embodiment is between about 8 and 16 bp.
- using the internally tagged primers can cut the length of the sequence reads needed by at least 6 bp, as much as 8 bp, 10 bp, 12 bp, 15 bp, and even by as many as 20 or 30 bp. This can result in a significant money, time and accuracy advantage.
- An example of internally tagged primers is given in FIG. 12 .
- the target DNA 101 can have ligation adaptors appended 102
- the target primer 103 can have a region (cr) that is complementary to the ligation adaptor tag (lt) appended upstream of the designed binding region (a) (see FIG.
- the region (cr) on the primer than is complementary to the library tag is able to increase the binding energy to a point where the PCR can proceed.
- any specificity that is lost due to a shorter binding region can be made up for by other PCR primers with suitably long target binding regions.
- this embodiment can be used in combination with direct PCR, or any of the other methods described herein, such as nested PCR, semi nested PCR, hemi nested PCR, one sided nested or semi or hemi nested PCR, or other PCR protocols.
- each additional read from alleles with a low depth of read will yield more information than a read from an allele with a high depth of read. Therefore, ideally, one would wish to see uniform depth of read (DOR) where each locus will have a similar number of representative sequence reads. Therefore, it is desirable to minimize the DOR variance.
- DOR uniform depth of read
- the annealing temperatures may be longer than 2 minutes, longer than 4 minutes, longer than ten minutes, longer than 30 minutes, and longer than one hour, or even longer. Since annealing is an equilibrium process, there is no limit to the improvement of DOR variance with increasing annealing times. In an embodiment, increasing the primer concentration may decrease the DOR variance.
- the amplification of target loci is performed using a polymerase (e.g., a DNA polymerase, RNA polymerase, or reverse transcriptase) with low 5′ ⁇ 3′ exonuclease and/or low strand displacement activity.
- a polymerase e.g., a DNA polymerase, RNA polymerase, or reverse transcriptase
- the low level of 5′ ⁇ 3′ exonuclease reduces or prevents the degradation of a nearby primer (e.g., an unextended primer or a primer that has had one or more nucleotides added to during primer extension).
- the low level of strand displacement activity reduces or prevents the displacement of a nearby primer (e.g., an unextended primer or a primer that has had one or more nucleotides added to it during primer extension).
- target loci that are adjacent to each other (e.g., no bases between the target loci) or nearby (e.g., loci are within 50, 40, 30, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 base) are amplified.
- the 3′ end of one locus is within 50, 40, 30, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 base of the 5′ end of next downstream locus.
- At least 100, 200, 500, 750, 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci are amplified, such as by the simultaneous amplification in one reaction volume
- at least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the amplified products are target amplicons.
- the amount of amplified products that are target amplicons is between 50 to 99.5%, such as between 60 to 99%, 70 to 98%, 80 to 98%, 90 to 99.5%, or 95 to 99.5%, inclusive.
- At least 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 99.5% of the target loci are amplified (e.g, amplified at least 5, 10, 20, 30, 50, or 100-fold compared to the amount prior to amplification), such as by the simultaneous amplification in one reaction volume.
- the amount target loci that are amplified is between 50 to 99.5%, such as between 60 to 99%, 70 to 98%, 80 to 99%, 90 to 99.5%, 95 to 99.9%, or 98 to 99.99% inclusive.
- fewer non-target amplicons are produced, such as fewer amplicons formed from a forward primer from a first primer pair and a reverse primer from a second primer pair.
- Such undesired non-target amplicons can be produced using prior amplification methods if, e.g., the reverse primer from the first primer pair and/or the forward primer from the second primer pair are degraded and/or displaced.
- these methods allows longer extension times to be used since the polymerase bound to a primer being extended is less likely to degrade and/or displace a nearby primer (such as the next downstream primer) given the low 5′ ⁇ 3′ exonuclease and/or low strand displacement activity of the polymerase.
- reaction conditions such as the extension time and temperature
- the extension rate of the polymerase allows the number of nucleotides that are added to a primer being extended to be equal to or greater than 80, 90, 95, 100, 110, 120, 130, 140, 150, 175, or 200% of the number of nucleotides between the 3′ end of the primer binding site and the 5′ end of the next downstream primer binding site on the same strand.
- a DNA polymerase is used produce DNA amplicons using DNA as a template.
- a RNA polymerase is used produce RNA amplicons using DNA as a template.
- a reverse transcriptase is used produce cDNA amplicons using RNA as a template.
- the low level of 5′ ⁇ 3′ exonuclease of the polymerase is less than 80, 70, 60, 50, 40, 30, 20, 10, 5, 1, or 0.1% of the activity of the same amount of Thermus aquaticus polymerase (“Taq” polymerase, which is a commonly used DNA polymerase from a thermophilic bacterium, PDB 1BGX, EC 2.7.7.7, Murali et al., “Crystal structure of Taq DNA polymerase in complex with an inhibitory Fab: the Fab is directed against an intermediate in the helix-coil dynamics of the enzyme,” Proc. Natl. Acad. Sci.
- Taq polymerase which is a commonly used DNA polymerase from a thermophilic bacterium, PDB 1BGX, EC 2.7.7.7, Murali et al.
- the low level of strand displacement activity of the polymerase is less than 80, 70, 60, 50, 40, 30, 20, 10, 5, 1, or 0.1% of the activity of the same amount of Taq polymerase under the same conditions.
- the polymerase is a PUSHION DNA polymerase, such as PHUSION High Fidelity DNA polymerase (M0530S, New England BioLabs, Inc.) or PHUSION Hot Start Flex DNA polymerase (M0535S, New England BioLabs, Inc.; Frey and Suppman BioChemica. 2:34-35, 1995; Chester and Marshak Analytical Biochemistry. 209:284-290, 1993, which are each hereby incorporated by reference in its entirety).
- the PHUSION DNA polymerase is a Pyrococcus -like enzyme fused with a processivity-enhancing domain.
- PHUSION DNA polymerase possesses 5′ ⁇ 3′ polymerase activity and 3′ ⁇ 5′ exonuclease activity, and generates blunt-ended products. PHUSION DNA polymerase lacks 5′ ⁇ 3′ exonuclease activity and strand displacement activity.
- the polymerase is a Q5® DNA Polymerase, such as Q5® High-Fidelity DNA Polymerase (M0491S, New England BioLabs, Inc.) or Q5® Hot Start High-Fidelity DNA Polymerase (M0493S, New England BioLabs, Inc.).
- Q5® High-Fidelity DNA polymerase is a high-fidelity, thermostable, DNA polymerase with 3′ ⁇ 5′ exonuclease activity, fused to a processivity-enhancing Sso7d domain.
- Q5® High-Fidelity DNA polymerase lacks 5′ ⁇ 3′ exonuclease activity and strand displacement activity.
- the polymerase is a T4 DNA polymerase (M0203S, New England BioLabs, Inc.; Tabor and Struh. (1989). “DNA-Dependent DNA Polymerases,” In Ausebel et al. (Ed.), Current Protocols in Molecular Biology. 3.5.10-3.5.12. New York: John Wiley & Sons, Inc., 1989; Sambrook et al. Molecular Cloning: A Laboratory Manual . (2nd ed.), 5.44-5.47. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989, which are each hereby incorporated by reference in its entirety).
- T4 DNA Polymerase catalyzes the synthesis of DNA in the 5′ ⁇ 3′ direction and requires the presence of template and primer. This enzyme has a 3′ ⁇ 5′ exonuclease activity which is much more active than that found in DNA Polymerase I. T4 DNA polymerase lacks 5′ ⁇ 3′ exonuclease activity and strand displacement activity.
- the polymerase is a Sulfolobus DNA Polymerase IV (M0327S, New England BioLabs, Inc.; (Boudsocq, et al. (2001). Nucleic Acids Res., 29:4607-4616, 2001; McDonald, et al. (2006). Nucleic Acids Res., 34:1102-1111, 2006, which are each hereby incorporated by reference in its entirety).
- Sulfolobus DNA Polymerase IV is a thermostable Y-family lesion-bypass DNA Polymerase that efficiently synthesizes DNA across a variety of DNA template lesions McDonald, J. P. et al. (2006). Nucleic Acids Res., 34, 1102-1111, which is hereby incorporated by reference in its entirety).
- Sulfolobus DNA Polymerase IV lacks 5′-3′ exonuclease activity and strand displacement activity.
- a primer if a primer binds a region with a SNP, the primer may bind and amplify the different alleles with different efficiencies or may only bind and amplify one allele. For subjects who are heterozygous, one of the alleles may not be amplified by the primer.
- a primer is designed for each allele. For example, if there are two alleles (e.g., a biallelic SNP), then two primers can be used to bind the same location of a target locus (e.g., a forward primer to bind the “A” allele and a forward primer to bind the “B” allele). Standard methods, such as the dbSNP database, can be used to determine the location of known SNPs, such as SNP hot spots that have a high heterozygosity rate.
- the amplicons are similar in size. In some embodiments, the range of the length of the target amplicons is less than 100, 75, 50, 25, 15, 10, or 5 nucleotides. In some embodiments (such as the amplification of target loci in fragmented DNA or RNA), the length of the target amplicons is between 50 and 100 nucleotides, such as between 60 and 80 nucleotides, or 60 and 75 nucleotides, inclusive.
- the length of the target amplicons is between 100 and 500 nucleotides, such as between 150 and 450 nucleotides, 200 and 400 nucleotides, 200 and 300 nucleotides, or 300 and 400 nucleotides, inclusive.
- multiple target loci are simultaneously amplified using a primer pair that includes a forward and reverse primer for each target locus to be amplified in that reaction volume.
- one round of PCR is performed with a single primer per target locus, and then a second round of PCR is performed with a primer pair per target locus.
- the first round of PCR may be performed with a single primer per target locus such that all the primers bind the same strand (such as using a forward primer for each target locus). This allows the PCR to amplify in a linear manner and reduces or eliminates amplification bias between amplicons due to sequence or length differences.
- the amplicons are then amplified using a forward and reverse primer for each target locus.
- a method of the present disclosure may involve amplifying DNA, such as the use of whole genome application to amplify a nucleic acid sample before amplifying just the target loci.
- Amplification of the DNA a process which transforms a small amount of genetic material to a larger amount of genetic material that comprises a similar set of genetic data, can be done by a wide variety of methods, including, but not limited to polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- One method of amplifying DNA is whole genome amplification (WGA).
- WGA whole genome amplification
- WGA whole genome amplification
- WGA ligation-mediated PCR
- DOP-PCR degenerate oligonucleotide primer PCR
- MDA multiple displacement amplification
- LM-PCR short DNA sequences called adapters are ligated to blunt ends of DNA. These adapters contain universal amplification sequences, which are used to amplify the DNA by PCR.
- DOP-PCR random primers that also contain universal amplification sequences are used in a first round of annealing and PCR. Then, a second round of PCR is used to amplify the sequences further with the universal primer sequences.
- MDA uses the phi-29 polymerase, which is a highly processive and non-specific enzyme that replicates DNA and has been used for single-cell analysis.
- the major limitations to amplification of material from a single cell are (1) necessity of using extremely dilute DNA concentrations or extremely small volume of reaction mixture, and (2) difficulty of reliably dissociating DNA from proteins across the whole genome. Regardless, single-cell whole genome amplification has been used successfully for a variety of applications for a number of years. There are other methods of amplifying DNA from a sample of DNA. The DNA amplification transforms the initial sample of DNA into a sample of DNA that is similar in the set of sequences, but of much greater quantity. In some cases, amplification may not be required.
- DNA may be amplified using a universal amplification, such as WGA or MDA.
- DNA may be amplified by targeted amplification, for example using targeted PCR, or circularizing probes.
- the DNA may be preferentially enriched using a targeted amplification method, or a method that results in the full or partial separation of desired from undesired DNA, such as capture by hybridization approaches.
- DNA may be amplified by using a combination of a universal amplification method and a preferential enrichment method. A fuller description of some of these methods can be found elsewhere in this document.
- a method disclosed herein uses selective enrichment techniques that preserve the relative allele frequencies that are present in the original sample of DNA at each target loci (e.g., each polymorphic locus) from a set of target loci (e.g., polymorphic loci). While enrichment is particularly advantageous for methods for analyzing polymorphic loci, these enrichment methods can be readily adapted for nonpolymorphic loci if desired.
- the amplification and/or selective enrichment technique may involve PCR such as ligation mediated PCR, fragment capture by hybridization, Molecular Inversion Probes, or other circularizing probes.
- methods for amplification or selective enrichment may involve using probes where, upon correct hybridization to the target sequence, the 3-prime end or 5-prime end of a nucleotide probe is separated from the polymorphic site of the allele by a small number of nucleotides. This separation reduces preferential amplification of one allele, termed allele bias. This is an improvement over methods that involve using probes where the 3-prime end or 5-prime end of a correctly hybridized probe are directly adjacent to or very near to the polymorphic site of an allele. In an embodiment, probes in which the hybridizing region may or certainly contains a polymorphic site are excluded.
- Polymorphic sites at the site of hybridization can cause unequal hybridization or inhibit hybridization altogether in some alleles, resulting in preferential amplification of certain alleles.
- These embodiments are improvements over other methods that involve targeted amplification and/or selective enrichment in that they better preserve the original allele frequencies of the sample at each polymorphic locus, whether the sample is pure genomic sample from a single individual or mixture of individuals.
- the method involves measuring genetic data for use with an informatics based method, such as PARENTAL SUPPORTTM (PS).
- PS PARENTAL SUPPORTTM
- the ultimate outcome of some of the embodiments is the actionable genetic data of an embryo or a fetus.
- a method for enriching the concentration of a set of targeted alleles comprising one or more of the following steps: targeted amplification of genetic material, addition of loci specific oligonucleotide probes, ligation of specified DNA strands, isolation of sets of desired DNA, removal of unwanted components of a reaction, detection of certain sequences of DNA by hybridization, and detection of the sequence of one or a plurality of strands of DNA by DNA sequencing methods.
- the DNA strands may refer to target genetic material, in some cases they may refer to primers, in some cases they may refer to synthesized sequences, or combinations thereof. These steps may be carried out in a number of different orders.
- a universal amplification step of the DNA prior to targeted amplification may confer several advantages, such as removing the risk of bottlenecking and reducing allelic bias.
- the DNA may be mixed an oligonucleotide probe that can hybridize with two neighboring regions of the target sequence, one on either side. After hybridization, the ends of the probe may be connected by adding a polymerase, a means for ligation, and any necessary reagents to allow the circularization of the probe. After circularization, an exonuclease may be added to digest to non-circularized genetic material, followed by detection of the circularized probe.
- the DNA may be mixed with PCR primers that can hybridize with two neighboring regions of the target sequence, one on either side.
- the ends of the probe may be connected by adding a polymerase, a means for ligation, and any necessary reagents to complete PCR amplification.
- Amplified or unamplified DNA may be targeted by hybrid capture probes that target a set of loci; after hybridization, the probe may be localized and separated from the mixture to provide a mixture of DNA that is enriched in target sequences.
- DNA may be targeted, or preferentially enriched, include using circularizing probes, linked inverted probes (LIPs, MIPs), capture by hybridization methods such as SURESELECT, and targeted PCR or ligation-mediated PCR amplification strategies.
- LIPs linked inverted probes
- SURESELECT SURESELECT
- a method of the present disclosure involves measuring genetic data for use with an informatics based method, such as PARENTAL SUPPORTTM (PS), which is described further herein.
- PARENTAL SUPPORTTM is an informatics based approach to manipulating genetic data, aspects of which are described herein.
- the ultimate outcome of some of the embodiments is the actionable genetic data of an embryo or a fetus followed by a clinical decision based on the actionable data.
- the algorithms behind the PS method take the measured genetic data of the target individual, often an embryo or fetus, and the measured genetic data from related individuals, and are able to increase the accuracy with which the genetic state of the target individual is known.
- the measured genetic data is used in the context of making ploidy determinations during prenatal genetic diagnosis. In an embodiment, the measured genetic data is used in the context of making ploidy determinations or allele calls on embryos during in vitro fertilization.
- the different methods comprise a number of steps, those steps often involving amplification of genetic material, addition of oligonucleotide probes, ligation of specified DNA strands, isolation of sets of desired DNA, removal of unwanted components of a reaction, detection of certain sequences of DNA by hybridization, detection of the sequence of one or a plurality of strands of DNA by DNA sequencing methods.
- the DNA strands may refer to target genetic material, in some cases they may refer to primers, in some cases they may refer to synthesized sequences, or combinations thereof. These steps may be carried out in a number of different orders.
- any number loci in the genome anywhere from one loci to well over one million loci. If a sample of DNA is subjected to targeting, and then sequenced, the percentage of the alleles that are read by the sequencer will be enriched with respect to their natural abundance in the sample.
- the degree of enrichment can be anywhere from one percent (or even less) to ten-fold, a hundred-fold, a thousand-fold or even many million-fold. In the human genome there are roughly 3 billion base pairs, and nucleotides, comprising approximately 75 million polymorphic loci. The more loci that are targeted, the smaller the degree of enrichment is possible. The fewer the number of loci that are targeted, the greater degree of enrichment is possible, and the greater depth of read may be achieved at those loci for a given number of sequence reads.
- the targeting or preferential may focus entirely on SNPs. In an embodiment, the targeting or preferential may focus on any polymorphic site.
- a number of commercial targeting products are available to enrich exons.
- targeting exclusively SNPs, or exclusively polymorphic loci is particularly advantageous when using a method for NPD that relies on allele distributions.
- Those types of methodology that do not focus on polymorphic alleles would not benefit as much from targeting or preferential enrichment of a set of alleles.
- a targeting method that focuses on SNPs to enrich a genetic sample in polymorphic regions of the genome.
- it is possible to focus on a small number of SNPs for example between 1 and 100 SNPs, or a larger number, for example, between 100 and 1,000, between 1,000 and 10,000, between 10,000 and 100,000 or more than 100,000 SNPs.
- a targeting method to create a sample of DNA that is preferentially enriched in polymorphic regions of the genome.
- this method to create a mixture of DNA with any of these characteristics where the mixture of DNA contains maternal DNA and also free floating fetal DNA.
- this method it is possible to use this method to create a mixture of DNA that has any combination of these factors.
- the method described herein may be used to produce a mixture of DNA that comprises maternal DNA and fetal DNA, and that is preferentially enriched in DNA that corresponds to 200 SNPs, all of which are located on either chromosome 18 or 21, and which are enriched an average of 1000 fold.
- Any of the targeting methods described herein can be used to create mixtures of DNA that are preferentially enriched in certain loci.
- a method of the present disclosure further includes measuring the DNA in the mixed fraction using a high throughput DNA sequencer, where the DNA in the mixed fraction contains a disproportionate number of sequences from one or more chromosomes, wherein the one or more chromosomes are taken from the group comprising chromosome 13, chromosome 18, chromosome 21, chromosome X, chromosome Y and combinations thereof.
- the polymorphism assayed may include single nucleotide polymorphisms (SNPs), small indels, or STRs.
- SNPs single nucleotide polymorphisms
- STRs small indels
- Each approach produces allele frequency data; allele frequency data for each targeted locus and/or the joint allele frequency distributions from these loci may be analyzed to determine the ploidy of the fetus.
- Each approach has its own considerations due to the limited source material and the fact that maternal plasma consists of mixture of maternal and fetal DNA.
- This method may be combined with other approaches to provide a more accurate determination.
- this method may be combined with a sequence counting approach such as that described in U.S. Pat. No. 7,888,017.
- the approaches described could also be used to detect fetal paternity noninvasively from maternal plasma samples.
- each approach may be applied to other mixtures of DNA or pure DNA samples to detect the presence or absence of aneuploid chromosomes, to genotype a large number of SNP from degraded DNA samples, to detect segmental copy number variations (CNVs), to detect other genotypic states of interest, or some combination thereof.
- CNVs segmental copy number variations
- a method of the present disclosure is used to determine the presence or absence of two or more different haplotypes that contain the same set of loci in a sample of DNA from the measured allele distributions of loci from that chromosome.
- the different haplotypes could represent two different homologous chromosomes from one individual, three different homologous chromosomes from a trisomic individual, three different homologous haplotypes from a mother and a fetus where one of the haplotypes is shared between the mother and the fetus, three or four haplotypes from a mother and fetus where one or two of the haplotypes are shared between the mother and the fetus, or other combinations.
- Alleles that are polymorphic between the haplotypes tend to be more informative, however any alleles where the mother and father are not both homozygous for the same allele will yield useful information through measured allele distributions beyond the information that is available from simple read count analysis.
- Shotgun sequencing of such a sample is extremely inefficient as it results in many sequences for regions that are not polymorphic between the different haplotypes in the sample, or are for chromosomes that are not of interest, and therefore reveal no information about the proportion of the target haplotypes.
- Described herein are methods that specifically target and/or preferentially enrich segments of DNA in the sample that are more likely to be polymorphic in the genome to increase the yield of allelic information obtained by sequencing. Note that for the measured allele distributions in an enriched sample to be truly representative of the actual amounts present in the target individual, it is critical that there is little or no preferential enrichment of one allele as compared to the other allele at a given loci in the targeted segments.
- One embodiment of a method described herein allows a plurality of alleles found in a mixture of DNA that correspond to a given locus in the genome to be amplified, or preferentially enriched in a way that the degree of enrichment of each of the alleles is nearly the same. Another way to say this is that the method allows the relative quantity of the alleles present in the mixture as a whole to be increased, while the ratio between the alleles that correspond to each locus remains essentially the same as they were in the original mixture of DNA. For some reported methods, preferential enrichment of loci can result in allelic biases of more than 1%, more than 2%, more than 5% and even more than 10%.
- This preferential enrichment may be due to capture bias when using a capture by hybridization approach, or amplification bias which may be small for each cycle, but can become large when compounded over 20, 30 or 40 cycles.
- for the ratio to remain essentially the same means that the ratio of the alleles in the original mixture divided by the ratio of the alleles in the resulting mixture is between 0.95 and 1.05, between 0.98 and 1.02, between 0.99 and 1.01, between 0.995 and 1.005, between 0.998 and 1.002, between 0.999 and 1.001, or between 0.9999 and 1.0001. Note that the calculation of the allele ratios presented here may not be used in the determination of the ploidy state of the target individual, and may only a metric to be used to measure allelic bias.
- a mixture may be sequenced using any one of the previous, current, or next generation of sequencing instruments that sequences a clonal sample (a sample generated from a single molecule; examples include ILLUMINA GAIIx, ILLUMINA HISEQ, LIFE TECHNOLOGIES SOLiD, 5500XL).
- the ratios can be evaluated by sequencing through the specific alleles within the targeted region. These sequencing reads can be analyzed and counted according the allele type and the rations of different alleles determined accordingly.
- detection of the alleles will be performed by sequencing and it is essential that the sequencing read span the allele in question in order to evaluate the allelic composition of that captured molecule.
- the total number of captured molecules assayed for the genotype can be increased by increasing the length of the sequencing read. Full sequencing of all molecules would guarantee collection of the maximum amount of data available in the enriched pool.
- sequencing is currently expensive, and a method that can measure allele distributions using a lower number of sequence reads will have great value.
- there are technical limitations to the maximum possible length of read as well as accuracy limitations as read lengths increase.
- alleles of greatest utility will be of one to a few bases in length, but theoretically any allele shorter than the length of the sequencing read can be used. While allele variations come in all types, the examples provided herein focus on SNPs or variants contained of just a few neighboring base pairs. Larger variants such as segmental copy number variants can be detected by aggregations of these smaller variations in many cases as whole collections of SNP internal to the segment are duplicated. Variants larger than a few bases, such as STRs require special consideration and some targeting approaches work while others will not.
- a method of the present disclosure involves using targeting probes that focus exclusively or almost exclusively on polymorphic regions.
- a method of the present disclosure involves using targeting probes that focus exclusively or almost exclusively on SNPs.
- the targeted polymorphic sites consist of at least 10% SNPs, at least 20% SNPs, at least 30% SNPs, at least 40% SNPs, at least 50% SNPs, at least 60% SNPs, at least 70% SNPs, at least 80% SNPs, at least 90% SNPs, at least 95% SNPs, at least 98% SNPs, at least 99% SNPs, at least 99.9% SNPs, or exclusively SNPs.
- a method of the present disclosure can be used to determine genotypes (base composition of the DNA at specific loci) and relative proportions of those genotypes from a mixture of DNA molecules, where those DNA molecules may have originated from one or a number of genetically distinct individuals.
- a method of the present disclosure can be used to determine the genotypes at a set of polymorphic loci, and the relative ratios of the amount of different alleles present at those loci.
- the polymorphic loci may consist entirely of SNPs.
- the polymorphic loci can comprise SNPs, single tandem repeats, and other polymorphisms.
- a method of the present disclosure can be used to determine the relative distributions of alleles at a set of polymorphic loci in a mixture of DNA, where the mixture of DNA comprises DNA that originates from a mother, and DNA that originates from a fetus.
- the joint allele distributions can be determined on a mixture of DNA isolated from blood from a pregnant woman.
- the allele distributions at a set of loci can be used to determine the ploidy state of one or more chromosomes on a gestating fetus.
- the mixture of DNA molecules could be derived from DNA extracted from multiple cells of one individual.
- the original collection of cells from which the DNA is derived may comprise a mixture of diploid or haploid cells of the same or of different genotypes, if that individual is mosaic (germline or somatic).
- the mixture of DNA molecules could also be derived from DNA extracted from single cells.
- the mixture of DNA molecules could also be derived from DNA extracted from mixture of two or more cells of the same individual, or of different individuals.
- the mixture of DNA molecules could be derived from DNA isolated from biological material that has already liberated from cells such as blood plasma, which is known to contain cell free DNA.
- the this biological material may be a mixture of DNA from one or more individuals, as is the case during pregnancy where it has been shown that fetal DNA is present in the mixture.
- the biological material could be from a mixture of cells that were found in maternal blood, where some of the cells are fetal in origin.
- the biological material could be cells from the blood of a pregnant which have been enriched in fetal cells.
- LIPs Linked Inverted Probes
- LIPs are a generic term meant to encompass technologies that involve the creation of a circular molecule of DNA, where the probes are designed to hybridize to targeted region of DNA on either side of a targeted allele, such that addition of appropriate polymerases and/or ligases, and the appropriate conditions, buffers and other reagents, will complete the complementary, inverted region of DNA across the targeted allele to create a circular loop of DNA that captures the information found in the targeted allele.
- LIPs may also be called pre-circularized probes, pre-circularizing probes, or circularizing probes.
- the LIPs probe may be a linear DNA molecule between 50 and 500 nucleotides in length, and in an embodiment between 70 and 100 nucleotides in length; in some embodiments, it may be longer or shorter than described herein.
- Others embodiments of the present disclosure involve different incarnations, of the LIPs technology, such as Padlock Probes and Molecular Inversion Probes (MIPs).
- One method to target specific locations for sequencing is to synthesize probes in which the 3′ and 5′ ends of the probes anneal to target DNA at locations adjacent to and on either side of the targeted region, in an inverted manner, such that the addition of DNA polymerase and DNA ligase results in extension from the 3′ end, adding bases to single stranded probe that are complementary to the target molecule (gap-fill), followed by ligation of the new 3′ end to the 5′ end of the original probe resulting in a circular DNA molecule that can be subsequently isolated from background DNA.
- the probe ends are designed to flank the targeted region of interest.
- MIPS has been used in conjunction with array technologies to determine the nature of the sequence filled in.
- the circularizing probes are constructed such that the region of the probe that is designed to hybridize upstream of the targeted polymorphic locus and the region of the probe that is designed to hybridize downstream of the targeted polymorphic locus are covalently connected through a non-nucleic acid backbone.
- This backbone can be any biocompatible molecule or combination of biocompatible molecules.
- biocompatible molecules are poly(ethylene glycol), polycarbonates, polyurethanes, polyethylenes, polypropylenes, sulfone polymers, silicone, cellulose, fluoropolymers, acrylic compounds, styrene block copolymers, and other block copolymers.
- this approach has been modified to be easily amenable to sequencing as a means of interrogating the filled in sequence.
- allelic proportions of the original sample at least one key consideration must be taken into account.
- the variable positions among different alleles in the gap-fill region must not be too close to the probe binding sites as there can be initiation bias by the DNA polymerase resulting in differential of the variants.
- Another consideration is that additional variations may be present in the probe binding sites that are correlated to the variants in the gap-fill region which can result unequal amplification from different alleles.
- the 3′ ends and 5′ ends of the pre-circularized probe are designed to hybridize to bases that are one or a few positions away from the variant positions (polymorphic sites) of the targeted allele.
- the number of bases between the polymorphic site (SNP or otherwise) and the base to which the 3′ end and/or 5′ of the pre-circularized probe is designed to hybridize may be one base, it may be two bases, it may be three bases, it may be four bases, it may be five bases, it may be six bases, it may be seven to ten bases, it may be eleven to fifteen bases, or it may be sixteen to twenty bases, twenty to thirty bases, or thirty to sixty bases.
- the forward and reverse primers may be designed to hybridize a different number of bases away from the polymorphic site.
- Circularizing probes can be generated in large numbers with current DNA synthesis technology allowing very large numbers of probes to be generated and potentially pooled, enabling interrogation of many loci simultaneously. It has been reported to work with more than 300,000 probes.
- Two papers that discuss a method involving circularizing probes that can be used to measure the genomic data of the target individual include: Porreca et al., Nature Methods, 2007 4(11), pp. 931-936; and also Turner et al., Nature Methods, 2009, 6(5), pp. 315-316. The methods described in these papers may be used in combination with other methods described herein. Certain steps of the method from these two papers may be used in combination with other steps from other methods described herein.
- the genetic material of the target individual is optionally amplified, followed by hybridization of the pre-circularized probes, performing a gap fill to fill in the bases between the two ends of the hybridized probes, ligating the two ends to form a circularized probe, and amplifying the circularized probe, using, for example, rolling circle amplification.
- the desired target allelic genetic information is captured by circularizing appropriately designed oligonucleotide probes, such as in the LIPs system, the genetic sequence of the circularized probes may be being measured to give the desired sequence data.
- the appropriately designed oligonucleotides probes may be circularized directly on unamplified genetic material of the target individual, and amplified afterwards.
- a number of amplification procedures may be used to amplify the original genetic material, or the circularized LIPs, including rolling circle amplification, MDA, or other amplification protocols.
- Different methods may be used to measure the genetic information on the target genome, for example using high throughput sequencing, Sanger sequencing, other sequencing methods, capture-by-hybridization, capture-by-circularization, multiplex PCR, other hybridization methods, and combinations thereof.
- an informatics based method such as the PARENTAL SUPPORTTM method, along with the appropriate genetic measurements, can then be used to determination the ploidy state of one or more chromosomes on the individual, and/or the genetic state of one or a set of alleles, specifically those alleles that are correlated with a disease or genetic state of interest.
- an informatics based method such as the PARENTAL SUPPORTTM method
- LIPs has been reported for multiplexed capture of genetic sequences, followed by genotyping with sequencing.
- LIPs may be used as a method for targeting specific loci in a sample of DNA for genotyping by methods other than sequencing.
- LIPs may be used to target DNA for genotyping using SNP arrays or other DNA or RNA based microarrays.
- Ligation-mediated PCR may be used to amplify the target loci before or after PCR amplification using primers that are not ligated.
- Ligation-mediated PCR is a method of PCR used to preferentially enrich a sample of DNA by amplifying one or a plurality of loci in a mixture of DNA, the method comprising: obtaining a set of primer pairs, where each primer in the pair contains a target specific sequence and a non-target sequence, where the target specific sequence is preferably designed to anneal to a target region, one upstream and one downstream from the polymorphic site, and which can be separated from the polymorphic site by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-20, 21-30, 31-40, 41-50, 51-100, or more than 100; polymerization of the DNA from the 3-prime end of upstream primer to the fill the single strand region between it and the 5-prime end of the downstream primer with nucleotides complementary to the target molecule; ligation of the last polymerized base of the up
- a method of the present disclosure may involve using any of the following capture by hybridization methods in addition to using multiplex PCR to amplify the target loci.
- Preferential enrichment of a specific set of sequences in a target genome can be accomplished in a number of ways. Elsewhere in this document is a description of how LIPs can be used to target a specific set of sequences, but in all of those applications, other targeting and/or preferential enrichment methods can be used equally well for the same ends.
- Another targeting method is the capture by hybridization approach.
- Some examples of commercial capture by hybridization technologies include AGILENT's SURE SELECT and ILLUMINA's T RU S EQ .
- a set of oligonucleotides that is complimentary or mostly complimentary to the desired targeted sequences is allowed to hybridize to a mixture of DNA, and then physically separated from the mixture.
- the effect of physically removing the targeting oligonucleotides is to also remove the targeted sequences.
- the hybridized oligos Once the hybridized oligos are removed, they can be heated to above their melting temperature and they can be amplified.
- Some ways to physically remove the targeting oligonucleotides is by covalently bonding the targeting oligos to a solid support, for example a magnetic bead, or a chip.
- Another way to physically remove the targeting oligonucleotides is by covalently bonding them to a molecular moiety with a strong affinity for another molecular moiety.
- An example of such a molecular pair is biotin and streptavidin, such as is used in SURE SELECT.
- Hybrid capture involves hybridizing probes that are complementary to the targets of interest to the target molecules.
- Hybrid capture probes were originally developed to target and enrich large fractions of the genome with relative uniformity between targets. In that application, it was important that all targets be amplified with enough uniformity that all regions could be detected by sequencing, however, no regard was paid to retaining the proportion of alleles in original sample.
- the alleles present in the sample can be determined by direct sequencing of the captured molecules. These sequencing reads can be analyzed and counted according the allele type. However, using the current technology, the measured allele distributions the captured sequences are typically not representative of the original allele distributions.
- detection of the alleles is performed by sequencing.
- sequencing In order to capture the allele identity at the polymorphic site, it is essential that the sequencing read span the allele in question in order to evaluate the allelic composition of that captured molecule. Since the capture molecules are often of variable lengths upon sequencing cannot be guaranteed to overlap the variant positions unless the entire molecule is sequenced. However, cost considerations as well as technical limitations as to the maximum possible length and accuracy of sequencing reads make sequencing the entire molecule unfeasible.
- the read length can be increased from about 30 to about 50 or about 70 bases can greatly increase the number of reads that overlap the variant positions within the targeted sequences.
- Another way to increase the number of reads that interrogate the position of interest is to decrease the length of the probe, as long as it does not result in bias in the underlying enriched alleles.
- the length of the synthesized probe should be long enough such that two probes designed to hybridize to two different alleles found at one locus will hybridize with near equal affinity to the various alleles in the original sample.
- methods known in the art describe probes that are typically longer than 120 bases.
- the capture probes may be less than about 110 bases, less than about 100 bases, less than about 90 bases, less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, and less than about 25 bases, and this is sufficient to ensure equal enrichment from all alleles.
- the mixture of DNA that is to be enriched using the hybrid capture technology is a mixture comprising free floating DNA isolated from blood, for example maternal blood, the average length of DNA is quite short, typically less than 200 bases. The use of shorter probes results in a greater chance that the hybrid capture probes will capture desired DNA fragments. Larger variations may require longer probes.
- the variations of interest are one (a SNP) to a few bases in length.
- targeted regions in the genome can be preferentially enriched using hybrid capture probes wherein the hybrid capture probes are of a length below 90 bases, and can be less than 80 bases, less than 70 bases, less than 60 bases, less than 50 bases, less than 40 bases, less than 30 bases, or less than 25 bases.
- the length of the probe that is designed to hybridize to the regions flanking the polymorphic allele location can be decreased from above 90 bases, to about 80 bases, or to about 70 bases, or to about 60 bases, or to about 50 bases, or to about 40 bases, or to about 30 bases, or to about 25 bases.
- the hybridization conditions can be adjusted to maximize uniformity in the capture of different alleles present in the original sample.
- hybridization temperatures are decreased to minimize differences in hybridization bias between alleles. Methods known in the art avoid using lower temperatures for hybridization because lowering the temperature has the effect of increasing hybridization of probes to unintended targets. However, when the goal is to preserve allele ratios with maximum fidelity, the approach of using lower hybridization temperatures provides optimally accurate allele ratios, despite the fact that the current art teaches away from this approach.
- Hybridization temperature can also be increased to require greater overlap between the target and the synthesized probe so that only targets with substantial overlap of the targeted region are captured.
- the hybridization temperature is lowered from the normal hybridization temperature to about 40° C., to about 45° C., to about 50° C., to about 55° C., to about 60° C., to about 65, or to about 70° C.
- the hybrid capture probes can be designed such that the region of the capture probe with DNA that is complementary to the DNA found in regions flanking the polymorphic allele is not immediately adjacent to the polymorphic site. Instead, the capture probe can be designed such that the region of the capture probe that is designed to hybridize to the DNA flanking the polymorphic site of the target is separated from the portion of the capture probe that will be in van der Waals contact with the polymorphic site by a small distance that is equivalent in length to one or a small number of bases. In an embodiment, the hybrid capture probe is designed to hybridize to a region that is flanking the polymorphic allele but does not cross it; this may be termed a flanking capture probe.
- the length of the flanking capture probe may be less than about 120 bases, less than about 110 bases, less than about 100 bases, less than about 90 bases, and can be less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, or less than about 25 bases.
- the region of the genome that is targeted by the flanking capture probe may be separated by the polymorphic locus by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-20, or more than 20 base pairs.
- Custom targeted sequence capture like those currently offered by AGILENT (SURE SELECT), ROCHE-NIMBLEGEN, or ILLUMINA.
- Capture probes could be custom designed to ensure capture of various types of mutations. For point mutations, one or more probes that overlap the point mutation should be sufficient to capture and sequence the mutation.
- one or more probes that overlap the mutation may be sufficient to capture and sequence fragments comprising the mutation.
- Hybridization may be less efficient between the probe-limiting capture efficiency, typically designed to the reference genome sequence.
- To ensure capture of fragments comprising the mutation one could design two probes, one matching the normal allele and one matching the mutant allele. A longer probe may enhance hybridization. Multiple overlapping probes may enhance capture. Finally, placing a probe immediately adjacent to, but not overlapping, the mutation may permit relatively similar capture efficiency of the normal and mutant alleles.
- STRs Simple Tandem Repeats
- the number of reads obtained from the deleted regions should be roughly half that obtained from a normal diploid locus.
- Aggregating and averaging the sequencing read depth from multiple singleton probes across the potentially deleted region may enhance the signal and improve confidence of the diagnosis.
- the two approaches, targeting SNPs to identify loss of heterozygosity and using multiple singleton probes to obtain a quantitative measure of the quantity of underlying fragments from that locus can also be combined. Either or both of these strategies may be combined with other strategies to better obtain the same end.
- a targeted capture based disease screening test could be combined with a targeted capture based non-invasive prenatal diagnostic test for aneuploidy.
- DOR depth of read
- a method is described herein to determine the number of DNA molecules in a sample by generating a uniquely identified molecule for each original DNA molecules in the sample during the first round of DNA amplification. Described here is a procedure to accomplish the above end followed by a single molecule or clonal sequencing method.
- the approach entails targeting one or more specific loci and generating a tagged copy of the original molecules such manner that most or all of the tagged molecules from each targeted locus will have a unique tag and can be distinguished from one another upon sequencing of this barcode using clonal or single molecule sequencing.
- Each unique sequenced barcode represents a unique molecule in the original sample.
- sequencing data is used to ascertain the locus from which the molecule originates. Using this information one can determine the number of unique molecules in the original sample for each locus.
- This method can be used for any application in which quantitative evaluation of the number of molecules in an original sample is required.
- the number of unique molecules of one or more targets can be related to the number of unique molecules to one or more other targets to determine the relative copy number, allele distribution, or allele ratio.
- the number of copies detected from various targets can be modeled by a distribution in order to identify the mostly likely number of copies of the original targets.
- Applications include but are not limited to detection of insertions and deletions such as those found in carriers of Duchenne Muscular Dystrophy; quantitation of deletions or duplications segments of chromosomes such as those observed in copy number variants; chromosome copy number of samples from born individuals; chromosome copy number of samples from unborn individuals such as embryos or fetuses.
- the method can be combined with simultaneous evaluation of variations contained in the targeted by sequence. This can be used to determine the number of molecules representing each allele in the original sample.
- This copy number method can be combined with the evaluation of SNPs or other sequence variations to determine the chromosome copy number of born and unborn individuals; the discrimination and quantification of copies from loci which have short sequence variations, but in which PCR may amplifies from multiple target regions such as in carrier detection of Spinal Muscle Atrophy; determination of copy number of different sources of molecules from samples consisting of mixtures of different individual such as in detection of fetal aneuploidy from free floating DNA obtained from maternal plasma.
- the method as it pertains to a single target locus may comprise one or more of the following steps: (1) Designing a standard pair of oligomers for PCR amplification of a specific locus. (2) Adding, during synthesis, a sequence of specified bases with no or minimal complementarity to the target locus or genome to the 5′ end of the one of the target specific oligomer.
- This sequence termed the tail, is a known sequence, to be used for subsequent amplification, followed by a sequence of random nucleotides.
- These random nucleotides comprise the random region.
- the random region comprises a randomly generated sequence of nucleic acids that probabilistically differ between each probe molecule.
- the tailed oligomer pool will consists of a collection of oligomers beginning with a known sequence followed by unknown sequence that differs between molecules, followed by the target specific sequence. (3) Performing one round of amplification (denaturation, annealing, extension) using only the tailed oligomer. (4) Adding exonuclease to the reaction, effectively stopping the PCR reaction, and incubating the reaction at the appropriate temperature to remove forward single stranded oligos that did not anneal to temple and extend to form a double stranded product. (5) Incubating the reaction at a high temperature to denature the exonuclease and eliminate its activity.
- Adding to the reaction a new oligonucleotide that is complementary to tail of the oligomer used in the first reaction along with the other target specific oligomer to enable PCR amplification of the product generated in the first round of PCR. (7) Continuing amplification to generate enough product for downstream clonal sequencing. (8) Measuring the amplified PCR product by a multitude of methods, for example, clonal sequencing, to a sufficient number of bases to span the sequence.
- a method of the present disclosure involves targeting multiple loci in parallel or otherwise.
- Primers to different target loci can be generated independently and mixed to create multiplex PCR pools.
- original samples can be divided into subpools and different loci can be targeted in each sub-pool before being recombined and sequenced.
- the tagging step and a number of amplification cycles may be performed before the pool is subdivided to ensure efficient targeting of all targets before splitting, and improving subsequent amplification by continuing amplification using smaller sets of primers in subdivided pools.
- non-invasive prenatal aneuploidy diagnosis where the ratio of alleles at a given locus or a distribution of alleles at a number of loci can be used to help determine the number of copies of a chromosome present in a fetus.
- a phenomenon called bottlenecking for example, fewer than 5,000 copies of the genome, fewer than 1,000 copies of the genome, fewer than 500 copies of the genome, and fewer than 100 copies of the genome.
- association of the sequenced fragment to the target locus can be achieved in a number of ways.
- a sequence of sufficient length is obtained from the targeted fragment to span the molecule barcode as well a sufficient number of unique bases corresponding to the target sequence to allow unambiguous identification of the target locus.
- the molecular bar-coding primer that contains the randomly generated molecular barcode can also contain a locus specific barcode (locus barcode) that identifies the target to which it is to be associated. This locus barcode would be identical among all molecular bar-coding primers for each individual target and hence all resulting amplicons, but different from all other targets.
- the tagging method described herein may be combined with a one-sided nesting protocol.
- the design and generation of molecular barcoding primers may be reduced to practice as follows: the molecular barcoding primers may consist of a sequence that is not complementary to the target sequence followed by random molecular barcode region followed by a target specific sequence.
- the sequence 5′ of molecular barcode may be used for subsequence PCR amplification and may comprise sequences useful in the conversion of the amplicon to a library for sequencing.
- the random molecular barcode sequence could be generated in a multitude of ways.
- the preferred method synthesize the molecule tagging primer in such a way as to include all four bases to the reaction during synthesis of the barcode region. All or various combinations of bases may be specified using the IUPAC DNA ambiguity codes.
- the synthesized collection of molecules will contain a random mixture of sequences in the molecular barcode region.
- the length of the barcode region will determine how many primers will contain unique barcodes.
- the number of unique sequences is related to the length of the barcode region as N L where N is the number of bases, typically 4, and L is the length of the barcode.
- a barcode of five bases can yield up to 1024 unique sequences; a barcode of eight bases can yield 65536 unique barcodes.
- the DNA can be measured by a sequencing method, where the sequence data represents the sequence of a single molecule. This can include methods in which single molecules are sequenced directly or methods in which single molecules are amplified to form clones detectable by the sequence instrument, but that still represent single molecules, herein called clonal sequencing.
- Quantitation of specific nucleic acid sequences of interest is typically done by quantitative real-time PCR techniques such as TAQMAN (LIFE TECHNOLOGIES), INVADER probes (THIRD WAVE TECHNOLOGIES), and the like.
- TAQMAN LIFE TECHNOLOGIES
- INVADER probes TIRD WAVE TECHNOLOGIES
- Such techniques suffer from numerous shortcomings such as limited ability to achieve the simultaneous analysis of multiple sequences in parallel (multiplexation) and the ability to provide accurate quantitative data for only a narrow range of possible amplification cycles (e.g., when the logarithm of PCR amplification production quantity versus the number of cycles is in the linear range).
- DNA sequencing techniques particularly high throughput next-generation sequencing techniques (often referred to as massively parallel sequencing techniques) such as those employed in MYSEQ (ILLUMINA), HISEQ (ILLUMINA), ION TORRENT (LIFE TECHNOLOGIES), GENOME ANALYZER ILX (ILLUMINA), GS FLEX+(ROCHE 454) etc., can be used for by quantitative measurements of the number of copies of sequence of interest present in sample, thereby providing quantitative information about the starting materials, e.g., copy number or transcription levels.
- massively parallel sequencing techniques such as those employed in MYSEQ (ILLUMINA), HISEQ (ILLUMINA), ION TORRENT (LIFE TECHNOLOGIES), GENOME ANALYZER ILX (ILLUMINA), GS FLEX+(ROCHE 454) etc.
- High throughput genetic sequencers are amenable to the use of bar coding (i.e., sample tagging with distinctive nucleic acid sequences) so as to identify specific samples from individuals thereby permitting the simultaneous analysis of multiple samples in a single run of the DNA sequencer.
- the number of times a given region of the genome in a library preparation (or other nucleic preparation of interest) is sequenced (number of reads) will be proportional to the number of copies of that sequence in the genome of interest (or expression level in the case of cDNA containing preparations).
- the preparation and sequencing of genetic libraries can introduce numerous biases that interfere with obtaining an accurate quantitative reading for the nucleic acid sequence of interest.
- different nucleic acid sequences can amplify with different efficiencies during nucleic amplification steps that take place during the genetic library preparation or sample preparation.
- the problem with differential amplification efficiencies can be mitigated by using certain embodiments of the subject invention.
- the subject invention includes various methods and compositions that relate to the use of standards for inclusion in amplification processes that can be used to improve the accuracy of quantitation.
- the invention is of use in, among other areas, the detection of aneuploidy in a fetus by analyzing free floating fetal DNA in maternal blood, as described herein and as described, among other places, U.S. Pat. Nos.
- Embodiments of the invention are also of use in the detection of aneuploidy in an in vitro generated embryos.
- Commercially significant aneuploidies that may be detected include aneuploidy of the human chromosomes 13, 18, 21, X and Y.
- Embodiments of the invention may be used with either human or non-human nucleic acids, and may be applied to both animal and plant derived nucleic acids. Embodiments of the invention may also be used to detect and/or quantitate alleles for other genetic disorders characterized by deletions or insertions. The deletion containing alleles can be detected in suspected carriers of the allele of interest.
- One embodiment of the subject invention includes standards that are present in a known quantity (relative or absolute). For example, consider a genetic library made from a genetic source that is diploid for chromosome 8 (containing locus A) and triploid for chromosome 21 (containing locus B). A genetic library can be produced from this sample that will contain sequences in quantities that are a function of the number of chromosomes present in the sample, e.g., 200 copies of locus A and 300 copies of locus B.
- locus A amplifies much more efficiently than locus B, after PCR there may be 60,000 copies of the A amplicon and 30,000 copies of the B amplicon, thus obscuring the true chromosomal copy number of the initial genomic sample when analysis by high throughput DNA sequencing (or other quantitative nucleic acid detection techniques).
- a standard sequence for locus A is employed, wherein the standard sequence amplifies with essentially the same efficiency as locus A.
- a standard sequence for locus B is created, wherein the standard sequence amplifies with the essentially the same efficiency as locus B.
- a standard sequence of locus A and a standard sequence for locus B are added to the mixture prior to PCR (or other amplification techniques).
- one or more selected regions of a genome containing a SNP (or other polymorphism) of interest can be specifically amplified and subsequently sequenced.
- This target specific amplification can take place during the formation of a genetic library for sequencing.
- the library can contain numerous targeted regions for amplification. In some embodiments at least 10; 100, 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 regions of interest. Examples of such libraries are described herein and can be found in U.S. Patent Application No. 2012/0270212, filed Nov. 18, 2011, which is herein incorporated by reference in its entirety.
- one or more standard sequences are added during genetic library formation or added to a precursor component of a genetic library prior to amplification of the library.
- the standard sequences can be selected so as to mimic (yet be distinguishable based on nucleotide base sequence) target genomic fragments to be prepared for sequencing by a high throughput genetic sequencing technique.
- the standard sequence can be identical to the target genomic fragment excepting one, two, three, four to ten, or eleven to twenty nucleotides.
- the standard sequence when the target genetic sequence contains a SNP, can be identical to the SNP excepting the nucleotide at the polymorphic base, which may be chosen to be one of the four nucleotides that is not observed at that location in nature.
- the standard sequences can be used in a highly multiplexed analysis of multiple target loci (such as polymorphic loci). Standard sequences can be added during the process of library formation (prior to amplification) in known quantities (relative or absolute) so as to provide a standard metric for greater accuracy in determining the amount of target sequence of interest in the sample of analysis.
- the combination of knowledge of the known quantities of the standard sequences used in conjunction with the knowledge of the ploidy level formation of library for sequencing formed from a genome of previously characterized ploidy level, e.g., known to be diploid for all autosomal chromosomes, can be used to calibrate the amplification properties of each standard sequence with respect to its corresponding target sequence and account for variations between batches of mixtures comprising multiple standard sequences. Given that it is often necessary to simultaneously analyze a large number of loci, it is useful to produce a mixture comprising a large set standard sequences.
- Embodiments of the invention include mixtures comprising multiple standard sequences. Ideally the amount of each standard sequence in the mixture is known with high precision.
- Batched of standard sequences can be calibrated by sequencing the batch of standard sequences with minimal or no amplifications steps included in the sequencing protocol.
- Embodiments of the invention include calibrated mixtures of different standard sequences.
- Other embodiments of the invention include methods of calibrating mixtures of different standard sequences and calibrated mixtures of different standard sequences made by the subject methods.
- Various embodiments of the subject mixtures of standard sequences and methods for using them can comprise at least 10; 100, 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 or more standards sequences, as well as various intermediate amounts.
- the number of the standard sequences can be the same as the number of target sequences selected for analysis during the generation of a targeted library for DNA sequencing. However, in some embodiments, it may be advantageous to use a lower number of standard sequences than the number of targeted regions in the library being constructed. It may be advantageous to use the lower number so as avoid coming up against the limits of the sequencing capacity of the high throughput DNA sequencer being employed.
- the number of standard sequences can be 50% or less than the number of targeted regions, 40% or less than the number of targeted regions, be 30% or less than the number of targeted regions, 20% or less than the number of targeted regions, be 10% or less than the number of targeted regions, 5% or less than the number of targeted regions, 1% or less than the number of targeted regions, as well as various intermediate values. For example, if a genetic library is created using 15,000 pairs of primers targeted to specific SNP containing loci, a suitable a mixture containing 1500 standard sequences corresponding to 1500 of the 15,000 targeted loci can be added prior to the amplification step of library constructions.
- the amount of standard sequences added during library construction can vary considerably among different embodiments.
- the amount of each standard sequence can be approximately the same as the predicted amount of the target sequence present in the genomic material sample used for library preparation. In other embodiments, the amount of each standard sequence can be greater or less than the predicted amount of the target sequence present in the genomic material sample used for library preparation. While the initial relative amounts of the target sequence and the standard sequence are not critical for the function of the invention, it is preferable that the amount be within the range 100 times greater to 100 times less than the amount of the target sequence present in the genomic material sample used for library preparation. Excessive amounts of standard may use too much sequencing capacity of the DNA sequencer in a given run of the instrument. Using too low an amount of standard sequences will produce insufficient data to aid in the analysis of variation in amplification efficiency.
- the standard sequences may be selected to be very similar in nucleotide base sequence to the amplified regions of interest; preferably the standard sequence has the exact same primer-binding sites as the analyzed genomic region, i.e., the “target sequence.”
- the standard sequence must be distinguishable from the corresponding target sequence at a given locus. For the sake of convenience, this distinguishable region of the standard sequence will be referred to as a “marker sequence.”
- the marker sequence region of the target sequences contains the polymorphic region, e.g., a SNP, and can be flanked on both sides by primer binding regions.
- the standard sequence may be selected to closely match the GC content of the corresponding target sequence.
- the primer binding regions of the standard sequence are flanked by universal priming sites. These universal priming sites are selected to match universal priming sites used in a genomic library for analysis. In other embodiments, the standard sequences do not have universal priming sites and the universal priming sites are added during the creation of a library. Standard sequences are typically provided in single stranded form. A standard sequence is defined with respect to a corresponding target sequence and the sequence specific reagents used to amplify the target sequence. In some embodiments, the target sequence contains the polymorphism of interest, e.g., a SNP, a deletion, or insertion, present in the nucleic acid sample for analysis.
- the polymorphism of interest e.g., a SNP, a deletion, or insertion
- the standard sequence is a synthetic polynucleotide that is similar in nucleotide base sequence to the target sequence, but is nonetheless distinguishable from the target sequence by virtue of at least one nucleotide base difference, thereby providing a mechanism for distinguishing amplicon sequences derived from the standard sequence form amplicon sequences derived from the target sequence.
- Standard sequences are selected so as to have essentially the same amplification properties as the corresponding target sequence when amplified with the same set of amplification reagents, e.g., PCR primers.
- the standard sequences can have the same primer sequence binding sites than the corresponding target sequences. In other embodiments, the standard sequences can have a different primer sequence binding sites than the corresponding target sequences.
- the standard sequences can be selected to produce amplicons that have the same length as the length of amplicons produced from the corresponding target sequences. In other embodiments, the standard sequences can be selected to produce amplicons that have the slightly different lengths than the length of amplicons produced from the corresponding target sequences.
- the library is sequenced on a high throughput DNA sequencer where individual molecule are clonally amplified and sequenced.
- the number of sequence reads for each allele of the target sequence is counted, also counted are the number of sequence reads for the standard sequence corresponding to the target sequence.
- the process is also carried out for at least one other pair of target sequences and corresponding standard sequences.
- locus A X A1 reads for allele 1 of locus A are produced; X A2 reads for allele 2 of locus A are produced, and X AC reads for standard sequence A are produced.
- the ratio of (X A1 plus X A2 ) to X AC is determined for each locus of interest.
- the process can be performed on a reference genome, e.g., a genome that is known to be diploid for all chromosomes.
- the process can be repeated many times in order to provide a large number of read values so as to determine a mean number of reads and the standard deviation in the number of reads.
- the process is performed with a mixture comprising a large number of different standard sequences corresponding to different loci.
- X A1 plus X A2 corresponds to the known number of chromosome, e.g., 2 for the normal human female genome and (2) the standard sequences have similar amplification (and detectability) properties as their corresponding natural loci
- the relative amounts of the different standard sequences in the multiplex standard mixture can be determined.
- the calibrated multiplex standard sequence mixture can then be used to adjust for the variability in amplification efficiency between the different loci in a multiplex amplification reaction.
- inventions include methods and compositions for measuring the copy number of specific genes of interest, including duplications and mutant genes characterized by large deletions that would interfere with quantitation by sequencing. Sequencing would have problems detecting alleles having such deletions. Standard sequences included the amplification process can be used to reduce this problem.
- the target sequence for analysis is a gene having a wild type (i.e. functional) form and a mutant form characterized by a deletion.
- exemplary of such genes is SMN1, an allele having deletion being responsible for the genetic disease spinal muscular atrophy (SMA). It is of interest to detect an individual carrying the mutant form of the gene by means of high throughput genetic sequencing techniques. The application of such techniques to the detection of deletion mutations can be problematic because, among other reasons, the lack of sequences observed in sequencing (as opposed to detecting a simple point mutation or SNP).
- Such embodiments employ (1) a pair of amplification primers specific for the gene of interest, where in the amplification primers will amplify the gene of interest (or a portion thereof) and will not significantly amplify the mutant allele, (2) a standard sequence corresponding to the wild type allele of the gene of interest (i.e., a target sequence), but differing by at least one detectable nucleotide base, (3) a pair of amplification primers specific for a second target sequence that serves as a reference sequence, and (4) a standard sequence corresponding to the reference sequence.
- a method for measuring the number of copies of the gene of interest where in the gene of interest has one meaning allele that comprises a deletion.
- the method can employ amplification reagent specific for the gene of interest, e.g., PCR primers, that are specific for the gene of interest by amplifying at least a portion of the gene of interest, or the entire gene of interest, or a region adjacent to the gene of interest, while not amplifying the deletion comprising allele of the gene of interest.
- the subject method employs a standard sequence corresponding to the gene of interest, wherein the standard sequence differs by at least one nucleotide base from the gene of interest (so that the sequence of the standard sequence can be readily distinguished from the naturally occurring gene of interest).
- the standard sequence will contain the same primer binding sites as the gene of interest so as to minimize any amplification discrimination between the gene of interest and the standard sequence corresponding to the gene of interest.
- the reaction will also comprises amplification reagents specific for a reference sequence.
- the reference sequence is a sequence of known (or at least assumed to be known) copy number in the genome to be analyzed.
- the reaction further comprises a standard sequence corresponding to the reference sequence.
- the standard sequence corresponding to the reference sequence will contain the same primer binding sites as the reference sequence so as to minimize any amplification discrimination between the reference sequence and the standard sequence corresponding to the reference sequence.
- any of the PCR conditions disclosed herein or any standard PCR conditions can be used to test a primer library to determine, e.g., the percent of primer dimers, percent of target amplicons, and percent of target loci that are amplified. If desired, standard methods can be used to optimize the reaction conditions to improve the performance of a primer library. Any of these PCR conditions may also be used in any of the methods of the invention to amplify target loci. It was determined that high ionic strength solutions can surprisingly be used for multiplex PCR. In some embodiments, monovalent cations are used to increase the ionic strength to, e.g., help the primers bind the template.
- the reaction volume includes ethylenediaminetetraacetic acid (EDTA), magnesium, tetramethyl ammonium chloride (TMAC), or any combination thereof.
- concentration of TMAC is between 20 and 80 mM, such as between 25 and 70 mM, 30 and 60 mM, 30 and 40 mM, 40 and 50 mM, 50 and 60 mM, or 60 and 70 mM, inclusive. While not meant to be bound to any particular theory, it is believed that TMAC binds to DNA, stabilizes duplexes, increases primer specificity, and/or equalizes the melting temperatures of different primers. In some embodiments, TMAC increases the uniformity in the amount of amplified products for the different targets.
- the concentration of magnesium (such as magnesium from magnesium chloride) is between 1 and 10 mM, such as between 1 and 8 mM, 1 and 5 mM, 1 and 3 mM, 3 and 5 mM, 3 and 6 mM, or 5 and 8 mM, inclusive.
- the concentration of available magnesium (the concentration of magnesium that is assumed to be available for binding the polymerase and not bound to molecules other than the polymerase), such as the magnesium that is not bound by phosphate groups on dNTPs, primers, or nucleic acid templates, or carboxylic acid groups on magnetic or other beads, if present) is between 0.5 to 10 mM, such as between 1 and 8 mM, 1 and 5 mM, 1 and 3 mM, 3 and 5 mM, 3 and 6 mM, 4 and 6 mM, or 5 and 8 mM, inclusive.
- the large number of primers used for multiplex PCR of a large number of targets may chelate a lot of the magnesium (2 phosphates in the primers chelate 1 magnesium). For example, if enough primers are used such that the concentration of phosphate from the primers is ⁇ 9 mM, then the primers may reduce the effective magnesium concentration by ⁇ 4.5 mM.
- EDTA is used to decrease the amount of magnesium available as a cofactor for the polymerase since high concentrations of magnesium can result in PCR errors, such as amplification of non-target loci. In some embodiments, the concentration of EDTA reduces the amount of available magnesium to between 1 and 5 mM (such as between 3 and 5 mM).
- the pH is between 7.5 and 8.5, such as between 7.5 and 8, 8 and 8.3, or 8.3 and 8.5, inclusive.
- Tris is used at, for example, a concentration of between 10 and 100 mM, such as between 10 and 25 mM, 25 and 50 mM, 50 and 75 mM, or 25 and 75 mM, inclusive. In some embodiments, any of these concentrations of Tris are used at a pH between 7.5 and 8.5.
- a combination of KCl and (NH 4 ) 2 SO 4 is used, such as between 50 and 150 mM KCl and between 10 and 90 mM (NH 4 ) 2 SO 4 , inclusive.
- the concentration of KCl is between 0 and 30 mM, between 50 and 100 mM, or between 100 and 150 mM, inclusive.
- the concentration of (NH 4 ) 2 SO 4 is between 10 and 50 mM, 50 and 90 mM, 10 and 20 mM, 20 and 40 mM, 40 mM and 60, or 60 mM and 80 mM (NH 4 ) 2 SO 4 , inclusive.
- the ammonium [NH 4 + ] concentration is between 0 and 160 mM, such as between 0 to 50, 50 to 100, or 100 to 160 mM, inclusive.
- the sum of the potassium and ammonium concentration ([K + ]+[NH 4 + ]) is between 0 and 160 mM, such as between 0 to 25, 25 to 50, 50 to 150, 50 to 75, 75 to 100, 100 to 125, or 125 to 160 mM, inclusive.
- the buffer includes 25 to 75 mM Tris, pH 7.2 to 8, 0 to 50 mM KCL, 10 to 80 mM ammonium sulfate, and 3 to 6 mM magnesium, inclusive.
- the buffer includes 25 to 75 mM Tris pH 7 to 8.5, 3 to 6 mM MgCl 2 , 10 to 50 mM KCl, and 20 to 80 mM (NH 4 ) 2 SO 4 , inclusive. In some embodiments, 100 to 200 Units/mL of polymerase are used. In some embodiments, 100 mM KCl, 50 mM (NH 4 ) 2 SO 4 , 3 mM MgCl 2 , 7.5 nM of each primer in the library, 50 mM TMAC, and 7 ul DNA template in a 20 ul final volume at pH 8.1 is used.
- a crowding agent such as polyethylene glycol (PEG, such as PEG 8,000) or glycerol.
- PEG polyethylene glycol
- glycerol the amount of PEG (such as PEG 8,000) is between 0.1 to 20%, such as between 0.5 to 15%, 1 to 10%, 2 to 8%, or 4 to 8%, inclusive.
- the amount of glycerol is between 0.1 to 20%, such as between 0.5 to 15%, 1 to 10%, 2 to 8%, or 4 to 8%, inclusive.
- a crowding agent allows either a low polymerase concentration and/or a shorter annealing time to be used.
- a crowding agent improves the uniformity of the DOR and/or reduces dropouts (undetected alleles). For example, at 8% PEG, and 50 U/mL polymerase, the uniformity was as good as 150 U/mL polymerase and no PEG. If the error rate increases when PEG is included, a higher magnesium chloride concentration (such greater than or about 4, 5, 6, 7, 8, 9, or 10 MgCl 2 ) can be used to reduce or prevent the increase in error rate. Inclusion of 8% PEG 8,000 allowed successful multiplexing with an annealing time of only 1 minute at an annealing temperature of 63° C.
- a polymerase with proof-reading activity a polymerase without (or with negligible) proof-reading activity, or a mixture of a polymerase with proof-reading activity and a polymerase without (or with negligible) proof-reading activity is used.
- a hot start polymerase, a non-hot start polymerase, or a mixture of a hot start polymerase and a non-hot start polymerase is used.
- a HotStarTaq DNA polymerase is used (see, for example, QIAGEN catalog No.
- AmpliTaq Gold® DNA Polymerase is used; it is a chemically modified form of AmpliTaq® DNA Polymerase requiring thermal activation (see, for example, Applied Biosystems catalog No.
- KAPA Taq DNA Polymerase or KAPA Taq HotStart DNA Polymerase is used; they are based on the single-subunit, wild-type Taq DNA polymerase of the thermophilic bacterium Thermus aquaticus .
- KAPA Taq and KAPA Taq HotStart DNA Polymerase have 5′-3′ polymerase and 5′-3′ exonuclease activities, but no 3′ to 5′ exonuclease (proofreading) activity (see, for example, KAPA BIOSYSTEMS catalog No._BK1000 see, e.g., information available at the World Wide Web at kapabiosystems.com/product-applications/products/per-2/kapa-taq-per-kits/, which is hereby incorporated by reference in its entirety).
- Pfu DNA polymerase is used; it is a highly thermostable DNA polymerase from the hyperthermophilic archaeum Pyrococcus furiosus .
- the enzyme catalyzes the template-dependent polymerization of nucleotides into duplex DNA in the 5′ ⁇ 3′ direction.
- Pfu DNA Polymerase also exhibits 3′ ⁇ 5′ exonuclease (proofreading) activity that enables the polymerase to correct nucleotide incorporation errors. It has no 5′ ⁇ 3′ exonuclease activity (see, for example, Thermo Scientific catalog No._EP0501 see, e.g., information available at the World Wide Web at thermoscientificbio.com/per-enzymes-master-mixes-and-reagents/pfu-dna-polymerase/, which is hereby incorporated by reference in its entirety).
- Klentaql is used; it is a Klenow-fragment analog of Taq DNA polymerase, it has no exonuclease or endonuclease activity (see, for example, DNA POLYMERASE TECHNOLOGY, Inc, St. Louis, Mo., catalog No._100 see, e.g., information available at the World Wide Web at klentaq.com/products/klentaq, which is hereby incorporated by reference in its entirety).
- the polymerase is a PUSHION DNA polymerase, such as PHUSION High Fidelity DNA polymerase (M0530S, New England BioLabs, Inc.) or PHUSION Hot Start Flex DNA polymerase (M0535S, New England BioLabs, Inc.; Frey and Suppman BioChemica. 2:34-35, 1995; Chester and Marshak Analytical Biochemistry. 209:284-290, 1993, which are each hereby incorporated by reference in its entirety).
- PHUSION High Fidelity DNA polymerase M0530S, New England BioLabs, Inc.
- PHUSION Hot Start Flex DNA polymerase M0535S, New England BioLabs, Inc.
- Frey and Suppman BioChemica. 2:34-35 1995
- Chester and Marshak Analytical Biochemistry. 209:284-290 1993, which are each hereby incorporated by reference in its entirety
- the polymerase is a Q5® DNA Polymerase, such as Q5® High-Fidelity DNA Polymerase (M0491S, New England BioLabs, Inc.) or Q5® Hot Start High-Fidelity DNA Polymerase (M0493S, New England BioLabs, Inc.).
- the polymerase is a T4 DNA polymerase (M0203S, New England BioLabs, Inc.; Tabor and Struh. (1989). “DNA-Dependent DNA Polymerases,” In Ausebel et al. (Ed.), Current Protocols in Molecular Biology. 3.5.10-3.5.12. New York: John Wiley & Sons, Inc., 1989; Sambrook et al. Molecular Cloning: A Laboratory Manual . (2nd ed.), 5.44-5.47. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1989, which are each hereby incorporated by reference in its entirety).
- between 5 and 600 Units/mL (Units per 1 mL of reaction volume) of polymerase is used, such as between 5 to 100, 100 to 200, 200 to 300, 300 to 400, 400 to 500, or 500 to 600 Units/mL, inclusive.
- One unit is commonly defined as the amount of enzyme that will incorporate 15 nmol of dNTP into acid-insoluble material in 30 minutes at 75° C.
- Exemplary assay conditions for measuring unit activity include 1 ⁇ THERMOPOL Reaction Buffer, 200 ⁇ M dNTPs including [ 3 H]-dTTP and 200 ⁇ g/ml activated Calf Thymus DNA (see, e.g., information available at the world wide web at neb.com/products/m0267-taq-dna-polymerase-with-thermopol-buffer, which is hereby incorporated by reference in its entirety).
- 1 ⁇ THERMOPOL® Reaction Buffer contains 20 mM Tris-HCl, 10 mM (NH 4 ) 2 SO 4 , 10 mM KCl, 2 mM MgSO 4 , and 0.1% TRITON® X-100, pH 8.8.
- hot-start PCR is used to reduce or prevent polymerization prior to PCR thermocycling.
- Exemplary hot-start PCR methods include initial inhibition of the DNA polymerase, or physical separation of reaction components reaction until the reaction mixture reaches the higher temperatures.
- the enzyme is spatially separated from the reaction mixture by wax that melts when the reaction reaches high temperature.
- slow release of magnesium is used.
- DNA polymerase requires magnesium ions for activity, so the magnesium is chemically separated from the reaction by binding to a chemical compound, and is released into the solution only at high temperature.
- non-covalent binding of an inhibitor is used. In this method a peptide, antibody, or aptamer are non-covalently bound to the enzyme at low temperature and inhibit its activity.
- a cold-sensitive Taq polymerase such as a modified DNA polymerase with almost no activity at low temperature.
- chemical modification is used.
- a molecule is covalently bound to the side chain of an amino acid in the active site of the DNA polymerase. The molecule is released from the enzyme by incubation of the reaction mixture at elevated temperature. Once the molecule is released, the enzyme is activated.
- the amount to template nucleic acids (such as an RNA or DNA sample) is between 20 and 5,000 ng, such as between 20 to 200, 200 to 400, 400 to 600, 600 to 1,000; 1,000 to 1,500; or 2,000 to 3,000 ng, inclusive.
- QIAGEN Multiplex PCR Kit is used (QIAGEN catalog No. 206143; see, e.g., information available at the World Wide Web at qiagen.com/products/catalog/assay-technologies/end-point-per-and-rt-per-reagents/qiagen-multiplex-per-kit, which is hereby incorporated by reference in its entirety).
- the kit includes 2 ⁇ QIAGEN Multiplex PCR Master Mix (providing a final concentration of 3 mM MgCl 2 , 3 ⁇ 0.85 ml), 5 ⁇ Q-Solution (1 ⁇ 2.0 ml), and RNase-Free Water (2 ⁇ 1.7 ml).
- the QIAGEN Multiplex PCR Master Mix contains a combination of KCl and (NH 4 ) 2 SO 4 as well as the PCR additive, Factor MP, which increases the local concentration of primers at the template. Factor MP stabilizes specifically bound primers, allowing efficient primer extension by HotStarTaq DNA Polymerase.
- HotStarTaq DNA Polymerase is a modified form of Taq DNA polymerase and has no polymerase activity at ambient temperatures. In some embodiments, HotStarTaq DNA Polymerase is activated by a 15-minute incubation at 95° C. which can be incorporated into any existing thermal-cycler program.
- 1 ⁇ QIAGEN MM final concentration (the recommended concentration), 7.5 nM of each primer in the library, 50 mM TMAC, and 7 ul DNA template in a 20 ul final volume is used.
- the PCR thermocycling conditions include 95° C. for 10 minutes (hot start); 20 cycles of 96° C. for 30 seconds; 65° C. for 15 minutes; and 72° C. for 30 seconds; followed by 72° C. for 2 minutes (final extension); and then a 4° C. hold.
- 2 ⁇ QIAGEN MM final concentration (twice the recommended concentration), 2 nM of each primer in the library, 70 mM TMAC, and 7 ul DNA template in a 20 ul total volume is used. In some embodiments, up to 4 mM EDTA is also included.
- the PCR thermocycling conditions include 95° C. for 10 minutes (hot start); 25 cycles of 96° C. for 30 seconds; 65° C. for 20 minutes; and 72° C. for 30 seconds); followed by 72° C. for 2 minutes (final extension); and then a 4° C. hold.
- Another exemplary set of PCR thermocyling conditions includes 95° C. for 10 minutes, 15 cycles of 95° C. for 30 seconds, 65° C. for 1 minute, 60° C. for 5 minutes, 65° C. for 5 minutes and 72° C. for 30 seconds; and then 72° C. for 2 minutes.
- this set of PCR thermocyling conditions is used with the following reaction conditions: 100 mM KCl, 50 mM (NH 4 ) 2 SO 4 , 3 mM MgCl 2 , 7.5 nM of each primer in the library, 50 mM TMAC, and 7 ul DNA template in a 20 ul final volume at pH 8.1.
- Another exemplary set of conditions includes a semi-nested PCR approach.
- the first PCR reaction uses 20 ul a reaction volume with 2 ⁇ QIAGEN MM final concentration, 1.875 nM of each primer in the library (outer forward and reverse primers), and DNA template.
- Thermocycling parameters include 95° C. for 10 minutes; 25 cycles of 96° C. for 30 seconds, 65° C. for 1 minute, 58° C. for 6 minutes, 60° C. for 8 minutes, 65° C. for 4 minutes, and 72° C. for 30 seconds; and then 72° C. for 2 minutes, and then a 4° C. hold.
- 2 ul of the resulting product, diluted 1:200 is as input in a second PCR reaction.
- This reaction uses a 10 ul reaction volume with 1 ⁇ QIAGEN MM final concentration, 20 nM of each inner forward primer, and 1 uM of reverse primer tag.
- Thermocycling parameters include 95° C. for 10 minutes; 15 cycles of 9° 5 C for 30 seconds, 65° C. for 1 minute, 60° C. for 5 minutes, 65° C. for 5 minutes, and 72° C. for 30 seconds; and then 72° C. for 2 minutes, and then a 4° C. hold.
- any of the methods disclosed herein or any standard methods can be used to test a primer library to determine, e.g., the percent of primer dimers, percent of target amplicons, and percent of target loci that are amplified.
- the PCR products are sequenced as described in Example 15 or using standard sequencing methods.
- the percentage of primer dimers can be determined by measuring the number of sequencing reads from primer dimers, the percentage of amplified products that are target amplicons can be determined by measuring the number of sequencing reads that map to target loci; the percent of target loci that are amplified can be determined by measuring the number of target loci for which there are sequencing reads that map to the target loci; the number of copies of a particular amplified target loci can be determined based on the number of sequencing reads that map to that target loci (such as by comparing the number of sequencing reads compared to the sequences reads from a standard of known concentration or amount).
- FIG. 45 contains data (such as percent mapped reads and error rate) from multiplex PCR with various buffers.
- “1 ⁇ MM” denotes 1 ⁇ QIAGEN Master Mix (the recommended concentration) discussed above, and “2 ⁇ MM” denotes 2 ⁇ QIAGEN Master Mix (twice the recommended concentration).
- FIG. 45 also lists the components of buffer F-A (also called F-A Gold), F-B (also called F-B Gold), F-D, and F-J (also called F-B Qiagen or F-B Qia) as well as the amount and type of polymerase used to generate the data.
- FIG. 46 is a graph illustrating the uniformity in DOR for multiplex PCR with buffers from FIG. 45 .
- FIG. 47 is a graph illustrating the normalized depth of read (DOR) for multiplex PCR with buffers from FIG. 45 with the DOR normalized to that of buffer 2 ⁇ MM.
- methods provided herein are capable of detecting an average allelic imbalance in a sample with a limit of detection or sensitivity of 0.45% AAI, which is the limit of detection for aneuploidy of an illustrative method of the present invention.
- methods provided herein are capable of detecting an average allelic imbalance in a sample of 0.45, 0.5, 0.6, 0.8, 0.8, 0.9, or 1.0%. That is, the test method is capable of detecting chromosomal aneuploidy in a sample down to an AAI of 0.45, 0.5, 0.6, 0.8, 0.8, 0.9, or 1.0%.
- methods provided herein are capable of detecting the presence of an SNV in a sample for at least some SNVs, with a limit of detection or sensitivity of 0.2%, which is the limit of detection for at least some SNVs in one illustrative embodiment.
- the method is capable of detecting an SNV with a frequency or SNV AAI of 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.8, 0.9, or 1.0%.
- the test method is capable of detecting an SNV in a sample down to a limit of detection of 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.8, 0.9, or 1.0% of the total allele counts at the chromosomal locus of the SNV.
- a limit of detection of a mutation (such as an SNV or CNV) of a method of the invention is less than or equal to 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, or 0.005%. In some embodiments, a limit of detection of a mutation (such as an SNV or CNV) of a method of the invention is between 15 to 0.005%, such as between 10 to 0.005%, 10 to 0.01%, 10 to 0.1%, 5 to 0.005%, 5 to 0.01%, 5 to 0.1%, 1 to 0.005%, 1 to 0.01%, 1 to 0.1%, 0.5 to 0.005%, 0.5 to 0.01%, 0.5 to 0.1%, or 0.1 to 0.01, inclusive.
- a limit of detection is such that a mutation (such as an SNV or CNV) that is present in less than or equal to 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, or 0.005% of the DNA or RNA molecules with that locus in a sample (such as a sample of cfDNA or cfRNA) is detected (or is capable of being detected).
- the mutation can be detected even if less than or equal to 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, or 0.005% of the DNA or RNA molecules that have that locus have that mutation in the locus (instead of, for example, a wild-type or non-mutated version of the locus or a different mutation at that locus).
- a limit of detection is such that a mutation (such as an SNV or CNV) that is present in less than or equal to 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, or 0.005% of the DNA or RNA molecules in a sample (such as a sample of cfDNA or cfRNA) is detected (or is capable of being detected).
- the CNV is a deletion
- the deletion can be detected even if it is only present in less than or equal to 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, or 0.005% of the DNA or RNA molecules that have a region of interest that may or may not contain the deletion in a sample.
- the deletion can be detected even if it is only present in less than or equal to 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, or 0.005% of the DNA or RNA molecules in a sample.
- the duplication can be detected even if the extra duplicated DNA or RNA that is present is less than or equal to 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, or 0.005% of the DNA or RNA molecules that have a region of interest that may or may not be duplicated in a sample in a sample.
- the duplication can be detected even if the extra duplicated DNA or RNA that is present is less than or equal to 10, 5, 2, 1, 0.5, 0.1, 0.05, 0.01, or 0.005% of the DNA or RNA molecules in a sample.
- Experiment 23 provides exemplary methods for calculating the limit of detection. In some embodiments, the “LOD-zs5.0-mr5” method of Example 23 is used.
- the genetic sample may be prepared and/or purified. There are a number of standard procedures known in the art to accomplish such an end.
- the sample may be centrifuged to separate various layers.
- the DNA may be isolated using filtration.
- the preparation of the DNA may involve amplification, separation, purification by chromatography, liquid separation, isolation, preferential enrichment, preferential amplification, targeted amplification, or any of a number of other techniques either known in the art or described herein.
- a method disclosed herein could be used in situations where there is a very small amount of DNA present, such as in in vitro fertilization, or in forensic situations, where one or a few cells are available (typically less than ten cells, less than twenty cells or less than 40 cells.)
- a method disclosed herein serves to make ploidy calls from a small amount of DNA that is not contaminated by other DNA, but where the ploidy calling very difficult the small amount of DNA.
- a method disclosed herein could be used in situations where the target DNA is contaminated with DNA of another individual, for example in maternal blood in the context of prenatal diagnosis, paternity testing, or products of conception testing.
- RNA DNA or RNA
- a method disclosed herein could be run with nucleic acid detection methods such as sequencing, microarrays, qPCR, digital PCR, or other methods used to measure nucleic acids. If for some reason it were found to be desirable, the ratios of the allele count probabilities at a locus could be calculated, and the allele ratios could be used to determine ploidy state in combination with some of the methods described herein, provided the methods are compatible. In some embodiments, a method disclosed herein involves calculating, on a computer, allele ratios at the plurality of polymorphic loci from the DNA measurements made on the processed samples.
- a method disclosed herein involves calculating, on a computer, allele ratios at the plurality of polymorphic loci from the DNA measurements made on the processed samples along with any combination of other improvements described in this disclosure.
- Exemplary methods for isolating fetal cells, such as a single fetal cell are disclosed in U.S. Ser. No. 61/978,648, filed Apr. 11, 2014 and U.S. Ser. No. 61/984,546, filed Apr. 25, 2014.
- Fetal cells or fetal nucleic acids can be isolated from a pregnant mother using invasive (such as CVS or amniocentesis) or noninvasive methods (such as from a maternal blood sample).
- this method may be used to genotype a single cell, a small number of cells, two to five cells, six to ten cells, ten to twenty cells, twenty to fifty cells, fifty to one hundred cells, one hundred to one thousand cells, or a small amount of extracellular DNA, for example from one to ten picograms, from ten to one hundred pictograms, from one hundred pictograms to one nanogram, from one to ten nanograms, from ten to one hundred nanograms, from 30 to 500 nanograms, or from one hundred nanograms to one microgram.
- nucleic acids such as DNA and/or RNA
- the nucleic acid sample includes less than 80, 60, 40, 20, or 10% of the nucleic acids (such as DNA and/or RNA) from a single cell.
- nested PCR such as hemi-nested or semi-nested PCR is used and/or the number of PCR cycles is increased compare to that used for samples with a larger amount of cells or nucleic acids.
- a large amount of cells or nucleic acids are used (such as in cases in which a larger amount is desired to improve performance of any of the methods of the invention.
- a sample with at least 2, 5, 10, 15, 20, 30, 50, 100, or more cells (or DNA or RNA from such cells) is used in any of the methods of the invention.
- at least 0.5, 1, 10, 25, 50, 100, 500, 1,000; or 5,000 ng of DNA or RNA is used.
- the cells in the sample are lysed prior to PCR.
- This kit contains Arcturus reconstitution buffer and Protease K.
- the following cell lysis thermocycling protocol is used: 56° C. for 1 hour, 95° C. for 10 minutes, 25° C. for 15 minutes, and then a 4° C. hold.
- the nucleic acids are processed using the consecutive steps of end-repairing, dA-tailing, and adaptor ligating the nucleic acids.
- the consecutive steps exclude purifying the end-repaired products prior to the dA-tailing step and exclude purifying the dA-tailing products prior to the adaptor ligating step.
- the resulting products are amplified in any of the multiplex PCR methods of the invention. In some embodiments, the amplified products are then sequenced.
- the multiplex PCR methods of the invention can be used to increase the number of target loci that can be evaluated to measure the amount of one or more specific nucleic acid molecules of interest or of one or more types of nucleic acids.
- there is a change in the total amount or concentration of one or more types of DNA such as cfDNA cf mDNA, cf nDNA, cellular DNA, or mitochondrial DNA
- RNA cfRNA, cellular RNA, cytoplasmic RNA, coding cytoplasmic RNA, non-coding cytoplasmic RNA, mRNA, miRNA, mitochondrial RNA, rRNA, or tRNA).
- RNA RNA molecules that regulate the expression of a gene.
- one or more specific DNA such as cfDNA cf mDNA, cf nDNA, cellular DNA, or mitochondrial DNA
- RNA RNA
- one allele is expressed more than another allele of a locus of interest.
- miRNAs are short 20-22 nucleotide RNA molecules that regulate the expression of a gene.
- there is a change in the transcriptome such as a change in the identity or amount of one or more RNA molecules.
- an increase in the total amount or concentration of cfDNA or cfRNA is associated with a disease such as cancer, or an increased risk for a disease such as cancer.
- the total concentration of a type of DNA such as cfDNA cf mDNA, cf nDNA, cellular DNA, or mitochondrial DNA
- RNA cfRNA, cellular RNA, cytoplasmic RNA, coding cytoplasmic RNA, non-coding cytoplasmic RNA, mRNA, miRNA, mitochondrial RNA, rRNA, or tRNA
- the amount of a type of DNA (such as cfDNA cf mDNA, cf nDNA, cellular DNA, or mitochondrial DNA) or RNA (cfRNA, cellular RNA, cytoplasmic RNA, coding cytoplasmic RNA, non-coding cytoplasmic RNA, mRNA, miRNA, mitochondrial RNA, rRNA, or tRNA) having one or more polymorphisms/mutations (such as deletions or duplications) associated with a disease such as cancer or an increased risk for a disease such as cancer is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, or 25% of the total amount of that type of DNA or RNA.
- a type of DNA such as cfDNA cf mDNA, cf nDNA, cellular DNA, or mitochondrial DNA
- RNA cfRNA, cellular RNA, cytoplasmic RNA, coding cytoplasmic RNA, non-coding cytoplasmic RNA, mRNA, miRNA,
- At least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, or 25% of the total amount of a type of DNA such as cfDNA cf mDNA, cf nDNA, cellular DNA, or mitochondrial DNA
- RNA cfRNA, cellular RNA, cytoplasmic RNA, coding cytoplasmic RNA, non-coding cytoplasmic RNA, mRNA, miRNA, mitochondrial RNA, rRNA, or tRNA
- a particular polymorphism or mutation such as a deletion or duplication associated with a disease such as cancer or an increased risk for a disease such as cancer.
- the multiplex PCR methods of the invention can be used to increase the number of target loci that can be evaluated during gene expression profiling experiments. For example, the expression levels of thousands of genes can be simultaneously monitored to determine whether a person has a sequence (such as a polymorphism or other mutation) associated with a disease (such as cancer) or an increased risk of a disease. These methods can be used to identify sequences (such as polymorphisms or other mutations) associated with an increased or decreased risk for a disease such as cancer by comparing gene expression (such as the expression of particular mRNA alleles) in samples from patients with and without the disease. Additionally, the effect of particular treatments, diseases, or developmental stages on gene expression can be determined.
- these methods can be used to identify genes whose expression is changed in response to pathogens or other organisms by comparing gene expression in infected and uninfected cells or tissues.
- the number of sequencing reads can be adjusted based on the frequency of the polymorphisms that are being analyzed such that sufficient reads are performed for the polymorphisms to be detected if they are present.
- the polymorphisms or mutation is present at a higher frequency in subjects with a disease or disorder (such as cancer) than subjects without the disease or disorder (such as cancer).
- the polymorphisms or mutation is indicative of cancer, such as a causative mutation.
- a sample containing RNA (such as mRNA) is amplified using a reverse transcriptase (RT) and the resulting DNA (such as cDNA) is then amplified using a DNA polymerase (PCR).
- RT reverse transcriptase
- PCR DNA polymerase
- the RT and PCR steps may be carried out sequentially in the same reaction volume or separately.
- Any of the primer libraries of the invention can be used in this reverse transcription polymerase chain reaction (RT-PCR) method.
- the reverse transcription is performed using oligo-dT, random primers, a mixture of oligo-dT and random primers, or primers specific to the target loci.
- primers for RT-PCR can be designed so that part of one primer hybridizes to the 3′ end of one exon and the other part of the primer hybridizes to the 5′ end of the adjacent exon. Such primers anneal to cDNA synthesized from spliced mRNAs, but not to genomic DNA.
- RT-PCR primer pairs may be designed to flank a region that contains at least one intron. Products amplified from cDNA (no introns) are smaller than those amplified from genomic DNA (containing introns). Size difference in products is used to detect the presence of contaminating DNA.
- primer annealing sites are chosen that are at least 300-400 base pairs apart since it is likely that fragments of this size from eukaryotic DNA contain splice junctions.
- the sample can be treated with DNase to degrade contaminating DNA.
- the multiplex PCR methods of the invention can be used to improve the accuracy of paternity testing since so many target loci can be analyzed at once (see, e.g, U.S. Publication No. 2012/0122701, filed Dec. 22, 2011, is which is hereby incorporated by reference in its entirety).
- the multiplex PCR method can allow thousands of polymorphic loci (such as SNPs) to be analyzed for use in the PARENTAL SUPPORT algorithm described herein to determine whether an alleged father in is the biological father of a fetus.
- the method involves (i) simultaneously amplifying a plurality of polymorphic loci that includes at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different polymorphic loci on genetic material from the alleged father to produce a first set of amplified products; (ii) simultaneously amplifying the corresponding plurality of polymorphic loci on a mixed sample of DNA originating from a blood sample from the pregnant mother to produce a second set of amplified products; wherein the mixed sample of DNA comprises fetal DNA and maternal DNA; (iii) determining on a computer the probability that the alleged father is the biological father of the fetus using genotypic measurements based on the first and second sets of amplified products; and (iv) establishing whether the alleged father is the biological father of the fetus using the determined probability that the
- the method further includes simultaneously amplifying the corresponding plurality of polymorphic loci on genetic material from the mother to produce a third set of amplified products; wherein the probability that the alleged father is the biological father of the fetus is determined using genotypic measurements based on the first, second, and third sets of amplified products.
- the multiplex PCR methods of the invention can be used to improve the selection of embryos for in vitro fertilization by allowing thousands of target loci to be analyzed at once (see, e.g, U.S. Pub. No. 2011/0092763, filed May 27, 2008, filed Dec. 22, 2011, is which is hereby incorporated by reference in its entirety).
- the multiplex PCR method can allow thousands of polymorphic loci (such as SNPs) to be analyzed for use in the PARENTAL SUPPORT algorithm described herein to select an embryo out of a set of embryos for in vitro fertilization
- the invention provides methods of estimating relative likelihoods that each embryo from a set of embryos will develop as desired.
- the method involves contacting a sample from each embryo with a library of primers that simultaneously hybridize to at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different target loci to produce a reaction mixture for each embryo, wherein the samples are each derived from one or more cells from an embryo.
- each reaction mixture is subjected to primer extension reaction conditions to produce amplified products.
- the method includes determining on a computer one or more characteristics of at least one cell from each embryo based on the amplified products; and estimating on a computer the relative likelihoods that each embryo will develop as desired, based on the one or more characteristics of the at least one cell for each embryo.
- the method includes using an informatics based method to determine the at least one characteristic, such as the PARENTAL SUPPORT algorithm described herein.
- the characteristic includes a ploidy state.
- the characteristic is selected from the group consisting of aneuploid, euploid, mosaic, nullsomy, monosomy, uniparental disomy, trisomy, tetrasomy, a type of aneuploidy, unmatched copy error trisomy, matched copy error trisomy, maternal origin of aneuploidy, paternal origin of aneuploidy, a presence or absence of a disease-linked gene, a chromosomal identity of any aneuploid chromosome, an abnormal genetic condition, a deletion or duplication, a likelihood of a characteristic, and combinations thereof.
- the characteristic may be associated with a chromosome taken from the group consisting of chromosome one, chromosome two, chromosome three, chromosome four, chromosome five, chromosome six, chromosome seven, chromosome eight, chromosome nine, chromosome ten, chromosome eleven, chromosome twelve, chromosome thirteen, chromosome fourteen, chromosome fifteen, chromosome sixteen, chromosome seventeen, chromosome eighteen, chromosome nineteen, chromosome twenty, chromosome twenty-one, chromosome twenty-two, X chromosome or Y chromosome, and combinations thereof.
- the multiplex PCR methods of the present invention can be used to improve prenatal diagnostic methods, such as the determination of the ploidy status of fetal chromosomes. Given that the large number of target loci that can be simultaneously amplified, more accurate determinations can be made.
- the present disclosure provides ex vivo methods for determining the ploidy status of a chromosome in a gestating fetus from genotypic data measured from a mixed sample of DNA (i.e., DNA from the mother of the fetus, and DNA from the fetus) and optionally from genotypic data measured from a sample of genetic material from the mother and possibly also from the father, wherein the determining is done by using a joint distribution model to create a set of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the actual allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern.
- a mixed sample of DNA i.e., DNA from the mother of the fetus, and DNA from the fetus
- genotypic data measured from a sample of genetic material from the mother and possibly also from the father
- the determining is done
- the mixed sample is derived from maternal blood, or maternal serum or plasma.
- the mixed sample of DNA may be preferentially enriched at a target loci (e.g., plurality of polymorphic loci).
- the preferential enrichment is done in a way that minimizes the allelic bias.
- the present disclosure relates to a composition of DNA that has been preferentially enriched at a plurality of loci such that the allelic bias is low.
- the allelic distribution(s) are measured by sequencing the DNA from the mixed sample.
- the joint distribution model assumes that the alleles will be distributed in a binomial fashion.
- the set of expected joint allele distributions are created for genetically linked loci while considering the extant recombination frequencies from various sources, for example, using data from the International HapMap Consortium.
- the present disclosure provides methods for non-invasive prenatal diagnosis (NPD), specifically, determining the aneuploidy status of a fetus by observing allele measurements at a plurality of polymorphic loci in genotypic data measured on DNA mixtures, where certain allele measurements are indicative of an aneuploid fetus, while other allele measurements are indicative of a euploid fetus.
- the genotypic data is measured by sequencing DNA mixtures that were derived from maternal plasma.
- the DNA sample may be preferentially enriched in molecules of DNA that correspond to the plurality of loci whose allele distributions are being calculated.
- a sample of DNA comprising only or almost only genetic material from the mother and possibly also a sample of DNA comprising only or almost only genetic material from the father are measured.
- the genetic measurements of one or both parents along with the estimated fetal fraction are used to create a plurality of expected allele distributions corresponding to different possible underlying genetic states of the fetus; the expected allele distributions may be termed hypotheses.
- the maternal genetic data is not determined by measuring genetic material that is exclusively or almost exclusively maternal in nature, rather, it is estimated from the genetic measurements made on maternal plasma that comprises a mixture of maternal and fetal DNA.
- the hypotheses may comprise the ploidy of the fetus at one or more chromosomes, which segments of which chromosomes in the fetus were inherited from which parents, and combinations thereof.
- the ploidy state of the fetus is determined by comparing the observed allele measurements to the different hypotheses where at least some of the hypotheses correspond to different ploidy states, and selecting the ploidy state that corresponds to the hypothesis that is most likely to be true given the observed allele measurements.
- this method involves using allele measurement data from some or all measured SNPs, regardless of whether the loci are homozygous or heterozygous, and therefore does not involve using alleles at loci that are only heterozygous.
- This method may not be appropriate for situations where the genetic data pertains to only one polymorphic locus.
- This method is particularly advantageous when the genetic data comprises data for more than ten polymorphic loci for a target chromosome or more than twenty polymorphic loci.
- This method is especially advantageous when the genetic data comprises data for more than 50 polymorphic loci for a target chromosome, more than 100 polymorphic loci or more than 200 polymorphic loci for a target chromosome.
- the genetic data may comprise data for more than 500 polymorphic loci for a target chromosome, more than 1,000 polymorphic loci, more than 2,000 polymorphic loci, or more than 5,000 polymorphic loci for a target chromosome.
- a method disclosed herein yields a quantitative measure of the number of independent observations of each allele at a polymorphic locus. This is unlike most methods such as microarrays or qualitative PCR which provide information about the ratio of two alleles but do not quantify the number of independent observations of either allele. With methods that provide quantitative information regarding the number of independent observations, only the ratio is utilized in ploidy calculations, while the quantitative information by itself is not useful. To illustrate the importance of retaining information about the number of independent observations consider the sample locus with two alleles, A and B. In a first experiment twenty A alleles and twenty B alleles are observed, in a second experiment 200 A alleles and 200 B alleles are observed.
- the ratio (A/(A+B)) is equal to 0.5, however the second experiment conveys more information than the first about the certainty of the frequency of the A or B allele.
- Some methods by others involve averaging or summing allele ratios (channel ratios) (i.e. x i /y i ) from individual allele and analyzes this ratio, either comparing it to a reference chromosome or using a rule pertaining to how this ratio is expected to behave in particular situations. No allele weighting is implied in such methods, where it is assumed that one can ensure about the same amount of PCR product for each allele and that all the alleles should behave the same way.
- Such a method has a number of disadvantages, and more importantly, precludes the use a number of improvements that are described elsewhere in this disclosure.
- a method disclosed herein explicitly models the allele frequency distributions expected in disomy as well as a plurality of allele frequency distributions that may be expected in cases of trisomy resulting from nondisjunction during meiosis I, nondisjunction during meiosis II, and/or nondisjunction during mitosis early in fetal development. To illustrate why this is important, imagine a case where there were no crossovers: nondisjunction during meiosis I would result a trisomy in which two different homologs were inherited from one parent; in contrast, nondisjunction during meiosis II or during mitosis early in fetal development would result in two copies of the same homolog from one parent.
- each scenario would result in different expected allele frequencies at each polymorphic locus and also at all loci considered jointly, due to genetic linkage.
- Crossovers which result in the exchange of genetic material between homologs, make the inheritance pattern more complex; in an embodiment, the instant method accommodates for this by using recombination rate information in addition to the physical distance between loci.
- the instant method incorporate into the model an increasing probability of crossover as the distance from the centromere increases.
- Meiosis II and mitotic nondisjunction can distinguished by the fact that mitotic nondisjunction typically results in identical or nearly identical copies of one homolog while the two homologs present following a meiosis II nondisjunction event often differ due to one or more crossovers during gametogenesis.
- a method disclosed herein involves comparing the observed allele measurements to theoretical hypotheses corresponding to possible fetal genetic aneuploidy, and does not involve a step of quantitating a ratio of alleles at a heterozygous locus. Where the number of loci is lower than about 20, the ploidy determination made using a method comprising quantitating a ratio of alleles at a heterozygous locus and a ploidy determination made using a method comprising comparing the observed allele measurements to theoretical allele distribution hypotheses corresponding to possible fetal genetic states may give a similar result.
- a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus using a joint distribution model.
- the use of a joint distribution model is a different from and a significant improvement over methods that determine heterozygosity rates by treating polymorphic loci independently in that the resultant determinations are of significantly higher accuracy. Without being bound by any particular theory, it is believed that one reason they are of higher accuracy is that the joint distribution model takes into account the linkage between SNPs, and likelihood of crossovers having occurred during the meiosis that gave rise to the gametes that formed the embryo that grew into the fetus.
- the purpose of using the concept of linkage when creating the expected distribution of allele measurements for one or more hypotheses is that it allows the creation of expected allele measurements distributions that correspond to reality considerably better than when linkage is not used. For example, imagine that there are two SNPs, 1 and 2 located nearby one another, and the mother is A at SNP 1 and A at SNP 2 on one homolog, and B at SNP 1 and B at SNP 2 on homolog two. If the father is A for both SNPs on both homologs, and a B is measured for the fetus SNP 1, this indicates that homolog two has been inherited by the fetus, and therefore that there is a much higher likelihood of a B being present on the fetus at SNP 2.
- the data may be compared to the hypothesized allele distribution, and weighted according to the number of sequence reads; therefore the data from these measurements would be appropriately weighted and incorporated into the overall determination.
- This is in contrast to a method that involved quantitating a ratio of alleles at a heterozygous locus, as this method could only calculate ratios of 0%, 20%, 40%, 60%, 80% or 100% as the possible allele ratios; none of these may be close to expected allele ratios. In this latter case, the calculated allele rations would either have to be discarded due to insufficient reads or else would have disproportionate weighting and introduce stochastic noise into the determination, thereby decreasing the accuracy of the determination.
- the individual allele measurements may be treated as independent measurements, where the relationship between measurements made on alleles at the same locus is no different from the relationship between measurements made on alleles at different loci.
- a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus without comparing any metrics to observed allele measurements on a reference chromosome that is expected to be disomic (termed the RC method).
- This is a significant improvement over methods, such as methods using shotgun sequencing which detect aneuploidy by evaluating the proportion of randomly sequenced fragments from a suspect chromosomes relative to one or more presumed disomic reference chromosome.
- This RC method yields incorrect results if the presumed disomic reference chromosome is not actually disomic.
- a joint distribution model may be fit, without any of: reference chromosome data, an overall child fraction estimate, or a fixed reference hypothesis.
- a method disclosed herein demonstrates how observing allele distributions at polymorphic loci can be used to determine the ploidy state of a fetus with greater accuracy than methods in the prior art.
- the method uses the targeted sequencing to obtain mixed maternal-fetal genotypes and optionally mother and/or father genotypes at a plurality of SNPs to first establish the various expected allele frequency distributions under the different hypotheses, and then observing the quantitative allele information obtained on the maternal-fetal mixture and evaluating which hypothesis fits the data best, where the genetic state corresponding to the hypothesis with the best fit to the data is called as the correct genetic state.
- a method disclosed herein also uses the degree of fit to generate a confidence that the called genetic state is the correct genetic state.
- a method disclosed herein involves using algorithms that analyze the distribution of alleles found for loci that have different parental contexts, and comparing the observed allele distributions to the expected allele distributions for different ploidy states for the different parental contexts (different parental genotypic patterns). This is different from and an improvement over methods that do not use methods that enable the estimation of the number of independent instances of each allele at each locus in a mixed maternal-fetal sample.
- a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus using observed allelic distributions measured at loci where the mother is heterozygous. This is different from and an improvement over methods that do not use observed allelic distributions at loci where the mother is heterozygous because, in cases where the DNA is not preferentially enriched or is preferentially enriched for loci that are not known to be highly informative for that particular target individual, it allows the use of about twice as much genetic measurement data from a set of sequence data in the ploidy determination, resulting in a more accurate determination.
- a method disclosed herein uses a joint distribution model that assumes that the allele frequencies at each locus are multinomial (and thus binomial when SNPs are biallelic) in nature.
- the joint distribution model uses beta-binomial distributions.
- binomial model can be applied to each locus and the degree underlying allele frequencies and the confidence in that frequency can be ascertained. With methods known in the art that generate ploidy calls from allele ratios, or methods in which quantitative allele information is discarded, the certainty in the observed ratio cannot be ascertained.
- the instant method is different from and an improvement over methods that calculate allele ratios and aggregate those ratios to make a ploidy call, since any method that involves calculating an allele ratio at a particular locus, and then aggregating those ratios, necessarily assumes that the measured intensities or counts that are indicative of the amount of DNA from any given allele or locus will be distributed in a Gaussian fashion.
- the method disclosed herein does not involve calculating allele ratios.
- a method disclosed herein may involve incorporating the number of observations of each allele at a plurality of loci into a model.
- a method disclosed herein may involve calculating the expected distributions themselves, allowing the use of a joint binomial distribution model which may be more accurate than any model that assumes a Gaussian distribution of allele measurements.
- the likelihood that the binomial distribution model is significantly more accurate than the Gaussian distribution increases as the number of loci increases. For example, when fewer than 20 loci are interrogated, the likelihood that the binomial distribution model is significantly better is low. However, when more than 100, or especially more than 400, or especially more than 1,000, or especially more than 2,000 loci are used, the binomial distribution model will have a very high likelihood of being significantly more accurate than the Gaussian distribution model, thereby resulting in a more accurate ploidy determination.
- the likelihood that the binomial distribution model is significantly more accurate than the Gaussian distribution also increases as the number of observations at each locus increases. For example, when fewer than 10 distinct sequences are observed at each locus are observed, the likelihood that the binomial distribution model is significantly better is low. However, when more than 50 sequence reads, or especially more than 100 sequence reads, or especially more than 200 sequence reads, or especially more than 300 sequence reads are used for each locus, the binomial distribution model will have a very high likelihood of being significantly more accurate than the Gaussian distribution model, thereby resulting in a more accurate ploidy determination.
- a method disclosed herein uses sequencing to measure the number of instances of each allele at each locus in a DNA sample.
- Each sequencing read may be mapped to a specific locus and treated as a binary sequence read; alternately, the probability of the identity of the read and/or the mapping may be incorporated as part of the sequence read, resulting in a probabilistic sequence read, that is, the probable whole or fractional number of sequence reads that map to a given loci.
- Using the binary counts or probability of counts it is possible to use a binomial distribution for each set of measurements, allowing a confidence interval to be calculated around the number of counts. This ability to use the binomial distribution allows for more accurate ploidy estimations and more precise confidence intervals to be calculated. This is different from and an improvement over methods that use intensities to measure the amount of an allele present, for example methods that use microarrays, or methods that make measurements using fluorescence readers to measure the intensity of fluorescently tagged DNA in electrophoretic bands.
- a method disclosed herein uses aspects of the present set of data to determine parameters for the estimated allele frequency distribution for that set of data. This is an improvement over methods that utilize training set of data or prior sets of data to set parameters for the present expected allele frequency distributions, or possibly expected allele ratios. This is because there are different sets of conditions involved in the collection and measurement of every genetic sample, and thus a method that uses data from the instant set of data to determine the parameters for the joint distribution model that is to be used in the ploidy determination for that sample will tend to be more accurate.
- a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus using a maximum likelihood technique.
- the use of a maximum likelihood technique is different from and a significant improvement over methods that use single hypothesis rejection technique in that the resultant determinations will be made with significantly higher accuracy.
- single hypothesis rejection techniques set cut off thresholds based on only one measurement distribution rather than two, meaning that the thresholds are usually not optimal.
- the maximum likelihood technique allows the optimization of the cut off threshold for each individual sample instead of determining a cut off threshold to be used for all samples regardless of the particular characteristics of each individual sample.
- a maximum likelihood technique allows the calculation of a confidence for each ploidy call.
- the ability to make a confidence calculation for each call allows a practitioner to know which calls are accurate, and which are more likely to be wrong.
- a wide variety of methods may be combined with a maximum likelihood estimation technique to enhance the accuracy of the ploidy calls.
- the maximum likelihood technique may be used in combination with the method described in U.S. Pat. No. 7,888,017.
- the maximum likelihood technique may be used in combination with the method of using targeted PCR amplification to amplify the DNA in the mixed sample followed by sequencing and analysis using a read counting method such as used by TANDEM DIAGNOSTICS, as presented at the International Congress of Human Genetics 2011, in Montreal in October 2011.
- a method disclosed herein involves estimating the fetal fraction of DNA in the mixed sample and using that estimation to calculate both the ploidy call and the confidence of the ploidy call. Note that this is both different and distinct from methods that use estimated fetal fraction as a screen for sufficient fetal fraction, followed by a ploidy call made using a single hypothesis rejection technique that does not take into account the fetal fraction nor does it produce a confidence calculation for the call.
- a method disclosed herein takes into account the tendency for the data to be noisy and contain errors by attaching a probability to each measurement.
- the use of maximum likelihood techniques to choose the correct hypothesis from the set of hypotheses that were made using the measurement data with attached probabilistic estimates makes it more likely that the incorrect measurements will be discounted, and the correct measurements will be used in the calculations that lead to the ploidy call.
- this method systematically reduces the influence of data that is incorrectly measured on the ploidy determination. This is an improvement over methods where all data is assumed to be equally correct or methods where outlying data is arbitrarily excluded from calculations leading to a ploidy call.
- Existing methods using channel ratio measurements claim to extend the method to multiple SNPs by averaging individual SNP channel ratios. Not weighting individual SNPs by expected measurement variance based on the SNP quality and observed depth of read reduces the accuracy of the resulting statistic, resulting in a reduction of the accuracy of the ploidy call significantly, especially in borderline cases.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
score=(1)(total number of targets−number of targets covered)+(100)(number of SNPs in GC clamp)+(10)(number of SNPs in primer binding site)+(10)(number of similar primer pair designs)+(0.1)(distance of target base from amplicon end)+(0.1)(amplicon length)+(100)(interaction score)
score=(100)(number of SNPs in GC clamp)+(10)(number of SNPs in primer binding site)+(0.1)(distance of target base from amplicon end)+(0.1)(amplicon length)+(100)(interaction score)
score=(10000000)(amplicon overlap)+(100)(distance between designs)+(1)(total number of targets−number of targets covered)+(100)(number of SNPs in GC clamp)+(10)(number of SNPs in primer binding site)+(10)(number of similar primer pair designs)+(0.1)(distance of target base from amplicon end)+(0.1)(amplicon length)+(100)(interaction score)
Interaction score=max(−1*ΔG value); or
interaction_score=max(−deltaG_2,0.8*(−deltaG_1))
ΔG=(1000.0*ΔH−(temperature*(ΔS+0.368*(numPhosphates/2)*log(saltConcentration))))/1000.0
Interaction score=max(−1*ΔG value)
interaction_score=max(−deltaG_2,0.8*(−deltaG_1))
This hypothesis does not assume any linkage between SNPs, and therefore does not utilize a joint distribution model.
where m are possible true mother genotypes, f are possible true father genotypes, where m,f ∈{AA,AB,BB}, and c are possible child genotypes given the hypothesis H. In particular, for monosomy c ∈{A, B}, for disomy c ∈{AA, AB, BB}, for trisomy c ∈{AAA, AAB, ABB, BBB}. Genotype prior frequency: p(mli) is the general prior probability of mother genotype m on SNP i, based on the known population frequency at SNP I, denoted pAi. In particular
p(AA|pA i)=(pA i)2 ,p(AB|pA i)=2(pA i)*(1−pA i),p(BB|pA i)=(1−pA i)2
Father genotype probability, p(fli), may be determined in an analogous fashion. True child probability: p(c|m, f, H) is the probability of getting true child genotype=c, given parents m, f, and assuming hypothesis H, which can be easily calculated. For example, for H11, H21 matched and H21 unmatched, p(c|m,f,H) is given below.
p(c|m, f, H) |
H11 | H21 matched | H21 unmatched |
m | f | AA | AB | BB | AAA | AAB | ABB | BBB | AAA | AAB | ABB | |
AA | AA |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |||
AB | AA | 0.5 | 0.5 | 0 | 0.5 | 0 | 0.5 | 0 | 0 | 1 | 0 | 0 | |
| AA | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | |
AA | AB | 0.5 | 0.5 | 0 | 0.5 | 0.5 | 0 | 0 | 0.5 | 0.5 | 0 | 0 | |
AB | AB | 0.25 | 0.5 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0 | 0.5 | 0.5 | 0 | |
| AB | 0 | 0.5 | 0.5 | 0 | 0 | 0.5 | 0.5 | 0 | 0 | 0.5 | 0.5 | |
| BB | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | |
| BB | 0 | 0.5 | 0.5 | 0 | 0.5 | 0 | 0.5 | 0 | 0 | 1 | 0 | |
| BB | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
Data likelihood: P(D|m, f, c, H, i, cf) is the probability of given data D on SNP i, given true mother genotype m, true father genotype f, true child genotype c, hypothesis H and child fraction cf. It can be broken down into the probability of mother, father and child data as follows:
P(D|m,f,c,H,cf,i)=P(SM|m,i)P(M|m,OP(SF|f,i)P(F|f,i)P(S|m,c,H,cf,i)
Mother SNP array data likelihood: Probability of mother SNP array genotype data mi at SNP i compared to true genotype m, assuming SNP array genotypes are correct, is simply
Mother sequence data likelihood: the probability of the mother sequence data at SNP i, in the case of counts Si=(ami,bmi), with no extra noise or bias involved, is the binomial probability defined as P(SM|m,i)=PX|m(ami) where X|m˜Binom(pm(A), ami+bmi) with pm(A) defined as
m | AA | AB | BB | A | B | nocall | ||
p(A) | 1 | 0.5 | 0 | 1 | 0 | 0.5 | ||
Father data likelihood: a similar equation applies for father data likelihood.
Note that it is possible to determine the child genotype without the parent data, especially father data. For example if no father genotype data F is available, one may just use P (F|f, i)=1. If no father sequence data SF is available, one may just use P(SF|f,i)=1.
P(S|m,c,H,cf,i)=P(S|μ(m,c,cf,H),i)
For counts, where Si=(ai, bi), with no extra noise or bias in data involved,
P(S|μ(m,c,cf,H),i)=P x(a i)
where X˜Binom(p(A), ai+bi) with p(A)=μ(m, c, cf, H). In a more complex case where the exact alignment and (A,B) counts per SNP are not known, P(S|μ(m, c, cf, H), i) is a combination of integrated binomials.
True A content probability: μ(m, c, cf, H), the true probability of A content on SNP i in this mother/child mixture, assuming that true mother genotype=m, true child genotype=c, and overall child fraction=cf, is defined as
where #A(g)=number of A's in genotype g, nm=2 is somy of mother and nc is ploidy of the child under hypothesis H (1 for monosomy, 2 for disomy, 3 for trisomy).
Using A Joint Distribution Model: LIK(D|H) for a Composite Hypothesis
where LIK(D|E, 1: N) is the likelihood of ending in hypothesis E, for SNPs 1:N. E=hypothesis of the last SNP, E ∈(Hm, Hu). Recursively, one may calculate:
LIK(D|E,1:i)=LIK(D|E,i)+log(exp(LIK(D|E,1:i−1))*(1−pc(i))+exp(LIK(D|˜E,1:i−1))*pc(i))
where ˜E is the hypothesis other than E (not E), where hypotheses considered are Hm and Hu. In particular, one may calculate the likelihood of 1:i SNPs, based on likelihood of 1 to (i−1) SNPs with either the same hypothesis and no crossover, or the opposite hypothesis and a crossover, multiplied by the likelihood of the SNP i
For SNP1,i=1,LIK(D|E,1:1)=LIK(D|E,1).
For SNP2,i=2,LIK(D|E,1:2)=LIK(D|E,2)+log(exp(LIK(D|E,1))*(1−pc(2))+exp(LIK(D|˜E,1))*pc(2)),
and so on for i=3:N.
LIK(cf)=Σchr∈Cset Lik(D|H11,cf,chr)
The most likely child fraction (cf*) is derived as
as before, and P (md|m) is the likelihood of genotype md after the possible dropout given the true genotype m, defined as below, for dropout rate d
md |
m | AA | AB | BB | A | B | nocall |
AA | (1-d){circumflex over ( )}2 | 0 | 0 | 2d(1-d) | 0 | d{circumflex over ( )}2 |
AB | 0 | (1-d){circumflex over ( )}2 | 0 | d(1-d) | d(1-d) | d{circumflex over ( )}2 |
| 0 | 0 | (1-d){circumflex over ( )}2 | 0 | 2d(1-d) | d{circumflex over ( )}2 |
A similar equation applies for father SNP array data.
Parent sequence data dropouts: For mother sequence data SM
where P (md|m) is defined as in previous section and PX|m
where P(S|μ(md, cd, cf, H), i) is as defined in the section on free floating data likelihood.
P(SM|m,i)=P X|m(am i) where X|m˜Binom(p m(A),am i +bm i)
X|m˜BetaBinom(p m(A),am i +bm i ,s)
P(S|m,c,cf,H,i)=P x(a i)
where X˜Binom(p(A), ai+bi) with μ(A)=c, cf, H).
P(SM|m,i)=P X|m(am i) where X|m˜BetaBinom(p m(A)+w i ,am i +bm i ,s)
P(S|m,c,cf,H,i)=P x(a i) where X˜BetaBinom(p(A)+w i ,a i +b i ,s),
X 3˜BetaBinomial(L(F(p,b),p r ,p g),N*H(p,b))
where p=the true amount of reference DNA, b=per SNP bias, and as described above, pg is the probability of a correct read, pr is the probability of read being read incorrectly but serendipitously looking like the correct allele, in case of a bad read, as described above, and:
F(p,b)=pe b/(pe b+(1−p)),H(p,b)=(e b p+(1−p))2 /e b ,L(p,p r ,p g)=p*p g +p r*(1−p g).
r=fg c+(1−f)g m (1)
F(a,b,g c ,g m ,f)=P(n a =a,n b =b|g c ,g m ,f)=P(n a =a,n b =b|r(g c ,g m ,f)) (3)
{circumflex over (f)}=arg maxf P(N a0 ,N b0 |f)P(N a1 ,N b1 |f) (4)
P(N a0 ,N b0 |f)=Πs∈s
P(N a1 ,N b1 |f)=Πs∈s
P(n a ,n b |f)=Σr∈R
Exemplary Methods for Identifying and Analyzing Multiple Pregnancies
Z score for
And then reduce
LIK(D|H)=LIK(D|H,cfr*,N*)
or (b) estimate the child fraction and noise level distribution based on this assumption and reference chromosome data. In particular, one would not fix just one value for cfr and N, but assign probability p(cfr, N) for the wider range of possible cfr, N values:
p(cfr,N)˜LIK(D(ref.chrom)|H11,cfr,N)*priorprob(cfr,N)
where priorprob(cfr, N) is the prior probability of particular child fraction and noise level, determined by prior knowledge and experiments. If desired, just uniform over the range of cfr, N. One may then write:
DNA | DNA | DNA | ||
specific | specific | specific | ||
to X | to X and Y | to Y | ||
Male (XY) | A | 2A | A | ||
Female (XX) | | 2A | 0 | ||
DNA | DNA | DNA | ||
specific | specific | specific | ||
to X | to X and Y | to Y | ||
Male fetus (XY) | M + ½ F | M + F | ½ F | ||
Female fetus (XX) | M + F | M + |
0 | ||
Z score for
interaction score=max(−deltaG_2,0.8*(−deltaG_1))
weight_threshold=max(edge_weight)−0.05*(max(edge_weight)−min(edge_weight))
max_weight_threshold=max(edge_weight)
min_weight_threshold=min(edge_weight)
max_weight_threshold=weight_threshold
min_weight_threshold=weight_threshold
weight_threshold=(max_weight_threshold+min_weight_threshold)/2
where R1 is the risk score as calculated by the present method and R2 is the risk score as calculated by first trimester screening.
SNP-Based Methods Negate Issues with Amplification Variation
Tm=deltaH/(deltaS+R*ln(C/4))
Tm=deltaH/(deltaS+R*ln(C/4))
Additional Applications
-
- assume a given starting DNA input level: 100 k copies of each target (10{circumflex over ( )}5; this is easily achieved with using amplified library)
- assume we use 2 nM of each primer as an exemplary concentration, although other concentrations such as, for example, 0.2, 0.5, 1, 1.5, 2, 2.5, 5, or 10 nM could work too.
- calculate the number of primer molecules for each primer: 2*10{circumflex over ( )}−9 (molar concentration, 2 nM)×10*10{circumflex over ( )}−6 (reaction volume, 10 ul)×6*10{circumflex over ( )}23 (number of molecules per mole, Avogadro's number)=12*10{circumflex over ( )}9
- calculate the amplification fold needed to consume all primers: 12*10{circumflex over ( )}9 (number of primer molecules)/10{circumflex over ( )}5 (number of copies of each target)=12*10{circumflex over ( )}4
- calculate the number of cycles needed to achieve this amplification fold, assuming 100% efficiency at each cycle: log 2(12*10{circumflex over ( )}{circumflex over ( )}4)=17 cycles. (this is
log 2 because at each cycle, the number of copies doubles).
Claims (14)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/829,133 US11525162B2 (en) | 2010-05-18 | 2020-03-25 | Methods for simultaneous amplification of target loci |
US17/196,659 US20210198742A1 (en) | 2010-05-18 | 2021-03-09 | Methods for simultaneous amplification of target loci |
US18/678,417 US20240309456A1 (en) | 2010-05-18 | 2024-05-30 | Methods for simultaneous amplification of target loci |
US18/733,659 US20240318252A1 (en) | 2010-05-18 | 2024-06-04 | Methods for simultaneous amplification of target loci |
Applications Claiming Priority (33)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39585010P | 2010-05-18 | 2010-05-18 | |
US39815910P | 2010-06-21 | 2010-06-21 | |
US201061426208P | 2010-12-22 | 2010-12-22 | |
US201161462972P | 2011-02-09 | 2011-02-09 | |
US201161448547P | 2011-03-02 | 2011-03-02 | |
US201161516996P | 2011-04-12 | 2011-04-12 | |
US13/110,685 US8825412B2 (en) | 2010-05-18 | 2011-05-18 | Methods for non-invasive prenatal ploidy calling |
US201161571248P | 2011-06-23 | 2011-06-23 | |
US201161542508P | 2011-10-03 | 2011-10-03 | |
US13/300,235 US10017812B2 (en) | 2010-05-18 | 2011-11-18 | Methods for non-invasive prenatal ploidy calling |
US13/335,043 US10113196B2 (en) | 2010-05-18 | 2011-12-22 | Prenatal paternity testing using maternal blood, free floating fetal DNA and SNP genotyping |
US201261634431P | 2012-02-29 | 2012-02-29 | |
US201261675020P | 2012-07-24 | 2012-07-24 | |
US201261683331P | 2012-08-15 | 2012-08-15 | |
PCT/US2012/058578 WO2013052557A2 (en) | 2011-10-03 | 2012-10-03 | Methods for preimplantation genetic diagnosis by sequencing |
US13/683,604 US20130123120A1 (en) | 2010-05-18 | 2012-11-21 | Highly Multiplex PCR Methods and Compositions |
US13/780,022 US20130196862A1 (en) | 2009-07-17 | 2013-02-28 | Informatics Enhanced Analysis of Fetal Samples Subject to Maternal Contamination |
US14/225,356 US20140206552A1 (en) | 2010-05-18 | 2014-03-25 | Methods for preimplantation genetic diagnosis by sequencing |
US201461982245P | 2014-04-21 | 2014-04-21 | |
US201461987407P | 2014-05-01 | 2014-05-01 | |
US201461994791P | 2014-05-16 | 2014-05-16 | |
US201462066514P | 2014-10-21 | 2014-10-21 | |
US14/538,982 US9677118B2 (en) | 2014-04-21 | 2014-11-24 | Methods for simultaneous amplification of target loci |
US201562146188P | 2015-04-10 | 2015-04-10 | |
US201562147377P | 2015-04-14 | 2015-04-14 | |
US201562148173P | 2015-04-15 | 2015-04-15 | |
US14/692,703 US10179937B2 (en) | 2014-04-21 | 2015-04-21 | Detecting mutations and ploidy in chromosomal segments |
US14/877,925 US20170051355A1 (en) | 2010-05-18 | 2015-10-07 | Highly multiplex pcr methods and compositions |
US14/918,544 US10316362B2 (en) | 2010-05-18 | 2015-10-20 | Methods for simultaneous amplification of target loci |
US16/140,298 US20190010543A1 (en) | 2010-05-18 | 2018-09-24 | Methods for simultaneous amplification of target loci |
US16/399,103 US10557172B2 (en) | 2010-05-18 | 2019-04-30 | Methods for simultaneous amplification of target loci |
US16/777,700 US11332793B2 (en) | 2010-05-18 | 2020-01-30 | Methods for simultaneous amplification of target loci |
US16/829,133 US11525162B2 (en) | 2010-05-18 | 2020-03-25 | Methods for simultaneous amplification of target loci |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/777,700 Continuation US11332793B2 (en) | 2010-05-18 | 2020-01-30 | Methods for simultaneous amplification of target loci |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/196,659 Continuation US20210198742A1 (en) | 2010-05-18 | 2021-03-09 | Methods for simultaneous amplification of target loci |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200232037A1 US20200232037A1 (en) | 2020-07-23 |
US11525162B2 true US11525162B2 (en) | 2022-12-13 |
Family
ID=67068241
Family Applications (16)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/140,298 Abandoned US20190010543A1 (en) | 2010-05-18 | 2018-09-24 | Methods for simultaneous amplification of target loci |
US16/353,636 Active US10655180B2 (en) | 2010-05-18 | 2019-03-14 | Methods for simultaneous amplification of target loci |
US16/399,103 Active US10557172B2 (en) | 2010-05-18 | 2019-04-30 | Methods for simultaneous amplification of target loci |
US16/399,947 Active US10793912B2 (en) | 2010-05-18 | 2019-04-30 | Methods for simultaneous amplification of target loci |
US16/399,268 Active US10538814B2 (en) | 2010-05-18 | 2019-04-30 | Methods for simultaneous amplification of target loci |
US16/412,353 Abandoned US20190309365A1 (en) | 2010-05-18 | 2019-05-14 | Methods for simultaneous amplification of target loci |
US16/412,331 Active US10526658B2 (en) | 2010-05-18 | 2019-05-14 | Methods for simultaneous amplification of target loci |
US16/734,814 Pending US20200123612A1 (en) | 2010-05-18 | 2020-01-06 | Methods for simultaneous amplification of target loci |
US16/743,724 Active US10731220B2 (en) | 2010-05-18 | 2020-01-15 | Methods for simultaneous amplification of target loci |
US16/817,117 Pending US20200208221A1 (en) | 2010-05-18 | 2020-03-12 | Methods for simultaneous amplification of target loci |
US16/829,133 Active US11525162B2 (en) | 2010-05-18 | 2020-03-25 | Methods for simultaneous amplification of target loci |
US16/856,924 Active US12110552B2 (en) | 2010-05-18 | 2020-04-23 | Methods for simultaneous amplification of target loci |
US16/934,407 Active US11519035B2 (en) | 2010-05-18 | 2020-07-21 | Methods for simultaneous amplification of target loci |
US17/061,877 Active US11111545B2 (en) | 2010-05-18 | 2020-10-02 | Methods for simultaneous amplification of target loci |
US17/196,722 Pending US20210198743A1 (en) | 2010-05-18 | 2021-03-09 | Methods for simultaneous amplification of target loci |
US17/196,659 Pending US20210198742A1 (en) | 2010-05-18 | 2021-03-09 | Methods for simultaneous amplification of target loci |
Family Applications Before (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/140,298 Abandoned US20190010543A1 (en) | 2010-05-18 | 2018-09-24 | Methods for simultaneous amplification of target loci |
US16/353,636 Active US10655180B2 (en) | 2010-05-18 | 2019-03-14 | Methods for simultaneous amplification of target loci |
US16/399,103 Active US10557172B2 (en) | 2010-05-18 | 2019-04-30 | Methods for simultaneous amplification of target loci |
US16/399,947 Active US10793912B2 (en) | 2010-05-18 | 2019-04-30 | Methods for simultaneous amplification of target loci |
US16/399,268 Active US10538814B2 (en) | 2010-05-18 | 2019-04-30 | Methods for simultaneous amplification of target loci |
US16/412,353 Abandoned US20190309365A1 (en) | 2010-05-18 | 2019-05-14 | Methods for simultaneous amplification of target loci |
US16/412,331 Active US10526658B2 (en) | 2010-05-18 | 2019-05-14 | Methods for simultaneous amplification of target loci |
US16/734,814 Pending US20200123612A1 (en) | 2010-05-18 | 2020-01-06 | Methods for simultaneous amplification of target loci |
US16/743,724 Active US10731220B2 (en) | 2010-05-18 | 2020-01-15 | Methods for simultaneous amplification of target loci |
US16/817,117 Pending US20200208221A1 (en) | 2010-05-18 | 2020-03-12 | Methods for simultaneous amplification of target loci |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/856,924 Active US12110552B2 (en) | 2010-05-18 | 2020-04-23 | Methods for simultaneous amplification of target loci |
US16/934,407 Active US11519035B2 (en) | 2010-05-18 | 2020-07-21 | Methods for simultaneous amplification of target loci |
US17/061,877 Active US11111545B2 (en) | 2010-05-18 | 2020-10-02 | Methods for simultaneous amplification of target loci |
US17/196,722 Pending US20210198743A1 (en) | 2010-05-18 | 2021-03-09 | Methods for simultaneous amplification of target loci |
US17/196,659 Pending US20210198742A1 (en) | 2010-05-18 | 2021-03-09 | Methods for simultaneous amplification of target loci |
Country Status (1)
Country | Link |
---|---|
US (16) | US20190010543A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12049673B2 (en) | 2012-09-04 | 2024-07-30 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US12116624B2 (en) | 2012-09-04 | 2024-10-15 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US12116640B2 (en) | 2016-04-14 | 2024-10-15 | Guardant Health, Inc. | Methods for early detection of cancer |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11111544B2 (en) | 2005-07-29 | 2021-09-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US9424392B2 (en) | 2005-11-26 | 2016-08-23 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US10081839B2 (en) | 2005-07-29 | 2018-09-25 | Natera, Inc | System and method for cleaning noisy genetic data and determining chromosome copy number |
US11111543B2 (en) | 2005-07-29 | 2021-09-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
ES2640776T3 (en) | 2009-09-30 | 2017-11-06 | Natera, Inc. | Methods for non-invasively calling prenatal ploidy |
US10316362B2 (en) | 2010-05-18 | 2019-06-11 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11326208B2 (en) | 2010-05-18 | 2022-05-10 | Natera, Inc. | Methods for nested PCR amplification of cell-free DNA |
US9677118B2 (en) | 2014-04-21 | 2017-06-13 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11322224B2 (en) | 2010-05-18 | 2022-05-03 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US11939634B2 (en) | 2010-05-18 | 2024-03-26 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US11332793B2 (en) | 2010-05-18 | 2022-05-17 | Natera, Inc. | Methods for simultaneous amplification of target loci |
EP2854057B1 (en) | 2010-05-18 | 2018-03-07 | Natera, Inc. | Methods for non-invasive pre-natal ploidy calling |
US11339429B2 (en) | 2010-05-18 | 2022-05-24 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US11332785B2 (en) | 2010-05-18 | 2022-05-17 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US11408031B2 (en) | 2010-05-18 | 2022-08-09 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
US20190010543A1 (en) | 2010-05-18 | 2019-01-10 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190284623A1 (en) * | 2010-05-18 | 2019-09-19 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
CA2821906C (en) | 2010-12-22 | 2020-08-25 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
JP6153874B2 (en) | 2011-02-09 | 2017-06-28 | ナテラ, インコーポレイテッド | Method for non-invasive prenatal ploidy calls |
CN110016499B (en) | 2011-04-15 | 2023-11-14 | 约翰·霍普金斯大学 | Safety sequencing system |
US20140100126A1 (en) | 2012-08-17 | 2014-04-10 | Natera, Inc. | Method for Non-Invasive Prenatal Testing Using Parental Mosaicism Data |
US10876152B2 (en) | 2012-09-04 | 2020-12-29 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
ES2701742T3 (en) | 2012-10-29 | 2019-02-25 | Univ Johns Hopkins | Papanicolaou test for ovarian and endometrial cancers |
US10577655B2 (en) | 2013-09-27 | 2020-03-03 | Natera, Inc. | Cell free DNA diagnostic testing standards |
CN106460070B (en) | 2014-04-21 | 2021-10-08 | 纳特拉公司 | Detection of mutations and ploidy in chromosomal segments |
EP4428863A2 (en) | 2015-05-11 | 2024-09-11 | Natera, Inc. | Methods and compositions for determining ploidy |
WO2017027653A1 (en) | 2015-08-11 | 2017-02-16 | The Johns Hopkins University | Assaying ovarian cyst fluid |
US11485996B2 (en) | 2016-10-04 | 2022-11-01 | Natera, Inc. | Methods for characterizing copy number variation using proximity-litigation sequencing |
US10011870B2 (en) | 2016-12-07 | 2018-07-03 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
AU2018225348A1 (en) | 2017-02-21 | 2019-07-18 | Natera, Inc. | Compositions, methods, and kits for isolating nucleic acids |
AU2018355575A1 (en) | 2017-10-27 | 2020-05-21 | Juno Diagnostics, Inc. | Devices, systems and methods for ultra-low volume liquid biopsy |
US12084720B2 (en) | 2017-12-14 | 2024-09-10 | Natera, Inc. | Assessing graft suitability for transplantation |
CA3090426A1 (en) | 2018-04-14 | 2019-10-17 | Natera, Inc. | Methods for cancer detection and monitoring by means of personalized detection of circulating tumor dna |
US11525159B2 (en) | 2018-07-03 | 2022-12-13 | Natera, Inc. | Methods for detection of donor-derived cell-free DNA |
WO2021003255A1 (en) * | 2019-07-01 | 2021-01-07 | Mission Bio | Method and apparatus to normalize quantitative readouts in single-cell experiments |
CN110580934B (en) * | 2019-07-19 | 2022-05-10 | 南方医科大学 | Pregnancy related disease prediction method based on peripheral blood free DNA high-throughput sequencing |
WO2021168383A1 (en) * | 2020-02-21 | 2021-08-26 | Mission Bio, Inc. | Using machine learning to optimize assays for single cell targeted sequencing |
GB2627085A (en) | 2019-11-06 | 2024-08-14 | Univ Leland Stanford Junior | Methods and systems for analysing nucleic acid molecules |
WO2021216574A1 (en) * | 2020-04-20 | 2021-10-28 | Qiagen Sciences, Llc | Nucleic acid preparations from multiple samples and uses thereof |
EP4185710A4 (en) * | 2020-07-24 | 2024-08-14 | Inguran Llc | Methods for screening biological samples for contamination |
AU2021392630A1 (en) | 2020-12-02 | 2023-06-22 | Genentech, Inc. | Methods and compositions for neoadjuvant and adjuvant urothelial carcinoma therapy |
US20240218446A1 (en) * | 2021-04-27 | 2024-07-04 | Mission Bio, Inc. | Gene modification quantification in single-cell sequencing |
GB2625469A (en) * | 2021-05-05 | 2024-06-19 | Univ Leland Stanford Junior | Methods and systems for analyzing nucleic acid molecules |
US11783912B2 (en) * | 2021-05-05 | 2023-10-10 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for analyzing nucleic acid molecules |
CN117580963A (en) * | 2021-05-05 | 2024-02-20 | 斯坦福大学托管董事会 | Methods and systems for analyzing nucleic acid molecules |
Citations (505)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4040785A (en) | 1976-10-18 | 1977-08-09 | Technicon Instruments Corporation | Lysable blood preservative composition |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
EP0270017A2 (en) | 1986-12-01 | 1988-06-08 | Syngene, Inc. | Method of isolating and purifying nucleic acids from biological samples |
US4942124A (en) | 1987-08-11 | 1990-07-17 | President And Fellows Of Harvard College | Multiplex sequencing |
WO1995001796A1 (en) | 1993-07-05 | 1995-01-19 | Northern General Hospital N.H.S. Trust | Preparation and stabilisation of cells |
US5486477A (en) | 1991-06-13 | 1996-01-23 | Carver, Jr.; Edward L. | Reagent system for improved multiple species blood analysis |
WO1996036736A2 (en) | 1995-05-19 | 1996-11-21 | Abbott Laboratories | Wide dynamic range nucleic acid detection using an aggregate primer series |
US5635366A (en) | 1993-03-23 | 1997-06-03 | Royal Free Hospital School Of Medicine | Predictive assay for the outcome of IVF |
US5648220A (en) | 1995-02-14 | 1997-07-15 | New England Medical Center Hospitals, Inc. | Methods for labeling intracytoplasmic molecules |
US5716776A (en) | 1994-03-04 | 1998-02-10 | Mark H. Bogart | Enrichment by preferential mitosis of fetal lymphocytes from a maternal blood sample |
US5753467A (en) | 1991-12-04 | 1998-05-19 | E. I. Du Pont De Nemours And Company | Method for the identification of microorganisms by the utilization of directed and arbitrary DNA amplification |
WO1998039474A1 (en) | 1997-03-04 | 1998-09-11 | Isis Innovation Limited | Non-invasive prenatal diagnosis |
WO1998044151A1 (en) | 1997-04-01 | 1998-10-08 | Glaxo Group Limited | Method of nucleic acid amplification |
US5824467A (en) | 1997-02-25 | 1998-10-20 | Celtrix Pharmaceuticals | Methods for predicting drug response |
US5854033A (en) | 1995-11-21 | 1998-12-29 | Yale University | Rolling circle replication reporter systems |
US5860917A (en) | 1997-01-15 | 1999-01-19 | Chiron Corporation | Method and apparatus for predicting therapeutic outcomes |
US5891734A (en) | 1994-08-01 | 1999-04-06 | Abbott Laboratories | Method for performing automated analysis |
US5952170A (en) | 1993-12-16 | 1999-09-14 | Stroun; Maurice | Method for diagnosing cancers |
US5962223A (en) | 1984-12-13 | 1999-10-05 | The Perkin-Elmer Corporation | Detection of specific sequences in nucleic acids |
JP2965699B2 (en) | 1990-03-27 | 1999-10-18 | ジーンタイプ・アクチエンゲゼルシヤフト | Fetal cell collection method |
US5972602A (en) | 1993-08-27 | 1999-10-26 | Australian Red Cross Society | Quantitative PCR-based method of gene detection |
US5976790A (en) | 1992-03-04 | 1999-11-02 | The Regents Of The University Of California | Comparative Genomic Hybridization (CGH) |
US5994148A (en) | 1997-06-23 | 1999-11-30 | The Regents Of University Of California | Method of predicting and enhancing success of IVF/ET pregnancy |
US6001611A (en) | 1997-03-20 | 1999-12-14 | Roche Molecular Systems, Inc. | Modified nucleic acid amplification primers |
US6025128A (en) | 1994-09-29 | 2000-02-15 | The University Of Tulsa | Prediction of prostate cancer progression by analysis of selected predictive parameters |
WO2000018957A1 (en) | 1998-09-30 | 2000-04-06 | Applied Research Systems Ars Holding N.V. | Methods of nucleic acid amplification and sequencing |
US6066454A (en) | 1995-09-14 | 2000-05-23 | Affymetrix, Inc. | Computer-aided probability base calling for arrays of nucleic acid probes on chips |
US6100029A (en) | 1996-08-14 | 2000-08-08 | Exact Laboratories, Inc. | Methods for the detection of chromosomal aberrations |
US6108635A (en) | 1996-05-22 | 2000-08-22 | Interleukin Genetics, Inc. | Integrated disease information system |
US6124120A (en) | 1997-10-08 | 2000-09-26 | Yale University | Multiple displacement amplification |
US6143496A (en) | 1997-04-17 | 2000-11-07 | Cytonix Corporation | Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly |
US6156504A (en) | 1996-03-15 | 2000-12-05 | The Penn State Research Foundation | Detection of extracellular tumor-associated nucleic acid in blood plasma or serum using nucleic acid amplification assays |
US6180349B1 (en) | 1999-05-18 | 2001-01-30 | The Regents Of The University Of California | Quantitative PCR method to enumerate DNA copy number |
WO2001007640A2 (en) | 1999-07-23 | 2001-02-01 | The Secretary Of State For The Home Department | Method for detecting single nucleotide polymorphisms |
US6221603B1 (en) | 2000-02-04 | 2001-04-24 | Molecular Dynamics, Inc. | Rolling circle amplification assay for nucleic acid analysis |
WO2001034844A1 (en) | 1999-11-10 | 2001-05-17 | Ligochem, Inc. | Method for isolating dna from a proteinaceous medium and kit for performing method |
US6235472B1 (en) | 1994-02-16 | 2001-05-22 | Ulf Landegren | Nucleic acid detecting reagent |
WO2001057269A2 (en) | 2000-02-07 | 2001-08-09 | Illumina, Inc. | Nucleic acid detection methods using universal priming |
US6300077B1 (en) | 1996-08-14 | 2001-10-09 | Exact Sciences Corporation | Methods for the detection of nucleic acids |
WO2001079851A1 (en) | 2000-04-13 | 2001-10-25 | Imperial College Innovations Limited | NON-INVASIVE PRENATAL DIAGNOSIS USING CD45-ve FETAL CELLS |
WO2001090419A2 (en) | 2000-05-23 | 2001-11-29 | Variagenics, Inc. | Methods for genetic analysis of dna to detect sequence variances |
US6329179B1 (en) | 1996-03-26 | 2001-12-11 | Oncomedx, Inc. | Method enabling use of extracellular RNA extracted from plasma or serum to detect, monitor or evaluate cancer |
US20010051341A1 (en) | 1997-03-04 | 2001-12-13 | Isis Innovation Limited | Non-invasive prenatal diagnosis |
US20010053519A1 (en) | 1990-12-06 | 2001-12-20 | Fodor Stephen P.A. | Oligonucleotides |
US20020006622A1 (en) | 2000-06-07 | 2002-01-17 | Allan Bradley | Novel compositions and methods for array-based nucleic acid hybridization |
WO2002004672A2 (en) | 2000-07-10 | 2002-01-17 | Simeg Limited | Diagnostic method for the identification of foetal dna in a maternal sample |
WO2002044411A1 (en) | 2000-12-01 | 2002-06-06 | Rosetta Inpharmatics, Inc. | Use of profiling for detecting aneuploidy |
WO2002055985A2 (en) | 2000-11-15 | 2002-07-18 | Roche Diagnostics Corp | Methods and reagents for identifying rare fetal cells in the material circulation |
US20020107640A1 (en) | 2000-11-14 | 2002-08-08 | Ideker Trey E. | Methods for determining the true signal of an analyte |
US6440706B1 (en) | 1999-08-02 | 2002-08-27 | Johns Hopkins University | Digital amplification |
US20020119478A1 (en) | 1997-05-30 | 2002-08-29 | Diagen Corporation | Methods for detection of nucleic acid sequences in urine |
WO2002070751A1 (en) | 2001-03-02 | 2002-09-12 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Pcr method |
JP2002530121A (en) | 1998-11-25 | 2002-09-17 | プロメガ コーポレイション | Multiple amplification of short tandem repeat loci |
WO2002076377A2 (en) | 2001-03-23 | 2002-10-03 | Yoshiyuki Kanai | Mononucleosome and process for producing the same, method of assaying antibody specific to nucleosome, method of diagnosing autoimmune disease, process for producing nucleosome dna, dna plate, process for producing dna plate and method of assaying anti-dna antibody |
JP2002300894A (en) | 2001-02-01 | 2002-10-15 | Inst Of Physical & Chemical Res | Single nucleotide polymorphic typing method |
WO2002090505A2 (en) | 2001-05-09 | 2002-11-14 | Virginia Commonwealth University | Multiple sequencible and ligatible structures for genomic analysis |
US6489135B1 (en) | 2001-04-17 | 2002-12-03 | Atairgintechnologies, Inc. | Determination of biological characteristics of embryos fertilized in vitro by assaying for bioactive lipids in culture media |
US20020182622A1 (en) | 2001-02-01 | 2002-12-05 | Yusuke Nakamura | Method for SNP (single nucleotide polymorphism) typing |
WO2003000919A2 (en) | 2001-06-22 | 2003-01-03 | University Of Geneva | Method for detecting diseases caused by chromosomal imbalances |
US20030009295A1 (en) | 2001-03-14 | 2003-01-09 | Victor Markowitz | System and method for retrieving and using gene expression data from multiple sources |
US20030040620A1 (en) | 2000-05-20 | 2003-02-27 | Langmore John P. | Method of producing a DNA library using positional amplification |
WO2003018757A2 (en) | 2001-08-23 | 2003-03-06 | Immunivest Corporation | Stabilization of cells and biological specimens for analysis |
US20030044388A1 (en) | 2001-08-31 | 2003-03-06 | The Chinese University Of Hong Kong | Methods for detecting DNA originating from different individuals |
US20030065535A1 (en) | 2001-05-01 | 2003-04-03 | Structural Bioinformatics, Inc. | Diagnosing inapparent diseases from common clinical tests using bayesian analysis |
WO2003031646A1 (en) | 2001-10-12 | 2003-04-17 | The University Of Queensland | Multiple genetic marker selection and amplification |
US20030077586A1 (en) | 2001-08-30 | 2003-04-24 | Compaq Computer Corporation | Method and apparatus for combining gene predictions using bayesian networks |
US20030087276A1 (en) | 2001-07-25 | 2003-05-08 | Kopreski Michael S. | Methods for evaluating pathologic conditions using extracellular RNA |
US20030101000A1 (en) | 2001-07-24 | 2003-05-29 | Bader Joel S. | Family based tests of association using pooled DNA and SNP markers |
WO2003050532A1 (en) | 2001-12-11 | 2003-06-19 | Netech Inc. | Blood cell separation system |
US20030119004A1 (en) | 2001-12-05 | 2003-06-26 | Wenz H. Michael | Methods for quantitating nucleic acids using coupled ligation and amplification |
EP1325963A1 (en) | 2001-12-24 | 2003-07-09 | Wolfgang Prof. Holzgreve | Method for non-invasive diagnosis of transplantations and transfusions |
US20030138780A1 (en) | 1999-07-23 | 2003-07-24 | The Secretary Of State For The Home Department | Analysis of DNA |
WO2003062441A1 (en) | 2002-01-18 | 2003-07-31 | Genzyme Corporation | Methods for fetal dna detection and allele quantitation |
US6605451B1 (en) | 2000-06-06 | 2003-08-12 | Xtrana, Inc. | Methods and devices for multiplexing amplification reactions |
US6617137B2 (en) | 2001-10-15 | 2003-09-09 | Molecular Staging Inc. | Method of amplifying whole genomes without subjecting the genome to denaturing conditions |
US20030211489A1 (en) | 2000-09-21 | 2003-11-13 | Shen Min-Jui Richard | Multiplex nucleic acid reactions |
US20030228613A1 (en) | 2001-10-15 | 2003-12-11 | Carole Bornarth | Nucleic acid amplification |
WO2003102595A1 (en) | 2002-05-31 | 2003-12-11 | Genetype Pty Ltd | Maternal antibodies as fetal cell markers to identify and enrich fetal cells from maternal blood |
US20030232348A1 (en) | 2002-06-17 | 2003-12-18 | Affymetrix, Inc. | Complexity management of genomic DNA by locus specific amplification |
US20030232353A1 (en) | 2002-06-17 | 2003-12-18 | Affymetrix, Inc. | Methods of analysis of allelic imbalance |
WO2003106623A2 (en) | 2002-06-13 | 2003-12-24 | New York University | Early noninvasive prenatal test for aneuploidies and heritable conditions |
US20030235848A1 (en) | 2002-04-11 | 2003-12-25 | Matt Neville | Characterization of CYP 2D6 alleles |
US20040009518A1 (en) | 2002-05-14 | 2004-01-15 | The Chinese University Of Hong Kong | Methods for evaluating a disease condition by nucleic acid detection and fractionation |
US20040033596A1 (en) | 2002-05-02 | 2004-02-19 | Threadgill David W. | In vitro mutagenesis, phenotyping, and gene mapping |
US20040067493A1 (en) | 2001-07-25 | 2004-04-08 | Affymetrix, Inc. | Complexity management of genomic DNA |
US6720140B1 (en) | 1995-06-07 | 2004-04-13 | Invitrogen Corporation | Recombinational cloning using engineered recombination sites |
US20040096874A1 (en) | 2002-04-11 | 2004-05-20 | Third Wave Technologies, Inc. | Characterization of CYP 2D6 genotypes |
WO2004051218A2 (en) | 2002-12-04 | 2004-06-17 | Applera Corporation | Multiplex amplification of polynucleotides |
US20040115629A1 (en) | 2002-01-09 | 2004-06-17 | Panzer Scott R | Molecules for diagnostics and therapeutics |
US20040126760A1 (en) | 2001-05-17 | 2004-07-01 | Natalia Broude | Novel compositions and methods for carrying out multple pcr reactions on a single sample |
US20040137470A1 (en) | 2002-03-01 | 2004-07-15 | Dhallan Ravinder S. | Methods for detection of genetic disorders |
US20040146866A1 (en) | 2003-01-21 | 2004-07-29 | Guoliang Fu | Quantitative multiplex detection of nucleic acids |
US20040157243A1 (en) | 2002-11-11 | 2004-08-12 | Affymetrix, Inc. | Methods for identifying DNA copy number changes |
WO2004069849A2 (en) | 2003-01-29 | 2004-08-19 | 454 Corporation | Bead emulsion nucleic acid amplification |
US6794140B1 (en) | 1999-04-30 | 2004-09-21 | Andrew Simon Goldsborough | Isolation of nucleic acid |
US20040197797A1 (en) | 2000-04-13 | 2004-10-07 | Hidetoshi Inoko | Gene mapping method using microsatellite genetic polymorphism markers |
WO2004087863A2 (en) | 2003-04-03 | 2004-10-14 | Monaliza Medical, Ltd. | Non-invasive prenatal genetic diagnosis using transcervical cells |
US20040209299A1 (en) | 2003-03-07 | 2004-10-21 | Rubicon Genomics, Inc. | In vitro DNA immortalization and whole genome amplification using libraries generated from randomly fragmented DNA |
JP2004533243A (en) | 2001-04-30 | 2004-11-04 | アンスティテュ・ナシオナル・デゥ・ラ・サンテ・エ・デゥ・ラ・ルシェルシュ・メディカル | Prenatal diagnostic methods for fetal cells in isolated maternal blood |
US20040229231A1 (en) | 2002-05-28 | 2004-11-18 | Frudakis Tony N. | Compositions and methods for inferring ancestry |
US20040259100A1 (en) | 2003-06-20 | 2004-12-23 | Illumina, Inc. | Methods and compositions for whole genome amplification and genotyping |
US20050009069A1 (en) | 2002-06-25 | 2005-01-13 | Affymetrix, Inc. | Computer software products for analyzing genotyping |
US6852487B1 (en) | 1996-02-09 | 2005-02-08 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays |
US6858412B2 (en) | 2000-10-24 | 2005-02-22 | The Board Of Trustees Of The Leland Stanford Junior University | Direct multiplex characterization of genomic DNA |
US20050043894A1 (en) | 2003-08-22 | 2005-02-24 | Fernandez Dennis S. | Integrated biosensor and simulation system for diagnosis and therapy |
US20050053950A1 (en) | 2003-09-08 | 2005-03-10 | Enrique Zudaire Ubani | Protocol and software for multiplex real-time PCR quantification based on the different melting temperatures of amplicons |
WO2005021793A1 (en) | 2003-08-29 | 2005-03-10 | Pantarhei Bioscience B.V. | Prenatal diagnosis of down syndrome by detection of fetal rna markers in maternal blood |
WO2005023091A2 (en) | 2003-09-05 | 2005-03-17 | The Trustees Of Boston University | Method for non-invasive prenatal diagnosis |
WO2005030999A1 (en) | 2003-09-25 | 2005-04-07 | Dana-Farber Cancer Institute, Inc | Methods to detect lineage-specific cells |
US20050079521A1 (en) | 2003-07-31 | 2005-04-14 | Martin Beaulieu | Methods for high level multiplexed polymerase chain reactions and homogeneous mass extension reactions |
US20050079535A1 (en) | 2003-10-13 | 2005-04-14 | Michael Kirchgesser | Methods for isolating nucleic acids |
EP1524321A1 (en) | 2003-10-16 | 2005-04-20 | Sinuhe Dr. Hahn | Non-invasive detection of fetal genetic traits |
WO2005035725A2 (en) | 2003-10-08 | 2005-04-21 | The Trustees Of Boston University | Methods for prenatal diagnosis of chromosomal abnormalities |
WO2005039389A2 (en) | 2003-10-22 | 2005-05-06 | 454 Corporation | Sequence-based karyotyping |
US20050123914A1 (en) | 2001-09-06 | 2005-06-09 | Mandy Katz | Method of isolating cells and uses thereof |
US20050142577A1 (en) | 2002-10-04 | 2005-06-30 | Affymetrix, Inc. | Methods for genotyping selected polymorphism |
US20050144664A1 (en) | 2003-05-28 | 2005-06-30 | Pioneer Hi-Bred International, Inc. | Plant breeding method |
US20050164252A1 (en) | 2003-12-04 | 2005-07-28 | Yeung Wah Hin A. | Methods using non-genic sequences for the detection, modification and treatment of any disease or improvement of functions of a cell |
CN1650032A (en) | 2002-03-01 | 2005-08-03 | 拉瓦格恩公司 | Methods for detection of genetic disorders |
CN1674028A (en) | 2004-03-26 | 2005-09-28 | 株式会社日立制作所 | Diagnostic decision support system and method of diagnostic decision support |
US20050216207A1 (en) | 2004-03-24 | 2005-09-29 | Illumina, Inc. | Artificial intelligence and global normalization methods for genotyping |
US20050227263A1 (en) | 2004-01-12 | 2005-10-13 | Roland Green | Method of performing PCR amplification on a microarray |
US6958211B2 (en) | 2001-08-08 | 2005-10-25 | Tibotech Bvba | Methods of assessing HIV integrase inhibitor therapy |
WO2005100401A2 (en) | 2004-03-31 | 2005-10-27 | Adnagen Ag | Monoclonal antibodies with specificity for fetal erythroid cells |
US20050250111A1 (en) | 2004-05-05 | 2005-11-10 | Biocept, Inc. | Detection of chromosomal disorders |
US6964847B1 (en) | 1999-07-14 | 2005-11-15 | Packard Biosciences Company | Derivative nucleic acids and uses thereof |
US20050255508A1 (en) | 2004-03-30 | 2005-11-17 | New York University | System, method and software arrangement for bi-allele haplotype phasing |
US20050272073A1 (en) | 2000-12-04 | 2005-12-08 | Cytokinetics, Inc., A Delaware Corporation | Ploidy classification method |
WO2005123779A2 (en) | 2004-06-14 | 2005-12-29 | The Board Of Trustees Of The University Of Illinois | Antibodies binding to cd34+/cd36+ fetal but not to adult cells |
US20060019278A1 (en) | 2004-06-04 | 2006-01-26 | The Chinese University Of Hong Kong | Marker for prenatal diagnosis and monitoring |
US20060040300A1 (en) | 2004-08-09 | 2006-02-23 | Generation Biotech, Llc | Method for nucleic acid isolation and amplification |
US20060046258A1 (en) | 2004-02-27 | 2006-03-02 | Lapidus Stanley N | Applications of single molecule sequencing |
US20060051799A1 (en) | 2004-09-03 | 2006-03-09 | Fiji Photo Film Co., Ltd. | Method for separating and purifying nucleic acid |
US20060052945A1 (en) | 2004-09-07 | 2006-03-09 | Gene Security Network | System and method for improving clinical decisions by aggregating, validating and analysing genetic and phenotypic data |
US20060057618A1 (en) | 2004-08-18 | 2006-03-16 | Abbott Molecular, Inc., A Corporation Of The State Of Delaware | Determining data quality and/or segmental aneusomy using a computer system |
US7035739B2 (en) | 2002-02-01 | 2006-04-25 | Rosetta Inpharmatics Llc | Computer systems and methods for identifying genes and determining pathways associated with traits |
US20060088574A1 (en) | 2004-10-25 | 2006-04-27 | Manning Paul B | Nutritional supplements |
US20060094010A1 (en) | 2002-06-28 | 2006-05-04 | Giles Robert C | Methods and compositions for analyzing comprised sample using single nucleotide polymorphism panels |
US7058517B1 (en) | 1999-06-25 | 2006-06-06 | Genaissance Pharmaceuticals, Inc. | Methods for obtaining and using haplotype data |
US7058616B1 (en) | 2000-06-08 | 2006-06-06 | Virco Bvba | Method and system for predicting resistance of a disease to a therapeutic agent using a neural network |
US20060121452A1 (en) | 2002-05-08 | 2006-06-08 | Ravgen, Inc. | Methods for detection of genetic disorders |
US20060134662A1 (en) | 2004-10-25 | 2006-06-22 | Pratt Mark R | Method and system for genotyping samples in a normalized allelic space |
US20060141499A1 (en) | 2004-11-17 | 2006-06-29 | Geoffrey Sher | Methods of determining human egg competency |
US20060210997A1 (en) | 2005-03-16 | 2006-09-21 | Joel Myerson | Composition and method for array hybridization |
US20060216738A1 (en) | 2003-09-24 | 2006-09-28 | Morimasa Wada | SNPs in 5' regulatory region of MDR1 gene |
US20060216153A1 (en) | 2003-01-02 | 2006-09-28 | Aloys Wobben | Rotor blade for a wind power plant |
US20060228721A1 (en) | 2005-04-12 | 2006-10-12 | Leamon John H | Methods for determining sequence variants using ultra-deep sequencing |
US20060229823A1 (en) | 2002-03-28 | 2006-10-12 | Affymetrix, Inc. | Methods and computer software products for analyzing genotyping data |
WO2006110855A2 (en) | 2005-04-12 | 2006-10-19 | 454 Life Sciences Corporation | Methods for determining sequence variants using ultra-deep sequencing |
US20060248031A1 (en) | 2002-07-04 | 2006-11-02 | Kates Ronald E | Method for training a learning-capable system |
WO2006128192A2 (en) | 2005-05-27 | 2006-11-30 | John Wayne Cancer Institute | Use of free circulating dna for diagnosis, prognosis, and treatment of cancer |
US20060281105A1 (en) | 2002-10-07 | 2006-12-14 | Honghua Li | High throughput multiplex DNA sequence amplifications |
US7153656B2 (en) | 2001-09-11 | 2006-12-26 | Los Alamos National Security, Llc | Nucleic acid sequence detection using multiplexed oligonucleotide PCR |
RU2290078C1 (en) | 2005-07-25 | 2006-12-27 | Евгений Владимирович Новичков | Method for predicting the relapse of serous ovarian cancer |
US20070020640A1 (en) | 2005-07-21 | 2007-01-25 | Mccloskey Megan L | Molecular encoding of nucleic acid templates for PCR and other forms of sequence analysis |
WO2007011903A2 (en) | 2005-07-15 | 2007-01-25 | Applera Corporation | Analyzing messenger rna and micro rna in the same reaction mixture |
US20070027636A1 (en) | 2005-07-29 | 2007-02-01 | Matthew Rabinowitz | System and method for using genetic, phentoypic and clinical data to make predictions for clinical or lifestyle decisions |
US20070031857A1 (en) | 2005-08-02 | 2007-02-08 | Rubicon Genomics, Inc. | Compositions and methods for processing and amplification of DNA, including using multiple enzymes in a single reaction |
US20070037166A1 (en) | 2001-06-08 | 2007-02-15 | Expression Diagnostics, Inc. | Methods and compositions for diagnosing and monitoring transplant rejection |
US20070042384A1 (en) | 2004-12-01 | 2007-02-22 | Weiwei Li | Method for isolating and modifying DNA from blood and body fluids |
US20070059700A1 (en) | 2003-05-09 | 2007-03-15 | Shengce Tao | Methods and compositions for optimizing multiplex pcr primers |
WO2007052006A1 (en) | 2005-11-01 | 2007-05-10 | Solexa Limited | Method of preparing libraries of template polynucleotides |
WO2007057647A1 (en) | 2005-11-15 | 2007-05-24 | London Bridge Fertility, Gynaecology And Genetics Centre Ltd | Chromosomal analysis by molecular karyotyping |
US20070122805A1 (en) | 2003-01-17 | 2007-05-31 | The Trustees Of Boston University | Haplotype analysis |
WO2007062164A2 (en) | 2005-11-26 | 2007-05-31 | Gene Security Network Llc | System and method for cleaning noisy genetic data and using data to make predictions |
US20070134658A1 (en) | 2003-03-05 | 2007-06-14 | Genetic Technologies Limited, A.C.N. 009 212 328 | Identification of fetal dna and fetal cell markers in maternal plasma or serum |
WO2007070280A2 (en) | 2005-12-02 | 2007-06-21 | The General Hospital Corporation | Use of deletion polymorphisms to predict, prevent, and manage histoincompatibility |
WO2007070482A2 (en) | 2005-12-14 | 2007-06-21 | Xueliang Xia | Microarray-based preimplantation genetic diagnosis of chromosomal abnormalities |
WO2007073171A2 (en) | 2005-12-22 | 2007-06-28 | Keygene N.V. | Improved strategies for transcript profiling using high throughput sequencing technologies |
WO2007075836A2 (en) | 2005-12-20 | 2007-07-05 | Ravgen, Inc. | Methods for detection of genetic disorders |
WO2007086935A2 (en) | 2005-08-01 | 2007-08-02 | 454 Life Sciences Corporation | Methods of amplifying and sequencing nucleic acids |
US20070178501A1 (en) | 2005-12-06 | 2007-08-02 | Matthew Rabinowitz | System and method for integrating and validating genotypic, phenotypic and medical information into a database according to a standardized ontology |
US20070184467A1 (en) | 2005-11-26 | 2007-08-09 | Matthew Rabinowitz | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
WO2007092473A2 (en) | 2006-02-02 | 2007-08-16 | The Board Of Trustees Of The Leland Stanford Junior University | Non-invasive fetal genetic screening by digital analysis |
US20070202536A1 (en) | 2001-10-11 | 2007-08-30 | Yamanishi Douglas T | Methods and compositions for separating rare cells from fluid samples |
WO2007100911A2 (en) | 2006-02-28 | 2007-09-07 | University Of Louisville Research Foundation | Detecting fetal chromosomal abnormalities using tandem single nucleotide polymorphisms |
US20070212689A1 (en) | 2003-10-30 | 2007-09-13 | Bianchi Diana W | Prenatal Diagnosis Using Cell-Free Fetal DNA in Amniotic Fluid |
WO2007117039A1 (en) | 2006-04-07 | 2007-10-18 | Riken | Method to isolate 5' ends of nucleic acid and its application |
US20070243549A1 (en) | 2006-04-12 | 2007-10-18 | Biocept, Inc. | Enrichment of circulating fetal dna |
WO2007117256A1 (en) | 2005-05-31 | 2007-10-18 | Applera Corporation | Multiplexed amplification of short nucleic acids |
US20070259351A1 (en) | 2006-05-03 | 2007-11-08 | James Chinitz | Evaluating Genetic Disorders |
WO2007132167A2 (en) | 2006-05-03 | 2007-11-22 | The Chinese University Of Hong Kong | Novel fetal markers for prenatal diagnosis and monitoring |
WO2007140417A2 (en) | 2006-05-31 | 2007-12-06 | Sequenom, Inc. | Methods and compositions for the extraction and amplification of nucleic acid from a sample |
WO2007147079A2 (en) | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Rare cell analysis using sample splitting and dna tags |
WO2007147076A2 (en) | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Methods for the diagnosis of fetal abnormalities |
WO2007147073A2 (en) | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats |
WO2007147074A2 (en) | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Use of highly parallel snp genotyping for fetal diagnosis |
WO2007145612A1 (en) | 2005-06-06 | 2007-12-21 | 454 Life Sciences Corporation | Paired end sequencing |
WO2007149791A2 (en) | 2006-06-15 | 2007-12-27 | Stratagene | System for isolating biomolecules from a sample |
US20080026390A1 (en) | 2006-06-14 | 2008-01-31 | Roland Stoughton | Diagnosis of Fetal Abnormalities by Comparative Genomic Hybridization Analysis |
US20080038733A1 (en) | 2006-03-28 | 2008-02-14 | Baylor College Of Medicine | Screening for down syndrome |
US20080050739A1 (en) | 2006-06-14 | 2008-02-28 | Roland Stoughton | Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats |
WO2008024473A2 (en) | 2006-08-24 | 2008-02-28 | University Of Massachusetts Medical School | Mapping of genomic interactions |
US20080085836A1 (en) | 2006-09-22 | 2008-04-10 | Kearns William G | Method for genetic testing of human embryos for chromosome abnormalities, segregating genetic disorders with or without a known mutation and mitochondrial disorders following in vitro fertilization (IVF), embryo culture and embryo biopsy |
US20080090239A1 (en) | 2006-06-14 | 2008-04-17 | Daniel Shoemaker | Rare cell analysis using sample splitting and dna tags |
US20080096766A1 (en) | 2006-06-16 | 2008-04-24 | Sequenom, Inc. | Methods and compositions for the amplification, detection and quantification of nucleic acid from a sample |
WO2008048931A1 (en) | 2006-10-16 | 2008-04-24 | Celula Inc. | Methods and compositions for differential expansion of fetal cells in maternal blood and their use |
US20080102455A1 (en) | 2004-07-06 | 2008-05-01 | Genera Biosystems Pty Ltd | Method Of Detecting Aneuploidy |
WO2008051928A2 (en) | 2006-10-23 | 2008-05-02 | The Salk Institute For Biological Studies | Target-oriented whole genome amplification of nucliec acids |
WO2008056937A1 (en) | 2006-11-07 | 2008-05-15 | Industry Foundation Of Chonnam National University | Method and kit for determining chimerism after stem cell transplantation using mitochondrial dna microsatellites as markers |
WO2008059578A1 (en) | 2006-11-16 | 2008-05-22 | Olympus Corporation | Multiplex pcr method |
WO2008061213A2 (en) | 2006-11-16 | 2008-05-22 | Genentech, Inc. | Genetic variations associated with tumors |
US20080138809A1 (en) | 2006-06-14 | 2008-06-12 | Ravi Kapur | Methods for the Diagnosis of Fetal Abnormalities |
WO2008079374A2 (en) | 2006-12-21 | 2008-07-03 | Wang Eric T | Methods and compositions for selecting and using single nucleotide polymorphisms |
WO2008081451A2 (en) | 2007-01-03 | 2008-07-10 | Monaliza Medical Ltd. | Methods and kits for analyzing genetic material of a fetus |
WO2008084405A2 (en) | 2007-01-11 | 2008-07-17 | Erasmus University Medical Center | Circular chromosome conformation capture (4c) |
US20080182244A1 (en) | 2006-08-04 | 2008-07-31 | Ikonisys, Inc. | Pre-Implantation Genetic Diagnosis Test |
US20080193927A1 (en) | 2004-07-27 | 2008-08-14 | Wofgang Mann | Method for Determining the Abundance of Sequences in a Sample |
US7414118B1 (en) | 2004-04-14 | 2008-08-19 | Applied Biosystems Inc. | Modified oligonucleotides and applications thereof |
US20080220422A1 (en) | 2006-06-14 | 2008-09-11 | Daniel Shoemaker | Rare cell analysis using sample splitting and dna tags |
WO2008115427A2 (en) | 2007-03-16 | 2008-09-25 | 454 Life Sciences Corporation | System and method for detection of hiv drug resistant variants |
WO2008115497A2 (en) | 2007-03-16 | 2008-09-25 | Gene Security Network | System and method for cleaning noisy genetic data and determining chromsome copy number |
US20080234142A1 (en) | 1999-08-13 | 2008-09-25 | Eric Lietz | Random Mutagenesis And Amplification Of Nucleic Acid |
WO2008118988A1 (en) | 2007-03-26 | 2008-10-02 | Sequenom, Inc. | Restriction endonuclease enhanced polymorphic sequence detection |
US20080243398A1 (en) | 2005-12-06 | 2008-10-02 | Matthew Rabinowitz | System and method for cleaning noisy genetic data and determining chromosome copy number |
US7442506B2 (en) | 2002-05-08 | 2008-10-28 | Ravgen, Inc. | Methods for detection of genetic disorders |
JP2008263974A (en) | 2007-03-28 | 2008-11-06 | Institute Of Physical & Chemical Research | New method for detection of polymorphism |
US20080280292A1 (en) | 2001-12-19 | 2008-11-13 | Brandeis University | Late-PCR |
WO2008135837A2 (en) | 2007-05-04 | 2008-11-13 | Silicon Biosystems S.P.A. | Method and device for non- invasive prenatal diagnosis |
US20080299562A1 (en) | 2007-02-08 | 2008-12-04 | Sequenom, Inc. | Nucleic acid-based tests for rhd typing, gender determination and nucleic acid quantification |
US20080305473A1 (en) | 2006-03-13 | 2008-12-11 | Dondapati Chowdary | Propagation of primary cells |
WO2008157264A2 (en) | 2007-06-15 | 2008-12-24 | Sequenom, Inc. | Combined methods for the detection of chromosomal aneuploidy |
WO2009009769A2 (en) | 2007-07-11 | 2009-01-15 | Artemis Health, Inc. | Diagnosis of fetal abnormalities using nucleated red blood cells |
US20090023190A1 (en) | 2007-06-20 | 2009-01-22 | Kai Qin Lao | Sequence amplification with loopable primers |
US20090029377A1 (en) | 2007-07-23 | 2009-01-29 | The Chinese University Of Hong Kong | Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing |
WO2009017784A2 (en) | 2007-08-01 | 2009-02-05 | Dana-Farber Cancer Institute | Enrichment of a target sequence |
WO2009019215A1 (en) | 2007-08-03 | 2009-02-12 | Dkfz Deutsches Krebsforschungszentrum | Method for prenatal diagnosis using exosomes and cd24 as a marker |
WO2009019455A2 (en) | 2007-08-03 | 2009-02-12 | The Chinese University Of Hong Kong | Analysis of nucleic acids of varying lengths by digital pcr |
WO2009032781A2 (en) | 2007-08-29 | 2009-03-12 | Sequenom, Inc. | Methods and compositions for universal size-specific polymerase chain reaction |
WO2009032779A2 (en) | 2007-08-29 | 2009-03-12 | Sequenom, Inc. | Methods and compositions for the size-specific seperation of nucleic acid from a sample |
WO2009033178A1 (en) | 2007-09-07 | 2009-03-12 | Fluidigm Corporation | Copy number variation determination, methods and systems |
WO2009030100A1 (en) | 2007-08-30 | 2009-03-12 | The Chinese University Of Hong Kong | Methods and kits for selectively amplifying, detecting or quantifying target dna with specific end sequences |
WO2009036525A2 (en) | 2007-09-21 | 2009-03-26 | Katholieke Universiteit Leuven | Tools and methods for genetic tests using next generation sequencing |
US20090099041A1 (en) | 2006-02-07 | 2009-04-16 | President And Fellows Of Harvard College | Methods for making nucleotide probes for sequencing and synthesis |
US20090098534A1 (en) | 2005-02-25 | 2009-04-16 | The Regents Of The University Of California | Full Karyotype Single Cell Chromosome Analysis |
WO2009049889A1 (en) | 2007-10-16 | 2009-04-23 | Roche Diagnostics Gmbh | High resolution, high throughput hla genotyping by clonal sequencing |
WO2009064897A2 (en) | 2007-11-14 | 2009-05-22 | Chronix Biomedical | Detection of nucleic acid sequence variations in circulating nucleic acid in bovine spongiform encephalopathy |
US20090143570A1 (en) | 2007-11-30 | 2009-06-04 | Ge Healthcare Bio-Sciences Corp. | Method for isolation of genomic dna, rna and proteins from a single sample |
US20090176662A1 (en) | 2006-02-08 | 2009-07-09 | Roberto Rigatti | End Modification to Prevent Over-Representation of Fragments |
WO2009092035A2 (en) | 2008-01-17 | 2009-07-23 | Sequenom, Inc. | Methods and compositions for the analysis of biological molecules |
WO2009091934A1 (en) | 2008-01-17 | 2009-07-23 | Sequenom, Inc. | Single molecule nucleic acid sequence analysis processes and compositions |
WO2009100029A1 (en) | 2008-02-01 | 2009-08-13 | The General Hospital Corporation | Use of microvesicles in diagnosis, prognosis and treatment of medical diseases and conditions |
WO2009099602A1 (en) | 2008-02-04 | 2009-08-13 | Massachusetts Institute Of Technology | Selection of nucleic acids by solution hybridization to oligonucleotide baits |
WO2009105531A1 (en) | 2008-02-19 | 2009-08-27 | Gene Security Network, Inc. | Methods for cell genotyping |
US20090221620A1 (en) | 2008-02-20 | 2009-09-03 | Celera Corporation | Gentic polymorphisms associated with stroke, methods of detection and uses thereof |
WO2009117122A2 (en) | 2008-03-19 | 2009-09-24 | Existence Genetics Llc | Genetic analysis |
WO2009120808A2 (en) | 2008-03-26 | 2009-10-01 | Sequenom, Inc. | Restriction endonuclease enhanced polymorphic sequence detection |
EP2128169A1 (en) | 2008-05-30 | 2009-12-02 | Qiagen GmbH | Method for isolating short chain nucleic acids |
WO2009146335A1 (en) | 2008-05-27 | 2009-12-03 | Gene Security Network, Inc. | Methods for embryo characterization and comparison |
WO2009145828A2 (en) | 2008-03-31 | 2009-12-03 | Pacific Biosciences Of California, Inc. | Two slow-step polymerase enzyme systems and methods |
US20090317817A1 (en) | 2008-03-11 | 2009-12-24 | Sequenom, Inc. | Nucleic acid-based tests for prenatal gender determination |
US7645576B2 (en) | 2005-03-18 | 2010-01-12 | The Chinese University Of Hong Kong | Method for the detection of chromosomal aneuploidies |
WO2010014920A1 (en) | 2008-07-31 | 2010-02-04 | The Johns Hopkins University | Circulating mutant dna to assess tumor dynamics |
US20100035232A1 (en) | 2006-09-14 | 2010-02-11 | Ecker David J | Targeted whole genome amplification method for identification of pathogens |
WO2010017214A1 (en) | 2008-08-04 | 2010-02-11 | Gene Security Network, Inc. | Methods for allele calling and ploidy calling |
EP2163622A1 (en) | 2008-09-04 | 2010-03-17 | Macherey, Nagel GmbH & Co. Handelsgesellschaft | Method for obtaining short RNA and kit for same |
WO2010033639A2 (en) | 2008-09-16 | 2010-03-25 | Sequenom, Inc. | Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses |
WO2010033652A1 (en) | 2008-09-17 | 2010-03-25 | Ge Healthcare Bio-Sciences Corp. | Method for small rna isolation |
WO2010033578A2 (en) | 2008-09-20 | 2010-03-25 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
US20100086914A1 (en) | 2008-10-03 | 2010-04-08 | Roche Molecular Systems, Inc. | High resolution, high throughput hla genotyping by clonal sequencing |
WO2010042831A2 (en) | 2008-10-10 | 2010-04-15 | Swedish Health Services | Diagnosis, prognosis and treatment of glioblastoma multiforme |
WO2010045617A2 (en) | 2008-10-17 | 2010-04-22 | University Of Louisville Research Foundation | Detecting genetic abnormalities |
US20100105049A1 (en) | 2008-09-16 | 2010-04-29 | Sequenom, Inc. | Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses |
US20100112590A1 (en) | 2007-07-23 | 2010-05-06 | The Chinese University Of Hong Kong | Diagnosing Fetal Chromosomal Aneuploidy Using Genomic Sequencing With Enrichment |
US20100120038A1 (en) | 2008-08-26 | 2010-05-13 | Fluidigm Corporation | Assay methods for increased throughput of samples and/or targets |
US7718367B2 (en) | 2005-03-18 | 2010-05-18 | The Chinese University Of Hong Kong | Markers for prenatal diagnosis and monitoring |
US20100129792A1 (en) | 2007-02-06 | 2010-05-27 | Gerassimos Makrigiorgos | Direct monitoring and pcr amplification of the dosage and dosage difference between target genetic regions |
US20100129874A1 (en) | 2008-09-05 | 2010-05-27 | The Washington University | Method for multiplexed nucleic acid patch polymerase chain reaction |
WO2010075459A1 (en) | 2008-12-22 | 2010-07-01 | Celula, Inc. | Methods and genotyping panels for detecting alleles, genomes, and transcriptomes |
US20100171954A1 (en) | 1996-09-25 | 2010-07-08 | California Institute Of Technology | Method and Apparatus for Analysis and Sorting of Polynucleotides Based on Size |
US20100173394A1 (en) | 2008-09-23 | 2010-07-08 | Colston Jr Billy Wayne | Droplet-based assay system |
US20100184069A1 (en) | 2009-01-21 | 2010-07-22 | Streck, Inc. | Preservation of fetal nucleic acids in maternal plasma |
US20100184043A1 (en) | 2006-02-28 | 2010-07-22 | University Of Louisville Research Foundation | Detecting Genetic Abnormalities |
WO2010088288A2 (en) | 2009-01-28 | 2010-08-05 | Fluidigm Corporation | Determination of copy number differences by amplification |
US20100196892A1 (en) | 1997-09-23 | 2010-08-05 | California Institute Of Technology | Methods and Systems for Molecular Fingerprinting |
US20100216151A1 (en) | 2004-02-27 | 2010-08-26 | Helicos Biosciences Corporation | Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities |
US20100216153A1 (en) | 2004-02-27 | 2010-08-26 | Helicos Biosciences Corporation | Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities |
US7790418B2 (en) | 2000-12-08 | 2010-09-07 | Illumina Cambridge Limited | Isothermal amplification of nucleic acids on a solid support |
US7790393B2 (en) | 2001-10-12 | 2010-09-07 | Third Wave Technologies, Inc. | Amplification methods and compositions |
US20100248231A1 (en) | 2007-05-31 | 2010-09-30 | The Regents Of The University Of California | High specificity and high sensitivity detection based on steric hindrance & enzyme-related signal amplification |
WO2010115154A1 (en) | 2009-04-02 | 2010-10-07 | Fluidigm Corporation | Multi-primer amplification method for barcoding of target nucleic acids |
WO2010115016A2 (en) | 2009-04-03 | 2010-10-07 | Sequenom, Inc. | Nucleic acid preparation compositions and methods |
WO2010118016A2 (en) | 2009-04-06 | 2010-10-14 | The Johns Hopkins University | Digital quantification of dna methylation |
US20100273159A1 (en) | 2007-06-20 | 2010-10-28 | Taag-Genetics S.A. | Nested Multiplex Amplification Method for Identification of Multiple Biological Entities |
US20100273678A1 (en) | 2007-12-26 | 2010-10-28 | Eppendorf Array Technologies S.A. | Method and kit to perform a pcr amplification and micro-array detection in the same medium and/or same chamber |
WO2010127186A1 (en) | 2009-04-30 | 2010-11-04 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
US20100285478A1 (en) | 2009-03-27 | 2010-11-11 | Life Technologies Corporation | Methods, Compositions, and Kits for Detecting Allelic Variants |
US20100285537A1 (en) | 2009-04-02 | 2010-11-11 | Fluidigm Corporation | Selective tagging of short nucleic acid fragments and selective protection of target sequences from degradation |
US20100291635A1 (en) | 2007-07-03 | 2010-11-18 | Ofer Peleg | Chimeric primers for improved nucleic acid amplification reactions |
US20110015096A1 (en) | 2009-07-14 | 2011-01-20 | Academia Sinica | MULTIPLEX BARCODED PAIRED-END DITAG (mbPED) LIBRARY CONSTRUCTION FOR ULTRA HIGH THROUGHPUT SEQUENCING |
US20110039724A1 (en) | 2009-08-11 | 2011-02-17 | The Chinese University Of Hong Kong | Method for detecting chromosomal aneuploidy |
US20110045462A1 (en) | 2006-11-14 | 2011-02-24 | The Regents Of The University Of California | Digital analysis of gene expression |
WO2011023078A1 (en) | 2009-08-27 | 2011-03-03 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Deep silicon etching device and gas intake system for deep silicon etching device |
WO2011032078A1 (en) | 2009-09-11 | 2011-03-17 | Health Reseach Inc. | Detection of x4 strains of hiv-1 by heteroduplex tracking assay |
JP2011508662A (en) | 2007-12-21 | 2011-03-17 | コンパニ・ジェルベ・ダノン | Method for enriching water with oxygen by electrolysis, oxygen-enriched water or beverage and use thereof |
US20110071031A1 (en) | 2009-09-24 | 2011-03-24 | Qiagen Gaithersburg Inc. | Compositions, methods, and kits for isolating and analyzing nucleic acids using an anion exchange material |
WO2011041485A1 (en) | 2009-09-30 | 2011-04-07 | Gene Security Network, Inc. | Methods for non-invasive prenatal ploidy calling |
WO2011051283A1 (en) | 2009-10-26 | 2011-05-05 | Lifecodexx Ag | Means and methods for non-invasive diagnosis of chromosomal aneuploidy |
US20110105353A1 (en) | 2009-11-05 | 2011-05-05 | The Chinese University of Hong Kong c/o Technology Licensing Office | Fetal Genomic Analysis From A Maternal Biological Sample |
WO2011057061A1 (en) | 2009-11-06 | 2011-05-12 | The Board Of Trustees Of The Leland Stanford Junior University | Non-invasive diagnosis of graft rejection in organ transplant patients |
JP2011516069A (en) | 2008-04-03 | 2011-05-26 | ハドソン アルファ インスティテュート フォー バイオテクノロジー | Amplicon Rescue Multiplex Polymerase Chain Reaction for Amplification of Multiple Targets |
US20110151442A1 (en) | 2009-12-22 | 2011-06-23 | The Board Of Trustees Of The Leland Stanford Junior University | Direct Molecular Diagnosis of Fetal Aneuploidy |
US20110160078A1 (en) | 2009-12-15 | 2011-06-30 | Affymetrix, Inc. | Digital Counting of Individual Molecules by Stochastic Attachment of Diverse Labels |
US20110159499A1 (en) | 2009-11-25 | 2011-06-30 | Quantalife, Inc. | Methods and compositions for detecting genetic material |
US7981609B2 (en) | 2006-06-09 | 2011-07-19 | The Brigham And Women's Hospital, Inc. | Methods for identifying and using SNP panels |
WO2011087760A2 (en) | 2009-12-22 | 2011-07-21 | Sequenom, Inc. | Processes and kits for identifying aneuploidy |
WO2011090556A1 (en) | 2010-01-19 | 2011-07-28 | Verinata Health, Inc. | Methods for determining fraction of fetal nucleic acid in maternal samples |
US20110201507A1 (en) | 2010-01-19 | 2011-08-18 | Rava Richard P | Sequencing methods and compositions for prenatal diagnoses |
US20110212446A1 (en) | 2010-02-26 | 2011-09-01 | Life Technologies Corporation | Fast pcr for str genotyping |
US20110212846A1 (en) | 2010-02-09 | 2011-09-01 | UniTag Bio | Methods and compositions for universal detection of nucleic acids |
WO2011109440A1 (en) | 2010-03-01 | 2011-09-09 | Caris Life Sciences Luxembourg Holdings | Biomarkers for theranostics |
US20110251149A1 (en) | 2009-12-08 | 2011-10-13 | Trustees Of Boston University | Methods and low dose regimens for treating red blood cell disorders |
WO2011140433A2 (en) | 2010-05-07 | 2011-11-10 | The Board Of Trustees Of The Leland Stanford Junior University | Measurement and comparison of immune diversity by high-throughput sequencing |
US20110288780A1 (en) | 2010-05-18 | 2011-11-24 | Gene Security Network Inc. | Methods for Non-Invasive Prenatal Ploidy Calling |
US20110300608A1 (en) | 2007-09-21 | 2011-12-08 | Streck, Inc. | Nucleic acid isolation in preserved whole blood |
US20110301854A1 (en) | 2010-06-08 | 2011-12-08 | Curry Bo U | Method of Determining Allele-Specific Copy Number of a SNP |
US20110312503A1 (en) | 2010-01-23 | 2011-12-22 | Artemis Health, Inc. | Methods of fetal abnormality detection |
WO2012019200A2 (en) | 2010-08-06 | 2012-02-09 | Tandem Diagnostics, Inc. | Assay systems for determination of source contribution in a sample |
WO2012028746A1 (en) | 2010-09-03 | 2012-03-08 | Centre National De La Recherche Scientifique (Cnrs) | Analytical methods for cell free nucleic acids and applications |
US8133719B2 (en) | 2005-06-15 | 2012-03-13 | Callida Genomics, Inc. | Methods for making single molecule arrays |
WO2012042374A2 (en) | 2010-10-01 | 2012-04-05 | Anssi Jussi Nikolai Taipale | Method of determining number or concentration of molecules |
WO2012058488A1 (en) | 2010-10-27 | 2012-05-03 | President And Fellows Of Harvard College | Compositions of toehold primer duplexes and methods of use |
US20120108460A1 (en) | 2010-10-26 | 2012-05-03 | Stanford University | Non-invasive fetal genetic screening by sequencing analysis |
US20120122701A1 (en) | 2010-05-18 | 2012-05-17 | Gene Security Network, Inc. | Methods for Non-Invasive Prenatal Paternity Testing |
WO2012071621A1 (en) | 2010-11-30 | 2012-06-07 | The Chinese University Of Hong Kong | Detection of genetic or molecular aberrations associated with cancer |
WO2012083250A2 (en) | 2010-12-17 | 2012-06-21 | Celula, Inc. | Methods for screening and diagnosing genetic conditions |
US20120190021A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Detection of genetic abnormalities |
US20120190557A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Risk calculation for evaluation of fetal aneuploidy |
US20120191358A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Risk calculation for evaluation of fetal aneuploidy |
US20120196754A1 (en) | 2010-12-07 | 2012-08-02 | Stanford University | Non-invasive determination of fetal inheritance of parental haplotypes at the genome-wide scale |
US8236503B2 (en) | 2008-11-07 | 2012-08-07 | Sequenta, Inc. | Methods of monitoring conditions by sequence analysis |
US20120208706A1 (en) | 2010-12-30 | 2012-08-16 | Foundation Medicine, Inc. | Optimization of multigene analysis of tumor samples |
WO2012108920A1 (en) | 2011-02-09 | 2012-08-16 | Natera, Inc | Methods for non-invasive prenatal ploidy calling |
GB2488358A (en) | 2011-02-25 | 2012-08-29 | Univ Plymouth | Enrichment of foetal DNA in maternal plasma |
US20120264618A1 (en) | 2011-04-29 | 2012-10-18 | Sequenom, Inc. | Quantification of a minority nucleic acid species |
US20120264121A1 (en) | 2011-04-12 | 2012-10-18 | Verinata Health, Inc. | Resolving genome fractions using polymorphism counts |
WO2012142531A2 (en) | 2011-04-14 | 2012-10-18 | Complete Genomics, Inc. | Processing and analysis of complex nucleic acid sequence data |
US20120270739A1 (en) * | 2010-01-19 | 2012-10-25 | Verinata Health, Inc. | Method for sample analysis of aneuploidies in maternal samples |
US8304187B2 (en) | 2009-02-18 | 2012-11-06 | Streck, Inc. | Preservation of cell-free RNA in blood samples |
US20120295819A1 (en) | 2011-04-28 | 2012-11-22 | Life Technologies Corporation | Methods and compositions for multiplex pcr |
US20130017549A1 (en) | 2011-07-11 | 2013-01-17 | Samsung Electronics Co., Ltd. | Method of amplifying target nucleic acid with reduced amplification bias and method for determining relative amount of target nucleic acid in sample |
US20130024127A1 (en) | 2011-07-19 | 2013-01-24 | John Stuelpnagel | Determination of source contributions using binomial probability calculations |
US20130022973A1 (en) | 2010-01-15 | 2013-01-24 | Hansen Carl L G | Multiplex Amplification for the Detection of Nucleic Acid Variations |
US20130034546A1 (en) | 2010-01-19 | 2013-02-07 | Verinata Health, Inc. | Analyzing Copy Number Variation in the Detection of Cancer |
US20130040375A1 (en) | 2011-08-08 | 2013-02-14 | Tandem Diagnotics, Inc. | Assay systems for genetic analysis |
US8389557B2 (en) | 2005-09-07 | 2013-03-05 | Rigel Pharmaceuticals, Inc. | Triazole derivatives useful as Axl inhibitors |
US8389578B2 (en) | 2004-11-24 | 2013-03-05 | Adamas Pharmaceuticals, Inc | Composition and method for treating neurological disease |
WO2013030577A1 (en) | 2011-09-01 | 2013-03-07 | Singapore Volition Pte Limited | Method for detecting nucleosomes containing nucleotides |
US20130060483A1 (en) | 2011-09-07 | 2013-03-07 | Craig Struble | Determination of copy number variations using binomial probability calculations |
US20130069869A1 (en) | 2011-09-20 | 2013-03-21 | Sony Computer Entertainment Inc. | Information processing apparatus, application provision system, application provision server, and information processing method |
US20130085681A1 (en) | 2011-10-06 | 2013-04-04 | Sequenom, Inc. | Methods and processes for non-invasive assessment of genetic variations |
WO2013045432A1 (en) | 2011-09-26 | 2013-04-04 | Qiagen Gmbh | Rapid method for isolating extracellular nucleic acids |
WO2013052557A2 (en) | 2011-10-03 | 2013-04-11 | Natera, Inc. | Methods for preimplantation genetic diagnosis by sequencing |
WO2013049892A1 (en) | 2011-10-07 | 2013-04-11 | Murdoch Childrens Research Institute | Diagnostic assay for tissue transplantation status |
US20130116130A1 (en) | 2009-12-15 | 2013-05-09 | Affymetrix, Inc. | Digital Counting of Individual Molecules by Stochastic Attachment of Diverse Label-Tags |
US20130123120A1 (en) | 2010-05-18 | 2013-05-16 | Natera, Inc. | Highly Multiplex PCR Methods and Compositions |
WO2013078470A2 (en) | 2011-11-22 | 2013-05-30 | MOTIF, Active | Multiplex isolation of protein-associated nucleic acids |
WO2013086464A1 (en) | 2011-12-07 | 2013-06-13 | The Broad Institute, Inc. | Markers associated with chronic lymphocytic leukemia prognosis and progression |
US20130190653A1 (en) | 2012-01-25 | 2013-07-25 | Angel Gabriel Alvarez Ramos | Device for blood collection from the placenta and the umbilical cord |
US20130196862A1 (en) | 2009-07-17 | 2013-08-01 | Natera, Inc. | Informatics Enhanced Analysis of Fetal Samples Subject to Maternal Contamination |
WO2013123220A1 (en) | 2012-02-14 | 2013-08-22 | Cornell University | Method for relative quantification of nucleic acid sequence, expression, or copy changes, using combined nuclease, ligation, and polymerase reactions |
WO2013130848A1 (en) | 2012-02-29 | 2013-09-06 | Natera, Inc. | Informatics enhanced analysis of fetal samples subject to maternal contamination |
WO2013138510A1 (en) | 2012-03-13 | 2013-09-19 | Patel Abhijit Ajit | Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing |
US20130253369A1 (en) | 2005-11-26 | 2013-09-26 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
EP2653562A1 (en) | 2012-04-20 | 2013-10-23 | Institut Pasteur | Anellovirus genome quantification as a biomarker of immune suppression |
WO2013159035A2 (en) | 2012-04-19 | 2013-10-24 | Medical College Of Wisconsin, Inc. | Highly sensitive surveillance using detection of cell free dna |
US20130303461A1 (en) | 2012-05-10 | 2013-11-14 | The General Hospital Corporation | Methods for determining a nucleotide sequence |
WO2013177220A1 (en) | 2012-05-21 | 2013-11-28 | The Scripps Research Institute | Methods of sample preparation |
US20130325360A1 (en) | 2011-10-06 | 2013-12-05 | Sequenom, Inc. | Methods and processes for non-invasive assessment of genetic variations |
WO2013181651A1 (en) | 2012-06-01 | 2013-12-05 | Omega Bio-Tek, Inc. | Selective nucleic acid fragment recovery |
WO2014004726A1 (en) | 2012-06-26 | 2014-01-03 | Caifu Chen | Methods, compositions and kits for the diagnosis, prognosis and monitoring of cancer |
WO2014014497A1 (en) | 2012-07-20 | 2014-01-23 | Verinata Health, Inc. | Detecting and classifying copy number variation in a cancer genome |
US20140032128A1 (en) | 2005-07-29 | 2014-01-30 | Netera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
WO2014018080A1 (en) | 2012-07-24 | 2014-01-30 | Natera, Inc. | Highly multiplex pcr methods and compositions |
US20140038830A1 (en) | 2011-04-15 | 2014-02-06 | Verinata Health, Inc. | Detecting and classifying copy number variation |
US20140051585A1 (en) | 2012-08-15 | 2014-02-20 | Natera, Inc. | Methods and compositions for reducing genetic library contamination |
US20140066317A1 (en) | 2012-09-04 | 2014-03-06 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US20140065621A1 (en) | 2012-09-04 | 2014-03-06 | Natera, Inc. | Methods for increasing fetal fraction in maternal blood |
WO2014035986A1 (en) | 2012-08-28 | 2014-03-06 | Akonni Biosystems Inc. | Method and kit for purifying nucleic acids |
US20140100126A1 (en) | 2012-08-17 | 2014-04-10 | Natera, Inc. | Method for Non-Invasive Prenatal Testing Using Parental Mosaicism Data |
US20140155274A1 (en) | 2011-03-24 | 2014-06-05 | President And Fellows Of Harvard College | Single Cell Nucleic Acid Detection and Analysis |
US8748103B2 (en) | 2008-11-07 | 2014-06-10 | Sequenta, Inc. | Monitoring health and disease status using clonotype profiles |
US20140206552A1 (en) | 2010-05-18 | 2014-07-24 | Natera, Inc. | Methods for preimplantation genetic diagnosis by sequencing |
US20140227705A1 (en) | 2011-04-15 | 2014-08-14 | The Johns Hopkins University | Safe sequencing system |
WO2014122288A1 (en) | 2013-02-08 | 2014-08-14 | Qiagen Gmbh | Method for separating dna by size |
US20140256558A1 (en) | 2013-03-11 | 2014-09-11 | Kailos Genetics, Inc. | Capture Methodologies for Circulating Cell Free DNA |
WO2014145232A2 (en) | 2013-03-15 | 2014-09-18 | Organ-I, Inc. | Methods and compositions for assessing renal status using urine cell free dna |
US20140272956A1 (en) | 2013-03-15 | 2014-09-18 | Abbott Molecular Inc. | Method for amplification and assay of rna fusion gene variants, method of distinguishing same and related primers, probes, and kits |
US20140274740A1 (en) | 2013-03-15 | 2014-09-18 | Verinata Health, Inc. | Generating cell-free dna libraries directly from blood |
WO2014149134A2 (en) | 2013-03-15 | 2014-09-25 | Guardant Health Inc. | Systems and methods to detect rare mutations and copy number variation |
US20140287934A1 (en) | 2013-03-15 | 2014-09-25 | The Translational Genomics Research Institute | Processes of identifying and characterizing x-linked disorders |
WO2014151117A1 (en) | 2013-03-15 | 2014-09-25 | The Board Of Trustees Of The Leland Stanford Junior University | Identification and use of circulating nucleic acid tumor markers |
US20140329245A1 (en) | 2013-01-13 | 2014-11-06 | Unitaq Bio | Methods and Compositions for PCR Using Blocked and Universal Primers |
WO2014194113A2 (en) | 2013-05-29 | 2014-12-04 | Chronix Biomedical | Detection and quantification of donor cell-free dna in the circulation of organ transplant recipients |
US20150051087A1 (en) | 2010-05-18 | 2015-02-19 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
WO2015048535A1 (en) | 2013-09-27 | 2015-04-02 | Natera, Inc. | Prenatal diagnostic resting standards |
US9005894B2 (en) | 2009-09-22 | 2015-04-14 | Roche Molecular Systems, Inc. | Determination of KIR haplotypes associated with disease |
WO2015070086A1 (en) | 2013-11-07 | 2015-05-14 | The Board Of Trustees Of The Leland Stanford Junior University | Cell-free nucleic acids for the analysis of the human microbiome and components thereof |
WO2015100427A1 (en) | 2013-12-28 | 2015-07-02 | Guardant Health, Inc. | Methods and systems for detecting genetic variants |
US20150197786A1 (en) | 2012-02-28 | 2015-07-16 | Population Genetics Technologies Ltd. | Method for Attaching a Counter Sequence to a Nucleic Acid Sample |
US20150211050A1 (en) | 2014-01-27 | 2015-07-30 | The General Hospital Corporation | Methods of preparing nucleic acids for sequencing |
EP2902500A1 (en) | 2011-02-09 | 2015-08-05 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
WO2015148494A1 (en) | 2014-03-25 | 2015-10-01 | Quest Diagnostics Investments Incorporated | Detection of gene fusions by intragenic differential expression (ide) using average cycle thresholds |
US20150299812A1 (en) | 2012-09-04 | 2015-10-22 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
WO2015164432A1 (en) | 2014-04-21 | 2015-10-29 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US20150315657A1 (en) | 2013-04-17 | 2015-11-05 | Life Technologies Corporation | Gene fusions and gene variants associated with cancer |
US20150322507A1 (en) | 2014-04-21 | 2015-11-12 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20150329891A1 (en) | 2013-12-30 | 2015-11-19 | Atreca, Inc. | Analysis of nucleic acids associated with single cells using nucleic acid barcodes |
US9206475B2 (en) | 2000-06-06 | 2015-12-08 | Applied Biosystems, Llc | Methods for multiplexing amplification reactions |
WO2016009224A1 (en) | 2014-07-18 | 2016-01-21 | Cancer Research Technology Limited | A method for detecting a genetic variant |
WO2016009059A1 (en) | 2014-07-17 | 2016-01-21 | Qiagen Gmbh | Method for isolating rna with high yield |
WO2016017662A1 (en) | 2014-07-30 | 2016-02-04 | 岩崎工業株式会社 | Storage container |
US9323888B2 (en) | 2010-01-19 | 2016-04-26 | Verinata Health, Inc. | Detecting and classifying copy number variation |
WO2016063122A1 (en) | 2014-10-20 | 2016-04-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for screening a subject for a cancer |
WO2016065295A1 (en) | 2014-10-24 | 2016-04-28 | Dae Hyun Kim | Enrichment of small nucleic acids |
WO2016077313A1 (en) | 2014-11-11 | 2016-05-19 | Bgi Shenzhen | Multi-pass sequencing |
US20160145682A1 (en) | 2014-03-14 | 2016-05-26 | Caredx, Inc. | Methods of monitoring immunosuppressive therapies in a transplant recipient |
EP3026124A1 (en) | 2012-10-31 | 2016-06-01 | Genesupport SA | Non-invasive method for detecting a fetal chromosomal aneuploidy |
US20160186253A1 (en) | 2014-07-18 | 2016-06-30 | Illumina, Inc. | Non-invasive prenatal diagnosis of fetal genetic condition using cellular dna and cell free dna |
US20160186239A1 (en) | 2014-12-29 | 2016-06-30 | InnoGenomics Technologies, LLC | Multiplexed assay for quantitating and assessing integrity of cell-free dna in biological fluids for cancer diagnosis, prognosis and surveillance |
US20160201124A1 (en) | 2014-02-11 | 2016-07-14 | Roche Molecular Systems, Inc. | Targeted Sequencing and UID Filtering |
WO2016123698A1 (en) | 2015-02-06 | 2016-08-11 | Uti Limited Partnership | Diagnostic assay for post-transplant assessment of potential rejection of donor organs |
US20160239602A1 (en) | 2013-09-27 | 2016-08-18 | University Of Washington | Methods and systems for large scale scaffolding of genome assemblies |
US20160244838A1 (en) | 2013-09-27 | 2016-08-25 | Natera, Inc. | Cell free dna diagnostic testing standards |
WO2016138080A1 (en) | 2015-02-24 | 2016-09-01 | Trustees Of Boston University | Protection of barcodes during dna amplification using molecular hairpins |
US20160257993A1 (en) | 2015-02-27 | 2016-09-08 | Cellular Research, Inc. | Methods and compositions for labeling targets |
US20160289740A1 (en) | 2015-03-30 | 2016-10-06 | Cellular Research, Inc. | Methods and compositions for combinatorial barcoding |
US20160289753A1 (en) | 2013-12-02 | 2016-10-06 | Population Genetics Technologies Ltd. | Method for Evaluating Minority Variants in a Sample |
US20160312276A1 (en) | 2015-04-23 | 2016-10-27 | Cellular Research, Inc. | Methods and compositions for whole transcriptome amplification |
US20160319345A1 (en) | 2015-04-28 | 2016-11-03 | Illumina, Inc. | Error suppression in sequenced dna fragments using redundant reads with unique molecular indices (umis) |
WO2016183106A1 (en) | 2015-05-11 | 2016-11-17 | Natera, Inc. | Methods and compositions for determining ploidy |
US9506119B2 (en) | 2008-11-07 | 2016-11-29 | Adaptive Biotechnologies Corp. | Method of sequence determination using sequence tags |
WO2016193490A1 (en) | 2015-06-05 | 2016-12-08 | Qiagen Gmbh | Method for separating dna by size |
US20160369333A1 (en) | 2010-05-18 | 2016-12-22 | Natera, Inc. | Methods for simultaneous amplification of target loci |
WO2017058784A1 (en) | 2015-09-29 | 2017-04-06 | Ludwig Institute For Cancer Research Ltd | Typing and assembling discontinuous genomic elements |
US20170107576A1 (en) | 2014-04-21 | 2017-04-20 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US20170121716A1 (en) | 2014-07-03 | 2017-05-04 | Rhodx, Inc. | Tagging and assessing a target sequence |
US20170152561A1 (en) | 2014-06-27 | 2017-06-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods employing circulating dna and mirna as biomarkers for female infertility |
US20170218458A1 (en) | 2016-02-03 | 2017-08-03 | AnchorDx Medical Co.,Ltd. | Method for Detecting Methylated DNA |
US20170275689A1 (en) | 2016-03-22 | 2017-09-28 | Counsyl, Inc. | Combinatorial DNA Screening |
US20170283788A1 (en) | 2016-03-30 | 2017-10-05 | Covaris, Inc. | EXTRACTION OF cfDNA FROM BIOLOGICAL SAMPLES |
WO2017181146A1 (en) | 2016-04-14 | 2017-10-19 | Guardant Health, Inc. | Methods for early detection of cancer |
WO2017181202A2 (en) | 2016-04-15 | 2017-10-19 | Natera, Inc. | Methods for lung cancer detection |
WO2017190106A1 (en) | 2016-04-29 | 2017-11-02 | Medical College Of Wisconsin, Inc. | Multiplexed optimized mismatch amplification (moma)-target number |
US20170314014A1 (en) | 2015-10-19 | 2017-11-02 | Dovetail Genomics, Llc | Methods for Genome Assembly, Haplotype Phasing, and Target Independent Nucleic Acid Detection |
US20170342477A1 (en) | 2016-05-27 | 2017-11-30 | Sequenom, Inc. | Methods for Detecting Genetic Variations |
WO2017205540A1 (en) | 2016-05-24 | 2017-11-30 | The Translational Genomics Research Institute | Molecular tagging methods and sequencing libraries |
US20170362649A1 (en) | 2014-12-01 | 2017-12-21 | The Broad Institute, Inc. | Method for in situ determination of nucleic acid proximity |
WO2018009723A1 (en) | 2016-07-06 | 2018-01-11 | Guardant Health, Inc. | Methods for fragmentome profiling of cell-free nucleic acids |
US20180023128A1 (en) | 2015-02-05 | 2018-01-25 | Technion Research & Development Foundation Limited | System and method for single cell genetic analysis |
EP3285193A1 (en) | 2015-04-14 | 2018-02-21 | Eone Diagnomics Genome Center Co., Ltd. | Method for predicting organ transplant rejection using next-generation sequencing |
US20180127744A1 (en) | 2016-11-08 | 2018-05-10 | Cellular Research, Inc. | Methods for cell label classification |
WO2018085603A1 (en) | 2016-11-02 | 2018-05-11 | Medical College Of Wisconsin, Inc. | Methods for assessing risk using total and specific cell-free dna |
WO2018083467A1 (en) | 2016-11-02 | 2018-05-11 | Ucl Business Plc | Method of detecting tumour recurrence |
US20180155785A1 (en) | 2005-07-29 | 2018-06-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20180155776A1 (en) | 2016-12-07 | 2018-06-07 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
US20180173846A1 (en) | 2014-06-05 | 2018-06-21 | Natera, Inc. | Systems and Methods for Detection of Aneuploidy |
US20180187241A1 (en) | 2015-07-02 | 2018-07-05 | Arima Genomics, Inc. | Accurate molecular deconvolution of mixture samples |
WO2018136562A2 (en) | 2017-01-17 | 2018-07-26 | Life Technologies Corporation | Compositions and methods for immune repertoire sequencing |
US20180237841A1 (en) | 2017-02-21 | 2018-08-23 | Natera, Inc. | Compositions, methods, and kits for isolating nucleic acids |
US20180251553A1 (en) | 2015-09-10 | 2018-09-06 | Cancer Research Technology Limited | "immune checkpoint intervention" in cancer |
US20180265917A1 (en) | 2014-10-08 | 2018-09-20 | Cornell University | Method for identification and quantification of nucleic acid expression, splice variant, translocation, copy number, or methylation changes |
US20180288982A1 (en) | 2012-08-13 | 2018-10-11 | InnoGenomics Technologies, LLC | Method for measuring tumor burden in patient derived xenograft (pdx) mice |
US20180298439A1 (en) | 2010-05-18 | 2018-10-18 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
WO2018237081A1 (en) | 2017-06-20 | 2018-12-27 | The Medical College Of Wisconsin, Inc. | Transplant patient monitoring with cell-free dna |
US20190010543A1 (en) | 2010-05-18 | 2019-01-10 | Natera, Inc. | Methods for simultaneous amplification of target loci |
WO2019046817A1 (en) | 2017-09-01 | 2019-03-07 | Life Technologies Corporation | Compositions and methods for immune repertoire sequencing |
US10229244B2 (en) | 2002-11-11 | 2019-03-12 | Affymetrix, Inc. | Methods for identifying DNA copy number changes using hidden markov model based estimations |
US20190106737A1 (en) | 2017-09-20 | 2019-04-11 | University Of Utah Research Foundation | Size-Selection of Cell-Free DNA for Increasing Family Size During Next-Generation Sequencing |
US20190185913A1 (en) | 2016-07-01 | 2019-06-20 | Natera, Inc. | Compositions and methods for detection of nucleic acid mutations |
WO2019118926A1 (en) | 2017-12-14 | 2019-06-20 | Tai Diagnostics, Inc. | Assessing graft suitability for transplantation |
WO2019140298A1 (en) | 2018-01-12 | 2019-07-18 | Natera, Inc. | Novel primers and uses thereof |
WO2019161244A1 (en) | 2018-02-15 | 2019-08-22 | Natera, Inc. | Methods for isolating nucleic acids with size selection |
US20190256924A1 (en) | 2017-08-07 | 2019-08-22 | The Johns Hopkins University | Methods and materials for assessing and treating cancer |
US20190264277A1 (en) | 2010-05-18 | 2019-08-29 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190284623A1 (en) | 2010-05-18 | 2019-09-19 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190300950A1 (en) | 2010-05-18 | 2019-10-03 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190309358A1 (en) | 2010-05-18 | 2019-10-10 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
WO2019200228A1 (en) | 2018-04-14 | 2019-10-17 | Natera, Inc. | Methods for cancer detection and monitoring by means of personalized detection of circulating tumor dna |
US20190323076A1 (en) | 2010-05-18 | 2019-10-24 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
WO2019241349A1 (en) | 2018-06-12 | 2019-12-19 | Natera, Inc. | Methods and systems for calling mutations |
WO2020010255A1 (en) | 2018-07-03 | 2020-01-09 | Natera, Inc. | Methods for detection of donor-derived cell-free dna |
WO2020018522A1 (en) | 2018-07-17 | 2020-01-23 | Natera, Inc. | Methods and systems for calling ploidy states using a neural network |
US20200024653A1 (en) | 2016-10-04 | 2020-01-23 | Natera, Inc. | Methods for characterizing copy number variation using proximity-litigation sequencing |
US20200032323A1 (en) | 2014-03-05 | 2020-01-30 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
WO2020041449A1 (en) | 2018-08-21 | 2020-02-27 | Zymo Research Corporation | Methods and compositions for tracking sample quality |
US20200109449A1 (en) | 2018-10-09 | 2020-04-09 | Tai Diagnostics, Inc. | Cell lysis assay for cell-free dna analysis |
US20200157629A1 (en) | 2010-05-18 | 2020-05-21 | Natera, Inc. | Methods for simultaneous amplification of target loci |
WO2020104670A1 (en) | 2018-11-23 | 2020-05-28 | Cancer Research Technology Limited | Improvements in variant detection |
US20200190591A1 (en) | 2005-07-29 | 2020-06-18 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
WO2020131699A2 (en) | 2018-12-17 | 2020-06-25 | Natera, Inc. | Methods for analysis of circulating cells |
US20200232036A1 (en) | 2005-07-29 | 2020-07-23 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20200316498A1 (en) | 2019-04-04 | 2020-10-08 | Tai Diagnostics, Inc. | Materials and methods for processing blood samples |
WO2020214547A1 (en) | 2019-04-15 | 2020-10-22 | Natera, Inc. | Improved liquid biopsy using size selection |
WO2020247263A1 (en) | 2019-06-06 | 2020-12-10 | Natera, Inc. | Methods for detecting immune cell dna and monitoring immune system |
US20200407798A1 (en) | 2010-05-18 | 2020-12-31 | Natera, Inc. | Methods for simultaneous amplification of target loci |
WO2021055968A1 (en) | 2019-09-20 | 2021-03-25 | Natera Inc. | Methods for assessing graft suitability for transplantation |
US20210139969A1 (en) | 2017-06-20 | 2021-05-13 | The Medical College Of Wisconsin, Inc. | Assessing transplant complication risk with total cell-free dna |
US20210139988A1 (en) | 2017-06-20 | 2021-05-13 | The Medical College Of Wisconsin, Inc. | Assessing conditions in transplant subjects using donor-specific cell-free dna |
US20210198733A1 (en) | 2018-07-03 | 2021-07-01 | Natera, Inc. | Methods for detection of donor-derived cell-free dna |
US20210327542A1 (en) | 2015-06-19 | 2021-10-21 | Natera, Inc. | Systems and methods for determining aneuploidy risk using sample fetal fraction |
US20210324463A1 (en) | 2010-05-18 | 2021-10-21 | Natera, Inc. | Methods for multiplex pcr amplification of target loci in a nucleic acid sample |
WO2021243045A1 (en) | 2020-05-29 | 2021-12-02 | Natera, Inc. | Methods for detection of donor-derived cell-free dna |
WO2022015676A1 (en) | 2020-07-13 | 2022-01-20 | The Medical College Of Wisconsin, Inc. | Methods for making treatment management decisions in transplant subjects and assessing transplant risks with threshold values |
WO2022106987A1 (en) | 2020-11-18 | 2022-05-27 | Metalsistem S.P.A. | Load-bearing structure for sets of shelves |
Family Cites Families (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3957654A (en) | 1974-02-27 | 1976-05-18 | Becton, Dickinson And Company | Plasma separator with barrier to eject sealant |
US5319071A (en) | 1987-11-25 | 1994-06-07 | Immunex Corporation | Soluble interleukin-1 receptors |
WO1989004838A1 (en) | 1987-11-25 | 1989-06-01 | Immunex Corporation | Interleukin-1 receptors |
IE61148B1 (en) | 1988-03-10 | 1994-10-05 | Ici Plc | Method of detecting nucleotide sequences |
US5350683A (en) | 1990-06-05 | 1994-09-27 | Immunex Corporation | DNA encoding type II interleukin-1 receptors |
US5645988A (en) | 1991-05-08 | 1997-07-08 | The United States Of America As Represented By The Department Of Health And Human Services | Methods of identifying drugs with selective effects against cancer cells |
DK0519338T3 (en) | 1991-06-20 | 1996-10-28 | Hoffmann La Roche | Improved Methods for Nucleic Acid Amplification |
US5569582A (en) | 1991-07-15 | 1996-10-29 | Institute Of Molecular Biology & Technology | Rapid amplification and detection of nucleic acids |
US5714320A (en) | 1993-04-15 | 1998-02-03 | University Of Rochester | Rolling circle synthesis of oligonucleotides and amplification of select randomized circular oligonucleotides |
PE64396A1 (en) | 1995-01-23 | 1997-01-28 | Hoffmann La Roche | INTERLEUKIN 1 RECEIVER ACCESSORY PROTEIN |
US5736033A (en) | 1995-12-13 | 1998-04-07 | Coleman; Charles M. | Separator float for blood collection tubes with water swellable material |
ATE301195T1 (en) | 1998-01-23 | 2005-08-15 | Immunex Corp | ACPL DNA AND POLYPEPTIDES |
US6406671B1 (en) | 1998-12-05 | 2002-06-18 | Becton, Dickinson And Company | Device and method for separating components of a fluid sample |
US20030148301A1 (en) | 1999-12-10 | 2003-08-07 | Toshiya Aono | Method of detecting nucleotide polymorphism |
US7582420B2 (en) | 2001-07-12 | 2009-09-01 | Illumina, Inc. | Multiplex nucleic acid reactions |
US7736892B2 (en) | 2002-02-25 | 2010-06-15 | Kansas State University Research Foundation | Cultures, products and methods using umbilical cord matrix cells |
US7211191B2 (en) | 2004-09-30 | 2007-05-01 | Thermogenesis Corp. | Blood component separation method and apparatus |
US7241281B2 (en) | 2002-04-08 | 2007-07-10 | Thermogenesis Corporation | Blood component separation method and apparatus |
US20040117346A1 (en) | 2002-09-20 | 2004-06-17 | Kilian Stoffel | Computer-based method and apparatus for repurposing an ontology |
JP4116856B2 (en) | 2002-10-02 | 2008-07-09 | 富士フイルム株式会社 | Single nucleotide polymorphism detection method |
JP2008501340A (en) | 2004-06-02 | 2008-01-24 | ニユー・イングランド・バイオレイブス・インコーポレイテツド | Function estimation from shotgun sequence data |
WO2006019804A2 (en) | 2004-07-14 | 2006-02-23 | Wyeth | Compositions and methods of purifying myelin-associated glycoprotein (mag) |
CA2584989A1 (en) | 2004-10-22 | 2006-05-04 | Sydney David Finkelstein | Molecular analysis of cellular fluid and liquid cytology specimens for clinical diagnosis, characterization, and integration with microscopic pathology evaluation |
WO2006047787A2 (en) | 2004-10-27 | 2006-05-04 | Exact Sciences Corporation | Method for monitoring disease progression or recurrence |
US20060234264A1 (en) | 2005-03-14 | 2006-10-19 | Affymetrix, Inc. | Multiplex polynucleotide synthesis |
US20090317798A1 (en) | 2005-06-02 | 2009-12-24 | Heid Christian A | Analysis using microfluidic partitioning devices |
WO2007056601A2 (en) | 2005-11-09 | 2007-05-18 | The Regents Of The University Of California | Methods and apparatus for context-sensitive telemedicine |
US8609338B2 (en) | 2006-02-28 | 2013-12-17 | University Of Louisville Research Foundation, Inc. | Detecting fetal chromosomal abnormalities using tandem single nucleotide polymorphisms |
WO2007111937A1 (en) | 2006-03-23 | 2007-10-04 | Applera Corporation | Directed enrichment of genomic dna for high-throughput sequencing |
US20080164204A1 (en) | 2007-01-08 | 2008-07-10 | Mehdi Hatamian | Valve for facilitating and maintaining separation of fluids and materials |
EP2121983A2 (en) | 2007-02-02 | 2009-11-25 | Illumina Cambridge Limited | Methods for indexing samples and sequencing multiple nucleotide templates |
US20080293589A1 (en) | 2007-05-24 | 2008-11-27 | Affymetrix, Inc. | Multiplex locus specific amplification |
WO2008151110A2 (en) | 2007-06-01 | 2008-12-11 | The University Of North Carolina At Chapel Hill | Molecular diagnosis and typing of lung cancer variants |
WO2009042198A1 (en) | 2007-09-27 | 2009-04-02 | Fred Hutchinson Cancer Research Center | Identifying a subject with an increased risk of invasive mold infection |
US8415099B2 (en) | 2007-11-05 | 2013-04-09 | Complete Genomics, Inc. | Efficient base determination in sequencing reactions |
US8748113B2 (en) | 2007-11-15 | 2014-06-10 | The Johns Hopkins University | Methods for detecting and monitoring circulating cancer stem cells |
CA2707673A1 (en) | 2007-12-10 | 2009-06-01 | Ben Gurion University Of The Negev Research And Development Authority | Nucleic acid detection assay |
CN102149473B (en) | 2008-07-21 | 2014-12-31 | 贝克顿·迪金森公司 | Density phase separation device |
WO2010087985A2 (en) | 2009-01-28 | 2010-08-05 | Yale University | Novel markers for detection of complications resulting from in utero encounters |
WO2010127020A1 (en) | 2009-04-29 | 2010-11-04 | Js Genetics Inc. | Molecular diagnosis of fragile x syndrome associated with fmr1 gene |
WO2011015944A2 (en) | 2009-08-06 | 2011-02-10 | Cedars-Sinai Medical Center | Use of free dna as an early predictor of severity in acute pancreatitis |
WO2011057184A1 (en) | 2009-11-09 | 2011-05-12 | Streck, Inc. | Stabilization of rna in and extracting from intact cells within a blood sample |
US20120251411A1 (en) | 2009-12-07 | 2012-10-04 | Min-Yong Jeon | Centrifuge tube |
AU2011207544A1 (en) | 2010-01-19 | 2012-09-06 | Verinata Health, Inc. | Identification of polymorphic sequences in mixtures of genomic DNA by whole genome sequencing |
US20130143219A1 (en) | 2010-01-28 | 2013-06-06 | Medical College of Wisconsin Inc. | Methods and compositions for high yield, specific amplification |
US8574832B2 (en) | 2010-02-03 | 2013-11-05 | Massachusetts Institute Of Technology | Methods for preparing sequencing libraries |
EP2551356B1 (en) | 2010-03-24 | 2017-06-14 | Toppan Printing Co., Ltd. | Method for detecting target base sequence using competitive primer |
CA2796578C (en) | 2010-04-16 | 2021-11-23 | Chronix Biomedical | Breast cancer associated circulating nucleic acid biomarkers |
US9255291B2 (en) | 2010-05-06 | 2016-02-09 | Bioo Scientific Corporation | Oligonucleotide ligation methods for improving data quality and throughput using massively parallel sequencing |
EP2569453B1 (en) * | 2010-05-14 | 2015-12-16 | Fluidigm Corporation | Nucleic acid isolation methods |
EP2569447A4 (en) | 2010-05-14 | 2013-11-27 | Fluidigm Corp | Assays for the detection of genotype, mutations, and/or aneuploidy |
US20220356526A1 (en) | 2010-05-18 | 2022-11-10 | Natera, Inc. | Methods for simultaneous amplification of target loci |
WO2011146942A1 (en) | 2010-05-21 | 2011-11-24 | The Translational Genomics Research Institute | Methods and kits to analyze microrna by nucleic acid sequencing |
PL2576837T3 (en) | 2010-06-04 | 2018-04-30 | Chronix Biomedical | Prostate cancer associated circulating nucleic acid biomarkers |
JP2012085556A (en) | 2010-10-18 | 2012-05-10 | Shinya Watanabe | Method for diagnosis of breast cancer |
US9163329B2 (en) | 2010-11-12 | 2015-10-20 | Agilent Technologies, Inc. | RNA labeling method |
CN110079588B (en) | 2010-12-17 | 2024-03-15 | 生命技术公司 | Methods, compositions, systems, instruments and kits for nucleic acid amplification |
US10131947B2 (en) | 2011-01-25 | 2018-11-20 | Ariosa Diagnostics, Inc. | Noninvasive detection of fetal aneuploidy in egg donor pregnancies |
WO2012113780A1 (en) | 2011-02-21 | 2012-08-30 | Qiagen Gmbh | Method for quantifying human dna |
WO2012122374A2 (en) | 2011-03-08 | 2012-09-13 | Children's Medical Center Corporation | Non-invasive methods for diagnosing chronic organ transplant rejection |
WO2013036929A1 (en) | 2011-09-09 | 2013-03-14 | The Board Of Trustees Of The Leland Stanford Junior | Methods for obtaining a sequence |
US20140242588A1 (en) | 2011-10-06 | 2014-08-28 | Sequenom, Inc | Methods and processes for non-invasive assessment of genetic variations |
WO2013086352A1 (en) | 2011-12-07 | 2013-06-13 | Chronix Biomedical | Prostate cancer associated circulating nucleic acid biomarkers |
EA033514B1 (en) | 2011-12-16 | 2019-10-31 | Basf Agrochemical Products Bv | Methods and compositions for analyzing ahasl genes in wheat |
US9892230B2 (en) | 2012-03-08 | 2018-02-13 | The Chinese University Of Hong Kong | Size-based analysis of fetal or tumor DNA fraction in plasma |
US9920361B2 (en) | 2012-05-21 | 2018-03-20 | Sequenom, Inc. | Methods and compositions for analyzing nucleic acid |
US10077474B2 (en) | 2012-05-29 | 2018-09-18 | Abbott Molecular, Inc. | Method of designing primers, method of detecting single nucleotide polymorphisms (SNPs), method of distinguishing SNPs, and related primers, detectable oligonucleotides, and kits |
US11261494B2 (en) | 2012-06-21 | 2022-03-01 | The Chinese University Of Hong Kong | Method of measuring a fractional concentration of tumor DNA |
RS55087B1 (en) | 2012-08-03 | 2016-12-30 | Ferring Bv | Cell-free dna as a therapeutic target for female infertility and diagnostic marker |
US9500651B2 (en) | 2012-08-15 | 2016-11-22 | Université de Montréal | Method for identifying novel minor histocompatibility antigens |
US9669405B2 (en) | 2012-10-22 | 2017-06-06 | The Regents Of The University Of California | Sterilizable photopolymer serum separator |
US20220307086A1 (en) | 2012-11-21 | 2022-09-29 | Natera, Inc. | Methods for simultaneous amplification of target loci |
JP2014118334A (en) | 2012-12-18 | 2014-06-30 | Sumitomo Electric Ind Ltd | Optical fiber manufacturing method |
WO2014143989A1 (en) | 2013-03-15 | 2014-09-18 | Medical College Of Wisconsin, Inc. | Fetal well being surveillance using fetal specific cell free dna |
GB201304810D0 (en) | 2013-03-15 | 2013-05-01 | Isis Innovation | Assay |
BR112016003480B1 (en) | 2013-08-19 | 2022-08-16 | Singular Bio, Inc | ASSAYS FOR SINGLE MOLECULE DETECTION AND ITS USE |
EP3041955A4 (en) | 2013-09-06 | 2017-05-03 | Immucor GTI Diagnostics, Inc. | Compositions and methods for diagnosis and prediction of solid organ graft rejection |
WO2015069933A1 (en) | 2013-11-06 | 2015-05-14 | The Board Of Trustees Of The Leland Stanford Junior University | Circulating cell-free dna for diagnosis of transplant rejection |
WO2015178978A2 (en) | 2014-02-14 | 2015-11-26 | The Board Of Regents Of The University Of Texas System | Strand exchange hairpin primers that give high allelic discrimination |
EP3114231B1 (en) | 2014-03-03 | 2019-01-02 | Swift Biosciences, Inc. | Enhanced adaptor ligation |
WO2015169947A1 (en) | 2014-05-09 | 2015-11-12 | Lifecodexx Ag | Detection of dna that originates from a specific cell-type and related methods |
WO2016001411A1 (en) | 2014-07-03 | 2016-01-07 | Multiplicom N.V. | Methods for non-invasive detection of transplant health or rejection |
CN107002118B (en) | 2014-08-22 | 2022-07-08 | 分析生物科学有限公司 | Method for quantitative genetic analysis of cell-free DNA |
US10683552B2 (en) | 2014-11-25 | 2020-06-16 | Presidents And Fellows Of Harvard College | Clonal haematopoiesis |
US11318163B2 (en) | 2015-02-18 | 2022-05-03 | Enlivex Therapeutics Ltd | Combination immune therapy and cytokine control therapy for cancer treatment |
CA2984352A1 (en) | 2015-04-30 | 2016-11-03 | Aoy Tomita Mitchell | Multiplexed optimized mismatch amplification (moma)-real time pcr for assessing cell-free dna |
CN107666832A (en) | 2015-06-01 | 2018-02-06 | Gea食品策划韦尔特公司 | Method for coating lollipop |
WO2017011329A1 (en) | 2015-07-10 | 2017-01-19 | West Virginia University | Markers of stroke and stroke severity |
CN106544407B (en) | 2015-09-18 | 2019-11-08 | 广州华大基因医学检验所有限公司 | The method for determining donor source cfDNA ratio in receptor cfDNA sample |
CA3001698A1 (en) | 2015-10-22 | 2017-04-27 | Cytosorbents Corporation | Multi-functional hemocompatible porous polymer bead sorbent for removing protein based toxins an potassium from biological fluids |
WO2017079593A1 (en) | 2015-11-04 | 2017-05-11 | Atreca, Inc. | Combinatorial sets of nucleic acid barcodes for analysis of nucleic acids associated with single cells |
CN108779487A (en) | 2015-11-16 | 2018-11-09 | 普罗格尼迪公司 | Nucleic acid for detecting methylation state and method |
US20170145475A1 (en) | 2015-11-20 | 2017-05-25 | Streck, Inc. | Single spin process for blood plasma separation and plasma composition including preservative |
CN108603232A (en) | 2015-12-03 | 2018-09-28 | 阿尔佛雷德医疗集团 | Monitor treatment or the progress of myeloma |
EP3436606B8 (en) | 2016-04-01 | 2023-03-15 | M.A.G.I.C. Clinic Ltd. | Plasma derived cell-free mitochondrial deoxyribonucleic acid |
EP3440226B1 (en) | 2016-04-07 | 2021-02-17 | Rutgers, The State University of New Jersey | Multiplex nucleic acid assay methods capable of detecting closely related alleles, and reagents therefor |
CA3022545A1 (en) | 2016-04-29 | 2017-11-02 | The Medical College Of Wisconsin, Inc. | Multiplexed optimized mismatch amplification (moma)-real time pcr for assessing cancer |
BR112018072197A2 (en) | 2016-04-29 | 2019-02-12 | Medical College Wisconsin Inc | multiple optimized pairing amplification (moma) - real time pcr to evaluate fetal well |
JP7109424B2 (en) | 2016-08-17 | 2022-07-29 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Novel immunoprobe-based methods for assessing organ damage status through body fluid-based cell-free DNA (cfDNA) assays |
SG11201903346QA (en) | 2016-10-19 | 2019-05-30 | Univ Hong Kong Chinese | Gestational age assessment by methylation and size profiling of maternal plasma dna |
US20190360033A1 (en) | 2016-11-02 | 2019-11-28 | The Medical College Of Wisconsin, Inc. | Methods for assessing risk using mismatch amplification and statistical methods |
US20210129110A1 (en) | 2016-12-22 | 2021-05-06 | Duke University | Polycationic microfibers and methods of using the same |
US10655810B2 (en) * | 2017-03-30 | 2020-05-19 | Valeo North America, Inc. | Card edge connector for a lighting module |
WO2019008408A1 (en) | 2017-07-07 | 2019-01-10 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for determining whether a patient suffering from a myeloproliferative neoplasm is at risk of thrombosis |
WO2019006561A1 (en) | 2017-07-07 | 2019-01-10 | Mcmaster University | Risk assessment tool for patients with sepsis |
CN107365769B (en) | 2017-07-25 | 2021-05-04 | 深圳华大智造科技股份有限公司 | Bubbling primer, kit composed of bubbling primer and application of kit |
JP2020531050A (en) | 2017-08-17 | 2020-11-05 | ティーエーアイ ダイアグノスティックス インコーポレイテッドTai Diagnostics,Inc. | How to Determine Donor Cell-Free DNA Without Donor Genotype |
CA3084620C (en) | 2017-09-18 | 2024-06-18 | Santersus Sa | Method and device for purification of blood from circulating cell free dna |
WO2019109053A1 (en) | 2017-12-01 | 2019-06-06 | Juno Therapeutics, Inc. | Methods for dosing and for modulation of genetically engineered cells |
AU2018383191B2 (en) | 2017-12-15 | 2023-02-16 | Acrannolife Genomics Pvt. Ltd. | A non-invasive method for monitoring transplanted organ status in organ-transplant recipients |
WO2019217918A1 (en) | 2018-05-10 | 2019-11-14 | The Medical College Of Wisconsin, Inc. | Multiplexed optimized mismatch amplification (moma)-cancer risk assessment with non-cancer associated targets |
CA3107983A1 (en) | 2018-07-23 | 2020-01-30 | Guardant Health, Inc. | Methods and systems for adjusting tumor mutational burden by tumor fraction and coverage |
EP3884087A4 (en) | 2018-11-21 | 2022-09-07 | Karius Inc. | Detection and prediction of infectious disease |
EP3899033A4 (en) | 2018-12-17 | 2022-10-19 | The Medical College of Wisconsin, Inc. | Assessing risk with total cell-free dna |
WO2020206292A2 (en) | 2019-04-03 | 2020-10-08 | The Medical College Of Wisconsin, Inc. | Assessing conditions in transplant subjects using donor-specific cell-free dna |
WO2020206290A1 (en) | 2019-04-03 | 2020-10-08 | The Medical College Of Wisconsin, Inc. | Methods for assessing risk using total cell-free dna |
JP2022526984A (en) | 2019-04-03 | 2022-05-27 | ザ メディカル カレッジ オブ ウィスコンシン,インコーポレイテッド | Monitoring of transplant patients with cell-free DNA |
US20220009866A1 (en) | 2020-06-23 | 2022-01-13 | Antares Agriculture Group, LLC | Systems and methods for extracting and isolating bio-oils and powders from biomass using hydraulic hammering |
WO2022182878A1 (en) | 2021-02-25 | 2022-09-01 | Natera, Inc. | Methods for detection of donor-derived cell-free dna in transplant recipients of multiple organs |
JP2024511980A (en) | 2021-03-18 | 2024-03-18 | ナテラ, インコーポレイテッド | How to determine transplant rejection |
WO2022225933A1 (en) | 2021-04-22 | 2022-10-27 | Natera, Inc. | Methods for determining velocity of tumor growth |
AU2022323972A1 (en) | 2021-08-02 | 2024-01-25 | Natera, Inc. | Methods for detecting neoplasm in pregnant women |
WO2023034090A1 (en) | 2021-09-01 | 2023-03-09 | Natera, Inc. | Methods for non-invasive prenatal testing |
WO2023133131A1 (en) | 2022-01-04 | 2023-07-13 | Natera, Inc. | Methods for cancer detection and monitoring |
AU2023242777A1 (en) | 2022-03-28 | 2024-09-26 | Natera, Inc. | Predictive machine learning models for preeclampsia using artificial neural networks |
-
2018
- 2018-09-24 US US16/140,298 patent/US20190010543A1/en not_active Abandoned
-
2019
- 2019-03-14 US US16/353,636 patent/US10655180B2/en active Active
- 2019-04-30 US US16/399,103 patent/US10557172B2/en active Active
- 2019-04-30 US US16/399,947 patent/US10793912B2/en active Active
- 2019-04-30 US US16/399,268 patent/US10538814B2/en active Active
- 2019-05-14 US US16/412,353 patent/US20190309365A1/en not_active Abandoned
- 2019-05-14 US US16/412,331 patent/US10526658B2/en active Active
-
2020
- 2020-01-06 US US16/734,814 patent/US20200123612A1/en active Pending
- 2020-01-15 US US16/743,724 patent/US10731220B2/en active Active
- 2020-03-12 US US16/817,117 patent/US20200208221A1/en active Pending
- 2020-03-25 US US16/829,133 patent/US11525162B2/en active Active
- 2020-04-23 US US16/856,924 patent/US12110552B2/en active Active
- 2020-07-21 US US16/934,407 patent/US11519035B2/en active Active
- 2020-10-02 US US17/061,877 patent/US11111545B2/en active Active
-
2021
- 2021-03-09 US US17/196,722 patent/US20210198743A1/en active Pending
- 2021-03-09 US US17/196,659 patent/US20210198742A1/en active Pending
Patent Citations (804)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4040785A (en) | 1976-10-18 | 1977-08-09 | Technicon Instruments Corporation | Lysable blood preservative composition |
US5962223A (en) | 1984-12-13 | 1999-10-05 | The Perkin-Elmer Corporation | Detection of specific sequences in nucleic acids |
US4683195A (en) | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683195B1 (en) | 1986-01-30 | 1990-11-27 | Cetus Corp | |
EP0270017A2 (en) | 1986-12-01 | 1988-06-08 | Syngene, Inc. | Method of isolating and purifying nucleic acids from biological samples |
US4942124A (en) | 1987-08-11 | 1990-07-17 | President And Fellows Of Harvard College | Multiplex sequencing |
JP2965699B2 (en) | 1990-03-27 | 1999-10-18 | ジーンタイプ・アクチエンゲゼルシヤフト | Fetal cell collection method |
US20010053519A1 (en) | 1990-12-06 | 2001-12-20 | Fodor Stephen P.A. | Oligonucleotides |
US5486477A (en) | 1991-06-13 | 1996-01-23 | Carver, Jr.; Edward L. | Reagent system for improved multiple species blood analysis |
US5753467A (en) | 1991-12-04 | 1998-05-19 | E. I. Du Pont De Nemours And Company | Method for the identification of microorganisms by the utilization of directed and arbitrary DNA amplification |
US6335167B1 (en) | 1992-03-04 | 2002-01-01 | The Regents Of The University Of California | Comparative genomic hybridization (CGH) |
US5976790A (en) | 1992-03-04 | 1999-11-02 | The Regents Of The University Of California | Comparative Genomic Hybridization (CGH) |
US5635366A (en) | 1993-03-23 | 1997-06-03 | Royal Free Hospital School Of Medicine | Predictive assay for the outcome of IVF |
WO1995001796A1 (en) | 1993-07-05 | 1995-01-19 | Northern General Hospital N.H.S. Trust | Preparation and stabilisation of cells |
US5972602A (en) | 1993-08-27 | 1999-10-26 | Australian Red Cross Society | Quantitative PCR-based method of gene detection |
US5952170A (en) | 1993-12-16 | 1999-09-14 | Stroun; Maurice | Method for diagnosing cancers |
US6235472B1 (en) | 1994-02-16 | 2001-05-22 | Ulf Landegren | Nucleic acid detecting reagent |
US5716776A (en) | 1994-03-04 | 1998-02-10 | Mark H. Bogart | Enrichment by preferential mitosis of fetal lymphocytes from a maternal blood sample |
US5891734A (en) | 1994-08-01 | 1999-04-06 | Abbott Laboratories | Method for performing automated analysis |
US6025128A (en) | 1994-09-29 | 2000-02-15 | The University Of Tulsa | Prediction of prostate cancer progression by analysis of selected predictive parameters |
US6479235B1 (en) | 1994-09-30 | 2002-11-12 | Promega Corporation | Multiplex amplification of short tandem repeat loci |
US5648220A (en) | 1995-02-14 | 1997-07-15 | New England Medical Center Hospitals, Inc. | Methods for labeling intracytoplasmic molecules |
WO1996036736A2 (en) | 1995-05-19 | 1996-11-21 | Abbott Laboratories | Wide dynamic range nucleic acid detection using an aggregate primer series |
US6720140B1 (en) | 1995-06-07 | 2004-04-13 | Invitrogen Corporation | Recombinational cloning using engineered recombination sites |
US6066454A (en) | 1995-09-14 | 2000-05-23 | Affymetrix, Inc. | Computer-aided probability base calling for arrays of nucleic acid probes on chips |
US5854033A (en) | 1995-11-21 | 1998-12-29 | Yale University | Rolling circle replication reporter systems |
US6852487B1 (en) | 1996-02-09 | 2005-02-08 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays |
US7410764B2 (en) * | 1996-03-15 | 2008-08-12 | The Penn State Research Foundation | Detection of extracellular tumor-associated nucleic acid in blood plasma or serum using nucleic acid amplification assays |
US6156504A (en) | 1996-03-15 | 2000-12-05 | The Penn State Research Foundation | Detection of extracellular tumor-associated nucleic acid in blood plasma or serum using nucleic acid amplification assays |
US6329179B1 (en) | 1996-03-26 | 2001-12-11 | Oncomedx, Inc. | Method enabling use of extracellular RNA extracted from plasma or serum to detect, monitor or evaluate cancer |
US6108635A (en) | 1996-05-22 | 2000-08-22 | Interleukin Genetics, Inc. | Integrated disease information system |
US6100029A (en) | 1996-08-14 | 2000-08-08 | Exact Laboratories, Inc. | Methods for the detection of chromosomal aberrations |
US6214558B1 (en) | 1996-08-14 | 2001-04-10 | Exact Laboratories, Inc. | Methods for the detection of chromosomal aberrations |
US6300077B1 (en) | 1996-08-14 | 2001-10-09 | Exact Sciences Corporation | Methods for the detection of nucleic acids |
US20100171954A1 (en) | 1996-09-25 | 2010-07-08 | California Institute Of Technology | Method and Apparatus for Analysis and Sorting of Polynucleotides Based on Size |
US5860917A (en) | 1997-01-15 | 1999-01-19 | Chiron Corporation | Method and apparatus for predicting therapeutic outcomes |
US5824467A (en) | 1997-02-25 | 1998-10-20 | Celtrix Pharmaceuticals | Methods for predicting drug response |
US6258540B1 (en) | 1997-03-04 | 2001-07-10 | Isis Innovation Limited | Non-invasive prenatal diagnosis |
WO1998039474A1 (en) | 1997-03-04 | 1998-09-11 | Isis Innovation Limited | Non-invasive prenatal diagnosis |
US20010051341A1 (en) | 1997-03-04 | 2001-12-13 | Isis Innovation Limited | Non-invasive prenatal diagnosis |
US6001611A (en) | 1997-03-20 | 1999-12-14 | Roche Molecular Systems, Inc. | Modified nucleic acid amplification primers |
WO1998044151A1 (en) | 1997-04-01 | 1998-10-08 | Glaxo Group Limited | Method of nucleic acid amplification |
US6143496A (en) | 1997-04-17 | 2000-11-07 | Cytonix Corporation | Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly |
US20020119478A1 (en) | 1997-05-30 | 2002-08-29 | Diagen Corporation | Methods for detection of nucleic acid sequences in urine |
US5994148A (en) | 1997-06-23 | 1999-11-30 | The Regents Of University Of California | Method of predicting and enhancing success of IVF/ET pregnancy |
US20100196892A1 (en) | 1997-09-23 | 2010-08-05 | California Institute Of Technology | Methods and Systems for Molecular Fingerprinting |
US6124120A (en) | 1997-10-08 | 2000-09-26 | Yale University | Multiple displacement amplification |
WO2000018957A1 (en) | 1998-09-30 | 2000-04-06 | Applied Research Systems Ars Holding N.V. | Methods of nucleic acid amplification and sequencing |
JP2002530121A (en) | 1998-11-25 | 2002-09-17 | プロメガ コーポレイション | Multiple amplification of short tandem repeat loci |
US6794140B1 (en) | 1999-04-30 | 2004-09-21 | Andrew Simon Goldsborough | Isolation of nucleic acid |
US6180349B1 (en) | 1999-05-18 | 2001-01-30 | The Regents Of The University Of California | Quantitative PCR method to enumerate DNA copy number |
US7058517B1 (en) | 1999-06-25 | 2006-06-06 | Genaissance Pharmaceuticals, Inc. | Methods for obtaining and using haplotype data |
US6964847B1 (en) | 1999-07-14 | 2005-11-15 | Packard Biosciences Company | Derivative nucleic acids and uses thereof |
US20060099614A1 (en) | 1999-07-23 | 2006-05-11 | The Secretary Of State For The Home Department | Analysis of DNA |
WO2001007640A2 (en) | 1999-07-23 | 2001-02-01 | The Secretary Of State For The Home Department | Method for detecting single nucleotide polymorphisms |
US20030138780A1 (en) | 1999-07-23 | 2003-07-24 | The Secretary Of State For The Home Department | Analysis of DNA |
US6440706B1 (en) | 1999-08-02 | 2002-08-27 | Johns Hopkins University | Digital amplification |
US20080234142A1 (en) | 1999-08-13 | 2008-09-25 | Eric Lietz | Random Mutagenesis And Amplification Of Nucleic Acid |
WO2001034844A1 (en) | 1999-11-10 | 2001-05-17 | Ligochem, Inc. | Method for isolating dna from a proteinaceous medium and kit for performing method |
US6221603B1 (en) | 2000-02-04 | 2001-04-24 | Molecular Dynamics, Inc. | Rolling circle amplification assay for nucleic acid analysis |
JP2003521252A (en) | 2000-02-07 | 2003-07-15 | イルミナ インコーポレイテッド | Nucleic acid detection method using universal priming |
WO2001057269A2 (en) | 2000-02-07 | 2001-08-09 | Illumina, Inc. | Nucleic acid detection methods using universal priming |
US20040197797A1 (en) | 2000-04-13 | 2004-10-07 | Hidetoshi Inoko | Gene mapping method using microsatellite genetic polymorphism markers |
WO2001079851A1 (en) | 2000-04-13 | 2001-10-25 | Imperial College Innovations Limited | NON-INVASIVE PRENATAL DIAGNOSIS USING CD45-ve FETAL CELLS |
US20030040620A1 (en) | 2000-05-20 | 2003-02-27 | Langmore John P. | Method of producing a DNA library using positional amplification |
US20060068394A1 (en) | 2000-05-20 | 2006-03-30 | Langmore John P | Method of producing a DNA library using positional amplification |
WO2001090419A2 (en) | 2000-05-23 | 2001-11-29 | Variagenics, Inc. | Methods for genetic analysis of dna to detect sequence variances |
US6605451B1 (en) | 2000-06-06 | 2003-08-12 | Xtrana, Inc. | Methods and devices for multiplexing amplification reactions |
US9206475B2 (en) | 2000-06-06 | 2015-12-08 | Applied Biosystems, Llc | Methods for multiplexing amplification reactions |
US20020006622A1 (en) | 2000-06-07 | 2002-01-17 | Allan Bradley | Novel compositions and methods for array-based nucleic acid hybridization |
US7058616B1 (en) | 2000-06-08 | 2006-06-06 | Virco Bvba | Method and system for predicting resistance of a disease to a therapeutic agent using a neural network |
WO2002004672A2 (en) | 2000-07-10 | 2002-01-17 | Simeg Limited | Diagnostic method for the identification of foetal dna in a maternal sample |
JP2004502466A (en) | 2000-07-10 | 2004-01-29 | シーメグ リミティド | Diagnosis method |
US20030211489A1 (en) | 2000-09-21 | 2003-11-13 | Shen Min-Jui Richard | Multiplex nucleic acid reactions |
US6858412B2 (en) | 2000-10-24 | 2005-02-22 | The Board Of Trustees Of The Leland Stanford Junior University | Direct multiplex characterization of genomic DNA |
US20020107640A1 (en) | 2000-11-14 | 2002-08-08 | Ideker Trey E. | Methods for determining the true signal of an analyte |
WO2002055985A2 (en) | 2000-11-15 | 2002-07-18 | Roche Diagnostics Corp | Methods and reagents for identifying rare fetal cells in the material circulation |
US20040185495A1 (en) | 2000-11-15 | 2004-09-23 | Schueler Paula A. | Methods and reagents for identifying rare fetal cells in the maternal circulation |
WO2002044411A1 (en) | 2000-12-01 | 2002-06-06 | Rosetta Inpharmatics, Inc. | Use of profiling for detecting aneuploidy |
US20050272073A1 (en) | 2000-12-04 | 2005-12-08 | Cytokinetics, Inc., A Delaware Corporation | Ploidy classification method |
US7218764B2 (en) | 2000-12-04 | 2007-05-15 | Cytokinetics, Inc. | Ploidy classification method |
US7790418B2 (en) | 2000-12-08 | 2010-09-07 | Illumina Cambridge Limited | Isothermal amplification of nucleic acids on a solid support |
US20020182622A1 (en) | 2001-02-01 | 2002-12-05 | Yusuke Nakamura | Method for SNP (single nucleotide polymorphism) typing |
JP2002300894A (en) | 2001-02-01 | 2002-10-15 | Inst Of Physical & Chemical Res | Single nucleotide polymorphic typing method |
US7101663B2 (en) | 2001-03-02 | 2006-09-05 | University of Pittsburgh—of the Commonwealth System of Higher Education | PCR method |
WO2002070751A1 (en) | 2001-03-02 | 2002-09-12 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Pcr method |
JP2008271980A (en) | 2001-03-02 | 2008-11-13 | Univ Of Pittsburgh Of The Commonwealth System Of Higher Education | Pcr method |
US20030009295A1 (en) | 2001-03-14 | 2003-01-09 | Victor Markowitz | System and method for retrieving and using gene expression data from multiple sources |
WO2002076377A2 (en) | 2001-03-23 | 2002-10-03 | Yoshiyuki Kanai | Mononucleosome and process for producing the same, method of assaying antibody specific to nucleosome, method of diagnosing autoimmune disease, process for producing nucleosome dna, dna plate, process for producing dna plate and method of assaying anti-dna antibody |
US6489135B1 (en) | 2001-04-17 | 2002-12-03 | Atairgintechnologies, Inc. | Determination of biological characteristics of embryos fertilized in vitro by assaying for bioactive lipids in culture media |
JP2004533243A (en) | 2001-04-30 | 2004-11-04 | アンスティテュ・ナシオナル・デゥ・ラ・サンテ・エ・デゥ・ラ・ルシェルシュ・メディカル | Prenatal diagnostic methods for fetal cells in isolated maternal blood |
US20050049793A1 (en) | 2001-04-30 | 2005-03-03 | Patrizia Paterlini-Brechot | Prenatal diagnosis method on isolated foetal cell of maternal blood |
US20030065535A1 (en) | 2001-05-01 | 2003-04-03 | Structural Bioinformatics, Inc. | Diagnosing inapparent diseases from common clinical tests using bayesian analysis |
WO2002090505A2 (en) | 2001-05-09 | 2002-11-14 | Virginia Commonwealth University | Multiple sequencible and ligatible structures for genomic analysis |
US20040126760A1 (en) | 2001-05-17 | 2004-07-01 | Natalia Broude | Novel compositions and methods for carrying out multple pcr reactions on a single sample |
US20070037166A1 (en) | 2001-06-08 | 2007-02-15 | Expression Diagnostics, Inc. | Methods and compositions for diagnosing and monitoring transplant rejection |
US20090263800A1 (en) | 2001-06-08 | 2009-10-22 | Xdx, Inc. | Methods and compositions for diagnosing and monitoring transplant rejection |
WO2003000919A2 (en) | 2001-06-22 | 2003-01-03 | University Of Geneva | Method for detecting diseases caused by chromosomal imbalances |
US20030101000A1 (en) | 2001-07-24 | 2003-05-29 | Bader Joel S. | Family based tests of association using pooled DNA and SNP markers |
US20040067493A1 (en) | 2001-07-25 | 2004-04-08 | Affymetrix, Inc. | Complexity management of genomic DNA |
US20030087276A1 (en) | 2001-07-25 | 2003-05-08 | Kopreski Michael S. | Methods for evaluating pathologic conditions using extracellular RNA |
US6958211B2 (en) | 2001-08-08 | 2005-10-25 | Tibotech Bvba | Methods of assessing HIV integrase inhibitor therapy |
WO2003018757A2 (en) | 2001-08-23 | 2003-03-06 | Immunivest Corporation | Stabilization of cells and biological specimens for analysis |
US20030077586A1 (en) | 2001-08-30 | 2003-04-24 | Compaq Computer Corporation | Method and apparatus for combining gene predictions using bayesian networks |
US20040236518A1 (en) | 2001-08-30 | 2004-11-25 | Hewlett-Packard Development Company, L.P. | Method and apparatus for comining gene predictions using bayesian networks |
US6807491B2 (en) | 2001-08-30 | 2004-10-19 | Hewlett-Packard Development Company, L.P. | Method and apparatus for combining gene predictions using bayesian networks |
US6927028B2 (en) | 2001-08-31 | 2005-08-09 | Chinese University Of Hong Kong | Non-invasive methods for detecting non-host DNA in a host using epigenetic differences between the host and non-host DNA |
WO2003020974A2 (en) | 2001-08-31 | 2003-03-13 | The Chinese University Of Hong Kong | Methods for detecting dna originating from different individuals in one sample |
US20030044388A1 (en) | 2001-08-31 | 2003-03-06 | The Chinese University Of Hong Kong | Methods for detecting DNA originating from different individuals |
US20050282185A1 (en) | 2001-08-31 | 2005-12-22 | The Chinese University Of Hong Kong | Methods for detecting DNA originating from different individuals |
US20050123914A1 (en) | 2001-09-06 | 2005-06-09 | Mandy Katz | Method of isolating cells and uses thereof |
US7153656B2 (en) | 2001-09-11 | 2006-12-26 | Los Alamos National Security, Llc | Nucleic acid sequence detection using multiplexed oligonucleotide PCR |
US20070202536A1 (en) | 2001-10-11 | 2007-08-30 | Yamanishi Douglas T | Methods and compositions for separating rare cells from fluid samples |
WO2003031646A1 (en) | 2001-10-12 | 2003-04-17 | The University Of Queensland | Multiple genetic marker selection and amplification |
US7790393B2 (en) | 2001-10-12 | 2010-09-07 | Third Wave Technologies, Inc. | Amplification methods and compositions |
US7297485B2 (en) | 2001-10-15 | 2007-11-20 | Qiagen Gmbh | Method for nucleic acid amplification that results in low amplification bias |
US6617137B2 (en) | 2001-10-15 | 2003-09-09 | Molecular Staging Inc. | Method of amplifying whole genomes without subjecting the genome to denaturing conditions |
US20030228613A1 (en) | 2001-10-15 | 2003-12-11 | Carole Bornarth | Nucleic acid amplification |
US20030119004A1 (en) | 2001-12-05 | 2003-06-26 | Wenz H. Michael | Methods for quantitating nucleic acids using coupled ligation and amplification |
WO2003050532A1 (en) | 2001-12-11 | 2003-06-19 | Netech Inc. | Blood cell separation system |
US20080280292A1 (en) | 2001-12-19 | 2008-11-13 | Brandeis University | Late-PCR |
EP1325963A1 (en) | 2001-12-24 | 2003-07-09 | Wolfgang Prof. Holzgreve | Method for non-invasive diagnosis of transplantations and transfusions |
US20040115629A1 (en) | 2002-01-09 | 2004-06-17 | Panzer Scott R | Molecules for diagnostics and therapeutics |
JP2005514956A (en) | 2002-01-18 | 2005-05-26 | ジェンザイム・コーポレーション | Methods for detection of fetal DNA and quantification of alleles |
WO2003062441A1 (en) | 2002-01-18 | 2003-07-31 | Genzyme Corporation | Methods for fetal dna detection and allele quantitation |
US7035739B2 (en) | 2002-02-01 | 2006-04-25 | Rosetta Inpharmatics Llc | Computer systems and methods for identifying genes and determining pathways associated with traits |
US20040137470A1 (en) | 2002-03-01 | 2004-07-15 | Dhallan Ravinder S. | Methods for detection of genetic disorders |
US7718370B2 (en) | 2002-03-01 | 2010-05-18 | Ravgen, Inc. | Methods for detection of genetic disorders |
US7332277B2 (en) | 2002-03-01 | 2008-02-19 | Ravgen, Inc. | Methods for detection of genetic disorders |
CN1650032A (en) | 2002-03-01 | 2005-08-03 | 拉瓦格恩公司 | Methods for detection of genetic disorders |
US20060229823A1 (en) | 2002-03-28 | 2006-10-12 | Affymetrix, Inc. | Methods and computer software products for analyzing genotyping data |
US20040096874A1 (en) | 2002-04-11 | 2004-05-20 | Third Wave Technologies, Inc. | Characterization of CYP 2D6 genotypes |
US20030235848A1 (en) | 2002-04-11 | 2003-12-25 | Matt Neville | Characterization of CYP 2D6 alleles |
US20040033596A1 (en) | 2002-05-02 | 2004-02-19 | Threadgill David W. | In vitro mutagenesis, phenotyping, and gene mapping |
US7442506B2 (en) | 2002-05-08 | 2008-10-28 | Ravgen, Inc. | Methods for detection of genetic disorders |
US20070178478A1 (en) | 2002-05-08 | 2007-08-02 | Dhallan Ravinder S | Methods for detection of genetic disorders |
US7727720B2 (en) | 2002-05-08 | 2010-06-01 | Ravgen, Inc. | Methods for detection of genetic disorders |
US20060121452A1 (en) | 2002-05-08 | 2006-06-08 | Ravgen, Inc. | Methods for detection of genetic disorders |
US20040009518A1 (en) | 2002-05-14 | 2004-01-15 | The Chinese University Of Hong Kong | Methods for evaluating a disease condition by nucleic acid detection and fractionation |
US20040229231A1 (en) | 2002-05-28 | 2004-11-18 | Frudakis Tony N. | Compositions and methods for inferring ancestry |
WO2003102595A1 (en) | 2002-05-31 | 2003-12-11 | Genetype Pty Ltd | Maternal antibodies as fetal cell markers to identify and enrich fetal cells from maternal blood |
WO2003106623A2 (en) | 2002-06-13 | 2003-12-24 | New York University | Early noninvasive prenatal test for aneuploidies and heritable conditions |
US20030232348A1 (en) | 2002-06-17 | 2003-12-18 | Affymetrix, Inc. | Complexity management of genomic DNA by locus specific amplification |
US20030232353A1 (en) | 2002-06-17 | 2003-12-18 | Affymetrix, Inc. | Methods of analysis of allelic imbalance |
US20050009069A1 (en) | 2002-06-25 | 2005-01-13 | Affymetrix, Inc. | Computer software products for analyzing genotyping |
US20060094010A1 (en) | 2002-06-28 | 2006-05-04 | Giles Robert C | Methods and compositions for analyzing comprised sample using single nucleotide polymorphism panels |
US20060248031A1 (en) | 2002-07-04 | 2006-11-02 | Kates Ronald E | Method for training a learning-capable system |
US7459273B2 (en) | 2002-10-04 | 2008-12-02 | Affymetrix, Inc. | Methods for genotyping selected polymorphism |
US20050142577A1 (en) | 2002-10-04 | 2005-06-30 | Affymetrix, Inc. | Methods for genotyping selected polymorphism |
US20060281105A1 (en) | 2002-10-07 | 2006-12-14 | Honghua Li | High throughput multiplex DNA sequence amplifications |
US20040157243A1 (en) | 2002-11-11 | 2004-08-12 | Affymetrix, Inc. | Methods for identifying DNA copy number changes |
US10229244B2 (en) | 2002-11-11 | 2019-03-12 | Affymetrix, Inc. | Methods for identifying DNA copy number changes using hidden markov model based estimations |
US20050064476A1 (en) | 2002-11-11 | 2005-03-24 | Affymetrix, Inc. | Methods for identifying DNA copy number changes |
WO2004051218A2 (en) | 2002-12-04 | 2004-06-17 | Applera Corporation | Multiplex amplification of polynucleotides |
US8323897B2 (en) | 2002-12-04 | 2012-12-04 | Applied Biosystems, Llc | Multiplex amplification of polynucleotides |
US20060216153A1 (en) | 2003-01-02 | 2006-09-28 | Aloys Wobben | Rotor blade for a wind power plant |
US20070122805A1 (en) | 2003-01-17 | 2007-05-31 | The Trustees Of Boston University | Haplotype analysis |
US7700325B2 (en) | 2003-01-17 | 2010-04-20 | Trustees Of Boston University | Haplotype analysis |
US20040146866A1 (en) | 2003-01-21 | 2004-07-29 | Guoliang Fu | Quantitative multiplex detection of nucleic acids |
WO2004070007A2 (en) | 2003-01-29 | 2004-08-19 | 454 Corporation | Method for preparing single-stranded dna libraries |
WO2004069849A2 (en) | 2003-01-29 | 2004-08-19 | 454 Corporation | Bead emulsion nucleic acid amplification |
WO2005003375A2 (en) | 2003-01-29 | 2005-01-13 | 454 Corporation | Methods of amplifying and sequencing nucleic acids |
US20050130173A1 (en) | 2003-01-29 | 2005-06-16 | Leamon John H. | Methods of amplifying and sequencing nucleic acids |
WO2004070005A2 (en) | 2003-01-29 | 2004-08-19 | 454 Corporation | Double ended sequencing |
US20070134658A1 (en) | 2003-03-05 | 2007-06-14 | Genetic Technologies Limited, A.C.N. 009 212 328 | Identification of fetal dna and fetal cell markers in maternal plasma or serum |
US20040209299A1 (en) | 2003-03-07 | 2004-10-21 | Rubicon Genomics, Inc. | In vitro DNA immortalization and whole genome amplification using libraries generated from randomly fragmented DNA |
WO2004087863A2 (en) | 2003-04-03 | 2004-10-14 | Monaliza Medical, Ltd. | Non-invasive prenatal genetic diagnosis using transcervical cells |
US20070059700A1 (en) | 2003-05-09 | 2007-03-15 | Shengce Tao | Methods and compositions for optimizing multiplex pcr primers |
US20050144664A1 (en) | 2003-05-28 | 2005-06-30 | Pioneer Hi-Bred International, Inc. | Plant breeding method |
US20040259100A1 (en) | 2003-06-20 | 2004-12-23 | Illumina, Inc. | Methods and compositions for whole genome amplification and genotyping |
US20050079521A1 (en) | 2003-07-31 | 2005-04-14 | Martin Beaulieu | Methods for high level multiplexed polymerase chain reactions and homogeneous mass extension reactions |
US20050043894A1 (en) | 2003-08-22 | 2005-02-24 | Fernandez Dennis S. | Integrated biosensor and simulation system for diagnosis and therapy |
WO2005021793A1 (en) | 2003-08-29 | 2005-03-10 | Pantarhei Bioscience B.V. | Prenatal diagnosis of down syndrome by detection of fetal rna markers in maternal blood |
WO2005023091A2 (en) | 2003-09-05 | 2005-03-17 | The Trustees Of Boston University | Method for non-invasive prenatal diagnosis |
US20070207466A1 (en) | 2003-09-05 | 2007-09-06 | The Trustees Of Boston University | Method for non-invasive prenatal diagnosis |
US20050053950A1 (en) | 2003-09-08 | 2005-03-10 | Enrique Zudaire Ubani | Protocol and software for multiplex real-time PCR quantification based on the different melting temperatures of amplicons |
US20060216738A1 (en) | 2003-09-24 | 2006-09-28 | Morimasa Wada | SNPs in 5' regulatory region of MDR1 gene |
WO2005030999A1 (en) | 2003-09-25 | 2005-04-07 | Dana-Farber Cancer Institute, Inc | Methods to detect lineage-specific cells |
US20060292599A1 (en) | 2003-09-25 | 2006-12-28 | Dana-Farber Cancer Institute, Inc. | Methods to detect lineage-specific cells |
US7655399B2 (en) | 2003-10-08 | 2010-02-02 | Trustees Of Boston University | Methods for prenatal diagnosis of chromosomal abnormalities |
US7785798B2 (en) | 2003-10-08 | 2010-08-31 | Trustees Of Boston University | Methods for prenatal diagnosis of chromosomal abnormalities |
WO2005035725A2 (en) | 2003-10-08 | 2005-04-21 | The Trustees Of Boston University | Methods for prenatal diagnosis of chromosomal abnormalities |
US20070059707A1 (en) | 2003-10-08 | 2007-03-15 | The Trustees Of Boston University | Methods for prenatal diagnosis of chromosomal abnormalities |
US20050079535A1 (en) | 2003-10-13 | 2005-04-14 | Michael Kirchgesser | Methods for isolating nucleic acids |
US7838647B2 (en) | 2003-10-16 | 2010-11-23 | Sequenom, Inc. | Non-invasive detection of fetal genetic traits |
JP2005160470A (en) | 2003-10-16 | 2005-06-23 | Sinuhe Hahn | Non-invasive detection of fetal genetic trait |
US20080071076A1 (en) | 2003-10-16 | 2008-03-20 | Sequenom, Inc. | Non-invasive detection of fetal genetic traits |
US20050164241A1 (en) | 2003-10-16 | 2005-07-28 | Sinuhe Hahn | Non-invasive detection of fetal genetic traits |
EP1524321A1 (en) | 2003-10-16 | 2005-04-20 | Sinuhe Dr. Hahn | Non-invasive detection of fetal genetic traits |
US20050221341A1 (en) | 2003-10-22 | 2005-10-06 | Shimkets Richard A | Sequence-based karyotyping |
WO2005039389A2 (en) | 2003-10-22 | 2005-05-06 | 454 Corporation | Sequence-based karyotyping |
US20070212689A1 (en) | 2003-10-30 | 2007-09-13 | Bianchi Diana W | Prenatal Diagnosis Using Cell-Free Fetal DNA in Amniotic Fluid |
US20050164252A1 (en) | 2003-12-04 | 2005-07-28 | Yeung Wah Hin A. | Methods using non-genic sequences for the detection, modification and treatment of any disease or improvement of functions of a cell |
US20050227263A1 (en) | 2004-01-12 | 2005-10-13 | Roland Green | Method of performing PCR amplification on a microarray |
US20100216153A1 (en) | 2004-02-27 | 2010-08-26 | Helicos Biosciences Corporation | Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities |
US20100216151A1 (en) | 2004-02-27 | 2010-08-26 | Helicos Biosciences Corporation | Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities |
US20060046258A1 (en) | 2004-02-27 | 2006-03-02 | Lapidus Stanley N | Applications of single molecule sequencing |
US20050216207A1 (en) | 2004-03-24 | 2005-09-29 | Illumina, Inc. | Artificial intelligence and global normalization methods for genotyping |
CN1674028A (en) | 2004-03-26 | 2005-09-28 | 株式会社日立制作所 | Diagnostic decision support system and method of diagnostic decision support |
US20050255508A1 (en) | 2004-03-30 | 2005-11-17 | New York University | System, method and software arrangement for bi-allele haplotype phasing |
US7805282B2 (en) | 2004-03-30 | 2010-09-28 | New York University | Process, software arrangement and computer-accessible medium for obtaining information associated with a haplotype |
WO2005100401A2 (en) | 2004-03-31 | 2005-10-27 | Adnagen Ag | Monoclonal antibodies with specificity for fetal erythroid cells |
US7414118B1 (en) | 2004-04-14 | 2008-08-19 | Applied Biosystems Inc. | Modified oligonucleotides and applications thereof |
US20050250111A1 (en) | 2004-05-05 | 2005-11-10 | Biocept, Inc. | Detection of chromosomal disorders |
US20100323352A1 (en) | 2004-06-04 | 2010-12-23 | The Chinese University Of Hong Kong | Marker for Prenatal Diagnosis and Monitoring |
US20060019278A1 (en) | 2004-06-04 | 2006-01-26 | The Chinese University Of Hong Kong | Marker for prenatal diagnosis and monitoring |
WO2005123779A2 (en) | 2004-06-14 | 2005-12-29 | The Board Of Trustees Of The University Of Illinois | Antibodies binding to cd34+/cd36+ fetal but not to adult cells |
US20080102455A1 (en) | 2004-07-06 | 2008-05-01 | Genera Biosystems Pty Ltd | Method Of Detecting Aneuploidy |
US20080193927A1 (en) | 2004-07-27 | 2008-08-14 | Wofgang Mann | Method for Determining the Abundance of Sequences in a Sample |
US20060040300A1 (en) | 2004-08-09 | 2006-02-23 | Generation Biotech, Llc | Method for nucleic acid isolation and amplification |
US20060057618A1 (en) | 2004-08-18 | 2006-03-16 | Abbott Molecular, Inc., A Corporation Of The State Of Delaware | Determining data quality and/or segmental aneusomy using a computer system |
US20060051799A1 (en) | 2004-09-03 | 2006-03-09 | Fiji Photo Film Co., Ltd. | Method for separating and purifying nucleic acid |
US20060052945A1 (en) | 2004-09-07 | 2006-03-09 | Gene Security Network | System and method for improving clinical decisions by aggregating, validating and analysing genetic and phenotypic data |
US8024128B2 (en) | 2004-09-07 | 2011-09-20 | Gene Security Network, Inc. | System and method for improving clinical decisions by aggregating, validating and analysing genetic and phenotypic data |
US20060134662A1 (en) | 2004-10-25 | 2006-06-22 | Pratt Mark R | Method and system for genotyping samples in a normalized allelic space |
US20060088574A1 (en) | 2004-10-25 | 2006-04-27 | Manning Paul B | Nutritional supplements |
US20060141499A1 (en) | 2004-11-17 | 2006-06-29 | Geoffrey Sher | Methods of determining human egg competency |
US8389578B2 (en) | 2004-11-24 | 2013-03-05 | Adamas Pharmaceuticals, Inc | Composition and method for treating neurological disease |
US20070042384A1 (en) | 2004-12-01 | 2007-02-22 | Weiwei Li | Method for isolating and modifying DNA from blood and body fluids |
US20090098534A1 (en) | 2005-02-25 | 2009-04-16 | The Regents Of The University Of California | Full Karyotype Single Cell Chromosome Analysis |
US20060210997A1 (en) | 2005-03-16 | 2006-09-21 | Joel Myerson | Composition and method for array hybridization |
JP2006254912A (en) | 2005-03-16 | 2006-09-28 | Agilent Technol Inc | Composition for array hybridization and method |
US7718367B2 (en) | 2005-03-18 | 2010-05-18 | The Chinese University Of Hong Kong | Markers for prenatal diagnosis and monitoring |
US7645576B2 (en) | 2005-03-18 | 2010-01-12 | The Chinese University Of Hong Kong | Method for the detection of chromosomal aneuploidies |
US20060228721A1 (en) | 2005-04-12 | 2006-10-12 | Leamon John H | Methods for determining sequence variants using ultra-deep sequencing |
WO2006110855A2 (en) | 2005-04-12 | 2006-10-19 | 454 Life Sciences Corporation | Methods for determining sequence variants using ultra-deep sequencing |
WO2006128192A2 (en) | 2005-05-27 | 2006-11-30 | John Wayne Cancer Institute | Use of free circulating dna for diagnosis, prognosis, and treatment of cancer |
US20090280479A1 (en) | 2005-05-27 | 2009-11-12 | John Wayne Cancer Institute | Use of free circulating dna for diagnosis, prognosis, and treatment of cancer funding |
WO2007117256A1 (en) | 2005-05-31 | 2007-10-18 | Applera Corporation | Multiplexed amplification of short nucleic acids |
WO2007145612A1 (en) | 2005-06-06 | 2007-12-21 | 454 Life Sciences Corporation | Paired end sequencing |
US8133719B2 (en) | 2005-06-15 | 2012-03-13 | Callida Genomics, Inc. | Methods for making single molecule arrays |
WO2007011903A2 (en) | 2005-07-15 | 2007-01-25 | Applera Corporation | Analyzing messenger rna and micro rna in the same reaction mixture |
US20070020640A1 (en) | 2005-07-21 | 2007-01-25 | Mccloskey Megan L | Molecular encoding of nucleic acid templates for PCR and other forms of sequence analysis |
RU2290078C1 (en) | 2005-07-25 | 2006-12-27 | Евгений Владимирович Новичков | Method for predicting the relapse of serous ovarian cancer |
US20200224273A1 (en) | 2005-07-29 | 2020-07-16 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20180300448A1 (en) | 2005-07-29 | 2018-10-18 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US11111543B2 (en) | 2005-07-29 | 2021-09-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20200190591A1 (en) | 2005-07-29 | 2020-06-18 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20190264280A1 (en) | 2005-07-29 | 2019-08-29 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US10392664B2 (en) | 2005-07-29 | 2019-08-27 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20190256912A1 (en) | 2005-07-29 | 2019-08-22 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US10266893B2 (en) | 2005-07-29 | 2019-04-23 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US10260096B2 (en) | 2005-07-29 | 2019-04-16 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20140032128A1 (en) | 2005-07-29 | 2014-01-30 | Netera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US10227652B2 (en) | 2005-07-29 | 2019-03-12 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20180155785A1 (en) | 2005-07-29 | 2018-06-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20200232036A1 (en) | 2005-07-29 | 2020-07-23 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20070027636A1 (en) | 2005-07-29 | 2007-02-01 | Matthew Rabinowitz | System and method for using genetic, phentoypic and clinical data to make predictions for clinical or lifestyle decisions |
US11111544B2 (en) | 2005-07-29 | 2021-09-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20190276888A1 (en) | 2005-07-29 | 2019-09-12 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20200248264A1 (en) | 2005-07-29 | 2020-08-06 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US10081839B2 (en) | 2005-07-29 | 2018-09-25 | Natera, Inc | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20210054459A1 (en) | 2005-07-29 | 2021-02-25 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US10083273B2 (en) | 2005-07-29 | 2018-09-25 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20180171409A1 (en) | 2005-07-29 | 2018-06-21 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20180155792A1 (en) | 2005-07-29 | 2018-06-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20180155786A1 (en) | 2005-07-29 | 2018-06-07 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20210155988A1 (en) | 2005-07-29 | 2021-05-27 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20220033908A1 (en) | 2005-07-29 | 2022-02-03 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
WO2007086935A2 (en) | 2005-08-01 | 2007-08-02 | 454 Life Sciences Corporation | Methods of amplifying and sequencing nucleic acids |
US20070031857A1 (en) | 2005-08-02 | 2007-02-08 | Rubicon Genomics, Inc. | Compositions and methods for processing and amplification of DNA, including using multiple enzymes in a single reaction |
US8389557B2 (en) | 2005-09-07 | 2013-03-05 | Rigel Pharmaceuticals, Inc. | Triazole derivatives useful as Axl inhibitors |
WO2007052006A1 (en) | 2005-11-01 | 2007-05-10 | Solexa Limited | Method of preparing libraries of template polynucleotides |
US7741463B2 (en) | 2005-11-01 | 2010-06-22 | Illumina Cambridge Limited | Method of preparing libraries of template polynucleotides |
US20070128624A1 (en) | 2005-11-01 | 2007-06-07 | Gormley Niall A | Method of preparing libraries of template polynucleotides |
WO2007057647A1 (en) | 2005-11-15 | 2007-05-24 | London Bridge Fertility, Gynaecology And Genetics Centre Ltd | Chromosomal analysis by molecular karyotyping |
US20130252824A1 (en) | 2005-11-26 | 2013-09-26 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20200172977A1 (en) | 2005-11-26 | 2020-06-04 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20190211399A1 (en) | 2005-11-26 | 2019-07-11 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20190316200A1 (en) | 2005-11-26 | 2019-10-17 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
WO2007062164A2 (en) | 2005-11-26 | 2007-05-31 | Gene Security Network Llc | System and method for cleaning noisy genetic data and using data to make predictions |
US10711309B2 (en) | 2005-11-26 | 2020-07-14 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20070184467A1 (en) | 2005-11-26 | 2007-08-09 | Matthew Rabinowitz | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US10240202B2 (en) | 2005-11-26 | 2019-03-26 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US8532930B2 (en) | 2005-11-26 | 2013-09-10 | Natera, Inc. | Method for determining the number of copies of a chromosome in the genome of a target individual using genetic data from genetically related individuals |
US20140256569A1 (en) | 2005-11-26 | 2014-09-11 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US9424392B2 (en) | 2005-11-26 | 2016-08-23 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20190264288A1 (en) | 2005-11-26 | 2019-08-29 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20130253369A1 (en) | 2005-11-26 | 2013-09-26 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20140087385A1 (en) | 2005-11-26 | 2014-03-27 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20200362415A1 (en) | 2005-11-26 | 2020-11-19 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US8682592B2 (en) | 2005-11-26 | 2014-03-25 | Natera, Inc. | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
US20140193816A1 (en) | 2005-11-26 | 2014-07-10 | Natera, Inc | System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals |
WO2007070280A2 (en) | 2005-12-02 | 2007-06-21 | The General Hospital Corporation | Use of deletion polymorphisms to predict, prevent, and manage histoincompatibility |
US20070178501A1 (en) | 2005-12-06 | 2007-08-02 | Matthew Rabinowitz | System and method for integrating and validating genotypic, phenotypic and medical information into a database according to a standardized ontology |
US8515679B2 (en) | 2005-12-06 | 2013-08-20 | Natera, Inc. | System and method for cleaning noisy genetic data and determining chromosome copy number |
US20080243398A1 (en) | 2005-12-06 | 2008-10-02 | Matthew Rabinowitz | System and method for cleaning noisy genetic data and determining chromosome copy number |
WO2007070482A2 (en) | 2005-12-14 | 2007-06-21 | Xueliang Xia | Microarray-based preimplantation genetic diagnosis of chromosomal abnormalities |
WO2007075836A2 (en) | 2005-12-20 | 2007-07-05 | Ravgen, Inc. | Methods for detection of genetic disorders |
WO2007073171A2 (en) | 2005-12-22 | 2007-06-28 | Keygene N.V. | Improved strategies for transcript profiling using high throughput sequencing technologies |
US7888017B2 (en) | 2006-02-02 | 2011-02-15 | The Board Of Trustees Of The Leland Stanford Junior University | Non-invasive fetal genetic screening by digital analysis |
US20070202525A1 (en) | 2006-02-02 | 2007-08-30 | The Board Of Trustees Of The Leland Stanford Junior University | Non-invasive fetal genetic screening by digital analysis |
US8008018B2 (en) | 2006-02-02 | 2011-08-30 | The Board Of Trustees Of The Leland Stanford Junior University | Determination of fetal aneuploidies by massively parallel DNA sequencing |
WO2007092473A2 (en) | 2006-02-02 | 2007-08-16 | The Board Of Trustees Of The Leland Stanford Junior University | Non-invasive fetal genetic screening by digital analysis |
US20100124751A1 (en) | 2006-02-02 | 2010-05-20 | The Board Of Trustees Of The Leland Stanford Junior University | Non-Invasive Fetal Genetic Screening by Digital Analysis |
US20100255492A1 (en) | 2006-02-02 | 2010-10-07 | The Board Of Trustees Of The Leland Stanford Junior University | Non-Invasive Fetal Genetic Screening by Digital Analysis |
US20100256013A1 (en) | 2006-02-02 | 2010-10-07 | The Board Of Trustees Of The Leland Stanford Junior University | Non-Invasive Fetal Genetic Screening by Digital Analysis |
US20090099041A1 (en) | 2006-02-07 | 2009-04-16 | President And Fellows Of Harvard College | Methods for making nucleotide probes for sequencing and synthesis |
US20090176662A1 (en) | 2006-02-08 | 2009-07-09 | Roberto Rigatti | End Modification to Prevent Over-Representation of Fragments |
US20080020390A1 (en) | 2006-02-28 | 2008-01-24 | Mitchell Aoy T | Detecting fetal chromosomal abnormalities using tandem single nucleotide polymorphisms |
US20100184043A1 (en) | 2006-02-28 | 2010-07-22 | University Of Louisville Research Foundation | Detecting Genetic Abnormalities |
WO2007100911A2 (en) | 2006-02-28 | 2007-09-07 | University Of Louisville Research Foundation | Detecting fetal chromosomal abnormalities using tandem single nucleotide polymorphisms |
US20080305473A1 (en) | 2006-03-13 | 2008-12-11 | Dondapati Chowdary | Propagation of primary cells |
US20080038733A1 (en) | 2006-03-28 | 2008-02-14 | Baylor College Of Medicine | Screening for down syndrome |
WO2007117039A1 (en) | 2006-04-07 | 2007-10-18 | Riken | Method to isolate 5' ends of nucleic acid and its application |
US20070243549A1 (en) | 2006-04-12 | 2007-10-18 | Biocept, Inc. | Enrichment of circulating fetal dna |
US20070259351A1 (en) | 2006-05-03 | 2007-11-08 | James Chinitz | Evaluating Genetic Disorders |
WO2007132167A2 (en) | 2006-05-03 | 2007-11-22 | The Chinese University Of Hong Kong | Novel fetal markers for prenatal diagnosis and monitoring |
US8679741B2 (en) | 2006-05-31 | 2014-03-25 | Sequenom, Inc. | Methods and compositions for the extraction and amplification of nucleic acid from a sample |
US9453257B2 (en) | 2006-05-31 | 2016-09-27 | Sequenom, Inc. | Methods and compositions for the extraction and amplification of nucleic acid from a sample |
WO2007140417A2 (en) | 2006-05-31 | 2007-12-06 | Sequenom, Inc. | Methods and compositions for the extraction and amplification of nucleic acid from a sample |
US7981609B2 (en) | 2006-06-09 | 2011-07-19 | The Brigham And Women's Hospital, Inc. | Methods for identifying and using SNP panels |
US20080026390A1 (en) | 2006-06-14 | 2008-01-31 | Roland Stoughton | Diagnosis of Fetal Abnormalities by Comparative Genomic Hybridization Analysis |
US20100291572A1 (en) | 2006-06-14 | 2010-11-18 | Artemis Health, Inc. | Fetal aneuploidy detection by sequencing |
US20080090239A1 (en) | 2006-06-14 | 2008-04-17 | Daniel Shoemaker | Rare cell analysis using sample splitting and dna tags |
WO2007147074A2 (en) | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Use of highly parallel snp genotyping for fetal diagnosis |
WO2007147073A2 (en) | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats |
WO2007147076A2 (en) | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Methods for the diagnosis of fetal abnormalities |
WO2007147079A2 (en) | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Rare cell analysis using sample splitting and dna tags |
US20100112586A1 (en) | 2006-06-14 | 2010-05-06 | Roland Stoughton | Diagnosis of fetal abnormalities by comparative genomic hybridization analysis |
US20130210644A1 (en) | 2006-06-14 | 2013-08-15 | Roland Stoughton | Fetal aneuploidy detection by sequencing |
US8168389B2 (en) | 2006-06-14 | 2012-05-01 | The General Hospital Corporation | Fetal cell analysis using sample splitting |
US20080050739A1 (en) | 2006-06-14 | 2008-02-28 | Roland Stoughton | Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats |
US8372584B2 (en) | 2006-06-14 | 2013-02-12 | The General Hospital Corporation | Rare cell analysis using sample splitting and DNA tags |
US20140106975A1 (en) | 2006-06-14 | 2014-04-17 | Verinata Health, Inc. | Fetal aneuploidy detection by sequencing |
CN101675169A (en) | 2006-06-14 | 2010-03-17 | 阿耳特弥斯保健公司 | Rare cell analysis using sample splitting and DNA tags |
US20080220422A1 (en) | 2006-06-14 | 2008-09-11 | Daniel Shoemaker | Rare cell analysis using sample splitting and dna tags |
US8137912B2 (en) | 2006-06-14 | 2012-03-20 | The General Hospital Corporation | Methods for the diagnosis of fetal abnormalities |
US20080070792A1 (en) | 2006-06-14 | 2008-03-20 | Roland Stoughton | Use of highly parallel snp genotyping for fetal diagnosis |
US20080138809A1 (en) | 2006-06-14 | 2008-06-12 | Ravi Kapur | Methods for the Diagnosis of Fetal Abnormalities |
WO2007149791A2 (en) | 2006-06-15 | 2007-12-27 | Stratagene | System for isolating biomolecules from a sample |
US20080096766A1 (en) | 2006-06-16 | 2008-04-24 | Sequenom, Inc. | Methods and compositions for the amplification, detection and quantification of nucleic acid from a sample |
US20080182244A1 (en) | 2006-08-04 | 2008-07-31 | Ikonisys, Inc. | Pre-Implantation Genetic Diagnosis Test |
WO2008024473A2 (en) | 2006-08-24 | 2008-02-28 | University Of Massachusetts Medical School | Mapping of genomic interactions |
US20100035232A1 (en) | 2006-09-14 | 2010-02-11 | Ecker David J | Targeted whole genome amplification method for identification of pathogens |
US20080085836A1 (en) | 2006-09-22 | 2008-04-10 | Kearns William G | Method for genetic testing of human embryos for chromosome abnormalities, segregating genetic disorders with or without a known mutation and mitochondrial disorders following in vitro fertilization (IVF), embryo culture and embryo biopsy |
WO2008048931A1 (en) | 2006-10-16 | 2008-04-24 | Celula Inc. | Methods and compositions for differential expansion of fetal cells in maternal blood and their use |
US20100184152A1 (en) | 2006-10-23 | 2010-07-22 | Vladislav Sandler | Target-oriented whole genome amplification of nucleic acids |
WO2008051928A2 (en) | 2006-10-23 | 2008-05-02 | The Salk Institute For Biological Studies | Target-oriented whole genome amplification of nucliec acids |
WO2008056937A1 (en) | 2006-11-07 | 2008-05-15 | Industry Foundation Of Chonnam National University | Method and kit for determining chimerism after stem cell transplantation using mitochondrial dna microsatellites as markers |
US20110045462A1 (en) | 2006-11-14 | 2011-02-24 | The Regents Of The University Of California | Digital analysis of gene expression |
WO2008059578A1 (en) | 2006-11-16 | 2008-05-22 | Olympus Corporation | Multiplex pcr method |
JP2010509922A (en) | 2006-11-16 | 2010-04-02 | ジェネンテック インコーポレイテッド | Genetic variation associated with tumors |
WO2008061213A2 (en) | 2006-11-16 | 2008-05-22 | Genentech, Inc. | Genetic variations associated with tumors |
WO2008079374A2 (en) | 2006-12-21 | 2008-07-03 | Wang Eric T | Methods and compositions for selecting and using single nucleotide polymorphisms |
WO2008081451A2 (en) | 2007-01-03 | 2008-07-10 | Monaliza Medical Ltd. | Methods and kits for analyzing genetic material of a fetus |
WO2008084405A2 (en) | 2007-01-11 | 2008-07-17 | Erasmus University Medical Center | Circular chromosome conformation capture (4c) |
US20100129792A1 (en) | 2007-02-06 | 2010-05-27 | Gerassimos Makrigiorgos | Direct monitoring and pcr amplification of the dosage and dosage difference between target genetic regions |
US20080299562A1 (en) | 2007-02-08 | 2008-12-04 | Sequenom, Inc. | Nucleic acid-based tests for rhd typing, gender determination and nucleic acid quantification |
US8173370B2 (en) | 2007-02-08 | 2012-05-08 | Sequenom, Inc. | Nucleic acid-based tests for RHD typing, gender determination and nucleic acid quantification |
WO2008115427A2 (en) | 2007-03-16 | 2008-09-25 | 454 Life Sciences Corporation | System and method for detection of hiv drug resistant variants |
WO2008115497A2 (en) | 2007-03-16 | 2008-09-25 | Gene Security Network | System and method for cleaning noisy genetic data and determining chromsome copy number |
WO2008118988A1 (en) | 2007-03-26 | 2008-10-02 | Sequenom, Inc. | Restriction endonuclease enhanced polymorphic sequence detection |
US20080286783A1 (en) | 2007-03-28 | 2008-11-20 | Riken | Novel method of detecting genetic polymorphism |
JP2008263974A (en) | 2007-03-28 | 2008-11-06 | Institute Of Physical & Chemical Research | New method for detection of polymorphism |
WO2008135837A2 (en) | 2007-05-04 | 2008-11-13 | Silicon Biosystems S.P.A. | Method and device for non- invasive prenatal diagnosis |
US20100248231A1 (en) | 2007-05-31 | 2010-09-30 | The Regents Of The University Of California | High specificity and high sensitivity detection based on steric hindrance & enzyme-related signal amplification |
WO2008157264A2 (en) | 2007-06-15 | 2008-12-24 | Sequenom, Inc. | Combined methods for the detection of chromosomal aneuploidy |
US20100273159A1 (en) | 2007-06-20 | 2010-10-28 | Taag-Genetics S.A. | Nested Multiplex Amplification Method for Identification of Multiple Biological Entities |
US20090023190A1 (en) | 2007-06-20 | 2009-01-22 | Kai Qin Lao | Sequence amplification with loopable primers |
US20100291635A1 (en) | 2007-07-03 | 2010-11-18 | Ofer Peleg | Chimeric primers for improved nucleic acid amplification reactions |
WO2009009769A2 (en) | 2007-07-11 | 2009-01-15 | Artemis Health, Inc. | Diagnosis of fetal abnormalities using nucleated red blood cells |
US20110318734A1 (en) | 2007-07-23 | 2011-12-29 | The Chinese University Of Hong Kong | Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing |
US20120003635A1 (en) | 2007-07-23 | 2012-01-05 | Yuk-Ming Dennis Lo | Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing |
US20090029377A1 (en) | 2007-07-23 | 2009-01-29 | The Chinese University Of Hong Kong | Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing |
US8706422B2 (en) | 2007-07-23 | 2014-04-22 | The Chinese University Of Hong Kong | Determining a nucleic acid sequence imbalance |
WO2009013492A1 (en) | 2007-07-23 | 2009-01-29 | The Chinese University Of Hong Kong | Determining a nucleic acid sequence imbalance |
US20100112590A1 (en) | 2007-07-23 | 2010-05-06 | The Chinese University Of Hong Kong | Diagnosing Fetal Chromosomal Aneuploidy Using Genomic Sequencing With Enrichment |
US20120003637A1 (en) | 2007-07-23 | 2012-01-05 | The Chinese University Of Hong Kong | Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing |
WO2009013496A1 (en) | 2007-07-23 | 2009-01-29 | The Chinese University Of Hong Kong | Diagnosing fetal chromosomal aneuploidy using genomic sequencing |
US20090087847A1 (en) | 2007-07-23 | 2009-04-02 | The Chinese University Of Hong Kong | Determining a nucleic acid sequence imbalance |
WO2009017784A2 (en) | 2007-08-01 | 2009-02-05 | Dana-Farber Cancer Institute | Enrichment of a target sequence |
US20090053719A1 (en) | 2007-08-03 | 2009-02-26 | The Chinese University Of Hong Kong | Analysis of nucleic acids by digital pcr |
WO2009019215A1 (en) | 2007-08-03 | 2009-02-12 | Dkfz Deutsches Krebsforschungszentrum | Method for prenatal diagnosis using exosomes and cd24 as a marker |
WO2009019455A2 (en) | 2007-08-03 | 2009-02-12 | The Chinese University Of Hong Kong | Analysis of nucleic acids of varying lengths by digital pcr |
US9404150B2 (en) | 2007-08-29 | 2016-08-02 | Sequenom, Inc. | Methods and compositions for universal size-specific PCR |
WO2009032781A2 (en) | 2007-08-29 | 2009-03-12 | Sequenom, Inc. | Methods and compositions for universal size-specific polymerase chain reaction |
US20110294699A1 (en) | 2007-08-29 | 2011-12-01 | Sequenom, Inc. | Methods and compositions for universal size-specific pcr |
WO2009032779A2 (en) | 2007-08-29 | 2009-03-12 | Sequenom, Inc. | Methods and compositions for the size-specific seperation of nucleic acid from a sample |
WO2009030100A1 (en) | 2007-08-30 | 2009-03-12 | The Chinese University Of Hong Kong | Methods and kits for selectively amplifying, detecting or quantifying target dna with specific end sequences |
WO2009033178A1 (en) | 2007-09-07 | 2009-03-12 | Fluidigm Corporation | Copy number variation determination, methods and systems |
WO2009036525A2 (en) | 2007-09-21 | 2009-03-26 | Katholieke Universiteit Leuven | Tools and methods for genetic tests using next generation sequencing |
US20110300608A1 (en) | 2007-09-21 | 2011-12-08 | Streck, Inc. | Nucleic acid isolation in preserved whole blood |
US8318434B2 (en) | 2007-09-21 | 2012-11-27 | Katholieke Universiteit Leuven, K.U.Leuven R&D | Method for introducing a sample specific DNA tag into a plurality of DNA fragments from a plurality of samples |
WO2009049889A1 (en) | 2007-10-16 | 2009-04-23 | Roche Diagnostics Gmbh | High resolution, high throughput hla genotyping by clonal sequencing |
WO2009064897A2 (en) | 2007-11-14 | 2009-05-22 | Chronix Biomedical | Detection of nucleic acid sequence variations in circulating nucleic acid in bovine spongiform encephalopathy |
US20090143570A1 (en) | 2007-11-30 | 2009-06-04 | Ge Healthcare Bio-Sciences Corp. | Method for isolation of genomic dna, rna and proteins from a single sample |
JP2011508662A (en) | 2007-12-21 | 2011-03-17 | コンパニ・ジェルベ・ダノン | Method for enriching water with oxygen by electrolysis, oxygen-enriched water or beverage and use thereof |
US20110064824A1 (en) | 2007-12-21 | 2011-03-17 | Christophe Lascoste | Method for enriching water with oxygen by an electrolytic process, oxygen enriched water or beverage and uses thereof |
US20100273678A1 (en) | 2007-12-26 | 2010-10-28 | Eppendorf Array Technologies S.A. | Method and kit to perform a pcr amplification and micro-array detection in the same medium and/or same chamber |
WO2009091934A1 (en) | 2008-01-17 | 2009-07-23 | Sequenom, Inc. | Single molecule nucleic acid sequence analysis processes and compositions |
WO2009092035A2 (en) | 2008-01-17 | 2009-07-23 | Sequenom, Inc. | Methods and compositions for the analysis of biological molecules |
WO2009100029A1 (en) | 2008-02-01 | 2009-08-13 | The General Hospital Corporation | Use of microvesicles in diagnosis, prognosis and treatment of medical diseases and conditions |
WO2009099602A1 (en) | 2008-02-04 | 2009-08-13 | Massachusetts Institute Of Technology | Selection of nucleic acids by solution hybridization to oligonucleotide baits |
WO2009105531A1 (en) | 2008-02-19 | 2009-08-27 | Gene Security Network, Inc. | Methods for cell genotyping |
US20110033862A1 (en) | 2008-02-19 | 2011-02-10 | Gene Security Network, Inc. | Methods for cell genotyping |
US20090221620A1 (en) | 2008-02-20 | 2009-09-03 | Celera Corporation | Gentic polymorphisms associated with stroke, methods of detection and uses thereof |
US20090317817A1 (en) | 2008-03-11 | 2009-12-24 | Sequenom, Inc. | Nucleic acid-based tests for prenatal gender determination |
WO2009117122A2 (en) | 2008-03-19 | 2009-09-24 | Existence Genetics Llc | Genetic analysis |
WO2009120808A2 (en) | 2008-03-26 | 2009-10-01 | Sequenom, Inc. | Restriction endonuclease enhanced polymorphic sequence detection |
WO2009145828A2 (en) | 2008-03-31 | 2009-12-03 | Pacific Biosciences Of California, Inc. | Two slow-step polymerase enzyme systems and methods |
JP2011516069A (en) | 2008-04-03 | 2011-05-26 | ハドソン アルファ インスティテュート フォー バイオテクノロジー | Amplicon Rescue Multiplex Polymerase Chain Reaction for Amplification of Multiple Targets |
WO2009146335A1 (en) | 2008-05-27 | 2009-12-03 | Gene Security Network, Inc. | Methods for embryo characterization and comparison |
US20110092763A1 (en) | 2008-05-27 | 2011-04-21 | Gene Security Network, Inc. | Methods for Embryo Characterization and Comparison |
EP2128169A1 (en) | 2008-05-30 | 2009-12-02 | Qiagen GmbH | Method for isolating short chain nucleic acids |
US20110130558A1 (en) | 2008-05-30 | 2011-06-02 | Qiagen Gmbh | Method for isolating nucleic acids |
WO2010014920A1 (en) | 2008-07-31 | 2010-02-04 | The Johns Hopkins University | Circulating mutant dna to assess tumor dynamics |
EP2315849B1 (en) | 2008-07-31 | 2017-11-08 | The Johns Hopkins University | Circulating mutant dna to assess tumor dynamics |
US20100041048A1 (en) | 2008-07-31 | 2010-02-18 | The Johns Hopkins University | Circulating Mutant DNA to Assess Tumor Dynamics |
US20130225422A1 (en) | 2008-08-04 | 2013-08-29 | Natera, Inc. | Methods for allele calling and ploidy calling |
US20110178719A1 (en) | 2008-08-04 | 2011-07-21 | Gene Security Network, Inc. | Methods for Allele Calling and Ploidy Calling |
WO2010017214A1 (en) | 2008-08-04 | 2010-02-11 | Gene Security Network, Inc. | Methods for allele calling and ploidy calling |
US20100120038A1 (en) | 2008-08-26 | 2010-05-13 | Fluidigm Corporation | Assay methods for increased throughput of samples and/or targets |
EP2163622A1 (en) | 2008-09-04 | 2010-03-17 | Macherey, Nagel GmbH & Co. Handelsgesellschaft | Method for obtaining short RNA and kit for same |
US20100129874A1 (en) | 2008-09-05 | 2010-05-27 | The Washington University | Method for multiplexed nucleic acid patch polymerase chain reaction |
WO2010033639A2 (en) | 2008-09-16 | 2010-03-25 | Sequenom, Inc. | Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses |
US20100105049A1 (en) | 2008-09-16 | 2010-04-29 | Sequenom, Inc. | Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses |
WO2010033652A1 (en) | 2008-09-17 | 2010-03-25 | Ge Healthcare Bio-Sciences Corp. | Method for small rna isolation |
US20100112575A1 (en) | 2008-09-20 | 2010-05-06 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive Diagnosis of Fetal Aneuploidy by Sequencing |
US8195415B2 (en) | 2008-09-20 | 2012-06-05 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
US8296076B2 (en) | 2008-09-20 | 2012-10-23 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuoploidy by sequencing |
US20110246083A1 (en) | 2008-09-20 | 2011-10-06 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive Diagnosis of Fetal Aneuploidy by Sequencing |
WO2010033578A2 (en) | 2008-09-20 | 2010-03-25 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive diagnosis of fetal aneuploidy by sequencing |
US20100138165A1 (en) | 2008-09-20 | 2010-06-03 | The Board Of Trustees Of The Leland Stanford Junior University | Noninvasive Diagnosis of Fetal Aneuploidy by Sequencing |
US20100173394A1 (en) | 2008-09-23 | 2010-07-08 | Colston Jr Billy Wayne | Droplet-based assay system |
US20100086914A1 (en) | 2008-10-03 | 2010-04-08 | Roche Molecular Systems, Inc. | High resolution, high throughput hla genotyping by clonal sequencing |
WO2010042831A2 (en) | 2008-10-10 | 2010-04-15 | Swedish Health Services | Diagnosis, prognosis and treatment of glioblastoma multiforme |
WO2010045617A2 (en) | 2008-10-17 | 2010-04-22 | University Of Louisville Research Foundation | Detecting genetic abnormalities |
US8236503B2 (en) | 2008-11-07 | 2012-08-07 | Sequenta, Inc. | Methods of monitoring conditions by sequence analysis |
US8748103B2 (en) | 2008-11-07 | 2014-06-10 | Sequenta, Inc. | Monitoring health and disease status using clonotype profiles |
US9506119B2 (en) | 2008-11-07 | 2016-11-29 | Adaptive Biotechnologies Corp. | Method of sequence determination using sequence tags |
US9051602B2 (en) | 2008-12-22 | 2015-06-09 | Celula, Inc. | Methods and genotyping panels for detecting alleles, genomes, and transcriptomes |
WO2010075459A1 (en) | 2008-12-22 | 2010-07-01 | Celula, Inc. | Methods and genotyping panels for detecting alleles, genomes, and transcriptomes |
US20110086769A1 (en) | 2008-12-22 | 2011-04-14 | Celula, Inc. | Methods and genotyping panels for detecting alleles, genomes, and transcriptomes |
US20100184069A1 (en) | 2009-01-21 | 2010-07-22 | Streck, Inc. | Preservation of fetal nucleic acids in maternal plasma |
US20100203538A1 (en) | 2009-01-28 | 2010-08-12 | Fluidigm Corporation | Determination of copy number differences by amplification |
US8450063B2 (en) | 2009-01-28 | 2013-05-28 | Fluidigm Corporation | Determination of copy number differences by amplification |
WO2010088288A2 (en) | 2009-01-28 | 2010-08-05 | Fluidigm Corporation | Determination of copy number differences by amplification |
US8304187B2 (en) | 2009-02-18 | 2012-11-06 | Streck, Inc. | Preservation of cell-free RNA in blood samples |
US20100285478A1 (en) | 2009-03-27 | 2010-11-11 | Life Technologies Corporation | Methods, Compositions, and Kits for Detecting Allelic Variants |
US20100273219A1 (en) | 2009-04-02 | 2010-10-28 | Fluidigm Corporation | Multi-primer amplification method for barcoding of target nucleic acids |
US20100285537A1 (en) | 2009-04-02 | 2010-11-11 | Fluidigm Corporation | Selective tagging of short nucleic acid fragments and selective protection of target sequences from degradation |
WO2010115154A1 (en) | 2009-04-02 | 2010-10-07 | Fluidigm Corporation | Multi-primer amplification method for barcoding of target nucleic acids |
WO2010115016A2 (en) | 2009-04-03 | 2010-10-07 | Sequenom, Inc. | Nucleic acid preparation compositions and methods |
WO2010118016A2 (en) | 2009-04-06 | 2010-10-14 | The Johns Hopkins University | Digital quantification of dna methylation |
US9085798B2 (en) * | 2009-04-30 | 2015-07-21 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
WO2010127186A1 (en) | 2009-04-30 | 2010-11-04 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
US20110015096A1 (en) | 2009-07-14 | 2011-01-20 | Academia Sinica | MULTIPLEX BARCODED PAIRED-END DITAG (mbPED) LIBRARY CONSTRUCTION FOR ULTRA HIGH THROUGHPUT SEQUENCING |
US20130196862A1 (en) | 2009-07-17 | 2013-08-01 | Natera, Inc. | Informatics Enhanced Analysis of Fetal Samples Subject to Maternal Contamination |
US20110039724A1 (en) | 2009-08-11 | 2011-02-17 | The Chinese University Of Hong Kong | Method for detecting chromosomal aneuploidy |
WO2011023078A1 (en) | 2009-08-27 | 2011-03-03 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Deep silicon etching device and gas intake system for deep silicon etching device |
WO2011032078A1 (en) | 2009-09-11 | 2011-03-17 | Health Reseach Inc. | Detection of x4 strains of hiv-1 by heteroduplex tracking assay |
US9005894B2 (en) | 2009-09-22 | 2015-04-14 | Roche Molecular Systems, Inc. | Determination of KIR haplotypes associated with disease |
US20110071031A1 (en) | 2009-09-24 | 2011-03-24 | Qiagen Gaithersburg Inc. | Compositions, methods, and kits for isolating and analyzing nucleic acids using an anion exchange material |
US10522242B2 (en) | 2009-09-30 | 2019-12-31 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
WO2011041485A1 (en) | 2009-09-30 | 2011-04-07 | Gene Security Network, Inc. | Methods for non-invasive prenatal ploidy calling |
US20170011166A1 (en) | 2009-09-30 | 2017-01-12 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20140154682A1 (en) | 2009-09-30 | 2014-06-05 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20120185176A1 (en) | 2009-09-30 | 2012-07-19 | Natera, Inc. | Methods for Non-Invasive Prenatal Ploidy Calling |
US10061890B2 (en) | 2009-09-30 | 2018-08-28 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US9228234B2 (en) | 2009-09-30 | 2016-01-05 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20130274116A1 (en) | 2009-09-30 | 2013-10-17 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
WO2011051283A1 (en) | 2009-10-26 | 2011-05-05 | Lifecodexx Ag | Means and methods for non-invasive diagnosis of chromosomal aneuploidy |
WO2011057094A1 (en) | 2009-11-05 | 2011-05-12 | The Chinese University Of Hong Kong | Fetal genomic analysis from a maternal biological sample |
US20110105353A1 (en) | 2009-11-05 | 2011-05-05 | The Chinese University of Hong Kong c/o Technology Licensing Office | Fetal Genomic Analysis From A Maternal Biological Sample |
US20130323731A1 (en) | 2009-11-05 | 2013-12-05 | The Chinese University Of Hong Kong | Determination of the depth coverage of the fetal genome |
US8467976B2 (en) | 2009-11-05 | 2013-06-18 | The Chinese University Of Hong Kong | Fetal genomic analysis from a maternal biological sample |
US20120295810A1 (en) | 2009-11-06 | 2012-11-22 | Quake Stephen R | Non-Invasive Diagnosis of Graft Rejection in Organ Transplant Patients |
US8703652B2 (en) | 2009-11-06 | 2014-04-22 | The Board Of Trustees Of The Leland Stanford Junior University | Non-invasive diagnosis of graft rejection in organ transplant patients |
WO2011057061A1 (en) | 2009-11-06 | 2011-05-12 | The Board Of Trustees Of The Leland Stanford Junior University | Non-invasive diagnosis of graft rejection in organ transplant patients |
US20110159499A1 (en) | 2009-11-25 | 2011-06-30 | Quantalife, Inc. | Methods and compositions for detecting genetic material |
US20110251149A1 (en) | 2009-12-08 | 2011-10-13 | Trustees Of Boston University | Methods and low dose regimens for treating red blood cell disorders |
US20150099673A1 (en) | 2009-12-15 | 2015-04-09 | Cellular Research, Inc. | Digital counting of individual molecules by stochastic attachment of diverse labels |
US20130116130A1 (en) | 2009-12-15 | 2013-05-09 | Affymetrix, Inc. | Digital Counting of Individual Molecules by Stochastic Attachment of Diverse Label-Tags |
US20110160078A1 (en) | 2009-12-15 | 2011-06-30 | Affymetrix, Inc. | Digital Counting of Individual Molecules by Stochastic Attachment of Diverse Labels |
WO2011087760A2 (en) | 2009-12-22 | 2011-07-21 | Sequenom, Inc. | Processes and kits for identifying aneuploidy |
US20110151442A1 (en) | 2009-12-22 | 2011-06-23 | The Board Of Trustees Of The Leland Stanford Junior University | Direct Molecular Diagnosis of Fetal Aneuploidy |
US20130130923A1 (en) | 2009-12-22 | 2013-05-23 | Sequenom, Inc. | Processes and kits for identifying aneuploidy |
US20130022973A1 (en) | 2010-01-15 | 2013-01-24 | Hansen Carl L G | Multiplex Amplification for the Detection of Nucleic Acid Variations |
US20120270739A1 (en) * | 2010-01-19 | 2012-10-25 | Verinata Health, Inc. | Method for sample analysis of aneuploidies in maternal samples |
US20130034546A1 (en) | 2010-01-19 | 2013-02-07 | Verinata Health, Inc. | Analyzing Copy Number Variation in the Detection of Cancer |
US20120214678A1 (en) | 2010-01-19 | 2012-08-23 | Verinata Health, Inc. | Methods for determining fraction of fetal nucleic acids in maternal samples |
WO2011090556A1 (en) | 2010-01-19 | 2011-07-28 | Verinata Health, Inc. | Methods for determining fraction of fetal nucleic acid in maternal samples |
US20110201507A1 (en) | 2010-01-19 | 2011-08-18 | Rava Richard P | Sequencing methods and compositions for prenatal diagnoses |
US11130995B2 (en) | 2010-01-19 | 2021-09-28 | Verinata Health, Inc. | Simultaneous determination of aneuploidy and fetal fraction |
US20110224087A1 (en) | 2010-01-19 | 2011-09-15 | Stephen Quake | Simultaneous determination of aneuploidy and fetal fraction |
US20120165203A1 (en) | 2010-01-19 | 2012-06-28 | Verinata Health, Inc. | Simultaneous determination of aneuploidy and fetal fraction |
US9493828B2 (en) | 2010-01-19 | 2016-11-15 | Verinata Health, Inc. | Methods for determining fraction of fetal nucleic acids in maternal samples |
US20120010085A1 (en) | 2010-01-19 | 2012-01-12 | Rava Richard P | Methods for determining fraction of fetal nucleic acids in maternal samples |
US9323888B2 (en) | 2010-01-19 | 2016-04-26 | Verinata Health, Inc. | Detecting and classifying copy number variation |
US20110312503A1 (en) | 2010-01-23 | 2011-12-22 | Artemis Health, Inc. | Methods of fetal abnormality detection |
US8318430B2 (en) | 2010-01-23 | 2012-11-27 | Verinata Health, Inc. | Methods of fetal abnormality detection |
US20110212846A1 (en) | 2010-02-09 | 2011-09-01 | UniTag Bio | Methods and compositions for universal detection of nucleic acids |
WO2011102998A2 (en) | 2010-02-19 | 2011-08-25 | Helicos Biosciences Corporation | Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities |
US20110212446A1 (en) | 2010-02-26 | 2011-09-01 | Life Technologies Corporation | Fast pcr for str genotyping |
WO2011109440A1 (en) | 2010-03-01 | 2011-09-09 | Caris Life Sciences Luxembourg Holdings | Biomarkers for theranostics |
WO2011140433A2 (en) | 2010-05-07 | 2011-11-10 | The Board Of Trustees Of The Leland Stanford Junior University | Measurement and comparison of immune diversity by high-throughput sequencing |
US20180025109A1 (en) | 2010-05-18 | 2018-01-25 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190284623A1 (en) | 2010-05-18 | 2019-09-19 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190256919A1 (en) | 2010-05-18 | 2019-08-22 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190185936A1 (en) | 2010-05-18 | 2019-06-20 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US10316362B2 (en) | 2010-05-18 | 2019-06-11 | Natera, Inc. | Methods for simultaneous amplification of target loci |
WO2011146632A1 (en) | 2010-05-18 | 2011-11-24 | Gene Security Network Inc. | Methods for non-invasive prenatal ploidy calling |
US20190256917A1 (en) | 2010-05-18 | 2019-08-22 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190256906A1 (en) | 2010-05-18 | 2019-08-22 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20140094373A1 (en) | 2010-05-18 | 2014-04-03 | Natera, Inc. | Highly multiplex pcr methods and compositions |
US20140100134A1 (en) | 2010-05-18 | 2014-04-10 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190256916A1 (en) | 2010-05-18 | 2019-08-22 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US10597723B2 (en) | 2010-05-18 | 2020-03-24 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20130261004A1 (en) | 2010-05-18 | 2013-10-03 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
US10174369B2 (en) | 2010-05-18 | 2019-01-08 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20140141981A1 (en) | 2010-05-18 | 2014-05-22 | Natera, Inc. | Highly multiplex pcr methods and compositions |
US20190256908A1 (en) | 2010-05-18 | 2019-08-22 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20180298439A1 (en) | 2010-05-18 | 2018-10-18 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
US20190256909A1 (en) | 2010-05-18 | 2019-08-22 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20140162269A1 (en) | 2010-05-18 | 2014-06-12 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190256907A1 (en) | 2010-05-18 | 2019-08-22 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
US20140206552A1 (en) | 2010-05-18 | 2014-07-24 | Natera, Inc. | Methods for preimplantation genetic diagnosis by sequencing |
US20190264277A1 (en) | 2010-05-18 | 2019-08-29 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20180201995A1 (en) | 2010-05-18 | 2018-07-19 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US8825412B2 (en) | 2010-05-18 | 2014-09-02 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20130178373A1 (en) | 2010-05-18 | 2013-07-11 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190271043A1 (en) | 2010-05-18 | 2019-09-05 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20120122701A1 (en) | 2010-05-18 | 2012-05-17 | Gene Security Network, Inc. | Methods for Non-Invasive Prenatal Paternity Testing |
US20200318191A1 (en) | 2010-05-18 | 2020-10-08 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20120270212A1 (en) | 2010-05-18 | 2012-10-25 | Gene Security Network Inc. | Methods for Non-Invasive Prenatal Ploidy Calling |
US20190300950A1 (en) | 2010-05-18 | 2019-10-03 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190309365A1 (en) | 2010-05-18 | 2019-10-10 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190309358A1 (en) | 2010-05-18 | 2019-10-10 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190211391A1 (en) | 2010-05-18 | 2019-07-11 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190323076A1 (en) | 2010-05-18 | 2019-10-24 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190360036A1 (en) | 2010-05-18 | 2019-11-28 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US10526658B2 (en) | 2010-05-18 | 2020-01-07 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20140336060A1 (en) | 2010-05-18 | 2014-11-13 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20220073978A1 (en) | 2010-05-18 | 2022-03-10 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20150051087A1 (en) | 2010-05-18 | 2015-02-19 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US10538814B2 (en) | 2010-05-18 | 2020-01-21 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20200347454A1 (en) | 2010-05-18 | 2020-11-05 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US10557172B2 (en) | 2010-05-18 | 2020-02-11 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US10793912B2 (en) | 2010-05-18 | 2020-10-06 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190249241A1 (en) | 2010-05-18 | 2019-08-15 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190010543A1 (en) | 2010-05-18 | 2019-01-10 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20220042103A1 (en) | 2010-05-18 | 2022-02-10 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190194743A1 (en) | 2010-05-18 | 2019-06-27 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
US20200123612A1 (en) | 2010-05-18 | 2020-04-23 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20200140950A1 (en) | 2010-05-18 | 2020-05-07 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20220033909A1 (en) | 2010-05-18 | 2022-02-03 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20200149111A1 (en) | 2010-05-18 | 2020-05-14 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20130123120A1 (en) | 2010-05-18 | 2013-05-16 | Natera, Inc. | Highly Multiplex PCR Methods and Compositions |
US20220025456A1 (en) | 2010-05-18 | 2022-01-27 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US10655180B2 (en) | 2010-05-18 | 2020-05-19 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20200157629A1 (en) | 2010-05-18 | 2020-05-21 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20200407788A1 (en) | 2010-05-18 | 2020-12-31 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
US20210355536A1 (en) | 2010-05-18 | 2021-11-18 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20200181697A1 (en) | 2010-05-18 | 2020-06-11 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20210324463A1 (en) | 2010-05-18 | 2021-10-21 | Natera, Inc. | Methods for multiplex pcr amplification of target loci in a nucleic acid sample |
US20200190573A1 (en) | 2010-05-18 | 2020-06-18 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190211393A1 (en) | 2010-05-18 | 2019-07-11 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US11111545B2 (en) | 2010-05-18 | 2021-09-07 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20200407798A1 (en) | 2010-05-18 | 2020-12-31 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20200190570A1 (en) | 2010-05-18 | 2020-06-18 | Natera, Inc. | Amplification of cell-free dna using nested pcr |
US20200208221A1 (en) | 2010-05-18 | 2020-07-02 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20220073979A1 (en) | 2010-05-18 | 2022-03-10 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190203290A1 (en) | 2010-05-18 | 2019-07-04 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20190203294A1 (en) | 2010-05-18 | 2019-07-04 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20210198743A1 (en) | 2010-05-18 | 2021-07-01 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US10774380B2 (en) | 2010-05-18 | 2020-09-15 | Natera, Inc. | Methods for multiplex PCR amplification of target loci in a nucleic acid sample |
US20210198742A1 (en) | 2010-05-18 | 2021-07-01 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US10731220B2 (en) | 2010-05-18 | 2020-08-04 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20210189498A1 (en) | 2010-05-18 | 2021-06-24 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20160369333A1 (en) | 2010-05-18 | 2016-12-22 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190211392A1 (en) | 2010-05-18 | 2019-07-11 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
US20110288780A1 (en) | 2010-05-18 | 2011-11-24 | Gene Security Network Inc. | Methods for Non-Invasive Prenatal Ploidy Calling |
US20210025005A1 (en) | 2010-05-18 | 2021-01-28 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20110301854A1 (en) | 2010-06-08 | 2011-12-08 | Curry Bo U | Method of Determining Allele-Specific Copy Number of a SNP |
WO2012019200A2 (en) | 2010-08-06 | 2012-02-09 | Tandem Diagnostics, Inc. | Assay systems for determination of source contribution in a sample |
US20130090250A1 (en) | 2010-08-06 | 2013-04-11 | Aria Diagnostics, Inc. | Assay systems for genetic analysis |
US20120034685A1 (en) | 2010-08-06 | 2012-02-09 | Tandem Diagnostics, Inc. | Assay systems for determination of source contribution in a sample |
US20120034603A1 (en) | 2010-08-06 | 2012-02-09 | Tandem Diagnostics, Inc. | Ligation-based detection of genetic variants |
US20130172211A1 (en) | 2010-08-06 | 2013-07-04 | Ariosa Diagnostics, Inc. | Ligation-based detection of genetic variants |
US10308981B2 (en) | 2010-08-06 | 2019-06-04 | Ariosa Diagnostics, Inc. | Assay systems for determination of source contribution in a sample |
WO2012028746A1 (en) | 2010-09-03 | 2012-03-08 | Centre National De La Recherche Scientifique (Cnrs) | Analytical methods for cell free nucleic acids and applications |
WO2012042374A2 (en) | 2010-10-01 | 2012-04-05 | Anssi Jussi Nikolai Taipale | Method of determining number or concentration of molecules |
US20120108460A1 (en) | 2010-10-26 | 2012-05-03 | Stanford University | Non-invasive fetal genetic screening by sequencing analysis |
WO2012058488A1 (en) | 2010-10-27 | 2012-05-03 | President And Fellows Of Harvard College | Compositions of toehold primer duplexes and methods of use |
WO2012071621A1 (en) | 2010-11-30 | 2012-06-07 | The Chinese University Of Hong Kong | Detection of genetic or molecular aberrations associated with cancer |
US20120196754A1 (en) | 2010-12-07 | 2012-08-02 | Stanford University | Non-invasive determination of fetal inheritance of parental haplotypes at the genome-wide scale |
US20150064695A1 (en) | 2010-12-17 | 2015-03-05 | Celula Inc. | Methods for screening and diagnosing genetic conditions |
WO2012083250A2 (en) | 2010-12-17 | 2012-06-21 | Celula, Inc. | Methods for screening and diagnosing genetic conditions |
WO2012088456A2 (en) | 2010-12-22 | 2012-06-28 | Natera, Inc. | Methods for non-invasive prenatal paternity testing |
US20120208706A1 (en) | 2010-12-30 | 2012-08-16 | Foundation Medicine, Inc. | Optimization of multigene analysis of tumor samples |
US20120190020A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Detection of genetic abnormalities |
US20120190557A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Risk calculation for evaluation of fetal aneuploidy |
US20120190021A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Detection of genetic abnormalities |
US20120191358A1 (en) | 2011-01-25 | 2012-07-26 | Aria Diagnostics, Inc. | Risk calculation for evaluation of fetal aneuploidy |
EP3760730A1 (en) | 2011-02-09 | 2021-01-06 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
EP3760731A1 (en) | 2011-02-09 | 2021-01-06 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
EP3760732A1 (en) | 2011-02-09 | 2021-01-06 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
EP2902500A1 (en) | 2011-02-09 | 2015-08-05 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
EP3187597B1 (en) | 2011-02-09 | 2020-06-03 | Natera, Inc. | Methods for non-invasive prenatal ploidy calling |
WO2012108920A1 (en) | 2011-02-09 | 2012-08-16 | Natera, Inc | Methods for non-invasive prenatal ploidy calling |
GB2488358A (en) | 2011-02-25 | 2012-08-29 | Univ Plymouth | Enrichment of foetal DNA in maternal plasma |
US20140155274A1 (en) | 2011-03-24 | 2014-06-05 | President And Fellows Of Harvard College | Single Cell Nucleic Acid Detection and Analysis |
US20120264121A1 (en) | 2011-04-12 | 2012-10-18 | Verinata Health, Inc. | Resolving genome fractions using polymorphism counts |
WO2012142531A2 (en) | 2011-04-14 | 2012-10-18 | Complete Genomics, Inc. | Processing and analysis of complex nucleic acid sequence data |
US9476095B2 (en) | 2011-04-15 | 2016-10-25 | The Johns Hopkins University | Safe sequencing system |
US20140038830A1 (en) | 2011-04-15 | 2014-02-06 | Verinata Health, Inc. | Detecting and classifying copy number variation |
US9487829B2 (en) | 2011-04-15 | 2016-11-08 | The Johns Hopkins University | Safe sequencing system |
US20140227705A1 (en) | 2011-04-15 | 2014-08-14 | The Johns Hopkins University | Safe sequencing system |
US20120295819A1 (en) | 2011-04-28 | 2012-11-22 | Life Technologies Corporation | Methods and compositions for multiplex pcr |
US20120264618A1 (en) | 2011-04-29 | 2012-10-18 | Sequenom, Inc. | Quantification of a minority nucleic acid species |
US20130017549A1 (en) | 2011-07-11 | 2013-01-17 | Samsung Electronics Co., Ltd. | Method of amplifying target nucleic acid with reduced amplification bias and method for determining relative amount of target nucleic acid in sample |
US20130024127A1 (en) | 2011-07-19 | 2013-01-24 | John Stuelpnagel | Determination of source contributions using binomial probability calculations |
US20130040375A1 (en) | 2011-08-08 | 2013-02-14 | Tandem Diagnotics, Inc. | Assay systems for genetic analysis |
WO2013030577A1 (en) | 2011-09-01 | 2013-03-07 | Singapore Volition Pte Limited | Method for detecting nucleosomes containing nucleotides |
US20130060483A1 (en) | 2011-09-07 | 2013-03-07 | Craig Struble | Determination of copy number variations using binomial probability calculations |
US20130069869A1 (en) | 2011-09-20 | 2013-03-21 | Sony Computer Entertainment Inc. | Information processing apparatus, application provision system, application provision server, and information processing method |
WO2013045432A1 (en) | 2011-09-26 | 2013-04-04 | Qiagen Gmbh | Rapid method for isolating extracellular nucleic acids |
WO2013052557A2 (en) | 2011-10-03 | 2013-04-11 | Natera, Inc. | Methods for preimplantation genetic diagnosis by sequencing |
US20130085681A1 (en) | 2011-10-06 | 2013-04-04 | Sequenom, Inc. | Methods and processes for non-invasive assessment of genetic variations |
US20130325360A1 (en) | 2011-10-06 | 2013-12-05 | Sequenom, Inc. | Methods and processes for non-invasive assessment of genetic variations |
WO2013049892A1 (en) | 2011-10-07 | 2013-04-11 | Murdoch Childrens Research Institute | Diagnostic assay for tissue transplantation status |
WO2013078470A2 (en) | 2011-11-22 | 2013-05-30 | MOTIF, Active | Multiplex isolation of protein-associated nucleic acids |
WO2013086464A1 (en) | 2011-12-07 | 2013-06-13 | The Broad Institute, Inc. | Markers associated with chronic lymphocytic leukemia prognosis and progression |
US20130190653A1 (en) | 2012-01-25 | 2013-07-25 | Angel Gabriel Alvarez Ramos | Device for blood collection from the placenta and the umbilical cord |
WO2013123220A1 (en) | 2012-02-14 | 2013-08-22 | Cornell University | Method for relative quantification of nucleic acid sequence, expression, or copy changes, using combined nuclease, ligation, and polymerase reactions |
US20150197786A1 (en) | 2012-02-28 | 2015-07-16 | Population Genetics Technologies Ltd. | Method for Attaching a Counter Sequence to a Nucleic Acid Sample |
WO2013130848A1 (en) | 2012-02-29 | 2013-09-06 | Natera, Inc. | Informatics enhanced analysis of fetal samples subject to maternal contamination |
US20150087535A1 (en) | 2012-03-13 | 2015-03-26 | Abhijit Ajit Patel | Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing |
WO2013138510A1 (en) | 2012-03-13 | 2013-09-19 | Patel Abhijit Ajit | Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing |
US20170114411A1 (en) | 2012-04-19 | 2017-04-27 | Medical College Of Wisconsin, Inc. | Highly sensitive transplant rejection surveillance using targeted detection of donor specific cell free dna |
US20150086477A1 (en) | 2012-04-19 | 2015-03-26 | Medical College Of Wisconsin, Inc. | Highly sensitive surveillance using detection of cell free dna |
WO2013159035A2 (en) | 2012-04-19 | 2013-10-24 | Medical College Of Wisconsin, Inc. | Highly sensitive surveillance using detection of cell free dna |
EP2653562A1 (en) | 2012-04-20 | 2013-10-23 | Institut Pasteur | Anellovirus genome quantification as a biomarker of immune suppression |
US20130303461A1 (en) | 2012-05-10 | 2013-11-14 | The General Hospital Corporation | Methods for determining a nucleotide sequence |
US10017810B2 (en) | 2012-05-10 | 2018-07-10 | The General Hospital Corporation | Methods for determining a nucleotide sequence contiguous to a known target nucleotide sequence |
WO2013169339A1 (en) | 2012-05-10 | 2013-11-14 | The General Hospital Corporation | Methods for determining a nucleotide sequence |
CN104736722A (en) | 2012-05-21 | 2015-06-24 | 斯克利普斯研究所 | Methods of sample preparation |
US20150265995A1 (en) | 2012-05-21 | 2015-09-24 | Steven Robert Head | Methods of sample preparation |
WO2013177220A1 (en) | 2012-05-21 | 2013-11-28 | The Scripps Research Institute | Methods of sample preparation |
WO2013181651A1 (en) | 2012-06-01 | 2013-12-05 | Omega Bio-Tek, Inc. | Selective nucleic acid fragment recovery |
WO2014004726A1 (en) | 2012-06-26 | 2014-01-03 | Caifu Chen | Methods, compositions and kits for the diagnosis, prognosis and monitoring of cancer |
WO2014014497A1 (en) | 2012-07-20 | 2014-01-23 | Verinata Health, Inc. | Detecting and classifying copy number variation in a cancer genome |
EP2877594B1 (en) | 2012-07-20 | 2019-12-04 | Verinata Health, Inc. | Detecting and classifying copy number variation in a fetal genome |
WO2014018080A1 (en) | 2012-07-24 | 2014-01-30 | Natera, Inc. | Highly multiplex pcr methods and compositions |
US20180288982A1 (en) | 2012-08-13 | 2018-10-11 | InnoGenomics Technologies, LLC | Method for measuring tumor burden in patient derived xenograft (pdx) mice |
US20140051585A1 (en) | 2012-08-15 | 2014-02-20 | Natera, Inc. | Methods and compositions for reducing genetic library contamination |
US20200350034A1 (en) | 2012-08-17 | 2020-11-05 | Natera, Inc. | Method for Non-Invasive Prenatal Testing Using Parental Mosaicism Data |
US20140100126A1 (en) | 2012-08-17 | 2014-04-10 | Natera, Inc. | Method for Non-Invasive Prenatal Testing Using Parental Mosaicism Data |
WO2014035986A1 (en) | 2012-08-28 | 2014-03-06 | Akonni Biosystems Inc. | Method and kit for purifying nucleic acids |
US20150299812A1 (en) | 2012-09-04 | 2015-10-22 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US9598731B2 (en) | 2012-09-04 | 2017-03-21 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US10041127B2 (en) | 2012-09-04 | 2018-08-07 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
JP2015535681A (en) | 2012-09-04 | 2015-12-17 | ガーダント ヘルス, インコーポレイテッド | Systems and methods for detecting rare mutations and copy number polymorphisms |
US20150232938A1 (en) | 2012-09-04 | 2015-08-20 | Ravi Mhatre | Methods for increasing fetal fraction in maternal blood |
US20140066317A1 (en) | 2012-09-04 | 2014-03-06 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US20140065621A1 (en) | 2012-09-04 | 2014-03-06 | Natera, Inc. | Methods for increasing fetal fraction in maternal blood |
EP3026124A1 (en) | 2012-10-31 | 2016-06-01 | Genesupport SA | Non-invasive method for detecting a fetal chromosomal aneuploidy |
US20140329245A1 (en) | 2013-01-13 | 2014-11-06 | Unitaq Bio | Methods and Compositions for PCR Using Blocked and Universal Primers |
WO2014122288A1 (en) | 2013-02-08 | 2014-08-14 | Qiagen Gmbh | Method for separating dna by size |
US20140256558A1 (en) | 2013-03-11 | 2014-09-11 | Kailos Genetics, Inc. | Capture Methodologies for Circulating Cell Free DNA |
US20140274740A1 (en) | 2013-03-15 | 2014-09-18 | Verinata Health, Inc. | Generating cell-free dna libraries directly from blood |
US20140296081A1 (en) | 2013-03-15 | 2014-10-02 | The Board Of Trustees Of The Leland Stanford Junior University | Identification and use of circulating tumor markers |
WO2014151117A1 (en) | 2013-03-15 | 2014-09-25 | The Board Of Trustees Of The Leland Stanford Junior University | Identification and use of circulating nucleic acid tumor markers |
WO2014150300A2 (en) | 2013-03-15 | 2014-09-25 | Abbott Molecular Inc. | Method for amplification and assay of rna fusion gene variants, method of distinguishing same and related primers, probes, and kits |
US20140287934A1 (en) | 2013-03-15 | 2014-09-25 | The Translational Genomics Research Institute | Processes of identifying and characterizing x-linked disorders |
WO2014149134A2 (en) | 2013-03-15 | 2014-09-25 | Guardant Health Inc. | Systems and methods to detect rare mutations and copy number variation |
WO2014145078A1 (en) | 2013-03-15 | 2014-09-18 | Verinata Health, Inc. | Generating cell-free dna libraries directly from blood |
CN105229175A (en) | 2013-03-15 | 2016-01-06 | 雅培分子公司 | For increasing and measuring the method for RNA fusion gene variant, the method distinguishing them and relevant primer, probe and test kit |
US20160032396A1 (en) | 2013-03-15 | 2016-02-04 | The Board Of Trustees Of The Leland Stanford Junior University | Identification and Use of Circulating Nucleic Acid Tumor Markers |
US20140272956A1 (en) | 2013-03-15 | 2014-09-18 | Abbott Molecular Inc. | Method for amplification and assay of rna fusion gene variants, method of distinguishing same and related primers, probes, and kits |
WO2014145232A2 (en) | 2013-03-15 | 2014-09-18 | Organ-I, Inc. | Methods and compositions for assessing renal status using urine cell free dna |
US20150315657A1 (en) | 2013-04-17 | 2015-11-05 | Life Technologies Corporation | Gene fusions and gene variants associated with cancer |
US20160115541A1 (en) | 2013-05-29 | 2016-04-28 | Chronix Biomedical | Detection and quantification of donor cell-free dna in the circulation of organ transplant recipients |
WO2014194113A2 (en) | 2013-05-29 | 2014-12-04 | Chronix Biomedical | Detection and quantification of donor cell-free dna in the circulation of organ transplant recipients |
US20160239602A1 (en) | 2013-09-27 | 2016-08-18 | University Of Washington | Methods and systems for large scale scaffolding of genome assemblies |
US20160244838A1 (en) | 2013-09-27 | 2016-08-25 | Natera, Inc. | Cell free dna diagnostic testing standards |
US20150147815A1 (en) | 2013-09-27 | 2015-05-28 | Natera, Inc. | Cell free dna diagnostic testing standards |
WO2015048535A1 (en) | 2013-09-27 | 2015-04-02 | Natera, Inc. | Prenatal diagnostic resting standards |
WO2015070086A1 (en) | 2013-11-07 | 2015-05-14 | The Board Of Trustees Of The Leland Stanford Junior University | Cell-free nucleic acids for the analysis of the human microbiome and components thereof |
US20160289753A1 (en) | 2013-12-02 | 2016-10-06 | Population Genetics Technologies Ltd. | Method for Evaluating Minority Variants in a Sample |
US20160046986A1 (en) | 2013-12-28 | 2016-02-18 | Guardant Health, Inc. | Methods and systems for detecting genetic variants |
WO2015100427A1 (en) | 2013-12-28 | 2015-07-02 | Guardant Health, Inc. | Methods and systems for detecting genetic variants |
US20150329891A1 (en) | 2013-12-30 | 2015-11-19 | Atreca, Inc. | Analysis of nucleic acids associated with single cells using nucleic acid barcodes |
US10450597B2 (en) | 2014-01-27 | 2019-10-22 | The General Hospital Corporation | Methods of preparing nucleic acids for sequencing |
US20150211050A1 (en) | 2014-01-27 | 2015-07-30 | The General Hospital Corporation | Methods of preparing nucleic acids for sequencing |
US20160201124A1 (en) | 2014-02-11 | 2016-07-14 | Roche Molecular Systems, Inc. | Targeted Sequencing and UID Filtering |
US20200032323A1 (en) | 2014-03-05 | 2020-01-30 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US20160145682A1 (en) | 2014-03-14 | 2016-05-26 | Caredx, Inc. | Methods of monitoring immunosuppressive therapies in a transplant recipient |
WO2015148494A1 (en) | 2014-03-25 | 2015-10-01 | Quest Diagnostics Investments Incorporated | Detection of gene fusions by intragenic differential expression (ide) using average cycle thresholds |
US20210222230A1 (en) | 2014-04-21 | 2021-07-22 | Natera, Inc. | Methods for simultaneous amplification of target loci |
EP3134541B1 (en) | 2014-04-21 | 2020-08-19 | Natera, Inc. | Detecting copy number variations (cnv) of chromosomal segments in cancer |
US9677118B2 (en) | 2014-04-21 | 2017-06-13 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190256894A1 (en) | 2014-04-21 | 2019-08-22 | Natera, Inc. | Methods for simultaneous amplifications of target loci |
WO2015164432A1 (en) | 2014-04-21 | 2015-10-29 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US10597708B2 (en) | 2014-04-21 | 2020-03-24 | Natera, Inc. | Methods for simultaneous amplifications of target loci |
US20190211402A1 (en) | 2014-04-21 | 2019-07-11 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US20180171420A1 (en) | 2014-04-21 | 2018-06-21 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US10597709B2 (en) | 2014-04-21 | 2020-03-24 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US10351906B2 (en) | 2014-04-21 | 2019-07-16 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20150322507A1 (en) | 2014-04-21 | 2015-11-12 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US10179937B2 (en) * | 2014-04-21 | 2019-01-15 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US20190256931A1 (en) | 2014-04-21 | 2019-08-22 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US20190194759A1 (en) | 2014-04-21 | 2019-06-27 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US20200208196A1 (en) | 2014-04-21 | 2020-07-02 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20190316177A1 (en) | 2014-04-21 | 2019-10-17 | Natera, Inc. | Methods for simultaneous amplification of target loci |
US20170107576A1 (en) | 2014-04-21 | 2017-04-20 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US20190211406A1 (en) | 2014-04-21 | 2019-07-11 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US20190194758A1 (en) | 2014-04-21 | 2019-06-27 | Natera, Inc. | Detecting mutations and ploidy in chromosomal segments |
US20180173846A1 (en) | 2014-06-05 | 2018-06-21 | Natera, Inc. | Systems and Methods for Detection of Aneuploidy |
US20200126634A1 (en) | 2014-06-05 | 2020-04-23 | Natera, Inc. | Systems and Methods for Detection of Aneuploidy |
US20180173845A1 (en) | 2014-06-05 | 2018-06-21 | Natera, Inc. | Systems and Methods for Detection of Aneuploidy |
US20170152561A1 (en) | 2014-06-27 | 2017-06-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods employing circulating dna and mirna as biomarkers for female infertility |
US20170121716A1 (en) | 2014-07-03 | 2017-05-04 | Rhodx, Inc. | Tagging and assessing a target sequence |
WO2016009059A1 (en) | 2014-07-17 | 2016-01-21 | Qiagen Gmbh | Method for isolating rna with high yield |
WO2016009224A1 (en) | 2014-07-18 | 2016-01-21 | Cancer Research Technology Limited | A method for detecting a genetic variant |
US20160186253A1 (en) | 2014-07-18 | 2016-06-30 | Illumina, Inc. | Non-invasive prenatal diagnosis of fetal genetic condition using cellular dna and cell free dna |
WO2016017662A1 (en) | 2014-07-30 | 2016-02-04 | 岩崎工業株式会社 | Storage container |
US20180265917A1 (en) | 2014-10-08 | 2018-09-20 | Cornell University | Method for identification and quantification of nucleic acid expression, splice variant, translocation, copy number, or methylation changes |
WO2016063122A1 (en) | 2014-10-20 | 2016-04-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for screening a subject for a cancer |
WO2016065295A1 (en) | 2014-10-24 | 2016-04-28 | Dae Hyun Kim | Enrichment of small nucleic acids |
WO2016077313A1 (en) | 2014-11-11 | 2016-05-19 | Bgi Shenzhen | Multi-pass sequencing |
US20170362649A1 (en) | 2014-12-01 | 2017-12-21 | The Broad Institute, Inc. | Method for in situ determination of nucleic acid proximity |
US20160186239A1 (en) | 2014-12-29 | 2016-06-30 | InnoGenomics Technologies, LLC | Multiplexed assay for quantitating and assessing integrity of cell-free dna in biological fluids for cancer diagnosis, prognosis and surveillance |
US20180023128A1 (en) | 2015-02-05 | 2018-01-25 | Technion Research & Development Foundation Limited | System and method for single cell genetic analysis |
WO2016123698A1 (en) | 2015-02-06 | 2016-08-11 | Uti Limited Partnership | Diagnostic assay for post-transplant assessment of potential rejection of donor organs |
WO2016138080A1 (en) | 2015-02-24 | 2016-09-01 | Trustees Of Boston University | Protection of barcodes during dna amplification using molecular hairpins |
US20160257993A1 (en) | 2015-02-27 | 2016-09-08 | Cellular Research, Inc. | Methods and compositions for labeling targets |
US20160289740A1 (en) | 2015-03-30 | 2016-10-06 | Cellular Research, Inc. | Methods and compositions for combinatorial barcoding |
EP3285193A1 (en) | 2015-04-14 | 2018-02-21 | Eone Diagnomics Genome Center Co., Ltd. | Method for predicting organ transplant rejection using next-generation sequencing |
US20160312276A1 (en) | 2015-04-23 | 2016-10-27 | Cellular Research, Inc. | Methods and compositions for whole transcriptome amplification |
US20160319345A1 (en) | 2015-04-28 | 2016-11-03 | Illumina, Inc. | Error suppression in sequenced dna fragments using redundant reads with unique molecular indices (umis) |
US20180148777A1 (en) | 2015-05-11 | 2018-05-31 | Natera, Inc. | Methods and compositions for determining ploidy |
WO2016183106A1 (en) | 2015-05-11 | 2016-11-17 | Natera, Inc. | Methods and compositions for determining ploidy |
WO2016193490A1 (en) | 2015-06-05 | 2016-12-08 | Qiagen Gmbh | Method for separating dna by size |
US20210327542A1 (en) | 2015-06-19 | 2021-10-21 | Natera, Inc. | Systems and methods for determining aneuploidy risk using sample fetal fraction |
US20180187241A1 (en) | 2015-07-02 | 2018-07-05 | Arima Genomics, Inc. | Accurate molecular deconvolution of mixture samples |
US20180251553A1 (en) | 2015-09-10 | 2018-09-06 | Cancer Research Technology Limited | "immune checkpoint intervention" in cancer |
WO2017058784A1 (en) | 2015-09-29 | 2017-04-06 | Ludwig Institute For Cancer Research Ltd | Typing and assembling discontinuous genomic elements |
US20170314014A1 (en) | 2015-10-19 | 2017-11-02 | Dovetail Genomics, Llc | Methods for Genome Assembly, Haplotype Phasing, and Target Independent Nucleic Acid Detection |
US20170218458A1 (en) | 2016-02-03 | 2017-08-03 | AnchorDx Medical Co.,Ltd. | Method for Detecting Methylated DNA |
US20170275689A1 (en) | 2016-03-22 | 2017-09-28 | Counsyl, Inc. | Combinatorial DNA Screening |
US20170283788A1 (en) | 2016-03-30 | 2017-10-05 | Covaris, Inc. | EXTRACTION OF cfDNA FROM BIOLOGICAL SAMPLES |
WO2017181146A1 (en) | 2016-04-14 | 2017-10-19 | Guardant Health, Inc. | Methods for early detection of cancer |
EP3443119B1 (en) | 2016-04-15 | 2022-02-23 | Natera, Inc. | Methods for lung cancer detection |
US20190106751A1 (en) | 2016-04-15 | 2019-04-11 | Natera, Inc. | Methods for lung cancer detection |
WO2017181202A2 (en) | 2016-04-15 | 2017-10-19 | Natera, Inc. | Methods for lung cancer detection |
WO2017190106A1 (en) | 2016-04-29 | 2017-11-02 | Medical College Of Wisconsin, Inc. | Multiplexed optimized mismatch amplification (moma)-target number |
WO2017205540A1 (en) | 2016-05-24 | 2017-11-30 | The Translational Genomics Research Institute | Molecular tagging methods and sequencing libraries |
US20170342477A1 (en) | 2016-05-27 | 2017-11-30 | Sequenom, Inc. | Methods for Detecting Genetic Variations |
US20190185913A1 (en) | 2016-07-01 | 2019-06-20 | Natera, Inc. | Compositions and methods for detection of nucleic acid mutations |
WO2018009723A1 (en) | 2016-07-06 | 2018-01-11 | Guardant Health, Inc. | Methods for fragmentome profiling of cell-free nucleic acids |
US20200024653A1 (en) | 2016-10-04 | 2020-01-23 | Natera, Inc. | Methods for characterizing copy number variation using proximity-litigation sequencing |
WO2018085603A1 (en) | 2016-11-02 | 2018-05-11 | Medical College Of Wisconsin, Inc. | Methods for assessing risk using total and specific cell-free dna |
US20200248266A1 (en) | 2016-11-02 | 2020-08-06 | Natera, Inc. | Method of detecting tumour recurrence |
WO2018083467A1 (en) | 2016-11-02 | 2018-05-11 | Ucl Business Plc | Method of detecting tumour recurrence |
US20180127744A1 (en) | 2016-11-08 | 2018-05-10 | Cellular Research, Inc. | Methods for cell label classification |
US20180155776A1 (en) | 2016-12-07 | 2018-06-07 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
US20180155779A1 (en) | 2016-12-07 | 2018-06-07 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
US20180155775A1 (en) | 2016-12-07 | 2018-06-07 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
US20190309359A1 (en) | 2016-12-07 | 2019-10-10 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
WO2018106798A1 (en) | 2016-12-07 | 2018-06-14 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
US20220025455A1 (en) | 2016-12-07 | 2022-01-27 | Natera, Inc. | Compositions and methods for identifying nucleic acid molecules |
WO2018136562A2 (en) | 2017-01-17 | 2018-07-26 | Life Technologies Corporation | Compositions and methods for immune repertoire sequencing |
US20180237841A1 (en) | 2017-02-21 | 2018-08-23 | Natera, Inc. | Compositions, methods, and kits for isolating nucleic acids |
US10894976B2 (en) | 2017-02-21 | 2021-01-19 | Natera, Inc. | Compositions, methods, and kits for isolating nucleic acids |
WO2018156418A1 (en) | 2017-02-21 | 2018-08-30 | Natera, Inc. | Compositions, methods, and kits for isolating nucleic acids |
WO2018237081A1 (en) | 2017-06-20 | 2018-12-27 | The Medical College Of Wisconsin, Inc. | Transplant patient monitoring with cell-free dna |
US20210139988A1 (en) | 2017-06-20 | 2021-05-13 | The Medical College Of Wisconsin, Inc. | Assessing conditions in transplant subjects using donor-specific cell-free dna |
US20210139969A1 (en) | 2017-06-20 | 2021-05-13 | The Medical College Of Wisconsin, Inc. | Assessing transplant complication risk with total cell-free dna |
US20210139983A1 (en) | 2017-06-20 | 2021-05-13 | The Medical College Of Wisconsin, Inc. | Transplant patient monitoring with cell-free dna |
US20190256924A1 (en) | 2017-08-07 | 2019-08-22 | The Johns Hopkins University | Methods and materials for assessing and treating cancer |
WO2019046817A1 (en) | 2017-09-01 | 2019-03-07 | Life Technologies Corporation | Compositions and methods for immune repertoire sequencing |
US20190106737A1 (en) | 2017-09-20 | 2019-04-11 | University Of Utah Research Foundation | Size-Selection of Cell-Free DNA for Increasing Family Size During Next-Generation Sequencing |
WO2019118926A1 (en) | 2017-12-14 | 2019-06-20 | Tai Diagnostics, Inc. | Assessing graft suitability for transplantation |
US20210269879A1 (en) | 2017-12-14 | 2021-09-02 | Tai Diagnostics, Inc. | Assessing graft suitability for transplantation |
US20210071246A1 (en) | 2018-01-12 | 2021-03-11 | Natera, Inc. | Novel primers and uses thereof |
WO2019140298A1 (en) | 2018-01-12 | 2019-07-18 | Natera, Inc. | Novel primers and uses thereof |
WO2019161244A1 (en) | 2018-02-15 | 2019-08-22 | Natera, Inc. | Methods for isolating nucleic acids with size selection |
US20210009990A1 (en) | 2018-02-15 | 2021-01-14 | Natera, Inc. | Methods for isolating nucleic acids with size selection |
US20220056509A1 (en) | 2018-04-14 | 2022-02-24 | Natera, Inc. | Methods for cancer detection and monitoring |
WO2019200228A1 (en) | 2018-04-14 | 2019-10-17 | Natera, Inc. | Methods for cancer detection and monitoring by means of personalized detection of circulating tumor dna |
US20190316184A1 (en) | 2018-04-14 | 2019-10-17 | Natera, Inc. | Methods for cancer detection and monitoring |
WO2019241349A1 (en) | 2018-06-12 | 2019-12-19 | Natera, Inc. | Methods and systems for calling mutations |
US20210257048A1 (en) | 2018-06-12 | 2021-08-19 | Natera, Inc. | Methods and systems for calling mutations |
WO2020010255A1 (en) | 2018-07-03 | 2020-01-09 | Natera, Inc. | Methods for detection of donor-derived cell-free dna |
US20210222240A1 (en) | 2018-07-03 | 2021-07-22 | Natera, Inc. | Methods for detection of donor-derived cell-free dna |
US20210198733A1 (en) | 2018-07-03 | 2021-07-01 | Natera, Inc. | Methods for detection of donor-derived cell-free dna |
EP3824470A1 (en) | 2018-07-17 | 2021-05-26 | Natera, Inc. | Methods and systems for calling ploidy states using a neural network |
US20210327538A1 (en) | 2018-07-17 | 2021-10-21 | Natera, Inc. | Methods and systems for calling ploidy states using a neural network |
WO2020018522A1 (en) | 2018-07-17 | 2020-01-23 | Natera, Inc. | Methods and systems for calling ploidy states using a neural network |
WO2020041449A1 (en) | 2018-08-21 | 2020-02-27 | Zymo Research Corporation | Methods and compositions for tracking sample quality |
US20200109449A1 (en) | 2018-10-09 | 2020-04-09 | Tai Diagnostics, Inc. | Cell lysis assay for cell-free dna analysis |
WO2020076957A1 (en) | 2018-10-09 | 2020-04-16 | Tai Diagnostics, Inc. | Cell lysis assay for cell-free dna analysis |
WO2020104670A1 (en) | 2018-11-23 | 2020-05-28 | Cancer Research Technology Limited | Improvements in variant detection |
WO2020131699A2 (en) | 2018-12-17 | 2020-06-25 | Natera, Inc. | Methods for analysis of circulating cells |
US20220056534A1 (en) | 2018-12-17 | 2022-02-24 | Natera, Inc. | Methods for analysis of circulating cells |
US20200316498A1 (en) | 2019-04-04 | 2020-10-08 | Tai Diagnostics, Inc. | Materials and methods for processing blood samples |
WO2020214547A1 (en) | 2019-04-15 | 2020-10-22 | Natera, Inc. | Improved liquid biopsy using size selection |
WO2020247263A1 (en) | 2019-06-06 | 2020-12-10 | Natera, Inc. | Methods for detecting immune cell dna and monitoring immune system |
WO2021055968A1 (en) | 2019-09-20 | 2021-03-25 | Natera Inc. | Methods for assessing graft suitability for transplantation |
WO2021243045A1 (en) | 2020-05-29 | 2021-12-02 | Natera, Inc. | Methods for detection of donor-derived cell-free dna |
WO2022015676A1 (en) | 2020-07-13 | 2022-01-20 | The Medical College Of Wisconsin, Inc. | Methods for making treatment management decisions in transplant subjects and assessing transplant risks with threshold values |
WO2022106987A1 (en) | 2020-11-18 | 2022-05-27 | Metalsistem S.P.A. | Load-bearing structure for sets of shelves |
Non-Patent Citations (1013)
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12049673B2 (en) | 2012-09-04 | 2024-07-30 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US12054783B2 (en) | 2012-09-04 | 2024-08-06 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US12110560B2 (en) | 2012-09-04 | 2024-10-08 | Guardant Health, Inc. | Methods for monitoring residual disease |
US12116624B2 (en) | 2012-09-04 | 2024-10-15 | Guardant Health, Inc. | Systems and methods to detect rare mutations and copy number variation |
US12116640B2 (en) | 2016-04-14 | 2024-10-15 | Guardant Health, Inc. | Methods for early detection of cancer |
Also Published As
Publication number | Publication date |
---|---|
US10793912B2 (en) | 2020-10-06 |
US20200123612A1 (en) | 2020-04-23 |
US20200347454A1 (en) | 2020-11-05 |
US11519035B2 (en) | 2022-12-06 |
US10655180B2 (en) | 2020-05-19 |
US10538814B2 (en) | 2020-01-21 |
US20200318191A1 (en) | 2020-10-08 |
US20200140950A1 (en) | 2020-05-07 |
US10526658B2 (en) | 2020-01-07 |
US20200208221A1 (en) | 2020-07-02 |
US20190309365A1 (en) | 2019-10-10 |
US20190010543A1 (en) | 2019-01-10 |
US20210198742A1 (en) | 2021-07-01 |
US10731220B2 (en) | 2020-08-04 |
US20200232037A1 (en) | 2020-07-23 |
US20190203294A1 (en) | 2019-07-04 |
US20210025005A1 (en) | 2021-01-28 |
US12110552B2 (en) | 2024-10-08 |
US11111545B2 (en) | 2021-09-07 |
US20190256917A1 (en) | 2019-08-22 |
US20210198743A1 (en) | 2021-07-01 |
US20190256916A1 (en) | 2019-08-22 |
US10557172B2 (en) | 2020-02-11 |
US20190256919A1 (en) | 2019-08-22 |
US20190271043A1 (en) | 2019-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11286530B2 (en) | Methods for simultaneous amplification of target loci | |
US11525162B2 (en) | Methods for simultaneous amplification of target loci | |
US11332793B2 (en) | Methods for simultaneous amplification of target loci | |
US11939634B2 (en) | Methods for simultaneous amplification of target loci | |
US20220411875A1 (en) | Methods for simultaneous amplification of target loci | |
US20220356526A1 (en) | Methods for simultaneous amplification of target loci | |
US20240068031A1 (en) | Methods for simultaneous amplification of target loci | |
US20240271214A1 (en) | Methods for simultaneous amplification of target loci |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATERA, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BABIARZ, JOSHUA;CONSTANTIN, TUDOR POMPILIU;EUBANK, LANE A.;AND OTHERS;SIGNING DATES FROM 20150416 TO 20150420;REEL/FRAME:052220/0484 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: WITHDRAW FROM ISSUE AWAITING ACTION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |