WO2013130848A1 - Informatics enhanced analysis of fetal samples subject to maternal contamination - Google Patents

Informatics enhanced analysis of fetal samples subject to maternal contamination Download PDF

Info

Publication number
WO2013130848A1
WO2013130848A1 PCT/US2013/028378 US2013028378W WO2013130848A1 WO 2013130848 A1 WO2013130848 A1 WO 2013130848A1 US 2013028378 W US2013028378 W US 2013028378W WO 2013130848 A1 WO2013130848 A1 WO 2013130848A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
fetus
chromosome
sample
allele
Prior art date
Application number
PCT/US2013/028378
Other languages
French (fr)
Inventor
Matthew Rabinowitz
Johan Baner
George Gemelos
Matthew M. HILL
Styrmir Sigurjonsson
Original Assignee
Natera, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2012/058578 external-priority patent/WO2013052557A2/en
Priority claimed from US13/683,604 external-priority patent/US20130123120A1/en
Application filed by Natera, Inc. filed Critical Natera, Inc.
Priority claimed from US13/780,022 external-priority patent/US20130196862A1/en
Publication of WO2013130848A1 publication Critical patent/WO2013130848A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/10Ploidy or copy number detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection

Definitions

  • the present disclosure relates generally to methods for chromosome copy number calling on genetic samples, such as fetal samples subject to contamination from maternal DNA.
  • Detection of chromosomal abnormalities can identify individuals or embryos with conditions such as Down syndrome, Klinefelter' s syndrome, and Turner syndrome, among others, in addition to increasing the chances of a successful pregnancy. Testing for chromosomal abnormalities is especially important as the mother's age: between the ages of 35 and 40 it is estimated that at least 40% of the embryos are abnormal, and above the age of 40, more than half of the embryos are abnormal. Unfortunately, it can be difficult to accurately diagnose fetal chromosome abnormalities in situations in which maternal DNA (e.g., extracellular or cellular DNA) is present since the background noise from the maternal DNA inhibits the ability to detect and analyze the signal from fetal DNA.
  • maternal DNA e.g., extracellular or cellular DNA
  • This method is considered the gold standard for chromosome analysis but has three practical limitations. First, a successful cell culture is required but failure occurs in 10-40% of cases (Bell, K.A., et al., Cytogenetic diagnosis of "normal 46,XX" karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril, 1999. 71(2): p. 334-41). Second, the results take approximately 4-6 weeks.
  • the invention features an ex vivo method for determining whether a sample comprises DNA ⁇ e.g., DNA from cellular or extracellular genetic material) from a fetus.
  • the method includes making genotypic measurements at a plurality of polymorphic loci on the chromosome or chromosome segment from a sample (such as a sample comprising cellular and/or extracellular genetic material from the fetus, cellular and/or extracellular genetic material from the mother of the fetus, or combinations thereof).
  • the sample comprises cellular genetic material from the fetus, cellular genetic material from the mother, or combinations thereof.
  • the method also includes obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the mother, and determining (e.g., determining on a computer) based on the genotypic measurements, whether the sample comprises (i) DNA from the fetus (with or without contaminating DNA) or (ii) contaminating DNA with essentially no DNA from the fetus (such as with an undetectable or negligible amount of fetal DNA or with no fetal DNA).
  • the method involves determining (e.g., determining on a computer) based on the genotypic measurements, whether the sample comprises (i) DNA from the fetus with essentially no contaminating DNA, (ii) a mixture of DNA from the fetus and contaminating DNA, or (iii) contaminating DNA with essentially no DNA from the fetus.
  • the method also includes creating (e.g., creating on a computer) a set of one or more hypotheses about the number of copies of the chromosome or chromosome segment in the genome of the fetus, determining (e.g., determining on a computer) the probability of each of the hypotheses given the genotypic measurements, and using the probabilities associated with each hypothesis to determine the most likely number of copies of the chromosome or chromosome segment in the genome of the fetus.
  • creating e.g., creating on a computer
  • determining e.g., determining on a computer
  • the method also includes obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the father, wherein the probability of each hypotheses is determined using (i) the genotypic measurements made on the genetic material from the father and (ii) the genotypic measurements made on the sample.
  • DNA crosslinking inhibits the measuring of the genetic material from the sample, and the genotypic measurements made on the genetic material from the father facilitate the copy number determination.
  • the contaminating DNA comprises DNA from the mother. In some embodiments, the contaminating DNA comprises DNA from a different fetus that previously gestated in the mother.
  • the invention features an ex vivo method for determining a number of copies of a chromosome or chromosome segment of interest in the genome of a fetus.
  • the method involves making genotypic measurements at a plurality of polymorphic loci on the chromosome or chromosome segment from a mixed sample (such as a sample that comprises (i) cellular and/or extracellular genetic material from the fetus and (ii) cellular and/or extracellular genetic material from the mother of the fetus).
  • the mixed sample comprises (i) cellular genetic material from the fetus and (ii) cellular genetic material from the mother of the fetus.
  • the mixed sample comprises (i) cells from the fetus and (ii) cells from the mother of the fetus.
  • the method also includes creating (e.g., creating on a computer) a set of one or more hypotheses about the number of copies of the chromosome or chromosome segment in the genome of the fetus, determining (e.g., determining on a computer) the probability of each of the hypotheses given the genotypic measurements, and using the probabilities associated with each hypothesis to determine the most likely number of copies of the chromosome or chromosome segment in the genome of the fetus.
  • the method also includes obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the mother and/or father, wherein the probability of each hypotheses is determined using (i) the genotypic measurements made on the genetic material from the mother and/father and (ii) the genotypic measurements made on the mixed sample.
  • the genotypic measurements made on the genetic material from the mother facilitate the detection or quantitation of maternal DNA in the mixed sample.
  • DNA crosslinking inhibits the measuring of the genetic material from the mixed sample, and the genotypic measurements made on the genetic material from the father facilitate the copy number determination.
  • the fetal cells are from a gestating fetus. In some embodiments, the fetal cells are from a products of conception sample, where the fetus is no longer alive. In some embodiments, the sample is a maternal whole blood sample, cells isolated from a maternal blood sample, amniocentesis sample, placental tissue sample (e.g., chorionic villus, decidua, or placental membrane) , cervical mucus sample, or sample from a fetus.
  • placental tissue sample e.g., chorionic villus, decidua, or placental membrane
  • the cells in the sample are maternal cells.
  • the amount of cells in the sample that are maternal cells is between 5 to 99%, such as between 10 to 95%, 20 to 95%, 30 to 90%, 30 to 70%, 40 to 90%, 40 to 70%, 50 to 90%, or 50 to 80%, inclusive.
  • the sample is enriched for fetal cells.
  • the sample may have been optionally enriched for fetal cells using detection of differential expression of cellular markers.
  • fetal cells are enriched by using a capture strategy where cells are physically separated using a moiety that has a particular affinity for a cell surface marker that tends to be differentially expressed in fetal cells.
  • the mixture may be enriched for cells that contain or do not contain CD34, CD45, HSP-60, monoamine oxidase, glutamine synthase, Ara-70, Ara-54, FLJ20202, DCN-I protein, RAB5A, HSP-7C, EF1A1, GRP78, MYL4, DnaJ homolog subfamily B member 14, Vinculin, Desmoplakin, AMMECR1 -like protein, Extracellular matrix protein 2 precursor protein, uncharacterised protein Cxorf57, Peroxiredoxin 1, Peroxiredoxin 2, fetal associated RNA, fetal hemoglobin, or other markers that are shown to be exhibited preferentially in either fetal or maternal cells.
  • the physical separation may be effected by monoclonal antibodies, layered immunosorption, centrifugation, filtration, the sugar-chain lectin method, or other methods shown to be suitable for physical separation.
  • the sample is enriched for fetal cells
  • at least 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10% or more of the cells in the enriched sample are fetal cells.
  • the amount of cells in the sample that are fetal cells is between 0.5 to 100%, such as between 1 to 99%, 5 to 95%, 10 to 95%, 10 to 95%, 20 to 90%, or 30 to 70%, inclusive.
  • the method includes preparing the sample (such as the first sample) by isolating the DNA so as to obtain a prepared sample.
  • a method for determining a ploidy status of a chromosome in a fetus includes obtaining a first sample of DNA that comprises maternal DNA from the mother of the fetus and fetal DNA from the fetus, preparing the first sample by isolating the DNA so as to obtain a prepared sample, measuring the DNA in the prepared sample at a plurality of polymorphic loci on the chromosome, calculating, on a computer, allele counts at the plurality of polymorphic loci from the DNA measurements made on the prepared sample, creating, on a computer, a plurality of ploidy hypotheses each pertaining to a different possible ploidy state of the chromosome, building, on a computer, a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome for each ploidy hypothesis,
  • the DNA in the first sample originates from maternal plasma. In some embodiments, preparing the first sample further comprises amplifying the DNA. In some embodiments, preparing the first sample further comprises preferentially enriching the DNA in the first sample at a plurality of polymorphic loci.
  • preferentially enriching the DNA in the first sample at the plurality of polymorphic loci includes obtaining a plurality of pre-circularized probes where each probe targets one of the polymorphic loci, and where the 3' and 5' end of the probes are designed to hybridize to a region of DNA that is separated from the polymorphic site of the locus by a small number of bases, where the small number is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 to 25, 26 to 30, 31 to 60, or a combination thereof, hybridizing the pre-circularized probes to DNA from the first sample, filling the gap between the hybridized probe ends using DNA polymerase, circularizing the pre-circularized probe, and amplifying the circularized probe.
  • the preferentially enriching the DNA at the plurality of polymorphic loci includes obtaining a plurality of ligation-mediated PCR probes where each PCR probe targets one of the polymorphic loci, and where the upstream and downstream PCR probes are designed to hybridize to a region of DNA, on one strand of DNA, that is separated from the polymorphic site of the locus by a small number of bases, where the small number is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 to 25, 26 to 30, 31 to 60, or a combination thereof, hybridizing the ligation-mediated PCR probes to the DNA from the first sample, filling the gap between the ligation-mediated PCR probe ends using DNA polymerase, ligating the ligation-mediated PCR probes, and amplifying the ligated ligation-mediated PCR probes.
  • preferentially enriching the DNA at the plurality of polymorphic loci includes obtaining a plurality of hybrid capture probes that target the polymorphic loci, hybridizing the hybrid capture probes to the DNA in the first sample and physically removing some or all of the unhybridized DNA from the first sample of DNA.
  • the hybrid capture probes are designed to hybridize to a region that is flanking but not overlapping the polymorphic site. In some embodiments, the hybrid capture probes are designed to hybridize to a region that is flanking but not overlapping the polymorphic site, and where the length of the flanking capture probe may be selected from the group consisting of less than about 120 bases, less than about 110 bases, less than about 100 bases, less than about 90 bases, less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, and less than about 25 bases.
  • the hybrid capture probes are designed to hybridize to a region that overlaps the polymorphic site, and where the plurality of hybrid capture probes comprise at least two hybrid capture probes for each polymorphic loci, and where each hybrid capture probe is designed to be complementary to a different allele at that polymorphic locus.
  • preferentially enriching the DNA at a plurality of polymorphic loci includes obtaining a plurality of inner forward primers where each primer targets one of the polymorphic loci, and where the 3' end of the inner forward primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases, where the small number is selected from the group consisting of 1, 2, 3, 4, 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, or 31 to 60 base pairs, optionally obtaining a plurality of inner reverse primers where each primer targets one of the polymorphic loci, and where the 3' end of the inner reverse primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases, where the small number is selected from the group consisting of 1, 2, 3, 4, 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, or 31 to 60 base pairs
  • the method also includes obtaining a plurality of outer forward primers where each primer targets one of the polymorphic loci, and where the outer forward primers are designed to hybridize to the region of DNA upstream from the inner forward primer, optionally obtaining a plurality of outer reverse primers where each primer targets one of the polymorphic loci, and where the outer reverse primers are designed to hybridize to the region of DNA immediately downstream from the inner reverse primer, hybridizing the first primers to the DNA, and amplifying the DNA using the polymerase chain reaction.
  • the method also includes obtaining a plurality of outer reverse primers where each primer targets one of the polymorphic loci, and where the outer reverse primers are designed to hybridize to the region of DNA immediately downstream from the inner reverse primer, optionally obtaining a plurality of outer forward primers where each primer targets one of the polymorphic loci, and where the outer forward primers are designed to hybridize to the region of DNA upstream from the inner forward primer, hybridizing the first primers to the DNA, and amplifying the DNA using the polymerase chain reaction.
  • preparing the first sample further includes appending universal adapters to the DNA in the first sample and amplifying the DNA in the first sample using the polymerase chain reaction.
  • at least a fraction of the amplicons that are amplified are less than 100 bp, less than 90 bp, less than 80 bp, less than 70 bp, less than 65 bp, less than 60 bp, less than 55 bp, less than 50 bp, or less than 45 bp, and where the fraction is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 99%.
  • amplifying the DNA is done in one or a plurality of individual reaction volumes, and where each individual reaction volume contains more than 100 different forward and reverse primer pairs, more than 200 different forward and reverse primer pairs, more than 500 different forward and reverse primer pairs, more than 1,000 different forward and reverse primer pairs, more than 2,000 different forward and reverse primer pairs, more than 5,000 different forward and reverse primer pairs, more than 10,000 different forward and reverse primer pairs, more than 20,000 different forward and reverse primer pairs, more than 50,000 different forward and reverse primer pairs, or more than 100,000 different forward and reverse primer pairs.
  • preparing the first sample further comprises dividing the first sample into a plurality of portions, and where the DNA in each portion is preferentially enriched at a subset of the plurality of polymorphic loci.
  • the inner primers are selected by identifying primer pairs likely to form undesired primer duplexes and removing from the plurality of primers at least one of the pair of primers identified as being likely to form undesired primer duplexes.
  • the inner primers contain a region that is designed to hybridize either upstream or downstream of the targeted polymorphic locus, and optionally contain a universal priming sequence designed to allow PCR amplification.
  • at least some of the primers additionally contain a random region that differs for each individual primer molecule.
  • at least some of the primers additionally contain a molecular barcode.
  • the method also includes obtaining genotypic data from one or both parents of the fetus.
  • obtaining genotypic data from one or both parents of the fetus includes preparing the DNA from the parents where the preparing comprises preferentially enriching the DNA at the plurality of polymorphic loci to give prepared parental DNA, optionally amplifying the prepared parental DNA, and measuring the parental DNA in the prepared sample at the plurality of polymorphic loci.
  • building a joint distribution model for the expected allele count probabilities of the plurality of polymorphic loci on the chromosome is done using the obtained genetic data from the one or both parents.
  • the first sample has been isolated from maternal plasma and where the obtaining genotypic data from the mother is done by estimating the maternal genotypic data from the DNA measurements made on the prepared sample.
  • preferential enrichment results in average degree of allelic bias between the prepared sample and the first sample of a factor selected from the group consisting of no more than a factor of 2, no more than a factor of 1.5, no more than a factor of 1.2, no more than a factor of 1.1, no more than a factor of 1.05, no more than a factor of 1.02, no more than a factor of 1.01, no more than a factor of 1.005, no more than a factor of 1.002, no more than a factor of 1.001 and no more than a factor of 1.0001.
  • the plurality of polymorphic loci are single nucleotide polymorphisms (SNPs).
  • measuring the DNA in the sample is done by sequencing, such as high throughput DNA sequencing. In some embodiments, measuring the DNA in the sample (such as the prepared sample) is done using a SNP genotyping array.
  • the nucleic acids in the sample are non-specifically amplified prior to amplification of the target loci (such as specific amplification of the target loci with a primer library of the invention).
  • the non-specific amplification includes whole genome application (WGA), such as ligation-mediated PCR (LM-PCR), degenerate oligonucleotide primer PCR (DOP-PCR), or multiple displacement amplification (MDA).
  • WGA whole genome application
  • LM-PCR ligation-mediated PCR
  • DOP-PCR degenerate oligonucleotide primer PCR
  • MDA multiple displacement amplification
  • the non-specific amplification includes universal PCR, such as adaptor- mediated universal PCR.
  • a diagnostic box for use in determining a ploidy status of a chromosome in a fetus (such as a gestating fetus or a POC sample) where the diagnostic box is capable of executing the preparing and measuring steps of any of the methods of the invention.
  • the chromosome of interest is selected from the group consisting of chromosome 13, chromosome 18, chromosome 21, the X chromosome, the Y chromosome, and combinations thereof.
  • the method comprises screening for a chromosomal abnormality selected from the group consisting of monosomy, uniparental disomy, trisomy, other aneuploidies, mosaicism, unbalanced translocations, insertions, deletions, and combinations thereof.
  • the method includes determining whether the individual has Down syndrome, Edwards syndrome, Patau syndrome, Klinefelters syndrome, 47,XXX, 47,XYY, Turner syndrome, triploidy, DiGeorge syndrome, Cri du Chat syndrome, Angelman syndrome, Praeder- Willi syndrome, Wolf-Hirschhorn syndrome, Smith-Magenis syndrome, Williams-Beuren syndrome, Phelan-McDermid syndrome, Sotos Syndrome, Cystic Fibrosis, Muscular Dystrophy, Spinal Muscular Atrophy, Fragile X, Tay-Sachs disease, Gaucher disease, Torsion Dystonia, Niemann-Pick disease, Mucolipidosis, Fanconi Anemia, Canavan disease, Sickle Cell Anemia, or Bloom Syndrome.
  • the allele counts are probabilistic rather than binary.
  • measurements of the DNA in the sample (such as the prepared sample) at the plurality of polymorphic loci are also used to determine whether or not the fetus has inherited one or a plurality of disease linked haplotypes.
  • the allelic state is linked to a disease selected from the group consisting of cystic fibrosis, Huntington's disease, Fragile X, thallasemia, muscular dystrophy, Alzheimer, Fanconi Anemia, Gaucher Disease, Mucolipidosis IV, Niemann-Pick Disease, Tay- Sachs disease, Sickle cell anemia, Parkinson disease, Torsion Dystonia, and cancer.
  • the probability of each of the hypotheses is determined using data about the probability of chromosomes crossing over at different locations in the chromosome or chromosome segment of interest.
  • building a joint distribution model for allele count probabilities is done by using data about the probability of chromosomes crossing over at different locations in a chromosome to model dependence between polymorphic alleles on the chromosome.
  • building a joint distribution model for allele counts and the step of determining the relative probability of each hypothesis are done using a method that does not require the use of a reference chromosome.
  • the method includes calculating, on a computer, allele counts at the plurality of polymorphic loci from the genotypic measurements, building, on a computer, a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome or chromosome segment for each hypothesis, and determining, on a computer, a relative probability of each of the copy number hypotheses using the joint distribution model and the allele counts.
  • determining the relative probability of each hypothesis makes use of an estimated fraction of fetal DNA in the sample (such as the prepared sample).
  • the DNA measurements from the sample (such as the prepared sample) used in calculating allele count probabilities and determining the relative probability of each hypothesis comprise primary genetic data.
  • selecting the ploidy state corresponding to the hypothesis with the greatest probability is carried out using maximum likelihood estimates or maximum a posteriori estimates.
  • calling the ploidy state of the fetus also includes combining the relative probabilities of each of the ploidy hypotheses determined using the joint distribution model and the allele count probabilities with relative probabilities of each of the ploidy hypotheses that are calculated using statistical techniques taken from a group consisting of a read count analysis, comparing heterozygosity rates, a statistic that is only available when parental genetic information is used, the probability of normalized genotype signals for certain parent contexts, a statistic that is calculated using an estimated fetal fraction of the first sample or the prepared sample, and combinations thereof.
  • a confidence estimate is calculated for the called ploidy state.
  • the confidence for the copy number determination is at least 80, 85, 90, 92, 95, 96, 98, 99, 99.9% or more.
  • the method also includes taking a clinical action based on the called ploidy state, disease-linked locus, or paternity of the fetus, wherein the clinical action is selected from one of terminating the pregnancy or maintaining the pregnancy.
  • the clinical action is selected from the group consisting of performing amniocentesis on the fetus, performing amniocentesis on a subsequent fetus that inherits genetic material from the mother and/or father, performing chorion villus biopsy on the fetus, performing chorion villus biopsy on a subsequent fetus that inherits genetic material from the mother and/or father, performing in vitro fertilization, performing preimplantation genetic diagnosis on one or more embryos that inherited genetic material from the mother and/or father, karyotyping the mother, karyotyping the father, and combinations thereof.
  • the method may be performed for fetuses at between 4 and 5 weeks gestation; between 5 and 6 weeks gestation; between 6 and 7 weeks gestation; between 7 and 8 weeks gestation; between 8 and 9 weeks gestation; between 9 and 10 weeks gestation; between 10 and 12 weeks gestation; between 12 and 14 weeks gestation; between 14 and 20 weeks gestation; between 20 and 40 weeks gestation; in the first trimester; in the second trimester; in the third trimester; or combinations thereof.
  • the fetus is no longer viable (such as an aborted fetus due to a spontaneous or induced abortion). Post fetal demise, these samples are often called products of conception samples.
  • a report displaying a determined ploidy status of a chromosome or chromosome segment in a fetus (such as a gestating fetus or a POC sample) generated using any of the methods of the invention.
  • a kit for determining a ploidy status of a target chromosome in a fetus (such as a gestating fetus or a POC sample) designed to be used with any of the methods of the invention, the kit including a plurality of inner forward primers and optionally the plurality of inner reverse primers, where each of the primers is designed to hybridize to the region of DNA immediately upstream and/or downstream from one of the polymorphic sites on the target chromosome, and optionally additional chromosomes, where the region of hybridization is separated from the polymorphic site by a small number of bases, where the small number is selected from the group consisting of 1, 2, 3, 4, 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, 31 to 60, and combinations thereof.
  • a method for determining presence or absence of fetal aneuploidy in a maternal tissue sample comprising fetal and maternal genomic DNA, the method including (a) obtaining a mixture of fetal and maternal genomic DNA from said maternal tissue sample, (b) conducting massively parallel DNA sequencing of DNA fragments randomly selected from the mixture of fetal and maternal genomic DNA of step (a) to determine the sequence of said DNA fragments, (c) identifying chromosomes to which the sequences obtained in step (b) belong, (d) using the data of step (c) to determine an amount of at least one first chromosome in said mixture of maternal and fetal genomic DNA, wherein said at least one first chromosome is presumed to be euploid in the fetus, (e) using the data of step (c) to determine an amount of a second chromosome in said mixture of maternal and fetal genomic DNA, wherein said second chromosome is suspected to be aneuploid in the
  • Figure 1 Graphical representation of direct multiplexed mini-PCR method.
  • Figure 2 Graphical representation of semi-nested mini-PCR method.
  • Figure 3 Graphical representation of fully nested mini-PCR method.
  • Figure 4 Graphical representation of hemi-nested mini-PCR method.
  • Figure 5 Graphical representation of triply hemi-nested mini-PCR method.
  • Figure 6 Graphical representation of one-sided nested mini-PCR method.
  • Figure 7 Graphical representation of one-sided mini-PCR method.
  • Figure 8 Graphical representation of reverse semi-nested mini-PCR method.
  • Figure 9 Some possible workflows for semi-nested methods.
  • Figure 10 Graphical representation of looped ligation adaptors.
  • Figure 11 Graphical representation of internally tagged primers.
  • Figure 12 An example of some primers with internal tags.
  • Figure 13 Graphical representation of a method using primers with a ligation adaptor binding region.
  • Figure 14 Simulated ploidy call accuracies for counting method with two different analysis techniques.
  • Figure 15 Ratio of two alleles for a plurality of SNPs in a cell line in Experiment 4.
  • Figure 16 Ratio of two alleles for a plurality of SNPs in a cell line in Experiment 4 sorted by chromosome.
  • Figures 17A-17D Ratio of two alleles for a plurality of SNPs in four pregnant women plasma samples, sorted by chromosome.
  • Figure 18 Fraction of data that can be explained by binomial variance before and after data correction.
  • Figure 19 Graph showing relative enrichment of fetal DNA in samples following a short library preparation protocol.
  • Figure 20 Depth of read graph comparing direct PCR and semi-nested methods.
  • Figure 21 Comparison of depth of read for direct PCR of three genomic samples.
  • Figure 22 Comparison of depth of read for semi-nested mini-PCR of three samples.
  • Figure 23 Comparison of depth of read for 1,200-plex and 9,600-plex reactions.
  • Figure 24 Read count ratios for six cells at three chromosomes.
  • Figures 25A-25C Allele ratios for two three-cell reactions ( Figures 25B and 25C) and a third reaction run on 1 ng of genomic DNA at three chromosomes ( Figure 25 A).
  • Figures 26A and 26B Allele ratios for two single-cell reactions ( Figures 26A and 26B) at three chromosomes.
  • Figures 27A-27F Graphs of monosomy (Figure 27 A), disomy (Figure 27B), trisomy
  • Figures 28A-28D Graphs of disomy ( Figures 28A and 28C) and trisomy ( Figures 28B and 28D) for cases with partial maternal cell contamination.
  • Figure 29 Table of demographic data.
  • Prior methods for screening for fetal chromosome abnormalities can be hindered by contaminating cells and/ or DNA that prevents an accurate determination of the copy number for the fetus or that result in the copy number being mistakenly determined for the source of contamination rather than for the fetus.
  • maternal cell contamination is a significant problem in products of conception (POC) diagnosis, and can often lead to spurious conclusions. If a female (46,XX) karyotype is detected, it can be unclear whether this karyotype corresponds to the fetus or to maternal contamination in the POC sample.
  • the present invention features methods for determining whether a sample (such as a sample to be used for fetal aneuploidy screening, screening for the inheritance of a disease- linked locus, or paternity testing) has (i) fetal DNA (e.g., DNA from cellular or extracellular genetic material) with essentially no contaminating DNA, (ii) a mixture of fetal DNA and contaminating DNA, or (iii) contaminating DNA with essentially no fetal DNA. If desired, the absolute or relative amount of contaminating DNA can be determined.
  • fetal DNA e.g., DNA from cellular or extracellular genetic material
  • Possible contamination includes cellular or extracellular DNA from a source other than the fetus of interest, such as DNA from a related individual (e.g., the mother of the fetus or a different fetus that previously gestated in the mother) or DNA from an unrelated individual (e.g., another sample analyzed by the same laboratory).
  • a related individual e.g., the mother of the fetus or a different fetus that previously gestated in the mother
  • DNA from an unrelated individual e.g., another sample analyzed by the same laboratory.
  • there is essentially no contaminating DNA there is an undetectable or negligible amount of contaminating DNA or no contaminating DNA.
  • there is essentially no DNA from the fetus of interest there is an undetectable or negligible amount of DNA from the fetus or no DNA from the fetus,
  • the present methods are able to correct for any contamination and accurately determine the number of copies of a chromosome or chromosome segment of interest in the genome of a fetus.
  • Figures 28C and 28D illustrate the copy number determination for disomic and trisomic (respectively) chromosomes from a products of conception sample with -70% contaminating maternal cells.
  • the present methods may be used to compare the sample to one or more potential sources of contamination, such as DNA from the mother, to determine whether contamination from that source is present in the sample.
  • the methods are able to detect this "full" contamination and generate a "no call” result. Being able to differentiate maternal contamination from a chromosomally normal female fetus improves the accuracy of the test significantly. For example, the physician or patient can be informed of the contamination and asked to provide another sample for testing. This result is much better than methods which would inadvertently determine the copy number for the source of contamination and incorrectly report that as the copy number for the fetus.
  • the copy number determination involves making genotypic measurements at a plurality of polymorphic loci on the chromosome or chromosome segment from a sample; creating, on a computer, a set of one or more hypotheses about the number of copies of the chromosome or chromosome segment in the genome of the fetus; determining, on a computer, the probability of each of the hypotheses given the genotypic measurements; and using the probabilities associated with each hypothesis to determine the most likely number of copies of the chromosome or chromosome segment in the genome of the fetus.
  • the method also includes obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the mother and/or father.
  • use of a sample from the mother facilitates the detection or quantitation of maternal DNA in the sample.
  • use of genetic material from the father facilitates the analysis when there is a limited amount of material available from the test sample, such as when only a small sample was obtained, only a small amount of fetal DNA is present compared to the amount of contaminating DNA, or sample processing or storage conditions degrade or alter the DNA (such as by crosslinking the DNA).
  • the method involves making a clinical decision or taking a clinical action based on the test result (e.g., the called ploidy state, disease-linked locus, or paternity of the fetus).
  • the clinical action is terminating the pregnancy or maintaining the pregnancy.
  • the clinical action includes performing additional testing (such as amniocentesis or chorion villus biopsy) on the fetus to confirm the results.
  • the clinical action includes performing testing on an individual related to the fetus to screen for (i) an abnormality in the related individual that was found in the fetus or (ii) an abnormality in the related individual that could have led to the abnormality found in the fetus (e.g., the called ploidy state or disease-linked locus).
  • an abnormality in the related individual that was found in the fetus or an abnormality in the related individual that could have led to the abnormality found in the fetus (e.g., the called ploidy state or disease-linked locus).
  • some ploidy states may indicate that a parent is likely to harbor an abnormality.
  • an unbalanced translocation in the sample indicates the likelihood that a parent harbors a balanced translocation.
  • An advantage of the informatics technique is the ability to determine the parental source of aneuploidy, enabling karyotyping to be done only on the parent of origin.
  • the method includes ploidy determination on an individual and also follow up karyotyping one or both the parents of the individual in cases where the copy number calling on the individual indicates an abnormality.
  • Ploidy determination on the sample (such as a products of conception sample) that indicates that a parent harbors an inheritable chromosomal abnormality where passing the abnormality, or a sequella related to the abnormality to an offspring can be prevented preimplantation genetic diagnosis during subsequent in vitro fertilization.
  • the method may include ploidy determination on the sample (such as a products of conception sample) followed by preimplantation genetic diagnosis during subsequent in vitro fertilization for the purpose of preventing inheritance of a chromosomal abnormality, or a sequella related to the abnormality, to an offspring.
  • the clinical action includes performing testing (such as performing preimplantation genetic diagnosis, amniocentesis, or chorion villus biopsy) on a subsequent fetus or embryo that inherited genetic material from the mother and/or father.
  • the chromosomal abnormality includes partial duplications, partial deletions, translocations, other partial chromosomal abnormalities, monosomy, or trisomy, and other whole chromosome abnormalities.
  • the sample includes cellular and/or extracellular genetic material from the fetus, contaminating cellular and/or extracellular genetic material (such as genetic material from the mother of the fetus), or combinations thereof.
  • the sample comprises cellular genetic material from the fetus, contaminating cellular genetic material, or combinations thereof.
  • the sample comprises any tissue suspected of being at least partially of fetal origin.
  • the sample is from a gestating fetus. In some embodiments, the sample is from a non-gestating fetus, such as a products of conception sample or a sample from any fetal tissue after fetal demise. In some embodiments, the sample is a maternal whole blood sample, cells isolated from a maternal blood sample, maternal plasma sample, amniocentesis sample, placental tissue sample (e.g., chorionic villus, decidua, or placental membrane), cervical mucus sample, or other sample from a fetus.
  • placental tissue sample e.g., chorionic villus, decidua, or placental membrane
  • the sample is from any of the target individuals disclosed herein.
  • the target individual is a born individual, a gestating fetus, a non-gestating fetus such as a products of conception sample, an embryo, or any other individual. Any reference in this disclosure making reference to the method as applied to one of these types of individuals may equally well apply to any other type of individual.
  • the method may apply to a cancer or other tissue that is genetically altered from the genetic state of the host individual. In this case, the related individual would be considered to be the host individual.
  • the amount of cells in the sample that are maternal cells is between 5 to 99%, such as between 10 to 95%, 20 to 95%, 30 to 90%, 30 to 70%, 40 to 90%, 40 to 70%, 50 to 90%, or 50 to 80%, inclusive.
  • the sample is enriched for fetal cells.
  • at least 0.5, 1, 2, 3, 4, 5, 6, 7% or more of the cells in the enriched sample are fetal cells.
  • the amount of cells in the sample that are fetal cells is between 0.5 to 100%, such as between 1 to 99%, 5 to 95%, 10 to 95%, 10 to 95%, 20 to 90%, or 30 to 70%, inclusive.
  • the method includes preparing the sample (such as the first sample) by isolating the DNA so as to obtain a prepared sample.
  • the sample is preserved with a preservative such as formaldehyde and optionally encased in paraffin, which may cause cross-linking of the DNA such that less of it is available for PCR.
  • the metaphase karyotype is often used as a diagnostic tool in the setting of early miscarriage; however this technique has several limitations.
  • the informatics based technique described herein can bring the turn-around time of karyotyping from one month to less than a week. The benefits of rapid turnaround, the ability to definitively detect maternal contamination, the elimination of cell culture and its associated problems, justify the clinical application of this technology for analyzing products of conception.
  • Molecular karyotyping of products of conception (POC) using the SNP microarrays or sequencing methods described herein after missed abortion enables detection of maternal cell contamination and provides rapid results with good concordance to standard cytogenetic analysis.
  • Experiment 15 describes the use of a new technique for karyotyping that uses single nucleotide polymorphism microarrays. This technique was compared in a blinded, prospective fashion, to the traditional metaphase karyotype. Samples of chorionic villi were equally divided and sent for microarray testing in parallel with routine cytogenetic testing. Thirty samples were analyzed, with only four discordant results. Discordant results occurred when the entire genome was duplicated or when a balanced rearrangement was present.
  • Cytogentic karyotyping took an average of 29 days while microarray-based karytoyping took an average of 12 days.
  • Molecular karyotyping of POC after missed abortion using SNP microarray analysis allows for the ability to detect maternal cell contamination and provides rapid results with good concordance to standard cytogenetic analysis.
  • TAQMAN is a unique genotyping technology produced and distributed by LIFE TECHNOLOGY. TAQMAN uses polymerase chain reaction (PCR) to amplify sequences of interest. AFFYMETRIX's 500K ARRAYS and ILLUMINA's INFINIUM system are genotyping arrays that detect for the presence of specific sequences of DNA at a large number of locations simultaneously. ILLUMINA's HISEQ and MISEQ, and LIFE TECHNOLOGY'S PROTON, ION TORRENT and SOLID platform allow the direct sequencing of a large number of individual DNA sequences. Other genotyping platforms exist.
  • the present disclosure provides ex vivo methods for determining the ploidy status of a chromosome in a fetus (such as a gestating fetus or a POC sample) from genotypic data measured from a mixed sample of DNA (i.e., DNA from the mother of the fetus, and DNA from the fetus) and optionally from genotypic data measured from a sample of genetic material from the mother and possibly also from the father, wherein the determining is done by using a joint distribution model to create a set of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the actual allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern.
  • a mixed sample of DNA i.e., DNA from the mother of the fetus, and DNA from the fetus
  • the mixed sample is derived from maternal blood, or maternal serum or plasma.
  • the maternal DNA is isolated from maternal cells, and/or the fetal DNA is isolated from fetal cells.
  • the mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci. In an embodiment, the preferential enrichment is done in a way that minimizes the allelic bias.
  • the present disclosure relates to a composition of DNA that has been preferentially enriched at a plurality of loci such that the allelic bias is low.
  • the allelic distribution(s) are measured by sequencing the DNA from the mixed sample.
  • the joint distribution model assumes that the alleles will be distributed in a binomial fashion.
  • the set of expected joint allele distributions are created for genetically linked loci while considering the extant recombination frequencies from various sources, for example, using data from the International HapMap Consortium.
  • the present disclosure provides methods for non-invasive prenatal diagnosis (NPD), specifically, determining the aneuploidy status of a fetus by observing allele measurements at a plurality of polymorphic loci in genotypic data measured on DNA mixtures, where certain allele measurements are indicative of an aneuploid fetus, while other allele measurements are indicative of a euploid fetus.
  • the genotypic data is measured by sequencing DNA mixtures that were derived from maternal plasma.
  • the DNA sample may be preferentially enriched in molecules of DNA that correspond to the plurality of loci whose allele distributions are being calculated.
  • a sample of DNA comprising only or almost only genetic material from the mother and possibly also a sample of DNA comprising only or almost only genetic material from the father are measured.
  • the genetic measurements of one or both parents along with the estimated fetal fraction are used to create a plurality of expected allele distributions corresponding to different possible underlying genetic states of the fetus; the expected allele distributions may be termed hypotheses.
  • the maternal genetic data is not determined by measuring genetic material that is exclusively or almost exclusively maternal in nature, rather, it is estimated from the genetic measurements made on maternal plasma that comprises a mixture of maternal and fetal DNA.
  • the hypotheses may comprise the ploidy of the fetus at one or more chromosomes, which segments of which chromosomes in the fetus were inherited from which parents, and combinations thereof.
  • the ploidy state of the fetus is determined by comparing the observed allele measurements to the different hypotheses where at least some of the hypotheses correspond to different ploidy states, and selecting the ploidy state that corresponds to the hypothesis that is most likely to be true given the observed allele measurements.
  • this method involves using allele measurement data from some or all measured S Ps, regardless of whether the loci are homozygous or heterozygous, and therefore does not involve using alleles at loci that are only heterozygous.
  • This method may not be appropriate for situations where the genetic data pertains to only one polymorphic locus.
  • This method is particularly advantageous when the genetic data comprises data for more than ten polymorphic loci for a target chromosome or more than twenty polymorphic loci.
  • This method is especially advantageous when the genetic data comprises data for more than 50 polymorphic loci for a target chromosome, more than 100 polymorphic loci or more than 200 polymorphic loci for a target chromosome.
  • the genetic data may comprise data for more than 500 polymorphic loci for a target chromosome, more than 1,000 polymorphic loci, more than 2,000 polymorphic loci, or more than 5,000 polymorphic loci for a target chromosome.
  • a method disclosed herein uses selective enrichment techniques that preserve the relative allele frequencies that are present in the original sample of DNA at each target loci (e.g., each polymorphic locus) from a set of target loci (e.g., polymorphic loci). While enrichment is particularly advantageous for methods for analyzing polymorphic loci, these enrichment methods can be readily adapted for nonpolymorphic loci if desired.
  • the amplification and/or selective enrichment technique may involve PCR techniques such as mini-PCR, highly multiplex PCR, ligation mediated PCR, fragment capture by hybridization, or circularizing probes such as Molecular Inversion Probes.
  • methods for amplification or selective enrichment may involve using PCR primers or other probes where, upon correct hybridization to the target sequence, the 3-prime end or 5-prime end of a nucleotide probe is separated from the polymorphic site of the allele by a small number of nucleotides. This separation reduces preferential amplification of one allele, termed allele bias. This is an improvement over methods that involve using probes where the 3-prime end or 5-prime end of a correctly hybridized probe are directly adjacent to or very near to the polymorphic site of an allele. In an embodiment, probes in which the hybridizing region hybridizes to a polymorphic site are excluded.
  • Polymorphic sites at the site of hybridization can cause unequal hybridization or inhibit hybridization altogether in some alleles, resulting in preferential amplification of certain alleles.
  • These embodiments are improvements over other methods that involve targeted amplification and/or selective enrichment in that they better preserve the original allele frequencies of the sample at each polymorphic locus, whether the sample is pure genomic sample from a single individual or mixture of individuals.
  • a method disclosed herein uses highly efficient highly multiplexed targeted PCR to amplify DNA followed by high throughput sequencing to determine the allele frequencies at each target locus.
  • the ability to multiplex more than about 50 or 100 PCR primers in one reaction in a way that most of the resulting sequence reads map to targeted loci is novel and non-obvious.
  • One technique that allows highly multiplexed targeted PCR to perform in a highly efficient manner involves designing primers that are unlikely to hybridize with one another.
  • the PCR probes may be selected by creating a thermodynamic model of potentially adverse interactions, or unintended interactions, between at least 500, at least 1,000, at least 5,000, at least 10,000, at least 20,000, at least 50,000, or at least 100,000 potential primer pairs or between the primers and sample DNA, and then using the model to eliminate designs that are incompatible with other the designs in the pool or with the sample DNA.
  • Another technique that allows highly multiplexed targeted PCR to perform in a highly efficient manner is using a partial or full nesting approach to the targeted PCR.
  • Using one or a combination of these approaches allows multiplexing of at least 300, at least 800, at least 1,200, at least 4,000 or at least 10,000 primers in a single pool with the resulting amplified DNA comprising a majority of DNA molecules that, when sequenced, will map to targeted loci.
  • Using one or a combination of these approaches allows multiplexing of a large number of primers in a single pool with the resulting amplified DNA comprising greater than 50%, greater than 80%, greater than 90%, greater than 95%, greater than 98%, or greater than 99% DNA molecules that map to targeted loci.
  • a method disclosed herein yields a quantitative measure of the number of independent observations of each allele at a polymorphic locus. This is unlike most methods such as microarrays or qualitative PCR which provide information about the ratio of two alleles but do not quantify the number of independent observations of either allele. With methods that provide quantitative information regarding the number of independent observations, only the ratio is utilized in ploidy calculations, while the quantitative information by itself is not useful. To illustrate the importance of retaining information about the number of independent observations consider the sample locus with two alleles, A and B. In a first experiment twenty A alleles and twenty B alleles are observed, in a second experiment 200 A alleles and 200 B alleles are observed.
  • the ratio (A/(A+B)) is equal to 0.5, however the second experiment conveys more information than the first about the certainty of the frequency of the A or B allele.
  • Some methods involve averaging or summing allele ratios (channel ratios) (i.e. xj/yi) from individual allele and analyzes this ratio, either comparing it to a reference chromosome or using a rule pertaining to how this ratio is expected to behave in particular situations. No allele weighting is implied in such methods known in the art, where it is assumed that one can ensure about the same amount of PCR product for each allele and that all the alleles should behave the same way. Such a method has a number of disadvantages, and more importantly, precludes the use a number of improvements that are described elsewhere in this disclosure.
  • a method disclosed herein explicitly models the allele frequency distributions expected in disomy as well as a plurality of allele frequency distributions that may be expected in cases of trisomy resulting from nondisjunction during meiosis I, nondisjunction during meiosis II, and/or nondisjunction during mitosis early in fetal development. To illustrate why this is important, imagine a case where there were no crossovers: nondisjunction during meiosis I would result a trisomy in which two different homologs were inherited from one parent; in contrast, nondisjunction during meiosis II or during mitosis early in fetal development would result in two copies of the same homolog from one parent.
  • each scenario would result in different expected allele frequencies at each polymorphic locus and also at all loci considered jointly, due to genetic linkage.
  • Crossovers which result in the exchange of genetic material between homologs, make the inheritance pattern more complex; in an embodiment, the instant method accommodates for this by using recombination rate information in addition to the physical distance between loci.
  • the instant method incorporate into the model an increasing probability of crossover as the distance from the centromere increases.
  • Meiosis II and mitotic nondisjunction can distinguished by the fact that mitotic nondisjunction typically results in identical or nearly identical copies of one homolog while the two homologs present following a meiosis II nondisjunction event often differ due to one or more crossovers during gametogenesis.
  • a method disclosed herein involves comparing the observed allele measurements to theoretical hypotheses corresponding to possible fetal genetic aneuploidy, and does not involve a step of quantitating a ratio of alleles at a heterozygous locus. Where the number of loci is lower than about 20, the ploidy determination made using a method comprising quantitating a ratio of alleles at a heterozygous locus and a ploidy determination made using a method comprising comparing the observed allele measurements to theoretical allele distribution hypotheses corresponding to possible fetal genetic states may give a similar result.
  • a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus using a joint distribution model.
  • the use of a joint distribution model is a different from and a significant improvement over methods that determine heterozygosity rates by treating polymorphic loci independently in that the resultant determinations are of significantly higher accuracy. Without being bound by any particular theory, it is believed that one reason they are of higher accuracy is that the joint distribution model takes into account the linkage between S Ps, and likelihood of crossovers having occurred during the meiosis that gave rise to the gametes that formed the embryo that grew into the fetus.
  • the purpose of using the concept of linkage when creating the expected distribution of allele measurements for one or more hypotheses is that it allows the creation of expected allele measurements distributions that correspond to reality considerably better than when linkage is not used. For example, imagine that there are two SNPs, 1 and 2 located nearby one another, and the mother is A at SNP 1 and A at SNP 2 on one homolog, and B at SNP 1 and B at SNP 2 on homolog two. If the father is A for both SNPs on both homologs, and a B is measured for the fetus SNP 1, this indicates that homolog two has been inherited by the fetus, and therefore that there is a much higher likelihood of a B being present on the fetus at SNP 2.
  • the data may be compared to the hypothesized allele distribution, and weighted according to the number of sequence reads; therefore the data from these measurements would be appropriately weighted and incorporated into the overall determination.
  • This is in contrast to a method that involved quantitating a ratio of alleles at a heterozygous locus, as this method could only calculate ratios of 0%, 20%, 40%, 60%, 80% or 100% as the possible allele ratios; none of these may be close to expected allele ratios. In this latter case, the calculated allele rations would either have to be discarded due to insufficient reads or else would have disproportionate weighting and introduce stochastic noise into the determination, thereby decreasing the accuracy of the determination.
  • the individual allele measurements may be treated as independent measurements, where the relationship between measurements made on alleles at the same locus is no different from the relationship between measurements made on alleles at different loci.
  • a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus without comparing any metrics to observed allele measurements on a reference chromosome that is expected to be disomic (termed the RC method).
  • This is a significant improvement over methods, such as methods using shotgun sequencing which detect aneuploidy by evaluating the proportion of randomly sequenced fragments from a suspect chromosomes relative to one or more presumed disomic reference chromosome.
  • This RC method yields incorrect results if the presumed disomic reference chromosome is not actually disomic.
  • a joint distribution model may be fit, without any of: reference chromosome data, an overall child fraction estimate, or a fixed reference hypothesis.
  • a method disclosed herein demonstrates how observing allele distributions at polymorphic loci can be used to determine the ploidy state of a fetus with greater accuracy than prior methods.
  • the method uses the targeted sequencing to obtain mixed maternal-fetal genotypes and optionally mother and/or father genotypes at a plurality of S Ps to first establish the various expected allele frequency distributions under the different hypotheses, and then observing the quantitative allele information obtained on the maternal-fetal mixture and evaluating which hypothesis fits the data best, where the genetic state corresponding to the hypothesis with the best fit to the data is called as the correct genetic state.
  • a method disclosed herein also uses the degree of fit to generate a confidence that the called genetic state is the correct genetic state.
  • a method disclosed herein involves using algorithms that analyze the distribution of alleles found for loci that have different parental contexts, and comparing the observed allele distributions to the expected allele distributions for different ploidy states for the different parental contexts (different parental genotypic patterns). This is different from and an improvement over methods that do not use methods that enable the estimation of the number of independent instances of each allele at each locus in a mixed maternal-fetal sample.
  • a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus using observed allelic distributions measured at loci where the mother is heterozygous.
  • a method disclosed herein uses a joint distribution model that assumes that the allele frequencies at each locus are multinomial (and thus binomial when S Ps are biallelic) in nature.
  • the joint distribution model uses beta- binomial distributions.
  • binomial model can be applied to each locus and the degree underlying allele frequencies and the confidence in that frequency can be ascertained. With methods known in the art that generate ploidy calls from allele ratios, or methods in which quantitative allele information is discarded, the certainty in the observed ratio cannot be ascertained.
  • the instant method is different from and an improvement over methods that calculate allele ratios and aggregate those ratios to make a ploidy call, since any method that involves calculating an allele ratio at a particular locus, and then aggregating those ratios, necessarily assumes that the measured intensities or counts that are indicative of the amount of DNA from any given allele or locus will be distributed in a Gaussian fashion.
  • the method disclosed herein does not involve calculating allele ratios.
  • a method disclosed herein may involve incorporating the number of observations of each allele at a plurality of loci into a model.
  • a method disclosed herein may involve calculating the expected distributions themselves, allowing the use of a joint binomial distribution model which may be more accurate than any model that assumes a Gaussian distribution of allele measurements.
  • the likelihood that the binomial distribution model is significantly more accurate than the Gaussian distribution increases as the number of loci increases. For example, when fewer than 20 loci are interrogated, the likelihood that the binomial distribution model is significantly better is low. However, when more than 100, or especially more than 400, or especially more than 1,000, or especially more than 2,000 loci are used, the binomial distribution model will have a very high likelihood of being significantly more accurate than the Gaussian distribution model, thereby resulting in a more accurate ploidy determination.
  • the likelihood that the binomial distribution model is significantly more accurate than the Gaussian distribution also increases as the number of observations at each locus increases. For example, when fewer than 10 distinct sequences are observed at each locus are observed, the likelihood that the binomial distribution model is significantly better is low. However, when more than 50 sequence reads, or especially more than 100 sequence reads, or especially more than 200 sequence reads, or especially more than 300 sequence reads are used for each locus, the binomial distribution model will have a very high likelihood of being significantly more accurate than the Gaussian distribution model, thereby resulting in a more accurate ploidy determination.
  • a method disclosed herein uses sequencing to measure the number of instances of each allele at each locus in a DNA sample.
  • Each sequencing read may be mapped to a specific locus and treated as a binary sequence read; alternately, the probability of the identity of the read and/or the mapping may be incorporated as part of the sequence read, resulting in a probabilistic sequence read, that is, the probable whole or fractional number of sequence reads that map to a given loci.
  • Using the binary counts or probability of counts it is possible to use a binomial distribution for each set of measurements, allowing a confidence interval to be calculated around the number of counts. This ability to use the binomial distribution allows for more accurate ploidy estimations and more precise confidence intervals to be calculated.
  • a method disclosed herein uses aspects of the present set of data to determine parameters for the estimated allele frequency distribution for that set of data. This is an improvement over methods that utilize training set of data or prior sets of data to set parameters for the present expected allele frequency distributions, or possibly expected allele ratios.
  • a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus (e.g., indicative of a nullsomy, monosomy, disomy, euploidy, uniparental disomy, trisomy, matching trisomy, unmatching trisomy, maternal trisomy, paternal trisomy, tetrasomy, or other ploidy state) using a maximum likelihood technique.
  • the use of a maximum likelihood technique is different from and a significant improvement over methods that use single hypothesis rejection technique in that the resultant determinations will be made with significantly higher accuracy.
  • single hypothesis rejection techniques do not contain information on the alternative hypothesis.
  • the maximum likelihood technique may be used in combination with the method described in US Patent 7,888,017. In an embodiment, the maximum likelihood technique may be used in combination with the method of using targeted PCR amplification to amplify the DNA in the mixed sample followed by sequencing and analysis using a read counting method such as used by TANDEM DIAGNOSTICS, as presented at the International Congress of Human Genetics 2011, in Montreal in October 2011. In an embodiment, a method disclosed herein involves estimating the fetal fraction of DNA in the mixed sample and using that estimation to calculate both the ploidy call and the confidence of the ploidy call.
  • the ploidy determination involves determining the probability of the measured genotypic data given two possible hypotheses: the hypothesis that the alleged father is the biological father of the fetus, and the hypothesis that the alleged father is not the biological father of the fetus. A probability can then be calculated for each of the hypotheses given the data, and the ploidy state may be established based on the likelihood of each of the two hypotheses.
  • the determination may utilize genetic measurements made on the mixed sample (e.g., maternal plasma), genetic measurements made on DNA from the alleged father, and optionally maternal genotypic data.
  • the maternal genotypic data can be inferred from the genotypic measurements made on maternal plasma.
  • the probability can be determined using a partition of the range of possible fetal fractions; the range of fetal fractions could be anywhere from 0.01% to 99.9%, and the mesh may have increments ranging from 10% to 1%, from 1% to 0.1%, and lower than 0.1%. In an embodiment, the partition of possible fetal fractions may be from 2% to 30%, and the increments are about 1%. In an embodiment, the mesh could be continuous, and the likelihoods could be integrated over the ranges rather than combined. In an embodiment, the probability can be determined using only one fetal fraction, where that fetal fraction may be determined using any appropriate method. For each possible fetal fraction in the mesh, one can calculate the probability of the data given the two hypotheses.
  • the alleged father genotypes may be used in the calculation of the probability, while for the hypothesis that the alleged father is not the biological father, population based allele frequency data may additionally be used in the calculation of the probability.
  • population based allele frequency data may additionally be used in the calculation of the probability.
  • the likelihoods can be combined over all fetal fractions in the partition, over all mother genotypes, and over all father genotypes.
  • the parental genotypes may be probabilistic (e.g., at a given SNP, a parent may have the genotype GT with 99% chance, GG with 0.5% chance, and TT with 0.5% chance; in another embodiment the parental genotypes may take on one value (e.g., at a given S P, a parent has the genotype GT).
  • a method disclosed herein takes into account the tendency for the data to be noisy and contain errors by attaching a probability to each measurement.
  • the use of maximum likelihood techniques to choose the correct hypothesis from the set of hypotheses that were made using the measurement data with attached probabilistic estimates makes it more likely that the incorrect measurements will be discounted, and the correct measurements will be used in the calculations that lead to the ploidy determination.
  • this method systematically reduces the influence of incorrectly measured data on the ploidy determination. This is an improvement over methods where all data is assumed to be equally correct or methods where outlying data is arbitrarily excluded from calculations leading to a ploidy determination.
  • individual S Ps are weighted by expected measurement variance based on the SNP quality and observed depth of read; this may result in an increase in the accuracy of the resulting statistic, resulting in an increase in the accuracy of the ploidy determination significantly, especially in borderline cases.
  • a method disclosed herein does not presuppose the knowledge of which SNPs or other polymorphic loci are heterozygous on the fetus. This method allows a ploidy call to be made in cases where paternal genotypic information is not available. This is an improvement over methods where the knowledge of which SNPs are heterozygous must be known ahead of time in order to appropriately select loci to target, or to interpret the genetic measurements made on the mixed fetal/maternal DNA sample.
  • the methods described herein are particularly advantageous when used on samples where a small amount of DNA is available, or where the percent of fetal DNA is low. This is due to the correspondingly higher allele dropout rate that occurs when only a small amount of DNA is available and/or the correspondingly higher fetal allele dropout rate when the percent of fetal DNA is low in a mixed sample of fetal and maternal DNA.
  • a high allele dropout rate meaning that a large percentage of the alleles were not measured for the target individual, results in poorly accurate fetal fractions calculations, and poorly accurate ploidy determinations. Since methods disclosed herein may use a joint distribution model that takes into account the linkage in inheritance patterns between SNPs, significantly more accurate ploidy determinations may be made.
  • the methods described herein allow for an accurate ploidy determination to be made when the percent of molecules of DNA that are fetal in the mixture is less than 40%, less than 30%, less than 20%, less than 10%, less than 8%, and even less than 6%.
  • the mixture of DNA is the free floating DNA found in maternal plasma, which may include DNA from the mother, with known karyotype and known genotype, and which may be mixed with DNA of the fetus, with unknown karyotype and unknown genotype.
  • the mixture of DNA is DNA isolated from a mixture of maternal and fetal cells.
  • each potential composition may be referred to as a hypothesis.
  • the ploidy state of the fetus can then be determined by looking at the actual measurements, and determining which potential compositions are most likely given the observed data.
  • a method disclosed herein could be used in situations where there is a very small amount of DNA present, such as in in vitro fertilization, or in forensic situations, where one or a few cells are available (typically less than ten cells, less than twenty cells or less than 40 cells.)
  • a method disclosed herein serves to make ploidy calls from a small amount of DNA that is not contaminated by other DNA, but where the ploidy calling very difficult the small amount of DNA.
  • a method disclosed herein could be used in situations where the target DNA is contaminated with DNA of another individual, for example in maternal blood in the context of prenatal diagnosis, paternity testing, or products of conception testing.
  • RNA DNA or RNA
  • a method disclosed herein could be run with nucleic acid detection methods such as sequencing, microarrays, qPCR, digital PCR, or other methods used to measure nucleic acids. If for some reason it were found to be desirable, the ratios of the allele count probabilities at a locus could be calculated, and the allele ratios could be used to determine ploidy state in combination with some of the methods described herein, provided the methods are compatible.
  • a method disclosed herein involves calculating, on a computer, allele ratios at the plurality of polymorphic loci from the DNA measurements made on the processed samples. In some embodiments, a method disclosed herein involves calculating, on a computer, allele ratios at the plurality of polymorphic loci from the DNA measurements made on the processed samples along with any combination of other improvements described in this disclosure.
  • the method may include detecting copy number counts at a segment of a chromosome, where the segment of the chromosome may be as short as one gene, or a segment of chromosome containing two SNPs, to as long as the entire chromosome.
  • the method works equally well on any length of DNA, and any discussion in this disclosure of a chromosome may equally well refer to a segment of a chromosome.
  • this method involves using allele measurement data from a plurality of loci.
  • the loci are polymorphic.
  • some or most of the loci are polymorphic.
  • the polymorphic loci are SNPs.
  • some or most of the polymorphic loci are heterozygous. In an embodiment, it is not necessary to determine which loci are heterozygous in advance of the testing.
  • the loci measured can be untargeted or targeted. Targeted loci can be polymorphic or non-polymorphic.
  • graphical display of the data allows facile copy number calling by eye, or by expert methods.
  • the data from a genetic sample of an individual may be plotted using colors or other symbols that correspond to the genotype, or context, of the mother and/or the father of the individual.
  • the patterns of the differently denoted data points can be used to determine the ploidy state of the tissue.
  • the ploidy state determination can be done by a computer algorithm, expert methods, hand calling (human determination by looking at the graph) or other appropriate methods. Examples of ploidy calling using this method are shown in Figures 27E, 27F, and 28A-28D.
  • NPD Non-Invasive Prenatal Diagnosis
  • the process of non-invasive prenatal diagnosis involves a number of steps. Some of the steps may include: (1) obtaining the genetic material from the fetus; (2) enriching the genetic material of the fetus that may be in a mixed sample, ex vivo; (3) amplifying the genetic material, ex vivo; (4) preferentially enriching specific loci in the genetic material, ex vivo; (5) measuring the genetic material, ex vivo; and (6) analyzing the genotypic data, on a computer, and ex vivo. Methods to reduce to practice these six and other relevant steps are described herein. At least some of the method steps are not directly applied on the body. In an embodiment, the present disclosure relates to methods of treatment and diagnosis applied to tissue and other biological materials isolated and separated from the body. At least some of the method steps are executed on a computer.
  • Some embodiments of the present disclosure allow a clinician to determine the genetic state of a fetus that is gestating in a mother in a non- invasive manner such that the health of the baby is not put at risk by the collection of the genetic material of the fetus, and that the mother is not required to undergo an invasive procedure.
  • the present disclosure allows the fetal genetic state to be determined with high accuracy, significantly greater accuracy than, for example, the non-invasive maternal serum analyte based screens, such as the triple test, that are in wide use in prenatal care.
  • the high accuracy of the methods disclosed herein is a result of an informatics approach to analysis of the genotype data, as described herein.
  • Modern technological advances have resulted in the ability to measure large amounts of genetic information from a genetic sample using such methods as high throughput sequencing and genotyping arrays.
  • the methods disclosed herein allow a clinician to take greater advantage of the large amounts of data available, and make a more accurate diagnosis of the fetal genetic state.
  • the details of a number of embodiments are given below. Different embodiments may involve different combinations of the aforementioned steps. Various combinations of the different embodiments of the different steps may be used interchangeably.
  • a blood sample is taken from a pregnant mother, and the free floating DNA in the plasma of the mother's blood, which contains a mixture of both DNA of maternal origin and DNA of fetal origin, is isolated and used to determine the ploidy status of the fetus.
  • a blood sample is taken from the pregnant mother, and fetal cells, or a sample of cells that are enriched in fetal cells, are isolated and used to determine the ploidy status of the fetus.
  • a method disclosed herein involves preferential enrichment of those DNA sequences in a mixture of DNA that correspond to polymorphic alleles in a way that the allele ratios and/or allele distributions remain mostly consistent upon enrichment.
  • a method disclosed herein involves the highly efficient targeted PCR based amplification such that a very high percentage of the resulting molecules correspond to targeted loci.
  • a method disclosed herein involves sequencing a mixture of DNA that contains both DNA of maternal origin, and DNA of fetal origin.
  • a method disclosed herein involves using measured allele distributions to determine the ploidy state of a fetus (such as a fetus that is gestating in a mother).
  • a method disclosed herein involves reporting the determined ploidy state to a clinician.
  • a method disclosed herein involves taking a clinical action, for example, performing follow up invasive testing such as chorionic villus sampling or amniocentesis, preparing for the birth of a trisomic individual or an elective termination of a trisomic fetus.
  • the methods described herein may be used to help determine the genotype of a child, fetus, or other target individual where the genetic material of the target is found in the presence of a quantity of other genetic material.
  • the genotype may refer to the ploidy state of one or a plurality of chromosomes, it may refer to one or a plurality of disease linked alleles, or some combination thereof.
  • the discussion focuses on determining the genetic state of a fetus where the fetal DNA is found in maternal blood, but this example is not meant to limit to possible contexts that this method may be applied to.
  • the method may be applicable in cases where the amount of target DNA is in any proportion with the non-target DNA; for example, the target DNA could make up anywhere between 0.000001 and 99.999999% of the DNA present.
  • the non-target DNA does not necessarily need to be from one individual, or even from a related individual, as long as genetic data from some or all of the relevant non-target individual(s) is known.
  • a method disclosed herein can be used to determine genotypic data of a fetus from maternal blood that contains fetal DNA (e.g., free floating fetal DNA or fetal cells in maternal blood). It may also be used in a case where there are multiple fetuses in the uterus of a pregnant woman, or where other contaminating DNA may be present in the sample, for example from other already born siblings.
  • This technique may make use of the phenomenon of fetal blood cells gaining access to maternal circulation through the placental villi. Ordinarily, only a very small number of fetal cells enter the maternal circulation in this fashion (not enough to produce a positive Kleihauer- Betke test for fetal-maternal hemorrhage).
  • the fetal cells can be sorted out and analyzed by a variety of techniques to look for particular DNA sequences, but without the risks that invasive procedures inherently have.
  • This technique may also make use of the phenomenon of free floating fetal DNA gaining access to maternal circulation by DNA release following apoptosis of placental tissue where the placental tissue in question contains DNA of the same genotype as the fetus.
  • the free floating DNA found in maternal plasma has been shown to contain fetal DNA in proportions as high as 30-40% fetal DNA.
  • blood may be drawn from a pregnant woman.
  • maternal blood may contain a small amount of free floating DNA from the fetus, in addition to free floating DNA of maternal origin.
  • fetal blood cells comprising DNA of fetal origin, in addition to many blood cells of maternal origin, which typically do not contain nuclear DNA.
  • chromatography has been show to create certain fractions that are enriched in fetal DNA.
  • the sample of maternal blood, plasma, or other fluid, drawn in a relatively noninvasive manner, and that contains an amount of fetal DNA, either cellular or free floating, either enriched in its proportion to the maternal DNA, or in its original ratio, is in hand, one may genotype the DNA found in said sample.
  • the blood may be drawn using a needle to withdraw blood from a vein, for example, the basilica vein.
  • the method described herein can be used to determine genotypic data of the fetus. For example, it can be used to determine the ploidy state at one or more chromosomes, it can be used to determine the identity of one or a set of SNPs, including insertions, deletions, translocations, and mosaicisim. It can be used to determine one or more haplotypes, including the parent of origin of one or more genotypic features.
  • this method will work with any nucleic acids that can be used for any genotyping and/or sequencing methods, such as the ILLUMINA INFINIUM ARRAY platform, AFFYMETRIX GENECfflP, ILLUMINA GENOME ANALYZER, or LIFE TECHNOLGIES ' SOLID SYSTEM.
  • genomic DNA from other cell types (e.g. human lymphocytes from whole blood) or amplifications of the same.
  • any extraction or purification method that generates genomic DNA suitable for the one of these platforms will work as well.
  • This method could work equally well with samples of RNA.
  • storage of the samples may be done in a way that will minimize degradation (e.g., below freezing, at about -20
  • the methods of the present invention may also be used with samples obtained invasively from a fetus, such an amniocentesis sample comprising amniotic fluid or a placental tissue sample (e.g., a chorionic villus, decidua, or placental membrane sample). Routine methods can be used to obtain these samples. If desired, the relative or absolute amount (if any) of contaminating DNA (such as maternal DNA) can be determined using the methods described herein. For cases in which there is partial or no contamination, the copy number can be determined for one or more chromosomes or chromosomes segments in the genome of the fetus as described herein.
  • Some embodiments may be used in combination with the PARENTAL SUPPORTTM (PS) method, embodiments of which are described in U.S. Application No. 11/603,406 (US Publication No.: 20070184467), U.S. Application No. 12/076,348 (US Publication No.: 20080243398), U.S. Application 13/110,685, PCT Application PCT/US09/52730 (PCT Publication No.: WO/2010/017214), PCT Application No. PCT/US 10/050824 (PCT Publication No.: WO/2011/041485), PCT Application No. PCT/US2011/037018 (PCT Publication No.: WO/2011/146632), PCT Application No.
  • PS PARENTAL SUPPORTTM
  • PARENTAL SUPPORT is an informatics based approach that can be used to analyze genetic data. In some embodiments, the methods disclosed herein may be considered as part of the PARENTAL SUPPORT method.
  • the PARENTAL SUPPORT method is a collection of methods that may be used to determine the genetic data of a target individual, with high accuracy, of one or a small number of cells from that individual, or of a mixture of DNA consisting of DNA from the target individual and DNA from one or a plurality of other individuals, specifically to determine disease-related alleles, other alleles of interest, the ploidy state of one or a plurality of chromosomes in the target individual, and/or the extent of relationship of another individual to the target individual.
  • PARENTAL SUPPORT may refer to any of these methods.
  • PARENTAL SUPPORT is an example of an informatics based method.
  • the PARENTAL SUPPORT method makes use of known parental genetic data, e.g.. haplotypic and/or diploid genetic data of the mother and/or the father, together with the knowledge of the mechanism of meiosis and the imperfect measurement of the target DNA, and possibly of one or more related individuals, along with population based crossover frequencies, in order to reconstruct, in silico, the genotype at a plurality of alleles, and/or the ploidy state of an embryo or of any target cell(s), and the target DNA at the location of key loci with a high degree of confidence.
  • known parental genetic data e.g.. haplotypic and/or diploid genetic data of the mother and/or the father
  • population based crossover frequencies in order to reconstruct, in silico, the genotype at a plurality of alleles, and/or the ploidy state of an embryo or of any target cell(s), and the target DNA at the location of key loci with a high degree of confidence.
  • the PARENTAL SUPPORT method can be used to create hypotheses about what genetic data may be expected for different situations, to calculate the likelihood of each of the situations given the observed genetic data, thereby determining which situation is most likely.
  • the situation is question may include whether the target individual has inherited a disease linked haplotype of interest, whether the target individual has inherited a phenotype linked haplotype of interest, whether the target individual has one or more aneuploid chromosomes, and/or whether the target individual is related to an individual of interest, and what the degree of relationship may be.
  • the PARENTAL SUPPORT method allows the cleaning of noisy genetic data.
  • PARENTAL SUPPORT may be particularly relevant where only a small fraction of the genetic material available is from the target individual (e.g., NPD or NPPT) and where direct measurements of the genotypes are inherently noisy due to the contaminating DNA signal from another individual or due to the limited amount of genetic material available.
  • an automated PARENTAL SUPPORT algorithm can make highly accurate copy number calls with up to 10% maternal cell contamination.
  • an informatics enhanced algorithm can make highly accurate copy number calls up to 80%, up to 90%, up to 95%, up to 98%, up to 99% or up to 99.9% maternal cell contamination.
  • the PARENTAL SUPPORT method is able to reconstruct highly accurate ordered diploid allele sequences on an embryo or fetus, together with copy number of chromosomes segments, even though the conventional, unordered diploid measurements may be characterized by high rates of allele dropouts, drop-ins, variable amplification biases and other errors.
  • the method may employ both an underlying genetic model and an underlying model of measurement error.
  • the genetic model may determine both allele probabilities at each SNP and crossover probabilities between SNPs. Allele probabilities may be modeled at each SNP based on data obtained from the parents and model crossover probabilities between SNPs based on data obtained from the HapMap database, as developed by the International HapMap Project. Given the proper underlying genetic model and measurement error model, maximum a posteriori (MAP) estimation may be used, with modifications for computationally efficiency, to estimate the correct, ordered allele values at each SNP in the embryo or fetus.
  • MAP maximum a posteriori
  • the techniques outlined above are able to determine the genotype of an individual given a very small amount of DNA originating from that individual. This could be the DNA from one or a small number of cells, or it could be from the small amount of fetal DNA found in maternal blood.
  • Single Nucleotide Polymorphism refers to a single nucleotide that may differ between the genomes of two members of the same species. The usage of the term should not imply any limit on the frequency with which each variant occurs.
  • Sequence refers to a DNA sequence or a genetic sequence. It may refer to the primary, physical structure of the DNA molecule or strand in an individual. It may refer to the sequence of nucleotides found in that DNA molecule, or the complementary strand to the DNA molecule. It may refer to the information contained in the DNA molecule as its representation in silico.
  • Locus refers to a particular region of interest on the DNA of an individual, which may refer to a SNP, the site of a possible insertion or deletion, or the site of some other relevant genetic variation.
  • Disease-linked SNPs may also refer to disease-linked loci.
  • Polymorphic Allele also "Polymorphic Locus,” refers to an allele or locus where the genotype varies between individuals within a given species. Some examples of polymorphic alleles include single nucleotide polymorphisms, short tandem repeats, deletions, duplications, and inversions.
  • Polymorphic Site refers to the specific nucleotides found in a polymorphic region that vary between individuals.
  • Allele refers to the genes that occupy a particular locus.
  • Genotypic Data refers to the data describing aspects of the genome of one or more individuals. It may refer to one or a set of loci, partial or entire sequences, partial or entire chromosomes, or the entire genome. It may refer to the identity of one or a plurality of nucleotides; it may refer to a set of sequential nucleotides, or nucleotides from different locations in the genome, or a combination thereof. Genotypic data is typically in silico, however, it is also possible to consider physical nucleotides in a sequence as chemically encoded genetic data. Genotypic Data may be said to be “on,” “of,” “at,” “from” or “on” the individual(s). Genotypic Data may refer to output measurements from a genotyping platform where those measurements are made on genetic material.
  • Genetic Sample refers to physical matter, such as tissue or blood, from one or more individuals comprising DNA or RNA
  • noisy Genetic Data refers to genetic data with any of the following: allele dropouts, uncertain base pair measurements, incorrect base pair measurements, missing base pair measurements, uncertain measurements of insertions or deletions or duplications, uncertain measurements of chromosome segment copy numbers, spurious signals, missing measurements, other errors, or combinations thereof.
  • Confidence refers to the statistical likelihood that the called S P, allele, set of alleles, ploidy call, or determined number of chromosome segment copies correctly represents the real genetic state of the individual.
  • Ploidy Calling also "Chromosome Copy Number Calling,” or “Copy Number Calling” (CNC) may refer to the act of determining the quantity and/or chromosomal identity of one or more chromosomes present in a cell.
  • Aneuploidy refers to the state where the wrong number of chromosomes ⁇ e.g., the wrong number of full chromosomes or the wrong number of chromosome segments, such as the presence of deletions or duplications of a chromosome segment) is present in a cell.
  • a somatic human cell it may refer to the case where a cell does not contain 22 pairs of autosomal chromosomes and one pair of sex chromosomes.
  • a human gamete it may refer to the case where a cell does not contain one of each of the 23 chromosomes.
  • a single chromosome type it may refer to the case where more or less than two homologous but non-identical chromosome copies are present, or where there are two chromosome copies present that originate from the same parent.
  • the deletion of a chromosome segment is a microdeletion.
  • Ploidy State refers to the quantity and/or chromosomal identity of one or more chromosomes types in a cell.
  • Chromosome may refer to a single chromosome copy, meaning a single molecule of DNA of which there are 46 in a normal somatic cell; an example is 'the maternally derived chromosome 18'. Chromosome may also refer to a chromosome type, of which there are 23 in a normal human somatic cell; an example is 'chromosome 18'.
  • Chromosomal Identity may refer to the referent chromosome number, i.e. the chromosome type. Normal humans have 22 types of numbered autosomal chromosome types, and two types of sex chromosomes. It may also refer to the parental origin of the chromosome. It may also refer to a specific chromosome inherited from the parent. It may also refer to other identifying features of a chromosome.
  • the State of the Genetic Material or simply "Genetic State” may refer to the identity of a set of SNPs on the DNA, to the phased haplotypes of the genetic material, and to the sequence of the DNA, including insertions, deletions, repeats and mutations. It may also refer to the ploidy state of one or more chromosomes, chromosomal segments, or set of chromosomal segments.
  • Allelic Data refers to a set of genotypic data concerning a set of one or more alleles. It may refer to the phased, haplotypic data. It may refer to SNP identities, and it may refer to the sequence data of the DNA, including insertions, deletions, repeats and mutations. It may include the parental origin of each allele.
  • Allelic State refers to the actual state of the genes in a set of one or more alleles. It may refer to the actual state of the genes described by the allelic data.
  • Allelic Ratio or allele ratio refers to the ratio between the amount of each allele at a locus that is present in a sample or in an individual.
  • allelic ratio may refer to the ratio of sequence reads that map to each allele at the locus.
  • allele ratio may refer to the ratio of the amounts of each allele present at that locus as estimated by the measurement method.
  • Allele Count refers to the number of sequences that map to a particular locus, and if that locus is polymorphic, it refers to the number of sequences that map to each of the alleles. If each allele is counted in a binary fashion, then the allele count will be whole number. If the alleles are counted probabilistically, then the allele count can be a fractional number.
  • Allele Count Probability refers to the number of sequences that are likely to map to a particular locus or a set of alleles at a polymorphic locus, combined with the probability of the mapping. Note that allele counts are equivalent to allele count probabilities where the probability of the mapping for each counted sequence is binary (zero or one). In some embodiments, the allele count probabilities may be binary. In some embodiments, the allele count probabilities may be set to be equal to the DNA measurements.
  • Allelic Distribution refers to the relative amount of each allele that is present for each locus in a set of loci.
  • An allelic distribution can refer to an individual, to a sample, or to a set of measurements made on a sample.
  • the allelic distribution refers to the number or probable number of reads that map to a particular allele for each allele in a set of polymorphic loci.
  • analog allele measurements such as SNP arrays, the allelic distribution refers to allele intensities and/or allele ratios.
  • the allele measurements may be treated probabilistically, that is, the likelihood that a given allele is present for a give sequence read is a fraction between 0 and 1, or they may be treated in a binary fashion, that is, any given read is considered to be exactly zero or one copies of a particular allele.
  • Allelic Distribution Pattern refers to a set of different allele distributions for different parental contexts. Certain allelic distribution patterns may be indicative of certain ploidy states. Allelic Bias refers to the degree to which the measured ratio of alleles at a heterozygous locus is different to the ratio that was present in the original sample of DNA. The degree of allelic bias at a particular locus is equal to the observed allelic ratio at that locus, as measured, divided by the ratio of alleles in the original DNA sample at that locus.
  • Allelic bias may be defined to be greater than one, such that if the calculation of the degree of allelic bias returns a value, x, that is less than 1, then the degree of allelic bias may be restated as 1/x. Allelic bias maybe due to amplification bias, purification bias, or some other phenomenon that affects different alleles differently.
  • Primer also "PCR probe” refers to a single DNA molecule (a DNA oligomer) or a collection of DNA molecules (DNA oligomers) where the DNA molecules are identical, or nearly so, and where the primer contains a region that is designed to hybridize to a targeted locus ⁇ e.g., a targeted polymorphic locus or a non-polymorphic locus), and may contain a priming sequence designed to allow PCR amplification.
  • a primer may also contain a molecular barcode.
  • a primer may contain a random region that differs for each individual molecule.
  • Hybrid Capture Probe refers to any nucleic acid sequence, possibly modified, that is generated by various methods such as PCR or direct synthesis and intended to be complementary to one strand of a specific target DNA sequence in a sample.
  • the exogenous hybrid capture probes may be added to a prepared sample and hybridized through a denature- reannealing process to form duplexes of exogenous-endogenous fragments. These duplexes may then be physically separated from the sample by various means.
  • Sequence Read refers to data representing a sequence of nucleotide bases that were measured using a clonal sequencing method. Clonal sequencing may produce sequence data representing single, or clones, or clusters of one original DNA molecule. A sequence read may also have associated quality score at each base position of the sequence indicating the probability that nucleotide has been called correctly. Mapping a sequence read is the process of determining a sequence read's location of origin in the genome sequence of a particular organism. The location of origin of sequence reads is based on similarity of nucleotide sequence of the read and the genome sequence.
  • Matched Copy Error also "Matching Chromosome Aneuploidy" (MCA) refers to a state of aneuploidy where one cell contains two identical or nearly identical chromosomes. This type of aneuploidy may arise during the formation of the gametes in meiosis, and may be referred to as a meiotic non-disjunction error. This type of error may arise in mitosis. Matching trisomy may refer to the case where three copies of a given chromosome are present in an individual and two of the copies are identical.
  • Unmatched Copy Error also "Unique Chromosome Aneuploidy" (UCA) refers to a state of aneuploidy where one cell contains two chromosomes that are from the same parent, and that may be homologous but not identical. This type of aneuploidy may arise during meiosis, and may be referred to as a meiotic error.
  • Unmatching trisomy may refer to the case where three copies of a given chromosome are present in an individual and two of the copies are from the same parent, and are homologous, but are not identical. Note that unmatching trisomy may refer to the case where two homologous chromosomes from one parent are present, and where some segments of the chromosomes are identical while other segments are merely homologous.
  • Homologous Chromosomes refers to chromosome copies that contain the same set of genes that normally pair up during meiosis.
  • Identical Chromosomes refers to chromosome copies that contain the same set of genes, and for each gene they have the same set of alleles that are identical, or nearly identical.
  • Allele Drop Out refers to the situation where at least one of the base pairs in a set of base pairs from homologous chromosomes at a given allele is not detected.
  • Locus Drop Out refers to the situation where both base pairs in a set of base pairs from homologous chromosomes at a given allele are not detected.
  • Homozygous refers to having similar alleles as corresponding chromosomal loci.
  • Heterozygous refers to having dissimilar alleles as corresponding chromosomal loci.
  • Heterozygosity Rate refers to the rate of individuals in the population having heterozygous alleles at a given locus.
  • the heterozygosity rate may also refer to the expected or measured ratio of alleles, at a given locus in an individual, or a sample of DNA.
  • Highly Informative Single Nucleotide Polymorphism refers to a S P where the fetus has an allele that is not present in the mother's genotype.
  • Chromosomal Region refers to a segment of a chromosome, or a full chromosome.
  • Segment of a Chromosome refers to a section of a chromosome that can range in size from one base pair to the entire chromosome.
  • Chromosome refers to either a full chromosome, or a segment or section of a chromosome.
  • Copies refers to the number of copies of a chromosome segment. It may refer to identical copies, or to non-identical, homologous copies of a chromosome segment wherein the different copies of the chromosome segment contain a substantially similar set of loci, and where one or more of the alleles are different. Note that in some cases of aneuploidy, such as the M2 copy error, it is possible to have some copies of the given chromosome segment that are identical as well as some copies of the same chromosome segment that are not identical.
  • Haplotype refers to a combination of alleles at multiple loci that are typically inherited together on the same chromosome. Haplotype may refer to as few as two loci or to an entire chromosome depending on the number of recombination events that have occurred between a given set of loci. Haplotype can also refer to a set of single nucleotide polymorphisms (SNPs) on a single chromatid that are statistically associated.
  • SNPs single nucleotide polymorphisms
  • Haplotypic Data also "Phased Data” or “Ordered Genetic Data,” refers to data from a single chromosome in a diploid or polyploid genome, i.e., either the segregated maternal or paternal copy of a chromosome in a diploid genome.
  • Phasing refers to the act of determining the haplotypic genetic data of an individual given unordered, diploid (or polyploidy) genetic data. It may refer to the act of determining which of two genes at an allele, for a set of alleles found on one chromosome, are associated with each of the two homologous chromosomes in an individual.
  • Phased Data refers to genetic data where one or more haplotypes have been determined.
  • Hypothesis refers to a possible ploidy state at a given set of chromosomes, or a set of possible allelic states at a given set of loci.
  • the set of possibilities may comprise one or more elements.
  • Copy Number Hypothesis also "Ploidy State Hypothesis,” refers to a hypothesis concerning the number of copies of a chromosome in an individual. It may also refer to a hypothesis concerning the identity of each of the chromosomes, including the parent of origin of each chromosome, and which of the parent's two chromosomes are present in the individual. It may also refer to a hypothesis concerning which chromosomes, or chromosome segments, if any, from a related individual correspond genetically to a given chromosome from an individual.
  • Target Individual refers to the individual whose genetic state is being determined. In some embodiments, only a limited amount of DNA is available from the target individual. In some embodiments, the target individual is a fetus. In some embodiments, there may be more than one target individual. In some embodiments, each fetus that originated from a pair of parents may be considered to be target individuals. In some embodiments, the genetic data that is being determined is one or a set of allele calls. In some embodiments, the genetic data that is being determined is a ploidy call.
  • the related individual refers to any individual who is genetically related to, and thus shares haplotype blocks with, the target individual.
  • the related individual may be a genetic parent of the target individual, or any genetic material derived from a parent, such as a sperm, a polar body, an embryo, a fetus, or a child. It may also refer to a sibling, parent or a grandparent.
  • Sibling refers to any individual whose genetic parents are the same as the individual in question. In some embodiments, it may refer to a born child, an embryo, or a fetus, or one or more cells originating from a born child, an embryo, or a fetus. A sibling may also refer to a haploid individual that originates from one of the parents, such as a sperm, a polar body, or any other set of haplotypic genetic matter. An individual may be considered to be a sibling of itself.
  • Fetal refers to "of the fetus," or "of the region of the placenta that is genetically similar to the fetus".
  • some portion of the placenta is genetically similar to the fetus, and the free floating fetal DNA found in maternal blood may have originated from the portion of the placenta with a genotype that matches the fetus.
  • the genetic information in half of the chromosomes in a fetus is inherited from the mother of the fetus.
  • the DNA from these maternally inherited chromosomes that came from a fetal cell is considered to be "of fetal origin,” not "of maternal origin.”
  • DNA of Fetal Origin refers to DNA that was originally part of a cell whose genotype was essentially equivalent to that of the fetus.
  • DNA of Maternal Origin refers to DNA that was originally part of a cell whose genotype was essentially equivalent to that of the mother.
  • Child may refer to an embryo, a blastomere, or a fetus. Note that in the presently disclosed embodiments, the concepts described apply equally well to individuals who are a born child, a fetus, an embryo or a set of cells therefrom. The use of the term child may simply be meant to connote that the individual referred to as the child is the genetic offspring of the parents.
  • Parent refers to the genetic mother or father of an individual. An individual typically has two parents, a mother and a father, though this may not necessarily be the case such as in genetic or chromosomal chimerism. A parent may be considered to be an individual.
  • Parental Context refers to the genetic state of a given SNP, on each of the two relevant chromosomes for one or both of the two parents of the target.
  • Develop Normally refers to a viable embryo implanting in a uterus and resulting in a pregnancy, and/or to a pregnancy continuing and resulting in a live birth, and/or to a born child being free of chromosomal abnormalities, and/or to a born child being free of other undesired genetic conditions such as disease-linked genes.
  • developer as desired is meant to encompass anything that may be desired by parents or healthcare facilitators. In some cases, “develop as desired” may refer to an unviable or viable embryo that is useful for medical research or other purposes.
  • Insertion into a Uterus refers to the process of transferring an embryo into the uterine cavity in the context of in vitro fertilization.
  • Maternal Plasma refers to the plasma portion of the blood from a female who is pregnant.
  • Clinical Decision refers to any decision to take or not take an action that has an outcome that affects the health or survival of an individual.
  • a clinical decision may refer to a decision to abort or not abort a fetus.
  • a clinical decision may also refer to a decision to conduct further testing, to take actions to mitigate an undesirable phenotype, or to take actions to prepare for the birth of a child with abnormalities.
  • Diagnostic Box refers to one or a combination of machines designed to perform one or a plurality of aspects of the methods disclosed herein.
  • the diagnostic box may be placed at a point of patient care.
  • the diagnostic box may perform targeted amplification followed by sequencing.
  • the diagnostic box may function alone or with the help of a technician.
  • Informatics Based Method refers to a method that relies heavily on statistics to make sense of a large amount of data. In the context of prenatal diagnosis, it refers to a method designed to determine the ploidy state at one or more chromosomes or the allelic state at one or more alleles by statistically inferring the most likely state, rather than by directly physically measuring the state, given a large amount of genetic data, for example from a molecular array or sequencing.
  • the informatics based technique may be one disclosed in this patent application. In an embodiment of the present disclosure it may be PARENTAL
  • Primary Genetic Data refers to the analog intensity signals that are output by a genotyping platform. In the context of SNP arrays, primary genetic data refers to the intensity signals before any genotype calling has been done. In the context of sequencing, primary genetic data refers to the analog measurements, analogous to the chromatogram, that comes off the sequencer before the identity of any base pairs have been determined, and before the sequence has been mapped to the genome.
  • Secondary Genetic Data refers to processed genetic data that are output by a genotyping platform.
  • the secondary genetic data refers to the allele calls made by software associated with the SNP array reader, wherein the software has made a call whether a given allele is present or not present in the sample.
  • the secondary genetic data refers to the base pair identities of the sequences have been determined, and possibly also where the sequences have been mapped to the genome.
  • Non-Invasive Prenatal Diagnosis or also “Non-Invasive Prenatal Screening” (NPS) refers to a method of determining the genetic state of a fetus that is gestating in a mother using genetic material found in the mother's blood, where the genetic material is obtained by drawing the mother's intravenous blood.
  • Preferential Enrichment of DNA that corresponds to a locus refers to any method that results in the percentage of molecules of
  • the method may involve selective amplification of DNA molecules that correspond to a locus.
  • the method may involve removing DNA molecules that do not correspond to the locus.
  • the method may involve a combination of methods.
  • the degree of enrichment is defined as the percentage of molecules of DNA in the post-enrichment mixture that correspond to the locus divided by the percentage of molecules of DNA in the pre-enrichment mixture that correspond to the locus. Preferential enrichment may be carried out at a plurality of loci. In some embodiments of the present disclosure, the degree of enrichment is greater than 20.
  • the degree of enrichment is greater than 200. In some embodiments of the present disclosure, the degree of enrichment is greater than 2,000. When preferential enrichment is carried out at a plurality of loci, the degree of enrichment may refer to the average degree of enrichment of all of the loci in the set of loci.
  • Amplification refers to a method that increases the number of copies of a molecule of DNA.
  • Selective Amplification may refer to a method that increases the number of copies of a particular molecule of DNA, or molecules of DNA that correspond to a particular region of DNA. It may also refer to a method that increases the number of copies of a particular targeted molecule of DNA, or targeted region of DNA more than it increases non-targeted molecules or regions of DNA.
  • Selective amplification may be a method of preferential enrichment.
  • Universal Priming Sequence refers to a DNA sequence that may be appended to a population of target DNA molecules, for example by ligation, PCR, or ligation mediated PCR. Once added to the population of target molecules, primers specific to the universal priming sequences can be used to amplify the target population using a single pair of amplification primers. Universal priming sequences are typically not related to the target sequences.
  • Universal Adapters, or 'ligation adaptors' or 'library tags' are DNA molecules containing a universal priming sequence that can be covalently linked to the 5-prime and 3-prime end of a population of target double stranded DNA molecules.
  • the addition of the adapters provides universal priming sequences to the 5-prime and 3-prime end of the target population from which PCR amplification can take place, amplifying all molecules from the target population, using a single pair of amplification primers.
  • Targeting refers to a method used to selectively amplify or otherwise preferentially enrich those molecules of DNA that correspond to a set of loci, in a mixture of DNA.
  • Joint Distribution Model refers to a model that defines the probability of events defined in terms of multiple random variables, given a plurality of random variables defined on the same probability space, where the probabilities of the variable are linked. In some embodiments, the degenerate case where the probabilities of the variables are not linked may be used.
  • a hypothesis refers to a possible genetic state. It may refer to a possible ploidy state. It may refer to a possible allelic state.
  • a set of hypotheses may refer to a set of possible genetic states, a set of possible allelic states, a set of possible ploidy states, or combinations thereof.
  • a set of hypotheses may be designed such that one hypothesis from the set will correspond to the actual genetic state of any given individual.
  • a set of hypotheses may be designed such that every possible genetic state may be described by at least one hypothesis from the set.
  • one aspect of a method is to determine which hypothesis corresponds to the actual genetic state of the individual in question.
  • one step involves creating a hypothesis.
  • it may be a copy number hypothesis.
  • it may involve a hypothesis concerning which segments of a chromosome from each of the related individuals correspond genetically to which segments, if any, of the other related individuals.
  • Creating a hypothesis may refer to the act of setting the limits of the variables such that the entire set of possible genetic states that are under consideration are encompassed by those variables.
  • a "copy number hypothesis,” also called a “ploidy hypothesis,” or a “ploidy state hypothesis,” may refer to a hypothesis concerning a possible ploidy state for a given chromosome copy, chromosome type, or section of a chromosome, in the target individual. It may also refer to the ploidy state at more than one of the chromosome types in the individual.
  • a set of copy number hypotheses may refer to a set of hypotheses where each hypothesis corresponds to a different possible ploidy state in an individual.
  • a set of hypotheses may concern a set of possible ploidy states, a set of possible parental haplotypes contributions, a set of possible fetal DNA percentages in the mixed sample, or combinations thereof.
  • a normal individual contains one of each chromosome type from each parent. However, due to errors in meiosis and mitosis, it is possible for an individual to have 0, 1, 2, or more of a given chromosome type from each parent. In practice, it is rare to see more that two of a given chromosomes from a parent. In this disclosure, some embodiments only consider the possible hypotheses where 0, 1, or 2 copies of a given chromosome come from a parent; it is a trivial extension to consider more or less possible copies originating from a parent.
  • the nine possible hypotheses for a given chromosome, there are nine possible hypotheses: the three possible hypothesis concerning 0, 1, or 2 chromosomes of maternal origin, multiplied by the three possible hypotheses concerning 0, 1, or 2 chromosomes of paternal origin.
  • Let (m,f) refer to the hypothesis where m is the number of a given chromosome inherited from the mother, and f is the number of a given chromosome inherited from the father. Therefore, the nine hypotheses are (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), and (2,2).
  • hypotheses correspond to different ploidy states.
  • (1,1) refers to a normal disomic chromosome
  • (2,1) refers to a maternal trisomy
  • (0,1) refers to a paternal monosomy.
  • the case where two chromosomes are inherited from one parent and one chromosome is inherited from the other parent may be further differentiated into two cases: one where the two chromosomes are identical (matched copy error), and one where the two chromosomes are homologous but not identical (unmatched copy error).
  • there are sixteen possible hypotheses there are sixteen possible hypotheses. It should be understood that it is possible to use other sets of hypotheses, and a different number of hypotheses.
  • the ploidy hypothesis refers to a hypothesis concerning which chromosome from other related individuals correspond to a chromosome found in the target individual's genome.
  • a key to the method is the fact that related individuals can be expected to share haplotype blocks, and using measured genetic data from related individuals, along with a knowledge of which haplotype blocks match between the target individual and the related individual, it is possible to infer the correct genetic data for a target individual with higher confidence than using the target individual's genetic measurements alone.
  • the ploidy hypothesis may concern not only the number of chromosomes, but also which chromosomes in related individuals are identical, or nearly identical, with one or more chromosomes in the target individual.
  • the algorithms when the algorithms operate on the input genetic data, they may output a determined statistical probability for each of the hypotheses under consideration.
  • the probabilities of the various hypotheses may be determined by mathematically calculating, for each of the various hypotheses, the value that the probability equals, as stated by one or more of the expert techniques, algorithms, and/or methods described elsewhere in this disclosure, using the relevant genetic data as input.
  • the probabilities of the different hypotheses may be combined. This may entail, for each hypothesis, multiplying the probabilities as determined by each technique. The product of the probabilities of the hypotheses may be normalized. Note that one ploidy hypothesis refers to one possible ploidy state for a chromosome.
  • a hypothesis may be determined to be the most likely, and the ploidy state, or other genetic state, may be called if the normalized probability is greater than a threshold. In an embodiment, this may mean that the number and identity of the chromosomes that are associated with that hypothesis may be called as the ploidy state. In an embodiment, this may mean that the identity of the alleles that are associated with that hypothesis may be called as the allelic state. In some embodiments, the threshold may be between about 50% and about 80%.
  • the threshold may be between about 80% and about 90%. In some embodiments the threshold may be between about 90% and about 95%. In some embodiments the threshold may be between about 95% and about 99%. In some embodiments the threshold may be between about 99% and about 99.9%. In some embodiments the threshold may be above about 99.9%.
  • the parental context refers to the genetic state of a given allele, on each of the two relevant chromosomes for one or both of the two parents of the target. Note that in an embodiment, the parental context does not refer to the allelic state of the target, rather, it refers to the allelic state of the parents.
  • the parental context for a given SNP may consist of four base pairs, two paternal and two maternal; they may be the same or different from one another. It is typically written as "m 1 m 2
  • the parental context may be written as "f 1 f 2
  • a and B are often used to generically represent base pair identities; A or B could equally well represent C (cytosine), G (guanine), A (adenine) or T (thymine).
  • C cytosine
  • G guanine
  • A adenine
  • T thymine
  • a "parental context” may refer to a set or subset of target S Ps that have the same parental context. For example, if one were to measure 1000 alleles on a given chromosome on a target individual, then the context AA
  • AB BA
  • the parental data is phased, and thus AB ⁇ BA
  • the set of SNPs wherein the parental context for one parent is heterozygous may be referred to as the heterozygous context.
  • Non-invasive prenatal diagnosis is an important technique that can be used to determine the genetic state of a fetus from genetic material that is obtained in a non-invasive manner, for example from a blood draw on the pregnant mother.
  • the blood could be separated and the plasma isolated, followed by isolation of the plasma DNA or by isolation of fetal cells. Size selection could be used to isolate the DNA of the appropriate length.
  • the DNA may be preferentially enriched at a set of loci. This DNA can then be measured by a number of means, such as by hybridizing to a genotyping array and measuring the fluorescence, or by sequencing on a high throughput sequencer.
  • sequence data When sequencing is used for ploidy calling of a fetus in the context of non-invasive prenatal diagnosis, there are a number of ways to use the sequence data. The most common way one could use the sequence data is to simply count the number of reads that map to a given chromosome. For example, imagine if you are trying to determine the ploidy state of chromosome 21 on the fetus. Further imagine that the DNA in the sample is comprised of 10% DNA of fetal origin, and 90% DNA of maternal origin.
  • chromosome which can be expected to be disomic, for example chromosome 3, and compare that to the number of read on chromosome 21, where the reads are adjusted for the number of base pairs on that chromosome that are part of a unique sequence. If the fetus were euploid, one would expect the amount of DNA per unit of genome to be about equal at all locations (subject to stochastic variations). On the other hand, if the fetus were trisomic at chromosome 21, then one would expect there to be more slightly more DNA per genetic unit from chromosome 21 than the other locations on the genome.
  • AA are the most informative contexts, because the fetus is known to carry an allele that is different from the mother.
  • AA contexts may be referred to as AA
  • Another set of informative parental contexts are AA
  • AB contexts may be referred to as AA
  • a third set of informative parental contexts are AB
  • AA both AB
  • a fourth parental context is AB
  • the fifth parental context is AA
  • a method for determining the ploidy state of a target individual may include any of the steps described in this document, and combinations thereof:
  • the source of the genetic material to be used in determining the genetic state of the fetus may be fetal cells, such as nucleated fetal red blood cells, isolated from the maternal blood.
  • the method may involve obtaining a blood sample from the pregnant mother.
  • the method may involve isolating a fetal red blood cell using visual techniques, based on the idea that a certain combination of colors are uniquely associated with nucleated red blood cell, and a similar combination of colors is not associated with any other present cell in the maternal blood.
  • the combination of colors associated with the nucleated red blood cells may include the red color of the hemoglobin around the nucleus, which color may be made more distinct by staining, and the color of the nuclear material which can be stained, for example, blue.
  • nucleated red blood cells By isolating the cells from maternal blood and spreading them over a slide, and then identifying those points at which one sees both red (from the Hemoglobin) and blue (from the nuclear material) one may be able to identify the location of nucleated red blood cells. One may then extract those nucleated red blood cells using a micromanipulator, use genotyping and/or sequencing techniques to measure aspects of the genotype of the genetic material in those cells.
  • Some embodiments of the present disclosure may involve staining or otherwise marking nuclear material.
  • Some embodiments of the present disclosure may involve specifically marking fetal nuclear material using fetal cell specific antibodies.
  • the target individual is a fetus, and the different genotype measurements are made on a plurality of DNA samples from the fetus.
  • the fetal DNA samples are from isolated fetal cells where the fetal cells may be mixed with maternal cells.
  • the fetal DNA samples are from free floating fetal DNA, where the fetal DNA may be mixed with free floating maternal DNA.
  • the fetal DNA samples may be derived from maternal plasma or maternal blood that contains a mixture of maternal DNA and fetal DNA.
  • the fetal DNA may be mixed with maternal DNA in maternal:fetal ratios ranging from 99.9:0.1% to 99:1%; 99:1% to 90:10%; 90:10% to 80:20%; 80:20% to 70:30%; 70:30% to 50:50%; 50:50% to 10:90%; or 10:90% to 1:99%; 1:99% to 0.1:99.9%.
  • the genetic sample may be prepared and/or purified. There are a number of standard procedures known in the art to accomplish such an end.
  • the sample may be centrifuged to separate various layers.
  • the DNA may be isolated using filtration.
  • the preparation of the DNA may involve amplification, separation, purification by chromatography, liquid liquid separation, isolation, preferential enrichment, preferential amplification, targeted amplification, or any of a number of other techniques either known in the art or described herein.
  • a method of the present disclosure may involve amplifying DNA, such as the use of whole genome amplification to amplify a nucleic acid sample before amplifying just the target loci.
  • Amplification of the DNA a process which transforms a small amount of genetic material to a larger amount of genetic material that comprises a similar set of genetic data, can be done by a wide variety of methods, including, but not limited to polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • One method of amplifying DNA is whole genome amplification (WGA).
  • WGA whole genome amplification
  • WGA whole genome amplification
  • LM-PCR ligation-mediated PCR
  • DOP-PCR degenerate oligonucleotide primer PCR
  • MDA multiple displacement amplification
  • LM-PCR short DNA sequences called adapters are ligated to blunt ends of DNA. These adapters contain universal amplification sequences, which are used to amplify the DNA by PCR.
  • DOP-PCR random primers that also contain universal amplification sequences are used in a first round of annealing and PCR. Then, a second round of PCR is used to amplify the sequences further with the universal primer sequences.
  • MDA uses the phi-29 polymerase, which is a highly processive and non-specific enzyme that replicates DNA and has been used for single-cell analysis.
  • the major limitations to amplification of material from a single cell are (1) necessity of using extremely dilute DNA concentrations or extremely small volume of reaction mixture, and (2) difficulty of reliably dissociating DNA from proteins across the whole genome. Regardless, single-cell whole genome amplification has been used successfully for a variety of applications for a number of years. There are other methods of amplifying DNA from a sample of DNA. The DNA amplification transforms the initial sample of DNA into a sample of DNA that is similar in the set of sequences, but of much greater quantity. In some cases, amplification may not be required.
  • DNA may be amplified using a universal amplification, such as
  • DNA may be amplified by targeted amplification, for example using targeted PCR, or circularizing probes.
  • the DNA may be preferentially enriched using a targeted amplification method, or a method that results in the full or partial separation of desired from undesired DNA, such as capture by hybridization approaches.
  • DNA may be amplified by using a combination of a universal amplification method and a preferential enrichment method. A fuller description of some of these methods can be found elsewhere in this document.
  • the genetic data of the target individual and/or of the related individual can be transformed from a molecular state to an electronic state by measuring the appropriate genetic material using tools and or techniques taken from a group including, but not limited to: genotyping microarrays, and high throughput sequencing.
  • Some high throughput sequencing methods include Sanger DNA sequencing, pyrosequencing, the ILLUMINA SOLEXA platform, ILLUMTNA's GENOME ANALYZER, or APPLIED BIOSYSTEM's 454 sequencing platform, HELICOS's TRUE SINGLE MOLECULE SEQUENCING platform, HALCYON MOLECULAR' s electron microscope sequencing method, or any other sequencing method. All of these methods physically transform the genetic data stored in a sample of DNA into a set of genetic data that is typically stored in a memory device en route to being processed.
  • a relevant individual's genetic data may be measured by analyzing substances taken from a group including, but not limited to, the individual's bulk diploid tissue, one or more diploid cells from the individual, one or more haploid cells from the individual, one or more blastomeres from the target individual, extra-cellular genetic material found on the individual, extra-cellular genetic material from the individual found in maternal blood, cells from the individual found in maternal blood, one or more embryos created from (a) gamete(s) from the related individual, one or more blastomeres taken from such an embryo, extra-cellular genetic material found on the related individual, genetic material known to have originated from the related individual, and combinations thereof.
  • a set of at least one ploidy state hypothesis may be created for each of the chromosomes types of interest of the target individual.
  • Each of the ploidy state hypotheses may refer to one possible ploidy state of the chromosome or chromosome segment of the target individual.
  • the set of hypotheses may include some or all of the possible ploidy states that the chromosome of the target individual may be expected to have.
  • Some of the possible ploidy states may include nullsomy, monosomy, disomy, uniparental disomy, euploidy, trisomy, matching trisomy, unmatching trisomy, maternal trisomy, paternal trisomy, tetrasomy, balanced (2:2) tetrasomy, unbalanced (3:1) tetrasomy, pentasomy, hexasomy, other aneuploidy, and combinations thereof. Any of these aneuploidy states may be mixed or partial aneuploidy such as unbalanced translocations, balanced translocations, Robertsonian translocations, recombinations, deletions, insertions, crossovers, and combinations thereof.
  • the knowledge of the determined ploidy state may be used to make a clinical decision.
  • This knowledge typically stored as a physical arrangement of matter in a memory device, may then be transformed into a report. The report may then be acted upon.
  • the clinical decision may be to terminate the pregnancy; alternately, the clinical decision may be to continue the pregnancy.
  • the clinical decision may involve an intervention designed to decrease the severity of the phenotypic presentation of a genetic disorder, or a decision to take relevant steps to prepare for a special needs child.
  • any of the methods described herein may be modified to allow for multiple targets to come from same target individual, for example, multiple blood draws from the same pregnant mother. This may improve the accuracy of the model, as multiple genetic measurements may provide more data with which the target genotype may be determined.
  • one set of target genetic data served as the primary data which was reported, and the other served as data to double-check the primary target genetic data.
  • a plurality of sets of genetic data, each measured from genetic material taken from the target individual are considered in parallel, and thus both sets of target genetic data serve to help determine which sections of parental genetic data, measured with high accuracy, composes the fetal genome.
  • the method may be used for the purpose of paternity testing (see, e.g, U.S. Publication No. 2012/0122701, filed December 22, 2011, is which is hereby incorporated by reference in its entirety).
  • the present methods allow a plurality of polymorphic loci (such as SNPs) to be analyzed for use in the PARENTAL SUPPORT algorithm described herein to determine whether an alleged father in is the biological father of a fetus.
  • the SNP-based genotypic information from the mother and from a man who may or may not be the genetic father, and the measured genotypic information from the mixed sample, it is possible to determine if the genotypic information of the male indeed represents that actual genetic father of the fetus (such as a gestating fetus or a POC sample).
  • a simple way to do this is to simply look at the contexts where the mother is AA, and the possible father is AB or BB. In these cases, one may expect to see the father contribution half (AA
  • the method involves (i) obtaining genotypic measurements at a plurality of polymorphic loci on genetic material from the alleged father; (ii) obtaining genotypic measurements at a plurality of polymorphic loci on genetic material from a potentially mixed sample comprising cellular and/or extracellular genetic material from the fetus, cellular and/or extracellular genetic material from the mother of the fetus, or combinations thereof; (iii) determining on a computer the probability that the alleged father is the biological father of the fetus using the genotypic measurements; and (iv) establishing whether the alleged father is the biological father of the fetus using the determined probability that the alleged father is the biological father of the fetus.
  • the method also includes obtaining genotypic measurements at a plurality of polymorphic loci on genetic material from the mother, and the probability of each hypotheses is determined using the genotypic measurements made on the genetic material from the mother, the genetic material from the father, and the potentially mixed sample.
  • One embodiment of the present disclosure could be as follows: a pregnant woman wants to know if her fetus is afflicted with Down Syndrome, and/or if it will suffer from Cystic Fibrosis, and she does not wish to bear a child that is afflicted with either of these conditions. A doctor takes her blood, and stains the hemoglobin with one marker so that it appears clearly red, and stains nuclear material with another marker so that it appears clearly blue. Knowing that maternal red blood cells are typically anuclear, while a high proportion of fetal cells contain a nucleus, the doctor is able to visually isolate a number of nucleated red blood cells by identifying those cells that show both a red and blue color.
  • the PARENTAL SUPPORT method is able to determine that six of the ten cells are maternal blood cells, and four of the ten cells are fetal cells. If a child has already been born to a pregnant mother, PARENTAL SUPPORT can also be used to determine that the fetal cells are distinct from the cells of the born child by making reliable allele calls on the fetal cells and showing that they are dissimilar to those of the born child. Note that this method is similar in concept to the paternal testing embodiment of the present disclosure.
  • the genetic data measured from the fetal cells may be of very poor quality, comprising many allele drop outs, due to the difficulty of genotyping single cells.
  • the clinician is able to use the measured fetal DNA along with the reliable DNA measurements of the parents to infer aspects of the genome of the fetus with high accuracy using PARENTAL SUPPORT, thereby transforming the genetic data contained on genetic material from the fetus into the predicted genetic state of the fetus, stored on a computer.
  • the clinician is able to determine both the ploidy state of the fetus, and the presence or absence of a plurality of disease-linked genes of interest. It turns out that the fetus is euploid, and is not a carrier for cystic fibrosis, and the mother decides to continue the pregnancy.
  • a pregnant mother would like to determine if her fetus is afflicted with any whole chromosomal abnormalities. She goes to her doctor, and gives a sample of her blood, and she and her husband gives samples of their own DNA from cheek swabs.
  • a laboratory researcher genotypes the parental DNA using the MDA protocol to amplify the parental DNA, and ILLUMINA INFINIUM arrays to measure the genetic data of the parents at a large number of SNPs. The researcher then spins down the blood, takes the plasma, and isolates a sample of free-floating DNA using size exclusion chromatography.
  • the researcher uses one or more fluorescent antibodies, such as one that is specific to fetal hemoglobin to isolate a nucleated fetal red blood cell.
  • the researcher then takes the isolated or enriched fetal genetic material and amplifies it using a library of 70-mer oligonucleotides appropriately designed such that two ends of each oligonucleotide corresponded to the flanking sequences on either side of a target allele.
  • the oligonucleotides underwent gap-filling circularization, capturing the desired allele.
  • the obstetrician takes a blood draw from the mother and father.
  • the blood is sent to a laboratory, where a technician centrifuges the maternal sample to isolate the plasma and the buffy coat.
  • the DNA in the buffy coat and the paternal blood sample are transformed through amplification and the genetic data encoded in the amplified genetic material is further transformed from molecularly stored genetic data into electronically stored genetic data by running the genetic material on a high throughput sequencer to measure the parental genotypes.
  • the plasma sample is preferentially enriched at a set of loci using a 5,000-plex hemi-nested targeted PCR method.
  • the mixture of DNA fragments is prepared into a DNA library suitable for sequencing.
  • the DNA is then sequenced using a high throughput sequencing method, for example, the ILLUMINA GAIIx GENOME ANALYZER.
  • the sequencing transforms the information that is encoded molecularly in the DNA into information that is encoded electronically in computer hardware.
  • An informatics based technique that includes the presently disclosed embodiments, such as PARENTAL SUPPORT, may be used to determine the ploidy state of the fetus.
  • This may involve calculating, on a computer, allele count probabilities at the plurality of polymorphic loci from the DNA measurements made on the prepared sample; creating, on a computer, a plurality of ploidy hypotheses each pertaining to a different possible ploidy state of the chromosome; building, on a computer, a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome for each ploidy hypothesis; determining, on a computer, a relative probability of each of the ploidy hypotheses using the joint distribution model and the allele counts measured on the prepared sample; and calling the ploidy state of the fetus by selecting the ploidy state corresponding to the hypothesis with the greatest probability.
  • a report is printed out, or sent electronically to the pregnant woman's obstetrician, who transmits the diagnosis to the woman.
  • the woman, her husband, and the doctor sit down and discuss their options.
  • the couple decides to terminate the pregnancy based on the knowledge that the fetus is afflicted with a trisomic condition.
  • a company may decide to offer a diagnostic technology designed to detect aneuploidy in a gestating fetus from a maternal blood draw.
  • Their product may involve a mother presenting to her obstetrician, who may draw her blood.
  • the obstetrician may also collect a genetic sample from the father of the fetus.
  • a clinician may isolate the plasma from the maternal blood, and purify the DNA from the plasma.
  • a clinician may also isolate the buffy coat layer from the maternal blood, and prepare the DNA from the buffy coat.
  • a clinician may also prepare the DNA from the paternal genetic sample.
  • the clinician may use molecular biology techniques described in this disclosure to append universal amplification tags to the DNA in the DNA derived from the plasma sample.
  • the clinician may amplify the universally tagged DNA.
  • the clinician may preferentially enrich the DNA by a number of techniques including capture by hybridization and targeted PCR.
  • the targeted PCR may involve nesting, hemi-nesting or semi-nesting, or any other approach to result in efficient enrichment of the plasma derived DNA.
  • the targeted PCR may be massively multiplexed, for example with 10,000 primers in one reaction, where the primers target SNPs on chromosomes 13, 18, 21, X and those loci that are common to both X and Y, and optionally other chromosomes as well.
  • the selective enrichment and/or amplification may involve tagging each individual molecule with different tags, molecular barcodes, tags for amplification, and/or tags for sequencing.
  • the clinician may then sequence the plasma sample, and also possibly also the prepared maternal and/or paternal DNA.
  • the molecular biology steps may be executed either wholly or partly by a diagnostic box.
  • the sequence data may be fed into a single computer, or to another type of computing platform such as may be found in 'the cloud'.
  • the computing platform may calculate allele counts at the targeted polymorphic loci from the measurements made by the sequencer.
  • the computing platform may create a plurality of ploidy hypotheses pertaining to nullsomy, monosomy, disomy, matched trisomy, and unmatched trisomy for each of chromosomes 13, 18, 21, X and Y.
  • the computing platform may build a joint distribution model for the expected allele counts at the targeted loci on the chromosome for each ploidy hypothesis for each of the five chromosomes being interrogated.
  • the computing platform may determine a probability that each of the ploidy hypotheses is true using the joint distribution model and the allele counts measured on the preferentially enriched DNA derived from the plasma sample.
  • the computing platform may call the ploidy state of the fetus, for each of chromosome 13, 18, 21, X and Y by selecting the ploidy state corresponding to the germane hypothesis with the greatest probability.
  • a report may be generated comprising the called ploidy states, and it may be sent to the obstetrician electronically, displayed on an output device, or a printed hard copy of the report may be delivered to the obstetrician.
  • the obstetrician may inform the patient and optionally the father of the fetus, and they may decide which clinical options are open to them, and which is most desirable.
  • a pregnant woman hereafter referred to as "the mother” may decide that she wants to know whether or not her fetus(es) are carrying any genetic abnormalities or other conditions. She may want to ensure that there are not any gross abnormalities before she is confident to continue the pregnancy. She may go to her obstetrician, who may take a sample of her blood. He may also take a genetic sample, such as a buccal swab, from her cheek. He may also take a genetic sample from the father of the fetus, such as a buccal swab, a sperm sample, or a blood sample. He may send the samples to a clinician.
  • the clinician may enrich the fraction of free floating fetal DNA for fetal cells in the maternal blood sample.
  • the clinician may enrich the fraction of enucleated fetal blood cells in the maternal blood sample.
  • the clinician may use various aspects of the methods described herein to determine genetic data of the fetus. That genetic data may include the ploidy state of the fetus, and/or the identity of one or a number of disease linked alleles in the fetus.
  • a report may be generated summarizing the results of the prenatal diagnosis. The report may be transmitted or mailed to the doctor, who may tell the mother the genetic state of the fetus.
  • the mother may decide to discontinue the pregnancy based on the fact that the fetus has one or more chromosomal, or genetic abnormalities, or undesirable conditions. She may also decide to continue the pregnancy based on the fact that the fetus does not have any gross chromosomal or genetic abnormalities, or any genetic conditions of interest.
  • Another example may involve a pregnant woman who has been artificially inseminated by a sperm donor, and is pregnant. She wants to minimize the risk that the fetus she is carrying has a genetic disease. She has blood drawn at a phlebotomist, and techniques described in this disclosure are used to isolate three nucleated fetal red blood cells, and a tissue sample is also collected from the mother and genetic father. The genetic material from the fetus and from the mother and father are amplified as appropriate and genotyped using the ILLUMINA INFINIUM BEADARRAY, and the methods described herein clean and phase the parental and fetal genotype with high accuracy, as well as to make ploidy calls for the fetus.
  • the fetus is found to be euploid, and phenotypic susceptibilities are predicted from the reconstructed fetal genotype, and a report is generated and sent to the mother's physician so that they can decide what clinical decisions may be best.
  • the raw genetic material of the mother and the father is transformed by way of amplification to an amount of DNA that is similar in sequence, but larger in quantity.
  • the genotypic data that is encoded by nucleic acids is transformed into genetic measurements that may be stored physically and/or electronically on a memory device, such as those described above.
  • the relevant algorithms that makeup the PARENTAL SUPPORT algorithm, relevant parts of which are discussed in detail herein, are translated into a computer program, using a programming language.
  • the computer program on the computer hardware instead of being physically encoded bits and bytes, arranged in a pattern that represents raw measurement data, they become transformed into a pattern that represents a high confidence determination of the ploidy state of the fetus.
  • the details of this transformation will rely on the data itself and the computer language and hardware system used to execute the method described herein.
  • the data that is physically configured to represent a high quality ploidy determination of the fetus is transformed into a report which may be sent to a health care practitioner. This transformation may be carried out using a printer or a computer display.
  • the report may be a printed copy, on paper or other suitable medium, or else it may be electronic.
  • an electronic report it may be transmitted, it may be physically stored on a memory device at a location on the computer accessible by the health care practitioner; it also may be displayed on a screen so that it may be read.
  • the data may be transformed to a readable format by causing the physical transformation of pixels on the display device. The transformation may be accomplished by way of physically firing electrons at a phosphorescent screen, by way of altering an electric charge that physically changes the transparency of a specific set of pixels on a screen that may lie in front of a substrate that emits or absorbs photons.
  • This transformation may be accomplished by way of changing the nanoscale orientation of the molecules in a liquid crystal, for example, from nematic to cholesteric or smectic phase, at a specific set of pixels.
  • This transformation may be accomplished by way of an electric current causing photons to be emitted from a specific set of pixels made from a plurality of light emitting diodes arranged in a meaningful pattern.
  • This transformation may be accomplished by any other way used to display information, such as a computer screen, or some other output device or way of transmitting information.
  • the health care practitioner may then act on the report, such that the data in the report is transformed into an action.
  • the action may be to continue or discontinue the pregnancy, in which case a gestating fetus with a genetic abnormality is transformed into non-living fetus.
  • the transformations listed herein may be aggregated, such that, for example, one may transform the genetic material of a pregnant mother and the father, through a number of steps outlined in this disclosure, into a medical decision consisting of aborting a fetus with genetic abnormalities, or consisting of continuing the pregnancy. Alternately, one may transform a set of genotypic measurements into a report that helps a physician treat his pregnant patient.
  • the method described herein can be used to determine the ploidy state of a fetus even when the host mother, i.e., the woman who is pregnant, is not the biological mother of the fetus she is carrying. In an embodiment of the present disclosure, the method described herein can be used to determine the ploidy state of a fetus using only the maternal blood sample, and without the need for a paternal genetic sample.
  • Some of the math in the presently disclosed embodiments makes hypotheses concerning a limited number of states of aneuploidy. In some cases, for example, only zero, one or two chromosomes are expected to originate from each parent. In some embodiments of the present disclosure, the mathematical derivations can be expanded to take into account other forms of aneuploidy, such as quadrosomy, where three chromosomes originate from one parent, pentasomy, hexasomy etc., without changing the fundamental concepts of the present disclosure. At the same time, it is possible to focus on a smaller number of ploidy states, for example, only trisomy and disomy. Note that ploidy determinations that indicate a non-whole number of chromosomes may indicate mosaicism in a sample of genetic material.
  • the genetic abnormality is a type of aneuploidy, such as Down syndrome (or trisomy 21), Edwards syndrome (trisomy 18), Patau syndrome (trisomy 13), Turner Syndrome (45X), Klinefelter' s syndrome (a male with 2 X chromosomes), Prader-Willi syndrome, and DiGeorge syndrome (UPD 15).
  • Congenital disorders such as those listed in the prior sentence, are commonly undesirable, and the knowledge that a fetus is afflicted with one or more phenotypic abnormalities may provide the basis for a decision to terminate the pregnancy, to take necessary precautions to prepare for the birth of a special needs child, or to take some therapeutic approach meant to lessen the severity of a chromosomal abnormality.
  • the methods described herein can be used at a very early gestational age, for example as early as four week, as early as five weeks, as early as six weeks, as early as seven weeks, as early as eight weeks, as early as nine weeks, as early as ten weeks, as early as eleven weeks, and as early as twelve weeks.
  • genetic diagnoses can be made from the measurement of mixed DNA found in maternal blood
  • genetic diagnoses can equally well be made from the measurement of mixed DNA found in host blood.
  • the genetic diagnoses may include aneuploidy states, or gene mutations. Any claim in the instant disclosure that reads on determining the ploidy state or genetic state of a fetus from the measurements made on maternal blood can equally well read on determining the ploidy state or genetic state of a cancer from the measurements on host blood.
  • a method of the present disclosure allows one to determine the ploidy status of a cancer, the method including obtaining a mixed sample that contains genetic material from the host, and genetic material from the cancer; measuring the DNA in the mixed sample; calculating the fraction of DNA that is of cancer origin in the mixed sample; and determining the ploidy status of the cancer using the measurements made on the mixed sample and the calculated fraction.
  • the method may further include administering a cancer therapeutic based on the determination of the ploidy state of the cancer.
  • the method may further include administering a cancer therapeutic based on the determination of the ploidy state of the cancer, wherein the cancer therapeutic is taken from the group comprising a pharmaceutical, a biologic therapeutic, and antibody based therapy and combination thereof.
  • a method disclosed herein is used in the context of pre- implantation genetic diagnosis (PGD) for embryo selection during in vitro fertilization, where the target individual is an embryo, and the parental genotypic data can be used to make ploidy determinations about the embryo from sequencing data from a single or two cell biopsy from a day 3 embryo or a trophectoderm biopsy from a day 5 or day 6 embryo.
  • PGD pre- implantation genetic diagnosis
  • the parental genotypic data can be used to make ploidy determinations about the embryo from sequencing data from a single or two cell biopsy from a day 3 embryo or a trophectoderm biopsy from a day 5 or day 6 embryo.
  • PGD genetic diagnosis
  • the number of starting copies is very high and so the allele ratio after PCR is expected to accurately reflect the starting ratio.
  • the small number of starting copies in PGD means that contamination and imperfect PCR efficiency have a non-trivial effect on the allele ratio following PCR. This effect may be more important than depth of read in predicting the variance in the allele ratio measured after sequencing.
  • the distribution of measured allele ratio given a known child genotype may be created by Monte Carlo simulation of the PCR process based on the PCR probe efficiency and probability of contamination. Given an allele ratio distribution for each possible child genotype, the likelihoods of various hypotheses can be calculated as described for IPD.
  • any of the embodiments disclosed herein may be implemented in digital electronic circuitry, integrated circuitry, specially designed ASICs (application-specific integrated circuits), computer hardware, firmware, software, or in combinations thereof.
  • Apparatus of the presently disclosed embodiments can be implemented in a computer program product tangibly embodied in a machine-readable storage device for execution by a programmable processor; and method steps of the presently disclosed embodiments can be performed by a programmable processor executing a program of instructions to perform functions of the presently disclosed embodiments by operating on input data and generating output.
  • the presently disclosed embodiments can be implemented advantageously in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.
  • Each computer program can be implemented in a high-level procedural or object-oriented programming language or in assembly or machine language if desired; and in any case, the language can be a compiled or interpreted language.
  • a computer program may be deployed in any form, including as a stand-alone program, or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program may be deployed to be executed or interpreted on one computer or on multiple computers at one site, or distributed across multiple sites and interconnected by a communication network.
  • Computer readable storage media refers to physical or tangible storage (as opposed to signals) and includes without limitation volatile and non-volatile, removable and non-removable media implemented in any method or technology for the tangible storage of information such as computer-readable instructions, data structures, program modules or other data.
  • Computer readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other physical or material medium which can be used to tangibly store the desired information or data or instructions and which can be accessed by a computer or processor.
  • any of the methods described herein may include the output of data in a physical format, such as on a computer screen, or on a paper printout.
  • the described methods may be combined with the output of the actionable data in a format that can be acted upon by a physician.
  • the described methods may be combined with the actual execution of a clinical decision that results in a clinical treatment, or the execution of a clinical decision to make no action.
  • Some of the embodiments described in the document for determining genetic data pertaining to a target individual may be combined with the decision to select one or more embryos for transfer in the context of IVF, optionally combined with the process of transferring the embryo to the womb of the prospective mother.
  • Some of the embodiments described in the document for determining genetic data pertaining to a target individual may be combined with the notification of a potential chromosomal abnormality, or lack thereof, with a medical professional, optionally combined with the decision to abort, or to not abort, a fetus in the context of prenatal diagnosis. Some of the embodiments described herein may be combined with the output of the actionable data, and the execution of a clinical decision that results in a clinical treatment, or the execution of a clinical decision to make no action.
  • the method involves measuring genetic data for use with an informatics based method, such as PARENTAL SUPPORT (PS).
  • PS PARENTAL SUPPORT
  • the ultimate outcome of some of the embodiments is the actionable genetic data of an embryo or a fetus.
  • a method for enriching the concentration of a set of targeted alleles comprising one or more of the following steps: targeted amplification of genetic material, addition of loci specific oligonucleotide probes, ligation of specified DNA strands, isolation of sets of desired DNA, removal of unwanted components of a reaction, detection of certain sequences of DNA by hybridization, and detection of the sequence of one or a plurality of strands of DNA by DNA sequencing methods.
  • the DNA strands may refer to target genetic material, in some cases they may refer to primers, in some cases they may refer to synthesized sequences, or combinations thereof. These steps may be carried out in a number of different orders.
  • a universal amplification step of the DNA prior to targeted amplification may confer several advantages, such as removing the risk of bottlenecking and reducing allelic bias.
  • the DNA may be mixed an oligonucleotide probe that can hybridize with two neighboring regions of the target sequence, one on either side. After hybridization, the ends of the probe may be connected by adding a polymerase, a means for ligation, and any necessary reagents to allow the circularization of the probe. After circularization, an exonuclease may be added to digest to non-circularized genetic material, followed by detection of the circularized probe.
  • the DNA may be mixed with PCR primers that can hybridize with two neighboring regions of the target sequence, one on either side.
  • the ends of the probe may be connected by adding a polymerase, a means for ligation, and any necessary reagents to complete PCR amplification.
  • Amplified or unamplified DNA may be targeted by hybrid capture probes that target a set of loci; after hybridization, the probe may be localized and separated from the mixture to provide a mixture of DNA that is enriched in target sequences.
  • the detection of the target genetic material may be done in a multiplexed fashion.
  • the number of genetic target sequences that may be run in parallel can range from one to ten, ten to one hundred, one hundred to one thousand, one thousand to ten thousand, ten thousand to one hundred thousand, one hundred thousand to one million, or one million to ten million.
  • Prior attempts to multiplex more than 100 primers per pool have resulted in significant problems with unwanted side reactions such as primer-dimer formation.
  • this method may be used to genotype a single cell, a small number of cells, two to five cells, six to ten cells, ten to twenty cells, twenty to fifty cell, fifty to one hundred cells, one hundred to one thousand cells, or a small amount of extracellular DNA, for example from one to ten picograms, from ten to one hundred pictograms, from one hundred pictograms to one nanogram, from one to ten nanograms, from ten to one hundred nanograms, or from one hundred nanograms to one microgram.
  • DNA may be targeted, or preferentially enriched, include using circularizing probes, linked inverted probes (LIPs, MIPs), capture by hybridization methods such as SURESELECT, and targeted PCR or ligation-mediated PCR amplification strategies.
  • LIPs linked inverted probes
  • SURESELECT SURESELECT
  • a method of the present disclosure involves measuring genetic data for use with an informatics based method, such as PARENTAL SUPPORT (PS).
  • PARENTAL SUPPORT is an informatics based approach to manipulating genetic data, aspects of which are described herein.
  • the ultimate outcome of some of the embodiments is the actionable genetic data of an embryo or a fetus followed by a clinical decision based on the actionable data.
  • the algorithms behind the PS method take the measured genetic data of the target individual, often an embryo or fetus, and the measured genetic data from related individuals, and are able to increase the accuracy with which the genetic state of the target individual is known.
  • the measured genetic data is used in the context of making ploidy determinations during prenatal genetic diagnosis.
  • the measured genetic data is used in the context of making ploidy determinations or allele calls on embryos during in vitro fertilization.
  • the different methods comprise a number of steps, those steps often involving amplification of genetic material, addition of oligonucleotide probes, ligation of specified DNA strands, isolation of sets of desired DNA, removal of unwanted components of a reaction, detection of certain sequences of DNA by hybridization, detection of the sequence of one or a plurality of strands of DNA by DNA sequencing methods.
  • the DNA strands may refer to target genetic material, in some cases they may refer to primers, in some cases they may refer to synthesized sequences, or combinations thereof. These steps may be carried out in a number of different orders.
  • any number loci in the genome anywhere from one loci to well over one million loci. If a sample of DNA is subjected to targeting, and then sequenced, the percentage of the alleles that are read by the sequencer will be enriched with respect to their natural abundance in the sample.
  • the degree of enrichment can be anywhere from one percent (or even less) to ten-fold, a hundred-fold, a thousand-fold or even many million-fold. In the human genome there are roughly 3 billion base pairs, and nucleotides, comprising approximately 75 million polymorphic loci. The more loci that are targeted, the smaller the degree of enrichment is possible. The fewer the number of loci that are targeted, the greater degree of enrichment is possible, and the greater depth of read may be achieved at those loci for a given number of sequence reads.
  • the targeting or preferential may focus entirely on SNPs. In an embodiment, the targeting or preferential may focus on any polymorphic site.
  • a number of commercial targeting products are available to enrich exons.
  • targeting exclusively SNPs, or exclusively polymorphic loci is particularly advantageous when using a method for NPD that relies on allele distributions.
  • sequencing for example U.S. Patent 7,888,017, involving a read count analysis where the read counting focuses on counting the number of reads that map to a given chromosome, where the analyzed sequence reads do not focused on regions of the genome that are polymorphic.
  • Those types of methodology that do not focus on polymorphic alleles would not benefit as much from targeting or preferential enrichment of a set of alleles.
  • a targeting method that focuses on SNPs to enrich a genetic sample in polymorphic regions of the genome.
  • it is possible to focus on a small number of SNPs for example between 1 and 100 SNPs, or a larger number, for example, between 100 and 1,000, between 1,000 and 10,000, between 10,000 and 100,000 or more than 100,000 SNPs.
  • a targeting method to create a sample of DNA that is preferentially enriched in polymorphic regions of the genome.
  • this method to create a mixture of DNA with any of these characteristics where the mixture of DNA contains maternal DNA and also fetal DNA such as free floating fetal DNA, or nuclear DNA from fetal cells.
  • this method to create a mixture of DNA that has any combination of these factors.
  • the method described herein may be used to produce a mixture of DNA that comprises maternal DNA and fetal DNA, and that is preferentially enriched in DNA that corresponds to 200 SNPs, all of which are located on either chromosome 18 or 21, and which are enriched an average of 1000 fold.
  • Any of the targeting methods described herein can be used to create mixtures of DNA that are preferentially enriched in certain loci.
  • a method of the present disclosure further includes measuring the DNA in the mixed fraction using a high throughput DNA sequencer, where the DNA in the mixed fraction contains a disproportionate number of sequences from one or more chromosomes, wherein the one or more chromosomes are taken from the group comprising chromosome 13, chromosome 18, chromosome 21, chromosome X, chromosome Y and combinations thereof.
  • the polymorphism assayed may include single nucleotide polymorphisms (SNPs), small indels, or STRs.
  • SNPs single nucleotide polymorphisms
  • STRs small indels
  • Each approach produces allele frequency data; allele frequency data for each targeted locus and/or the joint allele frequency distributions from these loci may be analyzed to determine the ploidy of the fetus.
  • Each approach has its own considerations due to the limited source material and the fact that maternal plasma consists of mixture of maternal and fetal DNA. This method may be combined with other approaches to provide a more accurate determination. In an embodiment, this method may be combined with a sequence counting approach such as that described in US Patent 7,888,017. The approaches described could also be used to detect fetal paternity noninvasively from maternal plasma samples.
  • each approach may be applied to other mixtures of DNA or pure DNA samples to detect the presence or absence of aneuploid chromosomes, to genotype a large number of SNP from degraded DNA samples, to detect segmental copy number variations (CNVs), to detect other genotypic states of interest, or some combination thereof.
  • CNVs segmental copy number variations
  • a method of the present disclosure is used to determine the presence or absence of two or more different haplotypes that contain the same set of loci in a sample of DNA from the measured allele distributions of loci from that chromosome.
  • the different haplotypes could represent two different homologous chromosomes from one individual, three different homologous chromosomes from a trisomic individual, three different homologous haplotypes from a mother and a fetus where one of the haplotypes is shared between the mother and the fetus, three or four haplotypes from a mother and fetus where one or two of the haplotypes are shared between the mother and the fetus, or other combinations.
  • Alleles that are polymorphic between the haplotypes tend to be more informative, however any alleles where the mother and father are not both homozygous for the same allele will yield useful information through measured allele distributions beyond the information that is available from simple read count analysis.
  • Shotgun sequencing of such a sample is extremely inefficient as it results in many sequences for regions that are not polymorphic between the different haplotypes in the sample, or are for chromosomes that are not of interest, and therefore reveal no information about the proportion of the target haplotypes.
  • Described herein are methods that specifically target and/or preferentially enrich segments of DNA in the sample that are more likely to be polymorphic in the genome to increase the yield of allelic information obtained by sequencing. Note that for the measured allele distributions in an enriched sample to be truly representative of the actual amounts present in the target individual, it is critical that there is little or no preferential enrichment of one allele as compared to the other allele at a given loci in the targeted segments.
  • One embodiment of a method described herein allows a plurality of alleles found in a mixture of DNA that correspond to a given locus in the genome to be amplified, or preferentially enriched in a way that the degree of enrichment of each of the alleles is nearly the same. Another way to say this is that the method allows the relative quantity of the alleles present in the mixture as a whole to be increased, while the ratio between the alleles that correspond to each locus remains essentially the same as they were in the original mixture of DNA. For some reported methods preferential enrichment of loci can result in allelic biases of more than 1%, more than 2%, more than 5% and even more than 10%.
  • This preferential enrichment may be due to capture bias when using a capture by hybridization approach, or amplification bias which may be small for each cycle, but can become large when compounded over 20, 30 or 40 cycles.
  • for the ratio to remain essentially the same means that the ratio of the alleles in the original mixture divided by the ratio of the alleles in the resulting mixture is between 0.95 and 1.05, between 0.98 and 1.02, between 0.99 and 1.01, between 0.995 and 1.005, between 0.998 and 1.002, between 0.999 and 1.001, or between 0.9999 and 1.0001. Note that the calculation of the allele ratios presented here may not be used in the determination of the ploidy state of the target individual, and may only a metric to be used to measure allelic bias.
  • a mixture may be sequenced using any one of the previous, current, or next generation of sequencing instruments that sequences a clonal sample (a sample generated from a single molecule; examples include ILLUMINA GAIIx, ILLUMINA HISEQ, LIFE TECHNOLOGIES SOLiD, 5500XL).
  • the ratios can be evaluated by sequencing through the specific alleles within the targeted region. These sequencing reads can be analyzed and counted according the allele type and the rations of different alleles determined accordingly.
  • detection of the alleles will be performed by sequencing and it is essential that the sequencing read span the allele in question in order to evaluate the allelic composition of that captured molecule.
  • the total number of captured molecules assayed for the genotype can be increased by increasing the length of the sequencing read. Full sequencing of all molecules would guarantee collection of the maximum amount of data available in the enriched pool.
  • sequencing is currently expensive, and a method that can measure allele distributions using a lower number of sequence reads will have great value.
  • there are technical limitations to the maximum possible length of read as well as accuracy limitations as read lengths increase.
  • alleles of greatest utility will be of one to a few bases in length, but theoretically any allele shorter than the length of the sequencing read can be used. While allele variations come in all types, the examples provided herein focus on SNPs or variants contained of just a few neighboring base pairs. Larger variants such as segmental copy number variants can be detected by aggregations of these smaller variations in many cases as whole collections of SNP internal to the segment are duplicated. Variants larger than a few bases, such as STRs require special consideration and some targeting approaches work while others will not.
  • a method of the present disclosure involves using targeting probes that focus exclusively or almost exclusively on polymorphic regions.
  • a method of the present disclosure involves using targeting probes that focus exclusively or almost exclusively on S Ps.
  • the targeted polymorphic sites consist of at least 10% SNPs, at least 20% SNPs, at least 30% SNPs, at least 40% SNPs, at least 50% SNPs, at least 60% SNPs, at least 70% SNPs, at least 80% SNPs, at least 90% SNPs, at least 95% SNPs, at least 98% SNPs, at least 99% SNPs, at least 99.9% SNPs, or exclusively SNPs.
  • a method of the present disclosure can be used to determine genotypes (base composition of the DNA at specific loci) and relative proportions of those genotypes from a mixture of DNA molecules, where those DNA molecules may have originated from one or a number of genetically distinct individuals.
  • a method of the present disclosure can be used to determine the genotypes at a set of polymorphic loci, and the relative ratios of the amount of different alleles present at those loci.
  • the polymorphic loci may consist entirely of SNPs.
  • the polymorphic loci can comprise SNPs, single tandem repeats, and other polymorphisms.
  • a method of the present disclosure can be used to determine the relative distributions of alleles at a set of polymorphic loci in a mixture of DNA, where the mixture of DNA comprises DNA that originates from a mother, and DNA that originates from a fetus.
  • the joint allele distributions can be determined on a mixture of DNA isolated from blood from a pregnant woman.
  • the allele distributions at a set of loci can be used to determine the ploidy state of one or more chromosomes on a fetus (such as a gestating fetus or a POC sample).
  • the mixture of DNA molecules could be derived from DNA extracted from multiple cells of one individual.
  • the original collection of cells from which the DNA is derived may comprise a mixture of diploid or haploid cells of the same or of different genotypes, if that individual is mosaic (germline or somatic).
  • the mixture of DNA molecules could also be derived from DNA extracted from single cells.
  • the mixture of DNA molecules could also be derived from DNA extracted from mixture of two or more cells of the same individual, or of different individuals.
  • the mixture of DNA molecules could be derived from DNA isolated from biological material that has already liberated from cells such as blood plasma, which is known to contain cell free DNA.
  • the this biological material may be a mixture of DNA from one or more individuals, as is the case during pregnancy where it has been shown that fetal DNA is present in the mixture.
  • the biological material could be from a mixture of cells that were found in maternal blood, where some of the cells are fetal in origin.
  • the biological material could be cells from the blood of a pregnant which have been enriched in fetal cells.
  • LIPs LIPs
  • LIPs are a generic term meant to encompass technologies that involve the creation of a circular molecule of DNA, where the probes are designed to hybridize to targeted region of DNA on either side of a targeted allele, such that addition of appropriate polymerases and/or ligases, and the appropriate conditions, buffers and other reagents, will complete the complementary, inverted region of DNA across the targeted allele to create a circular loop of DNA that captures the information found in the targeted allele.
  • LIPs may also be called pre-circularized probes, pre- circularizing probes, or circularizing probes.
  • the LIPs probe may be a linear DNA molecule between 50 and 500 nucleotides in length, and in an embodiment between 70 and 100 nucleotides in length; in some embodiments, it may be longer or shorter than described herein.
  • Others embodiments of the present disclosure involve different incarnations, of the LIPs technology, such as Padlock Probes and Molecular Inversion Probes (MIPs).
  • One method to target specific locations for sequencing is to synthesize probes in which the 3' and 5' ends of the probes anneal to target DNA at locations adjacent to and on either side of the targeted region, in an inverted manner, such that the addition of DNA polymerase and DNA ligase results in extension from the 3' end, adding bases to single stranded probe that are complementary to the target molecule (gap-fill), followed by ligation of the new 3' end to the 5' end of the original probe resulting in a circular DNA molecule that can be subsequently isolated from background DNA.
  • the probe ends are designed to flank the targeted region of interest.
  • MIPS has been used in conjunction with array technologies to determine the nature of the sequence filled in.
  • the circularizing probes are constructed such that the region of the probe that is designed to hybridize upstream of the targeted polymorphic locus and the region of the probe that is designed to hybridize downstream of the targeted polymorphic locus are covalently connected through a non-nucleic acid backbone.
  • This backbone can be any biocompatible molecule or combination of biocompatible molecules.
  • biocompatible molecules are poly(ethylene glycol), polycarbonates, polyurethanes, polyethylenes, polypropylenes, sulfone polymers, silicone, cellulose, fluoropolymers, acrylic compounds, styrene block copolymers, and other block copolymers.
  • this approach has been modified to be easily amenable to sequencing as a means of interrogating the filled in sequence.
  • allelic proportions of the original sample at least one key consideration must be taken into account.
  • the variable positions among different alleles in the gap-fill region must not be too close to the probe binding sites as there can be initiation bias by the DNA polymerase resulting in differential of the variants.
  • Another consideration is that additional variations may be present in the probe binding sites that are correlated to the variants in the gap-fill region which can result unequal amplification from different alleles.
  • the 3' ends and 5' ends of the pre-circularized probe are designed to hybridize to bases that are one or a few positions away from the variant positions (polymorphic sites) of the targeted allele.
  • the number of bases between the polymorphic site (SNP or otherwise) and the base to which the 3' end and/or 5' of the pre-circularized probe is designed to hybridize may be one base, it may be two bases, it may be three bases, it may be four bases, it may be five bases, it may be six bases, it may be seven to ten bases, it may be eleven to fifteen bases, or it may be sixteen to twenty bases, twenty to thirty bases, or thirty to sixty bases.
  • the forward and reverse primers may be designed to hybridize a different number of bases away from the polymorphic site.
  • Circularizing probes can be generated in large numbers with current DNA synthesis technology allowing very large numbers of probes to be generated and potentially pooled, enabling interrogation of many loci simultaneously. It has been reported to work with more than 300,000 probes.
  • Two papers that discuss a method involving circularizing probes that can be used to measure the genomic data of the target individual include: Porreca et al., Nature Methods, 2007 4(11), pp. 931-936.; and also Turner et al., Nature Methods, 2009, 6(5), pp. 315-316. The methods described in these papers may be used in combination with other methods described herein. Certain steps of the method from these two papers may be used in combination with other steps from other methods described herein.
  • the genetic material of the target individual is optionally amplified, followed by hybridization of the pre-circularized probes, performing a gap fill to fill in the bases between the two ends of the hybridized probes, ligating the two ends to form a circularized probe, and amplifying the circularized probe, using, for example, rolling circle amplification.
  • the desired target allelic genetic information is captured by circularizing appropriately designed oligonucleic acid probes, such as in the LIPs system, the genetic sequence of the circularized probes may be being measured to give the desired sequence data.
  • the appropriately designed oligonucleotides probes may be circularized directly on unamplified genetic material of the target individual, and amplified afterwards.
  • a number of amplification procedures may be used to amplify the original genetic material, or the circularized LIPs, including rolling circle amplification, MDA, or other amplification protocols.
  • Different methods may be used to measure the genetic information on the target genome, for example using high throughput sequencing, Sanger sequencing, other sequencing methods, capture-by-hybridization, capture- by-circularization, multiplex PCR, other hybridization methods, and combinations thereof.
  • an informatics based method such as the PARENTAL SUPPORT method, along with the appropriate genetic measurements, can then be used to determination the ploidy state of one or more chromosomes on the individual, and/or the genetic state of one or a set of alleles, specifically those alleles that are correlated with a disease or genetic state of interest.
  • an informatics based method such as the PARENTAL SUPPORT method
  • LIPs may be used as a method for targeting specific loci in a sample of DNA for genotyping by methods other than sequencing.
  • LIPs may be used to target DNA for genotyping using SNP arrays or other DNA or RNA based microarrays.
  • Ligation-mediated PCR is method of PCR used to preferentially enrich a sample of DNA by amplifying one or a plurality of loci in a mixture of DNA, the method comprising: obtaining a set of primer pairs, where each primer in the pair contains a target specific sequence and a non-target sequence, where the target specific sequence is preferably designed to anneal to a target region, one upstream and one downstream from the polymorphic site, and which can be separated from the polymorphic site by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-20, 21- 30, 31-40, 41-50, 51-100, or more than 100; polymerization of the DNA from the 3-prime end of upstream primer to the fill the single strand region between it and the 5-prime end of the downstream primer with nucleotides complementary to the target molecule; ligation of the last polymerized base of the upstream primer to the adjacent 5-prime base of the downstream primer; and amplification of only polymerized and ligated molecules using the non-target sequences contained at the 5-prim
  • Pairs of primers to distinct targets may be mixed in the same reaction.
  • the non-target sequences serve as universal sequences such that of all pairs of primers that have been successfully polymerized and ligated may be amplified with a single pair of amplification primers.
  • Preferential enrichment of a specific set of sequences in a target genome can be accomplished in a number of ways. Elsewhere in this document is a description of how LIPs can be used to target a specific set of sequences, but in all of those applications, other targeting and/or preferential enrichment methods can be used equally well for the same ends.
  • One example of another targeting method is the capture by hybridization approach. Some examples of commercial capture by hybridization technologies include AGILENT'S SURE SELECT and ILLUMINA's TRUSEQ. In capture by hybridization, a set of oligonucleotides that is complimentary or mostly complimentary to the desired targeted sequences is allowed to hybridize to a mixture of DNA, and then physically separated from the mixture.
  • the effect of physically removing the targeting oligonucleotides is to also remove the targeted sequences.
  • the hybridized oligos Once the hybridized oligos are removed, they can be heated to above their melting temperature and they can be amplified.
  • Some ways to physically remove the targeting oligonucleotides is by covalently bonding the targeting oligos to a solid support, for example a magnetic bead, or a chip.
  • Another way to physically remove the targeting oligonucleotides is by covalently bonding them to a molecular moiety with a strong affinity for another molecular moiety.
  • biotin and streptavidin such as is used in SURE SELECT.
  • streptavidin such as is used in SURE SELECT.
  • Hybrid capture involves hybridizing probes that are complementary to the targets of interest to the target molecules.
  • Hybrid capture probes were originally developed to target and enrich large fractions of the genome with relative uniformity between targets. In that application, it was important that all targets be amplified with enough uniformity that all regions could be detected by sequencing, however, no regard was paid to retaining the proportion of alleles in original sample.
  • the alleles present in the sample can be determined by direct sequencing of the captured molecules. These sequencing reads can be analyzed and counted according the allele type. However, using the current technology, the measured allele distributions the captured sequences are typically not representative of the original allele distributions.
  • detection of the alleles is performed by sequencing.
  • sequencing In order to capture the allele identity at the polymorphic site, it is essential that the sequencing read span the allele in question in order to evaluate the allelic composition of that captured molecule. Since the capture molecules are often of variable lengths upon sequencing cannot be guaranteed to overlap the variant positions unless the entire molecule is sequenced. However, cost considerations as well as technical limitations as to the maximum possible length and accuracy of sequencing reads make sequencing the entire molecule unfeasible.
  • the read length can be increased from about 30 to about 50 or about 70 bases can greatly increase the number of reads that overlap the variant positions within the targeted sequences.
  • Another way to increase the number of reads that interrogate the position of interest is to decrease the length of the probe, as long as it does not result in bias in the underlying enriched alleles.
  • the length of the synthesized probe should be long enough such that two probes designed to hybridize to two different alleles found at one locus will hybridize with near equal affinity to the various alleles in the original sample.
  • methods known in the art describe probes that are typically longer than 120 bases.
  • the capture probes may be less than about 110 bases, less than about 100 bases, less than about 90 bases, less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, and less than about 25 bases, and this is sufficient to ensure equal enrichment from all alleles.
  • the mixture of DNA that is to be enriched using the hybrid capture technology is a mixture comprising free floating DNA isolated from blood, for example maternal blood, the average length of DNA is quite short, typically less than 200 bases. The use of shorter probes results in a greater chance that the hybrid capture probes will capture desired DNA fragments. Larger variations may require longer probes.
  • the variations of interest are one (a SNP) to a few bases in length.
  • targeted regions in the genome can be preferentially enriched using hybrid capture probes wherein the hybrid capture probes are of a length below 90 bases, and can be less than 80 bases, less than 70 bases, less than 60 bases, less than 50 bases, less than 40 bases, less than 30 bases, or less than 25 bases.
  • the length of the probe that is designed to hybridize to the regions flanking the polymorphic allele location can be decreased from above 90 bases, to about 80 bases, or to about 70 bases, or to about 60 bases, or to about 50 bases, or to about 40 bases, or to about 30 bases, or to about 25 bases.
  • the hybridization conditions can be adjusted to maximize uniformity in the capture of different alleles present in the original sample.
  • hybridization temperatures are decreased to minimize differences in hybridization bias between alleles. Methods known in the art avoid using lower temperatures for hybridization because lowering the temperature has the effect of increasing hybridization of probes to unintended targets. However, when the goal is to preserve allele ratios with maximum fidelity, the approach of using lower hybridization temperatures provides optimally accurate allele ratios, despite the fact that the current art teaches away from this approach.
  • Hybridization temperature can also be increased to require greater overlap between the target and the synthesized probe so that only targets with substantial overlap of the targeted region are captured. In some embodiments of the present disclosure, the hybridization temperature is lowered from the normal hybridization temperature to about 40°C, to about 45°C, to about 50°C, to about 55°C, to about 60°C, to about 65, or to about 70°C.
  • the hybrid capture probes can be designed such that the region of the capture probe with DNA that is complementary to the DNA found in regions flanking the polymorphic allele is not immediately adjacent to the polymorphic site. Instead, the capture probe can be designed such that the region of the capture probe that is designed to hybridize to the DNA flanking the polymorphic site of the target is separated from the portion of the capture probe that will be in van der Waals contact with the polymorphic site by a small distance that is equivalent in length to one or a small number of bases. In an embodiment, the hybrid capture probe is designed to hybridize to a region that is flanking the polymorphic allele but does not cross it; this may be termed a flanking capture probe.
  • the length of the flanking capture probe may be less than about 120 bases, less than about 110 bases, less than about 100 bases, less than about 90 bases, and can be less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, or less than about 25 bases.
  • the region of the genome that is targeted by the flanking capture probe may be separated by the polymorphic locus by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-20, or more than 20 base pairs.
  • Custom targeted sequence capture like those currently offered by AGILENT (SURE SELECT), ROCHE-NIMBLEGEN, or ILLUMINA.
  • Capture probes could be custom designed to ensure capture of various types of mutations. For point mutations, one or more probes that overlap the point mutation should be sufficient to capture and sequence the mutation.
  • one or more probes that overlap the mutation may be sufficient to capture and sequence fragments comprising the mutation.
  • Hybridization may be less efficient between the probe-limiting capture efficiency, typically designed to the reference genome sequence.
  • To ensure capture of fragments comprising the mutation one could design two probes, one matching the normal allele and one matching the mutant allele. A longer probe may enhance hybridization. Multiple overlapping probes may enhance capture. Finally, placing a probe immediately adjacent to, but not overlapping, the mutation may permit relatively similar capture efficiency of the normal and mutant alleles.
  • STRs Simple Tandem Repeats
  • the number of reads obtained from the deleted regions should be roughly half that obtained from a normal diploid locus.
  • Aggregating and averaging the sequencing read depth from multiple singleton probes across the potentially deleted region may enhance the signal and improve confidence of the diagnosis.
  • the two approaches, targeting S Ps to identify loss of heterozygosity and using multiple singleton probes to obtain a quantitative measure of the quantity of underlying fragments from that locus can also be combined. Either or both of these strategies may be combined with other strategies to better obtain the same end.
  • a targeted capture based disease screening test could be combined with a targeted capture based non-invasive or invasive prenatal diagnostic test for aneuploidy.
  • DOR depth of read
  • PCR can be used to target specific locations of the genome.
  • the original DNA is highly fragmented (typically less than 500 bp, with an average length less than 200 bp).
  • both forward and reverse primers must anneal to the same fragment to enable amplification. Therefore, if the fragments are short, the PCR assays must amplify relatively short regions as well.
  • the polymorphic positions are too close the polymerase binding site, it could result in biases in the amplification from different alleles.
  • PCR primers that target polymorphic regions are typically designed such that the 3' end of the primer will hybridize to the base immediately adjacent to the polymorphic base or bases.
  • the 3' ends of both the forward and reverse PCR primers are designed to hybridize to bases that are one or a few positions away from the variant positions (polymorphic sites) of the targeted allele.
  • the number of bases between the polymorphic site (S P or otherwise) and the base to which the 3' end of the primer is designed to hybridize may be one base, it may be two bases, it may be three bases, it may be four bases, it may be five bases, it may be six bases, it may be seven to ten bases, it may be eleven to fifteen bases, or it may be sixteen to twenty bases.
  • the forward and reverse primers may be designed to hybridize a different number of bases away from the polymorphic site.
  • PCR assay can be generated in large numbers, however, the interactions between different PCR assays makes it difficult to multiplex them beyond about one hundred assays.
  • Various complex molecular approaches can be used to increase the level of multiplexing, but it may still be limited to fewer than 100, perhaps 200, or possibly 500 assays per reaction.
  • Samples with large quantities of DNA can be split among multiple sub-reactions and then recombined before sequencing. For samples where either the overall sample or some subpopulation of DNA molecules is limited, splitting the sample would introduce statistical noise.
  • a small or limited quantity of DNA may refer to an amount below 10 pg, between 10 and 100 pg, between 100 pg and 1 ng, between 1 and 10 ng, or between 10 and 100 ng.
  • this method is particularly useful on small amounts of DNA where other methods that involve splitting into multiple pools can cause significant problems related to introduced stochastic noise, this method still provides the benefit of minimizing bias when it is run on samples of any quantity of DNA.
  • a universal pre-amplification step may be used to increase the overall sample quantity.
  • this pre-amplification step should not appreciably alter the allelic distributions.
  • a method of the present disclosure can generate PCR products that are specific to a large number of targeted loci, specifically 1,000 to 5,000 loci, 5,000 to 10,000 loci or more than 10,000 loci, for genotyping by sequencing or some other genotyping method, from limited samples such as single cells or DNA from body fluids.
  • PCR products that are specific to a large number of targeted loci, specifically 1,000 to 5,000 loci, 5,000 to 10,000 loci or more than 10,000 loci, for genotyping by sequencing or some other genotyping method, from limited samples such as single cells or DNA from body fluids.
  • primer side products such as primer dimers, and other artifacts.
  • primer dimers and other artifacts may be ignored, as these are not detected.
  • n targets of a sample greater than 50, greater than 100, greater than 500, or greater than 1,000
  • FLUIDIGM ACCESS ARRAY 48 reactions per sample in microfluidic chips
  • DROPLET PCR by RAIN DANCE TECHNOLOGY
  • Described here is a method to effectively and efficiently amplify many PCR reactions that is applicable to cases where only a limited amount of DNA is available.
  • the method may be applied for analysis of single cells, body fluids, mixtures of DNA such as the free floating DNA found in maternal plasma, biopsies, environmental and/or forensic samples.
  • the targeted sequencing may involve one, a plurality, or all of the following steps, a) Generate and amplify a library with adaptor sequences on both ends of DNA fragments, b) Divide into multiple reactions after library amplification, c) Generate and optionally amplify a library with adaptor sequences on both ends of DNA fragments, d) Perform 1000- to 10,000-plex amplification of selected targets using one target specific "Forward" primer per target and one tag specific primer, e) Perform a second amplification from this product using "Reverse" target specific primers and one (or more) primer specific to a universal tag that was introduced as part of the target specific forward primers in the first round, f) Perform a 1000-plex preamplification of selected target for a limited number of cycles, g) Divide the product into multiple aliquots and amplify subpools of targets in individual reactions (for example, 50 to 500-plex, though this can be used all the way down to singleplex. h) Pool products of parallel subpools
  • 8 ⁇ primers may carry sequencing compatible tags (partial or full length) such that the products can be sequenced.
  • amplification of over a hundred to tens of thousands of target sequences ⁇ e.g. SNP loci
  • a sample such as genomic DNA obtained from plasma or any of the other samples disclosed herein (see, e.g., U.S. Utility Application Serial No. 13/683,604, filed November 21, 2012, which is hereby incorporated by reference in its entirety).
  • the amplified sample may be relatively free of primer dimer products and have low allelic bias at target loci. If during or after amplification the products are appended with sequencing compatible adaptors, analysis of these products can be performed by sequencing.
  • One solution is to split the 5000-plex reaction into several lower-plexed amplifications, e.g. one hundred 50-plex or fifty 100-plex reactions, or to use microfluidics or even to split the sample into individual PCR reactions.
  • the sample DNA is limited, such as in noninvasive prenatal diagnostics from pregnancy plasma, dividing the sample between multiple reactions should be avoided as this will result in bottlenecking.
  • a method of the present disclosure can be used for preferentially enriching a DNA mixture at a plurality of loci, the method comprising one or more of the following steps: generating and amplifying a library from a mixture of DNA where the molecules in the library have adaptor sequences ligated on both ends of the DNA fragments, dividing the amplified library into multiple reactions, performing a first round of multiplex amplification of selected targets using one target specific "forward" primer per target and one or a plurality of adaptor specific universal "reverse" primers.
  • a method of the present disclosure further includes performing a second amplification using "reverse" target specific primers and one or a plurality of primers specific to a universal tag that was introduced as part of the target specific forward primers in the first round.
  • the method may involve a fully nested, hemi-nested, semi-nested, one sided fully nested, one sided hemi-nested, or one sided semi-nested PCR approach.
  • a method of the present disclosure is used for preferentially enriching a DNA mixture at a plurality of loci, the method comprising performing a multiplex preamplification of selected targets for a limited number of cycles, dividing the product into multiple aliquots and amplifying subpools of targets in individual reactions, and pooling products of parallel subpools reactions. Note that this approach could be used to perform targeted amplification in a manner that would result in low levels of allelic bias for 50-500 loci, for 500 to 5,000 loci, for 5,000 to 50,000 loci, or even for 50,000 to 500,000 loci.
  • the primers carry partial or full length sequencing compatible tags.
  • the workflow may entail (1) extracting DNA such as cell free, cellular, or plasma DNA, (2) preparing fragment library with universal adaptors on both ends of fragments, (3) amplifying the library using universal primers specific to the adaptors, (4) dividing the amplified sample "library” into multiple aliquots, (5) performing multiplex (e.g. about 100- plex, 1,000, or 10,000-plex with one target specific primer per target and a tag-specific primer) amplifications on aliquots, (6) pooling aliquots of one sample, (7) barcoding the sample, (8) mixing the samples and adjusting the concentration, (9) sequencing the sample.
  • the workflow may comprise multiple sub-steps that contain one of the listed steps (e.g.
  • step (2) of preparing the library step could entail three enzymatic steps (blunt ending, dA tailing and adaptor ligation) and three purification steps). Steps of the workflow may be combined, divided up or performed in different order (e.g. bar coding and pooling of samples).
  • PCR assays can have the tags, for example sequencing tags, (usually a truncated form of 15-25 bases). After multiplexing, PCR multiplexes of a sample are pooled and then the tags are completed (including bar coding) by a tag-specific PCR (could also be done by ligation).
  • the full sequencing tags can be added in the same reaction as the multiplexing.
  • targets may be amplified with the target specific primers, subsequently the tag-specific primers take over to complete the SQ-adaptor sequence.
  • the PCR primers may carry no tags.
  • the sequencing tags may be appended to the amplification products by ligation.
  • highly multiplex PCR followed by evaluation of amplified material by clonal sequencing may be used to detect fetal aneuploidy.
  • traditional multiplex PCRs evaluate up to fifty loci simultaneously
  • the approach described herein may be used to enable simultaneous evaluation of more than 50 loci simultaneously, more than 100 loci simultaneously, more than 500 loci simultaneously, more than 1,000 loci simultaneously, more than 5,000 loci simultaneously, more than 10,000 loci simultaneously, more than 50,000 loci simultaneously, and more than 100,000 loci simultaneously.
  • up to, including and more than 10,000 distinct loci can be evaluated simultaneously, in a single reaction, with sufficiently good efficiency and specificity to make non-invasive prenatal aneuploidy diagnoses and/or copy number calls with high accuracy.
  • Assays may be combined in a single reaction with the entirety of a sample such as a cfDNA sample isolated from maternal plasma, a fraction thereof, or a further processed derivative of the cfDNA sample.
  • the sample e.g., cfDNA or derivative
  • the sample may also be split into multiple parallel multiplex reactions.
  • the optimum sample splitting and multiplex is determined by trading off various performance specifications. Due to the limited amount of material, splitting the sample into multiple fractions can introduce sampling noise, handling time, and increase the possibility of error. Conversely, higher multiplexing can result in greater amounts of spurious amplification and greater inequalities in amplification both of which can reduce test performance.
  • LM-PCR ligation mediated PCR
  • MDA multiple displacement amplification
  • DOP-PCR random priming is used to amplify the original material DNA.
  • Each method has certain characteristics such as uniformity of amplification across all represented regions of the genome, efficiency of capture and amplification of original DNA, and amplification performance as a function of the length of the fragment.
  • LM-PCR may be used with a single heteroduplexed adaptor having a 3-prime tyrosine.
  • the heteroduplexed adaptor enables the use of a single adaptor molecule that may be converted to two distinct sequences on 5-prime and 3-prime ends of the original DNA fragment during the first round of PCR.
  • sample DNA Prior to ligation, sample DNA may be blunt ended, and then a single adenosine base is added to the 3-prime end.
  • the DNA Prior to ligation the DNA may be cleaved using a restriction enzyme or some other cleavage method.
  • the 3-prime adenosine of the sample fragments and the complementary 3-prime tyrosine overhang of adaptor can enhance ligation efficiency.
  • the extension step of the PCR amplification may be limited from a time standpoint to reduce amplification from fragments longer than about 200 bp, about 300 bp, about 400 bp, about 500 bp or about 1,000 bp. Since longer DNA found in the maternal plasma is nearly exclusively maternal, this may result in the enrichment of fetal DNA by 10-50% and improvement of test performance.
  • a number of reactions were run using conditions as specified by commercially available kits; the resulted in successful ligation of fewer than 10% of sample DNA molecules. A series of optimizations of the reaction conditions for this improved ligation to approximately 70%.
  • mini-PCR assays Traditional PCR assay design results in significant losses of distinct fetal molecules, but losses can be greatly reduced by designing very short PCR assays, termed mini-PCR assays. Fetal cfDNA in maternal serum is highly fragmented and the fragment sizes are distributed in approximately a Gaussian fashion with a mean of 160 bp, a standard deviation of 15 bp, a minimum size of about 100 bp, and a maximum size of about 220 bp. The distribution of fragment start and end positions with respect to the targeted polymorphisms, while not necessarily random, vary widely among individual targets and among all targets collectively and the polymorphic site of one particular target locus may occupy any position from the start to the end among the various fragments originating from that locus. Note that the term mini-PCR may equally well refer to normal PCR with no additional restrictions or limitations.
  • telomere length L is the distance between the 5- prime ends of the forward and reverse priming sites.
  • Amplicon length that is shorter than typically used by those known in the art may result in more efficient measurements of the desired polymorphic loci by only requiring short sequence reads.
  • a substantial fraction of the amplicons should be less than 100 bp, less than 90 bp, less than 80 bp, less than 70 bp, less than 65 bp, less than 60 bp, less than 55 bp, less than 50 bp, or less than 45 bp.
  • the 3 -prime end of the either primer is within roughly 1-6 bases of the polymorphic site. This single base difference at the site of initial polymerase binding can result in preferential amplification of one allele, which can alter observed allele frequencies and degrade performance. All of these constraints make it very challenging to identify primers that will amplify a particular locus successfully and furthermore, to design large sets of primers that are compatible in the same multiplex reaction.
  • the 3' end of the inner forward and reverse primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases. Ideally, the number of bases may be between 6 and 10 bases, but may equally well be between 4 and 15 bases, between three and 20 bases, between two and 30 bases, or between 1 and 60 bases, and achieve substantially the same end.
  • Multiplex PCR may involve a single round of PCR in which all targets are amplified or it may involve one round of PCR followed by one or more rounds of nested PCR or some variant of nested PCR.
  • Nested PCR consists of a subsequent round or rounds of PCR amplification using one or more new primers that bind internally, by at least one base pair, to the primers used in a previous round.
  • Nested PCR reduces the number of spurious amplification targets by amplifying, in subsequent reactions, only those amplification products from the previous one that have the correct internal sequence. Reducing spurious amplification targets improves the number of useful measurements that can be obtained, especially in sequencing.
  • Nested PCR typically entails designing primers completely internal to the previous primer binding sites, necessarily increasing the minimum DNA segment size required for amplification.
  • the larger assay size reduces the number of distinct cfDNA molecules from which a measurement can be obtained.
  • a multiplex pool of PCR assays are designed to amplify potentially heterozygous SNP or other polymorphic or non-polymorphic loci on one or more chromosomes and these assays are used in a single reaction to amplify DNA.
  • the number of PCR assays may be between 50 and 200 PCR assays, between 200 and 1,000 PCR assays, between 1,000 and 5,000 PCR assays, or between 5,000 and 20,000 PCR assays (50 to 200- plex, 200 to 1,000-plex, 1,000 to 5,000-plex, 5,000 to 20,000-plex, more than 20,000-plex respectively).
  • a multiplex pool of about 10,000 PCR assays are designed to amplify potentially heterozygous SNP loci on chromosomes X, Y, 13, 18, and 21 and 1 or 2 and these assays are used in a single reaction to amplify DNA from any of the samples disclosed herein such as cfDNA obtained from a material plasma sample, chorion villus samples, amniocentesis samples, single or a small number of cells, other bodily fluids or tissues, cancers, or other genetic matter.
  • the S P frequencies of each locus may be determined by clonal or some other method of sequencing of the amplicons.
  • Statistical analysis of the allele frequency distributions or ratios of all assays may be used to determine if the sample contains a trisomy of one or more of the chromosomes included in the test.
  • the original cfDNA samples is split into two samples and parallel 5,000-plex assays are performed.
  • the original cfDNA samples is split into n samples and parallel ( ⁇ 10,000/n)-plex assays are performed where n is between 2 and 12, or between 12 and 24, or between 24 and 48, or between 48 and 96. Data is collected and analyzed in a similar manner to that already described. Note that this method is equally well applicable to detecting translocations, deletions, duplications, and other chromosomal abnormalities.
  • tails with no homology to the target genome may also be added to the 3-prime or 5-prime end of any of the primers. These tails facilitate subsequent manipulations, procedures, or measurements.
  • the tail sequence can be the same for the forward and reverse target specific primers.
  • different tails may be used for the forward and reverse target specific primers.
  • a plurality of different tails may be used for different loci or sets of loci. Certain tails may be shared among all loci or among subsets of loci. For example, using forward and reverse tails corresponding to forward and reverse sequences required by any of the current sequencing platforms can enable direct sequencing following amplification.
  • the tails can be used as common priming sites among all amplified targets that can be used to add other useful sequences.
  • the inner primers may contain a region that is designed to hybridize either upstream or downstream of the targeted locus (e.g., a polymorphic locus).
  • the primers may contain a molecular barcode.
  • the primer may contain a universal priming sequence designed to allow PCR amplification.
  • a 10,000-plex PCR assay pool is created such that forward and reverse primers have tails corresponding to the required forward and reverse sequences required by a high throughput sequencing instrument such as the HISEQ, GAIIX, or MYSEQ available from ILLUMINA.
  • a high throughput sequencing instrument such as the HISEQ, GAIIX, or MYSEQ available from ILLUMINA.
  • included 5-prime to the sequencing tails is an additional sequence that can be used as a priming site in a subsequent PCR to add nucleotide barcode sequences to the amplicons, enabling multiplex sequencing of multiple samples in a single lane of the high throughput sequencing instrument.
  • a 10,000-plex PCR assay pool is created such that reverse primers have tails corresponding to the required reverse sequences required by a high throughput sequencing instrument.
  • a subsequent PCR amplification may be performed using a another 10,000-plex pool having partly nested forward primers (e.g., 6-bases nested) for all targets and a reverse primer corresponding to the reverse sequencing tail included in the first round.
  • This subsequent round of partly nested amplification with just one target specific primer and a universal primer limits the required size of the assay, reducing sampling noise, but greatly reduces the number of spurious amplicons.
  • the sequencing tags can be added to appended ligation adaptors and/or as part of PCR probes, such that the tag is part of the final amplicon.
  • Fetal fraction affects performance of the test. There are a number of ways to enrich the fetal fraction of the DNA found in maternal plasma. Fetal fraction can be increased by the previously described LM-PCR method already discussed as well as by a targeted removal of long maternal fragments.
  • an additional multiplex PCR reaction may be carried out to selectively remove long and largely maternal fragments corresponding to the loci targeted in the subsequent multiplex PCR. Additional primers are designed to anneal a site a greater distance from the polymorphism than is expected to be present among cell free fetal DNA fragments. These primers may be used in a one cycle multiplex PCR reaction prior to multiplex PCR of the target polymorphic loci.
  • These distal primers are tagged with a molecule or moiety that can allow selective recognition of the tagged pieces of DNA.
  • these molecules of DNA may be covalently modified with a biotin molecule that allows removal of newly formed double stranded DNA comprising these primers after one cycle of PCR. Double stranded DNA formed during that first round is likely maternal in origin. Removal of the hybrid material may be accomplish by the used of magnetic streptavidin beads. There are other methods of tagging that may work equally well.
  • size selection methods may be used to enrich the sample for shorter strands of DNA; for example those less than about 800 bp, less than about 500 bp, or less than about 300 bp. Amplification of short fragments can then proceed as usual.
  • the mini-PCR method described in this disclosure enables highly multiplexed amplification and analysis of hundreds to thousands or even millions of loci in a single reaction, from a single sample.
  • the detection of the amplified DNA can be multiplexed; tens to hundreds of samples can be multiplexed in one sequencing lane by using barcoding PCR.
  • This multiplexed detection has been successfully tested up to 49-plex, and a much higher degree of multiplexing is possible. In effect, this allows hundreds of samples to be genotyped at thousands of SNPs in a single sequencing run.
  • the method allows determination of genotype and heterozygosity rate and simultaneously determination of copy number, both of which may be used for the purpose of aneuploidy detection.
  • This method is particularly useful in detecting aneuploidy of a gestating fetus from the free floating DNA found in maternal plasma.
  • This method may be used as part of a method for sexing a fetus, and/or predicting the paternity of the fetus. It may be used as part of a method for mutation dosage.
  • This method may be used for any amount of DNA or RNA, and the targeted regions may be SNPs, other polymorphic regions, non-polymorphic regions, and combinations thereof.
  • ligation mediated universal-PCR amplification of fragmented DNA may be used.
  • the ligation mediated universal-PCR amplification can be used to amplify plasma DNA, which can then be divided into multiple parallel reactions. It may also be used to preferentially amplify short fragments, thereby enriching fetal fraction.
  • the addition of tags to the fragments by ligation can enable detection of shorter fragments, use of shorter target sequence specific portions of the primers and/or annealing at higher temperatures which reduces unspecific reactions.
  • the methods described herein may be used for a number of purposes where there is a target set of DNA that is mixed with an amount of contaminating DNA.
  • the target DNA and the contaminating DNA may be from individuals who are genetically related.
  • genetic abnormalities in a fetus (target) may be detected from maternal plasma which contains fetal (target) DNA and also maternal (contaminating) DNA; the abnormalities include whole chromosome abnormalities (e.g. aneuploidy) partial chromosome abnormalities (e.g. deletions, duplications, inversions, translocations), polynucleotide polymorphisms (e.g. STRs), single nucleotide polymorphisms, and/or other genetic abnormalities or differences.
  • whole chromosome abnormalities e.g. aneuploidy
  • partial chromosome abnormalities e.g. deletions, duplications, inversions, translocations
  • polynucleotide polymorphisms e.g.
  • the target and contaminating DNA may be from the same individual, but where the target and contaminating DNA are different by one or more mutations, for example in the case of cancer, (see e.g. H. Mamon et al. Preferential Amplification of Apoptotic DNA from Plasma: Potential for Enhancing Detection of Minor DNA Alterations in Circulating DNA. Clinical Chemistry 54:9 (2008).
  • the target and contaminating DNA may be from the same individual, but where the target and contaminating DNA are different by one or more mutations, for example in the case of cancer, (see e.g. H. Mamon et al. Preferential Amplification of Apoptotic DNA from Plasma: Potential for Enhancing Detection of Minor DNA Alterations in Circulating DNA. Clinical Chemistry 54:9 (2008).
  • the DNA may be found in cell culture (apoptotic) supernatant.
  • cell culture apoptotic
  • biological samples e.g. blood
  • a number of enabling workflows and protocols to achieve this end are presented elsewhere in this disclosure.
  • the target DNA may originate from single cells, from samples of DNA consisting of less than one copy of the target genome, from low amounts of DNA, from DNA from mixed origin (e.g. pregnancy plasma: placental and maternal DNA; cancer patient plasma and tumors: mix between healthy and cancer DNA, transplantation etc), from other body fluids, from cell cultures, from culture supematants, from forensic samples of DNA, from ancient samples of DNA (e.g. insects trapped in amber), from other samples of DNA, and combinations thereof.
  • mixed origin e.g. pregnancy plasma: placental and maternal DNA
  • cancer patient plasma and tumors mix between healthy and cancer DNA, transplantation etc
  • other body fluids from cell cultures, from culture supematants
  • from forensic samples of DNA from ancient samples of DNA (e.g. insects trapped in amber), from other samples of DNA, and combinations thereof.
  • a short amplicon size may be used. Short amplicon sizes are especially suited for fragmented DNA (see e.g. A. Sikora, et si. Detection of increased amounts of cell-free fetal DNA with short PCR amplicons. Clin Chem. 2010 Jan;56(l): 136-8.) The use of short amplicon sizes may result in some significant benefits. Short amplicon sizes may result in optimized amplification efficiency. Short amplicon sizes typically produce shorter products, therefore there is less chance for nonspecific priming. Shorter products can be clustered more densely on sequencing flow cell, as the clusters will be smaller. Note that the methods described herein may work equally well for longer PCR amplicons.
  • Amplicon length may be increased if necessary, for example, when sequencing larger sequence stretches.
  • Experiments with 146-plex targeted amplification with assays of 100 bp to 200 bp length as first step in a nested-PCR protocol were run on single cells and on genomic DNA with positive results.
  • the methods described herein may be used to amplify and/or detect SNPs, copy number, nucleotide methylation, mRNA levels, other types of RNA expression levels, other genetic and/or epigenetic features.
  • the mini-PCR methods described herein may be used along with next-generation sequencing; it may be used with other downstream methods such as microarrays, counting by digital PCR, real-time PCR, Mass- spectrometry analysis etc.
  • the mini-PCR amplification methods described herein may be used as part of a method for accurate quantification of minority populations. It may be used for absolute quantification using spike calibrators. It may be used for mutation / minor allele quantification through very deep sequencing, and may be run in a highly multiplexed fashion. It may be used for standard paternity and identity testing of relatives or ancestors, in human, animals, plants or other creatures. It may be used for forensic testing. It may be used for rapid genotyping and copy number analysis (CN), on any kind of material, e.g. amniotic fluid and CVS, sperm, product of conception (POC). It may be used for single cell analysis, such as genotyping on samples biopsied from embryos. It may be used for rapid embryo analysis (within less than one, one, or two days of biopsy) by targeted sequencing using min-PCR.
  • CN genotyping and copy number analysis
  • tumor biopsies are often a mixture of health and tumor cells.
  • Targeted PCR allows deep sequencing of SNPs and loci with close to no background sequences. It may be used for copy number and loss of heterozygosity analysis on tumor DNA.
  • Said tumor DNA may be present in many different body fluids or tissues of tumor patients. It may be used for detection of tumor recurrence, and/or tumor screening. It may be used for quality control testing of seeds. It may be used for breeding, or fishing purposes. Note that any of these methods could equally well be used targeting non-polymorphic loci for the purpose of ploidy calling.
  • Some literature describing some of the fundamental methods that underlie the methods disclosed herein include: (1) Wang HY, Luo M, Tereshchenko IV, Frikker DM, Cui X, Li JY, Hu G, Chu Y, Azaro MA, Lin Y, Shen L, Yang Q, Kambouris ME, Gao R, Shih W, Li H. Genome Res. 2005 Feb;15(2):276-83. Department of Molecular Genetics, Microbiology and Immunology/The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, USA. (2) High-throughput genotyping of single nucleotide polymorphisms with high sensitivity.
  • Highly multiplexed PCR can often result in the production of a very high proportion of product DNA that results from unproductive side reactions such as primer dimer formation.
  • the particular primers that are most likely to cause unproductive side reactions may be removed from the primer library to give a primer library that will result in a greater proportion of amplified DNA that maps to the genome.
  • the step of removing problematic primers, that is, those primers that are particularly likely to firm dimers has unexpectedly enabled extremely high PCR multiplexing levels for subsequent analysis by sequencing. In systems such as sequencing, where performance significantly degrades by primer dimers and/or other mischief products, greater than 10, greater than 50, and greater than 100 times higher multiplexing than other described multiplexing has been achieved.
  • primers for a library where the amount of non- mapping primer-dimer or other primer mischief products are minimized.
  • Empirical data indicate that a small number of 'bad' primers are responsible for a large amount of non- mapping primer dimer side reactions. Removing these 'bad' primers can increase the percent of sequence reads that map to targeted loci.
  • One way to identify the 'bad' primers is to look at the sequencing data of DNA that was amplified by targeted amplification; those primer dimers that are seen with greatest frequency can be removed to give a primer library that is significantly less likely to result in side product DNA that does not map to the genome.
  • the improvement due to this procedure is substantial, enabling amplification of more than 80%, more than 90%, more than 95%, more than 98%, and even more than 99% on target products as determined by sequencing of all PCR products, as compared to 10% from a reaction in which the worst primers were not removed.
  • more than 90%, and even more than 95% of amplicons may map to the targeted sequences.
  • analysis of a pool of DNA that has been amplified using a non- optimized set of primers may be sufficient to determine problematic primers. For example, analysis may be done using sequencing, and those dimers which are present in the greatest number are determined to be those most likely to form dimers, and may be removed.
  • the method of primer design may be used in combination with the mini-PCR method described elsewhere in this document.
  • the primer design method may be used as part of a massive multiplexed PCR method.
  • Tag-primers can be used to shorten necessary target-specific sequences to below 20, below 15, below 12, and even below 10 base pairs. This can be serendipitous with standard primer design when the target sequence is fragmented within the primer binding site or, or it can be designed into the primer design. Advantages of this method include: it increases the number of assays that can be designed for a certain maximal amplicon length, and it shortens the "non-informative" sequencing of primer sequence. It may also be used in combination with internal tagging (see elsewhere in this document).
  • the relative amount of nonproductive products in the multiplexed targeted PCR amplification can be reduced by raising the annealing temperature.
  • the annealing temperature can be increased in comparison to the genomic DNA as the tags will contribute to the primer binding.
  • the annealing times may be longer than 10 minutes, longer than 20 minutes, longer than 30 minutes, longer than 60 minutes, longer than 120 minutes, longer than 240 minutes, longer than 480 minutes, and even longer than 960 minutes.
  • longer annealing times are used than in previous reports, allowing lower primer concentrations.
  • the primer concentrations are as low as 50 nM, 20 nM, 10 nM, 5 nM, 1 nM, and lower than 1 uM. This surprisingly results in robust performance for highly multiplexed reactions, for example 1,000-plex reactions, 2,000-plex reactions, 5,000- plex reactions, 10,000-plex reactions, 20,000-plex reactions, 50,000-plex reactions, and even 100,000-plex reactions.
  • the amplification uses one, two, three, four or five cycles run with long annealing times, followed by PCR cycles with more usual annealing times with tagged primers.
  • the DNA in the sample may have ligation adapters, often referred to as library tags or ligation adaptor tags (LTs), appended, where the ligation adapters contain a universal priming sequence, followed by a universal amplification. In an embodiment, this may be done using a standard protocol designed to create sequencing libraries after fragmentation.
  • the DNA sample can be blunt ended, and then an A can be added at the 3' end.
  • a Y-adaptor with a T-overhang can be added and ligated.
  • other sticky ends can be used other than an A or T overhang.
  • other adaptors can be added, for example looped ligation adaptors.
  • the adaptors may have tag designed for PCR amplification.
  • STA Specific Target Amplification
  • Pre-amplification of hundreds to thousands to tens of thousands and even hundreds of thousands of targets may be multiplexed in one reaction.
  • STA is typically run from 10 to 30 cycles, though it may be run from 5 to 40 cycles, from 2 to 50 cycles, and even from 1 to 100 cycles.
  • Primers may be tailed, for example for a simpler workflow or to avoid sequencing of a large proportion of dimers. Note that typically, dimers of both primers carrying the same tag will not be amplified or sequenced efficiently.
  • between 1 and 10 cycles of PCR may be carried out; in some embodiments between 10 and 20 cycles of PCR may be carried out; in some embodiments between 20 and 30 cycles of PCR may be carried out; in some embodiments between 30 and 40 cycles of PCR may be carried out; in some embodiments more than 40 cycles of PCR may be carried out.
  • the amplification may be a linear amplification.
  • the number of PCR cycles may be optimized to result in an optimal depth of read (DOR) profile. Different DOR profiles may be desirable for different purposes.
  • a more even distribution of reads between all assays is desirable; if the DOR is too small for some assays, the stochastic noise can be too high for the data to be too useful, while if the depth of read is too high, the marginal usefulness of each additional read is relatively small.
  • Primer tails may improve the detection of fragmented DNA from universally tagged libraries. If the library tag and the primer-tails contain a homologous sequence, hybridization can be improved (for example, melting temperature (T M ) is lowered) and primers can be extended if only a portion of the primer target sequence is in the sample DNA fragment. In some embodiments, 13 or more target specific base pairs may be used. In some embodiments, 10 to 12 target specific base pairs may be used. In some embodiments, 8 to 9 target specific base pairs may be used. In some embodiments, 6 to 7 target specific base pairs may be used. In some embodiments, STA may be performed on pre-amplified DNA, e.g. MDA, RCA, other whole genome amplifications, or adaptor-mediated universal PCR. In some embodiments, STA may be performed on samples that are enriched or depleted of certain sequences and populations, e.g. by size selection, target capture, directed degradation.
  • T M melting temperature
  • a DNA sample (dilution, purified or otherwise) produced by an STA reaction using tag-specific primers and "universal amplification", i.e. to amplify many or all pre-amplified and tagged targets.
  • Primers may contain additional functional sequences, e.g. barcodes, or a full adaptor sequence necessary for sequencing on a high throughput sequencing platform.
  • These methods may be used for analysis of any sample of DNA, and are especially useful when the sample of DNA is particularly small, or when it is a sample of DNA where the DNA originates from more than one individual, such as in the case of maternal plasma.
  • DNA samples such as a single or small number of cells, genomic DNA, plasma DNA, amplified plasma libraries, amplified apoptotic supernatant libraries, or other samples of mixed DNA.
  • these methods may be used in the case where cells of different genetic constitution may be present in a single individual, such as with cancer or transplants. Protocol variants (variants and/or additions to the workflow above)
  • STA Specific target amplification of a plurality of target sequences with tagged primers is shown in Figure 1.
  • 101 denotes double stranded DNA with a polymorphic locus of interest at X.
  • 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
  • 103 denotes the single stranded DNA that has been universally amplified with PCR primers hybridized.
  • 104 denotes the final PCR product.
  • STA may be done on more than 100, more than 200, more than 500, more than 1,000, more than 2,000, more than 5,000, more than 10,000, more than 20,000, more than 50,000, more than 100,000 or more than 200,000 targets.
  • tag-specific primers amplify all target sequences and lengthen the tags to include all necessary sequences for sequencing, including sample indexes.
  • primers may not be tagged or only certain primers may be tagged.
  • Sequencing adaptors may be added by conventional adaptor ligation.
  • the initial primers may carry the tags.
  • primers are designed so that the length of DNA amplified is unexpectedly short.
  • Prior art demonstrates that ordinary people skilled in the art typically design 100+ bp amplicons.
  • the amplicons may be designed to be less than 80 bp.
  • the amplicons may be designed to be less than 70 bp.
  • the amplicons may be designed to be less than 60 bp.
  • the amplicons may be designed to be less than 50 bp.
  • the amplicons may be designed to be less than 45 bp.
  • the amplicons may be designed to be less than 40 bp.
  • the amplicons may be designed to be less than 35 bp.
  • the amplicons may be designed to be between 40 and 65 bp.
  • Sequential PCR After STA1 multiple aliquots of the product may be amplified in parallel with pools of reduced complexity with the same primers. The first amplification can give enough material to split. This method is especially good for small samples, for example those that are about 6-100 pg, about 100 pg to 1 ng, about 1 ng to 10 ng, or about 10 ng to 100 ng.
  • the protocol was performed with 1200-plex into three 400-plexes. Mapping of sequencing reads increased from around 60 to 70 % in the 1200-plex alone to over 95%.
  • a second STA comprising a multiplex set of internal nested Forward primers (103 B, 105 b) and one (or few) tag-specific Reverse primers (103 A).
  • 101 denotes double stranded DNA with a polymorphic locus of interest at X.
  • 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
  • 103 denotes the single stranded DNA that has been universally amplified with Forward primer B and Reverse Primer A hybridized.
  • 104 denotes the PCR product from 103.
  • 105 denotes the product from 104 with nested Forward primer b hybridized, and Reverse tag A already part of the molecule from the PCR that occurred between 103 and 104.
  • 106 denotes the final PCR product.
  • the nested primer may overlap with the outer Forward primer sequence but introduces additional 3 '-end bases. In some embodiments it is possible to use between one and 20 extra 3' bases. Experiments have shown that using 9 or more extra 3' bases in a 1200-plex designs works well.
  • 106 denotes the final PCR product. In some embodiments, it is possible to use two full sets of primers. Experiments using a fully nested mini-PCR protocol were used to perform 146-plex amplification on single and three cells without step 102 of appending universal ligation adaptors and amplifying.
  • Hemi-nested mini-PCR (see Figure 4) It is possible to use target DNA that has and adaptors at the fragment ends.
  • STA is performed comprising a multiplex set of Forward primers (B) and one (or few) tag-specific Reverse primers (A).
  • a second STA can be performed using a universal tag-specific Forward primer and target specific Reverse primer.
  • 101 denotes double stranded DNA with a polymorphic locus of interest at X.
  • 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
  • 103 denotes the single stranded DNA that has been universally amplified with Reverse Primer A hybridized.
  • 104 denotes the PCR product from 103 that was amplified using Reverse primer A and ligation adaptor tag primer LT.
  • 105 denotes the product from 104 with Forward primer B hybridized.
  • 106 denotes the final PCR product.
  • target specific Forward and Reverse primers are used in separate reactions, thereby reducing the complexity of the reaction and preventing dimer formation of forward and reverse primers.
  • primers A and B may be considered to be first primers
  • primers 'a' and 'b' may be considered to be inner primers. This method is a big improvement on direct PCR as it is as good as direct PCR, but it avoids primer dimers. After first round of hemi nested protocol one typically sees -99% non-targeted DNA, however, after second round there is typically a big improvement.
  • STA is performed comprising a multiplex set of Forward primers (B) and one (or few) tag-specific Reverse primers (A) and (a).
  • a second STA can be performed using a universal tag-specific Forward primer and target specific Reverse primer.
  • 101 denotes double stranded DNA with a polymorphic locus of interest at X.
  • 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
  • 103 denotes the single stranded DNA that has been universally amplified with Reverse Primer A hybridized.
  • primers 'a' and B may be considered to be inner primers, and A may be considered to be a first primer.
  • both A and B may be considered to be first primers, and 'a' may be considered to be an inner primer.
  • the designation of reverse and forward primers may be switched.
  • target specific Forward and Reverse primers are used in separate reactions, thereby reducing the complexity of the reaction and preventing dimer formation of forward and reverse primers.
  • This method is a big improvement on direct PCR as it is as good as direct PCR, but it avoids primer dimers. After first round of hemi nested protocol one typically sees -99% non-targeted DNA, however, after second round there is typically a big improvement.
  • One-sided nested mini-PCR (see Figure 6) It is possible to use target DNA that has an adaptor at the fragment ends. STA may also be performed with a multiplex set of nested Forward primers and using the ligation adapter tag as the Reverse primer. A second STA may then be performed using a set of nested Forward primers and a universal Reverse primer.
  • 101 denotes double stranded DNA with a polymorphic locus of interest at X.
  • 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
  • 103 denotes the single stranded DNA that has been universally amplified with Forward Primer A hybridized.
  • 104 denotes the PCR product from 103 that was amplified using Forward primer A and ligation adaptor tag Reverse primer LT.
  • 105 denotes the product from 104 with nested Forward primer a hybridized.
  • 106 denotes the final PCR product.
  • This method can detect shorter target sequences than standard PCR by using overlapping primers in the first and second STAs. The method is typically performed off a sample of DNA that has already undergone STA step 1 above - appending of universal tags and amplification; the two nested primers are only on one side, other side uses the library tag. The method was performed on libraries of apoptotic supernatants and pregnancy plasma. With this workflow around 60% of sequences mapped to the intended targets. Note that reads that contained the reverse adaptor sequence were not mapped, so this number is expected to be higher if those reads that contain the reverse adaptor sequence are mapped
  • One-sided mini-PCR It is possible to use target DNA that has an adaptor at the fragment ends (see Figure 7). STA may be performed with a multiplex set of Forward primers and one (or few) tag-specific Reverse primer.
  • 101 denotes double stranded DNA with a polymorphic locus of interest at X.
  • 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
  • 103 denotes the single stranded DNA with Forward Primer A hybridized.
  • 104 denotes the PCR product from 103 that was amplified using Forward primer A and ligation adaptor tag Reverse primer LT, and which is the final PCR product.
  • This method can detect shorter target sequences than standard PCR. However it may be relatively unspecific, as only one target specific primer is used. This protocol is effectively half of the one sided nested mini PCR
  • Reverse semi-nested mini-PCR It is possible to use target DNA that has an adaptor at the fragment ends (see Figure 8). STA may be performed with a multiplex set of Forward primers and one (or few) tag-specific Reverse primer.
  • 101 denotes double stranded DNA with a polymorphic locus of interest at X.
  • 102 denotes the double stranded DNA with ligation adaptors added for universal amplification.
  • 103 denotes the single stranded DNA with Reverse Primer B hybridized.
  • 104 denotes the PCR product from 103 that was amplified using Reverse primer B and ligation adaptor tag Forward primer LT.
  • 105 denotes the PCR product 104 with hybridized Forward Primer A, and inner Reverse primer 'b'.
  • 106 denotes the PCR product that has been amplified from 105 using Forward primer A and Reverse primer 'b', and which is the final PCR product. This method can detect shorter target sequences than standard PCR.
  • variants that are simply iterations or combinations of the above methods such as doubly nested PCR, where three sets of primers are used.
  • Another variant is one-and-a-half sided nested mini-PCR, where STA may also be performed with a multiplex set of nested Forward primers and one (or few) tag-specific Reverse primer.
  • the identity of the Forward primer and the Reverse primer may be interchanged.
  • the nested variant can equally well be run without the initial library preparation that comprises appending the adapter tags, and a universal amplification step.
  • additional rounds of PCR may be included, with additional Forward and/or Reverse primers and amplification steps; these additional steps may be particularly useful if it is desirable to further increase the percent of DNA molecules that correspond to the targeted loci.
  • ligate adaptors When adding universal tagged adaptors for example for the purpose of making a library for sequencing, there are a number of ways to ligate adaptors. One way is to blunt end the sample DNA, perform A-tailing, and ligate with adaptors that have a T-overhang. There are a number of other ways to ligate adaptors. There are also a number of adaptors that can be ligated. For example, a Y-adaptor can be used where the adaptor consists of two strands of DNA where one strand has a double strand region, and a region specified by a forward primer region, and where the other strand specified by a double strand region that is complementary to the double strand region on the first strand, and a region with a reverse primer. The double stranded region, when annealed, may contain a T-overhang for the purpose of ligating to double stranded DNA with an A overhang.
  • the adaptor can be a loop of DNA where the terminal regions are complementary, and where the loop region contains a forward primer tagged region (LFT), a reverse primer tagged region (LRT), and a cleavage site between the two (See Figure 10).
  • 101 refers to the double stranded, blunt ended target DNA.
  • 102 refers to the A-tailed target DNA.
  • 103 refers to the looped ligation adaptor with T overhang ' ⁇ ' and the cleavage site 'Z'.
  • 104 refers to the target DNA with appended looped ligation adaptors.
  • 105 refers to the target DNA with the ligation adaptors appended cleaved at the cleavage site.
  • LFT refers to the ligation adaptor Forward tag
  • LRT refers to the ligation adaptor Reverse tag
  • the complementary region may end on a T overhang, or other feature that may be used for ligation to the target DNA.
  • the cleavage site may be a series of uracils for cleavage by UNG, or a sequence that may be recognized and cleaved by a restriction enzyme or other method of cleavage or just a basic amplification.
  • These adaptors can be uses for any library preparation, for example, for sequencing.
  • These adaptors can be used in combination with any of the other methods described herein, for example the mini-PCR amplification methods.
  • the sequence read typically begins upstream of the primer binding site (a), and then to the polymorphic site (X).
  • Tags are typically configured as shown in Figure 11, left.
  • 101 refers to the single stranded target DNA with polymorphic locus of interest 'X', and primer 'a' with appended tag 'b'.
  • the primer binding site region of target DNA complementary to 'a'
  • Sequence tag 'b' is typically about 20 bp; in theory these can be any length longer than about 15 bp, though many people use the primer sequences that are sold by the sequencing platform company.
  • the distance 'd' between 'a' and 'X' may be at least 2 bp so as to avoid allele bias.
  • the window of allowable distance 'd' between 'a' and 'X' may vary quite a bit: from 2 bp to 10 bp, from 2 bp to 20 bp, from 2 bp to 30 bp, or even from 2 bp to more than 30 bp.
  • sequence reads when using the primer configuration shown in Figure 11, left, sequence reads must be a minimum of 40 bp to obtain reads long enough to measure the polymorphic locus, and depending on the lengths of 'a' and 'd' the sequence reads may need to be up to 60 or 75 bp.
  • the longer the sequence reads the higher the cost and time of sequencing a given number of reads, therefore, minimizing the necessary read length can save both time and money.
  • bases read earlier on the read are read more accurately than those read later on the read, decreasing the necessary sequence read length can also increase the accuracy of the measurements of the polymorphic region.
  • the primer binding site (a) is split in to a plurality of segments (a', a", a'”.7), and the sequence tag (b) is on a segment of DNA that is in the middle of two of the primer binding sites, as shown in Figure 11, 103.
  • This configuration allows the sequencer to make shorter sequence reads.
  • a' + a" should be at least about 18 bp, and can be as long as 30, 40, 50, 60, 80, 100 or more than 100 bp.
  • a" should be at least about 6 bp, and in an embodiment is between about 8 and 16 bp.
  • the target DNA 101 can have ligation adaptors appended 102
  • the target primer 103 can have a region (cr) that is complementary to the ligation adaptor tag (It) appended upstream of the designed binding region (a) (see Figure 13); thus in cases where the binding region (region of 101 that is complementary to a) is shorter than the 18 bp typically required for hybridization, the region (cr) on the primer than is complementary to the library tag is able to increase the binding energy to a point where the PCR can proceed. Note that any specificity that is lost due to a shorter binding region can be made up for by other PCR primers with suitably long target binding regions.
  • this embodiment can be used in combination with direct PCR, or any of the other methods described herein, such as nested PCR, semi nested PCR, hemi nested PCR, one sided nested or semi or hemi nested PCR, or other PCR protocols.
  • each additional read from alleles with a low depth of read will yield more information than a read from an allele with a high depth of read. Therefore, ideally, one would wish to see uniform depth of read (DOR) where each locus will have a similar number of representative sequence reads. Therefore, it is desirable to minimize the DOR variance.
  • DOR uniform depth of read
  • the annealing temperatures may be longer than 2 minutes, longer than 4 minutes, longer than ten minutes, longer than 30 minutes, and longer than one hour, or even longer. Since annealing is an equilibrium process, there is no limit to the improvement of DOR variance with increasing annealing times. In an embodiment, increasing the primer concentration may decrease the DOR variance.
  • Amplification and genotyping of the amplified DNA can be done by many methods including molecular inversion probes (MIPs) such AFFYMETRIX's GENFLEX TAG array, microarrays such as AFFYMETRIX's 500K array or the ILLUMINA BEAD arrays, or SNP genotyping assays such as APPLIEDBIOSCIENCE's TAQMAN assay (see, e.g., U.S. Publ. No. 2011/0178719, filed Feb. 3, 2011). These are all examples of genotyping techniques.
  • MIPs molecular inversion probes
  • AFFYMETRIX's GENFLEX TAG array microarrays such as AFFYMETRIX's 500K array or the ILLUMINA BEAD arrays
  • SNP genotyping assays such as APPLIEDBIOSCIENCE's TAQMAN assay
  • the AFFYMETRIX 500K array, MIPs/GENFLEX, TAQMAN and ILLUMINA assay all require microgram quantities of DNA, so genotyping a single cell with either workflow requires some kind of amplification. Any techniques which are developed to the point of allowing sufficiently rapid high-throughput genotyping can be used to genotype genetic material for use with the methods of the invention.
  • LM-PCR ligation-mediated PCR
  • MDA multiple displacement amplification
  • dropouts of loci occur randomly and unavoidably (see, e.g., U.S. Publ. No. 2011/0178719, filed Feb. 3, 2011). It is often desirable to amplify the whole genome nonspecifically, but to ensure that a particular locus is amplified with greater certainty. It is possible to perform simultaneous locus targeting and whole genome amplification.
  • PCR to amplify particular loci of interest with any generalized whole genome amplification method.
  • This may include, but is not limited to, preamplification of particular loci before generalized amplification by MDA or LM-PCR, the addition of targeted PCR primers to universal primers in the generalized PCR step of LM-PCR, and the addition of targeted PCR primers to degenerate primers in MDA.
  • the present disclosure comprises a diagnostic box that is capable of partly or completely carrying out any of the methods described in this disclosure.
  • the diagnostic box may be located at a physician's office, a hospital laboratory, or any suitable location reasonably proximal to the point of patient care.
  • the box may be able to run the entire method in a wholly automated fashion, or the box may require one or a number of steps to be completed manually by a technician.
  • the box may be able to analyze at least the genotypic data measured on the any of the samples described herein, such as maternal plasma.
  • the box may be linked to means to transmit the genotypic data measured on the diagnostic box to an external computation facility which may then analyze the genotypic data, and possibly also generate a report.
  • the diagnostic box may include a robotic unit that is capable of transferring aqueous or liquid samples from one container to another. It may comprise a number of reagents, both solid and liquid. It may comprise a high throughput sequencer. It may comprise a computer.
  • a kit may be formulated that comprises a plurality of primers designed to achieve the methods described in this disclosure.
  • the primers may be outer forward and reverse primers, inner forward and reverse primers as disclosed herein, they could be primers that have been designed to have low binding affinity to other primers in the kit as disclosed in the section on primer design, they could be hybrid capture probes or pre- circularized probes as described in the relevant sections, or some combination thereof.
  • a kit may be formulated for determining a ploidy status of a target chromosome in a fetus (such as a gestating fetus or a POC sample) designed to be used with the methods disclosed herein, the kit comprising a plurality of inner forward primers and optionally the plurality of inner reverse primers, and optionally outer forward primers and outer reverse primers, where each of the primers is designed to hybridize to the region of DNA immediately upstream and/or downstream from one of the polymorphic sites on the target chromosome, and optionally additional chromosomes.
  • the primer kit may be used in combination with the diagnostic box described elsewhere in this document.
  • the kit includes instructions for use in any of the methods of the invention.
  • a number of methods are described herein that may be used to preferentially enrich a sample of DNA at a plurality of loci in a way that minimizes allelic bias.
  • Some examples are using circularizing probes to target a plurality of loci where the 3' ends and 5' ends of the pre- circularized probe are designed to hybridize to bases that are one or a few positions away from the polymorphic sites of the targeted allele.
  • Another is to use PCR probes where the 3' end PCR probe is designed to hybridize to bases that are one or a few positions away from the polymorphic sites of the targeted allele.
  • Another is to use a split and pool approach to create mixtures of DNA where the preferentially enriched loci are enriched with low allelic bias without the drawbacks of direct multiplexing.
  • Another is to use a hybrid capture approach where the capture probes are designed such that the region of the capture probe that is designed to hybridize to the DNA flanking the polymorphic site of the target is separated from the polymorphic site by one or a
  • there is a set of probes wherein some of the probes target single tandem repeats, and some of the probes target single nucleotide polymorphisms.
  • the loci are selected for the purpose of non-invasive or invasive prenatal diagnosis.
  • the probes are used for the purpose of non-invasive or invasive prenatal diagnosis.
  • the loci are targeted using a method that could include circularizing probes, MIPs, capture by hybridization probes, probes on a SNP array, or combinations thereof.
  • the probes are used as circularizing probes, MIPs, capture by hybridization probes, probes on a SNP array, or combinations thereof.
  • the loci are sequenced for the purpose of non-invasive or invasive prenatal diagnosis.
  • the relative informativeness of a sequence is greater when combined with relevant parent contexts, it follows that maximizing the number of sequence reads that contain a SNP for which the parental context is known may maximize the informativeness of the set of sequencing reads on the mixed sample.
  • the number of sequence reads that contain a SNP for which the parent contexts are known may be enhanced by using qPCR to preferentially amplify specific sequences.
  • the number of sequence reads that contain a SNP for which the parent contexts are known may be enhanced by using circularizing probes (for example, MIPs) to preferentially amplify specific sequences.
  • the number of sequence reads that contain a SNP for which the parent contexts are known may be enhanced by using a capture by hybridization method (for example SURESELECT) to preferentially amplify specific sequences. Different methods may be used to enhance the number of sequence reads that contain a SNP for which the parent contexts are known.
  • the targeting may be accomplished by extension ligation, ligation without extension, capture by hybridization, or PCR.
  • DNA found in plasma whether maternal or fetal in origin is typically fragmented, often at lengths under 500 bp.
  • targeting methods may be used to enhance the fraction of DNA in a sample of DNA that map to a given chromosome such that the fraction significantly exceeds the percentages listed above that are typical for genomic samples.
  • targeting methods may be used to enhance the fraction of DNA in a sample of DNA such that the percentage of sequences that contain a SNP are significantly greater than what may be found in typical for genomic samples.
  • targeting methods may be used to target DNA from a chromosome or from a set of SNPs in a mixture of maternal and fetal DNA for the purposes of prenatal diagnosis.
  • the accuracy may refer to sensitivity, it may refer to specificity, or it may refer to some combination thereof.
  • the desired level of accuracy may be between 90% and 95%; it may be between 95% and 98%; it may be between 98% and 99%; it may be between 99% and 99.5%; it may be between 99.5% and 99.9%; it may be between 99.9% and 99.99%; it may be between 99.99% and 99.999%, it may be between 99.999% and 100%.
  • Levels of accuracy above 95% may be referred to as high accuracy.
  • an accurate ploidy determination may be made by using targeted sequencing, using any method of targeting, for example qPCR, ligand mediated PCR, other PCR methods, capture by hybridization, or circularizing probes, wherein the number of loci along a chromosome that need to be targeted may be between 5,000 and 2,000 loci; it may be between 2,000 and 1,000 loci; it may be between 1,000 and 500 loci; it may be between 500 and 300 loci; it may be between 300 and 200 loci; it may be between 200 and 150 loci; it may be between 150 and 100 loci; it may be between 100 and 50 loci; it may be between 50 and 20 loci; it may be between 20 and 10 loci.
  • the number of reads may be between 100 million and 50 million reads; the number of reads may be between 50 million and 20 million reads; the number of reads may be between 20 million and 10 million reads; the number of reads may be between 10 million and 5 million reads; the number of reads may be between 5 million and 2 million reads; the number of reads may be between 2 million and 1 million; the number of reads may be between 1 million and 500,000; the number of reads may be between 500,000 and 200,000; the number of reads may be between 200,000 and 100,000; the number of reads may be between 100,000 and 50,000; the number of reads may be between 50,000 and 20,000; the number of reads may be between 20,000 and 10,000; the number of reads may be below 10,000. Fewer number of read are necessary for larger amounts of input DNA.
  • composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome 13 is greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%.
  • composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome 18 is greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%.
  • composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome 21 is greater than 2%, greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%.
  • composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome X is greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%.
  • composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome Y is greater than 1%, greater than 2%, greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%.
  • a composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to a chromosome, and that contains at least one single nucleotide polymorphism is greater than 0.2%, greater than 0.3%, greater than 0.4%, greater than 0.5%, greater than 0.6%, greater than 0.7%, greater than 0.8%, greater than 0.9%, greater than 1%, greater than 1.2%, greater than 1.4%, greater than 1.6%, greater than 1.8%, greater than 2%, greater than 2.5%, greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, or greater than 20%, and where the chromosome is taken from the group 13, 18, 21, X, or Y.
  • compositions comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to a chromosome and that contain at least one single nucleotide polymorphism from a set of single nucleotide polymorphisms is greater than 0.15%, greater than 0.2%, greater than 0.3%, greater than 0.4%, greater than 0.5%, greater than 0.6%, greater than 0.7%, greater than 0.8%, greater than 0.9%, greater than 1%, greater than 1.2%, greater than 1.4%, greater than 1.6%, greater than 1.8%, greater than 2%, greater than 2.5%, greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, or greater than 20%, where the chromosome is taken from the set of chromosome 13, 18, 21, X and Y, and where the number of single nucleotide polymorph
  • each cycle in the amplification doubles the amount of DNA present; however, in reality, the degree of amplification is slightly lower than two.
  • amplification including targeted amplification, will result in bias free amplification of a DNA mixture; in reality, however, different alleles tend to be amplified to a different extent than other alleles.
  • the degree of allelic bias typically increases with the number of amplification steps.
  • the methods described herein involve amplifying DNA with a low level of allelic bias. Since the allelic bias compounds with each additional cycle, one can determine the per cycle allelic bias by calculating the nth root of the overall bias where n is the base 2 logarithm of degree of enrichment.
  • compositions comprising a second mixture of DNA, where the second mixture of DNA has been preferentially enriched at a plurality of polymorphic loci from a first mixture of DNA where the degree of enrichment is at least 10, at least 100, at least 1,000, at least 10,000, at least 100,000 or at least 1,000,000, and where the ratio of the alleles in the second mixture of DNA at each locus differs from the ratio of the alleles at that locus in the first mixture of DNA by a factor that is, on average, less than 1,000%, 500%, 200%, 100%, 50%, 20%, 10%, 5%, 2%, 1%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, or 0.01%.
  • composition comprising a second mixture of DNA, where the second mixture of DNA has been preferentially enriched at a plurality of polymorphic loci from a first mixture of DNA where the per cycle allelic bias for the plurality of polymorphic loci is, on average, less than 10%, 5%, 2%, 1%, 0.5%, 0.2%, 0.1%, 0.05%, or 0.02%.
  • the plurality of polymorphic loci comprises at least 10 loci, at least 20 loci, at least 50 loci, at least 100 loci, at least 200 loci, at least 500 loci, at least 1,000 loci, at least 2,000 loci, at least 5,000 loci, at least 10,000 loci, at least 20,000 loci, or at least 50,000 loci.
  • the method disclosed herein is able to detect the presence or absence of biological phenomenon or medical condition using a maximum likelihood method. This is a substantial improvement over a method using a single hypothesis rejection technique as the threshold for calling absence or presence of the condition can be adjusted as appropriate for each case. This is particularly relevant for diagnostic techniques that aim to determine the presence or absence of aneuploidy in a gestating fetus from genetic data available from the mixture of fetal and maternal DNA present in the free floating DNA found in maternal plasma. This is because as the fraction of fetal DNA in the plasma derived fraction changes, the optimal threshold for calling aneuploidy versus euploidy changes. As the fetal fraction drops, the distribution of data that is associated with an aneuploidy becomes increasingly similar to the distribution of data that is associated with a euploidy.
  • the maximum likelihood estimation method uses the distributions associated with each hypothesis to estimate the likelihood of the data conditioned on each hypothesis. These conditional probabilities can then be converted to a hypothesis call and confidence. Similarly, maximum a posteriori estimation method uses the same conditional probabilities as the maximum likelihood estimate, but also incorporates population priors when choosing the best hypothesis and determining confidence.
  • a maximum likelihood estimate (MLE) technique or the closely related maximum a posteriori (MAP) technique give two advantages, first it increases the chance of a correct call, and it also allows a confidence to be calculated for each call.
  • selecting the ploidy state corresponding to the hypothesis with the greatest probability is carried out using maximum likelihood estimates or maximum a posteriori estimates.
  • a method is disclosed for determining the ploidy state of a fetus (such as a gestating fetus or a POC sample) that involves taking any method currently known in the art that uses a single hypothesis rejection technique and reformulating it such that it uses a MLE or MAP technique.
  • a method for determining presence or absence of fetal aneuploidy in a sample such as a maternal plasma sample comprising fetal and maternal genomic DNA, the method comprising: obtaining a sample such as a maternal plasma sample; measuring the DNA fragments found in the sample such as a plasma sample with a high throughput sequencer; mapping the sequences to the chromosome and determining the number of sequence reads that map to each chromosome; calculating the fraction of fetal DNA in the sample such as a plasma sample; calculating an expected distribution of the amount of a target chromosome that would be expected to be present if that if the second target chromosome were euploid and one or a plurality of expected distributions that would be expected if that chromosome were aneuploid, using the fetal fraction and the number of sequence reads that map to one or a plurality of reference chromosomes expected to be euploid; and using a MLE or MAP determine which of the distributions is
  • the measuring the DNA from the sample may involve conducting massively parallel shotgun sequencing.
  • the measuring the DNA from the sample may involve sequencing DNA that has been preferentially enriched, for example through targeted amplification, at a plurality of polymorphic or non-polymorphic loci.
  • the plurality of loci may be designed to target one or a small number of suspected aneuploid chromosomes and one or a small number of reference chromosomes. The purpose of the preferential enrichment is to increase the number of sequence reads that are informative for the ploidy determination.
  • this sequence data may be measured on a high throughput sequencer.
  • the sequence data may be measured on DNA that originated from free floating DNA isolated from maternal blood, wherein the free floating DNA comprises some DNA of maternal origin, and some DNA of fetal / placental origin.
  • the fraction of fetal DNA (“fetal fraction") or the percentage of fetal DNA in the mixture can be measured by another method, and is assumed to be known in determining the ploidy state of the fetus.
  • the fetal fraction can be calculated using only the genotyping measurements made on the maternal blood sample itself, which is a mixture of fetal and maternal DNA.
  • the fraction may be calculated also using the measured or otherwise known genotype of the mother and/or the measured or otherwise known genotype of the father.
  • ploidy state of the fetus can be determined solely based on the calculated fraction of fetal DNA for the chromosome in question compared to the calculated fraction of fetal DNA for the reference chromosome assumed disomic.
  • the informatics methods of the present invention can be used for any of the samples described herein.
  • N SNPs for which we have:
  • SNP where A and B correspond to the two alleles present at a given locus
  • D (M,F,SM,SF,S).
  • priorprob(H) is the prior probability assigned to each hypothesis H, based on model design and prior knowledge.
  • HMA argmax LIK(D
  • the copy number hypotheses that may be considered are:
  • o Maternal H21_matched (two identical copies from mother, one copy from father), H21_unmatched (BOTH copies from mother, one copy from father)
  • H12_matched one copy from mother , two identical copies from father
  • H12_unmatched one copy from mother , both copies from father
  • nullsomy H00
  • uniparental disomy H20 and H02
  • tetrasomy H04, H13, H22, H31 and H40
  • each trisomy whether the origin was mitosis, meiosis I, or meiosis II, would be one of the matched or unmatched trisomies. Due to crossovers, true trisomy is usually a combination of the two.
  • H) may be determined for simple hypotheses, as follows.
  • the log likelihood of hypothesis H on a whole chromosome may be calculated as the sum of log likelihoods of individual SNPs, assuming known or derived child fraction cf. In an embodiment it is possible to derive cf from the data.
  • the Log Likelihood may be determined on a per SNP basis.
  • SNP i assuming fetal ploidy hypothesis H and percent fetal DNA cf, log likelihood of observed data D is defined as:
  • Genotype prior frequency p(m
  • True child probability p(c
  • m, f, c, H, i, cf) is the probability of given data D on SNP i, given true mother genotype m, true father genotype f, true child genotype c, hypothesis H and child fraction cf. It can be broken down into the probability of mother, father and child data as follows:
  • m, f, c, H, cf, i) P(SM
  • Mother SNP array data likelihood Probability of mother SNP array genotype data m; at SNP i compared to true genotype m, assuming SNP array genotypes are correct, is simply
  • m,i) Px
  • the method involves building a joint distribution model for the expected allele counts at a plurality of polymorphic loci on the chromosome for each ploidy hypothesis; one method to accomplish such an end is described here.
  • m, c, H, cf, i) is the probability of free fetal DNA sequence data on S P i, given true mother genotype m, true child genotype c, child copy number hypothesis H, and assuming child fraction cf. It is in fact the probability of sequence data S on SNP I, given the true probability of A content on SNP i ⁇ ( ⁇ , c, cf, H)
  • the method involves building a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome for each ploidy hypothesis; one method to accomplish such an end is described here.
  • trisomy is usually not purely matched or unmatched, due to crossovers, so in this section results for composite hypotheses H21 (maternal trisomy) and H12 (paternal trisomy) are derived, which combine matched and unmatched trisomy, accounting for possible crossovers.
  • trisomy In the case of trisomy, if there were no crossovers, trisomy would be simply matched or unmatched trisomy. Matched trisomy is where child inherits two copies of the identical chromosome segment from one parent. Unmatched trisomy is where child inherits one copy of each homologous chromosome segment from the parent. Due to crossovers, some segments of a chromosome may have matched trisomy, and other parts may have unmatched trisomy. Described in this section is how to build a joint distribution model for the heterozygosity rates for a set of alleles; that is, for the expected allele counts at a number of loci for one or more hypotheses.
  • Hm, i) is the fit for matched hypothesis H m
  • Hu, i) is the fit for unmatched hypothesis H u
  • pc(i) probability of crossover between SNPs i-1 and i.
  • E, 1: i) LIK(D
  • hypotheses considered are H m and H meme.
  • ⁇ E is the hypothesis other than E (not E)
  • hypotheses considered are H m and H meme.
  • E, 1: 2) LIK(D
  • the child fraction may be determined.
  • the child fraction may refer to the proportion of sequences in a mixture of DNA that originate from the child.
  • the child fraction may refer to the proportion of sequences in the maternal plasma that originate from the fetus or the portion of the placenta with fetal genotype. It may refer to the child fraction in a sample of DNA that has been prepared from the maternal plasma, and may be enriched in fetal DNA.
  • One purpose of determining the child fraction in a sample of DNA is for use in an algorithm that can make ploidy calls on the fetus, therefore, the child fraction could refer to whatever sample of DNA was analyzed by sequencing for the purpose of non-invasive or invasive prenatal diagnosis.
  • any set of chromosomes It is possible to use any set of chromosomes. It is also possible to derive child fraction without assuming euploidy on the reference chromosomes. Using this method it is possible to determine the child fraction for any of the following situations: (1) one has array data on the parents and shotgun sequencing data on the sample (such as maternal plasma); (2) one has array data on the parents and targeted sequencing data on the maternal plasma; (3) one has targeted sequencing data on both the parents and maternal plasma; (4) one has targeted sequencing data on both the mother and the maternal plasma fraction; (5) one has targeted sequencing data on the maternal plasma fraction; (6) other combinations of parental and child fraction measurements .
  • the informatics method may incorporate data dropouts; this may result in ploidy determinations of higher accuracy.
  • the probability of getting an A is a direct function of the true mother genotype, the true child genotype, the fraction of the child in the mixture, and the child copy number.
  • mother or child alleles can drop out, for example instead of measuring true child AB in the mixture, it may be the case that only sequences mapping to allele A are measured.
  • One may denote the parent dropout rate for genomic ILLULMINA data d pg , parent dropout rate for sequence data d ps and child dropout rate for sequence data d cs .
  • the mother dropout rate may be assumed to be zero, and child dropout rates are relatively low; in this case, the results are not severely affected by dropouts.
  • the possibility of allele dropouts may be sufficiently large that they result in a significant effect of the predicted ploidy call. For such a case, allele dropouts have been incorporated into the algorithm here:
  • P(S ⁇ (m d , c d , cf, H), i) is as defined in the section on free floating data likelihood.
  • number of A alleles in true genotype c
  • IIA D number of A alleles in observed genotype c d , where ⁇ > nA D
  • nB T number of B alleles in true genotype c
  • the informatics method may incorporate random and consistent bias.
  • the informatics method may incorporate random bias.
  • q the probability of getting an A on this SNP is equal to q, which is a bit different than p as defined above. How much different p is from q depends on the accuracy of the measurement process and number of other factors and can be quantified by standard deviations of q away from p.
  • the maternal plasma DNA sequence data (S) probability assuming true mother genotype (m), true child genotype (c), child fraction (cf), assuming child hypothesis H, given free floating DNA sequence A count on SNP i (a;) and free floating sequence B count on SNP i (bj) may be calculated as
  • N X ⁇ BetaBinom(p(A),ai+bi,s), where the amount of extra variation is specified by the deviation parameter s, or equivalently N.
  • N may be made to be a constant irrespective of the depth of read aj+bi, or a function of aj+bi, making bias smaller for larger depths of read.
  • the informatics method may incorporate consistent per-S P bias. Due to artifacts of the sequencing process, some S Ps may have consistently lower or higher counts irrespective of the true amount of A content. Suppose that S P i consistently adds a bias of w; percent to the number of A counts. In some embodiments, this bias can be estimated from the set of training data derived under same conditions, and added back in to the parent sequence data estimate as:
  • the method may be written to specifically take into account additional noise, differential sample quality, differential SNP quality, and random sampling bias.
  • additional noise differential sample quality
  • differential SNP quality differential SNP quality
  • random sampling bias random sampling bias
  • the amplified sample may contain a number of molecules N 2 where N 2 » Nt.
  • This sampling bias is included in the model by using a Beta-Binomial (BB) distribution instead of using a simple Binomial distribution model.
  • Parameter N of the Beta- Binomial distribution may be estimated later on per sample basis from training data after adjusting for leakage and amplification bias, on S Ps with 0 ⁇ p ⁇ l. Leakage is the tendency for a S P to be read incorrectly.
  • the amplification step will amplify any allelic bias, thus amplification bias introduced due to possible uneven amplification.
  • the bias parameter, b is centered at 0, and indicates how much more or less the A allele get amplified as opposed to the B allele on a particular SNP.
  • the parameter b may differ from SNP to SNP.
  • Bias parameter b may be estimated on per SNP basis, for example from training data.
  • the sequencing step involves sequencing a sample of amplified molecules.
  • leakage is the situation where a SNP is read incorrectly. Leakage may result from any number of problems, and may result in a SNP being read not as the correct allele A, but as another allele B found at that locus or as an allele C or D not typically found at that locus.
  • the sequencing measures the sequence data of a number of DNA molecules from an amplified sample of size N 3 , where N 3 ⁇ N 2 .
  • N 3 may be in the range of 20,000 to 100,000; 100,000 to 500,000; 500,000 to 4,000,000; 4,000,000 to 20,000,000; or 20,000,000 to 100,000,000.
  • Each molecule sampled has a probability p g of being read correctly, in which case it will show up correctly as allele A.
  • the sample will be incorrectly read as an allele unrelated to the original molecule with probability l-p g , and will look like allele A with probability p r , allele B with probability p m or allele C or allele D with probability p 0 , where Parameters p g , p r , p m , p 0 are estimated on per SNP basis from the training data.
  • p the true amount of reference DNA
  • b per SNP bias
  • p g the probability of a correct read
  • p r the probability of read being read incorrectly but serendipitously looking like the correct allele, in case of a bad read, as described above, and:
  • the method uses a Beta-Binomial distribution instead of a simple binomial distribution; this takes care of the random sampling bias.
  • Parameter N of the Beta-Binomial distribution is estimated on per sample basis on an as needed basis.
  • bias correction F(p,b), H(p,b), instead of just p takes care of the amplification bias.
  • Parameter b of the bias is estimated on per S P basis from training data ahead of time.
  • the method uses leakage correction L(p,p r ,p g ), instead of just p; this takes care of the leakage bias, i.e. varying SNP and sample quality.
  • parameters p g , p r , p 0 are estimated on per SNP basis from the training data ahead of time.
  • the parameters p g , p r , p 0 may be updated with the current sample on the go, to account for varying sample quality.
  • the model described herein is quite general and can account for both differential sample quality and differential SNP quality. Different samples and SNPs are treated differently, as exemplified by the fact that some embodiments use Beta-Binomial distributions whose mean and variance are a function of the original amount of DNA, as well as sample and SNP quality.
  • the expected allele ratio is defined as the expected fraction of A alleles in the combined maternal and fetal DNA.
  • the expected allele ratio is given by equation 1, assuming that the genotypes are represented as allele ratios as well.
  • the observation at the SNP consists of the number of mapped reads with each allele present, n a and 3 ⁇ 4, which sum to the depth of read d. Assume that thresholds have already been applied to the mapping probabilities and phred scores such that the mappings and allele observations can be considered correct.
  • a phred score is a numerical measure that relates to the probability that a particular measurement at a particular base is wrong. In an embodiment, where the base has been measured by sequencing, the phred score may be calculated from the ratio of the dye intensity corresponding to the called base to the dye intensity of the other bases.
  • the simplest model for the observation likelihood is a binomial distribution which assumes that each of the d reads is drawn independently from a large pool that has allele ratio r. Equation 2 describes this model.
  • the binomial model can be extended in a number of ways.
  • the maternal and fetal genotypes are either all A or all B, the expected allele ratio in plasma will be 0 or 1, and the binomial probability will not be well-defined.
  • unexpected alleles are sometimes observed in practice.
  • it is possible to use a corrected allele ratio t l/(n a + n b ) to allow a small number of the unexpected allele.
  • the expected allele ratio When the expected allele ratio is not 0 or 1, the observed allele ratio may not converge with a sufficiently high depth of read to the expected allele ratio due to amplification bias or other phenomena.
  • the allele ratio can then be modeled as a beta distribution centered at the expected allele ratio, leading to a beta-binomial distribution for P(n a , n b
  • the platform model for the response at a single SNP will be defined as F(a, b, g c , g m , f)
  • the functional form of F may be a binomial distribution, beta-binomial distribution, or similar functions as discussed above.
  • the child fraction may be determined as follows.
  • a maximum likelihood estimate of the fetal fraction f for a prenatal test may be derived without the use of paternal information. This may be relevant where the paternal genetic data is not available, for example where the father of record is not actually the genetic father of the fetus.
  • the fetal fraction is estimated from the set of SNPs where the maternal genotype is 0 or 1, resulting in a set of only two possible fetal genotypes. Define So as the set of SNPs with maternal genotype 0 and Si as the set of SNPs with maternal genotype 1.
  • R ⁇ f) ⁇ l-f/2, 1 ⁇ .
  • This method can be trivially extended to include SNPs where maternal genotype is 0.5, but these SNPs will be less informative due to the larger set of possible allele ratios.
  • N a o and Nbo as the vectors formed by n as and nt, s for SNPs s in So, and N al and NM similarly for S ⁇
  • the maximum likelihood estimate / of f is defined by equation 4.
  • the probabilities can be expressed as products over the SNPs in each set (5).
  • the dependence on f is through the sets of possible allele ratios R 0 (f) and
  • the SNP probability P(n as , can be approximated by assuming the maximum likelihood genotype conditioned on f.
  • the selection of the maximum likelihood genotype will be high confidence. For example, at fetal fraction of 10 percent and depth of read of 1000, consider a SNP where the mother has genotype zero.
  • the expected allele ratios are 0 and 5 percent, which will be easily distinguishable at sufficiently high depth of read. Substitution of the estimated child genotype into equation 5 results in the complete equation (6) for the fetal fraction estimate.
  • the fetal fraction must be in the range [0, 1] and so the optimization can be easily implemented by a constrained one-dimensional search.
  • the probabilities may be derived as follows.
  • a confidence can be calculated from the data likelihoods of the two hypotheses H t and Hf.
  • the likelihood of each hypothesis is derived based on the response model, the estimated fetal fraction, the mother genotypes, allele population frequencies, and the plasma allele counts.
  • Equation 8 is a general expression for the likelihood of any hypothesis h, which will then be broken down into the specific cases of H t and Hf.
  • the alleged father is the true father and the fetal genotypes are inherited from the maternal genotypes and alleged father genotypes according to equation 9.
  • the confidence C p on correct paternity is calculated from the product over S Ps of the two likelihoods using Bayes rule (11).
  • Determining the ploidy status of a fetus by measuring the free floating DNA contained in maternal serum, or by measuring the genotypic material in any mixed sample is a non- trivial exercise. There are a number of methods, for example, performing a read count analysis where the presumption is that if the fetus is trisomic at a particular chromosome, then the overall amount of DNA from that chromosome found in the sample (such as maternal blood) will be elevated with respect to a reference chromosome.
  • One way to detect trisomy in such fetuses is to normalize the amount of DNA expected for each chromosome, for example, according to the number of SNPs in the analysis set that correspond to a given chromosome, or according to the number of uniquely mappable portions of the chromosome. Once the measurements have been normalized, any chromosomes for which the amount of DNA measured exceeds a certain threshold are determined to be trisomic. This approach is described in Fan, et al. PNAS, 2008; 105(42); pp. 16266-16271, and also in Chiu et al. BMJ 201 l;342:c7401. In the Chiu et al. paper, the normalization was accomplished by calculating a Z score as follows:
  • a method of the present disclosure is used to determine the ploidy state of the fetus involves taking into account the fraction of fetal DNA in the sample. In another embodiment of the present disclosure, the method involves the use of maximum likelihood estimations. In an embodiment, a method of the present disclosure involves calculating the percent of DNA in a sample that is fetal or placental in origin. In an embodiment, the threshold for calling aneuploidy is adaptively adjusted based on the calculated percent fetal DNA.
  • the method for estimating the percentage of DNA that is of fetal origin in a mixture of DNA comprises obtaining a mixed sample that comprises genetic material from the mother, and genetic material from the fetus, obtaining a genetic sample from the father of the fetus, measuring the DNA in the mixed sample, measuring the DNA in the father sample, and calculating the percentage of DNA that is of fetal origin in the mixed sample using the DNA measurements of the mixed sample, and of the father sample.
  • the fraction of fetal DNA, or the percentage of fetal DNA in the mixture can be measured.
  • the fraction can be calculated using only the genotyping measurements made on the mixed sample, such as maternal plasma sample itself, which is a mixture of fetal and maternal DNA.
  • the fraction may be calculated also using the measured or otherwise known genotype of the mother and/or the measured or otherwise known genotype of the father.
  • the percent fetal DNA may be calculated using the measurements made on the mixture of maternal and fetal DNA along with the knowledge of the parental contexts.
  • the fraction of fetal DNA may be calculated using population frequencies to adjust the model on the probability on particular allele measurements.
  • a confidence may be calculated on the accuracy of the determination of the ploidy state of the fetus.
  • the confidence of the hypothesis of greatest likelihood (H ma j 0 r) may be calculated as (1- H ma j 0 r) / ⁇ (all H). It is possible to determine the confidence of a hypothesis if the distributions of all of the hypotheses are known. It is possible to determine the distribution of all of the hypotheses if the parental genotype information is known. It is possible to calculate a confidence of the ploidy determination if the knowledge of the expected distribution of data for the euploid fetus and the expected distribution of data for the aneuploid fetus are known.
  • a test statistic around a normal hypothesis and around an abnormal hypothesis to determine both the reliability of the call as well as refine the threshold to make a more reliable call. This is particularly useful when the amount and/or percent of fetal DNA in the mixture is low. It will help to avoid the situation where a fetus that is actually aneuploid is found to be euploid because a test statistic, such as the Z statistic does not exceed a threshold that is made based on a threshold that is optimized for the case where there is a higher percent fetal DNA.
  • a method disclosed herein can be used to determine a fetal aneuploidy by determining the number of copies of maternal and fetal target chromosomes in a mixture of maternal and fetal genetic material.
  • This method may entail obtaining maternal tissue comprising both maternal and fetal genetic material; in some embodiments this maternal tissue may be maternal plasma or a tissue isolated from maternal blood.
  • This method may also entail obtaining a mixture of maternal and fetal genetic material from said maternal tissue by processing the aforementioned maternal tissue.
  • This method may entail distributing the genetic material obtained into a plurality of reaction samples, to randomly provide individual reaction samples that comprise a target sequence from a target chromosome and individual reaction samples that do not comprise a target sequence from a target chromosome, for example, performing high throughput sequencing on the sample.
  • This method may entail analyzing the target sequences of genetic material present or absent in said individual reaction samples to provide a first number of binary results representing presence or absence of a presumably euploid fetal chromosome in the reaction samples and a second number of binary results representing presence or absence of a possibly aneuploid fetal chromosome in the reaction samples.
  • Either of the number of binary results may be calculated, for example, by way of an informatics technique that counts sequence reads that map to a particular chromosome, to a particular region of a chromosome, to a particular locus or set of loci.
  • This method may involve normalizing the number of binary events based on the chromosome length, the length of the region of the chromosome, or the number of loci in the set.
  • This method may entail calculating an expected distribution of the number of binary results for a presumably euploid fetal chromosome in the reaction samples using the first number.
  • This method may entail calculating an expected distribution of the number of binary results for a presumably aneuploid fetal chromosome in the reaction samples using the first number and an estimated fraction of fetal DNA found in the mixture, for example, by multiplying the expected read count distribution of the number of binary results for a presumably euploid fetal chromosome by (1 + n/2) where n is the estimated fetal fraction.
  • the sequence reads may be treated at probabilistic mappings rather than binary results; this method would yield higher accuracies, but require more computing power.
  • the fetal fraction may be estimated by a plurality of methods, some of which are described elsewhere in this disclosure.
  • This method may involve using a maximum likelihood approach to determine whether the second number corresponds to the possibly aneuploid fetal chromosome being euploid or being aneuploid.
  • This method may involve calling the ploidy status of the fetus to be the ploidy state that corresponds to the hypothesis with the maximum likelihood of being correct given the measured data.
  • a maximum likelihood model may be used to increase the accuracy of any method that determines the ploidy state of a fetus.
  • a confidence maybe calculated for any method that determines the ploidy state of the fetus.
  • the use of a maximum likelihood model would result in an improvement of the accuracy of any method where the ploidy determination is made using a single hypothesis rejection technique.
  • a maximum likelihood model may be used for any method where a likelihood distribution can be calculated for both the normal and abnormal cases.
  • the use of a maximum likelihood model implies the ability to calculate a confidence for a ploidy call.
  • a method disclosed herein utilizes a quantitative measure of the number of independent observations of each allele at a polymorphic locus, where this does not involve calculating the ratio of the alleles. This is different from methods, such as some microarray based methods, which provide information about the ratio of two alleles at a locus but do not quantify the number of independent observations of either allele. Some methods known in the art can provide quantitative information regarding the number of independent observations, but the calculations leading to the ploidy determination utilize only the allele ratios, and do not utilize the quantitative information. To illustrate the importance of retaining information about the number of independent observations consider the sample locus with two alleles, A and B.
  • the instant methods build a genetic model for aggregating the measurements from multiple polymorphic loci to better distinguish trisomy from disomy and also to determine the type of trisomy. Additionally, the instant method incorporates genetic linkage information to enhance the accuracy of the method. This is in contrast to some methods known in the art where allele ratios are averaged across all polymorphic loci on a chromosome. The method disclosed herein explicitly models the allele frequency distributions expected in disomy as well as and trisomy resulting from nondisjunction during meiosis I, nondisjunction during meiosis II, and nondisjunction during mitosis early in fetal development.
  • meiosis II nondisjunction To better distinguish between meiosis I nondisjunction and meiosis II or mitotic nondisjunction the instant method incorporates into the model an increasing probability of crossover as the distance from the centromere increases.
  • Meiosis II and mitotic nondisjunction can distinguished by the fact that mitotic nondisjunction typically results in identical or nearly identical copies of one homolog while the two homologs present following a meiosis II nondisjunction event often differ due to one or more crossovers during gametogenesis.
  • a method of the present disclosure may not determine the haplotypes of the parents if disomy is assumed.
  • the instant method can make a determination about the haplotypes of one or both parents by using the fact that the mixed sample such as plasma takes two copies from one parent, and parent phase information can be determined by noting which two copies have been inherited from the parent in question.
  • a child can inherit either two of the same copies of the parent (matched trisomy) or both copies of the parent (unmatched trisomy).
  • At each S P one can calculate the likelihood of the matched trisomy and of the unmatched trisomy.
  • a ploidy calling method that does not use the linkage model accounting for crossovers would calculate the overall likelihood of the trisomy as a simple weighted average of the matched and unmatched trisomies over all chromosomes.
  • trisomy can change from matched to unmatched (and vice versa) on a chromosome only if a crossover occurs.
  • the instant method probabilistically takes into account the likelihood of crossover, resulting in ploidy calls that are of greater accuracy than those methods that do not.
  • a reference chromosome is used to determine the child fraction and noise level amount or probability distribution.
  • the child fraction, noise level, and/or probability distribution is determined using only the genetic information available from the chromosome whose ploidy state is being determined. The instant method works without the reference chromosome, as well as without fixing the particular child fraction or noise level. This is a significant improvement and point of differentiation from methods known in the art where genetic data from a reference chromosome is necessary to calibrate the child fraction and chromosome behavior.
  • determining the hypothesis is done as follows:
  • H * argmax H LIK(D
  • priorprob(cfr, N) is the prior probability of particular child fraction and noise level, determined by prior knowledge and experiments. If desired, just uniform over the range of cfr, N.
  • H) LIK(D
  • H) ⁇ LIK(D
  • H) may be determined as above, for each chromosome separately, assuming hypothesis H, not just for the reference chromosome assuming disomy. It is possible, using this method, to keep both noise and child fraction parameters fixed, fix either of the parameters, or keep both parameters in probabilistic form for each chromosome and each hypothesis.
  • Measurements of DNA are noisy and/or error prone, especially measurements where the amount of DNA is small, or where the DNA is mixed with contaminating DNA. This noise results in less accurate genotypic data, and less accurate ploidy calls.
  • platform modeling or some other method of noise modeling may be used to counter the deleterious effects of noise on the ploidy determination.
  • the instant method uses a joint model of both channels, which accounts for the random noise due to the amount of input DNA, DNA quality, and/or protocol quality.
  • noise on a particular SNP is not a function of the ratio, i.e. noise(x,y) ⁇ f(x,y) but is in fact a joint function of both channels.
  • noise of the measured ratio has a variance of r(l-r)/(x+y) which is not a function purely of r.
  • a method of the present disclosure uses a BetaBinomial distribution, which avoids the limiting practice of relying on the allele ratios only, but instead models the behavior based on both channel counts.
  • a method disclosed herein can call the ploidy of a fetus (such as a gestating fetus or a POC sample) from genetic data found in a sample such as maternal plasma by using all available measurements.
  • a method disclosed herein can call the ploidy of a fetus (such as a gestating fetus or a POC sample) from genetic data found in the sample such as maternal plasma by using the measurements from only a subset of parental contexts. Some methods known in the art only use measured genetic data where the parental context is from the AA
  • the method does not use genetic measurements of the maternal plasma made at loci where the parental context is AA
  • the instant method uses plasma measurements for only those polymorphic loci with the AA
  • Some methods known in the art involve averaging allele ratios from S Ps in the AA
  • the instant method uses a joint channel distribution model that does not assume the presence of either of the parents, and does not assume the uniform SNP behavior. In some embodiments, the instant method accounts for the different SNP behavior/weighing. In some embodiments, the instant method does not require the knowledge of one or both parental genotypes. An example of how the instant method may accomplish this follows :
  • the log likelihood of a hypothesis may be determined on a per SNP basis.
  • the log likelihood of observed data D is defined as: I m, f, c, H, cf, i) P(c I m, f, H)P(m
  • Some methods known in the art involve averaging allele ratios from SNPs where the mother is homozygous but a different allele is measured in the plasma (either AA
  • the overall chromosome can have anywhere between no unmatched trisomy and all unmatched trisomy, this ratio can vary anywhere between 33-66%. For a plain disomy, the ratio should be around 50%. Without the use of a linkage model or an accurate error model of the average, this method would miss many cases of paternal trisomy.
  • the method disclosed herein assigns parental genotype probabilities for each parental genotypic candidate, based on available genotypic information and population frequency, and does not explicitly require parental genotypes. Additionally, the method disclosed herein is able to detect trisomy even in the absence or presence of parent genotypic data, and can compensate by identifying the points of possible crossovers from matched to unmatched trisomy using a linkage model.
  • Some methods known in the art claim a method for averaging allele ratios from SNPs where neither the maternal or paternal genotype is known, and for determining the ploidy calls from average ratio on these SNPs. However, a method to accomplish these ends is not disclosed. The method disclosed herein is able to make accurate ploidy calls in such a situation, and the reduction to practice is disclosed elsewhere in this document, using a joint probability maximum likelihood method and optionally utilizes SNP noise and bias models, as well as a linkage model.
  • Some methods known in the art involve averaging allele ratios and claim to determine the ploidy calls from the average allele ratio at one or a few SNPs. However, such methods do not utilize the concept of linkage. The methods disclosed herein do not suffer from these drawbacks.
  • NPD nuclear desorption spectroscopy
  • Some of these methods involve making measurements of the fetal DNA using SNP arrays, some methods involve untargeted sequencing, and some methods involve targeted sequencing.
  • the targeted sequencing may target SNPs, it may target STRs, it may target other polymorphic loci, it may target non- polymorphic loci, or some combination thereof.
  • Some of these methods may involve using a commercial or proprietary allele caller that calls the identity of the alleles from the intensity data that comes from the sensors in the machine doing the measuring.
  • the ILLUMINA INFINIUM system or the AFFYMETRIX GENECfflP microarray system involves beads or microchips with attached DNA sequences that can hybridize to complementary segments of DNA; upon hybridization, there is a change in the fluorescent properties of the sensor molecule that can be detected.
  • sequencing methods for example the ILLUMINA SOLEXA GENOME SEQUENCER or the AM SOLID GENOME SEQUENCER, wherein the genetic sequence of fragments of DNA are sequenced; upon extension of the strand of DNA complementary to the strand being sequenced, the identity of the extended nucleotide is typically detected via a fluorescent or radio tag appended to the complementary nucleotide.
  • genotypic or sequencing data is typically determined on the basis of fluorescent or other signals, or the lack thereof.
  • These systems are typically combined with low level software packages that make specific allele calls (secondary genetic data) from the analog output of the fluorescent or other detection device (primary genetic data).
  • secondary genetic data For example, in the case of a given allele on a SNP array, the software will make a call, for example, that a certain SNP is present or not present if the fluorescent intensity is measure above or below a certain threshold.
  • the output of a sequencer is a chromatogram that indicates the level of fluorescence detected for each of the dyes, and the software will make a call that a certain base pair is A or T or C or G.
  • High throughput sequencers typically make a series of such measurements, called a read, that represents the most likely structure of the DNA sequence that was sequenced.
  • the direct analog output of the chromatogram is defined here to be the primary genetic data, and the base pair / SNP calls made by the software are considered here to be the secondary genetic data.
  • primary data refers to the raw intensity data that is the unprocessed output of a genotyping platform, where the genotyping platform may refer to a SNP array, or to a sequencing platform.
  • the secondary genetic data refers to the processed genetic data, where an allele call has been made, or the sequence data has been assigned base pairs, and/or the sequence reads have been mapped to the genome.
  • SNP calls and sequence reads that is, the secondary genetic data, that the genotyping software produces.
  • DNA NEXUS, ELAND or MAQ will take the sequencing reads and map them to the genome.
  • complex informatics such as PARENTAL SUPPORT, may leverage a large number of SNP calls to determine the genotype of an individual.
  • preimplantation genetic diagnosis it is possible to take a set of sequence reads that are mapped to the genome, and by taking a normalized count of the reads that are mapped to each chromosome, or section of a chromosome, it may be possible to determine the ploidy state of an individual.
  • non-invasive prenatal diagnosis it may be possible to take a set of sequence reads that have been measured on DNA present in maternal plasma, and map them to the genome. One may then take a normalized count of the reads that are mapped to each chromosome, or section of a chromosome, and use that data to determine the ploidy state of an individual. For example, it may be possible to conclude that those chromosomes that have a disproportionately large number of reads are trisomic in the fetus that is gestating in the mother from which the blood was drawn.
  • the initial output of the measuring instruments is an analog signal.
  • the software may call the base pair a T
  • the call is the call that the software believes to be most likely.
  • the call may be of low confidence, for example, the analog signal may indicate that the particular base pair is only 90% likely to be a T, and 10% likely to be an A.
  • the genotype calling software that is associated with a SNP array reader may call a certain allele to be G.
  • the underlying analog signal may indicate that it is only 70% likely that the allele is G, and 30% likely that the allele is T.
  • the higher level applications use the genotype calls and sequence calls made by the lower level software, they are losing some information. That is, the primary genetic data, as measured directly by the genotyping platform, may be messier than the secondary genetic data that is determined by the attached software packages, but it contains more information.
  • mapping the secondary genetic data sequences to the genome many reads are thrown out because some bases are not read with enough clarity and or mapping is not clear.
  • all or many of those reads that may have been thrown out when first converted to secondary genetic data sequence read can be used by treating the reads in a probabilistic manner.
  • the higher level software does not rely on the allele calls, SNP calls, or sequence reads that are determined by the lower level software. Instead, the higher level software bases its calculations on the analog signals directly measured from the genotyping platform.
  • an informatics based method such as PARENTAL SUPPORT is modified so that its ability to reconstruct the genetic data of the embryo / fetus / child is engineered to directly use the primary genetic data as measured by the genotyping platform.
  • an informatics based method such as PARENTAL SUPPORT is able to make allele calls, and/or chromosome copy number calls using primary genetic data, and not using the secondary genetic data.
  • all genetic calls, SNPs calls, sequence reads, sequence mapping is treated in a probabilistic manner by using the raw intensity data as measured directly by the genotyping platform, rather than converting the primary genetic data to secondary genetic calls.
  • the DNA measurements from the prepared sample used in calculating allele count probabilities and determining the relative probability of each hypothesis comprise primary genetic data.
  • the method can increase the accuracy of genetic data of a target individual which incorporates genetic data of at least one related individual, the method comprising obtaining primary genetic data specific to a target individual's genome and genetic data specific to the genome(s) of the related individual(s), creating a set of one or more hypotheses concerning possibly which segments of which chromosomes from the related individual(s) correspond to those segments in the target individual's genome, determining the probability of each of the hypotheses given the target individual's primary genetic data and the related individual(s)'s genetic data, and using the probabilities associated with each hypothesis to determine the most likely state of the actual genetic material of the target individual.
  • the method can determining the number of copies of a segment of a chromosome in the genome of a target individual, the method comprising creating a set of copy number hypotheses about how many copies of the chromosome segment are present in the genome of a target individual, incorporating primary genetic data from the target individual and genetic information from one or more related individuals into a data set, estimating the characteristics of the platform response associated with the data set, where the platform response may vary from one experiment to another, computing the conditional probabilities of each copy number hypothesis, given the data set and the platform response characteristics, and determining the copy number of the chromosome segment based on the most probable copy number hypothesis.
  • a method of the present disclosure can determine a ploidy state of at least one chromosome in a target individual, the method comprising obtaining primary genetic data from the target individual and from one or more related individuals, creating a set of at least one ploidy state hypothesis for each of the chromosomes of the target individual, using one or more expert techniques to determine a statistical probability for each ploidy state hypothesis in the set, for each expert technique used, given the obtained genetic data, combining, for each ploidy state hypothesis, the statistical probabilities as determined by the one or more expert techniques, and determining the ploidy state for each of the chromosomes in the target individual based on the combined statistical probabilities of each of the ploidy state hypotheses.
  • a method of the present disclosure can determine an allelic state in a set of alleles, in a target individual, and from one or both parents of the target individual, and optionally from one or more related individuals, the method comprising obtaining primary genetic data from the target individual, and from the one or both parents, and from any related individuals, creating a set of at least one allelic hypothesis for the target individual, and for the one or both parents, and optionally for the one or more related individuals, where the hypotheses describe possible allelic states in the set of alleles, determining a statistical probability for each allelic hypothesis in the set of hypotheses given the obtained genetic data, and determining the allelic state for each of the alleles in the set of alleles for the target individual, and for the one or both parents, and optionally for the one or more related individuals, based on the statistical probabilities of each of the allelic hypotheses.
  • the genetic data of the mixed sample may comprise sequence data wherein the sequence data may not uniquely map to the human genome. In some embodiments, the genetic data of the mixed sample may comprise sequence data wherein the sequence data maps to a plurality of locations in the genome, wherein each possible mapping is associated with a probability that the given mapping is correct. In some embodiments, the sequence reads are not assumed to be associated with a particular position in the genome. In some embodiments, the sequence reads are associated with a plurality of positions in the genome, and an associated probability belonging to that position.
  • the invention features methods of testing for an abnormal distribution of a fetal chromosome by comparing the number of sequence tags that align to different chromosomes ⁇ see, e.g., U.S. Pat. No. 8,296,076, filed April 20, 2012, which is hereby incorporated by reference in its entirety).
  • sequence tag refers to a relatively short (e.g., 15-100) nucleic acid sequence that can be used to identify a certain larger sequence, e.g., be mapped to a chromosome or genomic region or gene.
  • the method involves (i) contacting a sample that includes a mixture of maternal and fetal DNA with a primers that simultaneously hybridize to different target loci to produce a reaction mixture; wherein the target loci are from a plurality of different chromosomes; and wherein the plurality of different chromosomes comprise at least one first chromosome suspected of having an abnormal distribution in the sample and at least one second chromosome presumed to be normally distributed in the sample; (ii) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products; (iii) sequencing the amplified products to obtain a plurality of sequence tags aligning to the target loci; wherein the sequence tags are of sufficient length to be assigned to a specific target locus; (iv) assigning on a computer the plurality of sequence tags to their corresponding target loci; (v) determining on a computer a number of sequence tags aligning to the target loci of the first chromosome and a number of sequence tags aligning to the target loci
  • the invention provides methods for detecting the presence or absence of a fetal aneuploidy by comparing the relative frequency of target amplicons between chromosomes (see, e.g., PCT Publ. No. WO 2012/103031, filed Jan. 23, 2012, which is hereby incorporated by reference in its entirety).
  • the method involves (i) contacting a sample that includes a mixture of maternal and fetal DNA with primers that simultaneously hybridize to different non-polymorphic target loci to produce a reaction mixture; wherein the target loci are from a plurality of different chromosomes; (ii) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products that includes target amplicons; (iii) quantifying on a c omputer a relative frequency of the target amplicons from the first and second chromosomes of interest; (iv) comparing on a c omputer the relative frequency of the target amplicons from the first and second chromosomes of interest; and (v) identifying the presence or absence of an aneuploidy based on the compared relative frequencies of the first and second chromosome of interest.
  • the first chromosome is a chromosome suspected of being euploid.
  • the second chromosome is a chromosome suspected of being aneuploidy DNA from Children from Previous Pregnancies in Maternal Blood
  • fetal DNA present in the maternal blood of paternal origin that is, DNA that the fetus inherited from the father
  • PARENTAL SUPPORT PS
  • This method may utilize phased parental genetic information.
  • phased parental haplotypic data it is possible to use the phased parental haplotypic data to detect the presence of more than one homolog from the father, implying that the genetic material from more than one child is present in the blood.
  • chromosomes that are expected to be euploid in a fetus, one could rule out the possibility that the fetus was afflicted with a trisomy.
  • fetal genetic material available via methods other than a blood draw.
  • fetal genetic material available in maternal blood
  • whole fetal cells there is some evidence that fetal cells can persist in maternal blood for an extended period of time such that it is possible to isolate a cell from a pregnant woman that contains the DNA from a child or fetus from a prior pregnancy.
  • free floating fetal DNA is cleared from the system in a matter of weeks.
  • One challenge is how to determine the identity of the individual whose genetic material is contained in the cell, namely to ensure that the measured genetic material is not from a fetus from a prior pregnancy.
  • the knowledge of the maternal genetic material can be used to ensure that the genetic material in question is not maternal genetic material.
  • informatics based methods such as PARENTAL SUPPORT, as described in this document or any of the patents referenced in this document.
  • the blood drawn from the pregnant mother may be separated into a fraction comprising free floating fetal DNA, and a fraction comprising nucleated red blood cells.
  • the free floating DNA may optionally be enriched, and the genotypic information of the DNA may be measured.
  • the knowledge of the maternal genotype may be used to determine aspects of the fetal genotype. These aspects may refer to ploidy state, and/or a set of allele identities.
  • individual nucleated red blood cells may be genotyped using methods described elsewhere in this document, and other referent patents, especially those mentioned in the first section of this document.
  • the knowledge of the maternal genome would allow one to determine whether or not any given single blood cell is genetically maternal.
  • this aspect of the present disclosure allows one to use the genetic knowledge of the mother, and possibly the genetic information from other related individuals, such as the father, along with the measured genetic information from the free floating DNA found in maternal blood to determine whether an isolated nucleated cell found in maternal blood is either (a) genetically maternal, (b) genetically from the fetus currently gestating, or (c) genetically from a fetus from a prior pregnancy.
  • fetal free floating DNA fetal free floating DNA
  • the PARENTAL SUPPORT method uses crossover frequency data, parental genotypic data, and informatics techniques, to determine the ploidy state of a fetus (such as a gestating fetus or a POC sample).
  • the sex of a fetus is simply the ploidy state of the fetus at the sex chromosomes.
  • a child that is XX is female, and XY is male.
  • the method described herein is also able to determine the ploidy state of the fetus. Note that sexing is effectively synonymous with ploidy determination of the sex chromosomes; in the case of sexing, an assumption is often made that the child is euploid, therefore there are fewer possible hypotheses.
  • the method disclosed herein involves looking at loci that are common to both the X and Y chromosome to create a baseline in terms of expected amount of fetal DNA present for a fetus. Then, those regions that are specific only to the X chromosome can be interrogated to determine if the fetus is female or male. In the case of a male, we expect to see less fetal DNA from loci that are specific to the X chromosome than from loci that are specific to both the X and the Y. In contrast, in female fetuses, we expect the amount of DNA for each of these groups to be the same.
  • the DNA in question can be measured by any technique that can quantitate the amount of DNA present on a sample, for example, qPCR, SNP arrays, genotyping arrays, or sequencing. For DNA that is exclusively from an individual we would expect to see the following:
  • the expected ratios can be computed, and the observed data can be compared to the expected data.
  • a threshold can be selected based on historical data. In both cases, the measured amount of DNA at loci specific to both X and Y can be used as a baseline, and the test for the sex of the fetus can be based on the amount of DNA observed on loci specific to only the X chromosome.
  • the fetus is determined to be male, and if that amount is about equal to the baseline, or if is not lower by an amount that causes it to fall below a predefined threshold, the fetus is determined to be female.
  • a subset of the loci on the Z chromosome are typically always A on the X chromosome, and B on the Y chromosome. If SNPs from the Z chromosome are found to have the B genotype, then the fetus is called a male; if the SNPs from the Z chromosome are found to only have A genotype, then the fetus is called a female.
  • B are particularly informative as the presence of a B indicates that the fetus has an X chromosome from the father.
  • B are also informative, as we expect to see B present only half as often in the case of a female fetus as compared to a male fetus.
  • HNR homologous non-recombining
  • the sex of the fetus could be determined from the fetal free floating DNA found in a sample such as maternal plasma, the method comprising some or all of the following steps: 1) Design PCR (either regular or mini-PCR, plus multiplexing if desired) primers amplify X/Y variant single nucleotide positions within HNR region, 2) obtain maternal plasma, 3) PCR Amplify targets from maternal plasma using HNR X/Y PCR assays, 4) sequence the amplicons, 5) Examine sequence data for presence of Y-allele within one or more of the amplified sequences. The presence of one or more would indicate a male fetus. Absence of all Y-alleles from all amplicons indicates a female fetus.
  • Another approach could be to target some known homozygous alleles and then use historical data to relate the number of reads at each probe with the number of reads at the known homozygous alleles. For each sample, one could then measure the number of reads at the homozygous alleles and then use this measurement, along with the empirically derived relationships, to estimate the number of sequence reads at each probe.
  • the plurality of methods are taken from methods described in this disclosure. In some embodiments, at least one of the plurality of methods are taken from methods described in this disclosure.
  • the method described herein can be used to determine the ploidy state of the fetus (such as a gestating fetus or a POC sample).
  • the ploidy calling method uses loci that are specific to the X chromosome, or common to both the X and Y chromosome, but does not make use of any Y-specific loci.
  • the ploidy calling method uses one or more of the following: loci that are specific to the X chromosome, loci that are common to both the X and Y chromosome, and loci that are specific to the Y chromosome.
  • the differentiation can be accomplished by comparing the allele distributions to expected allele distributions according to the various hypotheses. In another embodiment, this can be accomplished by comparing the relative number of sequence reads for the sex chromosomes to one or a plurality of reference chromosomes that are assumed to be euploid. Also note that these methods can be expanded to include aneuploid cases.
  • a method for determining the ploidy state of the fetus may be extended to enable simultaneous testing for single gene disorders.
  • Single-gene disease diagnosis leverages the same targeted approach used for aneuploidy testing, and requires additional specific targets.
  • the single gene NPD diagnosis is through linkage analysis.
  • direct testing of the cfDNA sample is not reliable, as the presence of maternal DNA makes it virtually impossible to determine if the fetus has inherited the mother's mutation. Detection of a unique paternally-derived allele is less challenging, but is only fully informative if the disease is dominant and carried by the father, limiting the utility of the approach.
  • the method involves PCR or related amplification approaches.
  • the method involves phasing the abnormal allele with surrounding very tightly linked SNPs in the parents using information from first-degree relatives. Then PARENTAL SUPPORT may be run on the targeted sequencing data obtained from these SNPs to determine which homologs, normal or abnormal, were inherited by the fetus from both parents. As long as the SNPs are sufficiently linked, the inheritance of the genotype of the fetus can be determined very reliably.
  • the method comprises (a) adding a set of SNP loci to densely flank a specified set of common diseases to our multiplex pool for aneuploidy testing; (b) reliably phasing the alleles from these added SNPs with the normal and abnormal alleles based on genetic data from various relatives; and (c) reconstructing the fetal haplotype, or set of phased SNP alleles on the inherited maternal and paternal homologs in the region surrounding the disease locus to determine fetal genotype.
  • additional probes that are closely linked to a disease linked locus are added to the set of polymorphic locus being used for aneuploidy testing.
  • the method incorporates relative information to phase the S Ps and disease alleles, then take into account physical distance of the S Ps and recombination data from location specific recombination likelihoods and the data observed from the genetic measurements of the maternal plasma to obtain the most likely genotype of the fetus.
  • a number of additional probes per disease linked locus are included in the set of targeted polymorphic loci; the number of additional probes per disease linked locus may be between 4 and 10, between 11 and 20, between 21 and 40, between 41 and 60, between 61 and 80, or combinations thereof.
  • a parent can be phased by inference by measuring tissue from the parent that is haploid, for example by measuring one or more sperm or eggs.
  • the parent can be phased by inference using the measured genotypic data of a first degree relative such as the parent's parent(s) or siblings.
  • the parent can be phased by dilution where the DNA is diluted, in one or a plurality of wells, to the point where there is expected to be no more than approximately one copy of each haplotype in each well, and then measuring the DNA in the one or more wells.
  • the parent genotype can be phased by using computer programs that use population based haplotype frequencies to infer the most likely phase.
  • the parent can be phased if the phased haplotypic data is known for the other parent, along with the unphased genetic data of one or more genetic offspring of the parents.
  • the genetic offspring of the parents may be one or more embryos, fetuses, and/or born children.
  • Some of these methods and other methods for phasing one or both parents are disclosed in greater detail in, e.g., U.S. Publ. No. 2011/0033862, filed August 19, 2010; U.S. Publ. No. 2011/0178719, filed Feb. 3, 2011; U.S. Publ. No. 2007/0184467, filed Nov. 22, 2006; U.S. Publ. No. 2008/0243398, filed March 17, 2008, which are each hereby incorporated by reference in its entirety.
  • the invention features methods for determining a haplotype of a fetus see, e.g., U.S. Utility Application Serial No. 13/683,604, filed November 21, 2012, which is hereby incorporated by reference in its entirety).
  • this method allows one to determine which polymorphic loci (such as SNPs) were inherited by the fetus and to reconstruct which homologs (including recombination events) are present in the fetus (and thereby interpolate the sequence between the polymorphic loci). If desired, essentially the entire genome of the fetus can be reconstructed.
  • the polymorphic loci are chosen to cover one or more of the chromosomes at a density to reduce any ambiguity to a desired level. This method has important applications for the detection of polymorphisms or other mutations of interest in a fetus since it enables their detection based on linkage (such as the presence of linked polymorphic loci in the fetal genome) rather than by directing detecting the polymorphism or other mutation of interest in the fetal genome.
  • a nucleic acid sample that includes maternal DNA from the mother of the fetus and fetal DNA from the fetus can be analyzed to determine whether the fetal DNA include the haplotype containing the CF mutation.
  • polymorphic loci can be analyzed to determine whether the fetal DNA includes the haplotype containing the CF mutation without having to detect the CF mutation itself in the fetal DNA.
  • the method involves determining a parental haplotype ⁇ e.g., a haplotype of the mother or father of the fetus). In some embodiments, this determination is made without using data from a relative of the mother or father.
  • a parental haplotype is determined using a dilution approach followed by SNP genotyping or sequencing as described herein and elsewhere ⁇ see, e.g., U.S. Publ. No. 2011/0033862, filed August 19, 2010, which is hereby incorporated by reference in its entirety). This parental haplotype data can be used to determine if the fetus inherited the parental haplotype.
  • SNP array or sequencing data is used to determine a parental haplotype by using data about the probability of chromosomes crossing over at different locations in a chromosome (such as by using recombination data such as may be found in the HapMap database to create a recombination risk score for any interval) to model dependence between polymorphic alleles on the chromosome.
  • allele counts at the polymorphic loci are calculated on a computer based on the sequencing data.
  • a plurality of ploidy hypotheses each pertaining to a different possible ploidy state of the chromosome are created on a computer; a model (such as a joint distribution model) for the expected allele counts at the polymorphic loci on the chromosome is built on a computer for each ploidy hypothesis; a relative probability of each of the ploidy hypotheses is determined on a computer using the joint distribution model and the allele counts; and the ploidy state of the fetus is called by selecting the ploidy state corresponding to the hypothesis with the greatest probability.
  • building a joint distribution model for allele counts and the step of determining the relative probability of each hypothesis are done using a method that does not require the use of a reference chromosome.
  • a method for generating a report disclosing the determined ploidy status of a chromosome in a fetus (such as a gestating fetus or a POC sample), the method comprising: obtaining a first sample that contains DNA from the mother of the fetus and DNA from the fetus; obtaining genotypic data from one or both parents of the fetus; preparing the first sample by isolating the DNA so as to obtain a prepared sample; measuring the DNA in the prepared sample at a plurality of polymorphic loci; calculating, on a computer, allele counts or allele count probabilities at the plurality of polymorphic loci from the DNA measurements made on the prepared sample; creating, on a computer, a plurality of ploidy hypotheses concerning expected allele count probabilities at the plurality of polymorphic loci on the chromosome for different possible ploidy states of the chromosome; building, on a computer,
  • the method is used to determine the ploidy state of a plurality of fetuses (such as gestating fetuses or POC samples) in a plurality of respective mothers, the method further comprising: determining the percent of DNA that is of fetal origin in each of the prepared samples; and wherein the step of measuring the DNA in the prepared sample is done by sequencing a number of DNA molecules in each of the prepared samples, where more molecules of DNA are sequenced from those prepared samples that have a smaller fraction of fetal DNA than those prepared samples that have a larger fraction of fetal DNA.
  • the method is used to determine the ploidy state of a plurality of fetuses (such as gestating fetuses or POC samples) in a plurality of respective mothers, and where the measuring the DNA in the prepared sample is done, for each of the fetuses, by sequencing a first fraction of the prepared sample of DNA to give a first set of measurements, the method further comprising: making a first relative probability determination for each of the ploidy hypotheses for each of the fetuses, given the first set of DNA measurements; resequencing a second fraction of the prepared sample from those fetuses where the first relative probability determination for each of the ploidy hypotheses indicates that a ploidy hypothesis corresponding to an aneuploid fetus has a significant but not conclusive probability, to give a second set of measurements; making a second relative probability determination for ploidy hypotheses for the fetuses using the second set of measurements and optionally
  • a composition of matter comprising: a sample of preferentially enriched DNA, wherein the sample of preferentially enriched DNA has been preferentially enriched at a plurality of polymorphic loci from a first sample of DNA, wherein the first sample of DNA consisted of a mixture of maternal DNA and fetal DNA derived from maternal plasma, where the degree of enrichment is at least a factor of 2, and wherein the allelic bias between the first sample and the preferentially enriched sample is, on average, selected from the group consisting of less than 2%, less than 1%, less than 0.5%, less than 0.2%, less than 0.1%, less than 0.05%, less than 0.02%, and less than 0.01%.
  • a method is disclosed to create a sample of such preferentially enriched DNA.
  • a method for determining the presence or absence of a fetal aneuploidy in a maternal tissue sample comprising fetal and maternal genomic DNA, wherein the method comprises: (a) obtaining a mixture of fetal and maternal genomic DNA from said maternal tissue sample; (b) selectively enriching the mixture of fetal and maternal DNA at a plurality of polymorphic alleles; (c) distributing selectively enriched fragments from the mixture of fetal and maternal genomic DNA of step a to provide reaction samples comprising a single genomic DNA molecule or amplification products of a single genomic DNA molecule; (d) conducting massively parallel DNA sequencing of the selectively enriched fragments of genomic DNA in the reaction samples of step c) to determine the sequence of said selectively enriched fragments; (e) identifying the chromosomes to which the sequences obtained in step d) belong; (f) analyzing the data of step d) to determine i) the number of fragments of genomic DNA from step d) that belong to at least one
  • MLE Bayesian maximum likelihood estimation
  • Simulated sequencing data for maternal cfDNA was created by sampling reads obtained on trisomy-21 and respective mother cell lines.
  • the rate of correct disomy and trisomy calls were determined from 500 simulations at various fetal fractions for a published method (Chiu et al. BMJ 2011;342:c7401) and our MLE-based algorithm.
  • We validated the simulations by obtaining 5 million shotgun reads from four pregnant mothers and respective fathers collected under an IRB-approved protocol. Parental genotypes were obtained on a 290K S P array (see Figure 14).
  • Fetal fraction determination from parental genotypes in conjunction with a MLE-based approach achieves greater accuracy than published algorithms at the fetal fractions expected during the 1st and early 2nd trimester. Furthermore, the method disclosed herein produces a confidence metric that is crucial in determining the reliability of the result, especially at low fetal fractions where ploidy detection is more difficult. Published methods use a less accurate threshold method for calling ploidy based on large sets of disomy training data, an approach that predefines a false positive rate. In addition, without a confidence metric, published methods are at risk of reporting false negative results when there is insufficient fetal cfDNA to make a call. In some embodiments, a confidence estimate is calculated for the called ploidy state.
  • the objective was to improve non- invasive detection of fetal trisomy 18, 21, and X particularly in samples consisting of low fetal fraction by using a targeted sequencing approach combined with parent genotypes and Hapmap data in a Bayesian Maximum Likelihood Estimation (MLE) algorithm.
  • MLE Bayesian Maximum Likelihood Estimation
  • Maternal samples from four euploid and two trisomy-positive pregnancies and respective paternal samples were obtained under an IRB-approved protocol from patients where fetal karyotype was known.
  • Maternal cfDNA was extracted from plasma and roughly 10 million sequence reads were obtained following preferential enrichment that targeted specific S Ps. Parent samples were similarly sequenced to obtain genotypes.
  • chromosome 18 and 21 disomy for all euploid samples and normal chromosomes of aneuploid samples. Trisomy 18 and 21 calls were correct, as were chromosome X copy numbers in male and female fetuses. The confidence produced by the algorithm was in excess of 98% in all cases.
  • the method described accurately reported the ploidy of all tested chromosomes from six samples, including samples comprised of less than 12% fetal DNA, which account for roughly 30% of 1 st and early 2 nd -trimester samples.
  • the crucial difference between the instant MLE algorithm and published methods is that it leverages parent genotypes and Hapmap data to improve accuracy and generate a confidence metric. At low fetal fractions, all methods become less accurate; it is important to correctly identify samples without sufficient fetal cfDNA to make a reliable call.
  • Others have used chromosome Y specific probes to estimate fetal fraction of male fetuses, but concurrent parental genotyping enables estimation of fetal fraction for both sexes.
  • the objective was to determine if trisomy is detectable with high confidence on a triploid fetus, using novel informatics to analyze SNP loci of free floating fetal DNA in maternal plasma.
  • the instant method accurately diagnosed trisomy of chromosomes 2 and 21. Child fraction was estimated at 11.9% [CI 11.7-12.1]. The fetus was found to have one maternal and two paternal copies of chromosomes 2 and 21 with confidence of effectively 1 (error probability ⁇ 10 "30 ). This was achieved with 92,600 and 258,100 reads on chromosomes 2 and 21 respectively.
  • the following protocol was used for 800-plex amplification of DNA isolated from maternal plasma from a euploid pregnancy and also genomic DNA from a triploidy 21 cell line using standard PCR (meaning no nesting was used).
  • Library preparation and amplification involved single tube blunt ending followed by A-tailing.
  • Adaptor ligation was run using the ligation kit found in the AGILENT SURESELECT kit, and PCR was run for 7 cycles. Then, 15 cycles of STA (95°C for 30s; 72°C for 1 min; 60°C for 4 min; 65°C for 1 min; 72°C for 30s) using 800 different primer pairs targeting SNPs on chromosomes 2, 21 and X. The reaction was run with 12.5 nM primer concentration.
  • the DNA was then sequenced with an ILLUMINA IIGAX sequencer.
  • the sequencer output 1.9 million reads, of which 92% mapped to the genome; of those reads that mapped to the genome, more than 99% mapped to one of the regions targeted by the targeted primers.
  • the numbers were essentially the same for both the plasma DNA and the genomic DNA.
  • Figure 15 shows the ratio of the two alleles for the -780 SNPs that were detected by the sequencer in the genomic DNA that was taken from a cell line with known trisomy at chromosome 21. Note that the allele ratios are plotted here for ease of visualization, because the allele distributions are not straightforward to read visually.
  • Figure 16 is another representation of the same data as in Figure X, where the Y-axis is the relative number of A and B measured for each SNP, and where the X-axis is the SNP number where the SNPs are separated by chromosome.
  • SNP 1 to 312 are found on chromosome 2
  • SNP 313 to 605 are found on chromosome 21 which is trisomic
  • SNP 606 to 800 are on chromosome X.
  • the data from chromosomes 2 and X show a disomic chromosome, as the relative sequence counts lie in three clusters: AA at the top of the graph, BB at the bottom of the graph, and AB in the middle of the graph.
  • the data from chromosome 21, which is trisomic, shows four clusters: AAA at the top of the graph, AAB around the 0.65 line (2/3), ABB around the .35 line (1/3), and BBB at the bottom of the graph.
  • Figures 17A-17D show data for the same 800-plex protocol, but measured on DNA that was amplified from four plasma samples from pregnant women. For these four samples, we expect to see seven clusters of dots: (1) along the top of the graph are those loci where both the mother and the fetus are AA, (2) slightly below the top of the graph are those loci where the mother is AA and the fetus is AB, (3) slightly above the 0.5 line are those loci where the mother is AB and the fetus is AA, (4) along the 0.5 line are those loci where the mother and the fetus are both AB, (5) slightly below the 0.5 line are those loci where the mother is AB and the fetus is BB, (6) slightly above the bottom of the graph are those loci where the mother is BB and the fetus is AB, (1) along the bottom of the graph are those loci where both the mother and the fetus are BB.
  • the separation is expected to be half of the fraction of DNA that is of fetal origin. For example if the DNA is 20% fetal, and 80% maternal, we expect (1) through (7) to be centered at 1.0, 0.9, 0.6, 0.5, 0.4, 0.1 and 0.0 respectively; see for example Figure 17D, POOLl_BC5_ref_rate.
  • Figure 18 shows the fraction of data that can be explained by binomial variance, before and after bias correction.
  • a similar set of data that was produced by amplifying DNA using a 150-plex targeted amplification produced data that fell very closely on the 1:1 line after bias correction.
  • fetal DNA is typically short in nature, while the maternal DNA can be both short and long in nature, this method has the effect of enriching the proportion of fetal DNA in the mixture.
  • the free floating DNA thought to be DNA from apoptotic cells, and which contains both fetal and maternal DNA, is short - mostly under 200 bp.
  • Cellular DNA released by cell lysis a common phenomenon after phlebotomy, is typically almost exclusively maternal, and is also quite long - mostly above 500 bp. Therefore, blood samples that have sat around for more than a few minutes will contain a mixture of short (fetal + maternal) and longer (maternal) DNA.
  • FIG. 19 shows the measured fetal percent when the input is plasma DNA (vertical axis) vs. the measured fetal percent when the input DNA is plasma DNA that has had a library prepared using the ILLUMINA GAIIx library preparation protocol. All the dots fall below the line, indicating that the library preparation step enriches the fraction of DNA that is of fetal origin.
  • the method disclosed herein is particularly useful in cases where there is hemolysis or some other situation has occurred where cells comprising relatively long strands of contaminating DNA have lysed, contaminating the mixed sample of short DNA with the long DNA.
  • the relatively short annealing and extension times are between 30 seconds and 2 minutes, though they could be as short as 5 or 10 seconds or less, or as long as 5 or 10 minutes.
  • the following protocol was used for 1,200-plex amplification of DNA isolated from maternal plasma from a euploid pregnancy and also genomic DNA from a triploidy 21 cell line using a direct PCR protocol, and also a semi-nested approach.
  • Library preparation and amplification involved single tube blunt ending followed by A-tailing.
  • Adaptor ligation was run using a modification of the ligation kit found in the AGILENT SURESELECT kit, and PCR was run for 7 cycles.
  • the targeted primer pool there were 550 assays for SNPs from chromosome 21, and 325 assays for SNPs from each of chromosomes 1 and X.
  • Both protocols involved 15 cycles of STA (95°C for 30s; 72°C for 1 min; 60°C for 4 min; 65°C for 30s; 72°C for 30s) using 16 nM primer concentration.
  • the semi-nested PCR protocol involved a second amplification of 15 cycles of STA (95°C for 30s; 72°C for 1 min; 60°C for 4 min; 65°C for 30s; 72°C for 30s) using an inner forward tag concentration of 29 nM, and a reverse tag concentration of 1 uM or 0.1 uM.
  • the DNA was then sequenced with an ILLUMINA IIGAX sequencer.
  • the semi-nested protocol result in approximately 30% more information, presumably mostly due to the elimination of primers that are most likely to cause primer dimers.
  • the depth of read variability tends to be higher when using the semi-nested protocol than when the direct PCR protocol is used (see Figure 20) where the diamonds refer to the depth of read for loci run with the semi-nested protocol, and the squares refer to the depth of read for loci run with no nesting.
  • the SNPs are arranged by depth of read for the diamonds, so the diamonds all fall on a curved line, while the squares appear to be loosely correlated; the arrangements of the SNPs is arbitrary, and it is the height of the dot that denotes depth of read rather than its location left to right.
  • the methods described herein can achieve excellent depth of read (DOR) variances.
  • DOR depth of read
  • 1186 assays had a DOR greater than 10; the average depth of read was 400; 1063 assays (88.6%) had a depth of read of between 200 and 800, and ideal window where the number of reads for each allele is high enough to give meaningful data, while the number of reads for each allele is not so high that the marginal use of those reads was particularly small. Only 12 alleles had higher depth of read with the highest at 1035 reads.
  • the standard deviation of the DOR was 290, the average DOR was 453, the coefficient of variance of the DOR was 64%, there were 950,000 total reads, and 63.1% of the reads mapped to the genome.
  • the DOR was higher.
  • the standard deviation of the DOR was 583, the average DOR was 630, the coefficient of variance of the DOR was 93%, there were 870,000 total reads, and 96.3% of the reads mapped to the genome.
  • the SNPs are arranged by the depth of read for the mother, so the curved line represents the maternal depth of read. The differentiation between child and father is not significant; it is only the trend that is significant for the purpose of this explanation.
  • the semi-nested 1,200-plex PCR protocol was used to amplify DNA from one cell and from three cells.
  • This experiment is relevant to prenatal aneuploidy testing using fetal cells isolated from maternal blood, or for preimplantation genetic diagnosis using biopsied blastomeres or trophectoderm samples.
  • Assays targeted chromosomes 1, 21 and X.
  • Three different lysis methods were used: ARCTURUS, MPERv2 and Alkaline lysis. Sequencing was run multiplexing 48 samples in one sequencing lane. The algorithm returned correct ploidy calls for each of the three chromosomes, and for each of the replicates.
  • four maternal plasma samples were prepared and amplified using a hemi-nested 9,600-plex protocol.
  • the samples were prepared in the following way: Up to 40 mL of maternal blood were centrifuged to isolate the buffy coat and the plasma.
  • the genomic DNA in the maternal sample was prepared from the buffy coat and paternal DNA was prepared from a blood sample or saliva sample.
  • Cell-free DNA in the maternal plasma was isolated using the QIAGEN CIRCULATING NUCLEIC ACID kit and eluted in 45 uL TE buffer according to manufacturer's instructions. Universal ligation adapters were appended to the end of each molecule of 35 uL of purified plasma DNA and libraries were amplified for 7 cycles using adaptor specific primers. Libraries were purified with AGENCOURT AMPURE beads and eluted in 50 ul water.
  • 3 ul of the DNA was amplified with 15 cycles of STA (95°C for 10 min for initial polymerase activation, then 15 cycles of 95°C for 30s; 72°C for 10 s; 65°C for 1 min; 60°C for 8 min; 65°C for 3 min and 72°C for 30s; and a final extension at 72°C for 2 min) using 14.5 nM primer concentration of 9600 target-specific tagged reverse primers and one library adaptor specific forward primer at 500 nM.
  • the hemi-nested PCR protocol involved a second amplification of a dilution of the first STAs product for 15 cycles of STA (95°C for 10 min for initial polymerase activation, then 15 cycles of 95°C for 30s; 65°C for 1 min; 60°C for 5 min; 65°C for 5 min and 72°C for 30s; and a final extension at 72°C for 2 min) using reverse tag concentration of 1000 nM, and a concentration of 16.6 u nM for each of 9600 target-specific forward primers.
  • the semi-nested protocol is different in that it applies 9,600 outer forward primers and tagged reverse primers at 7.3 nM in the first STA.
  • Thermocycling conditions and composition of the second STA, and the barcoding PCR were the same as for the hemi-nested protocol.
  • the sequencing data was analyzed using informatics methods disclosed herein and the ploidy state was called at six chromosomes for the fetuses whose DNA was present in the 4 maternal plasma samples.
  • the ploidy calls for all 28 chromosomes in the set were called correctly with confidences above 99.2% except for one chromosome that was called correctly, but with a confidence of 83%.
  • Figure 23 shows the depth of read of the 9,600-plex hemi-nesting approach along with the depth of read of the 1,200-plex semi-nested approach described in Experiment 7, though the number of SNPs with a depth of read greater than 100, greater than 200 and greater than 400 was significantly higher than in the 1,200-plex protocol.
  • the number of reads at the 90 percentile can be divided by the number of reads at the 10 percentile to give a dimensionless metric that is indicative of the uniformity of the depth of read; the smaller the number, the more uniform (narrow) the depth of read.
  • the average 90 percentile/ 10 percentile ratio is 11.5 for the method run in Experiment 9, while it is 5.6 for the method run in Experiment 7.
  • a narrower depth of read for a given protocol plexity is better for sequencing efficiency, as fewer sequence reads are necessary to ensure that a certain percentage of reads are above a read number threshold.
  • the DNA of the single/three cells was amplified with 25 cycles of STA (95 °C for 10 min for initial polymerase activation, then 25 cycles of 95°C for 30s; 72°C for 10 s; 65°C for 1 min; 60°C for 8 min; 65°C for 3 min and 72°C for 30s; and a final extension at 72°C for 2 min) using 50 nM primer concentration of 1200 target-specific forward and tagged reverse primers.
  • the semi-nested PCR protocol involved three parallel second amplification of a dilution of the first STAs product for 20 cycles of STA (95°C for 10 min for initial polymerase activation, then 15 cycles of 95°C for 30s; 65°C for 1 min; 60°C for 5 min; 65°C for 5 min and 72°C for 30s; and a final extension at 72°C for 2 min) using reverse tag specific primer concentration of 1000 nM, and a concentration of 60 nM for each of 400 target-specific nested forward primers.
  • the total of 1200 targets amplified in the first STA were thus amplified.
  • the sequencing data was analyzed using informatics methods disclosed herein and the ploidy state was called at the three chromosomes for the samples.
  • the ratios were set to be equal to the number of reads mapping to that chromosome, normalized, and divided by the number of reads mapping to that chromosome averaged over three wells each comprising three 46XY cells.
  • the three sets of data points corresponding to the 46XY reactions are expected to have ratios of 1:1.
  • the three sets of data points corresponding to the 47XX+21 cells are expected to have ratios of 1:1 for chromosome 1, 1.5:1 for chromosome 21, and 2:1 for chromosome X.
  • Figure 25A-25C show allele ratios plotted for three chromosomes (1, 21, X) for three reaction.
  • the reaction in the lower left shows a reaction on three 46XY cells ( Figure 25B).
  • the left region are the allele ratios for chromosome 1
  • the middle region are the allele ratios for chromosome 21
  • the right region are the allele ratios for chromosome X.
  • For the 46XY cells for chromosome 1 we expect to see ratios of 1, 0.5 and 0, corresponding to AA, AB and BB S P genotypes.
  • For the 46XY cells for chromosome 21 we expect to see ratios of 1, 0.5 and 0, corresponding to AA, AB and BB SNP genotypes.
  • the objective of the following study is to examine the efficiency and accuracy of the informatics based technique in combination with single nucleotide polymorphism microarrays on POC samples after first trimester miscarriage in a prospective cohort.
  • a missed abortion was diagnosed by transvaginal ultrasound and confirmed by repeat ultrasound prior to the dilation and curettage (D&C) procedure (Landres, I.V., A.A. Milki, and R.B. Lathi, Karyotype of miscarriages in relation to maternal weight. Hum Reprod., 2010. 25(5): p. 1123-6). Suction curettage was performed in the usual fashion under ultrasound guidance. Chorionic villi were separated from maternal deciduas as necessary via a standardized technique (Lathi, R.B. and A.A. Milki, Tissue sampling technique affects accuracy of karyotype from missed abortions. J Assist Reprod Genet, 2002. 19(11): p. 536-8).
  • D&C dilation and curettage
  • chorionic villi were separated and cleaned, the specimen was divided into equal samples and sent for microarray testing in parallel with routine cytogenetic testing. Chorionic villi from a miscarriage were grown in culture, the cells were then arrested and Giemsa used to stain bands in the chromosomes to allow for visualization and identification, known as G-banding. Routine cytogenetic testing consisted of cell culture and analysis by the Giemsa-trypsin-wrights banding methods by a university reference lab.
  • the mean age of women was 37.2 years old; range 29-41 years.
  • Mean maternal body mass index (BMI) was 26.7 kg/m 2 ; range 20-32.
  • Figure 29 includes all demographic data from the study population.
  • the mean gestational age at time of D&C was 8.75 weeks; with a range 7-12 weeks; 27% of pregnancies were spontaneous conceptions whereas 73% were conceived using assisted reproductive technologies (33% intrauterine insemination (IUI), 37% in vitro fertilization (IVF), and 3% IVF with donor egg).
  • Genotyping of the maternal and POC samples was performed at a commercial reference lab using ILLUMINA CytoS P-12 genotyping microarrays, which measure approximately 300,000 SNPs across the genome, (roughly one every 10 kb) according to the manufacturer's instructions.
  • the informatics technique (PARENTAL SUPPORT), using the output of the SNP arrays, determined the number and origin of each of the chromosomes in the POC sample.
  • the informatics technique compares, for each SNP measured on a given chromosome, the intensity of the signal from each of the two possible alleles.
  • the relative intensities have a statistical distribution that is indicative of the number of copies of that chromosome.
  • Figures 27A-27F graphically illustrate different aneuploidy states; each plot represents one chromosome, and each spot represents one SNP.
  • the x-axis is the relative SNP location along the chromosome, and the y-axis is a representation of the relative intensity of the two allelic measurements at that SNP. SNPs that are homozygous are found either at the top or the bottom of the plot, while SNPs that are heterozygous are found toward the middle.
  • SUPPORT method can detect if the POC sample is genetically maternal in nature. If desired, to visualize how the informatics technique detects maternal cell contamination (MCC), each SNP in the POC sample is optionally colored according to the genotype of the mother, such as red for those SNPs that are homozygous for one allele, blue for those SNPs that are homozygous for the other allele, and green for those alleles that are heterozygous. In the case of MCC ( Figure 27E), the SNPs segregate by color, indicating that the tissue is genetically identical to the mother (color not shown).
  • MCC maternal cell contamination
  • the SNPs are no longer segregated by color - some alleles that were heterozygous in the mother are homozygous in the fetus, and some alleles that are homozygous in the mother are heterozygous in the fetus, though note that they could not be homozygous for the other allele (color not shown).
  • the informatics technique leverages this concept to detect MCC. Note that contamination of foreign tissue can be detected as tissue unrelated to the mother will result in SNPs that are homozygous for one allele in the mother appearing as homozygous for the other allele in the POC sample.
  • Figures 28A-28D Partial maternal cell contamination also poses a challenge for conventional methods. Copy number differentiation can be seen by observing the plots in Figures 28A-28D.
  • Figures 28A and 28B are disomic and trisomic (respectively) chromosomes from a case with -30% maternal cells
  • Figures 28C and 28D are disomic and trisomic (respectively) chromosomes from a case with -70% maternal cells. Note that the dark band represents the centromere. An explanation of the results follow.
  • the two possible alleles at each SNP are A and B.
  • the relative intensities of the measurements for the two alleles are graphed along the vertical axis, with the SNPs arranged sequentially along the horizontal axis.
  • the measurements are optionally colored according to the mother's genotype, such as red if the mother is AA, green if the mother is AB, and blue if the mother is BB.
  • the maternal and fetal measurements do not result in different spots, rather, they are additive along the vertical axis. Therefore, increasing the proportion of maternal cells from 0% to 100% will gradually shift some dots up or down in bands as the graphs change from resembling Figure 27F to 27E.
  • the upper green band is where the mother is AB and the fetus is BB
  • the middle green band is where the mother is AB and the fetus is AB
  • the lower green band is where the mother is AB and the fetus is AA.
  • the upper red band is where the mother and fetus are both BB
  • the lower red band is where the mother is BB and the fetus is AB.
  • the upper blue band is where the mother is AA and the fetus is AB
  • the lower blue band is where the both the mother and fetus are AA.
  • each trisomic chromosome can consist of one or more matching and unmatching regions.
  • the trisomy shown in Figure 28B is a maternal trisomy where the left 10% of the plot is a matched trisomy region, and the right 90% of the graph is an unmatched trisomy region. Observe the green dots, where the mother is heterozygous, or AB.
  • the top green band contain alleles where the fetus is BBB
  • the second band contain alleles where the fetus is ABB (BB from mother, A from father)
  • the third band contain alleles where the fetus is AAB (AA from mother, B from father)
  • the bottom band contain alleles where the fetus is AAA.
  • the fetus got one of each chromosome from the mother, so the mother's contribution is AB.
  • the top green band is where the father contributed B, and so the fetus is ABB, and bottom green band is where father contributed A, and the fetus is AAB.
  • the cytogenetic karyotyping took, on average, 29 days to return results. In contrast, the microarray based karyotyping took 12 days for the initial research samples. The last eight microarray samples, run in a production setting, averaged only 7 days for turn around.
  • cytogenetic karyotyping returned a 92XXXX result, while the informatics technique found 46XX.
  • cytogenetics reported a 46,XY,der(14)t(3;14) karyotype, while the informatics technique returned a result of trisomy 14.
  • cytogenetics found trisomy 22, while the informatics technique found maternal cell contamination (note that different biopsies were used for the two techniques).
  • the cytogenetics reported a 45, X, +22 karyotype, while the informatics technique reported only trisomy 22.
  • the first two cases with a discordant result can be easily explained by the known limitation of quantitative genetics and their inability to detect whole genome duplication and balanced structural rearrangements. However, only one would be considered a false negative result (meaning that the reported result was normal non-maternal when the true karyotype of the POC was tetraploid). The missed unbalanced structural rearrangement was reported as abnormal and lethal. In this case the parental karyotypes were normal and the translocation was considered de novo, and no more likely to recur than a de novo aneuploidy. The latter two cases of discrepancies illustrate a limitation of the study.
  • Tetraploidy is found in 2% of POC samples (Menasha, J., et al., Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med, 2005. 7(4): p. 251-63) and can be classified into two categories: the more common type, 2:2 tetraploidy, is where each parent contributes a full extra set of chromosomes for a total of 2 identical sets from the mother and 2 identical sets from the father, and is likely due to failure of cytokinesis at all of the chromosomes. The less common, 3:1 tetraploidy, is where 3 sets of chromosomes are from one parent and 1 is from the other, and has a more complicated origin.
  • S P microarrays are able to detect triploidy (3 chromosome sets) due to their genotyping ability, and when using the informatics technique used in this study, able to detect 3: 1 tetraploidy.
  • detection of multiples of entire chromosome sets, such as 2:2 tetraploidy or 3:3 hexaploidy remains a limitation of the technology.
  • FISH Fluorescence In situ hybridization
  • Errors involving structural chromosome rearrangement such as balanced translocations and Robertsonian translocations, are found in approximately 0.5% of POC samples (Stephenson, M.D., K.A. Awartani, and W.P. Robinson, Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum Reprod, 2002. 17(2): p. 446-51).
  • a Robertsonian translocation is formally a balanced translocation, although in practice, the complementary chromosome made up of the two tiny p-arms found in acrocentric chromosomes is often lost after a few rounds of mitosis.
  • a balanced translocation is not lethal and, therefore, would not be expected to cause a miscarriage. If the genetic material is not balanced, then the array would be able to identify any unbalanced karyotype. Couples at risk for having balanced structural rearrangements in either parent should undergo routing cytogentic analysis of peripheral blood to accurately identify whether a translocation is present.
  • Trisomic results involving the acrocentric chromosomes can be followed up with parental karyotyping, if found in the setting of recurrent pregnancy loss or recurrent trisomy.
  • An advantage of the informatics technique is the ability to determine the parental source of aneuploidy, enabling karyotyping to be done only on the parent of origin. To address tetraploidy, reflex testing of normal results with two-probe FISH would enable confirmation or detection of tetrasomic state leading to a conclusion of tetraploidy.
  • the other two discordant results are likely due to discordant samples.
  • the case of maternal cell contamination is surprising only in that of sixty biopsies (samples from 30 study subjects x2); only one was contaminated with maternal cells.
  • the final discordance was due to a finding of 46,X0+22 by cytogenetics, and a finding of 47,XX +22 by the informatics technique.
  • a 46,XO,+22 and a 47,XX,+22 are both aneuploid and associated with the same clinical conclusion, and a finding of maternal contamination is simply interpreted as non-fetal.
  • the invention provides methods for chromosome copy number calling on genetic samples, such as fetal samples subject to contamination from maternal DNA.
  • the present disclosure provides methods for determining the ploidy status of a chromosome in a fetus (such as a gestating fetus or a POC sample) from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father.
  • the ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern.
  • the mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.

Abstract

The invention provides methods for chromosome copy number calling on genetic samples, such as fetal samples subject to contamination from maternal DNA. The present disclosure provides methods for determining the ploidy status of a chromosome in a fetus (such as a gestating fetus or a POC sample) from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. In some embodiments, the ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.

Description

TITLE
INFORMATICS ENHANCED ANALYSIS OF FETALSAMPLES SUBJECT TO MATERNAL CONTAMINATION
RELATED APPLICATIONS
This application claims the benefit of and priority to U.S. Utility Application Serial No.
13/780,022, filed on February 28, 2013, and U.S. Provisional Application Serial No. 61/634,431, filed on February 29, 2012. This application is a continuation-in-part of U.S. Utility Application Serial No. 13/683,604, filed on November 21, 2012 and PCT Application No. PCT/US 12/58578, filed on October 3, 2012. U.S. Utility Application Serial No. 13/683,604 claims the benefit of U.S. Provisional Application Serial No. 61/675,020, filed on July 24, 2012. The entireties of all these applications are hereby incorporated herein by reference for the teachings therein.
FIELD
The present disclosure relates generally to methods for chromosome copy number calling on genetic samples, such as fetal samples subject to contamination from maternal DNA.
BACKGROUND
Current methods of prenatal diagnosis can alert physicians and parents to abnormalities in growing fetuses. Without prenatal diagnosis, one in 50 babies is born with serious physical or mental handicap, and as many as one in 30 will have some form of congenital malformation. Normal humans have two sets of 23 chromosomes in every healthy, diploid cell, with one copy coming from each parent. Aneuploidy, a condition in a nuclear cell where the cell contains too many and/or too few chromosomes is believed to be responsible for a large percentage of failed implantations, miscarriages, and genetic diseases. Detection of chromosomal abnormalities can identify individuals or embryos with conditions such as Down syndrome, Klinefelter' s syndrome, and Turner syndrome, among others, in addition to increasing the chances of a successful pregnancy. Testing for chromosomal abnormalities is especially important as the mother's age: between the ages of 35 and 40 it is estimated that at least 40% of the embryos are abnormal, and above the age of 40, more than half of the embryos are abnormal. Unfortunately, it can be difficult to accurately diagnose fetal chromosome abnormalities in situations in which maternal DNA (e.g., extracellular or cellular DNA) is present since the background noise from the maternal DNA inhibits the ability to detect and analyze the signal from fetal DNA.
First trimester miscarriages are common among couples with up to 20% of clinically recognized pregnancies ending in spontaneous abortion (Wilcox, A.J., et al, Incidence of early loss of pregnancy. N Engl J Med, 1988. 319(4): p. 189-94; Wang, X., et al, Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study. Fertil Steril, 2003. 79(3): p. 577-84; Harlap, S. and P.H. Shiono, Alcohol, smoking, and incidence of spontaneous abortions in the first and second trimester. Lancet, 1980. 2(8187): p. 173-6). These events are multifactorial; however, certain risk factors are known to increase the risk of miscarriage. These factors include older age, history of previous miscarriage, substance exposure, maternal extremes of weight, delayed ovulation to implantation interval, maternal systemic illness and uterine anomalies. Despite a multitude of maternal factors that can contribute to miscarriage, the majority (50-60%) of first trimester miscarriages are due to fetal chromosomal abnormalities (Menasha, J., et al., Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med, 2005. 7(4): p. 251-63).
Whereas chromosomal testing of products of conception (POC) is not recommended for every miscarriage, there are many scenarios where knowing the chromosome status of a miscarried fetus can help in clinical management. It can be particularly helpful in the recurrent pregnancy loss and infertility populations. The most common method of testing is a metaphase karyotype, which is available through the cytogenetics department in most hospitals (Eiben, B., et al., Cytogenetic analysis of 750 spontaneous abortions with the direct- preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet, 1990. 47(4): p. 656-63). This method is considered the gold standard for chromosome analysis but has three practical limitations. First, a successful cell culture is required but failure occurs in 10-40% of cases (Bell, K.A., et al., Cytogenetic diagnosis of "normal 46,XX" karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril, 1999. 71(2): p. 334-41). Second, the results take approximately 4-6 weeks. And third, if the results suggest normal female karyotype (46,XX), a result that happens 55-80% of the time, it is unknown whether the tested sample was of fetal or maternal in origin ((Bell, K.A., et al., Cytogenetic diagnosis of "normal 46,XX" karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril, 1999. 71(2): p. 334-41).
Due to the limitations of current methods of analyzing POC samples or other fetal samples subject to maternal cell contamination (MCC), improved method are desired to increase the accuracy of the detection of fetal chromosome abnormalities
SUMMARY
Disclosed herein are methods for determining a ploidy status of a chromosome or chromosome segment in a fetus (such as a gestating fetus or a POC sample).
In one aspect, the invention features an ex vivo method for determining whether a sample comprises DNA {e.g., DNA from cellular or extracellular genetic material) from a fetus. In some embodiments, the method includes making genotypic measurements at a plurality of polymorphic loci on the chromosome or chromosome segment from a sample (such as a sample comprising cellular and/or extracellular genetic material from the fetus, cellular and/or extracellular genetic material from the mother of the fetus, or combinations thereof). In some embodiments, the sample comprises cellular genetic material from the fetus, cellular genetic material from the mother, or combinations thereof. In some embodiments, the method also includes obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the mother, and determining (e.g., determining on a computer) based on the genotypic measurements, whether the sample comprises (i) DNA from the fetus (with or without contaminating DNA) or (ii) contaminating DNA with essentially no DNA from the fetus (such as with an undetectable or negligible amount of fetal DNA or with no fetal DNA). In some embodiments, the method involves determining (e.g., determining on a computer) based on the genotypic measurements, whether the sample comprises (i) DNA from the fetus with essentially no contaminating DNA, (ii) a mixture of DNA from the fetus and contaminating DNA, or (iii) contaminating DNA with essentially no DNA from the fetus. In some embodiments in which the sample comprises DNA from the fetus, the method also includes creating (e.g., creating on a computer) a set of one or more hypotheses about the number of copies of the chromosome or chromosome segment in the genome of the fetus, determining (e.g., determining on a computer) the probability of each of the hypotheses given the genotypic measurements, and using the probabilities associated with each hypothesis to determine the most likely number of copies of the chromosome or chromosome segment in the genome of the fetus. In some embodiments, the method also includes obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the father, wherein the probability of each hypotheses is determined using (i) the genotypic measurements made on the genetic material from the father and (ii) the genotypic measurements made on the sample. In some embodiments, DNA crosslinking inhibits the measuring of the genetic material from the sample, and the genotypic measurements made on the genetic material from the father facilitate the copy number determination. In some embodiments, the contaminating DNA comprises DNA from the mother. In some embodiments, the contaminating DNA comprises DNA from a different fetus that previously gestated in the mother.
In one aspect, the invention features an ex vivo method for determining a number of copies of a chromosome or chromosome segment of interest in the genome of a fetus. In some embodiments, the method involves making genotypic measurements at a plurality of polymorphic loci on the chromosome or chromosome segment from a mixed sample (such as a sample that comprises (i) cellular and/or extracellular genetic material from the fetus and (ii) cellular and/or extracellular genetic material from the mother of the fetus). In some embodiments, the mixed sample comprises (i) cellular genetic material from the fetus and (ii) cellular genetic material from the mother of the fetus. In some embodiments, the mixed sample comprises (i) cells from the fetus and (ii) cells from the mother of the fetus. In some embodiments, the method also includes creating (e.g., creating on a computer) a set of one or more hypotheses about the number of copies of the chromosome or chromosome segment in the genome of the fetus, determining (e.g., determining on a computer) the probability of each of the hypotheses given the genotypic measurements, and using the probabilities associated with each hypothesis to determine the most likely number of copies of the chromosome or chromosome segment in the genome of the fetus. In some embodiments, the method also includes obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the mother and/or father, wherein the probability of each hypotheses is determined using (i) the genotypic measurements made on the genetic material from the mother and/father and (ii) the genotypic measurements made on the mixed sample. In some embodiments, the genotypic measurements made on the genetic material from the mother facilitate the detection or quantitation of maternal DNA in the mixed sample. In some embodiments, DNA crosslinking inhibits the measuring of the genetic material from the mixed sample, and the genotypic measurements made on the genetic material from the father facilitate the copy number determination.
In some embodiments of any of the aspects of the invention, the fetal cells are from a gestating fetus. In some embodiments, the fetal cells are from a products of conception sample, where the fetus is no longer alive. In some embodiments, the sample is a maternal whole blood sample, cells isolated from a maternal blood sample, amniocentesis sample, placental tissue sample (e.g., chorionic villus, decidua, or placental membrane) , cervical mucus sample, or sample from a fetus. In some embodiments, , at least 3, 5, 7, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 92, 94, 95, 96, 98, 99, or 100% of the cells in the sample are maternal cells. In various embodiments, the amount of cells in the sample that are maternal cells is between 5 to 99%, such as between 10 to 95%, 20 to 95%, 30 to 90%, 30 to 70%, 40 to 90%, 40 to 70%, 50 to 90%, or 50 to 80%, inclusive. In some embodiments, the sample is enriched for fetal cells. The sample may have been optionally enriched for fetal cells using detection of differential expression of cellular markers. In some embodiments, fetal cells are enriched by using a capture strategy where cells are physically separated using a moiety that has a particular affinity for a cell surface marker that tends to be differentially expressed in fetal cells. In some embodiments, the mixture may be enriched for cells that contain or do not contain CD34, CD45, HSP-60, monoamine oxidase, glutamine synthase, Ara-70, Ara-54, FLJ20202, DCN-I protein, RAB5A, HSP-7C, EF1A1, GRP78, MYL4, DnaJ homolog subfamily B member 14, Vinculin, Desmoplakin, AMMECR1 -like protein, Extracellular matrix protein 2 precursor protein, uncharacterised protein Cxorf57, Peroxiredoxin 1, Peroxiredoxin 2, fetal associated RNA, fetal hemoglobin, or other markers that are shown to be exhibited preferentially in either fetal or maternal cells. The physical separation may be effected by monoclonal antibodies, layered immunosorption, centrifugation, filtration, the sugar-chain lectin method, or other methods shown to be suitable for physical separation. In some embodiments in which the sample is enriched for fetal cells, at least 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10% or more of the cells in the enriched sample are fetal cells. In some embodiments, the amount of cells in the sample that are fetal cells is between 0.5 to 100%, such as between 1 to 99%, 5 to 95%, 10 to 95%, 10 to 95%, 20 to 90%, or 30 to 70%, inclusive. In some embodiments, the method includes preparing the sample (such as the first sample) by isolating the DNA so as to obtain a prepared sample. According to aspects illustrated herein, in an embodiment a method for determining a ploidy status of a chromosome in a fetus (e.g., a gestating fetus or a products of conception sample) includes obtaining a first sample of DNA that comprises maternal DNA from the mother of the fetus and fetal DNA from the fetus, preparing the first sample by isolating the DNA so as to obtain a prepared sample, measuring the DNA in the prepared sample at a plurality of polymorphic loci on the chromosome, calculating, on a computer, allele counts at the plurality of polymorphic loci from the DNA measurements made on the prepared sample, creating, on a computer, a plurality of ploidy hypotheses each pertaining to a different possible ploidy state of the chromosome, building, on a computer, a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome for each ploidy hypothesis, determining, on a computer, a relative probability of each of the ploidy hypotheses using the joint distribution model and the allele counts measured on the prepared sample, and calling the ploidy state of the fetus by selecting the ploidy state corresponding to the hypothesis with the greatest probability.
In some embodiments of any of the aspects of the invention, the DNA in the first sample originates from maternal plasma. In some embodiments, preparing the first sample further comprises amplifying the DNA. In some embodiments, preparing the first sample further comprises preferentially enriching the DNA in the first sample at a plurality of polymorphic loci.
In some embodiments of any of the aspects of the invention, preferentially enriching the DNA in the first sample at the plurality of polymorphic loci includes obtaining a plurality of pre-circularized probes where each probe targets one of the polymorphic loci, and where the 3' and 5' end of the probes are designed to hybridize to a region of DNA that is separated from the polymorphic site of the locus by a small number of bases, where the small number is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 to 25, 26 to 30, 31 to 60, or a combination thereof, hybridizing the pre-circularized probes to DNA from the first sample, filling the gap between the hybridized probe ends using DNA polymerase, circularizing the pre-circularized probe, and amplifying the circularized probe.
In some embodiments of any of the aspects of the invention, the preferentially enriching the DNA at the plurality of polymorphic loci includes obtaining a plurality of ligation-mediated PCR probes where each PCR probe targets one of the polymorphic loci, and where the upstream and downstream PCR probes are designed to hybridize to a region of DNA, on one strand of DNA, that is separated from the polymorphic site of the locus by a small number of bases, where the small number is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 to 25, 26 to 30, 31 to 60, or a combination thereof, hybridizing the ligation-mediated PCR probes to the DNA from the first sample, filling the gap between the ligation-mediated PCR probe ends using DNA polymerase, ligating the ligation-mediated PCR probes, and amplifying the ligated ligation-mediated PCR probes.
In some embodiments of any of the aspects of the invention, preferentially enriching the DNA at the plurality of polymorphic loci includes obtaining a plurality of hybrid capture probes that target the polymorphic loci, hybridizing the hybrid capture probes to the DNA in the first sample and physically removing some or all of the unhybridized DNA from the first sample of DNA.
In some embodiments of any of the aspects of the invention, the hybrid capture probes are designed to hybridize to a region that is flanking but not overlapping the polymorphic site. In some embodiments, the hybrid capture probes are designed to hybridize to a region that is flanking but not overlapping the polymorphic site, and where the length of the flanking capture probe may be selected from the group consisting of less than about 120 bases, less than about 110 bases, less than about 100 bases, less than about 90 bases, less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, and less than about 25 bases. In some embodiments, the hybrid capture probes are designed to hybridize to a region that overlaps the polymorphic site, and where the plurality of hybrid capture probes comprise at least two hybrid capture probes for each polymorphic loci, and where each hybrid capture probe is designed to be complementary to a different allele at that polymorphic locus.
In some embodiments of any of the aspects of the invention, preferentially enriching the DNA at a plurality of polymorphic loci includes obtaining a plurality of inner forward primers where each primer targets one of the polymorphic loci, and where the 3' end of the inner forward primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases, where the small number is selected from the group consisting of 1, 2, 3, 4, 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, or 31 to 60 base pairs, optionally obtaining a plurality of inner reverse primers where each primer targets one of the polymorphic loci, and where the 3' end of the inner reverse primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases, where the small number is selected from the group consisting of 1, 2, 3, 4, 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, or 31 to 60 base pairs, hybridizing the inner primers to the DNA, and amplifying the DNA using the polymerase chain reaction to form amplicons.
In some embodiments of any of the aspects of the invention, the method also includes obtaining a plurality of outer forward primers where each primer targets one of the polymorphic loci, and where the outer forward primers are designed to hybridize to the region of DNA upstream from the inner forward primer, optionally obtaining a plurality of outer reverse primers where each primer targets one of the polymorphic loci, and where the outer reverse primers are designed to hybridize to the region of DNA immediately downstream from the inner reverse primer, hybridizing the first primers to the DNA, and amplifying the DNA using the polymerase chain reaction.
In some embodiments of any of the aspects of the invention, the method also includes obtaining a plurality of outer reverse primers where each primer targets one of the polymorphic loci, and where the outer reverse primers are designed to hybridize to the region of DNA immediately downstream from the inner reverse primer, optionally obtaining a plurality of outer forward primers where each primer targets one of the polymorphic loci, and where the outer forward primers are designed to hybridize to the region of DNA upstream from the inner forward primer, hybridizing the first primers to the DNA, and amplifying the DNA using the polymerase chain reaction.
In some embodiments of any of the aspects of the invention, preparing the first sample further includes appending universal adapters to the DNA in the first sample and amplifying the DNA in the first sample using the polymerase chain reaction. In some embodiments, at least a fraction of the amplicons that are amplified are less than 100 bp, less than 90 bp, less than 80 bp, less than 70 bp, less than 65 bp, less than 60 bp, less than 55 bp, less than 50 bp, or less than 45 bp, and where the fraction is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 99%.
In some embodiments of any of the aspects of the invention, amplifying the DNA is done in one or a plurality of individual reaction volumes, and where each individual reaction volume contains more than 100 different forward and reverse primer pairs, more than 200 different forward and reverse primer pairs, more than 500 different forward and reverse primer pairs, more than 1,000 different forward and reverse primer pairs, more than 2,000 different forward and reverse primer pairs, more than 5,000 different forward and reverse primer pairs, more than 10,000 different forward and reverse primer pairs, more than 20,000 different forward and reverse primer pairs, more than 50,000 different forward and reverse primer pairs, or more than 100,000 different forward and reverse primer pairs.
In some embodiments of any of the aspects of the invention, preparing the first sample further comprises dividing the first sample into a plurality of portions, and where the DNA in each portion is preferentially enriched at a subset of the plurality of polymorphic loci. In some embodiments, the inner primers are selected by identifying primer pairs likely to form undesired primer duplexes and removing from the plurality of primers at least one of the pair of primers identified as being likely to form undesired primer duplexes. In some embodiments, the inner primers contain a region that is designed to hybridize either upstream or downstream of the targeted polymorphic locus, and optionally contain a universal priming sequence designed to allow PCR amplification. In some embodiments, at least some of the primers additionally contain a random region that differs for each individual primer molecule. In some embodiments, at least some of the primers additionally contain a molecular barcode.
In some embodiments of any of the aspects of the invention, the method also includes obtaining genotypic data from one or both parents of the fetus. In some embodiments, obtaining genotypic data from one or both parents of the fetus includes preparing the DNA from the parents where the preparing comprises preferentially enriching the DNA at the plurality of polymorphic loci to give prepared parental DNA, optionally amplifying the prepared parental DNA, and measuring the parental DNA in the prepared sample at the plurality of polymorphic loci.
In some embodiments, building a joint distribution model for the expected allele count probabilities of the plurality of polymorphic loci on the chromosome is done using the obtained genetic data from the one or both parents. In some embodiments, the first sample has been isolated from maternal plasma and where the obtaining genotypic data from the mother is done by estimating the maternal genotypic data from the DNA measurements made on the prepared sample.
In some embodiments, preferential enrichment results in average degree of allelic bias between the prepared sample and the first sample of a factor selected from the group consisting of no more than a factor of 2, no more than a factor of 1.5, no more than a factor of 1.2, no more than a factor of 1.1, no more than a factor of 1.05, no more than a factor of 1.02, no more than a factor of 1.01, no more than a factor of 1.005, no more than a factor of 1.002, no more than a factor of 1.001 and no more than a factor of 1.0001. In some embodiments, the plurality of polymorphic loci are single nucleotide polymorphisms (SNPs). In various embodiments, at least 2,000; 5,000; 7,500; 10,000; 20,000; 25,000; 30,000; 40,000; 50,000; 75,000; or 100,000 different SNPs are analyzed. In some embodiments, measuring the DNA in the sample (such as the prepared sample) is done by sequencing, such as high throughput DNA sequencing. In some embodiments, measuring the DNA in the sample (such as the prepared sample) is done using a SNP genotyping array.
In some embodiments, the nucleic acids in the sample are non-specifically amplified prior to amplification of the target loci (such as specific amplification of the target loci with a primer library of the invention). In some embodiments, the non-specific amplification includes whole genome application (WGA), such as ligation-mediated PCR (LM-PCR), degenerate oligonucleotide primer PCR (DOP-PCR), or multiple displacement amplification (MDA). In some embodiments, the non-specific amplification includes universal PCR, such as adaptor- mediated universal PCR.
In one aspect, a diagnostic box is disclosed for use in determining a ploidy status of a chromosome in a fetus (such as a gestating fetus or a POC sample) where the diagnostic box is capable of executing the preparing and measuring steps of any of the methods of the invention.
In some embodiments of any of the aspects of the invention, the chromosome of interest is selected from the group consisting of chromosome 13, chromosome 18, chromosome 21, the X chromosome, the Y chromosome, and combinations thereof. In some embodiments, the method comprises screening for a chromosomal abnormality selected from the group consisting of monosomy, uniparental disomy, trisomy, other aneuploidies, mosaicism, unbalanced translocations, insertions, deletions, and combinations thereof. In some embodiments, the method includes determining whether the individual has Down syndrome, Edwards syndrome, Patau syndrome, Klinefelters syndrome, 47,XXX, 47,XYY, Turner syndrome, triploidy, DiGeorge syndrome, Cri du Chat syndrome, Angelman syndrome, Praeder- Willi syndrome, Wolf-Hirschhorn syndrome, Smith-Magenis syndrome, Williams-Beuren syndrome, Phelan-McDermid syndrome, Sotos Syndrome, Cystic Fibrosis, Muscular Dystrophy, Spinal Muscular Atrophy, Fragile X, Tay-Sachs disease, Gaucher disease, Torsion Dystonia, Niemann-Pick disease, Mucolipidosis, Fanconi Anemia, Canavan disease, Sickle Cell Anemia, or Bloom Syndrome.
In some embodiments of any of the aspects of the invention, the allele counts are probabilistic rather than binary. In some embodiments, measurements of the DNA in the sample (such as the prepared sample) at the plurality of polymorphic loci are also used to determine whether or not the fetus has inherited one or a plurality of disease linked haplotypes. In some embodiments, the allelic state is linked to a disease selected from the group consisting of cystic fibrosis, Huntington's disease, Fragile X, thallasemia, muscular dystrophy, Alzheimer, Fanconi Anemia, Gaucher Disease, Mucolipidosis IV, Niemann-Pick Disease, Tay- Sachs disease, Sickle cell anemia, Parkinson disease, Torsion Dystonia, and cancer.
In some embodiments of any of the aspects of the invention, the probability of each of the hypotheses is determined using data about the probability of chromosomes crossing over at different locations in the chromosome or chromosome segment of interest. In some embodiments, building a joint distribution model for allele count probabilities is done by using data about the probability of chromosomes crossing over at different locations in a chromosome to model dependence between polymorphic alleles on the chromosome. In some embodiments, building a joint distribution model for allele counts and the step of determining the relative probability of each hypothesis are done using a method that does not require the use of a reference chromosome. In some embodiments, the method includes calculating, on a computer, allele counts at the plurality of polymorphic loci from the genotypic measurements, building, on a computer, a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome or chromosome segment for each hypothesis, and determining, on a computer, a relative probability of each of the copy number hypotheses using the joint distribution model and the allele counts.
In some embodiments of any of the aspects of the invention, determining the relative probability of each hypothesis makes use of an estimated fraction of fetal DNA in the sample (such as the prepared sample). In some embodiments, the DNA measurements from the sample (such as the prepared sample) used in calculating allele count probabilities and determining the relative probability of each hypothesis comprise primary genetic data. In some embodiments, selecting the ploidy state corresponding to the hypothesis with the greatest probability is carried out using maximum likelihood estimates or maximum a posteriori estimates. In some embodiments of any of the aspects of the invention, calling the ploidy state of the fetus also includes combining the relative probabilities of each of the ploidy hypotheses determined using the joint distribution model and the allele count probabilities with relative probabilities of each of the ploidy hypotheses that are calculated using statistical techniques taken from a group consisting of a read count analysis, comparing heterozygosity rates, a statistic that is only available when parental genetic information is used, the probability of normalized genotype signals for certain parent contexts, a statistic that is calculated using an estimated fetal fraction of the first sample or the prepared sample, and combinations thereof.
In some embodiments of any of the aspects of the invention, a confidence estimate is calculated for the called ploidy state. In some embodiments, the confidence for the copy number determination is at least 80, 85, 90, 92, 95, 96, 98, 99, 99.9% or more. In some embodiments, the method also includes taking a clinical action based on the called ploidy state, disease-linked locus, or paternity of the fetus, wherein the clinical action is selected from one of terminating the pregnancy or maintaining the pregnancy. In some embodiments, the clinical action is selected from the group consisting of performing amniocentesis on the fetus, performing amniocentesis on a subsequent fetus that inherits genetic material from the mother and/or father, performing chorion villus biopsy on the fetus, performing chorion villus biopsy on a subsequent fetus that inherits genetic material from the mother and/or father, performing in vitro fertilization, performing preimplantation genetic diagnosis on one or more embryos that inherited genetic material from the mother and/or father, karyotyping the mother, karyotyping the father, and combinations thereof.
In some embodiments of any of the aspects of the invention, the method may be performed for fetuses at between 4 and 5 weeks gestation; between 5 and 6 weeks gestation; between 6 and 7 weeks gestation; between 7 and 8 weeks gestation; between 8 and 9 weeks gestation; between 9 and 10 weeks gestation; between 10 and 12 weeks gestation; between 12 and 14 weeks gestation; between 14 and 20 weeks gestation; between 20 and 40 weeks gestation; in the first trimester; in the second trimester; in the third trimester; or combinations thereof. In some embodiments, the fetus is no longer viable (such as an aborted fetus due to a spontaneous or induced abortion). Post fetal demise, these samples are often called products of conception samples.
In some embodiments of any of the aspects of the invention, a report displaying a determined ploidy status of a chromosome or chromosome segment in a fetus (such as a gestating fetus or a POC sample) generated using any of the methods of the invention. In some embodiments, a kit is disclosed for determining a ploidy status of a target chromosome in a fetus (such as a gestating fetus or a POC sample) designed to be used with any of the methods of the invention, the kit including a plurality of inner forward primers and optionally the plurality of inner reverse primers, where each of the primers is designed to hybridize to the region of DNA immediately upstream and/or downstream from one of the polymorphic sites on the target chromosome, and optionally additional chromosomes, where the region of hybridization is separated from the polymorphic site by a small number of bases, where the small number is selected from the group consisting of 1, 2, 3, 4, 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, 31 to 60, and combinations thereof.
In some embodiments of any of the aspects of the invention, a method is disclosed for determining presence or absence of fetal aneuploidy in a maternal tissue sample comprising fetal and maternal genomic DNA, the method including (a) obtaining a mixture of fetal and maternal genomic DNA from said maternal tissue sample, (b) conducting massively parallel DNA sequencing of DNA fragments randomly selected from the mixture of fetal and maternal genomic DNA of step (a) to determine the sequence of said DNA fragments, (c) identifying chromosomes to which the sequences obtained in step (b) belong, (d) using the data of step (c) to determine an amount of at least one first chromosome in said mixture of maternal and fetal genomic DNA, wherein said at least one first chromosome is presumed to be euploid in the fetus, (e) using the data of step (c) to determine an amount of a second chromosome in said mixture of maternal and fetal genomic DNA, wherein said second chromosome is suspected to be aneuploid in the fetus, (f) calculating the fraction of fetal DNA in the mixture of fetal and maternal DNA, (g) calculating an expected distribution of the amount of the second target chromosome if the second target chromosome is euploid, using the number in step (d), (h) calculating an expected distribution of the amount of the second target chromosome if the second target chromosome is aneuploid, using the first number is step (d) and the calculated fraction of fetal DNA in the mixture of fetal and maternal DNA in step (f), and (i) using a maximum likelihood or maximum a posteriori approach to determine whether the amount of the second chromosome as determined in step (e) is more likely to be part of the distribution calculated in step g) or the distribution calculated in step (h); thereby indicating the presence or absence of a fetal aneuploidy.
It is understood that aspects and embodiments of the invention described herein include "comprising," "consisting," and "consisting essentially of aspects and embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
The presently disclosed embodiments will be further explained with reference to the attached drawings, wherein like structures are referred to by like numerals throughout the several views. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the presently disclosed embodiments.
Figure 1 : Graphical representation of direct multiplexed mini-PCR method.
Figure 2: Graphical representation of semi-nested mini-PCR method.
Figure 3 : Graphical representation of fully nested mini-PCR method.
Figure 4: Graphical representation of hemi-nested mini-PCR method.
Figure 5: Graphical representation of triply hemi-nested mini-PCR method.
Figure 6: Graphical representation of one-sided nested mini-PCR method.
Figure 7: Graphical representation of one-sided mini-PCR method.
Figure 8: Graphical representation of reverse semi-nested mini-PCR method.
Figure 9: Some possible workflows for semi-nested methods.
Figure 10: Graphical representation of looped ligation adaptors.
Figure 11 : Graphical representation of internally tagged primers.
Figure 12: An example of some primers with internal tags.
Figure 13: Graphical representation of a method using primers with a ligation adaptor binding region.
Figure 14: Simulated ploidy call accuracies for counting method with two different analysis techniques.
Figure 15: Ratio of two alleles for a plurality of SNPs in a cell line in Experiment 4. Figure 16: Ratio of two alleles for a plurality of SNPs in a cell line in Experiment 4 sorted by chromosome.
Figures 17A-17D: Ratio of two alleles for a plurality of SNPs in four pregnant women plasma samples, sorted by chromosome.
Figure 18: Fraction of data that can be explained by binomial variance before and after data correction.
Figure 19: Graph showing relative enrichment of fetal DNA in samples following a short library preparation protocol. Figure 20: Depth of read graph comparing direct PCR and semi-nested methods.
Figure 21: Comparison of depth of read for direct PCR of three genomic samples.
Figure 22: Comparison of depth of read for semi-nested mini-PCR of three samples.
Figure 23: Comparison of depth of read for 1,200-plex and 9,600-plex reactions.
Figure 24: Read count ratios for six cells at three chromosomes.
Figures 25A-25C: Allele ratios for two three-cell reactions (Figures 25B and 25C) and a third reaction run on 1 ng of genomic DNA at three chromosomes (Figure 25 A).
Figures 26A and 26B: Allele ratios for two single-cell reactions (Figures 26A and 26B) at three chromosomes.
Figures 27A-27F: Graphs of monosomy (Figure 27 A), disomy (Figure 27B), trisomy
(Figure 27C), duplication (Figure 27D), maternal cell contamination (Figure 27E), and non- maternal cell contamination (Figure 27F).
Figures 28A-28D: Graphs of disomy (Figures 28A and 28C) and trisomy (Figures 28B and 28D) for cases with partial maternal cell contamination.
Figure 29: Table of demographic data.
While the above-identified drawings set forth presently disclosed embodiments, other embodiments are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the presently disclosed embodiments.
DETAILED DESCRIPTION
Prior methods for screening for fetal chromosome abnormalities can be hindered by contaminating cells and/ or DNA that prevents an accurate determination of the copy number for the fetus or that result in the copy number being mistakenly determined for the source of contamination rather than for the fetus. For example, maternal cell contamination is a significant problem in products of conception (POC) diagnosis, and can often lead to spurious conclusions. If a female (46,XX) karyotype is detected, it can be unclear whether this karyotype corresponds to the fetus or to maternal contamination in the POC sample.
The present invention features methods for determining whether a sample (such as a sample to be used for fetal aneuploidy screening, screening for the inheritance of a disease- linked locus, or paternity testing) has (i) fetal DNA (e.g., DNA from cellular or extracellular genetic material) with essentially no contaminating DNA, (ii) a mixture of fetal DNA and contaminating DNA, or (iii) contaminating DNA with essentially no fetal DNA. If desired, the absolute or relative amount of contaminating DNA can be determined. Possible contamination includes cellular or extracellular DNA from a source other than the fetus of interest, such as DNA from a related individual (e.g., the mother of the fetus or a different fetus that previously gestated in the mother) or DNA from an unrelated individual (e.g., another sample analyzed by the same laboratory). In various embodiments in which there is essentially no contaminating DNA, there is an undetectable or negligible amount of contaminating DNA or no contaminating DNA. In various embodiments in which there is essentially no DNA from the fetus of interest, there is an undetectable or negligible amount of DNA from the fetus or no DNA from the fetus,
For situations in which there is no contamination or only partial contamination in the sample (such that the sample contains at least some fetal DNA), the present methods are able to correct for any contamination and accurately determine the number of copies of a chromosome or chromosome segment of interest in the genome of a fetus. For example, Figures 28C and 28D illustrate the copy number determination for disomic and trisomic (respectively) chromosomes from a products of conception sample with -70% contaminating maternal cells. If desired, the present methods may be used to compare the sample to one or more potential sources of contamination, such as DNA from the mother, to determine whether contamination from that source is present in the sample.
In situations in which the sample contains essentially no fetal DNA, the methods are able to detect this "full" contamination and generate a "no call" result. Being able to differentiate maternal contamination from a chromosomally normal female fetus improves the accuracy of the test significantly. For example, the physician or patient can be informed of the contamination and asked to provide another sample for testing. This result is much better than methods which would inadvertently determine the copy number for the source of contamination and incorrectly report that as the copy number for the fetus.
In some embodiments, the copy number determination involves making genotypic measurements at a plurality of polymorphic loci on the chromosome or chromosome segment from a sample; creating, on a computer, a set of one or more hypotheses about the number of copies of the chromosome or chromosome segment in the genome of the fetus; determining, on a computer, the probability of each of the hypotheses given the genotypic measurements; and using the probabilities associated with each hypothesis to determine the most likely number of copies of the chromosome or chromosome segment in the genome of the fetus. In some embodiments, the method also includes obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the mother and/or father. In some embodiments, use of a sample from the mother facilitates the detection or quantitation of maternal DNA in the sample. In some embodiments, use of genetic material from the father facilitates the analysis when there is a limited amount of material available from the test sample, such as when only a small sample was obtained, only a small amount of fetal DNA is present compared to the amount of contaminating DNA, or sample processing or storage conditions degrade or alter the DNA (such as by crosslinking the DNA).
In some embodiments, the method involves making a clinical decision or taking a clinical action based on the test result (e.g., the called ploidy state, disease-linked locus, or paternity of the fetus). In some embodiments, the clinical action is terminating the pregnancy or maintaining the pregnancy. In some embodiments, the clinical action includes performing additional testing (such as amniocentesis or chorion villus biopsy) on the fetus to confirm the results. In some embodiments, the clinical action includes performing testing on an individual related to the fetus to screen for (i) an abnormality in the related individual that was found in the fetus or (ii) an abnormality in the related individual that could have led to the abnormality found in the fetus (e.g., the called ploidy state or disease-linked locus). For example, some ploidy states may indicate that a parent is likely to harbor an abnormality. For example, an unbalanced translocation in the sample (such as a products of conception sample) indicates the likelihood that a parent harbors a balanced translocation. An advantage of the informatics technique is the ability to determine the parental source of aneuploidy, enabling karyotyping to be done only on the parent of origin. In an embodiment, the method includes ploidy determination on an individual and also follow up karyotyping one or both the parents of the individual in cases where the copy number calling on the individual indicates an abnormality. Ploidy determination on the sample (such as a products of conception sample) that indicates that a parent harbors an inheritable chromosomal abnormality where passing the abnormality, or a sequella related to the abnormality to an offspring can be prevented preimplantation genetic diagnosis during subsequent in vitro fertilization. In an embodiment, the method may include ploidy determination on the sample (such as a products of conception sample) followed by preimplantation genetic diagnosis during subsequent in vitro fertilization for the purpose of preventing inheritance of a chromosomal abnormality, or a sequella related to the abnormality, to an offspring. In some embodiments, the clinical action includes performing testing (such as performing preimplantation genetic diagnosis, amniocentesis, or chorion villus biopsy) on a subsequent fetus or embryo that inherited genetic material from the mother and/or father. In some embodiments, the chromosomal abnormality includes partial duplications, partial deletions, translocations, other partial chromosomal abnormalities, monosomy, or trisomy, and other whole chromosome abnormalities. Exemplary Samples
In some embodiments of any of the aspects of the invention, the sample includes cellular and/or extracellular genetic material from the fetus, contaminating cellular and/or extracellular genetic material (such as genetic material from the mother of the fetus), or combinations thereof. In some embodiments, the sample comprises cellular genetic material from the fetus, contaminating cellular genetic material, or combinations thereof. In some embodiments, the sample comprises any tissue suspected of being at least partially of fetal origin.
In some embodiments, the sample is from a gestating fetus. In some embodiments, the sample is from a non-gestating fetus, such as a products of conception sample or a sample from any fetal tissue after fetal demise. In some embodiments, the sample is a maternal whole blood sample, cells isolated from a maternal blood sample, maternal plasma sample, amniocentesis sample, placental tissue sample (e.g., chorionic villus, decidua, or placental membrane), cervical mucus sample, or other sample from a fetus.
In some embodiments, the sample is from any of the target individuals disclosed herein. In some embodiments, the target individual is a born individual, a gestating fetus, a non-gestating fetus such as a products of conception sample, an embryo, or any other individual. Any reference in this disclosure making reference to the method as applied to one of these types of individuals may equally well apply to any other type of individual. In one embodiment, the method may apply to a cancer or other tissue that is genetically altered from the genetic state of the host individual. In this case, the related individual would be considered to be the host individual. In some embodiments, at least 3, 5, 7, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 92, 94, 95, 96, 98, 99, or 100% of the cells in the sample are maternal cells. In various embodiments, the amount of cells in the sample that are maternal cells is between 5 to 99%, such as between 10 to 95%, 20 to 95%, 30 to 90%, 30 to 70%, 40 to 90%, 40 to 70%, 50 to 90%, or 50 to 80%, inclusive. In some embodiments, the sample is enriched for fetal cells. In some embodiments in which the sample is enriched for fetal cells, at least 0.5, 1, 2, 3, 4, 5, 6, 7% or more of the cells in the enriched sample are fetal cells. In some embodiments, the amount of cells in the sample that are fetal cells is between 0.5 to 100%, such as between 1 to 99%, 5 to 95%, 10 to 95%, 10 to 95%, 20 to 90%, or 30 to 70%, inclusive.
In some embodiments, the method includes preparing the sample (such as the first sample) by isolating the DNA so as to obtain a prepared sample. In some embodiments, the sample is preserved with a preservative such as formaldehyde and optionally encased in paraffin, which may cause cross-linking of the DNA such that less of it is available for PCR. These samples can be used in any of the methods of the invention.
Exemplary Analysis of Products of Conception Samples
As discussed above, maternal cell contamination is a significant problem in POC diagnosis. The use of the careful tissue separation techniques can bring down the rate of MCC in POC samples dramatically, but maternal cell contamination can still occur (Lathi, R.B. and A. A. Milki, Tissue sampling technique affects accuracy of karyotype from missed abortions. J Assist Reprod Genet, 2002. 19(11): p. 536-8). Use of SNP arrays or sequencing {e.g., targeted or shotgun sequencing) combined with an informatics based technique described herein can identify fetal and maternal tissue, removing the uncertainty associated with MCC.
Patients go through significant grieving after a miscarriage and knowing the results of the chromosomal analysis sooner may help patients understand the cause of their loss and begin planning for future pregnancy attempts. The metaphase karyotype is often used as a diagnostic tool in the setting of early miscarriage; however this technique has several limitations. The informatics based technique described herein can bring the turn-around time of karyotyping from one month to less than a week. The benefits of rapid turnaround, the ability to definitively detect maternal contamination, the elimination of cell culture and its associated problems, justify the clinical application of this technology for analyzing products of conception.
Molecular karyotyping of products of conception (POC) using the SNP microarrays or sequencing methods described herein after missed abortion enables detection of maternal cell contamination and provides rapid results with good concordance to standard cytogenetic analysis. Experiment 15 describes the use of a new technique for karyotyping that uses single nucleotide polymorphism microarrays. This technique was compared in a blinded, prospective fashion, to the traditional metaphase karyotype. Samples of chorionic villi were equally divided and sent for microarray testing in parallel with routine cytogenetic testing. Thirty samples were analyzed, with only four discordant results. Discordant results occurred when the entire genome was duplicated or when a balanced rearrangement was present. Cytogentic karyotyping took an average of 29 days while microarray-based karytoyping took an average of 12 days. Molecular karyotyping of POC after missed abortion using SNP microarray analysis allows for the ability to detect maternal cell contamination and provides rapid results with good concordance to standard cytogenetic analysis.
Molecular karyotyping of POC can also be performed using other methods of measuring the genotypes of individuals, for example sequencing (e.g., targeted or shotgun sequencing). Many techniques exist which provide genotyping data. Some examples include the following. TAQMAN is a unique genotyping technology produced and distributed by LIFE TECHNOLOGY. TAQMAN uses polymerase chain reaction (PCR) to amplify sequences of interest. AFFYMETRIX's 500K ARRAYS and ILLUMINA's INFINIUM system are genotyping arrays that detect for the presence of specific sequences of DNA at a large number of locations simultaneously. ILLUMINA's HISEQ and MISEQ, and LIFE TECHNOLOGY'S PROTON, ION TORRENT and SOLID platform allow the direct sequencing of a large number of individual DNA sequences. Other genotyping platforms exist.
Exemplary Copy Number Determination Methods
In an embodiment, the present disclosure provides ex vivo methods for determining the ploidy status of a chromosome in a fetus (such as a gestating fetus or a POC sample) from genotypic data measured from a mixed sample of DNA (i.e., DNA from the mother of the fetus, and DNA from the fetus) and optionally from genotypic data measured from a sample of genetic material from the mother and possibly also from the father, wherein the determining is done by using a joint distribution model to create a set of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the actual allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. In an embodiment, the mixed sample is derived from maternal blood, or maternal serum or plasma. In some embodiments, the maternal DNA is isolated from maternal cells, and/or the fetal DNA is isolated from fetal cells. In an embodiment, the mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci. In an embodiment, the preferential enrichment is done in a way that minimizes the allelic bias. In an embodiment, the present disclosure relates to a composition of DNA that has been preferentially enriched at a plurality of loci such that the allelic bias is low. In an embodiment, the allelic distribution(s) are measured by sequencing the DNA from the mixed sample. In an embodiment, the joint distribution model assumes that the alleles will be distributed in a binomial fashion. In an embodiment, the set of expected joint allele distributions are created for genetically linked loci while considering the extant recombination frequencies from various sources, for example, using data from the International HapMap Consortium.
In an embodiment, the present disclosure provides methods for non-invasive prenatal diagnosis (NPD), specifically, determining the aneuploidy status of a fetus by observing allele measurements at a plurality of polymorphic loci in genotypic data measured on DNA mixtures, where certain allele measurements are indicative of an aneuploid fetus, while other allele measurements are indicative of a euploid fetus. In an embodiment, the genotypic data is measured by sequencing DNA mixtures that were derived from maternal plasma. In an embodiment, the DNA sample may be preferentially enriched in molecules of DNA that correspond to the plurality of loci whose allele distributions are being calculated. In an embodiment a sample of DNA comprising only or almost only genetic material from the mother and possibly also a sample of DNA comprising only or almost only genetic material from the father are measured. In an embodiment, the genetic measurements of one or both parents along with the estimated fetal fraction are used to create a plurality of expected allele distributions corresponding to different possible underlying genetic states of the fetus; the expected allele distributions may be termed hypotheses. In an embodiment, the maternal genetic data is not determined by measuring genetic material that is exclusively or almost exclusively maternal in nature, rather, it is estimated from the genetic measurements made on maternal plasma that comprises a mixture of maternal and fetal DNA. In some embodiments the hypotheses may comprise the ploidy of the fetus at one or more chromosomes, which segments of which chromosomes in the fetus were inherited from which parents, and combinations thereof. In some embodiments, the ploidy state of the fetus is determined by comparing the observed allele measurements to the different hypotheses where at least some of the hypotheses correspond to different ploidy states, and selecting the ploidy state that corresponds to the hypothesis that is most likely to be true given the observed allele measurements. In an embodiment, this method involves using allele measurement data from some or all measured S Ps, regardless of whether the loci are homozygous or heterozygous, and therefore does not involve using alleles at loci that are only heterozygous. This method may not be appropriate for situations where the genetic data pertains to only one polymorphic locus. This method is particularly advantageous when the genetic data comprises data for more than ten polymorphic loci for a target chromosome or more than twenty polymorphic loci. This method is especially advantageous when the genetic data comprises data for more than 50 polymorphic loci for a target chromosome, more than 100 polymorphic loci or more than 200 polymorphic loci for a target chromosome. In some embodiments, the genetic data may comprise data for more than 500 polymorphic loci for a target chromosome, more than 1,000 polymorphic loci, more than 2,000 polymorphic loci, or more than 5,000 polymorphic loci for a target chromosome.
In an embodiment, a method disclosed herein uses selective enrichment techniques that preserve the relative allele frequencies that are present in the original sample of DNA at each target loci (e.g., each polymorphic locus) from a set of target loci (e.g., polymorphic loci). While enrichment is particularly advantageous for methods for analyzing polymorphic loci, these enrichment methods can be readily adapted for nonpolymorphic loci if desired. In some embodiments the amplification and/or selective enrichment technique may involve PCR techniques such as mini-PCR, highly multiplex PCR, ligation mediated PCR, fragment capture by hybridization, or circularizing probes such as Molecular Inversion Probes. In some embodiments, methods for amplification or selective enrichment may involve using PCR primers or other probes where, upon correct hybridization to the target sequence, the 3-prime end or 5-prime end of a nucleotide probe is separated from the polymorphic site of the allele by a small number of nucleotides. This separation reduces preferential amplification of one allele, termed allele bias. This is an improvement over methods that involve using probes where the 3-prime end or 5-prime end of a correctly hybridized probe are directly adjacent to or very near to the polymorphic site of an allele. In an embodiment, probes in which the hybridizing region hybridizes to a polymorphic site are excluded. Polymorphic sites at the site of hybridization can cause unequal hybridization or inhibit hybridization altogether in some alleles, resulting in preferential amplification of certain alleles. These embodiments are improvements over other methods that involve targeted amplification and/or selective enrichment in that they better preserve the original allele frequencies of the sample at each polymorphic locus, whether the sample is pure genomic sample from a single individual or mixture of individuals.
In an embodiment, a method disclosed herein uses highly efficient highly multiplexed targeted PCR to amplify DNA followed by high throughput sequencing to determine the allele frequencies at each target locus. The ability to multiplex more than about 50 or 100 PCR primers in one reaction in a way that most of the resulting sequence reads map to targeted loci is novel and non-obvious. One technique that allows highly multiplexed targeted PCR to perform in a highly efficient manner involves designing primers that are unlikely to hybridize with one another. The PCR probes, typically referred to as primers, may be selected by creating a thermodynamic model of potentially adverse interactions, or unintended interactions, between at least 500, at least 1,000, at least 5,000, at least 10,000, at least 20,000, at least 50,000, or at least 100,000 potential primer pairs or between the primers and sample DNA, and then using the model to eliminate designs that are incompatible with other the designs in the pool or with the sample DNA. Another technique that allows highly multiplexed targeted PCR to perform in a highly efficient manner is using a partial or full nesting approach to the targeted PCR. Using one or a combination of these approaches allows multiplexing of at least 300, at least 800, at least 1,200, at least 4,000 or at least 10,000 primers in a single pool with the resulting amplified DNA comprising a majority of DNA molecules that, when sequenced, will map to targeted loci. Using one or a combination of these approaches allows multiplexing of a large number of primers in a single pool with the resulting amplified DNA comprising greater than 50%, greater than 80%, greater than 90%, greater than 95%, greater than 98%, or greater than 99% DNA molecules that map to targeted loci.
In an embodiment, a method disclosed herein yields a quantitative measure of the number of independent observations of each allele at a polymorphic locus. This is unlike most methods such as microarrays or qualitative PCR which provide information about the ratio of two alleles but do not quantify the number of independent observations of either allele. With methods that provide quantitative information regarding the number of independent observations, only the ratio is utilized in ploidy calculations, while the quantitative information by itself is not useful. To illustrate the importance of retaining information about the number of independent observations consider the sample locus with two alleles, A and B. In a first experiment twenty A alleles and twenty B alleles are observed, in a second experiment 200 A alleles and 200 B alleles are observed. In both experiments the ratio (A/(A+B)) is equal to 0.5, however the second experiment conveys more information than the first about the certainty of the frequency of the A or B allele. Some methods involve averaging or summing allele ratios (channel ratios) (i.e. xj/yi) from individual allele and analyzes this ratio, either comparing it to a reference chromosome or using a rule pertaining to how this ratio is expected to behave in particular situations. No allele weighting is implied in such methods known in the art, where it is assumed that one can ensure about the same amount of PCR product for each allele and that all the alleles should behave the same way. Such a method has a number of disadvantages, and more importantly, precludes the use a number of improvements that are described elsewhere in this disclosure.
In an embodiment, a method disclosed herein explicitly models the allele frequency distributions expected in disomy as well as a plurality of allele frequency distributions that may be expected in cases of trisomy resulting from nondisjunction during meiosis I, nondisjunction during meiosis II, and/or nondisjunction during mitosis early in fetal development. To illustrate why this is important, imagine a case where there were no crossovers: nondisjunction during meiosis I would result a trisomy in which two different homologs were inherited from one parent; in contrast, nondisjunction during meiosis II or during mitosis early in fetal development would result in two copies of the same homolog from one parent. Each scenario would result in different expected allele frequencies at each polymorphic locus and also at all loci considered jointly, due to genetic linkage. Crossovers, which result in the exchange of genetic material between homologs, make the inheritance pattern more complex; in an embodiment, the instant method accommodates for this by using recombination rate information in addition to the physical distance between loci. In an embodiment, to enable improved distinction between meiosis I nondisjunction and meiosis II or mitotic nondisjunction the instant method incorporate into the model an increasing probability of crossover as the distance from the centromere increases. Meiosis II and mitotic nondisjunction can distinguished by the fact that mitotic nondisjunction typically results in identical or nearly identical copies of one homolog while the two homologs present following a meiosis II nondisjunction event often differ due to one or more crossovers during gametogenesis.
In some embodiments, a method disclosed herein involves comparing the observed allele measurements to theoretical hypotheses corresponding to possible fetal genetic aneuploidy, and does not involve a step of quantitating a ratio of alleles at a heterozygous locus. Where the number of loci is lower than about 20, the ploidy determination made using a method comprising quantitating a ratio of alleles at a heterozygous locus and a ploidy determination made using a method comprising comparing the observed allele measurements to theoretical allele distribution hypotheses corresponding to possible fetal genetic states may give a similar result. However, where the number of loci is above 50 these two methods is likely to give significantly different results; where the number of loci is above 400, above, 1,000 or above 2,000 these two methods are very likely to give results that are increasingly significantly different. These differences are due to the fact that a method that comprises quantitating a ratio of alleles at a heterozygous locus without measuring the magnitude of each allele independently and aggregating or averaging the ratios precludes the use of techniques including using a joint distribution model, performing a linkage analysis, using a binomial distribution model, and/or other advanced statistical techniques, whereas using a method comprising comparing the observed allele measurements to theoretical allele distribution hypotheses corresponding to possible fetal genetic states may use these techniques which can substantially increase the accuracy of the determination.
In an embodiment, a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus using a joint distribution model. The use of a joint distribution model is a different from and a significant improvement over methods that determine heterozygosity rates by treating polymorphic loci independently in that the resultant determinations are of significantly higher accuracy. Without being bound by any particular theory, it is believed that one reason they are of higher accuracy is that the joint distribution model takes into account the linkage between S Ps, and likelihood of crossovers having occurred during the meiosis that gave rise to the gametes that formed the embryo that grew into the fetus. The purpose of using the concept of linkage when creating the expected distribution of allele measurements for one or more hypotheses is that it allows the creation of expected allele measurements distributions that correspond to reality considerably better than when linkage is not used. For example, imagine that there are two SNPs, 1 and 2 located nearby one another, and the mother is A at SNP 1 and A at SNP 2 on one homolog, and B at SNP 1 and B at SNP 2 on homolog two. If the father is A for both SNPs on both homologs, and a B is measured for the fetus SNP 1, this indicates that homolog two has been inherited by the fetus, and therefore that there is a much higher likelihood of a B being present on the fetus at SNP 2. A model that takes into account linkage would predict this, while a model that does not take linkage into account would not. Alternately, if a mother was AB at SNP 1 and AB at nearby SNP 2, then two hypotheses corresponding to maternal trisomy at that location could be used - one involving a matching copy error (nondisjunction in meiosis II or mitosis in early fetal development), and one involving an unmatching copy error (nondisjunction in meiosis I). In the case of a matching copy error trisomy, if the fetus inherited an AA from the mother at SNP 1, then the fetus is much more likely to inherit either an AA or BB from the mother at SNP 2, but not AB. In the case of an unmatching copy error, the fetus would inherit an AB from the mother at both SNPs. The allele distribution hypotheses made by a ploidy calling method that takes into account linkage would make these predictions, and therefore correspond to the actual allele measurements to a considerably greater extent than a ploidy calling method that did not take into account linkage. Note that a linkage approach is not possible when using a method that relies on calculating allele ratios and aggregating those allele ratios.
One reason that it is believed that ploidy determinations that use a method that comprises comparing the observed allele measurements to theoretical hypotheses corresponding to possible fetal genetic states are of higher accuracy is that when sequencing is used to measure the alleles, this method can glean more information from data from alleles where the total number of reads is low than other methods; for example, a method that relies on calculating and aggregating allele ratios would produce disproportionately weighted stochastic noise. For example, imagine a case that involved measuring the alleles using sequencing, and where there was a set of loci where only five sequence reads were detected for each locus. In an embodiment, for each of the alleles, the data may be compared to the hypothesized allele distribution, and weighted according to the number of sequence reads; therefore the data from these measurements would be appropriately weighted and incorporated into the overall determination. This is in contrast to a method that involved quantitating a ratio of alleles at a heterozygous locus, as this method could only calculate ratios of 0%, 20%, 40%, 60%, 80% or 100% as the possible allele ratios; none of these may be close to expected allele ratios. In this latter case, the calculated allele rations would either have to be discarded due to insufficient reads or else would have disproportionate weighting and introduce stochastic noise into the determination, thereby decreasing the accuracy of the determination. In an embodiment, the individual allele measurements may be treated as independent measurements, where the relationship between measurements made on alleles at the same locus is no different from the relationship between measurements made on alleles at different loci.
In an embodiment, a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus without comparing any metrics to observed allele measurements on a reference chromosome that is expected to be disomic (termed the RC method). This is a significant improvement over methods, such as methods using shotgun sequencing which detect aneuploidy by evaluating the proportion of randomly sequenced fragments from a suspect chromosomes relative to one or more presumed disomic reference chromosome. This RC method yields incorrect results if the presumed disomic reference chromosome is not actually disomic. This can occur in cases where aneuploidy is more substantial than trisomy of a single chromosome or where the fetus is triploid and all autosomes are trisomic. In the case of a female triploid (69, XXX) fetus there are in fact no disomic chromosomes at all. The method described herein does not require a reference chromosome and would be able to correctly identify trisomic chromosomes in a female triploid fetus. For each chromosome, hypothesis, child fraction and noise level, a joint distribution model may be fit, without any of: reference chromosome data, an overall child fraction estimate, or a fixed reference hypothesis.
In an embodiment, a method disclosed herein demonstrates how observing allele distributions at polymorphic loci can be used to determine the ploidy state of a fetus with greater accuracy than prior methods. In an embodiment, the method uses the targeted sequencing to obtain mixed maternal-fetal genotypes and optionally mother and/or father genotypes at a plurality of S Ps to first establish the various expected allele frequency distributions under the different hypotheses, and then observing the quantitative allele information obtained on the maternal-fetal mixture and evaluating which hypothesis fits the data best, where the genetic state corresponding to the hypothesis with the best fit to the data is called as the correct genetic state. In an embodiment, a method disclosed herein also uses the degree of fit to generate a confidence that the called genetic state is the correct genetic state. In an embodiment, a method disclosed herein involves using algorithms that analyze the distribution of alleles found for loci that have different parental contexts, and comparing the observed allele distributions to the expected allele distributions for different ploidy states for the different parental contexts (different parental genotypic patterns). This is different from and an improvement over methods that do not use methods that enable the estimation of the number of independent instances of each allele at each locus in a mixed maternal-fetal sample. In an embodiment, a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus using observed allelic distributions measured at loci where the mother is heterozygous. This is different from and an improvement over methods that do not use observed allelic distributions at loci where the mother is heterozygous because, in cases where the DNA is not preferentially enriched or is preferentially enriched for loci that are not known to be highly informative for that particular target individual, it allows the use of about twice as much genetic measurement data from a set of sequence data in the ploidy determination, resulting in a more accurate determination.
In an embodiment, a method disclosed herein uses a joint distribution model that assumes that the allele frequencies at each locus are multinomial (and thus binomial when S Ps are biallelic) in nature. In some embodiments the joint distribution model uses beta- binomial distributions. When using a measuring technique, such as sequencing, provides a quantitative measure for each allele present at each locus, binomial model can be applied to each locus and the degree underlying allele frequencies and the confidence in that frequency can be ascertained. With methods known in the art that generate ploidy calls from allele ratios, or methods in which quantitative allele information is discarded, the certainty in the observed ratio cannot be ascertained. The instant method is different from and an improvement over methods that calculate allele ratios and aggregate those ratios to make a ploidy call, since any method that involves calculating an allele ratio at a particular locus, and then aggregating those ratios, necessarily assumes that the measured intensities or counts that are indicative of the amount of DNA from any given allele or locus will be distributed in a Gaussian fashion. The method disclosed herein does not involve calculating allele ratios. In some embodiments, a method disclosed herein may involve incorporating the number of observations of each allele at a plurality of loci into a model. In some embodiments, a method disclosed herein may involve calculating the expected distributions themselves, allowing the use of a joint binomial distribution model which may be more accurate than any model that assumes a Gaussian distribution of allele measurements. The likelihood that the binomial distribution model is significantly more accurate than the Gaussian distribution increases as the number of loci increases. For example, when fewer than 20 loci are interrogated, the likelihood that the binomial distribution model is significantly better is low. However, when more than 100, or especially more than 400, or especially more than 1,000, or especially more than 2,000 loci are used, the binomial distribution model will have a very high likelihood of being significantly more accurate than the Gaussian distribution model, thereby resulting in a more accurate ploidy determination. The likelihood that the binomial distribution model is significantly more accurate than the Gaussian distribution also increases as the number of observations at each locus increases. For example, when fewer than 10 distinct sequences are observed at each locus are observed, the likelihood that the binomial distribution model is significantly better is low. However, when more than 50 sequence reads, or especially more than 100 sequence reads, or especially more than 200 sequence reads, or especially more than 300 sequence reads are used for each locus, the binomial distribution model will have a very high likelihood of being significantly more accurate than the Gaussian distribution model, thereby resulting in a more accurate ploidy determination.
In an embodiment, a method disclosed herein uses sequencing to measure the number of instances of each allele at each locus in a DNA sample. Each sequencing read may be mapped to a specific locus and treated as a binary sequence read; alternately, the probability of the identity of the read and/or the mapping may be incorporated as part of the sequence read, resulting in a probabilistic sequence read, that is, the probable whole or fractional number of sequence reads that map to a given loci. Using the binary counts or probability of counts it is possible to use a binomial distribution for each set of measurements, allowing a confidence interval to be calculated around the number of counts. This ability to use the binomial distribution allows for more accurate ploidy estimations and more precise confidence intervals to be calculated. This is different from and an improvement over methods that use intensities to measure the amount of an allele present, for example methods that use microarrays, or methods that make measurements using fluorescence readers to measure the intensity of fluorescently tagged DNA in electrophoretic bands. In an embodiment, a method disclosed herein uses aspects of the present set of data to determine parameters for the estimated allele frequency distribution for that set of data. This is an improvement over methods that utilize training set of data or prior sets of data to set parameters for the present expected allele frequency distributions, or possibly expected allele ratios. This is because there are different sets of conditions involved in the collection and measurement of every genetic sample, and thus a method that uses data from the instant set of data to determine the parameters for the joint distribution model that is to be used in the ploidy determination for that sample will tend to be more accurate.
In an embodiment, a method disclosed herein involves determining whether the distribution of observed allele measurements is indicative of a euploid or an aneuploid fetus (e.g., indicative of a nullsomy, monosomy, disomy, euploidy, uniparental disomy, trisomy, matching trisomy, unmatching trisomy, maternal trisomy, paternal trisomy, tetrasomy, or other ploidy state) using a maximum likelihood technique. The use of a maximum likelihood technique is different from and a significant improvement over methods that use single hypothesis rejection technique in that the resultant determinations will be made with significantly higher accuracy. One reason is that single hypothesis rejection techniques do not contain information on the alternative hypothesis. Another reason is that single hypothesis rejection techniques set cut off thresholds based on only one measurement distribution rather than two, meaning that the thresholds are usually not optimal. Another reason is that the maximum likelihood technique allows the optimization of the cut off threshold for each individual sample instead of determining a cut off threshold to be used for all samples regardless of the particular characteristics of each individual sample. Another reason is that the use of a maximum likelihood technique allows the calculation of a confidence for each ploidy state determination. The ability to make a confidence calculation for each determination allows a practitioner to know which calls are accurate, and which are more likely to be wrong. In some embodiments, a wide variety of methods may be combined with a maximum likelihood estimation technique to enhance the accuracy of the ploidy calls. In an embodiment, the maximum likelihood technique may be used in combination with the method described in US Patent 7,888,017. In an embodiment, the maximum likelihood technique may be used in combination with the method of using targeted PCR amplification to amplify the DNA in the mixed sample followed by sequencing and analysis using a read counting method such as used by TANDEM DIAGNOSTICS, as presented at the International Congress of Human Genetics 2011, in Montreal in October 2011. In an embodiment, a method disclosed herein involves estimating the fetal fraction of DNA in the mixed sample and using that estimation to calculate both the ploidy call and the confidence of the ploidy call. Note that this is both different and distinct from methods that use estimated fetal fraction as a screen for sufficient fetal fraction, followed by a ploidy call made using a single hypothesis rejection technique that does not take into account the fetal fraction nor does it produce a confidence calculation for the call.
In an embodiment, the ploidy determination involves determining the probability of the measured genotypic data given two possible hypotheses: the hypothesis that the alleged father is the biological father of the fetus, and the hypothesis that the alleged father is not the biological father of the fetus. A probability can then be calculated for each of the hypotheses given the data, and the ploidy state may be established based on the likelihood of each of the two hypotheses. The determination may utilize genetic measurements made on the mixed sample (e.g., maternal plasma), genetic measurements made on DNA from the alleged father, and optionally maternal genotypic data. In an embodiment, the maternal genotypic data can be inferred from the genotypic measurements made on maternal plasma.
In an embodiment, the probability can be determined using a partition of the range of possible fetal fractions; the range of fetal fractions could be anywhere from 0.01% to 99.9%, and the mesh may have increments ranging from 10% to 1%, from 1% to 0.1%, and lower than 0.1%. In an embodiment, the partition of possible fetal fractions may be from 2% to 30%, and the increments are about 1%. In an embodiment, the mesh could be continuous, and the likelihoods could be integrated over the ranges rather than combined. In an embodiment, the probability can be determined using only one fetal fraction, where that fetal fraction may be determined using any appropriate method. For each possible fetal fraction in the mesh, one can calculate the probability of the data given the two hypotheses. For the hypothesis that the alleged father is the biological father, the alleged father genotypes may be used in the calculation of the probability, while for the hypothesis that the alleged father is not the biological father, population based allele frequency data may additionally be used in the calculation of the probability. In an embodiment, one can use the parent contexts and a platform model in calculating the likelihood of data given hypothesis. In an embodiment, the likelihoods can be combined over all fetal fractions in the partition, over all mother genotypes, and over all father genotypes. In an embodiment, the parental genotypes may be probabilistic (e.g., at a given SNP, a parent may have the genotype GT with 99% chance, GG with 0.5% chance, and TT with 0.5% chance; in another embodiment the parental genotypes may take on one value (e.g., at a given S P, a parent has the genotype GT).
In an embodiment, a method disclosed herein takes into account the tendency for the data to be noisy and contain errors by attaching a probability to each measurement. The use of maximum likelihood techniques to choose the correct hypothesis from the set of hypotheses that were made using the measurement data with attached probabilistic estimates makes it more likely that the incorrect measurements will be discounted, and the correct measurements will be used in the calculations that lead to the ploidy determination. To be more precise, this method systematically reduces the influence of incorrectly measured data on the ploidy determination. This is an improvement over methods where all data is assumed to be equally correct or methods where outlying data is arbitrarily excluded from calculations leading to a ploidy determination. In an embodiment, individual S Ps are weighted by expected measurement variance based on the SNP quality and observed depth of read; this may result in an increase in the accuracy of the resulting statistic, resulting in an increase in the accuracy of the ploidy determination significantly, especially in borderline cases.
In an embodiment, a method disclosed herein does not presuppose the knowledge of which SNPs or other polymorphic loci are heterozygous on the fetus. This method allows a ploidy call to be made in cases where paternal genotypic information is not available. This is an improvement over methods where the knowledge of which SNPs are heterozygous must be known ahead of time in order to appropriately select loci to target, or to interpret the genetic measurements made on the mixed fetal/maternal DNA sample.
The methods described herein are particularly advantageous when used on samples where a small amount of DNA is available, or where the percent of fetal DNA is low. This is due to the correspondingly higher allele dropout rate that occurs when only a small amount of DNA is available and/or the correspondingly higher fetal allele dropout rate when the percent of fetal DNA is low in a mixed sample of fetal and maternal DNA. A high allele dropout rate, meaning that a large percentage of the alleles were not measured for the target individual, results in poorly accurate fetal fractions calculations, and poorly accurate ploidy determinations. Since methods disclosed herein may use a joint distribution model that takes into account the linkage in inheritance patterns between SNPs, significantly more accurate ploidy determinations may be made. The methods described herein allow for an accurate ploidy determination to be made when the percent of molecules of DNA that are fetal in the mixture is less than 40%, less than 30%, less than 20%, less than 10%, less than 8%, and even less than 6%.
In an embodiment, it is possible to determine the ploidy state of an individual based on measurements when that individual's DNA is mixed with DNA of a related individual. In an embodiment, the mixture of DNA is the free floating DNA found in maternal plasma, which may include DNA from the mother, with known karyotype and known genotype, and which may be mixed with DNA of the fetus, with unknown karyotype and unknown genotype. In some embodiments, the mixture of DNA is DNA isolated from a mixture of maternal and fetal cells. It is possible to use the known genotypic information from one or both parents to predict a plurality of potential genetic states of the DNA in the mixed sample for different ploidy states, different chromosome contributions from each parent to the fetus, and optionally, different fetal DNA fractions in the mixture. Each potential composition may be referred to as a hypothesis. The ploidy state of the fetus can then be determined by looking at the actual measurements, and determining which potential compositions are most likely given the observed data.
In some embodiments, a method disclosed herein could be used in situations where there is a very small amount of DNA present, such as in in vitro fertilization, or in forensic situations, where one or a few cells are available (typically less than ten cells, less than twenty cells or less than 40 cells.) In these embodiments, a method disclosed herein serves to make ploidy calls from a small amount of DNA that is not contaminated by other DNA, but where the ploidy calling very difficult the small amount of DNA. In some embodiments, a method disclosed herein could be used in situations where the target DNA is contaminated with DNA of another individual, for example in maternal blood in the context of prenatal diagnosis, paternity testing, or products of conception testing. Some other situations where these methods would be particularly advantageous would be in the case of cancer testing where only one or a small number of cells were present among a larger amount of normal cells. The genetic measurements used as part of these methods could be made on any sample comprising DNA or RNA, for example but not limited to: blood, plasma, body fluids, urine, hair, tears, saliva, tissue, skin, fingernails, blastomeres, embryos, amniotic fluid, chorionic villus samples, feces, bile, lymph, cervical mucus, semen, or other cells or materials comprising nucleic acids. In an embodiment, a method disclosed herein could be run with nucleic acid detection methods such as sequencing, microarrays, qPCR, digital PCR, or other methods used to measure nucleic acids. If for some reason it were found to be desirable, the ratios of the allele count probabilities at a locus could be calculated, and the allele ratios could be used to determine ploidy state in combination with some of the methods described herein, provided the methods are compatible. In some embodiments, a method disclosed herein involves calculating, on a computer, allele ratios at the plurality of polymorphic loci from the DNA measurements made on the processed samples. In some embodiments, a method disclosed herein involves calculating, on a computer, allele ratios at the plurality of polymorphic loci from the DNA measurements made on the processed samples along with any combination of other improvements described in this disclosure.
In some embodiments, the method may include detecting copy number counts at a segment of a chromosome, where the segment of the chromosome may be as short as one gene, or a segment of chromosome containing two SNPs, to as long as the entire chromosome. The method works equally well on any length of DNA, and any discussion in this disclosure of a chromosome may equally well refer to a segment of a chromosome.
In an embodiment, this method involves using allele measurement data from a plurality of loci. In an embodiment, the loci are polymorphic. In an embodiment, some or most of the loci are polymorphic. In an embodiment, the polymorphic loci are SNPs. In an embodiment, some or most of the polymorphic loci are heterozygous. In an embodiment, it is not necessary to determine which loci are heterozygous in advance of the testing. The loci measured can be untargeted or targeted. Targeted loci can be polymorphic or non-polymorphic.
In one embodiment, graphical display of the data allows facile copy number calling by eye, or by expert methods. In an embodiment, the data from a genetic sample of an individual may be plotted using colors or other symbols that correspond to the genotype, or context, of the mother and/or the father of the individual. The patterns of the differently denoted data points can be used to determine the ploidy state of the tissue. In some embodiments, the ploidy state determination can be done by a computer algorithm, expert methods, hand calling (human determination by looking at the graph) or other appropriate methods. Examples of ploidy calling using this method are shown in Figures 27E, 27F, and 28A-28D. Non-Invasive Prenatal Diagnosis (NPD)
The process of non-invasive prenatal diagnosis involves a number of steps. Some of the steps may include: (1) obtaining the genetic material from the fetus; (2) enriching the genetic material of the fetus that may be in a mixed sample, ex vivo; (3) amplifying the genetic material, ex vivo; (4) preferentially enriching specific loci in the genetic material, ex vivo; (5) measuring the genetic material, ex vivo; and (6) analyzing the genotypic data, on a computer, and ex vivo. Methods to reduce to practice these six and other relevant steps are described herein. At least some of the method steps are not directly applied on the body. In an embodiment, the present disclosure relates to methods of treatment and diagnosis applied to tissue and other biological materials isolated and separated from the body. At least some of the method steps are executed on a computer.
Some embodiments of the present disclosure allow a clinician to determine the genetic state of a fetus that is gestating in a mother in a non- invasive manner such that the health of the baby is not put at risk by the collection of the genetic material of the fetus, and that the mother is not required to undergo an invasive procedure. Moreover, in certain aspects, the present disclosure allows the fetal genetic state to be determined with high accuracy, significantly greater accuracy than, for example, the non-invasive maternal serum analyte based screens, such as the triple test, that are in wide use in prenatal care.
The high accuracy of the methods disclosed herein is a result of an informatics approach to analysis of the genotype data, as described herein. Modern technological advances have resulted in the ability to measure large amounts of genetic information from a genetic sample using such methods as high throughput sequencing and genotyping arrays. The methods disclosed herein allow a clinician to take greater advantage of the large amounts of data available, and make a more accurate diagnosis of the fetal genetic state. The details of a number of embodiments are given below. Different embodiments may involve different combinations of the aforementioned steps. Various combinations of the different embodiments of the different steps may be used interchangeably.
In an embodiment, a blood sample is taken from a pregnant mother, and the free floating DNA in the plasma of the mother's blood, which contains a mixture of both DNA of maternal origin and DNA of fetal origin, is isolated and used to determine the ploidy status of the fetus. In an embodiment, a blood sample is taken from the pregnant mother, and fetal cells, or a sample of cells that are enriched in fetal cells, are isolated and used to determine the ploidy status of the fetus. In an embodiment, a method disclosed herein involves preferential enrichment of those DNA sequences in a mixture of DNA that correspond to polymorphic alleles in a way that the allele ratios and/or allele distributions remain mostly consistent upon enrichment. In an embodiment, a method disclosed herein involves the highly efficient targeted PCR based amplification such that a very high percentage of the resulting molecules correspond to targeted loci. In an embodiment, a method disclosed herein involves sequencing a mixture of DNA that contains both DNA of maternal origin, and DNA of fetal origin. In an embodiment, a method disclosed herein involves using measured allele distributions to determine the ploidy state of a fetus (such as a fetus that is gestating in a mother). In an embodiment, a method disclosed herein involves reporting the determined ploidy state to a clinician. In an embodiment, a method disclosed herein involves taking a clinical action, for example, performing follow up invasive testing such as chorionic villus sampling or amniocentesis, preparing for the birth of a trisomic individual or an elective termination of a trisomic fetus.
This application makes reference to U.S. Utility Application Serial No. 11/603,406, filed November 28, 2006 (US Publication No.: 20070184467); U.S. Utility Application Serial No. 12/076,348, filed March 17, 2008 (US Publication No.: 20080243398); PCT Utility Application Serial No. PCT/US09/52730, filed August 4, 2009 (PCT Publication No.: WO/2010/017214); PCT Utility Application Serial No. PCT/US 10/050824, filed September 30, 2010 (PCT Publication No.: WO/2011/041485), U.S. Utility Application Serial No. 13/110,685, filed May 18, 2011; PCT Application Serial No. PCT/12/58578, filed October 3, 2012; and U.S. Utility Application Serial No. 13/683,604, filed November 21, 2012, which are each herein incorporated by reference in its entirety. Some of the vocabulary used in this filing may have its antecedents in these references. Some of the concepts described herein may be better understood in light of the concepts found in these references.
Screening Maternal Blood Comprising Free Floating Fetal DNA
The methods described herein may be used to help determine the genotype of a child, fetus, or other target individual where the genetic material of the target is found in the presence of a quantity of other genetic material. In some embodiments the genotype may refer to the ploidy state of one or a plurality of chromosomes, it may refer to one or a plurality of disease linked alleles, or some combination thereof. In this disclosure, the discussion focuses on determining the genetic state of a fetus where the fetal DNA is found in maternal blood, but this example is not meant to limit to possible contexts that this method may be applied to. In addition, the method may be applicable in cases where the amount of target DNA is in any proportion with the non-target DNA; for example, the target DNA could make up anywhere between 0.000001 and 99.999999% of the DNA present. In addition, the non-target DNA does not necessarily need to be from one individual, or even from a related individual, as long as genetic data from some or all of the relevant non-target individual(s) is known. In an embodiment, a method disclosed herein can be used to determine genotypic data of a fetus from maternal blood that contains fetal DNA (e.g., free floating fetal DNA or fetal cells in maternal blood). It may also be used in a case where there are multiple fetuses in the uterus of a pregnant woman, or where other contaminating DNA may be present in the sample, for example from other already born siblings.
This technique may make use of the phenomenon of fetal blood cells gaining access to maternal circulation through the placental villi. Ordinarily, only a very small number of fetal cells enter the maternal circulation in this fashion (not enough to produce a positive Kleihauer- Betke test for fetal-maternal hemorrhage). The fetal cells can be sorted out and analyzed by a variety of techniques to look for particular DNA sequences, but without the risks that invasive procedures inherently have. This technique may also make use of the phenomenon of free floating fetal DNA gaining access to maternal circulation by DNA release following apoptosis of placental tissue where the placental tissue in question contains DNA of the same genotype as the fetus. The free floating DNA found in maternal plasma has been shown to contain fetal DNA in proportions as high as 30-40% fetal DNA.
In an embodiment, blood may be drawn from a pregnant woman. Research has shown that maternal blood may contain a small amount of free floating DNA from the fetus, in addition to free floating DNA of maternal origin. In addition, there also may be enucleated fetal blood cells comprising DNA of fetal origin, in addition to many blood cells of maternal origin, which typically do not contain nuclear DNA. There are many methods know in the art to isolate fetal DNA, or create fractions enriched in fetal DNA. For example, chromatography has been show to create certain fractions that are enriched in fetal DNA.
Once the sample of maternal blood, plasma, or other fluid, drawn in a relatively noninvasive manner, and that contains an amount of fetal DNA, either cellular or free floating, either enriched in its proportion to the maternal DNA, or in its original ratio, is in hand, one may genotype the DNA found in said sample. In some embodiments, the blood may be drawn using a needle to withdraw blood from a vein, for example, the basilica vein. The method described herein can be used to determine genotypic data of the fetus. For example, it can be used to determine the ploidy state at one or more chromosomes, it can be used to determine the identity of one or a set of SNPs, including insertions, deletions, translocations, and mosaicisim. It can be used to determine one or more haplotypes, including the parent of origin of one or more genotypic features.
Note that this method will work with any nucleic acids that can be used for any genotyping and/or sequencing methods, such as the ILLUMINA INFINIUM ARRAY platform, AFFYMETRIX GENECfflP, ILLUMINA GENOME ANALYZER, or LIFE TECHNOLGIES ' SOLID SYSTEM. This includes extracted DNA (e.g., free-floating DNA) from plasma or amplifications (e.g. whole genome amplification, PCR) of the same; genomic DNA from other cell types (e.g. human lymphocytes from whole blood) or amplifications of the same. For preparation of the DNA, any extraction or purification method that generates genomic DNA suitable for the one of these platforms will work as well. This method could work equally well with samples of RNA. In an embodiment, storage of the samples may be done in a way that will minimize degradation (e.g., below freezing, at about -20 C, or at a lower temperature) .
Invasive Prenatal Diagnosis
The methods of the present invention may also be used with samples obtained invasively from a fetus, such an amniocentesis sample comprising amniotic fluid or a placental tissue sample (e.g., a chorionic villus, decidua, or placental membrane sample). Routine methods can be used to obtain these samples. If desired, the relative or absolute amount (if any) of contaminating DNA (such as maternal DNA) can be determined using the methods described herein. For cases in which there is partial or no contamination, the copy number can be determined for one or more chromosomes or chromosomes segments in the genome of the fetus as described herein.
PARENTAL SUPPORT
Some embodiments may be used in combination with the PARENTAL SUPPORT™ (PS) method, embodiments of which are described in U.S. Application No. 11/603,406 (US Publication No.: 20070184467), U.S. Application No. 12/076,348 (US Publication No.: 20080243398), U.S. Application 13/110,685, PCT Application PCT/US09/52730 (PCT Publication No.: WO/2010/017214), PCT Application No. PCT/US 10/050824 (PCT Publication No.: WO/2011/041485), PCT Application No. PCT/US2011/037018 (PCT Publication No.: WO/2011/146632), PCT Application No. PCT/US2011/61506, and PCT Application No. PCT/US2011/66938, U.S. Utility Application Serial No. 13/683,60; PCT Application No. PCT/12/58578,; U.S. Utility Application Serial No. 13/335,043; U.S. Utility Application Serial No. 13/300,235; and U.S. Utility Application Serial No. 13/110,685, which are incorporated herein by reference in their entirety. PARENTAL SUPPORT is an informatics based approach that can be used to analyze genetic data. In some embodiments, the methods disclosed herein may be considered as part of the PARENTAL SUPPORT method. In some embodiments, The PARENTAL SUPPORT method is a collection of methods that may be used to determine the genetic data of a target individual, with high accuracy, of one or a small number of cells from that individual, or of a mixture of DNA consisting of DNA from the target individual and DNA from one or a plurality of other individuals, specifically to determine disease-related alleles, other alleles of interest, the ploidy state of one or a plurality of chromosomes in the target individual, and/or the extent of relationship of another individual to the target individual. PARENTAL SUPPORT may refer to any of these methods. PARENTAL SUPPORT is an example of an informatics based method.
The PARENTAL SUPPORT method makes use of known parental genetic data, e.g.. haplotypic and/or diploid genetic data of the mother and/or the father, together with the knowledge of the mechanism of meiosis and the imperfect measurement of the target DNA, and possibly of one or more related individuals, along with population based crossover frequencies, in order to reconstruct, in silico, the genotype at a plurality of alleles, and/or the ploidy state of an embryo or of any target cell(s), and the target DNA at the location of key loci with a high degree of confidence. The PARENTAL SUPPORT method can be used to create hypotheses about what genetic data may be expected for different situations, to calculate the likelihood of each of the situations given the observed genetic data, thereby determining which situation is most likely. In some embodiments the situation is question may include whether the target individual has inherited a disease linked haplotype of interest, whether the target individual has inherited a phenotype linked haplotype of interest, whether the target individual has one or more aneuploid chromosomes, and/or whether the target individual is related to an individual of interest, and what the degree of relationship may be. The PARENTAL SUPPORT method allows the cleaning of noisy genetic data. PARENTAL SUPPORT may be particularly relevant where only a small fraction of the genetic material available is from the target individual (e.g., NPD or NPPT) and where direct measurements of the genotypes are inherently noisy due to the contaminating DNA signal from another individual or due to the limited amount of genetic material available. In one embodiment, an automated PARENTAL SUPPORT algorithm can make highly accurate copy number calls with up to 10% maternal cell contamination. In another embodiment, an informatics enhanced algorithm can make highly accurate copy number calls up to 80%, up to 90%, up to 95%, up to 98%, up to 99% or up to 99.9% maternal cell contamination.
The PARENTAL SUPPORT method is able to reconstruct highly accurate ordered diploid allele sequences on an embryo or fetus, together with copy number of chromosomes segments, even though the conventional, unordered diploid measurements may be characterized by high rates of allele dropouts, drop-ins, variable amplification biases and other errors. The method may employ both an underlying genetic model and an underlying model of measurement error. The genetic model may determine both allele probabilities at each SNP and crossover probabilities between SNPs. Allele probabilities may be modeled at each SNP based on data obtained from the parents and model crossover probabilities between SNPs based on data obtained from the HapMap database, as developed by the International HapMap Project. Given the proper underlying genetic model and measurement error model, maximum a posteriori (MAP) estimation may be used, with modifications for computationally efficiency, to estimate the correct, ordered allele values at each SNP in the embryo or fetus.
The techniques outlined above, in some cases, are able to determine the genotype of an individual given a very small amount of DNA originating from that individual. This could be the DNA from one or a small number of cells, or it could be from the small amount of fetal DNA found in maternal blood.
Definitions
Single Nucleotide Polymorphism (SNP) refers to a single nucleotide that may differ between the genomes of two members of the same species. The usage of the term should not imply any limit on the frequency with which each variant occurs.
Sequence refers to a DNA sequence or a genetic sequence. It may refer to the primary, physical structure of the DNA molecule or strand in an individual. It may refer to the sequence of nucleotides found in that DNA molecule, or the complementary strand to the DNA molecule. It may refer to the information contained in the DNA molecule as its representation in silico.
Locus refers to a particular region of interest on the DNA of an individual, which may refer to a SNP, the site of a possible insertion or deletion, or the site of some other relevant genetic variation. Disease-linked SNPs may also refer to disease-linked loci.
Polymorphic Allele, also "Polymorphic Locus," refers to an allele or locus where the genotype varies between individuals within a given species. Some examples of polymorphic alleles include single nucleotide polymorphisms, short tandem repeats, deletions, duplications, and inversions.
Polymorphic Site refers to the specific nucleotides found in a polymorphic region that vary between individuals.
Allele refers to the genes that occupy a particular locus.
Genetic Data also "Genotypic Data" refers to the data describing aspects of the genome of one or more individuals. It may refer to one or a set of loci, partial or entire sequences, partial or entire chromosomes, or the entire genome. It may refer to the identity of one or a plurality of nucleotides; it may refer to a set of sequential nucleotides, or nucleotides from different locations in the genome, or a combination thereof. Genotypic data is typically in silico, however, it is also possible to consider physical nucleotides in a sequence as chemically encoded genetic data. Genotypic Data may be said to be "on," "of," "at," "from" or "on" the individual(s). Genotypic Data may refer to output measurements from a genotyping platform where those measurements are made on genetic material.
Genetic Material also "Genetic Sample " refers to physical matter, such as tissue or blood, from one or more individuals comprising DNA or RNA
Noisy Genetic Data refers to genetic data with any of the following: allele dropouts, uncertain base pair measurements, incorrect base pair measurements, missing base pair measurements, uncertain measurements of insertions or deletions or duplications, uncertain measurements of chromosome segment copy numbers, spurious signals, missing measurements, other errors, or combinations thereof. Confidence refers to the statistical likelihood that the called S P, allele, set of alleles, ploidy call, or determined number of chromosome segment copies correctly represents the real genetic state of the individual.
Ploidy Calling, also "Chromosome Copy Number Calling," or "Copy Number Calling" (CNC), may refer to the act of determining the quantity and/or chromosomal identity of one or more chromosomes present in a cell.
Aneuploidy refers to the state where the wrong number of chromosomes {e.g., the wrong number of full chromosomes or the wrong number of chromosome segments, such as the presence of deletions or duplications of a chromosome segment) is present in a cell. In the case of a somatic human cell it may refer to the case where a cell does not contain 22 pairs of autosomal chromosomes and one pair of sex chromosomes. In the case of a human gamete, it may refer to the case where a cell does not contain one of each of the 23 chromosomes. In the case of a single chromosome type, it may refer to the case where more or less than two homologous but non-identical chromosome copies are present, or where there are two chromosome copies present that originate from the same parent. In some embodiments, the deletion of a chromosome segment is a microdeletion.
Ploidy State refers to the quantity and/or chromosomal identity of one or more chromosomes types in a cell.
Chromosome may refer to a single chromosome copy, meaning a single molecule of DNA of which there are 46 in a normal somatic cell; an example is 'the maternally derived chromosome 18'. Chromosome may also refer to a chromosome type, of which there are 23 in a normal human somatic cell; an example is 'chromosome 18'.
Chromosomal Identity may refer to the referent chromosome number, i.e. the chromosome type. Normal humans have 22 types of numbered autosomal chromosome types, and two types of sex chromosomes. It may also refer to the parental origin of the chromosome. It may also refer to a specific chromosome inherited from the parent. It may also refer to other identifying features of a chromosome.
The State of the Genetic Material or simply "Genetic State" may refer to the identity of a set of SNPs on the DNA, to the phased haplotypes of the genetic material, and to the sequence of the DNA, including insertions, deletions, repeats and mutations. It may also refer to the ploidy state of one or more chromosomes, chromosomal segments, or set of chromosomal segments.
Allelic Data refers to a set of genotypic data concerning a set of one or more alleles. It may refer to the phased, haplotypic data. It may refer to SNP identities, and it may refer to the sequence data of the DNA, including insertions, deletions, repeats and mutations. It may include the parental origin of each allele.
Allelic State refers to the actual state of the genes in a set of one or more alleles. It may refer to the actual state of the genes described by the allelic data.
Allelic Ratio or allele ratio, refers to the ratio between the amount of each allele at a locus that is present in a sample or in an individual. When the sample was measured by sequencing, the allelic ratio may refer to the ratio of sequence reads that map to each allele at the locus. When the sample was measured by an intensity based measurement method, the allele ratio may refer to the ratio of the amounts of each allele present at that locus as estimated by the measurement method.
Allele Count refers to the number of sequences that map to a particular locus, and if that locus is polymorphic, it refers to the number of sequences that map to each of the alleles. If each allele is counted in a binary fashion, then the allele count will be whole number. If the alleles are counted probabilistically, then the allele count can be a fractional number.
Allele Count Probability refers to the number of sequences that are likely to map to a particular locus or a set of alleles at a polymorphic locus, combined with the probability of the mapping. Note that allele counts are equivalent to allele count probabilities where the probability of the mapping for each counted sequence is binary (zero or one). In some embodiments, the allele count probabilities may be binary. In some embodiments, the allele count probabilities may be set to be equal to the DNA measurements.
Allelic Distribution, or 'allele count distribution' refers to the relative amount of each allele that is present for each locus in a set of loci. An allelic distribution can refer to an individual, to a sample, or to a set of measurements made on a sample. In the context of digital allele measurements such as sequencing, the allelic distribution refers to the number or probable number of reads that map to a particular allele for each allele in a set of polymorphic loci. In the context of analog allele measurements such as SNP arrays, the allelic distribution refers to allele intensities and/or allele ratios. The allele measurements may be treated probabilistically, that is, the likelihood that a given allele is present for a give sequence read is a fraction between 0 and 1, or they may be treated in a binary fashion, that is, any given read is considered to be exactly zero or one copies of a particular allele.
Allelic Distribution Pattern refers to a set of different allele distributions for different parental contexts. Certain allelic distribution patterns may be indicative of certain ploidy states. Allelic Bias refers to the degree to which the measured ratio of alleles at a heterozygous locus is different to the ratio that was present in the original sample of DNA. The degree of allelic bias at a particular locus is equal to the observed allelic ratio at that locus, as measured, divided by the ratio of alleles in the original DNA sample at that locus.
Allelic bias may be defined to be greater than one, such that if the calculation of the degree of allelic bias returns a value, x, that is less than 1, then the degree of allelic bias may be restated as 1/x. Allelic bias maybe due to amplification bias, purification bias, or some other phenomenon that affects different alleles differently.
Primer, also "PCR probe" refers to a single DNA molecule (a DNA oligomer) or a collection of DNA molecules (DNA oligomers) where the DNA molecules are identical, or nearly so, and where the primer contains a region that is designed to hybridize to a targeted locus {e.g., a targeted polymorphic locus or a non-polymorphic locus), and may contain a priming sequence designed to allow PCR amplification. A primer may also contain a molecular barcode. A primer may contain a random region that differs for each individual molecule.
Hybrid Capture Probe refers to any nucleic acid sequence, possibly modified, that is generated by various methods such as PCR or direct synthesis and intended to be complementary to one strand of a specific target DNA sequence in a sample. The exogenous hybrid capture probes may be added to a prepared sample and hybridized through a denature- reannealing process to form duplexes of exogenous-endogenous fragments. These duplexes may then be physically separated from the sample by various means.
Sequence Read refers to data representing a sequence of nucleotide bases that were measured using a clonal sequencing method. Clonal sequencing may produce sequence data representing single, or clones, or clusters of one original DNA molecule. A sequence read may also have associated quality score at each base position of the sequence indicating the probability that nucleotide has been called correctly. Mapping a sequence read is the process of determining a sequence read's location of origin in the genome sequence of a particular organism. The location of origin of sequence reads is based on similarity of nucleotide sequence of the read and the genome sequence.
Matched Copy Error, also "Matching Chromosome Aneuploidy" (MCA), refers to a state of aneuploidy where one cell contains two identical or nearly identical chromosomes. This type of aneuploidy may arise during the formation of the gametes in meiosis, and may be referred to as a meiotic non-disjunction error. This type of error may arise in mitosis. Matching trisomy may refer to the case where three copies of a given chromosome are present in an individual and two of the copies are identical.
Unmatched Copy Error, also "Unique Chromosome Aneuploidy" (UCA), refers to a state of aneuploidy where one cell contains two chromosomes that are from the same parent, and that may be homologous but not identical. This type of aneuploidy may arise during meiosis, and may be referred to as a meiotic error. Unmatching trisomy may refer to the case where three copies of a given chromosome are present in an individual and two of the copies are from the same parent, and are homologous, but are not identical. Note that unmatching trisomy may refer to the case where two homologous chromosomes from one parent are present, and where some segments of the chromosomes are identical while other segments are merely homologous.
Homologous Chromosomes refers to chromosome copies that contain the same set of genes that normally pair up during meiosis.
Identical Chromosomes refers to chromosome copies that contain the same set of genes, and for each gene they have the same set of alleles that are identical, or nearly identical.
Allele Drop Out (ADO) refers to the situation where at least one of the base pairs in a set of base pairs from homologous chromosomes at a given allele is not detected.
Locus Drop Out (LDO) refers to the situation where both base pairs in a set of base pairs from homologous chromosomes at a given allele are not detected.
Homozygous refers to having similar alleles as corresponding chromosomal loci.
Heterozygous refers to having dissimilar alleles as corresponding chromosomal loci.
Heterozygosity Rate refers to the rate of individuals in the population having heterozygous alleles at a given locus. The heterozygosity rate may also refer to the expected or measured ratio of alleles, at a given locus in an individual, or a sample of DNA. Highly Informative Single Nucleotide Polymorphism (HISNP) refers to a S P where the fetus has an allele that is not present in the mother's genotype.
Chromosomal Region refers to a segment of a chromosome, or a full chromosome.
Segment of a Chromosome refers to a section of a chromosome that can range in size from one base pair to the entire chromosome.
Chromosome refers to either a full chromosome, or a segment or section of a chromosome.
Copies refers to the number of copies of a chromosome segment. It may refer to identical copies, or to non-identical, homologous copies of a chromosome segment wherein the different copies of the chromosome segment contain a substantially similar set of loci, and where one or more of the alleles are different. Note that in some cases of aneuploidy, such as the M2 copy error, it is possible to have some copies of the given chromosome segment that are identical as well as some copies of the same chromosome segment that are not identical.
Haplotype refers to a combination of alleles at multiple loci that are typically inherited together on the same chromosome. Haplotype may refer to as few as two loci or to an entire chromosome depending on the number of recombination events that have occurred between a given set of loci. Haplotype can also refer to a set of single nucleotide polymorphisms (SNPs) on a single chromatid that are statistically associated.
Haplotypic Data, also "Phased Data" or "Ordered Genetic Data," refers to data from a single chromosome in a diploid or polyploid genome, i.e., either the segregated maternal or paternal copy of a chromosome in a diploid genome.
Phasing refers to the act of determining the haplotypic genetic data of an individual given unordered, diploid (or polyploidy) genetic data. It may refer to the act of determining which of two genes at an allele, for a set of alleles found on one chromosome, are associated with each of the two homologous chromosomes in an individual.
Phased Data refers to genetic data where one or more haplotypes have been determined.
Hypothesis refers to a possible ploidy state at a given set of chromosomes, or a set of possible allelic states at a given set of loci. The set of possibilities may comprise one or more elements.
Copy Number Hypothesis, also "Ploidy State Hypothesis," refers to a hypothesis concerning the number of copies of a chromosome in an individual. It may also refer to a hypothesis concerning the identity of each of the chromosomes, including the parent of origin of each chromosome, and which of the parent's two chromosomes are present in the individual. It may also refer to a hypothesis concerning which chromosomes, or chromosome segments, if any, from a related individual correspond genetically to a given chromosome from an individual.
Target Individual refers to the individual whose genetic state is being determined. In some embodiments, only a limited amount of DNA is available from the target individual. In some embodiments, the target individual is a fetus. In some embodiments, there may be more than one target individual. In some embodiments, each fetus that originated from a pair of parents may be considered to be target individuals. In some embodiments, the genetic data that is being determined is one or a set of allele calls. In some embodiments, the genetic data that is being determined is a ploidy call.
Related Individual refers to any individual who is genetically related to, and thus shares haplotype blocks with, the target individual. In one context, the related individual may be a genetic parent of the target individual, or any genetic material derived from a parent, such as a sperm, a polar body, an embryo, a fetus, or a child. It may also refer to a sibling, parent or a grandparent.
Sibling refers to any individual whose genetic parents are the same as the individual in question. In some embodiments, it may refer to a born child, an embryo, or a fetus, or one or more cells originating from a born child, an embryo, or a fetus. A sibling may also refer to a haploid individual that originates from one of the parents, such as a sperm, a polar body, or any other set of haplotypic genetic matter. An individual may be considered to be a sibling of itself.
Fetal refers to "of the fetus," or "of the region of the placenta that is genetically similar to the fetus". In a pregnant woman, some portion of the placenta is genetically similar to the fetus, and the free floating fetal DNA found in maternal blood may have originated from the portion of the placenta with a genotype that matches the fetus. Note that the genetic information in half of the chromosomes in a fetus is inherited from the mother of the fetus. In some embodiments, the DNA from these maternally inherited chromosomes that came from a fetal cell is considered to be "of fetal origin," not "of maternal origin."
DNA of Fetal Origin refers to DNA that was originally part of a cell whose genotype was essentially equivalent to that of the fetus. DNA of Maternal Origin refers to DNA that was originally part of a cell whose genotype was essentially equivalent to that of the mother.
Child may refer to an embryo, a blastomere, or a fetus. Note that in the presently disclosed embodiments, the concepts described apply equally well to individuals who are a born child, a fetus, an embryo or a set of cells therefrom. The use of the term child may simply be meant to connote that the individual referred to as the child is the genetic offspring of the parents.
Parent refers to the genetic mother or father of an individual. An individual typically has two parents, a mother and a father, though this may not necessarily be the case such as in genetic or chromosomal chimerism. A parent may be considered to be an individual.
Parental Context refers to the genetic state of a given SNP, on each of the two relevant chromosomes for one or both of the two parents of the target.
Develop As Desired, also "Develop Normally," refers to a viable embryo implanting in a uterus and resulting in a pregnancy, and/or to a pregnancy continuing and resulting in a live birth, and/or to a born child being free of chromosomal abnormalities, and/or to a born child being free of other undesired genetic conditions such as disease-linked genes. The term "develop as desired" is meant to encompass anything that may be desired by parents or healthcare facilitators. In some cases, "develop as desired" may refer to an unviable or viable embryo that is useful for medical research or other purposes.
Insertion into a Uterus refers to the process of transferring an embryo into the uterine cavity in the context of in vitro fertilization.
Maternal Plasma refers to the plasma portion of the blood from a female who is pregnant.
Clinical Decision refers to any decision to take or not take an action that has an outcome that affects the health or survival of an individual. In the context of prenatal diagnosis, a clinical decision may refer to a decision to abort or not abort a fetus. A clinical decision may also refer to a decision to conduct further testing, to take actions to mitigate an undesirable phenotype, or to take actions to prepare for the birth of a child with abnormalities.
Diagnostic Box refers to one or a combination of machines designed to perform one or a plurality of aspects of the methods disclosed herein. In an embodiment, the diagnostic box may be placed at a point of patient care. In an embodiment, the diagnostic box may perform targeted amplification followed by sequencing. In an embodiment the diagnostic box may function alone or with the help of a technician.
Informatics Based Method refers to a method that relies heavily on statistics to make sense of a large amount of data. In the context of prenatal diagnosis, it refers to a method designed to determine the ploidy state at one or more chromosomes or the allelic state at one or more alleles by statistically inferring the most likely state, rather than by directly physically measuring the state, given a large amount of genetic data, for example from a molecular array or sequencing. In an embodiment of the present disclosure, the informatics based technique may be one disclosed in this patent application. In an embodiment of the present disclosure it may be PARENTAL
SUPPORT.
Primary Genetic Data refers to the analog intensity signals that are output by a genotyping platform. In the context of SNP arrays, primary genetic data refers to the intensity signals before any genotype calling has been done. In the context of sequencing, primary genetic data refers to the analog measurements, analogous to the chromatogram, that comes off the sequencer before the identity of any base pairs have been determined, and before the sequence has been mapped to the genome.
Secondary Genetic Data refers to processed genetic data that are output by a genotyping platform. In the context of a SNP array, the secondary genetic data refers to the allele calls made by software associated with the SNP array reader, wherein the software has made a call whether a given allele is present or not present in the sample. In the context of sequencing, the secondary genetic data refers to the base pair identities of the sequences have been determined, and possibly also where the sequences have been mapped to the genome.
Non-Invasive Prenatal Diagnosis (NPD), or also "Non-Invasive Prenatal Screening" (NPS), refers to a method of determining the genetic state of a fetus that is gestating in a mother using genetic material found in the mother's blood, where the genetic material is obtained by drawing the mother's intravenous blood.
Preferential Enrichment of DNA that corresponds to a locus, or preferential enrichment of DNA at a locus, refers to any method that results in the percentage of molecules of
DNA in a post-enrichment DNA mixture that correspond to the locus being higher than the percentage of molecules of DNA in the pre-enrichment DNA mixture that correspond to the locus. The method may involve selective amplification of DNA molecules that correspond to a locus. The method may involve removing DNA molecules that do not correspond to the locus. The method may involve a combination of methods. The degree of enrichment is defined as the percentage of molecules of DNA in the post-enrichment mixture that correspond to the locus divided by the percentage of molecules of DNA in the pre-enrichment mixture that correspond to the locus. Preferential enrichment may be carried out at a plurality of loci. In some embodiments of the present disclosure, the degree of enrichment is greater than 20. In some embodiments of the present disclosure, the degree of enrichment is greater than 200. In some embodiments of the present disclosure, the degree of enrichment is greater than 2,000. When preferential enrichment is carried out at a plurality of loci, the degree of enrichment may refer to the average degree of enrichment of all of the loci in the set of loci.
Amplification refers to a method that increases the number of copies of a molecule of DNA. Selective Amplification may refer to a method that increases the number of copies of a particular molecule of DNA, or molecules of DNA that correspond to a particular region of DNA. It may also refer to a method that increases the number of copies of a particular targeted molecule of DNA, or targeted region of DNA more than it increases non-targeted molecules or regions of DNA. Selective amplification may be a method of preferential enrichment.
Universal Priming Sequence refers to a DNA sequence that may be appended to a population of target DNA molecules, for example by ligation, PCR, or ligation mediated PCR. Once added to the population of target molecules, primers specific to the universal priming sequences can be used to amplify the target population using a single pair of amplification primers. Universal priming sequences are typically not related to the target sequences.
Universal Adapters, or 'ligation adaptors' or 'library tags' are DNA molecules containing a universal priming sequence that can be covalently linked to the 5-prime and 3-prime end of a population of target double stranded DNA molecules. The addition of the adapters provides universal priming sequences to the 5-prime and 3-prime end of the target population from which PCR amplification can take place, amplifying all molecules from the target population, using a single pair of amplification primers. Targeting refers to a method used to selectively amplify or otherwise preferentially enrich those molecules of DNA that correspond to a set of loci, in a mixture of DNA.
Joint Distribution Model refers to a model that defines the probability of events defined in terms of multiple random variables, given a plurality of random variables defined on the same probability space, where the probabilities of the variable are linked. In some embodiments, the degenerate case where the probabilities of the variables are not linked may be used.
Hypotheses
In the context of this disclosure, a hypothesis refers to a possible genetic state. It may refer to a possible ploidy state. It may refer to a possible allelic state. A set of hypotheses may refer to a set of possible genetic states, a set of possible allelic states, a set of possible ploidy states, or combinations thereof. In some embodiments, a set of hypotheses may be designed such that one hypothesis from the set will correspond to the actual genetic state of any given individual. In some embodiments, a set of hypotheses may be designed such that every possible genetic state may be described by at least one hypothesis from the set. In some embodiments of the present disclosure, one aspect of a method is to determine which hypothesis corresponds to the actual genetic state of the individual in question.
In another embodiment of the present disclosure, one step involves creating a hypothesis. In some embodiments it may be a copy number hypothesis. In some embodiments it may involve a hypothesis concerning which segments of a chromosome from each of the related individuals correspond genetically to which segments, if any, of the other related individuals. Creating a hypothesis may refer to the act of setting the limits of the variables such that the entire set of possible genetic states that are under consideration are encompassed by those variables.
A "copy number hypothesis," also called a "ploidy hypothesis," or a "ploidy state hypothesis," may refer to a hypothesis concerning a possible ploidy state for a given chromosome copy, chromosome type, or section of a chromosome, in the target individual. It may also refer to the ploidy state at more than one of the chromosome types in the individual. A set of copy number hypotheses may refer to a set of hypotheses where each hypothesis corresponds to a different possible ploidy state in an individual. A set of hypotheses may concern a set of possible ploidy states, a set of possible parental haplotypes contributions, a set of possible fetal DNA percentages in the mixed sample, or combinations thereof.
A normal individual contains one of each chromosome type from each parent. However, due to errors in meiosis and mitosis, it is possible for an individual to have 0, 1, 2, or more of a given chromosome type from each parent. In practice, it is rare to see more that two of a given chromosomes from a parent. In this disclosure, some embodiments only consider the possible hypotheses where 0, 1, or 2 copies of a given chromosome come from a parent; it is a trivial extension to consider more or less possible copies originating from a parent. In some embodiments, for a given chromosome, there are nine possible hypotheses: the three possible hypothesis concerning 0, 1, or 2 chromosomes of maternal origin, multiplied by the three possible hypotheses concerning 0, 1, or 2 chromosomes of paternal origin. Let (m,f) refer to the hypothesis where m is the number of a given chromosome inherited from the mother, and f is the number of a given chromosome inherited from the father. Therefore, the nine hypotheses are (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), and (2,2). These may also be written as H0o, H01, H02, H10, H12, H20, H21, and H22. The different hypotheses correspond to different ploidy states. For example, (1,1) refers to a normal disomic chromosome; (2,1) refers to a maternal trisomy, and (0,1) refers to a paternal monosomy. In some embodiments, the case where two chromosomes are inherited from one parent and one chromosome is inherited from the other parent may be further differentiated into two cases: one where the two chromosomes are identical (matched copy error), and one where the two chromosomes are homologous but not identical (unmatched copy error). In these embodiments, there are sixteen possible hypotheses. It should be understood that it is possible to use other sets of hypotheses, and a different number of hypotheses.
In some embodiments of the present disclosure, the ploidy hypothesis refers to a hypothesis concerning which chromosome from other related individuals correspond to a chromosome found in the target individual's genome. In some embodiments, a key to the method is the fact that related individuals can be expected to share haplotype blocks, and using measured genetic data from related individuals, along with a knowledge of which haplotype blocks match between the target individual and the related individual, it is possible to infer the correct genetic data for a target individual with higher confidence than using the target individual's genetic measurements alone. As such, in some embodiments, the ploidy hypothesis may concern not only the number of chromosomes, but also which chromosomes in related individuals are identical, or nearly identical, with one or more chromosomes in the target individual.
Once the set of hypotheses have been defined, when the algorithms operate on the input genetic data, they may output a determined statistical probability for each of the hypotheses under consideration. The probabilities of the various hypotheses may be determined by mathematically calculating, for each of the various hypotheses, the value that the probability equals, as stated by one or more of the expert techniques, algorithms, and/or methods described elsewhere in this disclosure, using the relevant genetic data as input.
Once the probabilities of the different hypotheses are estimated, as determined by a plurality of techniques, they may be combined. This may entail, for each hypothesis, multiplying the probabilities as determined by each technique. The product of the probabilities of the hypotheses may be normalized. Note that one ploidy hypothesis refers to one possible ploidy state for a chromosome.
The process of "combining probabilities," also called "combining hypotheses," or combining the results of expert techniques, is a concept that should be familiar to one skilled in the art of linear algebra. One possible way to combine probabilities is as follows: When an expert technique is used to evaluate a set of hypotheses given a set of genetic data, the output of the method is a set of probabilities that are associated, in a one-to-one fashion, with each hypothesis in the set of hypotheses. When a set of probabilities that were determined by a first expert technique, each of which are associated with one of the hypotheses in the set, are combined with a set of probabilities that were determined by a second expert technique, each of which are associated with the same set of hypotheses, then the two sets of probabilities are multiplied. This means that, for each hypothesis in the set, the two probabilities that are associated with that hypothesis, as determined by the two expert methods, are multiplied together, and the corresponding product is the output probability. This process may be expanded to any number of expert techniques. If only one expert technique is used, then the output probabilities are the same as the input probabilities. If more than two expert techniques are used, then the relevant probabilities may be multiplied at the same time. The products may be normalized so that the probabilities of the hypotheses in the set of hypotheses sum to 100%.
In some embodiments, if the combined probabilities for a given hypothesis are greater than the combined probabilities for any of the other hypotheses, then it may be considered that that hypothesis is determined to be the most likely. In some embodiments, a hypothesis may be determined to be the most likely, and the ploidy state, or other genetic state, may be called if the normalized probability is greater than a threshold. In an embodiment, this may mean that the number and identity of the chromosomes that are associated with that hypothesis may be called as the ploidy state. In an embodiment, this may mean that the identity of the alleles that are associated with that hypothesis may be called as the allelic state. In some embodiments, the threshold may be between about 50% and about 80%. In some embodiments the threshold may be between about 80% and about 90%. In some embodiments the threshold may be between about 90% and about 95%. In some embodiments the threshold may be between about 95% and about 99%. In some embodiments the threshold may be between about 99% and about 99.9%. In some embodiments the threshold may be above about 99.9%.
Parental Contexts
The parental context refers to the genetic state of a given allele, on each of the two relevant chromosomes for one or both of the two parents of the target. Note that in an embodiment, the parental context does not refer to the allelic state of the target, rather, it refers to the allelic state of the parents. The parental context for a given SNP may consist of four base pairs, two paternal and two maternal; they may be the same or different from one another. It is typically written as "m1m2|f1f2;" where m1 and m2 are the genetic state of the given SNP on the two maternal chromosomes, and f\ and f2 are the genetic state of the given SNP on the two paternal chromosomes. In some embodiments, the parental context may be written as "f1f2|m1m2 " Note that subscripts "1" and "2" refer to the genotype, at the given allele, of the first and second chromosome; also note that the choice of which chromosome is labeled "1" and which is labeled "2" is arbitrary.
Note that in this disclosure, A and B are often used to generically represent base pair identities; A or B could equally well represent C (cytosine), G (guanine), A (adenine) or T (thymine). For example, if, at a given SNP based allele, the mother's genotype was T at that SNP on one chromosome, and G at that SNP on the homologous chromosome, and the father's genotype at that allele is G at that SNP on both of the homologous chromosomes, one may say that the target individual's allele has the parental context of AB|BB; it could also be said that the allele has the parental context of AB|AA. Note that, in theory, any of the four possible nucleotides could occur at a given allele, and thus it is possible, for example, for the mother to have a genotype of AT, and the father to have a genotype of GC at a given allele. However, empirical data indicate that in most cases only two of the four possible base pairs are observed at a given allele. It is possible, for example when using single tandem repeats, to have more than two parental, more than four and even more than ten contexts. In this disclosure the discussion assumes that only two possible base pairs will be observed at a given allele, although the embodiments disclosed herein could be modified to take into account the cases where this assumption does not hold.
A "parental context" may refer to a set or subset of target S Ps that have the same parental context. For example, if one were to measure 1000 alleles on a given chromosome on a target individual, then the context AA|BB could refer to the set of all alleles in the group of 1,000 alleles where the genotype of the mother of the target was homozygous, and the genotype of the father of the target is homozygous, but where the maternal genotype and the paternal genotype are dissimilar at that locus. If the parental data is not phased, and thus AB = BA, then there are nine possible parental contexts: AA|AA, AA|AB, AA|BB, AB|AA, AB|AB, AB|BB, BB|AA, BB|AB, and BB|BB. If the parental data is phased, and thus AB≠ BA, then there are sixteen different possible parental contexts: AA|AA, AA|AB, AA|BA, AA|BB, AB|AA, AB|AB, AB|BA, AB|BB, BA|AA, BA|AB, BA|BA, BA|BB, BB|AA, BB|AB, BB|BA, and BB|BB. Every S P allele on a chromosome, excluding some SNPs on the sex chromosomes, has one of these parental contexts. The set of SNPs wherein the parental context for one parent is heterozygous may be referred to as the heterozygous context.
Use of Parental Contexts in NPD
Non-invasive prenatal diagnosis is an important technique that can be used to determine the genetic state of a fetus from genetic material that is obtained in a non-invasive manner, for example from a blood draw on the pregnant mother. The blood could be separated and the plasma isolated, followed by isolation of the plasma DNA or by isolation of fetal cells. Size selection could be used to isolate the DNA of the appropriate length. The DNA may be preferentially enriched at a set of loci. This DNA can then be measured by a number of means, such as by hybridizing to a genotyping array and measuring the fluorescence, or by sequencing on a high throughput sequencer.
When sequencing is used for ploidy calling of a fetus in the context of non-invasive prenatal diagnosis, there are a number of ways to use the sequence data. The most common way one could use the sequence data is to simply count the number of reads that map to a given chromosome. For example, imagine if you are trying to determine the ploidy state of chromosome 21 on the fetus. Further imagine that the DNA in the sample is comprised of 10% DNA of fetal origin, and 90% DNA of maternal origin. In this case, you could look at the average number of reads on a chromosome which can be expected to be disomic, for example chromosome 3, and compare that to the number of read on chromosome 21, where the reads are adjusted for the number of base pairs on that chromosome that are part of a unique sequence. If the fetus were euploid, one would expect the amount of DNA per unit of genome to be about equal at all locations (subject to stochastic variations). On the other hand, if the fetus were trisomic at chromosome 21, then one would expect there to be more slightly more DNA per genetic unit from chromosome 21 than the other locations on the genome. Specifically one would expect there to be about 5% more DNA from chromosome 21 in the mixture. When sequencing is used to measure the DNA, one would expect about 5% more uniquely mappable reads from chromosome 21 per unique segment than from the other chromosomes. One could use the observation of an amount of DNA from a particular chromosome that is higher than a certain threshold, when adjusted for the number of sequences that are uniquely mappable to that chromosome, as the basis for an aneuploidy diagnosis. Another method that may be used to detect aneuploidy is similar to that above, except that parental contexts could be taken into account.
When considering which alleles to target, one may consider the likelihood that some parental contexts are likely to be more informative than others. For example, AA|BB and the symmetric context BB|AA are the most informative contexts, because the fetus is known to carry an allele that is different from the mother. For reasons of symmetry, both AA|BB and BB|AA contexts may be referred to as AA|BB. Another set of informative parental contexts are AA|AB and BB|AB, because in these cases the fetus has a 50% chance of carrying an allele that the mother does not have. For reasons of symmetry, both AA|AB and BB|AB contexts may be referred to as AA|AB. A third set of informative parental contexts are AB|AA and AB|BB, because in these cases the fetus is carrying a known paternal allele, and that allele is also present in the maternal genome. For reasons of symmetry, both AB|AA and AB|BB contexts may be referred to as AB| AA. A fourth parental context is AB|AB where the fetus has an unknown allelic state, and whatever the allelic state, it is one in which the mother has the same alleles. The fifth parental context is AA|AA, where the mother and father are heterozygous. Different Implementations of the Presently Disclosed Embodiments
Methods are disclosed herein for determining the ploidy state of a target individual. The target individual may be a blastomere, an embryo, or a fetus. In some embodiments of the present disclosure, a method for determining the ploidy state of one or more chromosome in a target individual may include any of the steps described in this document, and combinations thereof:
In some embodiments the source of the genetic material to be used in determining the genetic state of the fetus may be fetal cells, such as nucleated fetal red blood cells, isolated from the maternal blood. The method may involve obtaining a blood sample from the pregnant mother. The method may involve isolating a fetal red blood cell using visual techniques, based on the idea that a certain combination of colors are uniquely associated with nucleated red blood cell, and a similar combination of colors is not associated with any other present cell in the maternal blood. The combination of colors associated with the nucleated red blood cells may include the red color of the hemoglobin around the nucleus, which color may be made more distinct by staining, and the color of the nuclear material which can be stained, for example, blue. By isolating the cells from maternal blood and spreading them over a slide, and then identifying those points at which one sees both red (from the Hemoglobin) and blue (from the nuclear material) one may be able to identify the location of nucleated red blood cells. One may then extract those nucleated red blood cells using a micromanipulator, use genotyping and/or sequencing techniques to measure aspects of the genotype of the genetic material in those cells.
In an embodiment, one may stain the nucleated red blood cell with a die that only fluoresces in the presence of fetal hemoglobin and not maternal hemoglobin, and so remove the ambiguity between whether a nucleated red blood cell is derived from the mother or the fetus. Some embodiments of the present disclosure may involve staining or otherwise marking nuclear material. Some embodiments of the present disclosure may involve specifically marking fetal nuclear material using fetal cell specific antibodies.
There are many other ways to isolate fetal cells from maternal blood, or fetal DNA from maternal blood, or to enrich samples of fetal genetic material in the presence of maternal genetic material. Some of these methods are listed here, but this is not intended to be an exhaustive list. Some appropriate techniques are listed here for convenience: using fluorescently or otherwise tagged antibodies, size exclusion chromatography, magnetically or otherwise labeled affinity tags, epigenetic differences, such as differential methylation between the maternal and fetal cells at specific alleles, density gradient centrifiigation succeeded by CD45/14 depletion and CD71-positive selection from CD45/14 negative-cells, single or double Percoll gradients with different osmolalities, or galactose specific lectin method.
In an embodiment of the present disclosure, the target individual is a fetus, and the different genotype measurements are made on a plurality of DNA samples from the fetus. In some embodiments of the present disclosure, the fetal DNA samples are from isolated fetal cells where the fetal cells may be mixed with maternal cells. In some embodiments of the present disclosure, the fetal DNA samples are from free floating fetal DNA, where the fetal DNA may be mixed with free floating maternal DNA. In some embodiments, the fetal DNA samples may be derived from maternal plasma or maternal blood that contains a mixture of maternal DNA and fetal DNA. In some embodiments, the fetal DNA may be mixed with maternal DNA in maternal:fetal ratios ranging from 99.9:0.1% to 99:1%; 99:1% to 90:10%; 90:10% to 80:20%; 80:20% to 70:30%; 70:30% to 50:50%; 50:50% to 10:90%; or 10:90% to 1:99%; 1:99% to 0.1:99.9%.
In some embodiments, the genetic sample may be prepared and/or purified. There are a number of standard procedures known in the art to accomplish such an end. In some embodiments, the sample may be centrifuged to separate various layers. In some embodiments, the DNA may be isolated using filtration. In some embodiments, the preparation of the DNA may involve amplification, separation, purification by chromatography, liquid liquid separation, isolation, preferential enrichment, preferential amplification, targeted amplification, or any of a number of other techniques either known in the art or described herein.
In some embodiments, a method of the present disclosure may involve amplifying DNA, such as the use of whole genome amplification to amplify a nucleic acid sample before amplifying just the target loci. Amplification of the DNA, a process which transforms a small amount of genetic material to a larger amount of genetic material that comprises a similar set of genetic data, can be done by a wide variety of methods, including, but not limited to polymerase chain reaction (PCR). One method of amplifying DNA is whole genome amplification (WGA). There are a number of methods available for WGA: ligation-mediated PCR (LM-PCR), degenerate oligonucleotide primer PCR (DOP-PCR), and multiple displacement amplification (MDA). In LM-PCR, short DNA sequences called adapters are ligated to blunt ends of DNA. These adapters contain universal amplification sequences, which are used to amplify the DNA by PCR. In DOP-PCR, random primers that also contain universal amplification sequences are used in a first round of annealing and PCR. Then, a second round of PCR is used to amplify the sequences further with the universal primer sequences. MDA uses the phi-29 polymerase, which is a highly processive and non-specific enzyme that replicates DNA and has been used for single-cell analysis. The major limitations to amplification of material from a single cell are (1) necessity of using extremely dilute DNA concentrations or extremely small volume of reaction mixture, and (2) difficulty of reliably dissociating DNA from proteins across the whole genome. Regardless, single-cell whole genome amplification has been used successfully for a variety of applications for a number of years. There are other methods of amplifying DNA from a sample of DNA. The DNA amplification transforms the initial sample of DNA into a sample of DNA that is similar in the set of sequences, but of much greater quantity. In some cases, amplification may not be required.
In some embodiments, DNA may be amplified using a universal amplification, such as
WGA or MDA. In some embodiments, DNA may be amplified by targeted amplification, for example using targeted PCR, or circularizing probes. In some embodiments, the DNA may be preferentially enriched using a targeted amplification method, or a method that results in the full or partial separation of desired from undesired DNA, such as capture by hybridization approaches. In some embodiments, DNA may be amplified by using a combination of a universal amplification method and a preferential enrichment method. A fuller description of some of these methods can be found elsewhere in this document.
The genetic data of the target individual and/or of the related individual can be transformed from a molecular state to an electronic state by measuring the appropriate genetic material using tools and or techniques taken from a group including, but not limited to: genotyping microarrays, and high throughput sequencing. Some high throughput sequencing methods include Sanger DNA sequencing, pyrosequencing, the ILLUMINA SOLEXA platform, ILLUMTNA's GENOME ANALYZER, or APPLIED BIOSYSTEM's 454 sequencing platform, HELICOS's TRUE SINGLE MOLECULE SEQUENCING platform, HALCYON MOLECULAR' s electron microscope sequencing method, or any other sequencing method. All of these methods physically transform the genetic data stored in a sample of DNA into a set of genetic data that is typically stored in a memory device en route to being processed.
A relevant individual's genetic data may be measured by analyzing substances taken from a group including, but not limited to, the individual's bulk diploid tissue, one or more diploid cells from the individual, one or more haploid cells from the individual, one or more blastomeres from the target individual, extra-cellular genetic material found on the individual, extra-cellular genetic material from the individual found in maternal blood, cells from the individual found in maternal blood, one or more embryos created from (a) gamete(s) from the related individual, one or more blastomeres taken from such an embryo, extra-cellular genetic material found on the related individual, genetic material known to have originated from the related individual, and combinations thereof.
In some embodiments, a set of at least one ploidy state hypothesis may be created for each of the chromosomes types of interest of the target individual. Each of the ploidy state hypotheses may refer to one possible ploidy state of the chromosome or chromosome segment of the target individual. The set of hypotheses may include some or all of the possible ploidy states that the chromosome of the target individual may be expected to have. Some of the possible ploidy states may include nullsomy, monosomy, disomy, uniparental disomy, euploidy, trisomy, matching trisomy, unmatching trisomy, maternal trisomy, paternal trisomy, tetrasomy, balanced (2:2) tetrasomy, unbalanced (3:1) tetrasomy, pentasomy, hexasomy, other aneuploidy, and combinations thereof. Any of these aneuploidy states may be mixed or partial aneuploidy such as unbalanced translocations, balanced translocations, Robertsonian translocations, recombinations, deletions, insertions, crossovers, and combinations thereof.
In some embodiments, the knowledge of the determined ploidy state may be used to make a clinical decision. This knowledge, typically stored as a physical arrangement of matter in a memory device, may then be transformed into a report. The report may then be acted upon. For example, the clinical decision may be to terminate the pregnancy; alternately, the clinical decision may be to continue the pregnancy. In some embodiments the clinical decision may involve an intervention designed to decrease the severity of the phenotypic presentation of a genetic disorder, or a decision to take relevant steps to prepare for a special needs child.
In an embodiment of the present disclosure, any of the methods described herein may be modified to allow for multiple targets to come from same target individual, for example, multiple blood draws from the same pregnant mother. This may improve the accuracy of the model, as multiple genetic measurements may provide more data with which the target genotype may be determined. In an embodiment, one set of target genetic data served as the primary data which was reported, and the other served as data to double-check the primary target genetic data. In an embodiment, a plurality of sets of genetic data, each measured from genetic material taken from the target individual, are considered in parallel, and thus both sets of target genetic data serve to help determine which sections of parental genetic data, measured with high accuracy, composes the fetal genome.
In an embodiment, the method may be used for the purpose of paternity testing (see, e.g, U.S. Publication No. 2012/0122701, filed December 22, 2011, is which is hereby incorporated by reference in its entirety). In some embodiments, the present methods allow a plurality of polymorphic loci (such as SNPs) to be analyzed for use in the PARENTAL SUPPORT algorithm described herein to determine whether an alleged father in is the biological father of a fetus. For example, given the SNP-based genotypic information from the mother, and from a man who may or may not be the genetic father, and the measured genotypic information from the mixed sample, it is possible to determine if the genotypic information of the male indeed represents that actual genetic father of the fetus (such as a gestating fetus or a POC sample). A simple way to do this is to simply look at the contexts where the mother is AA, and the possible father is AB or BB. In these cases, one may expect to see the father contribution half (AA|AB) or all (AA|BB) of the time, respectively. Taking into account the expected ADO, it is straightforward to determine whether or not the fetal SNPs that are observed are correlated with those of the possible father.
In some embodiments the method involves (i) obtaining genotypic measurements at a plurality of polymorphic loci on genetic material from the alleged father; (ii) obtaining genotypic measurements at a plurality of polymorphic loci on genetic material from a potentially mixed sample comprising cellular and/or extracellular genetic material from the fetus, cellular and/or extracellular genetic material from the mother of the fetus, or combinations thereof; (iii) determining on a computer the probability that the alleged father is the biological father of the fetus using the genotypic measurements; and (iv) establishing whether the alleged father is the biological father of the fetus using the determined probability that the alleged father is the biological father of the fetus. In various embodiments, the method also includes obtaining genotypic measurements at a plurality of polymorphic loci on genetic material from the mother, and the probability of each hypotheses is determined using the genotypic measurements made on the genetic material from the mother, the genetic material from the father, and the potentially mixed sample.
One embodiment of the present disclosure could be as follows: a pregnant woman wants to know if her fetus is afflicted with Down Syndrome, and/or if it will suffer from Cystic Fibrosis, and she does not wish to bear a child that is afflicted with either of these conditions. A doctor takes her blood, and stains the hemoglobin with one marker so that it appears clearly red, and stains nuclear material with another marker so that it appears clearly blue. Knowing that maternal red blood cells are typically anuclear, while a high proportion of fetal cells contain a nucleus, the doctor is able to visually isolate a number of nucleated red blood cells by identifying those cells that show both a red and blue color. The doctor picks up these cells off the slide with a micromanipulator and sends them to a lab which amplifies and genotypes ten individual cells. By using the genetic measurements, the PARENTAL SUPPORT method is able to determine that six of the ten cells are maternal blood cells, and four of the ten cells are fetal cells. If a child has already been born to a pregnant mother, PARENTAL SUPPORT can also be used to determine that the fetal cells are distinct from the cells of the born child by making reliable allele calls on the fetal cells and showing that they are dissimilar to those of the born child. Note that this method is similar in concept to the paternal testing embodiment of the present disclosure. The genetic data measured from the fetal cells may be of very poor quality, comprising many allele drop outs, due to the difficulty of genotyping single cells. The clinician is able to use the measured fetal DNA along with the reliable DNA measurements of the parents to infer aspects of the genome of the fetus with high accuracy using PARENTAL SUPPORT, thereby transforming the genetic data contained on genetic material from the fetus into the predicted genetic state of the fetus, stored on a computer. The clinician is able to determine both the ploidy state of the fetus, and the presence or absence of a plurality of disease-linked genes of interest. It turns out that the fetus is euploid, and is not a carrier for cystic fibrosis, and the mother decides to continue the pregnancy.
In an embodiment of the present disclosure, a pregnant mother would like to determine if her fetus is afflicted with any whole chromosomal abnormalities. She goes to her doctor, and gives a sample of her blood, and she and her husband gives samples of their own DNA from cheek swabs. A laboratory researcher genotypes the parental DNA using the MDA protocol to amplify the parental DNA, and ILLUMINA INFINIUM arrays to measure the genetic data of the parents at a large number of SNPs. The researcher then spins down the blood, takes the plasma, and isolates a sample of free-floating DNA using size exclusion chromatography. Alternately, the researcher uses one or more fluorescent antibodies, such as one that is specific to fetal hemoglobin to isolate a nucleated fetal red blood cell. The researcher then takes the isolated or enriched fetal genetic material and amplifies it using a library of 70-mer oligonucleotides appropriately designed such that two ends of each oligonucleotide corresponded to the flanking sequences on either side of a target allele. Upon addition of a polymerase, ligase, and the appropriate reagents, the oligonucleotides underwent gap-filling circularization, capturing the desired allele. An exonuclease was added, heat- inactivated, and the products were used directly as a template for PCR amplification. The PCR products were sequenced on an ILLUMINA GENOME ANALYZER. The sequence reads were used as input for the PARENTAL SUPPORT method, which then predicted the ploidy state of the fetus.
In another embodiment, a couple - where the mother, who is pregnant, and is of advanced maternal age - wants to know whether the gestating has Down syndrome, Turner Syndrome, Prader Willi syndrome, or some other whole chromosomal abnormality. The obstetrician takes a blood draw from the mother and father. The blood is sent to a laboratory, where a technician centrifuges the maternal sample to isolate the plasma and the buffy coat. The DNA in the buffy coat and the paternal blood sample are transformed through amplification and the genetic data encoded in the amplified genetic material is further transformed from molecularly stored genetic data into electronically stored genetic data by running the genetic material on a high throughput sequencer to measure the parental genotypes. The plasma sample is preferentially enriched at a set of loci using a 5,000-plex hemi-nested targeted PCR method. The mixture of DNA fragments is prepared into a DNA library suitable for sequencing. The DNA is then sequenced using a high throughput sequencing method, for example, the ILLUMINA GAIIx GENOME ANALYZER. The sequencing transforms the information that is encoded molecularly in the DNA into information that is encoded electronically in computer hardware. An informatics based technique that includes the presently disclosed embodiments, such as PARENTAL SUPPORT, may be used to determine the ploidy state of the fetus. This may involve calculating, on a computer, allele count probabilities at the plurality of polymorphic loci from the DNA measurements made on the prepared sample; creating, on a computer, a plurality of ploidy hypotheses each pertaining to a different possible ploidy state of the chromosome; building, on a computer, a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome for each ploidy hypothesis; determining, on a computer, a relative probability of each of the ploidy hypotheses using the joint distribution model and the allele counts measured on the prepared sample; and calling the ploidy state of the fetus by selecting the ploidy state corresponding to the hypothesis with the greatest probability. It is determined that the fetus has Down syndrome. A report is printed out, or sent electronically to the pregnant woman's obstetrician, who transmits the diagnosis to the woman. The woman, her husband, and the doctor sit down and discuss their options. The couple decides to terminate the pregnancy based on the knowledge that the fetus is afflicted with a trisomic condition.
In an embodiment, a company may decide to offer a diagnostic technology designed to detect aneuploidy in a gestating fetus from a maternal blood draw. Their product may involve a mother presenting to her obstetrician, who may draw her blood. The obstetrician may also collect a genetic sample from the father of the fetus. A clinician may isolate the plasma from the maternal blood, and purify the DNA from the plasma. A clinician may also isolate the buffy coat layer from the maternal blood, and prepare the DNA from the buffy coat. A clinician may also prepare the DNA from the paternal genetic sample. The clinician may use molecular biology techniques described in this disclosure to append universal amplification tags to the DNA in the DNA derived from the plasma sample. The clinician may amplify the universally tagged DNA. The clinician may preferentially enrich the DNA by a number of techniques including capture by hybridization and targeted PCR. The targeted PCR may involve nesting, hemi-nesting or semi-nesting, or any other approach to result in efficient enrichment of the plasma derived DNA. The targeted PCR may be massively multiplexed, for example with 10,000 primers in one reaction, where the primers target SNPs on chromosomes 13, 18, 21, X and those loci that are common to both X and Y, and optionally other chromosomes as well. The selective enrichment and/or amplification may involve tagging each individual molecule with different tags, molecular barcodes, tags for amplification, and/or tags for sequencing. The clinician may then sequence the plasma sample, and also possibly also the prepared maternal and/or paternal DNA. The molecular biology steps may be executed either wholly or partly by a diagnostic box. The sequence data may be fed into a single computer, or to another type of computing platform such as may be found in 'the cloud'. The computing platform may calculate allele counts at the targeted polymorphic loci from the measurements made by the sequencer. The computing platform may create a plurality of ploidy hypotheses pertaining to nullsomy, monosomy, disomy, matched trisomy, and unmatched trisomy for each of chromosomes 13, 18, 21, X and Y. The computing platform may build a joint distribution model for the expected allele counts at the targeted loci on the chromosome for each ploidy hypothesis for each of the five chromosomes being interrogated. The computing platform may determine a probability that each of the ploidy hypotheses is true using the joint distribution model and the allele counts measured on the preferentially enriched DNA derived from the plasma sample. The computing platform may call the ploidy state of the fetus, for each of chromosome 13, 18, 21, X and Y by selecting the ploidy state corresponding to the germane hypothesis with the greatest probability. A report may be generated comprising the called ploidy states, and it may be sent to the obstetrician electronically, displayed on an output device, or a printed hard copy of the report may be delivered to the obstetrician. The obstetrician may inform the patient and optionally the father of the fetus, and they may decide which clinical options are open to them, and which is most desirable.
In another embodiment, a pregnant woman, hereafter referred to as "the mother" may decide that she wants to know whether or not her fetus(es) are carrying any genetic abnormalities or other conditions. She may want to ensure that there are not any gross abnormalities before she is confident to continue the pregnancy. She may go to her obstetrician, who may take a sample of her blood. He may also take a genetic sample, such as a buccal swab, from her cheek. He may also take a genetic sample from the father of the fetus, such as a buccal swab, a sperm sample, or a blood sample. He may send the samples to a clinician. The clinician may enrich the fraction of free floating fetal DNA for fetal cells in the maternal blood sample. The clinician may enrich the fraction of enucleated fetal blood cells in the maternal blood sample. The clinician may use various aspects of the methods described herein to determine genetic data of the fetus. That genetic data may include the ploidy state of the fetus, and/or the identity of one or a number of disease linked alleles in the fetus. A report may be generated summarizing the results of the prenatal diagnosis. The report may be transmitted or mailed to the doctor, who may tell the mother the genetic state of the fetus. The mother may decide to discontinue the pregnancy based on the fact that the fetus has one or more chromosomal, or genetic abnormalities, or undesirable conditions. She may also decide to continue the pregnancy based on the fact that the fetus does not have any gross chromosomal or genetic abnormalities, or any genetic conditions of interest.
Another example may involve a pregnant woman who has been artificially inseminated by a sperm donor, and is pregnant. She wants to minimize the risk that the fetus she is carrying has a genetic disease. She has blood drawn at a phlebotomist, and techniques described in this disclosure are used to isolate three nucleated fetal red blood cells, and a tissue sample is also collected from the mother and genetic father. The genetic material from the fetus and from the mother and father are amplified as appropriate and genotyped using the ILLUMINA INFINIUM BEADARRAY, and the methods described herein clean and phase the parental and fetal genotype with high accuracy, as well as to make ploidy calls for the fetus. The fetus is found to be euploid, and phenotypic susceptibilities are predicted from the reconstructed fetal genotype, and a report is generated and sent to the mother's physician so that they can decide what clinical decisions may be best.
In an embodiment, the raw genetic material of the mother and the father is transformed by way of amplification to an amount of DNA that is similar in sequence, but larger in quantity. Then, by way of a genotyping method, the genotypic data that is encoded by nucleic acids is transformed into genetic measurements that may be stored physically and/or electronically on a memory device, such as those described above. The relevant algorithms that makeup the PARENTAL SUPPORT algorithm, relevant parts of which are discussed in detail herein, are translated into a computer program, using a programming language. Then, through the execution of the computer program on the computer hardware, instead of being physically encoded bits and bytes, arranged in a pattern that represents raw measurement data, they become transformed into a pattern that represents a high confidence determination of the ploidy state of the fetus. The details of this transformation will rely on the data itself and the computer language and hardware system used to execute the method described herein. Then, the data that is physically configured to represent a high quality ploidy determination of the fetus is transformed into a report which may be sent to a health care practitioner. This transformation may be carried out using a printer or a computer display. The report may be a printed copy, on paper or other suitable medium, or else it may be electronic. In the case of an electronic report, it may be transmitted, it may be physically stored on a memory device at a location on the computer accessible by the health care practitioner; it also may be displayed on a screen so that it may be read. In the case of a screen display, the data may be transformed to a readable format by causing the physical transformation of pixels on the display device. The transformation may be accomplished by way of physically firing electrons at a phosphorescent screen, by way of altering an electric charge that physically changes the transparency of a specific set of pixels on a screen that may lie in front of a substrate that emits or absorbs photons. This transformation may be accomplished by way of changing the nanoscale orientation of the molecules in a liquid crystal, for example, from nematic to cholesteric or smectic phase, at a specific set of pixels. This transformation may be accomplished by way of an electric current causing photons to be emitted from a specific set of pixels made from a plurality of light emitting diodes arranged in a meaningful pattern. This transformation may be accomplished by any other way used to display information, such as a computer screen, or some other output device or way of transmitting information. The health care practitioner may then act on the report, such that the data in the report is transformed into an action. The action may be to continue or discontinue the pregnancy, in which case a gestating fetus with a genetic abnormality is transformed into non-living fetus. The transformations listed herein may be aggregated, such that, for example, one may transform the genetic material of a pregnant mother and the father, through a number of steps outlined in this disclosure, into a medical decision consisting of aborting a fetus with genetic abnormalities, or consisting of continuing the pregnancy. Alternately, one may transform a set of genotypic measurements into a report that helps a physician treat his pregnant patient.
In an embodiment of the present disclosure, the method described herein can be used to determine the ploidy state of a fetus even when the host mother, i.e., the woman who is pregnant, is not the biological mother of the fetus she is carrying. In an embodiment of the present disclosure, the method described herein can be used to determine the ploidy state of a fetus using only the maternal blood sample, and without the need for a paternal genetic sample.
Some of the math in the presently disclosed embodiments makes hypotheses concerning a limited number of states of aneuploidy. In some cases, for example, only zero, one or two chromosomes are expected to originate from each parent. In some embodiments of the present disclosure, the mathematical derivations can be expanded to take into account other forms of aneuploidy, such as quadrosomy, where three chromosomes originate from one parent, pentasomy, hexasomy etc., without changing the fundamental concepts of the present disclosure. At the same time, it is possible to focus on a smaller number of ploidy states, for example, only trisomy and disomy. Note that ploidy determinations that indicate a non-whole number of chromosomes may indicate mosaicism in a sample of genetic material.
In some embodiments, the genetic abnormality is a type of aneuploidy, such as Down syndrome (or trisomy 21), Edwards syndrome (trisomy 18), Patau syndrome (trisomy 13), Turner Syndrome (45X), Klinefelter' s syndrome (a male with 2 X chromosomes), Prader-Willi syndrome, and DiGeorge syndrome (UPD 15). Congenital disorders, such as those listed in the prior sentence, are commonly undesirable, and the knowledge that a fetus is afflicted with one or more phenotypic abnormalities may provide the basis for a decision to terminate the pregnancy, to take necessary precautions to prepare for the birth of a special needs child, or to take some therapeutic approach meant to lessen the severity of a chromosomal abnormality.
In some embodiments, the methods described herein can be used at a very early gestational age, for example as early as four week, as early as five weeks, as early as six weeks, as early as seven weeks, as early as eight weeks, as early as nine weeks, as early as ten weeks, as early as eleven weeks, and as early as twelve weeks.
Note that it has been demonstrated that DNA that originated from cancer that is living in a host can be found in the blood of the host. In the same way that genetic diagnoses can be made from the measurement of mixed DNA found in maternal blood, genetic diagnoses can equally well be made from the measurement of mixed DNA found in host blood. The genetic diagnoses may include aneuploidy states, or gene mutations. Any claim in the instant disclosure that reads on determining the ploidy state or genetic state of a fetus from the measurements made on maternal blood can equally well read on determining the ploidy state or genetic state of a cancer from the measurements on host blood.
In some embodiments, a method of the present disclosure allows one to determine the ploidy status of a cancer, the method including obtaining a mixed sample that contains genetic material from the host, and genetic material from the cancer; measuring the DNA in the mixed sample; calculating the fraction of DNA that is of cancer origin in the mixed sample; and determining the ploidy status of the cancer using the measurements made on the mixed sample and the calculated fraction. In some embodiments, the method may further include administering a cancer therapeutic based on the determination of the ploidy state of the cancer. In some embodiments, the method may further include administering a cancer therapeutic based on the determination of the ploidy state of the cancer, wherein the cancer therapeutic is taken from the group comprising a pharmaceutical, a biologic therapeutic, and antibody based therapy and combination thereof.
In some embodiments, a method disclosed herein is used in the context of pre- implantation genetic diagnosis (PGD) for embryo selection during in vitro fertilization, where the target individual is an embryo, and the parental genotypic data can be used to make ploidy determinations about the embryo from sequencing data from a single or two cell biopsy from a day 3 embryo or a trophectoderm biopsy from a day 5 or day 6 embryo. In a PGD setting, only the child DNA is measured, and only a small number of cells are tested, generally one to five but as many as ten, twenty or fifty. The total number of starting copies of the A and B alleles (at a S P) are then trivially determined by the child genotype and the number of cells. In PD, the number of starting copies is very high and so the allele ratio after PCR is expected to accurately reflect the starting ratio. However, the small number of starting copies in PGD means that contamination and imperfect PCR efficiency have a non-trivial effect on the allele ratio following PCR. This effect may be more important than depth of read in predicting the variance in the allele ratio measured after sequencing. The distribution of measured allele ratio given a known child genotype may be created by Monte Carlo simulation of the PCR process based on the PCR probe efficiency and probability of contamination. Given an allele ratio distribution for each possible child genotype, the likelihoods of various hypotheses can be calculated as described for IPD.
Any of the embodiments disclosed herein may be implemented in digital electronic circuitry, integrated circuitry, specially designed ASICs (application-specific integrated circuits), computer hardware, firmware, software, or in combinations thereof. Apparatus of the presently disclosed embodiments can be implemented in a computer program product tangibly embodied in a machine-readable storage device for execution by a programmable processor; and method steps of the presently disclosed embodiments can be performed by a programmable processor executing a program of instructions to perform functions of the presently disclosed embodiments by operating on input data and generating output. The presently disclosed embodiments can be implemented advantageously in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. Each computer program can be implemented in a high-level procedural or object-oriented programming language or in assembly or machine language if desired; and in any case, the language can be a compiled or interpreted language. A computer program may be deployed in any form, including as a stand-alone program, or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may be deployed to be executed or interpreted on one computer or on multiple computers at one site, or distributed across multiple sites and interconnected by a communication network.
Computer readable storage media, as used herein, refers to physical or tangible storage (as opposed to signals) and includes without limitation volatile and non-volatile, removable and non-removable media implemented in any method or technology for the tangible storage of information such as computer-readable instructions, data structures, program modules or other data. Computer readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other physical or material medium which can be used to tangibly store the desired information or data or instructions and which can be accessed by a computer or processor.
Any of the methods described herein may include the output of data in a physical format, such as on a computer screen, or on a paper printout. In explanations of any embodiments elsewhere in this document, it should be understood that the described methods may be combined with the output of the actionable data in a format that can be acted upon by a physician. In addition, the described methods may be combined with the actual execution of a clinical decision that results in a clinical treatment, or the execution of a clinical decision to make no action. Some of the embodiments described in the document for determining genetic data pertaining to a target individual may be combined with the decision to select one or more embryos for transfer in the context of IVF, optionally combined with the process of transferring the embryo to the womb of the prospective mother. Some of the embodiments described in the document for determining genetic data pertaining to a target individual may be combined with the notification of a potential chromosomal abnormality, or lack thereof, with a medical professional, optionally combined with the decision to abort, or to not abort, a fetus in the context of prenatal diagnosis. Some of the embodiments described herein may be combined with the output of the actionable data, and the execution of a clinical decision that results in a clinical treatment, or the execution of a clinical decision to make no action.
Targeted Enrichment and Sequencing
The use of a technique to enrich a sample of DNA at a set of target loci followed by sequencing as part of a method for non-invasive or invasive prenatal allele calling or ploidy calling may confer a number of unexpected advantages. In some embodiments of the present disclosure, the method involves measuring genetic data for use with an informatics based method, such as PARENTAL SUPPORT (PS). The ultimate outcome of some of the embodiments is the actionable genetic data of an embryo or a fetus. There are many methods that may be used to measure the genetic data of the individual and/or the related individuals as part of embodied methods. In an embodiment, a method for enriching the concentration of a set of targeted alleles is disclosed herein, the method comprising one or more of the following steps: targeted amplification of genetic material, addition of loci specific oligonucleotide probes, ligation of specified DNA strands, isolation of sets of desired DNA, removal of unwanted components of a reaction, detection of certain sequences of DNA by hybridization, and detection of the sequence of one or a plurality of strands of DNA by DNA sequencing methods. In some cases the DNA strands may refer to target genetic material, in some cases they may refer to primers, in some cases they may refer to synthesized sequences, or combinations thereof. These steps may be carried out in a number of different orders.
For example, a universal amplification step of the DNA prior to targeted amplification may confer several advantages, such as removing the risk of bottlenecking and reducing allelic bias. The DNA may be mixed an oligonucleotide probe that can hybridize with two neighboring regions of the target sequence, one on either side. After hybridization, the ends of the probe may be connected by adding a polymerase, a means for ligation, and any necessary reagents to allow the circularization of the probe. After circularization, an exonuclease may be added to digest to non-circularized genetic material, followed by detection of the circularized probe. The DNA may be mixed with PCR primers that can hybridize with two neighboring regions of the target sequence, one on either side. After hybridization, the ends of the probe may be connected by adding a polymerase, a means for ligation, and any necessary reagents to complete PCR amplification. Amplified or unamplified DNA may be targeted by hybrid capture probes that target a set of loci; after hybridization, the probe may be localized and separated from the mixture to provide a mixture of DNA that is enriched in target sequences.
In some embodiments the detection of the target genetic material may be done in a multiplexed fashion. The number of genetic target sequences that may be run in parallel can range from one to ten, ten to one hundred, one hundred to one thousand, one thousand to ten thousand, ten thousand to one hundred thousand, one hundred thousand to one million, or one million to ten million. Prior attempts to multiplex more than 100 primers per pool have resulted in significant problems with unwanted side reactions such as primer-dimer formation.
In some embodiments, this method may be used to genotype a single cell, a small number of cells, two to five cells, six to ten cells, ten to twenty cells, twenty to fifty cell, fifty to one hundred cells, one hundred to one thousand cells, or a small amount of extracellular DNA, for example from one to ten picograms, from ten to one hundred pictograms, from one hundred pictograms to one nanogram, from one to ten nanograms, from ten to one hundred nanograms, or from one hundred nanograms to one microgram.
The use of a method to target certain loci followed by sequencing as part of a method for allele calling or ploidy calling may confer a number of unexpected advantages. Some methods by which DNA may be targeted, or preferentially enriched, include using circularizing probes, linked inverted probes (LIPs, MIPs), capture by hybridization methods such as SURESELECT, and targeted PCR or ligation-mediated PCR amplification strategies.
In some embodiments, a method of the present disclosure involves measuring genetic data for use with an informatics based method, such as PARENTAL SUPPORT (PS). PARENTAL SUPPORT is an informatics based approach to manipulating genetic data, aspects of which are described herein. The ultimate outcome of some of the embodiments is the actionable genetic data of an embryo or a fetus followed by a clinical decision based on the actionable data. The algorithms behind the PS method take the measured genetic data of the target individual, often an embryo or fetus, and the measured genetic data from related individuals, and are able to increase the accuracy with which the genetic state of the target individual is known. In an embodiment, the measured genetic data is used in the context of making ploidy determinations during prenatal genetic diagnosis. In an embodiment, the measured genetic data is used in the context of making ploidy determinations or allele calls on embryos during in vitro fertilization. There are many methods that may be used to measure the genetic data of the individual and/or the related individuals in the aforementioned contexts. The different methods comprise a number of steps, those steps often involving amplification of genetic material, addition of oligonucleotide probes, ligation of specified DNA strands, isolation of sets of desired DNA, removal of unwanted components of a reaction, detection of certain sequences of DNA by hybridization, detection of the sequence of one or a plurality of strands of DNA by DNA sequencing methods. In some cases the DNA strands may refer to target genetic material, in some cases they may refer to primers, in some cases they may refer to synthesized sequences, or combinations thereof. These steps may be carried out in a number of different orders.
Note that in theory it is possible to target any number loci in the genome, anywhere from one loci to well over one million loci. If a sample of DNA is subjected to targeting, and then sequenced, the percentage of the alleles that are read by the sequencer will be enriched with respect to their natural abundance in the sample. The degree of enrichment can be anywhere from one percent (or even less) to ten-fold, a hundred-fold, a thousand-fold or even many million-fold. In the human genome there are roughly 3 billion base pairs, and nucleotides, comprising approximately 75 million polymorphic loci. The more loci that are targeted, the smaller the degree of enrichment is possible. The fewer the number of loci that are targeted, the greater degree of enrichment is possible, and the greater depth of read may be achieved at those loci for a given number of sequence reads.
In an embodiment of the present disclosure, the targeting or preferential may focus entirely on SNPs. In an embodiment, the targeting or preferential may focus on any polymorphic site. A number of commercial targeting products are available to enrich exons. Surprisingly, targeting exclusively SNPs, or exclusively polymorphic loci, is particularly advantageous when using a method for NPD that relies on allele distributions. There are also published methods for NPD using sequencing, for example U.S. Patent 7,888,017, involving a read count analysis where the read counting focuses on counting the number of reads that map to a given chromosome, where the analyzed sequence reads do not focused on regions of the genome that are polymorphic. Those types of methodology that do not focus on polymorphic alleles would not benefit as much from targeting or preferential enrichment of a set of alleles.
In an embodiment of the present disclosure, it is possible to use a targeting method that focuses on SNPs to enrich a genetic sample in polymorphic regions of the genome. In an embodiment, it is possible to focus on a small number of SNPs, for example between 1 and 100 SNPs, or a larger number, for example, between 100 and 1,000, between 1,000 and 10,000, between 10,000 and 100,000 or more than 100,000 SNPs. In an embodiment, it is possible to focus on one or a small number of chromosomes that are correlated with live trisomic births, for example chromosomes 13, 18, 21, X and Y, or some combination thereof. In an embodiment, it is possible to enrich the targeted SNPs by a small factor, for example between 1.01 fold and 100 fold, or by a larger factor, for example between 100 fold and 1,000,000 fold, or even by more than 1,000,000 fold. In an embodiment of the present disclosure, it is possible to use a targeting method to create a sample of DNA that is preferentially enriched in polymorphic regions of the genome. In an embodiment, it is possible to use this method to create a mixture of DNA with any of these characteristics where the mixture of DNA contains maternal DNA and also fetal DNA such as free floating fetal DNA, or nuclear DNA from fetal cells. In an embodiment, it is possible to use this method to create a mixture of DNA that has any combination of these factors. For example, the method described herein may be used to produce a mixture of DNA that comprises maternal DNA and fetal DNA, and that is preferentially enriched in DNA that corresponds to 200 SNPs, all of which are located on either chromosome 18 or 21, and which are enriched an average of 1000 fold. In another example, it is possible to use the method to create a mixture of DNA that is preferentially enriched in 10,000 SNPs that are all or mostly located on chromosomes 13, 18, 21, X and Y, and the average enrichment per loci is greater than 500 fold. Any of the targeting methods described herein can be used to create mixtures of DNA that are preferentially enriched in certain loci.
In some embodiments, a method of the present disclosure further includes measuring the DNA in the mixed fraction using a high throughput DNA sequencer, where the DNA in the mixed fraction contains a disproportionate number of sequences from one or more chromosomes, wherein the one or more chromosomes are taken from the group comprising chromosome 13, chromosome 18, chromosome 21, chromosome X, chromosome Y and combinations thereof.
Described herein are three methods: multiplex PCR, targeted capture by hybridization, and linked inverted probes (LIPs), which may be used to obtain and analyze measurements from a sufficient number of polymorphic loci from a maternal plasma sample in order to detect fetal aneuploidy; this is not meant to exclude other methods of selective enrichment of targeted loci. Other methods may equally well be used without changing the essence of the method. In each case the polymorphism assayed may include single nucleotide polymorphisms (SNPs), small indels, or STRs. A preferred method involves the use of S Ps. Each approach produces allele frequency data; allele frequency data for each targeted locus and/or the joint allele frequency distributions from these loci may be analyzed to determine the ploidy of the fetus. Each approach has its own considerations due to the limited source material and the fact that maternal plasma consists of mixture of maternal and fetal DNA. This method may be combined with other approaches to provide a more accurate determination. In an embodiment, this method may be combined with a sequence counting approach such as that described in US Patent 7,888,017. The approaches described could also be used to detect fetal paternity noninvasively from maternal plasma samples. In addition each approach may be applied to other mixtures of DNA or pure DNA samples to detect the presence or absence of aneuploid chromosomes, to genotype a large number of SNP from degraded DNA samples, to detect segmental copy number variations (CNVs), to detect other genotypic states of interest, or some combination thereof. Accurately Measuring the Allelic Distributions in a Sample
Current sequencing approaches can be used to estimate the distribution of alleles in a sample. One such method involves randomly sampling sequences from a pool DNA, termed shotgun sequencing. The proportion of a particular allele in the sequencing data is typically very low and can be determined by simple statistics. The human genome contains approximately 3 billion base pairs. So, if the sequencing method used make 100 bp reads, a particular allele will be measured about once in every 30 million sequence reads.
In an embodiment, a method of the present disclosure is used to determine the presence or absence of two or more different haplotypes that contain the same set of loci in a sample of DNA from the measured allele distributions of loci from that chromosome. The different haplotypes could represent two different homologous chromosomes from one individual, three different homologous chromosomes from a trisomic individual, three different homologous haplotypes from a mother and a fetus where one of the haplotypes is shared between the mother and the fetus, three or four haplotypes from a mother and fetus where one or two of the haplotypes are shared between the mother and the fetus, or other combinations. Alleles that are polymorphic between the haplotypes tend to be more informative, however any alleles where the mother and father are not both homozygous for the same allele will yield useful information through measured allele distributions beyond the information that is available from simple read count analysis.
Shotgun sequencing of such a sample, however, is extremely inefficient as it results in many sequences for regions that are not polymorphic between the different haplotypes in the sample, or are for chromosomes that are not of interest, and therefore reveal no information about the proportion of the target haplotypes. Described herein are methods that specifically target and/or preferentially enrich segments of DNA in the sample that are more likely to be polymorphic in the genome to increase the yield of allelic information obtained by sequencing. Note that for the measured allele distributions in an enriched sample to be truly representative of the actual amounts present in the target individual, it is critical that there is little or no preferential enrichment of one allele as compared to the other allele at a given loci in the targeted segments. Current methods known in the art to target polymorphic alleles are designed to ensure that at least some of any alleles present are detected. However, these methods were not designed for the purpose of measuring the unbiased allelic distributions of polymorphic alleles present in the original mixture. It is non-obvious that any particular method of target enrichment would be able to produce an enriched sample wherein the measured allele distributions would accurately represent the allele distributions present in the original unamplified sample better than any other method. While many enrichment methods may be expected, in theory, to accomplish such an aim, an ordinary person skilled in the art is well aware that there is a great deal of stochastic or deterministic bias in current amplification, targeting and other preferential enrichment methods. One embodiment of a method described herein allows a plurality of alleles found in a mixture of DNA that correspond to a given locus in the genome to be amplified, or preferentially enriched in a way that the degree of enrichment of each of the alleles is nearly the same. Another way to say this is that the method allows the relative quantity of the alleles present in the mixture as a whole to be increased, while the ratio between the alleles that correspond to each locus remains essentially the same as they were in the original mixture of DNA. For some reported methods preferential enrichment of loci can result in allelic biases of more than 1%, more than 2%, more than 5% and even more than 10%. This preferential enrichment may be due to capture bias when using a capture by hybridization approach, or amplification bias which may be small for each cycle, but can become large when compounded over 20, 30 or 40 cycles. For the purposes of this disclosure, for the ratio to remain essentially the same means that the ratio of the alleles in the original mixture divided by the ratio of the alleles in the resulting mixture is between 0.95 and 1.05, between 0.98 and 1.02, between 0.99 and 1.01, between 0.995 and 1.005, between 0.998 and 1.002, between 0.999 and 1.001, or between 0.9999 and 1.0001. Note that the calculation of the allele ratios presented here may not be used in the determination of the ploidy state of the target individual, and may only a metric to be used to measure allelic bias.
In an embodiment, once a mixture has been preferentially enriched at the set of target loci, it may be sequenced using any one of the previous, current, or next generation of sequencing instruments that sequences a clonal sample (a sample generated from a single molecule; examples include ILLUMINA GAIIx, ILLUMINA HISEQ, LIFE TECHNOLOGIES SOLiD, 5500XL). The ratios can be evaluated by sequencing through the specific alleles within the targeted region. These sequencing reads can be analyzed and counted according the allele type and the rations of different alleles determined accordingly. For variations that are one to a few bases in length, detection of the alleles will be performed by sequencing and it is essential that the sequencing read span the allele in question in order to evaluate the allelic composition of that captured molecule. The total number of captured molecules assayed for the genotype can be increased by increasing the length of the sequencing read. Full sequencing of all molecules would guarantee collection of the maximum amount of data available in the enriched pool. However, sequencing is currently expensive, and a method that can measure allele distributions using a lower number of sequence reads will have great value. In addition, there are technical limitations to the maximum possible length of read as well as accuracy limitations as read lengths increase. The alleles of greatest utility will be of one to a few bases in length, but theoretically any allele shorter than the length of the sequencing read can be used. While allele variations come in all types, the examples provided herein focus on SNPs or variants contained of just a few neighboring base pairs. Larger variants such as segmental copy number variants can be detected by aggregations of these smaller variations in many cases as whole collections of SNP internal to the segment are duplicated. Variants larger than a few bases, such as STRs require special consideration and some targeting approaches work while others will not.
There are multiple targeting approaches that can be used to specifically isolate and enrich a one or a plurality of variant positions in the genome. Typically, these rely on taking advantage of the invariant sequence flanking the variant sequence. There is art related to targeting in the context of sequencing where the substrate is maternal plasma (see, e.g., Liao et al., Clin. Chem. 2011; 57(1): pp. 92-101). However, the approaches in the art all use targeting probes that target exons, and do not focus on targeting polymorphic regions of the genome. In an embodiment, a method of the present disclosure involves using targeting probes that focus exclusively or almost exclusively on polymorphic regions. In an embodiment, a method of the present disclosure involves using targeting probes that focus exclusively or almost exclusively on S Ps. In some embodiments of the present disclosure, the targeted polymorphic sites consist of at least 10% SNPs, at least 20% SNPs, at least 30% SNPs, at least 40% SNPs, at least 50% SNPs, at least 60% SNPs, at least 70% SNPs, at least 80% SNPs, at least 90% SNPs, at least 95% SNPs, at least 98% SNPs, at least 99% SNPs, at least 99.9% SNPs, or exclusively SNPs.
In an embodiment, a method of the present disclosure can be used to determine genotypes (base composition of the DNA at specific loci) and relative proportions of those genotypes from a mixture of DNA molecules, where those DNA molecules may have originated from one or a number of genetically distinct individuals. In an embodiment, a method of the present disclosure can be used to determine the genotypes at a set of polymorphic loci, and the relative ratios of the amount of different alleles present at those loci. In an embodiment the polymorphic loci may consist entirely of SNPs. In an embodiment, the polymorphic loci can comprise SNPs, single tandem repeats, and other polymorphisms. In an embodiment, a method of the present disclosure can be used to determine the relative distributions of alleles at a set of polymorphic loci in a mixture of DNA, where the mixture of DNA comprises DNA that originates from a mother, and DNA that originates from a fetus. In an embodiment, the joint allele distributions can be determined on a mixture of DNA isolated from blood from a pregnant woman. In an embodiment, the allele distributions at a set of loci can be used to determine the ploidy state of one or more chromosomes on a fetus (such as a gestating fetus or a POC sample).
In an embodiment, the mixture of DNA molecules could be derived from DNA extracted from multiple cells of one individual. In an embodiment, the original collection of cells from which the DNA is derived may comprise a mixture of diploid or haploid cells of the same or of different genotypes, if that individual is mosaic (germline or somatic). In an embodiment, the mixture of DNA molecules could also be derived from DNA extracted from single cells. In an embodiment, the mixture of DNA molecules could also be derived from DNA extracted from mixture of two or more cells of the same individual, or of different individuals. In an embodiment, the mixture of DNA molecules could be derived from DNA isolated from biological material that has already liberated from cells such as blood plasma, which is known to contain cell free DNA. In an embodiment, the this biological material may be a mixture of DNA from one or more individuals, as is the case during pregnancy where it has been shown that fetal DNA is present in the mixture. In an embodiment, the biological material could be from a mixture of cells that were found in maternal blood, where some of the cells are fetal in origin. In an embodiment, the biological material could be cells from the blood of a pregnant which have been enriched in fetal cells.
Circularizing Probes
Some embodiments of the present disclosure involve the use of "Linked Inverted
Probes" (LIPs), which have been previously described in the literature. LIPs is a generic term meant to encompass technologies that involve the creation of a circular molecule of DNA, where the probes are designed to hybridize to targeted region of DNA on either side of a targeted allele, such that addition of appropriate polymerases and/or ligases, and the appropriate conditions, buffers and other reagents, will complete the complementary, inverted region of DNA across the targeted allele to create a circular loop of DNA that captures the information found in the targeted allele. LIPs may also be called pre-circularized probes, pre- circularizing probes, or circularizing probes. The LIPs probe may be a linear DNA molecule between 50 and 500 nucleotides in length, and in an embodiment between 70 and 100 nucleotides in length; in some embodiments, it may be longer or shorter than described herein. Others embodiments of the present disclosure involve different incarnations, of the LIPs technology, such as Padlock Probes and Molecular Inversion Probes (MIPs).
One method to target specific locations for sequencing is to synthesize probes in which the 3' and 5' ends of the probes anneal to target DNA at locations adjacent to and on either side of the targeted region, in an inverted manner, such that the addition of DNA polymerase and DNA ligase results in extension from the 3' end, adding bases to single stranded probe that are complementary to the target molecule (gap-fill), followed by ligation of the new 3' end to the 5' end of the original probe resulting in a circular DNA molecule that can be subsequently isolated from background DNA. The probe ends are designed to flank the targeted region of interest. One aspect of this approach is commonly called MIPS and has been used in conjunction with array technologies to determine the nature of the sequence filled in. One drawback to the use of MIPs in the context of measuring allele ratios is that the hybridization, circularization and amplification steps do not happed at equal rates for different alleles at the same loci. This results in measured allele ratios that are not representative of the actual allele ratios present in the original mixture.
In an embodiment, the circularizing probes are constructed such that the region of the probe that is designed to hybridize upstream of the targeted polymorphic locus and the region of the probe that is designed to hybridize downstream of the targeted polymorphic locus are covalently connected through a non-nucleic acid backbone. This backbone can be any biocompatible molecule or combination of biocompatible molecules. Some examples of possible biocompatible molecules are poly(ethylene glycol), polycarbonates, polyurethanes, polyethylenes, polypropylenes, sulfone polymers, silicone, cellulose, fluoropolymers, acrylic compounds, styrene block copolymers, and other block copolymers.
In an embodiment of the present disclosure, this approach has been modified to be easily amenable to sequencing as a means of interrogating the filled in sequence. In order to retain the original allelic proportions of the original sample at least one key consideration must be taken into account. The variable positions among different alleles in the gap-fill region must not be too close to the probe binding sites as there can be initiation bias by the DNA polymerase resulting in differential of the variants. Another consideration is that additional variations may be present in the probe binding sites that are correlated to the variants in the gap-fill region which can result unequal amplification from different alleles. In an embodiment of the present disclosure, the 3' ends and 5' ends of the pre-circularized probe are designed to hybridize to bases that are one or a few positions away from the variant positions (polymorphic sites) of the targeted allele. The number of bases between the polymorphic site (SNP or otherwise) and the base to which the 3' end and/or 5' of the pre-circularized probe is designed to hybridize may be one base, it may be two bases, it may be three bases, it may be four bases, it may be five bases, it may be six bases, it may be seven to ten bases, it may be eleven to fifteen bases, or it may be sixteen to twenty bases, twenty to thirty bases, or thirty to sixty bases. The forward and reverse primers may be designed to hybridize a different number of bases away from the polymorphic site. Circularizing probes can be generated in large numbers with current DNA synthesis technology allowing very large numbers of probes to be generated and potentially pooled, enabling interrogation of many loci simultaneously. It has been reported to work with more than 300,000 probes. Two papers that discuss a method involving circularizing probes that can be used to measure the genomic data of the target individual include: Porreca et al., Nature Methods, 2007 4(11), pp. 931-936.; and also Turner et al., Nature Methods, 2009, 6(5), pp. 315-316. The methods described in these papers may be used in combination with other methods described herein. Certain steps of the method from these two papers may be used in combination with other steps from other methods described herein.
In some embodiments of the methods disclosed herein, the genetic material of the target individual is optionally amplified, followed by hybridization of the pre-circularized probes, performing a gap fill to fill in the bases between the two ends of the hybridized probes, ligating the two ends to form a circularized probe, and amplifying the circularized probe, using, for example, rolling circle amplification. Once the desired target allelic genetic information is captured by circularizing appropriately designed oligonucleic acid probes, such as in the LIPs system, the genetic sequence of the circularized probes may be being measured to give the desired sequence data. In an embodiment, the appropriately designed oligonucleotides probes may be circularized directly on unamplified genetic material of the target individual, and amplified afterwards. Note that a number of amplification procedures may be used to amplify the original genetic material, or the circularized LIPs, including rolling circle amplification, MDA, or other amplification protocols. Different methods may be used to measure the genetic information on the target genome, for example using high throughput sequencing, Sanger sequencing, other sequencing methods, capture-by-hybridization, capture- by-circularization, multiplex PCR, other hybridization methods, and combinations thereof.
Once the genetic material of the individual has been measured using one or a combination of the above methods, an informatics based method, such as the PARENTAL SUPPORT method, along with the appropriate genetic measurements, can then be used to determination the ploidy state of one or more chromosomes on the individual, and/or the genetic state of one or a set of alleles, specifically those alleles that are correlated with a disease or genetic state of interest. Note that the use of LIPs has been reported for multiplexed capture of genetic sequences, followed by genotyping with sequencing. However, the use of sequencing data resulting from a LIPs-based strategy for the amplification of the genetic material found in a single cell, a small number of cells, or extracellular DNA, has not been used for the purpose of determining the ploidy state of a target individual.
Applying an informatics based method to determine the ploidy state of an individual from genetic data as measured by hybridization arrays, such as the ILLUMINA INFINIUM array, or the AFFYMETRIX gene chip has been described in documents references elsewhere in this document. However, the method described herein shows improvements over methods described previously in the literature. For example, the LIPs based approach followed by high throughput sequencing unexpectedly provides better genotypic data due to the approach having better capacity for multiplexing, better capture specificity, better uniformity, and low allelic bias. Greater multiplexing allows more alleles to be targeted, giving more accurate results. Better uniformity results in more of the targeted alleles being measured, giving more accurate results. Lower rates of allelic bias result in lower rates of miscalls, giving more accurate results. More accurate results result in an improvement in clinical outcomes, and better medical care.
It is important to note that LIPs may be used as a method for targeting specific loci in a sample of DNA for genotyping by methods other than sequencing. For example, LIPs may be used to target DNA for genotyping using SNP arrays or other DNA or RNA based microarrays. Ligation-mediated PCR
Ligation-mediated PCR is method of PCR used to preferentially enrich a sample of DNA by amplifying one or a plurality of loci in a mixture of DNA, the method comprising: obtaining a set of primer pairs, where each primer in the pair contains a target specific sequence and a non-target sequence, where the target specific sequence is preferably designed to anneal to a target region, one upstream and one downstream from the polymorphic site, and which can be separated from the polymorphic site by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-20, 21- 30, 31-40, 41-50, 51-100, or more than 100; polymerization of the DNA from the 3-prime end of upstream primer to the fill the single strand region between it and the 5-prime end of the downstream primer with nucleotides complementary to the target molecule; ligation of the last polymerized base of the upstream primer to the adjacent 5-prime base of the downstream primer; and amplification of only polymerized and ligated molecules using the non-target sequences contained at the 5-prime end of the upstream primer and the 3-prime end of the downstream primer. Pairs of primers to distinct targets may be mixed in the same reaction. The non-target sequences serve as universal sequences such that of all pairs of primers that have been successfully polymerized and ligated may be amplified with a single pair of amplification primers. Capture by Hybridization
Preferential enrichment of a specific set of sequences in a target genome can be accomplished in a number of ways. Elsewhere in this document is a description of how LIPs can be used to target a specific set of sequences, but in all of those applications, other targeting and/or preferential enrichment methods can be used equally well for the same ends. One example of another targeting method is the capture by hybridization approach. Some examples of commercial capture by hybridization technologies include AGILENT'S SURE SELECT and ILLUMINA's TRUSEQ. In capture by hybridization, a set of oligonucleotides that is complimentary or mostly complimentary to the desired targeted sequences is allowed to hybridize to a mixture of DNA, and then physically separated from the mixture. Once the desired sequences have hybridized to the targeting oligonucleotides, the effect of physically removing the targeting oligonucleotides is to also remove the targeted sequences. Once the hybridized oligos are removed, they can be heated to above their melting temperature and they can be amplified. Some ways to physically remove the targeting oligonucleotides is by covalently bonding the targeting oligos to a solid support, for example a magnetic bead, or a chip. Another way to physically remove the targeting oligonucleotides is by covalently bonding them to a molecular moiety with a strong affinity for another molecular moiety. An example of such a molecular pair is biotin and streptavidin, such as is used in SURE SELECT. Thus that targeted sequences could be covalently attached to a biotin molecule, and after hybridization, a solid support with streptavidin affixed can be used to pull down the biotinylated oligonucleotides, to which are hybridized to the targeted sequences.
Hybrid capture involves hybridizing probes that are complementary to the targets of interest to the target molecules. Hybrid capture probes were originally developed to target and enrich large fractions of the genome with relative uniformity between targets. In that application, it was important that all targets be amplified with enough uniformity that all regions could be detected by sequencing, however, no regard was paid to retaining the proportion of alleles in original sample. Following capture, the alleles present in the sample can be determined by direct sequencing of the captured molecules. These sequencing reads can be analyzed and counted according the allele type. However, using the current technology, the measured allele distributions the captured sequences are typically not representative of the original allele distributions.
In an embodiment, detection of the alleles is performed by sequencing. In order to capture the allele identity at the polymorphic site, it is essential that the sequencing read span the allele in question in order to evaluate the allelic composition of that captured molecule. Since the capture molecules are often of variable lengths upon sequencing cannot be guaranteed to overlap the variant positions unless the entire molecule is sequenced. However, cost considerations as well as technical limitations as to the maximum possible length and accuracy of sequencing reads make sequencing the entire molecule unfeasible. In an embodiment, the read length can be increased from about 30 to about 50 or about 70 bases can greatly increase the number of reads that overlap the variant positions within the targeted sequences.
Another way to increase the number of reads that interrogate the position of interest is to decrease the length of the probe, as long as it does not result in bias in the underlying enriched alleles. The length of the synthesized probe should be long enough such that two probes designed to hybridize to two different alleles found at one locus will hybridize with near equal affinity to the various alleles in the original sample. Currently, methods known in the art describe probes that are typically longer than 120 bases. In a current embodiment, if the allele is one or a few bases then the capture probes may be less than about 110 bases, less than about 100 bases, less than about 90 bases, less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, and less than about 25 bases, and this is sufficient to ensure equal enrichment from all alleles. When the mixture of DNA that is to be enriched using the hybrid capture technology is a mixture comprising free floating DNA isolated from blood, for example maternal blood, the average length of DNA is quite short, typically less than 200 bases. The use of shorter probes results in a greater chance that the hybrid capture probes will capture desired DNA fragments. Larger variations may require longer probes. In an embodiment, the variations of interest are one (a SNP) to a few bases in length. In an embodiment, targeted regions in the genome can be preferentially enriched using hybrid capture probes wherein the hybrid capture probes are of a length below 90 bases, and can be less than 80 bases, less than 70 bases, less than 60 bases, less than 50 bases, less than 40 bases, less than 30 bases, or less than 25 bases. In an embodiment, to increase the chance that the desired allele is sequenced, the length of the probe that is designed to hybridize to the regions flanking the polymorphic allele location can be decreased from above 90 bases, to about 80 bases, or to about 70 bases, or to about 60 bases, or to about 50 bases, or to about 40 bases, or to about 30 bases, or to about 25 bases. There is a minimum overlap between the synthesized probe and the target molecule in order to enable capture. This synthesized probe can be made as short as possible while still being larger than this minimum required overlap. The effect of using a shorter probe length to target a polymorphic region is that there will be more molecules that overlap the target allele region. The state of fragmentation of the original DNA molecules also affects the number of reads that will overlap the targeted alleles. Some DNA samples such as plasma samples are already fragmented due to biological processes that take place in vivo. However, samples with longer fragments by benefit from fragmentation prior to sequencing library preparation and enrichment. When both probes and fragments are short (-60-80 bp) maximum specificity may be achieved relatively few sequence reads failing to overlap the critical region of interest.
In an embodiment, the hybridization conditions can be adjusted to maximize uniformity in the capture of different alleles present in the original sample. In an embodiment, hybridization temperatures are decreased to minimize differences in hybridization bias between alleles. Methods known in the art avoid using lower temperatures for hybridization because lowering the temperature has the effect of increasing hybridization of probes to unintended targets. However, when the goal is to preserve allele ratios with maximum fidelity, the approach of using lower hybridization temperatures provides optimally accurate allele ratios, despite the fact that the current art teaches away from this approach. Hybridization temperature can also be increased to require greater overlap between the target and the synthesized probe so that only targets with substantial overlap of the targeted region are captured. In some embodiments of the present disclosure, the hybridization temperature is lowered from the normal hybridization temperature to about 40°C, to about 45°C, to about 50°C, to about 55°C, to about 60°C, to about 65, or to about 70°C.
In an embodiment, the hybrid capture probes can be designed such that the region of the capture probe with DNA that is complementary to the DNA found in regions flanking the polymorphic allele is not immediately adjacent to the polymorphic site. Instead, the capture probe can be designed such that the region of the capture probe that is designed to hybridize to the DNA flanking the polymorphic site of the target is separated from the portion of the capture probe that will be in van der Waals contact with the polymorphic site by a small distance that is equivalent in length to one or a small number of bases. In an embodiment, the hybrid capture probe is designed to hybridize to a region that is flanking the polymorphic allele but does not cross it; this may be termed a flanking capture probe. The length of the flanking capture probe may be less than about 120 bases, less than about 110 bases, less than about 100 bases, less than about 90 bases, and can be less than about 80 bases, less than about 70 bases, less than about 60 bases, less than about 50 bases, less than about 40 bases, less than about 30 bases, or less than about 25 bases. The region of the genome that is targeted by the flanking capture probe may be separated by the polymorphic locus by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-20, or more than 20 base pairs.
Description of a targeted capture based disease screening test using targeted sequence capture. Custom targeted sequence capture, like those currently offered by AGILENT (SURE SELECT), ROCHE-NIMBLEGEN, or ILLUMINA. Capture probes could be custom designed to ensure capture of various types of mutations. For point mutations, one or more probes that overlap the point mutation should be sufficient to capture and sequence the mutation.
For small insertions or deletions, one or more probes that overlap the mutation may be sufficient to capture and sequence fragments comprising the mutation. Hybridization may be less efficient between the probe-limiting capture efficiency, typically designed to the reference genome sequence. To ensure capture of fragments comprising the mutation one could design two probes, one matching the normal allele and one matching the mutant allele. A longer probe may enhance hybridization. Multiple overlapping probes may enhance capture. Finally, placing a probe immediately adjacent to, but not overlapping, the mutation may permit relatively similar capture efficiency of the normal and mutant alleles.
For Simple Tandem Repeats (STRs), a probe overlapping these highly variable sites is unlikely to capture the fragment well. To enhance capture a probe could be placed adjacent to, but not overlapping the variable site. The fragment could then be sequenced as normal to reveal the length and composition of the STR.
For large deletions, a series of overlapping probes, a common approach currently used in exome capture systems may work. However, with this approach it may be difficult to determine whether or not an individual is heterozygous. Targeting and evaluating SNPs within the captured region could potentially reveal loss of heterozygosity across the region indicating that an individual is a carrier. In an embodiment, it is possible to place non-overlapping or singleton probes across the potentially deleted region and use the number of fragments captured as a measure of heterozygosity. In the case where an individual caries a large deletion, one-half the number of fragments are expected to be available for capture relative to a non-deleted (diploid) reference locus. Consequently, the number of reads obtained from the deleted regions should be roughly half that obtained from a normal diploid locus. Aggregating and averaging the sequencing read depth from multiple singleton probes across the potentially deleted region may enhance the signal and improve confidence of the diagnosis. The two approaches, targeting S Ps to identify loss of heterozygosity and using multiple singleton probes to obtain a quantitative measure of the quantity of underlying fragments from that locus can also be combined. Either or both of these strategies may be combined with other strategies to better obtain the same end.
If during testing cfDNA detection of a male fetus, as indicated by the presence of the Y-chromosome fragments, captured and sequenced in the same test, and either an X-linked dominant mutation where mother and father are unaffected, or a dominant mutation where mother is not affected would indicated heighted risk to the fetus. Detection of two mutant recessive alleles within the same gene in an unaffected mother would imply the fetus had inherited a mutant allele from father and potentially a second mutant allele from mother. In all cases, follow-up testing by amniocentesis or chorionic villus sampling may be indicated.
A targeted capture based disease screening test could be combined with a targeted capture based non-invasive or invasive prenatal diagnostic test for aneuploidy.
There are a number of ways to decrease depth of read (DOR) variability: for example, one could increase primer concentrations, one could use longer targeted amplification probes, or one could run more STA cycles (such as more than 25, more than 30, more than 35, or even more than 40)
Targeted PCR
In some embodiments, PCR can be used to target specific locations of the genome. In plasma samples, the original DNA is highly fragmented (typically less than 500 bp, with an average length less than 200 bp). In PCR, both forward and reverse primers must anneal to the same fragment to enable amplification. Therefore, if the fragments are short, the PCR assays must amplify relatively short regions as well. Like MIPS, if the polymorphic positions are too close the polymerase binding site, it could result in biases in the amplification from different alleles. Currently, PCR primers that target polymorphic regions, such as those containing SNPs, are typically designed such that the 3' end of the primer will hybridize to the base immediately adjacent to the polymorphic base or bases. In an embodiment of the present disclosure, the 3' ends of both the forward and reverse PCR primers are designed to hybridize to bases that are one or a few positions away from the variant positions (polymorphic sites) of the targeted allele. The number of bases between the polymorphic site (S P or otherwise) and the base to which the 3' end of the primer is designed to hybridize may be one base, it may be two bases, it may be three bases, it may be four bases, it may be five bases, it may be six bases, it may be seven to ten bases, it may be eleven to fifteen bases, or it may be sixteen to twenty bases. The forward and reverse primers may be designed to hybridize a different number of bases away from the polymorphic site.
PCR assay can be generated in large numbers, however, the interactions between different PCR assays makes it difficult to multiplex them beyond about one hundred assays. Various complex molecular approaches can be used to increase the level of multiplexing, but it may still be limited to fewer than 100, perhaps 200, or possibly 500 assays per reaction. Samples with large quantities of DNA can be split among multiple sub-reactions and then recombined before sequencing. For samples where either the overall sample or some subpopulation of DNA molecules is limited, splitting the sample would introduce statistical noise. In an embodiment, a small or limited quantity of DNA may refer to an amount below 10 pg, between 10 and 100 pg, between 100 pg and 1 ng, between 1 and 10 ng, or between 10 and 100 ng. Note that while this method is particularly useful on small amounts of DNA where other methods that involve splitting into multiple pools can cause significant problems related to introduced stochastic noise, this method still provides the benefit of minimizing bias when it is run on samples of any quantity of DNA. In these situations a universal pre-amplification step may be used to increase the overall sample quantity. Ideally, this pre-amplification step should not appreciably alter the allelic distributions.
In an embodiment, a method of the present disclosure can generate PCR products that are specific to a large number of targeted loci, specifically 1,000 to 5,000 loci, 5,000 to 10,000 loci or more than 10,000 loci, for genotyping by sequencing or some other genotyping method, from limited samples such as single cells or DNA from body fluids. Currently, performing multiplex PCR reactions of more than 5 to 10 targets presents a major challenge and is often hindered by primer side products, such as primer dimers, and other artifacts. When detecting target sequences using microarrays with hybridization probes, primer dimers and other artifacts may be ignored, as these are not detected. However, when using sequencing as a method of detection, the vast majority of the sequencing reads would sequence such artifacts and not the desired target sequences in a sample. Methods described in the prior art used to multiplex more than 50 or 100 reactions in one reaction followed by sequencing will typically result in more than 20%, and often more than 50%, in many cases more than 80% and in some cases more than 90% off-target sequence reads.
In general, to perform targeted sequencing of multiple (n) targets of a sample (greater than 50, greater than 100, greater than 500, or greater than 1,000), one can split the sample into a number of parallel reactions that amplify one individual target. This has been performed in PCR multiwell plates or can be done in commercial platforms such as the FLUIDIGM ACCESS ARRAY (48 reactions per sample in microfluidic chips) or DROPLET PCR by RAIN DANCE TECHNOLOGY (100s to a few thousands of targets). Unfortunately, these split-and-pool methods are problematic for samples with a limited amount of DNA, as there is often not enough copies of the genome to ensure that there is one copy of each region of the genome in each well. This is an especially severe problem when polymorphic loci are targeted, and the relative proportions of the alleles at the polymorphic loci are needed, as the stochastic noise introduced by the splitting and pooling will cause very poorly accurate measurements of the proportions of the alleles that were present in the original sample of DNA. Described here is a method to effectively and efficiently amplify many PCR reactions that is applicable to cases where only a limited amount of DNA is available. In an embodiment, the method may be applied for analysis of single cells, body fluids, mixtures of DNA such as the free floating DNA found in maternal plasma, biopsies, environmental and/or forensic samples.
In an embodiment, the targeted sequencing may involve one, a plurality, or all of the following steps, a) Generate and amplify a library with adaptor sequences on both ends of DNA fragments, b) Divide into multiple reactions after library amplification, c) Generate and optionally amplify a library with adaptor sequences on both ends of DNA fragments, d) Perform 1000- to 10,000-plex amplification of selected targets using one target specific "Forward" primer per target and one tag specific primer, e) Perform a second amplification from this product using "Reverse" target specific primers and one (or more) primer specific to a universal tag that was introduced as part of the target specific forward primers in the first round, f) Perform a 1000-plex preamplification of selected target for a limited number of cycles, g) Divide the product into multiple aliquots and amplify subpools of targets in individual reactions (for example, 50 to 500-plex, though this can be used all the way down to singleplex. h) Pool products of parallel subpools reactions, i) During these amplifications
8Θ primers may carry sequencing compatible tags (partial or full length) such that the products can be sequenced.
Highly Multiplexed PCR
Disclosed herein are methods that permit the targeted amplification of over a hundred to tens of thousands of target sequences {e.g. SNP loci) from a sample such as genomic DNA obtained from plasma or any of the other samples disclosed herein (see, e.g., U.S. Utility Application Serial No. 13/683,604, filed November 21, 2012, which is hereby incorporated by reference in its entirety). The amplified sample may be relatively free of primer dimer products and have low allelic bias at target loci. If during or after amplification the products are appended with sequencing compatible adaptors, analysis of these products can be performed by sequencing.
Performing a highly multiplexed PCR amplification using methods known in the art results in the generation of primer dimer products that are in excess of the desired amplification products and not suitable for sequencing. These can be reduced empirically by eliminating primers that form these products, or by performing in silico selection of primers. However, the larger the number of assays, the more difficult this problem becomes.
One solution is to split the 5000-plex reaction into several lower-plexed amplifications, e.g. one hundred 50-plex or fifty 100-plex reactions, or to use microfluidics or even to split the sample into individual PCR reactions. However, if the sample DNA is limited, such as in noninvasive prenatal diagnostics from pregnancy plasma, dividing the sample between multiple reactions should be avoided as this will result in bottlenecking.
Described herein are methods to first globally amplify the DNA (such as plasma DNA) of a sample and then divide the sample up into multiple multiplexed target enrichment reactions with more moderate numbers of target sequences per reaction. In an embodiment, a method of the present disclosure can be used for preferentially enriching a DNA mixture at a plurality of loci, the method comprising one or more of the following steps: generating and amplifying a library from a mixture of DNA where the molecules in the library have adaptor sequences ligated on both ends of the DNA fragments, dividing the amplified library into multiple reactions, performing a first round of multiplex amplification of selected targets using one target specific "forward" primer per target and one or a plurality of adaptor specific universal "reverse" primers. In an embodiment, a method of the present disclosure further includes performing a second amplification using "reverse" target specific primers and one or a plurality of primers specific to a universal tag that was introduced as part of the target specific forward primers in the first round. In an embodiment, the method may involve a fully nested, hemi-nested, semi-nested, one sided fully nested, one sided hemi-nested, or one sided semi-nested PCR approach. In an embodiment, a method of the present disclosure is used for preferentially enriching a DNA mixture at a plurality of loci, the method comprising performing a multiplex preamplification of selected targets for a limited number of cycles, dividing the product into multiple aliquots and amplifying subpools of targets in individual reactions, and pooling products of parallel subpools reactions. Note that this approach could be used to perform targeted amplification in a manner that would result in low levels of allelic bias for 50-500 loci, for 500 to 5,000 loci, for 5,000 to 50,000 loci, or even for 50,000 to 500,000 loci. In an embodiment, the primers carry partial or full length sequencing compatible tags.
The workflow may entail (1) extracting DNA such as cell free, cellular, or plasma DNA, (2) preparing fragment library with universal adaptors on both ends of fragments, (3) amplifying the library using universal primers specific to the adaptors, (4) dividing the amplified sample "library" into multiple aliquots, (5) performing multiplex (e.g. about 100- plex, 1,000, or 10,000-plex with one target specific primer per target and a tag-specific primer) amplifications on aliquots, (6) pooling aliquots of one sample, (7) barcoding the sample, (8) mixing the samples and adjusting the concentration, (9) sequencing the sample. The workflow may comprise multiple sub-steps that contain one of the listed steps (e.g. step (2) of preparing the library step could entail three enzymatic steps (blunt ending, dA tailing and adaptor ligation) and three purification steps). Steps of the workflow may be combined, divided up or performed in different order (e.g. bar coding and pooling of samples).
It is important to note that the amplification of a library can be performed in such a way that it is biased to amplify short fragments more efficiently. In this manner it is possible to preferentially amplify shorter sequences, e.g. mono-nucleosomal DNA fragments as the cell free fetal DNA (of placental origin) found in the circulation of pregnant women. Note that PCR assays can have the tags, for example sequencing tags, (usually a truncated form of 15-25 bases). After multiplexing, PCR multiplexes of a sample are pooled and then the tags are completed (including bar coding) by a tag-specific PCR (could also be done by ligation). Also, the full sequencing tags can be added in the same reaction as the multiplexing. In the first cycles targets may be amplified with the target specific primers, subsequently the tag-specific primers take over to complete the SQ-adaptor sequence. The PCR primers may carry no tags. The sequencing tags may be appended to the amplification products by ligation.
In an embodiment, highly multiplex PCR followed by evaluation of amplified material by clonal sequencing may be used to detect fetal aneuploidy. Whereas traditional multiplex PCRs evaluate up to fifty loci simultaneously, the approach described herein may be used to enable simultaneous evaluation of more than 50 loci simultaneously, more than 100 loci simultaneously, more than 500 loci simultaneously, more than 1,000 loci simultaneously, more than 5,000 loci simultaneously, more than 10,000 loci simultaneously, more than 50,000 loci simultaneously, and more than 100,000 loci simultaneously. Experiments have shown that up to, including and more than 10,000 distinct loci can be evaluated simultaneously, in a single reaction, with sufficiently good efficiency and specificity to make non-invasive prenatal aneuploidy diagnoses and/or copy number calls with high accuracy. Assays may be combined in a single reaction with the entirety of a sample such as a cfDNA sample isolated from maternal plasma, a fraction thereof, or a further processed derivative of the cfDNA sample. The sample (e.g., cfDNA or derivative) may also be split into multiple parallel multiplex reactions. The optimum sample splitting and multiplex is determined by trading off various performance specifications. Due to the limited amount of material, splitting the sample into multiple fractions can introduce sampling noise, handling time, and increase the possibility of error. Conversely, higher multiplexing can result in greater amounts of spurious amplification and greater inequalities in amplification both of which can reduce test performance.
Two crucial related considerations in the application of the methods described herein are the limited amount of original sample (e.g., plasma) and the number of original molecules in that material from which allele frequency or other measurements are obtained. If the number of original molecules falls below a certain level, random sampling noise becomes significant, and can affect the accuracy of the test. Typically, data of sufficient quality for making noninvasive prenatal aneuploidy diagnoses can be obtained if measurements are made on a sample comprising the equivalent of 500-1000 original molecules per target locus. There are a number of ways of increasing the number of distinct measurements, for example increasing the sample volume. Each manipulation applied to the sample also potentially results in losses of material. It is essential to characterize losses incurred by various manipulations and avoid, or as necessary improve yield of certain manipulations to avoid losses that could degrade performance of the test.
In an embodiment, it is possible to mitigate potential losses in subsequent steps by amplifying all or a fraction of the original sample, such as a cfDNA sample. Various methods are available to amplify all of the genetic material in a sample, increasing the amount available for downstream procedures. In an embodiment, ligation mediated PCR (LM-PCR) DNA fragments are amplified by PCR after ligation of either one distinct adaptors, two distinct adapters, or many distinct adaptors. In an embodiment, multiple displacement amplification (MDA) phi-29 polymerase is used to amplify all DNA isothermally. In DOP-PCR and variations, random priming is used to amplify the original material DNA. Each method has certain characteristics such as uniformity of amplification across all represented regions of the genome, efficiency of capture and amplification of original DNA, and amplification performance as a function of the length of the fragment.
In an embodiment LM-PCR may be used with a single heteroduplexed adaptor having a 3-prime tyrosine. The heteroduplexed adaptor enables the use of a single adaptor molecule that may be converted to two distinct sequences on 5-prime and 3-prime ends of the original DNA fragment during the first round of PCR. In an embodiment, it is possible to fractionate the amplified library by size separations, or products such as AMPURE, TASS or other similar methods. Prior to ligation, sample DNA may be blunt ended, and then a single adenosine base is added to the 3-prime end. Prior to ligation the DNA may be cleaved using a restriction enzyme or some other cleavage method. During ligation the 3-prime adenosine of the sample fragments and the complementary 3-prime tyrosine overhang of adaptor can enhance ligation efficiency. The extension step of the PCR amplification may be limited from a time standpoint to reduce amplification from fragments longer than about 200 bp, about 300 bp, about 400 bp, about 500 bp or about 1,000 bp. Since longer DNA found in the maternal plasma is nearly exclusively maternal, this may result in the enrichment of fetal DNA by 10-50% and improvement of test performance. A number of reactions were run using conditions as specified by commercially available kits; the resulted in successful ligation of fewer than 10% of sample DNA molecules. A series of optimizations of the reaction conditions for this improved ligation to approximately 70%.
Mini-PCR Traditional PCR assay design results in significant losses of distinct fetal molecules, but losses can be greatly reduced by designing very short PCR assays, termed mini-PCR assays. Fetal cfDNA in maternal serum is highly fragmented and the fragment sizes are distributed in approximately a Gaussian fashion with a mean of 160 bp, a standard deviation of 15 bp, a minimum size of about 100 bp, and a maximum size of about 220 bp. The distribution of fragment start and end positions with respect to the targeted polymorphisms, while not necessarily random, vary widely among individual targets and among all targets collectively and the polymorphic site of one particular target locus may occupy any position from the start to the end among the various fragments originating from that locus. Note that the term mini-PCR may equally well refer to normal PCR with no additional restrictions or limitations.
During PCR, amplification will only occur from template DNA fragments comprising both forward and reverse primer sites. Because fetal cfDNA fragments are short, the likelihood of both primer sites being present the likelihood of a fetal fragment of length L comprising both the forward and reverse primers sites is ratio of the length of the amplicon to the length of the fragment. Under ideal conditions, assays in which the amplicon is 45, 50, 55, 60, 65, or 70 bp will successfully amplify from 72%, 69%, 66%, 63%, 59%, or 56%, respectively, of available template fragment molecules. The amplicon length is the distance between the 5- prime ends of the forward and reverse priming sites. Amplicon length that is shorter than typically used by those known in the art may result in more efficient measurements of the desired polymorphic loci by only requiring short sequence reads. In an embodiment, a substantial fraction of the amplicons should be less than 100 bp, less than 90 bp, less than 80 bp, less than 70 bp, less than 65 bp, less than 60 bp, less than 55 bp, less than 50 bp, or less than 45 bp.
Note that in methods known in the art, short assays such as those described herein are usually avoided because they are not required and they impose considerable constraint on primer design by limiting primer length, annealing characteristics, and the distance between the forward and reverse primer.
Also note that there is the potential for biased amplification if the 3 -prime end of the either primer is within roughly 1-6 bases of the polymorphic site. This single base difference at the site of initial polymerase binding can result in preferential amplification of one allele, which can alter observed allele frequencies and degrade performance. All of these constraints make it very challenging to identify primers that will amplify a particular locus successfully and furthermore, to design large sets of primers that are compatible in the same multiplex reaction. In an embodiment, the 3' end of the inner forward and reverse primers are designed to hybridize to a region of DNA upstream from the polymorphic site, and separated from the polymorphic site by a small number of bases. Ideally, the number of bases may be between 6 and 10 bases, but may equally well be between 4 and 15 bases, between three and 20 bases, between two and 30 bases, or between 1 and 60 bases, and achieve substantially the same end.
Multiplex PCR may involve a single round of PCR in which all targets are amplified or it may involve one round of PCR followed by one or more rounds of nested PCR or some variant of nested PCR. Nested PCR consists of a subsequent round or rounds of PCR amplification using one or more new primers that bind internally, by at least one base pair, to the primers used in a previous round. Nested PCR reduces the number of spurious amplification targets by amplifying, in subsequent reactions, only those amplification products from the previous one that have the correct internal sequence. Reducing spurious amplification targets improves the number of useful measurements that can be obtained, especially in sequencing. Nested PCR typically entails designing primers completely internal to the previous primer binding sites, necessarily increasing the minimum DNA segment size required for amplification. For samples such as maternal plasma cfDNA, in which the DNA is highly fragmented, the larger assay size reduces the number of distinct cfDNA molecules from which a measurement can be obtained. In an embodiment, to offset this effect, one may use a partial nesting approach where one or both of the second round primers overlap the first binding sites extending internally some number of bases to achieve additional specificity while minimally increasing in the total assay size.
In an embodiment, a multiplex pool of PCR assays are designed to amplify potentially heterozygous SNP or other polymorphic or non-polymorphic loci on one or more chromosomes and these assays are used in a single reaction to amplify DNA. The number of PCR assays may be between 50 and 200 PCR assays, between 200 and 1,000 PCR assays, between 1,000 and 5,000 PCR assays, or between 5,000 and 20,000 PCR assays (50 to 200- plex, 200 to 1,000-plex, 1,000 to 5,000-plex, 5,000 to 20,000-plex, more than 20,000-plex respectively). In an embodiment, a multiplex pool of about 10,000 PCR assays (10,000-plex) are designed to amplify potentially heterozygous SNP loci on chromosomes X, Y, 13, 18, and 21 and 1 or 2 and these assays are used in a single reaction to amplify DNA from any of the samples disclosed herein such as cfDNA obtained from a material plasma sample, chorion villus samples, amniocentesis samples, single or a small number of cells, other bodily fluids or tissues, cancers, or other genetic matter. The S P frequencies of each locus may be determined by clonal or some other method of sequencing of the amplicons. Statistical analysis of the allele frequency distributions or ratios of all assays may be used to determine if the sample contains a trisomy of one or more of the chromosomes included in the test. In another embodiment the original cfDNA samples is split into two samples and parallel 5,000-plex assays are performed. In another embodiment the original cfDNA samples is split into n samples and parallel (~10,000/n)-plex assays are performed where n is between 2 and 12, or between 12 and 24, or between 24 and 48, or between 48 and 96. Data is collected and analyzed in a similar manner to that already described. Note that this method is equally well applicable to detecting translocations, deletions, duplications, and other chromosomal abnormalities.
In an embodiment, tails with no homology to the target genome may also be added to the 3-prime or 5-prime end of any of the primers. These tails facilitate subsequent manipulations, procedures, or measurements. In an embodiment, the tail sequence can be the same for the forward and reverse target specific primers. In an embodiment, different tails may be used for the forward and reverse target specific primers. In an embodiment, a plurality of different tails may be used for different loci or sets of loci. Certain tails may be shared among all loci or among subsets of loci. For example, using forward and reverse tails corresponding to forward and reverse sequences required by any of the current sequencing platforms can enable direct sequencing following amplification. In an embodiment, the tails can be used as common priming sites among all amplified targets that can be used to add other useful sequences. In some embodiments, the inner primers may contain a region that is designed to hybridize either upstream or downstream of the targeted locus (e.g., a polymorphic locus). In some embodiments, the primers may contain a molecular barcode. In some embodiments, the primer may contain a universal priming sequence designed to allow PCR amplification.
In an embodiment, a 10,000-plex PCR assay pool is created such that forward and reverse primers have tails corresponding to the required forward and reverse sequences required by a high throughput sequencing instrument such as the HISEQ, GAIIX, or MYSEQ available from ILLUMINA. In addition, included 5-prime to the sequencing tails is an additional sequence that can be used as a priming site in a subsequent PCR to add nucleotide barcode sequences to the amplicons, enabling multiplex sequencing of multiple samples in a single lane of the high throughput sequencing instrument.
In an embodiment, a 10,000-plex PCR assay pool is created such that reverse primers have tails corresponding to the required reverse sequences required by a high throughput sequencing instrument. After amplification with the first 10,000-plex assay, a subsequent PCR amplification may be performed using a another 10,000-plex pool having partly nested forward primers (e.g., 6-bases nested) for all targets and a reverse primer corresponding to the reverse sequencing tail included in the first round. This subsequent round of partly nested amplification with just one target specific primer and a universal primer limits the required size of the assay, reducing sampling noise, but greatly reduces the number of spurious amplicons. The sequencing tags can be added to appended ligation adaptors and/or as part of PCR probes, such that the tag is part of the final amplicon.
Fetal fraction affects performance of the test. There are a number of ways to enrich the fetal fraction of the DNA found in maternal plasma. Fetal fraction can be increased by the previously described LM-PCR method already discussed as well as by a targeted removal of long maternal fragments. In an embodiment, prior to multiplex PCR amplification of the target loci, an additional multiplex PCR reaction may be carried out to selectively remove long and largely maternal fragments corresponding to the loci targeted in the subsequent multiplex PCR. Additional primers are designed to anneal a site a greater distance from the polymorphism than is expected to be present among cell free fetal DNA fragments. These primers may be used in a one cycle multiplex PCR reaction prior to multiplex PCR of the target polymorphic loci. These distal primers are tagged with a molecule or moiety that can allow selective recognition of the tagged pieces of DNA. In an embodiment, these molecules of DNA may be covalently modified with a biotin molecule that allows removal of newly formed double stranded DNA comprising these primers after one cycle of PCR. Double stranded DNA formed during that first round is likely maternal in origin. Removal of the hybrid material may be accomplish by the used of magnetic streptavidin beads. There are other methods of tagging that may work equally well. In an embodiment, size selection methods may be used to enrich the sample for shorter strands of DNA; for example those less than about 800 bp, less than about 500 bp, or less than about 300 bp. Amplification of short fragments can then proceed as usual.
The mini-PCR method described in this disclosure enables highly multiplexed amplification and analysis of hundreds to thousands or even millions of loci in a single reaction, from a single sample. At the same, the detection of the amplified DNA can be multiplexed; tens to hundreds of samples can be multiplexed in one sequencing lane by using barcoding PCR. This multiplexed detection has been successfully tested up to 49-plex, and a much higher degree of multiplexing is possible. In effect, this allows hundreds of samples to be genotyped at thousands of SNPs in a single sequencing run. For these samples, the method allows determination of genotype and heterozygosity rate and simultaneously determination of copy number, both of which may be used for the purpose of aneuploidy detection. This method is particularly useful in detecting aneuploidy of a gestating fetus from the free floating DNA found in maternal plasma. This method may be used as part of a method for sexing a fetus, and/or predicting the paternity of the fetus. It may be used as part of a method for mutation dosage. This method may be used for any amount of DNA or RNA, and the targeted regions may be SNPs, other polymorphic regions, non-polymorphic regions, and combinations thereof.
In some embodiments, ligation mediated universal-PCR amplification of fragmented DNA may be used. The ligation mediated universal-PCR amplification can be used to amplify plasma DNA, which can then be divided into multiple parallel reactions. It may also be used to preferentially amplify short fragments, thereby enriching fetal fraction. In some embodiments the addition of tags to the fragments by ligation can enable detection of shorter fragments, use of shorter target sequence specific portions of the primers and/or annealing at higher temperatures which reduces unspecific reactions.
The methods described herein may be used for a number of purposes where there is a target set of DNA that is mixed with an amount of contaminating DNA. In some embodiments, the target DNA and the contaminating DNA may be from individuals who are genetically related. For example, genetic abnormalities in a fetus (target) may be detected from maternal plasma which contains fetal (target) DNA and also maternal (contaminating) DNA; the abnormalities include whole chromosome abnormalities (e.g. aneuploidy) partial chromosome abnormalities (e.g. deletions, duplications, inversions, translocations), polynucleotide polymorphisms (e.g. STRs), single nucleotide polymorphisms, and/or other genetic abnormalities or differences. In some embodiments, the target and contaminating DNA may be from the same individual, but where the target and contaminating DNA are different by one or more mutations, for example in the case of cancer, (see e.g. H. Mamon et al. Preferential Amplification of Apoptotic DNA from Plasma: Potential for Enhancing Detection of Minor DNA Alterations in Circulating DNA. Clinical Chemistry 54:9 (2008). In some embodiments,
Θ8 the DNA may be found in cell culture (apoptotic) supernatant. In some embodiments, it is possible to induce apoptosis in biological samples (e.g. blood) for subsequent library preparation, amplification and/or sequencing. A number of enabling workflows and protocols to achieve this end are presented elsewhere in this disclosure.
In some embodiments, the target DNA may originate from single cells, from samples of DNA consisting of less than one copy of the target genome, from low amounts of DNA, from DNA from mixed origin (e.g. pregnancy plasma: placental and maternal DNA; cancer patient plasma and tumors: mix between healthy and cancer DNA, transplantation etc), from other body fluids, from cell cultures, from culture supematants, from forensic samples of DNA, from ancient samples of DNA (e.g. insects trapped in amber), from other samples of DNA, and combinations thereof.
In some embodiments, a short amplicon size may be used. Short amplicon sizes are especially suited for fragmented DNA (see e.g. A. Sikora, et si. Detection of increased amounts of cell-free fetal DNA with short PCR amplicons. Clin Chem. 2010 Jan;56(l): 136-8.) The use of short amplicon sizes may result in some significant benefits. Short amplicon sizes may result in optimized amplification efficiency. Short amplicon sizes typically produce shorter products, therefore there is less chance for nonspecific priming. Shorter products can be clustered more densely on sequencing flow cell, as the clusters will be smaller. Note that the methods described herein may work equally well for longer PCR amplicons. Amplicon length may be increased if necessary, for example, when sequencing larger sequence stretches. Experiments with 146-plex targeted amplification with assays of 100 bp to 200 bp length as first step in a nested-PCR protocol were run on single cells and on genomic DNA with positive results.
In some embodiments, the methods described herein may be used to amplify and/or detect SNPs, copy number, nucleotide methylation, mRNA levels, other types of RNA expression levels, other genetic and/or epigenetic features. The mini-PCR methods described herein may be used along with next-generation sequencing; it may be used with other downstream methods such as microarrays, counting by digital PCR, real-time PCR, Mass- spectrometry analysis etc.
In some embodiment, the mini-PCR amplification methods described herein may be used as part of a method for accurate quantification of minority populations. It may be used for absolute quantification using spike calibrators. It may be used for mutation / minor allele quantification through very deep sequencing, and may be run in a highly multiplexed fashion. It may be used for standard paternity and identity testing of relatives or ancestors, in human, animals, plants or other creatures. It may be used for forensic testing. It may be used for rapid genotyping and copy number analysis (CN), on any kind of material, e.g. amniotic fluid and CVS, sperm, product of conception (POC). It may be used for single cell analysis, such as genotyping on samples biopsied from embryos. It may be used for rapid embryo analysis (within less than one, one, or two days of biopsy) by targeted sequencing using min-PCR.
In some embodiments, it may be used for tumor analysis: tumor biopsies are often a mixture of health and tumor cells. Targeted PCR allows deep sequencing of SNPs and loci with close to no background sequences. It may be used for copy number and loss of heterozygosity analysis on tumor DNA. Said tumor DNA may be present in many different body fluids or tissues of tumor patients. It may be used for detection of tumor recurrence, and/or tumor screening. It may be used for quality control testing of seeds. It may be used for breeding, or fishing purposes. Note that any of these methods could equally well be used targeting non-polymorphic loci for the purpose of ploidy calling.
Some literature describing some of the fundamental methods that underlie the methods disclosed herein include: (1) Wang HY, Luo M, Tereshchenko IV, Frikker DM, Cui X, Li JY, Hu G, Chu Y, Azaro MA, Lin Y, Shen L, Yang Q, Kambouris ME, Gao R, Shih W, Li H. Genome Res. 2005 Feb;15(2):276-83. Department of Molecular Genetics, Microbiology and Immunology/The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, USA. (2) High-throughput genotyping of single nucleotide polymorphisms with high sensitivity. Li H, Wang HY, Cui X, Luo M, Hu G, Greenawalt DM, Tereshchenko IV, Li JY, Chu Y, Gao R. Methods Mol Biol. 2007;396 - PubMed PMID: 18025699. (3) A method comprising multiplexing of an average of 9 assays for sequencing is described in: Nested Patch PCR enables highly multiplexed mutation discovery in candidate genes. Varley KE, Mitra RD. Genome Res. 2008 Nov;18(l l):1844-50. Epub 2008 Oct 10. Note that the methods disclosed herein allow multiplexing of orders of magnitude more than in the above references. Primer Design
Highly multiplexed PCR can often result in the production of a very high proportion of product DNA that results from unproductive side reactions such as primer dimer formation. In an embodiment, the particular primers that are most likely to cause unproductive side reactions may be removed from the primer library to give a primer library that will result in a greater proportion of amplified DNA that maps to the genome. The step of removing problematic primers, that is, those primers that are particularly likely to firm dimers has unexpectedly enabled extremely high PCR multiplexing levels for subsequent analysis by sequencing. In systems such as sequencing, where performance significantly degrades by primer dimers and/or other mischief products, greater than 10, greater than 50, and greater than 100 times higher multiplexing than other described multiplexing has been achieved. Note this is opposed to probe based detection methods, e.g. microarrays, TAQMAN, PCR etc. where an excess of primer dimers will not affect the outcome appreciably. Also note that the general belief in the art is that multiplexing PCR for sequencing is limited to about 100 assays in the same well. E.g. Fluidigm and Rain Dance offer platforms to perform 48 or 1000s of PCR assays in parallel reactions for one sample.
There are a number of ways to choose primers for a library where the amount of non- mapping primer-dimer or other primer mischief products are minimized. Empirical data indicate that a small number of 'bad' primers are responsible for a large amount of non- mapping primer dimer side reactions. Removing these 'bad' primers can increase the percent of sequence reads that map to targeted loci. One way to identify the 'bad' primers is to look at the sequencing data of DNA that was amplified by targeted amplification; those primer dimers that are seen with greatest frequency can be removed to give a primer library that is significantly less likely to result in side product DNA that does not map to the genome. There are also publicly available programs that can calculate the binding energy of various primer combinations, and removing those with the highest binding energy will also give a primer library that is significantly less likely to result in side product DNA that does not map to the genome.
Multiplexing large numbers of primers imposes considerable constraint on the assays that can be included. Assays that unintentionally interact result in spurious amplification products. The size constraints of miniPCR may result in further constraints. In an embodiment, it is possible to begin with a very large number of potential SNP targets (between about 500 to greater than 1 million) and attempt to design primers to amplify each SNP. Where primers can be designed it is possible to attempt to identify primer pairs likely to form spurious products by evaluating the likelihood of spurious primer duplex formation between all possible pairs of primers using published thermodynamic parameters for DNA duplex formation. Primer interactions may be ranked by a scoring function related to the interaction and primers with the worst interaction scores are eliminated until the number of primers desired is met. In cases where SNPs likely to be heterozygous are most useful, it is possible to also rank the list of assays and select the most heterozygous compatible assays. Experiments have validated that primers with high interaction scores are most likely to form primer dimers. At high multiplexing it is not possible to eliminate all spurious interactions, but it is essential to remove the primers or pairs of primers with the highest interaction scores in silico as they can dominate an entire reaction, greatly limiting amplification from intended targets. We have performed this procedure to create multiplex primer sets with 10,000 or more primers. The improvement due to this procedure is substantial, enabling amplification of more than 80%, more than 90%, more than 95%, more than 98%, and even more than 99% on target products as determined by sequencing of all PCR products, as compared to 10% from a reaction in which the worst primers were not removed. When combined with a partial semi-nested approach as previously described, more than 90%, and even more than 95% of amplicons may map to the targeted sequences.
Note that there are other methods for determining which PCR probes are likely to form dimers. In an embodiment, analysis of a pool of DNA that has been amplified using a non- optimized set of primers may be sufficient to determine problematic primers. For example, analysis may be done using sequencing, and those dimers which are present in the greatest number are determined to be those most likely to form dimers, and may be removed.
This method has a number of potential application, for example to SNP genotyping, heterozygosity rate determination, copy number measurement, and other targeted sequencing applications. In an embodiment, the method of primer design may be used in combination with the mini-PCR method described elsewhere in this document. In some embodiments, the primer design method may be used as part of a massive multiplexed PCR method.
The use of tags on the primers may reduce amplification and sequencing of primer dimer products. Tag-primers can be used to shorten necessary target-specific sequences to below 20, below 15, below 12, and even below 10 base pairs. This can be serendipitous with standard primer design when the target sequence is fragmented within the primer binding site or, or it can be designed into the primer design. Advantages of this method include: it increases the number of assays that can be designed for a certain maximal amplicon length, and it shortens the "non-informative" sequencing of primer sequence. It may also be used in combination with internal tagging (see elsewhere in this document).
In an embodiment, the relative amount of nonproductive products in the multiplexed targeted PCR amplification can be reduced by raising the annealing temperature. In cases where one is amplifying libraries with the same tag as the target specific primers, the annealing temperature can be increased in comparison to the genomic DNA as the tags will contribute to the primer binding. In some embodiments we are using considerably lower primer concentrations than previously reported along with using longer annealing times than reported elsewhere. In some embodiments the annealing times may be longer than 10 minutes, longer than 20 minutes, longer than 30 minutes, longer than 60 minutes, longer than 120 minutes, longer than 240 minutes, longer than 480 minutes, and even longer than 960 minutes. In an embodiment, longer annealing times are used than in previous reports, allowing lower primer concentrations. In some embodiments, the primer concentrations are as low as 50 nM, 20 nM, 10 nM, 5 nM, 1 nM, and lower than 1 uM. This surprisingly results in robust performance for highly multiplexed reactions, for example 1,000-plex reactions, 2,000-plex reactions, 5,000- plex reactions, 10,000-plex reactions, 20,000-plex reactions, 50,000-plex reactions, and even 100,000-plex reactions. In an embodiment, the amplification uses one, two, three, four or five cycles run with long annealing times, followed by PCR cycles with more usual annealing times with tagged primers.
To select target locations, one may start with a pool of candidate primer pair designs and create a thermodynamic model of potentially adverse interactions between primer pairs, and then use the model to eliminate designs that are incompatible with other the designs in the pool. Targeted PCR Variants - Nesting
There are many workflows that are possible when conducting PCR; some workflows typical to the methods disclosed herein are described. The steps outlined herein are not meant to exclude other possible steps nor does it imply that any of the steps described herein are required for the method to work properly. A large number of parameter variations or other modifications are known in the literature, and may be made without affecting the essence of the invention. One particular generalized workflow is given below followed by a number of possible variants. The variants typically refer to possible secondary PCR reactions, for example different types of nesting that may be done (step 3). It is important to note that variants may be done at different times, or in different orders than explicitly described herein. Examples that use polymorphic loci for illustration can be readily adapted for the amplification of non-polymorphic loci if desired.
1. The DNA in the sample may have ligation adapters, often referred to as library tags or ligation adaptor tags (LTs), appended, where the ligation adapters contain a universal priming sequence, followed by a universal amplification. In an embodiment, this may be done using a standard protocol designed to create sequencing libraries after fragmentation. In an embodiment, the DNA sample can be blunt ended, and then an A can be added at the 3' end. A Y-adaptor with a T-overhang can be added and ligated. In some embodiments, other sticky ends can be used other than an A or T overhang. In some embodiments, other adaptors can be added, for example looped ligation adaptors. In some embodiments, the adaptors may have tag designed for PCR amplification.
2. Specific Target Amplification (STA): Pre-amplification of hundreds to thousands to tens of thousands and even hundreds of thousands of targets may be multiplexed in one reaction. STA is typically run from 10 to 30 cycles, though it may be run from 5 to 40 cycles, from 2 to 50 cycles, and even from 1 to 100 cycles. Primers may be tailed, for example for a simpler workflow or to avoid sequencing of a large proportion of dimers. Note that typically, dimers of both primers carrying the same tag will not be amplified or sequenced efficiently. In some embodiments, between 1 and 10 cycles of PCR may be carried out; in some embodiments between 10 and 20 cycles of PCR may be carried out; in some embodiments between 20 and 30 cycles of PCR may be carried out; in some embodiments between 30 and 40 cycles of PCR may be carried out; in some embodiments more than 40 cycles of PCR may be carried out. The amplification may be a linear amplification. The number of PCR cycles may be optimized to result in an optimal depth of read (DOR) profile. Different DOR profiles may be desirable for different purposes. In some embodiments, a more even distribution of reads between all assays is desirable; if the DOR is too small for some assays, the stochastic noise can be too high for the data to be too useful, while if the depth of read is too high, the marginal usefulness of each additional read is relatively small.
Primer tails may improve the detection of fragmented DNA from universally tagged libraries. If the library tag and the primer-tails contain a homologous sequence, hybridization can be improved (for example, melting temperature (TM) is lowered) and primers can be extended if only a portion of the primer target sequence is in the sample DNA fragment. In some embodiments, 13 or more target specific base pairs may be used. In some embodiments, 10 to 12 target specific base pairs may be used. In some embodiments, 8 to 9 target specific base pairs may be used. In some embodiments, 6 to 7 target specific base pairs may be used. In some embodiments, STA may be performed on pre-amplified DNA, e.g. MDA, RCA, other whole genome amplifications, or adaptor-mediated universal PCR. In some embodiments, STA may be performed on samples that are enriched or depleted of certain sequences and populations, e.g. by size selection, target capture, directed degradation.
3. In some embodiments, it is possible to perform secondary multiplex PCRs or primer extension reactions to increase specificity and reduce undesirable products. For example, full nesting, semi-nesting, hemi-nesting, and/or subdividing into parallel reactions of smaller assay pools are all techniques that may be used to increase specificity. Experiments have shown that splitting a sample into three 400-plex reactions resulted in product DNA with greater specificity than one 1,200-plex reaction with exactly the same primers. Similarly, experiments have shown that splitting a sample into four 2,400-plex reactions resulted in product DNA with greater specificity than one 9,600-plex reaction with exactly the same primers. In an embodiment, it is possible to use target-specific and tag specific primers of the same and opposing directionality.
4. In some embodiments, it is possible to amplify a DNA sample (dilution, purified or otherwise) produced by an STA reaction using tag-specific primers and "universal amplification", i.e. to amplify many or all pre-amplified and tagged targets. Primers may contain additional functional sequences, e.g. barcodes, or a full adaptor sequence necessary for sequencing on a high throughput sequencing platform.
These methods may be used for analysis of any sample of DNA, and are especially useful when the sample of DNA is particularly small, or when it is a sample of DNA where the DNA originates from more than one individual, such as in the case of maternal plasma. These methods may be used on DNA samples such as a single or small number of cells, genomic DNA, plasma DNA, amplified plasma libraries, amplified apoptotic supernatant libraries, or other samples of mixed DNA. In an embodiment, these methods may be used in the case where cells of different genetic constitution may be present in a single individual, such as with cancer or transplants. Protocol variants (variants and/or additions to the workflow above)
Direct multiplexed mini-PCR: Specific target amplification (STA) of a plurality of target sequences with tagged primers is shown in Figure 1. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with PCR primers hybridized. 104 denotes the final PCR product. In some embodiments, STA may be done on more than 100, more than 200, more than 500, more than 1,000, more than 2,000, more than 5,000, more than 10,000, more than 20,000, more than 50,000, more than 100,000 or more than 200,000 targets. In a subsequent reaction, tag-specific primers amplify all target sequences and lengthen the tags to include all necessary sequences for sequencing, including sample indexes. In an embodiment, primers may not be tagged or only certain primers may be tagged. Sequencing adaptors may be added by conventional adaptor ligation. In an embodiment, the initial primers may carry the tags.
In an embodiment, primers are designed so that the length of DNA amplified is unexpectedly short. Prior art demonstrates that ordinary people skilled in the art typically design 100+ bp amplicons. In an embodiment, the amplicons may be designed to be less than 80 bp. In an embodiment, the amplicons may be designed to be less than 70 bp. In an embodiment, the amplicons may be designed to be less than 60 bp. In an embodiment, the amplicons may be designed to be less than 50 bp. In an embodiment, the amplicons may be designed to be less than 45 bp. In an embodiment, the amplicons may be designed to be less than 40 bp. In an embodiment, the amplicons may be designed to be less than 35 bp. In an embodiment, the amplicons may be designed to be between 40 and 65 bp.
An experiment was performed using this protocol using 1200-plex amplification. Both genomic DNA and pregnancy plasma were used; about 70% of sequence reads mapped to targeted sequences. Details are given elsewhere in this document. Sequencing of a 1042-plex without design and selection of assays resulted in >99% of sequences being primer dimer products.
Sequential PCR: After STA1 multiple aliquots of the product may be amplified in parallel with pools of reduced complexity with the same primers. The first amplification can give enough material to split. This method is especially good for small samples, for example those that are about 6-100 pg, about 100 pg to 1 ng, about 1 ng to 10 ng, or about 10 ng to 100 ng. The protocol was performed with 1200-plex into three 400-plexes. Mapping of sequencing reads increased from around 60 to 70 % in the 1200-plex alone to over 95%.
Semi-nested mini-PCR: (see Figure 2) After STA 1 a second STA is performed comprising a multiplex set of internal nested Forward primers (103 B, 105 b) and one (or few) tag-specific Reverse primers (103 A). 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Forward primer B and Reverse Primer A hybridized. 104 denotes the PCR product from 103. 105 denotes the product from 104 with nested Forward primer b hybridized, and Reverse tag A already part of the molecule from the PCR that occurred between 103 and 104. 106 denotes the final PCR product. With this workflow usually greater than 95% of sequences map to the intended targets. The nested primer may overlap with the outer Forward primer sequence but introduces additional 3 '-end bases. In some embodiments it is possible to use between one and 20 extra 3' bases. Experiments have shown that using 9 or more extra 3' bases in a 1200-plex designs works well.
Fully nested mini-PCR: (see Figure 3) After STA step 1, it is possible to perform a second multiplex PCR (or parallel m.p. PCRs of reduced complexity) with two nested primers carrying tags (A, a, B, b). 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Forward primer B and Reverse Primer A hybridized. 104 denotes the PCR product from 103. 105 denotes the product from 104 with nested Forward primer b and nested Reverse primer a hybridized. 106 denotes the final PCR product. In some embodiments, it is possible to use two full sets of primers. Experiments using a fully nested mini-PCR protocol were used to perform 146-plex amplification on single and three cells without step 102 of appending universal ligation adaptors and amplifying.
Hemi-nested mini-PCR: (see Figure 4) It is possible to use target DNA that has and adaptors at the fragment ends. STA is performed comprising a multiplex set of Forward primers (B) and one (or few) tag-specific Reverse primers (A). A second STA can be performed using a universal tag-specific Forward primer and target specific Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Reverse Primer A hybridized. 104 denotes the PCR product from 103 that was amplified using Reverse primer A and ligation adaptor tag primer LT. 105 denotes the product from 104 with Forward primer B hybridized. 106 denotes the final PCR product. In this workflow, target specific Forward and Reverse primers are used in separate reactions, thereby reducing the complexity of the reaction and preventing dimer formation of forward and reverse primers. Note that in this example, primers A and B may be considered to be first primers, and primers 'a' and 'b' may be considered to be inner primers. This method is a big improvement on direct PCR as it is as good as direct PCR, but it avoids primer dimers. After first round of hemi nested protocol one typically sees -99% non-targeted DNA, however, after second round there is typically a big improvement.
Triply hemi-nested mini-PCR: (see Figure 5) It is possible to use target DNA that has and adaptor at the fragment ends. STA is performed comprising a multiplex set of Forward primers (B) and one (or few) tag-specific Reverse primers (A) and (a). A second STA can be performed using a universal tag-specific Forward primer and target specific Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Reverse Primer A hybridized. 104 denotes the PCR product from 103 that was amplified using Reverse primer A and ligation adaptor tag primer LT. 105 denotes the product from 104 with Forward primer B hybridized. 106 denotes the PCR product from 105 that was amplified using Reverse primer A and Forward primer B. 107 denotes the product from 106 with Reverse primer 'a' hybridized. 108 denotes the final PCR product. Note that in this example, primers 'a' and B may be considered to be inner primers, and A may be considered to be a first primer. Optionally, both A and B may be considered to be first primers, and 'a' may be considered to be an inner primer. The designation of reverse and forward primers may be switched. In this workflow, target specific Forward and Reverse primers are used in separate reactions, thereby reducing the complexity of the reaction and preventing dimer formation of forward and reverse primers. This method is a big improvement on direct PCR as it is as good as direct PCR, but it avoids primer dimers. After first round of hemi nested protocol one typically sees -99% non-targeted DNA, however, after second round there is typically a big improvement.
One-sided nested mini-PCR: (see Figure 6) It is possible to use target DNA that has an adaptor at the fragment ends. STA may also be performed with a multiplex set of nested Forward primers and using the ligation adapter tag as the Reverse primer. A second STA may then be performed using a set of nested Forward primers and a universal Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA that has been universally amplified with Forward Primer A hybridized. 104 denotes the PCR product from 103 that was amplified using Forward primer A and ligation adaptor tag Reverse primer LT. 105 denotes the product from 104 with nested Forward primer a hybridized. 106 denotes the final PCR product. This method can detect shorter target sequences than standard PCR by using overlapping primers in the first and second STAs. The method is typically performed off a sample of DNA that has already undergone STA step 1 above - appending of universal tags and amplification; the two nested primers are only on one side, other side uses the library tag. The method was performed on libraries of apoptotic supernatants and pregnancy plasma. With this workflow around 60% of sequences mapped to the intended targets. Note that reads that contained the reverse adaptor sequence were not mapped, so this number is expected to be higher if those reads that contain the reverse adaptor sequence are mapped
One-sided mini-PCR: It is possible to use target DNA that has an adaptor at the fragment ends (see Figure 7). STA may be performed with a multiplex set of Forward primers and one (or few) tag-specific Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA with Forward Primer A hybridized. 104 denotes the PCR product from 103 that was amplified using Forward primer A and ligation adaptor tag Reverse primer LT, and which is the final PCR product. This method can detect shorter target sequences than standard PCR. However it may be relatively unspecific, as only one target specific primer is used. This protocol is effectively half of the one sided nested mini PCR
Reverse semi-nested mini-PCR: It is possible to use target DNA that has an adaptor at the fragment ends (see Figure 8). STA may be performed with a multiplex set of Forward primers and one (or few) tag-specific Reverse primer. 101 denotes double stranded DNA with a polymorphic locus of interest at X. 102 denotes the double stranded DNA with ligation adaptors added for universal amplification. 103 denotes the single stranded DNA with Reverse Primer B hybridized. 104 denotes the PCR product from 103 that was amplified using Reverse primer B and ligation adaptor tag Forward primer LT. 105 denotes the PCR product 104 with hybridized Forward Primer A, and inner Reverse primer 'b'. 106 denotes the PCR product that has been amplified from 105 using Forward primer A and Reverse primer 'b', and which is the final PCR product. This method can detect shorter target sequences than standard PCR.
There also may be more variants that are simply iterations or combinations of the above methods such as doubly nested PCR, where three sets of primers are used. Another variant is one-and-a-half sided nested mini-PCR, where STA may also be performed with a multiplex set of nested Forward primers and one (or few) tag-specific Reverse primer.
Note that in all of these variants, the identity of the Forward primer and the Reverse primer may be interchanged. Note that in some embodiments, the nested variant can equally well be run without the initial library preparation that comprises appending the adapter tags, and a universal amplification step. Note that in some embodiments, additional rounds of PCR may be included, with additional Forward and/or Reverse primers and amplification steps; these additional steps may be particularly useful if it is desirable to further increase the percent of DNA molecules that correspond to the targeted loci.
Nesting Workflows
There are many ways to perform the amplification, with different degrees of nesting, and with different degrees of multiplexing. In Figure 9, a flow chart is given with some of the possible workflows. Note that the use of 10,000-plex PCR is only meant to be an example; these flow charts would work equally well for other degrees of multiplexing.
Looped ligation adaptors
When adding universal tagged adaptors for example for the purpose of making a library for sequencing, there are a number of ways to ligate adaptors. One way is to blunt end the sample DNA, perform A-tailing, and ligate with adaptors that have a T-overhang. There are a number of other ways to ligate adaptors. There are also a number of adaptors that can be ligated. For example, a Y-adaptor can be used where the adaptor consists of two strands of DNA where one strand has a double strand region, and a region specified by a forward primer region, and where the other strand specified by a double strand region that is complementary to the double strand region on the first strand, and a region with a reverse primer. The double stranded region, when annealed, may contain a T-overhang for the purpose of ligating to double stranded DNA with an A overhang.
In an embodiment, the adaptor can be a loop of DNA where the terminal regions are complementary, and where the loop region contains a forward primer tagged region (LFT), a reverse primer tagged region (LRT), and a cleavage site between the two (See Figure 10). 101 refers to the double stranded, blunt ended target DNA. 102 refers to the A-tailed target DNA. 103 refers to the looped ligation adaptor with T overhang 'Τ' and the cleavage site 'Z'. 104 refers to the target DNA with appended looped ligation adaptors. 105 refers to the target DNA with the ligation adaptors appended cleaved at the cleavage site. LFT refers to the ligation adaptor Forward tag, and the LRT refers to the ligation adaptor Reverse tag. The complementary region may end on a T overhang, or other feature that may be used for ligation to the target DNA. The cleavage site may be a series of uracils for cleavage by UNG, or a sequence that may be recognized and cleaved by a restriction enzyme or other method of cleavage or just a basic amplification. These adaptors can be uses for any library preparation, for example, for sequencing. These adaptors can be used in combination with any of the other methods described herein, for example the mini-PCR amplification methods.
Internally Tagged Primers
When using sequencing to determine the allele present at a given polymorphic locus, the sequence read typically begins upstream of the primer binding site (a), and then to the polymorphic site (X). Tags are typically configured as shown in Figure 11, left. 101 refers to the single stranded target DNA with polymorphic locus of interest 'X', and primer 'a' with appended tag 'b'. In order to avoid nonspecific hybridization, the primer binding site (region of target DNA complementary to 'a') is typically 18 to 30 bp in length. Sequence tag 'b' is typically about 20 bp; in theory these can be any length longer than about 15 bp, though many people use the primer sequences that are sold by the sequencing platform company. The distance 'd' between 'a' and 'X' may be at least 2 bp so as to avoid allele bias. When performing multiplexed PCR amplification using the methods disclosed herein or other methods, where careful primer design is necessary to avoid excessive primer primer interaction, the window of allowable distance 'd' between 'a' and 'X' may vary quite a bit: from 2 bp to 10 bp, from 2 bp to 20 bp, from 2 bp to 30 bp, or even from 2 bp to more than 30 bp. Therefore, when using the primer configuration shown in Figure 11, left, sequence reads must be a minimum of 40 bp to obtain reads long enough to measure the polymorphic locus, and depending on the lengths of 'a' and 'd' the sequence reads may need to be up to 60 or 75 bp. Usually, the longer the sequence reads, the higher the cost and time of sequencing a given number of reads, therefore, minimizing the necessary read length can save both time and money. In addition, since, on average, bases read earlier on the read are read more accurately than those read later on the read, decreasing the necessary sequence read length can also increase the accuracy of the measurements of the polymorphic region.
In an embodiment, termed internally tagged primers, the primer binding site (a) is split in to a plurality of segments (a', a", a'"....), and the sequence tag (b) is on a segment of DNA that is in the middle of two of the primer binding sites, as shown in Figure 11, 103. This configuration allows the sequencer to make shorter sequence reads. In an embodiment, a' + a" should be at least about 18 bp, and can be as long as 30, 40, 50, 60, 80, 100 or more than 100 bp. In an embodiment, a" should be at least about 6 bp, and in an embodiment is between about 8 and 16 bp. All other factors being equal, using the internally tagged primers can cut the length of the sequence reads needed by at least 6 bp, as much as 8 bp, 10 bp, 12 bp, 15 bp, and even by as many as 20 or 30 bp. This can result in a significant money, time and accuracy advantage. An example of internally tagged primers is given in Figure 12.
Primers with ligation adaptor binding region
One issue with fragmented DNA is that since it is short in length, the chance that a polymorphism is close to the end of a DNA strand is higher than for a long strand (e.g. 101, Figure 10). Since PCR capture of a polymorphism requires a primer binding site of suitable length on both sides of the polymorphism, a significant number of strands of DNA with the targeted polymorphism will be missed due to insufficient overlap between the primer and the targeted binding site. In an embodiment, the target DNA 101 can have ligation adaptors appended 102, and the target primer 103 can have a region (cr) that is complementary to the ligation adaptor tag (It) appended upstream of the designed binding region (a) (see Figure 13); thus in cases where the binding region (region of 101 that is complementary to a) is shorter than the 18 bp typically required for hybridization, the region (cr) on the primer than is complementary to the library tag is able to increase the binding energy to a point where the PCR can proceed. Note that any specificity that is lost due to a shorter binding region can be made up for by other PCR primers with suitably long target binding regions. Note that this embodiment can be used in combination with direct PCR, or any of the other methods described herein, such as nested PCR, semi nested PCR, hemi nested PCR, one sided nested or semi or hemi nested PCR, or other PCR protocols.
When using the sequencing data to determine ploidy in combination with an analytical method that involves comparing the observed allele data to the expected allele distributions for various hypotheses, each additional read from alleles with a low depth of read will yield more information than a read from an allele with a high depth of read. Therefore, ideally, one would wish to see uniform depth of read (DOR) where each locus will have a similar number of representative sequence reads. Therefore, it is desirable to minimize the DOR variance. In an embodiment, it is possible to decrease the coefficient of variance of the DOR (this may be defined as the standard deviation of the DOR / the average DOR) by increasing the annealing times. In some embodiments the annealing temperatures may be longer than 2 minutes, longer than 4 minutes, longer than ten minutes, longer than 30 minutes, and longer than one hour, or even longer. Since annealing is an equilibrium process, there is no limit to the improvement of DOR variance with increasing annealing times. In an embodiment, increasing the primer concentration may decrease the DOR variance.
Genotyping assay and hybridization
Amplification and genotyping of the amplified DNA can be done by many methods including molecular inversion probes (MIPs) such AFFYMETRIX's GENFLEX TAG array, microarrays such as AFFYMETRIX's 500K array or the ILLUMINA BEAD arrays, or SNP genotyping assays such as APPLIEDBIOSCIENCE's TAQMAN assay (see, e.g., U.S. Publ. No. 2011/0178719, filed Feb. 3, 2011). These are all examples of genotyping techniques. The AFFYMETRIX 500K array, MIPs/GENFLEX, TAQMAN and ILLUMINA assay all require microgram quantities of DNA, so genotyping a single cell with either workflow requires some kind of amplification. Any techniques which are developed to the point of allowing sufficiently rapid high-throughput genotyping can be used to genotype genetic material for use with the methods of the invention.
Methods for simultaneous targeted locus amplification and whole genome amplification.
During whole genome amplification of small quantities of genetic material, whether through ligation-mediated PCR (LM-PCR), multiple displacement amplification (MDA), or other methods, dropouts of loci occur randomly and unavoidably (see, e.g., U.S. Publ. No. 2011/0178719, filed Feb. 3, 2011). It is often desirable to amplify the whole genome nonspecifically, but to ensure that a particular locus is amplified with greater certainty. It is possible to perform simultaneous locus targeting and whole genome amplification.
In one embodiment, it is possible to combine the targeted polymerase chain reaction
(PCR) to amplify particular loci of interest with any generalized whole genome amplification method. This may include, but is not limited to, preamplification of particular loci before generalized amplification by MDA or LM-PCR, the addition of targeted PCR primers to universal primers in the generalized PCR step of LM-PCR, and the addition of targeted PCR primers to degenerate primers in MDA.
Diagnostic Box
In an embodiment, the present disclosure comprises a diagnostic box that is capable of partly or completely carrying out any of the methods described in this disclosure. In an embodiment, the diagnostic box may be located at a physician's office, a hospital laboratory, or any suitable location reasonably proximal to the point of patient care. The box may be able to run the entire method in a wholly automated fashion, or the box may require one or a number of steps to be completed manually by a technician. In an embodiment, the box may be able to analyze at least the genotypic data measured on the any of the samples described herein, such as maternal plasma. In an embodiment, the box may be linked to means to transmit the genotypic data measured on the diagnostic box to an external computation facility which may then analyze the genotypic data, and possibly also generate a report. The diagnostic box may include a robotic unit that is capable of transferring aqueous or liquid samples from one container to another. It may comprise a number of reagents, both solid and liquid. It may comprise a high throughput sequencer. It may comprise a computer.
Primer Kit
In some embodiments, a kit may be formulated that comprises a plurality of primers designed to achieve the methods described in this disclosure. The primers may be outer forward and reverse primers, inner forward and reverse primers as disclosed herein, they could be primers that have been designed to have low binding affinity to other primers in the kit as disclosed in the section on primer design, they could be hybrid capture probes or pre- circularized probes as described in the relevant sections, or some combination thereof. In an embodiment, a kit may be formulated for determining a ploidy status of a target chromosome in a fetus (such as a gestating fetus or a POC sample) designed to be used with the methods disclosed herein, the kit comprising a plurality of inner forward primers and optionally the plurality of inner reverse primers, and optionally outer forward primers and outer reverse primers, where each of the primers is designed to hybridize to the region of DNA immediately upstream and/or downstream from one of the polymorphic sites on the target chromosome, and optionally additional chromosomes. In an embodiment, the primer kit may be used in combination with the diagnostic box described elsewhere in this document. In some embodiments, the kit includes instructions for use in any of the methods of the invention.
Compositions of DNA
When performing an informatics analysis on sequencing data measured on a mixture of fetal and maternal blood to determine genomic information pertaining to the fetus, for example the ploidy state of the fetus, it may be advantageous to measure the allele distributions at a set of alleles. Unfortunately, in many cases, such as when attempting to determine the ploidy state of a fetus from the DNA mixture found in the plasma of a maternal blood sample, the amount of DNA available is not sufficient to directly measure the allele distributions with good fidelity in the mixture. In these cases, amplification of the DNA mixture will provide sufficient numbers of DNA molecules that the desired allele distributions may be measured with good fidelity. However, current methods of amplification typically used in the amplification of DNA for sequencing are often very biased, meaning that they do not amplify both alleles at a polymorphic locus by the same amount. A biased amplification can result in allele distributions that are quite different from the allele distributions in the original mixture. For most purposes, highly accurate measurements of the relative amounts of alleles present at polymorphic loci are not needed. In contrast, in an embodiment of the present disclosure, amplification or enrichment methods that specifically enrich polymorphic alleles and preserve allelic ratios is advantageous.
A number of methods are described herein that may be used to preferentially enrich a sample of DNA at a plurality of loci in a way that minimizes allelic bias. Some examples are using circularizing probes to target a plurality of loci where the 3' ends and 5' ends of the pre- circularized probe are designed to hybridize to bases that are one or a few positions away from the polymorphic sites of the targeted allele. Another is to use PCR probes where the 3' end PCR probe is designed to hybridize to bases that are one or a few positions away from the polymorphic sites of the targeted allele. Another is to use a split and pool approach to create mixtures of DNA where the preferentially enriched loci are enriched with low allelic bias without the drawbacks of direct multiplexing. Another is to use a hybrid capture approach where the capture probes are designed such that the region of the capture probe that is designed to hybridize to the DNA flanking the polymorphic site of the target is separated from the polymorphic site by one or a small number of bases.
In the case where measured allele distributions at a set of polymorphic loci are used to determine the ploidy state of an individual, it is desirable to preserve the relative amounts of alleles in a sample of DNA as it is prepared for genetic measurements. This preparation may involve WGA amplification, targeted amplification, selective enrichment techniques, hybrid capture techniques, circularizing probes or other methods meant to amplify the amount of DNA and/or selectively enhance the presence of molecules of DNA that correspond to certain alleles.
In some embodiments of the present disclosure, there is a set of DNA probes designed to target loci where the loci have maximal minor allele frequencies. In some embodiments of the present disclosure, there is a set of probes that are designed to target where the loci have the maximum likelihood of the fetus having a highly informative SNP at those loci. In some embodiments of the present disclosure, there is a set of probes that are designed to target loci where the probes are optimized for a given population subgroup. In some embodiments of the present disclosure, there is a set of probes that are designed to target loci where the probes are optimized for a given mix of population subgroups. In some embodiments of the present disclosure, there is a set of probes that are designed to target loci where the probes are optimized for a given pair of parents which are from different population subgroups that have different minor allele frequency profiles. In some embodiments of the present disclosure, there is a circularized strand of DNA that comprises at least one base pair that annealed to a piece of DNA that is of fetal origin. In some embodiments of the present disclosure, there is a circularized strand of DNA that comprises at least one base pair that annealed to a piece of DNA that is of placental origin. In some embodiments of the present disclosure, there is a circularized strand of DNA that circularized while at least some of the nucleotides were annealed to DNA that was of fetal origin. In some embodiments of the present disclosure, there is a circularized strand of DNA that circularized while at least some of the nucleotides were annealed to DNA that was of placental origin. In some embodiments of the present disclosure, there is a set of probes wherein some of the probes target single tandem repeats, and some of the probes target single nucleotide polymorphisms. In some embodiments, the loci are selected for the purpose of non-invasive or invasive prenatal diagnosis. In some embodiments, the probes are used for the purpose of non-invasive or invasive prenatal diagnosis. In some embodiments, the loci are targeted using a method that could include circularizing probes, MIPs, capture by hybridization probes, probes on a SNP array, or combinations thereof. In some embodiments, the probes are used as circularizing probes, MIPs, capture by hybridization probes, probes on a SNP array, or combinations thereof. In some embodiments, the loci are sequenced for the purpose of non-invasive or invasive prenatal diagnosis.
In the case where the relative informativeness of a sequence is greater when combined with relevant parent contexts, it follows that maximizing the number of sequence reads that contain a SNP for which the parental context is known may maximize the informativeness of the set of sequencing reads on the mixed sample. In an embodiment, the number of sequence reads that contain a SNP for which the parent contexts are known may be enhanced by using qPCR to preferentially amplify specific sequences. In an embodiment, the number of sequence reads that contain a SNP for which the parent contexts are known may be enhanced by using circularizing probes (for example, MIPs) to preferentially amplify specific sequences. In an embodiment, the number of sequence reads that contain a SNP for which the parent contexts are known may be enhanced by using a capture by hybridization method (for example SURESELECT) to preferentially amplify specific sequences. Different methods may be used to enhance the number of sequence reads that contain a SNP for which the parent contexts are known. In an embodiment, the targeting may be accomplished by extension ligation, ligation without extension, capture by hybridization, or PCR.
In a sample of fragmented genomic DNA, a fraction of the DNA sequences map uniquely to individual chromosomes; other DNA sequences may be found on different chromosomes. Note that DNA found in plasma, whether maternal or fetal in origin is typically fragmented, often at lengths under 500 bp. In a typical genomic sample, roughly 3.3% of the mappable sequences will map to chromosome 13; 2.2% of the mappable sequences will map to chromosome 18; 1.35% of the mappable sequences will map to chromosome 21; 4.5% of the mappable sequences will map to chromosome X in a female; 2.25% of the mappable sequences will map to chromosome X (in a male); and 0.73% of the mappable sequences will map to chromosome Y (in a male). These are the chromosomes that are most likely to be aneuploid in a fetus. Also, among short sequences, approximately 1 in 20 sequences will contain a S P, using the SNPs contained on dbSNP. The proportion may well be higher given that there may be many SNPs that have not been discovered.
In an embodiment of the present disclosure, targeting methods may be used to enhance the fraction of DNA in a sample of DNA that map to a given chromosome such that the fraction significantly exceeds the percentages listed above that are typical for genomic samples. In an embodiment of the present disclosure, targeting methods may be used to enhance the fraction of DNA in a sample of DNA such that the percentage of sequences that contain a SNP are significantly greater than what may be found in typical for genomic samples. In an embodiment of the present disclosure, targeting methods may be used to target DNA from a chromosome or from a set of SNPs in a mixture of maternal and fetal DNA for the purposes of prenatal diagnosis.
Note that a method has been reported (U.S. Patent 7,888,017) for determining fetal aneuploidy by counting the number of reads that map to a suspect chromosome and comparing it to the number of reads that map to a reference chromosome, and using the assumption that an overabundance of reads on the suspect chromosome corresponds to a triploidy in the fetus at that chromosome. Those methods for prenatal diagnosis would not make use of targeting of any sort, nor do they describe the use of targeting for prenatal diagnosis.
By making use of targeting approaches in sequencing the mixed sample, it may be possible to achieve a certain level of accuracy with fewer sequence reads. The accuracy may refer to sensitivity, it may refer to specificity, or it may refer to some combination thereof. The desired level of accuracy may be between 90% and 95%; it may be between 95% and 98%; it may be between 98% and 99%; it may be between 99% and 99.5%; it may be between 99.5% and 99.9%; it may be between 99.9% and 99.99%; it may be between 99.99% and 99.999%, it may be between 99.999% and 100%. Levels of accuracy above 95% may be referred to as high accuracy.
There are a number of published methods in the art that demonstrate how one may determine the ploidy state of a fetus from a mixed sample of maternal and fetal DNA, for example: G.J. W. Liao et al. Clinical Chemistry 2011; 57(1) pp. 92-101. These methods focus on thousands of locations along each chromosome. The number of locations along a chromosome that may be targeted while still resulting in a high accuracy ploidy determination on a fetus, for a given number of sequence reads, from a mixed sample of DNA is unexpectedly low. In an embodiment of the present disclosure, an accurate ploidy determination may be made by using targeted sequencing, using any method of targeting, for example qPCR, ligand mediated PCR, other PCR methods, capture by hybridization, or circularizing probes, wherein the number of loci along a chromosome that need to be targeted may be between 5,000 and 2,000 loci; it may be between 2,000 and 1,000 loci; it may be between 1,000 and 500 loci; it may be between 500 and 300 loci; it may be between 300 and 200 loci; it may be between 200 and 150 loci; it may be between 150 and 100 loci; it may be between 100 and 50 loci; it may be between 50 and 20 loci; it may be between 20 and 10 loci. Optimally, it may be between 100 and 500 loci. The high level of accuracy may be achieved by targeting a small number of loci and executing an unexpectedly small number of sequence reads. The number of reads may be between 100 million and 50 million reads; the number of reads may be between 50 million and 20 million reads; the number of reads may be between 20 million and 10 million reads; the number of reads may be between 10 million and 5 million reads; the number of reads may be between 5 million and 2 million reads; the number of reads may be between 2 million and 1 million; the number of reads may be between 1 million and 500,000; the number of reads may be between 500,000 and 200,000; the number of reads may be between 200,000 and 100,000; the number of reads may be between 100,000 and 50,000; the number of reads may be between 50,000 and 20,000; the number of reads may be between 20,000 and 10,000; the number of reads may be below 10,000. Fewer number of read are necessary for larger amounts of input DNA.
In some embodiments, there is a composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome 13 is greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%. In some embodiments of the present disclosure, there is a composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome 18 is greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%. In some embodiments of the present disclosure, there is a composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome 21 is greater than 2%, greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%. In some embodiments of the present disclosure, there is a composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome X is greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%. In some embodiments of the present disclosure, there is a composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to chromosome Y is greater than 1%, greater than 2%, greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, greater than 20%, greater than 25%, or greater than 30%.
In some embodiments, a composition is described comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to a chromosome, and that contains at least one single nucleotide polymorphism is greater than 0.2%, greater than 0.3%, greater than 0.4%, greater than 0.5%, greater than 0.6%, greater than 0.7%, greater than 0.8%, greater than 0.9%, greater than 1%, greater than 1.2%, greater than 1.4%, greater than 1.6%, greater than 1.8%, greater than 2%, greater than 2.5%, greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, or greater than 20%, and where the chromosome is taken from the group 13, 18, 21, X, or Y. In some embodiments of the present disclosure, there is a composition comprising a mixture of DNA of fetal origin, and DNA of maternal origin, wherein the percent of sequences that uniquely map to a chromosome and that contain at least one single nucleotide polymorphism from a set of single nucleotide polymorphisms is greater than 0.15%, greater than 0.2%, greater than 0.3%, greater than 0.4%, greater than 0.5%, greater than 0.6%, greater than 0.7%, greater than 0.8%, greater than 0.9%, greater than 1%, greater than 1.2%, greater than 1.4%, greater than 1.6%, greater than 1.8%, greater than 2%, greater than 2.5%, greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, greater than 12%, greater than 15%, or greater than 20%, where the chromosome is taken from the set of chromosome 13, 18, 21, X and Y, and where the number of single nucleotide polymorphisms in the set of single nucleotide polymorphisms is between 1 and 10, between 10 and 20, between 20 and 50, between 50 and 100, between 100 and 200, between 200 and 500, between 500 and 1,000, between 1,000 and 2,000, between 2,000 and 5,000, between 5,000 and 10,000, between 10,000 and 20,000, between 20,000 and 50,000, and between 50,000 and 100,000.
In theory, each cycle in the amplification doubles the amount of DNA present; however, in reality, the degree of amplification is slightly lower than two. In theory, amplification, including targeted amplification, will result in bias free amplification of a DNA mixture; in reality, however, different alleles tend to be amplified to a different extent than other alleles. When DNA is amplified, the degree of allelic bias typically increases with the number of amplification steps. In some embodiments, the methods described herein involve amplifying DNA with a low level of allelic bias. Since the allelic bias compounds with each additional cycle, one can determine the per cycle allelic bias by calculating the nth root of the overall bias where n is the base 2 logarithm of degree of enrichment. In some embodiments, there is a composition comprising a second mixture of DNA, where the second mixture of DNA has been preferentially enriched at a plurality of polymorphic loci from a first mixture of DNA where the degree of enrichment is at least 10, at least 100, at least 1,000, at least 10,000, at least 100,000 or at least 1,000,000, and where the ratio of the alleles in the second mixture of DNA at each locus differs from the ratio of the alleles at that locus in the first mixture of DNA by a factor that is, on average, less than 1,000%, 500%, 200%, 100%, 50%, 20%, 10%, 5%, 2%, 1%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, or 0.01%. In some embodiments, there is a composition comprising a second mixture of DNA, where the second mixture of DNA has been preferentially enriched at a plurality of polymorphic loci from a first mixture of DNA where the per cycle allelic bias for the plurality of polymorphic loci is, on average, less than 10%, 5%, 2%, 1%, 0.5%, 0.2%, 0.1%, 0.05%, or 0.02%. In some embodiments, the plurality of polymorphic loci comprises at least 10 loci, at least 20 loci, at least 50 loci, at least 100 loci, at least 200 loci, at least 500 loci, at least 1,000 loci, at least 2,000 loci, at least 5,000 loci, at least 10,000 loci, at least 20,000 loci, or at least 50,000 loci.
Maximum Likelihood Estimates Most methods known in the art for detecting the presence or absence of biological phenomenon or medical condition involve the use of a single hypothesis rejection test, where a metric that is correlated with the condition is measured, and if the metric is on one side of a given threshold, the condition is present, while of the metric falls on the other side of the threshold, the condition is absent. A single-hypothesis rejection test only looks at the null distribution when deciding between the null and alternate hypotheses. Without taking into account the alternate distribution, one cannot estimate the likelihood of each hypothesis given the observed data and therefore cannot calculate a confidence on the call. Hence with a single- hypothesis rejection test, one gets a yes or no answer without a feeling for the confidence associated with the specific case.
In some embodiments, the method disclosed herein is able to detect the presence or absence of biological phenomenon or medical condition using a maximum likelihood method. This is a substantial improvement over a method using a single hypothesis rejection technique as the threshold for calling absence or presence of the condition can be adjusted as appropriate for each case. This is particularly relevant for diagnostic techniques that aim to determine the presence or absence of aneuploidy in a gestating fetus from genetic data available from the mixture of fetal and maternal DNA present in the free floating DNA found in maternal plasma. This is because as the fraction of fetal DNA in the plasma derived fraction changes, the optimal threshold for calling aneuploidy versus euploidy changes. As the fetal fraction drops, the distribution of data that is associated with an aneuploidy becomes increasingly similar to the distribution of data that is associated with a euploidy.
The maximum likelihood estimation method uses the distributions associated with each hypothesis to estimate the likelihood of the data conditioned on each hypothesis. These conditional probabilities can then be converted to a hypothesis call and confidence. Similarly, maximum a posteriori estimation method uses the same conditional probabilities as the maximum likelihood estimate, but also incorporates population priors when choosing the best hypothesis and determining confidence.
Therefore, the use of a maximum likelihood estimate (MLE) technique, or the closely related maximum a posteriori (MAP) technique give two advantages, first it increases the chance of a correct call, and it also allows a confidence to be calculated for each call. In an embodiment, selecting the ploidy state corresponding to the hypothesis with the greatest probability is carried out using maximum likelihood estimates or maximum a posteriori estimates. In an embodiment, a method is disclosed for determining the ploidy state of a fetus (such as a gestating fetus or a POC sample) that involves taking any method currently known in the art that uses a single hypothesis rejection technique and reformulating it such that it uses a MLE or MAP technique. Some examples of methods that can be significantly improved by applying these techniques can be found in US Pat 8,008,018, US Patent 7,888,017, or US Patent 7,332,277.
In an embodiment, a method is described for determining presence or absence of fetal aneuploidy in a sample such as a maternal plasma sample comprising fetal and maternal genomic DNA, the method comprising: obtaining a sample such as a maternal plasma sample; measuring the DNA fragments found in the sample such as a plasma sample with a high throughput sequencer; mapping the sequences to the chromosome and determining the number of sequence reads that map to each chromosome; calculating the fraction of fetal DNA in the sample such as a plasma sample; calculating an expected distribution of the amount of a target chromosome that would be expected to be present if that if the second target chromosome were euploid and one or a plurality of expected distributions that would be expected if that chromosome were aneuploid, using the fetal fraction and the number of sequence reads that map to one or a plurality of reference chromosomes expected to be euploid; and using a MLE or MAP determine which of the distributions is most likely to be correct, thereby indicating the presence or absence of a fetal aneuploidy. In an embodiment, the measuring the DNA from the sample (e.g., plasma) may involve conducting massively parallel shotgun sequencing. In an embodiment, the measuring the DNA from the sample (e.g., the plasma sample) may involve sequencing DNA that has been preferentially enriched, for example through targeted amplification, at a plurality of polymorphic or non-polymorphic loci. The plurality of loci may be designed to target one or a small number of suspected aneuploid chromosomes and one or a small number of reference chromosomes. The purpose of the preferential enrichment is to increase the number of sequence reads that are informative for the ploidy determination.
Ploidy Calling Informatics Methods
Described herein is a method for determining the ploidy state of a fetus given sequence data. In some embodiments, this sequence data may be measured on a high throughput sequencer. In some embodiments, the sequence data may be measured on DNA that originated from free floating DNA isolated from maternal blood, wherein the free floating DNA comprises some DNA of maternal origin, and some DNA of fetal / placental origin. This section will describe one embodiment of the present disclosure in which the ploidy state of the fetus is determined assuming that fraction of fetal DNA in the mixture that has been analyzed is not known and will be estimated from the data. It will also describe an embodiment in which the fraction of fetal DNA ("fetal fraction") or the percentage of fetal DNA in the mixture can be measured by another method, and is assumed to be known in determining the ploidy state of the fetus. In some embodiments the fetal fraction can be calculated using only the genotyping measurements made on the maternal blood sample itself, which is a mixture of fetal and maternal DNA. In some embodiments the fraction may be calculated also using the measured or otherwise known genotype of the mother and/or the measured or otherwise known genotype of the father. In another embodiment ploidy state of the fetus can be determined solely based on the calculated fraction of fetal DNA for the chromosome in question compared to the calculated fraction of fetal DNA for the reference chromosome assumed disomic. The informatics methods of the present invention can be used for any of the samples described herein.
In the preferred embodiment, suppose that, for a particular chromosome, we observe and analyze N SNPs, for which we have:
• Set of NR free floating DNA sequence measurements S=(sl .. ,SNR). Since this method utilizes the SNP measurements, all sequence data that corresponds to non-polymorphic loci can be disregarded. In a simplified version, where we have (A,B) counts on each
SNP, where A and B correspond to the two alleles present at a given locus, S can be written as S=((a1,b1),...,(aN, bN)), where a; is the A count on SNP i, b; is the B count on SNP i, and∑ί=1:Ν( + bt) = NR
• Parent data consisting of
o genotypes from a SNP microarray or other intensity based genotyping platform: mother M=(ml ..,mN), father F=(fl5 ..., fN), where mj, ¾ 6(AA,AB, BB).
o AND/OR sequence data measurements: NRM mother measurements
Figure imgf000126_0001
Similar to the above simplification, if we have (A,B) counts on each SNP
Figure imgf000126_0002
Collectively, the mother, father child data are denoted as D = (M,F,SM,SF,S). Note that the parent data is desired and increases the accuracy of the algorithm, but is NOT necessary, especially the father data. This means that even in the absence of mother and/or father data, it is possible to get very accurate copy number results.
It is possible to derive the best copy number estimate (H*) by maximizing the data log likelihood LIK(D|H) over all hypotheses (H) considered. In particular it is possible to determine the relative probability of each of the ploidy hypotheses using the joint distribution model and the allele counts measured on the prepared sample, and using those relative probabilities to determine the hypothesis most likely to be correct as follows:
H* = argmax LIK(D|H)
H
Similarly the a posteriori hypothesis likelihood given the data may be written as:
H* = argmax LIK(D|H) * priorprob(H)
H
Where priorprob(H) is the prior probability assigned to each hypothesis H, based on model design and prior knowledge.
It is also possible to use priors to find the maximum a posteriori estimate:
HMA = argmax LIK(D| H)
H
In an embodiment, the copy number hypotheses that may be considered are:
• Monosomy:
o maternal H 10 (one copy from mother)
o paternal HOI (one copy from father)
• Disomy: HI 1 (one copy each mother and father)
• Simple trisomy, no crossovers considered:
o Maternal: H21_matched (two identical copies from mother, one copy from father), H21_unmatched (BOTH copies from mother, one copy from father) o Paternal: H12_matched (one copy from mother , two identical copies from father), H12_unmatched (one copy from mother , both copies from father)
• Composite trisomy, allowing for crossovers (using a joint distribution model):
o maternal H21 (two copies from mother, one from father),
o paternal H12 (one copy from mother, two copies from father)
In other embodiments, other ploidy states, such as nullsomy (H00), uniparental disomy (H20 and H02), and tetrasomy (H04, H13, H22, H31 and H40), may be considered. If there are no crossovers, each trisomy, whether the origin was mitosis, meiosis I, or meiosis II, would be one of the matched or unmatched trisomies. Due to crossovers, true trisomy is usually a combination of the two. First, a method to derive hypothesis likelihoods for simple hypotheses is described. Then a method to derive hypothesis likelihoods for composite hypotheses is described, combining individual S P likelihood with crossovers.
LIK(D\H) for a Simple Hypothesis
In an embodiment, LIK(D|H) may be determined for simple hypotheses, as follows. For simple hypotheses H, LIK(H), the log likelihood of hypothesis H on a whole chromosome, may be calculated as the sum of log likelihoods of individual SNPs, assuming known or derived child fraction cf. In an embodiment it is possible to derive cf from the data.
Figure imgf000128_0001
This hypothesis does not assume any linkage between SNPs, and therefore does not utilize a joint distribution model.
In some embodiments, the Log Likelihood may be determined on a per SNP basis. On a particular SNP i, assuming fetal ploidy hypothesis H and percent fetal DNA cf, log likelihood of observed data D is defined as:
P(D I m, f, c, H, cf, i) P(c I m, f, H)P(m|i)P(f| i)
Figure imgf000128_0002
where m are possible true mother genotypes , f are possible true father genotypes, where m,f 6 {ΑΑ,ΑΒ,ΒΒ}, and c are possible child genotypes given the hypothesis H. In particular, for monosomy c 6 {A, B}, for disomy c 6 {AA, AB, BB}, for trisomy c 6 {AAA, AAB, ABB, BBB}.
Genotype prior frequency: p(m|i) is the general prior probability of mother genotype m on SNP i, based on the known population frequency at SNP I, denoted pAj. In particular
ρ(ΑΑ \ρΑ = (pA 2, ρ(ΑΒ \ρΑ = 2(ρ ;) * (1 - pA , ρ(ΒΒ \ρΑ = (1 - ρΑ{)2
Father genotype probability, p(f|i), may be determined in an analogous fashion.
True child probability: p(c|m, /, H) is the probability of getting true child genotype c, given parents m, f, and assuming hypothesis H, which can be easily calculated. For exampl for HI 1, H21 matched and H21 unmatched, p(c|m,f,H) is given below.
Figure imgf000129_0001
Data likelihood: P(D|m, f, c, H, i, cf) is the probability of given data D on SNP i, given true mother genotype m, true father genotype f, true child genotype c, hypothesis H and child fraction cf. It can be broken down into the probability of mother, father and child data as follows:
P(D|m, f, c, H, cf, i) = P(SM|m, i)P(M|m, i)P(SF|f, i)P(F|f, i)P(S|m, c, H, cf, i)
Mother SNP array data likelihood: Probability of mother SNP array genotype data m; at SNP i compared to true genotype m, assuming SNP array genotypes are correct, is simply
P(M m, i) = „ 1 .
' ' J (0 H j≠ m
Mother sequence data likelihood: the probability of the mother sequence data at SNP i, in the case of counts Si=(ami,bnii), with no extra noise or bias involved, is the binomial probability defined as P(SM|m,i)=Px|m(anii) where X|m~Binom(pm(A), ami+bnii) with pm(A) defined as
Figure imgf000129_0002
Father data likelihood: a similar equation applies for father data likelihood.
Note that it is possible to determine the child genotype without the parent data, especially father data. For example if no father genotype data F is available, one may just use P(F|f,i) = 1. If no father sequence data SF is available, one may just use P(SF|f,i)=l.
In some embodiments, the method involves building a joint distribution model for the expected allele counts at a plurality of polymorphic loci on the chromosome for each ploidy hypothesis; one method to accomplish such an end is described here. Free fetal DNA data likelihood: P(S|m, c, H, cf, i) is the probability of free fetal DNA sequence data on S P i, given true mother genotype m, true child genotype c, child copy number hypothesis H, and assuming child fraction cf. It is in fact the probability of sequence data S on SNP I, given the true probability of A content on SNP i μ(πι, c, cf, H)
P(S|m, c, H, cf, i) = Ρ(5|μ(ιη, c, cf, H), i)
For counts, where Si=(ai,bi), with no extra noise or bias in data involved,
P(S^(m, c, cf, H), i) = Px(ai)
where X~Binom(p(A), aj+bi) with ρ(Α)= μ(ιη, c, cf, H). In a more complex case where the exact alignment and (A,B) counts per SNP are not known, Ρ(5|μ(ιη, c, cf, H), i) is a combination of integrated binomials.
True A content probability: μ(ιη, c, cf, H), the true probability of A content on SNP i in this mother/child mixture, assuming that true mother genotype = m, true child genotype = c, and overall child fraction = cf, is defined as
#A(m) * a - cQ + #A(c) * cf
μ(ιη, c, cf, H) = - ——
nm * (l - cf) + nc * cf
where #A(g) = number of A's in genotype g, = 2 is somy of mother and nc is ploidy of the child under hypothesis H (1 for monosomy, 2 for disomy, 3 for trisomy). Using A Joint Distribution Model: LIK(D\H) for a Composite Hypothesis
In some embodiments, the method involves building a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome for each ploidy hypothesis; one method to accomplish such an end is described here. In many cases, trisomy is usually not purely matched or unmatched, due to crossovers, so in this section results for composite hypotheses H21 (maternal trisomy) and H12 (paternal trisomy) are derived, which combine matched and unmatched trisomy, accounting for possible crossovers.
In the case of trisomy, if there were no crossovers, trisomy would be simply matched or unmatched trisomy. Matched trisomy is where child inherits two copies of the identical chromosome segment from one parent. Unmatched trisomy is where child inherits one copy of each homologous chromosome segment from the parent. Due to crossovers, some segments of a chromosome may have matched trisomy, and other parts may have unmatched trisomy. Described in this section is how to build a joint distribution model for the heterozygosity rates for a set of alleles; that is, for the expected allele counts at a number of loci for one or more hypotheses.
Suppose that on SNP i, LIK(D|Hm, i) is the fit for matched hypothesis Hm, and LIK(D|Hu, i) is the fit for unmatched hypothesis Hu, and pc(i) = probability of crossover between SNPs i-1 and i. One may then calculate the full likelihood as:
LIK(D|H) =∑E LIK(D|E, 1: N)
where LIK(D|E, 1: N) is the likelihood of ending in hypothesis E, for SNPs 1:N. E = hypothesis of the last SNP, E 6 (Hm, Hu). Recursively, one may calculate:
LIK(D|E, 1: i) = LIK(D|E, i) + log(exp(LIK(D|E, 1: i - 1)) * (l - pc(i))
+ exp(LIK(D|~E, 1: i - 1)) * pc(i))
where ~E is the hypothesis other than E (not E), where hypotheses considered are Hm and H„. In particular, one may calculate the likelihood of l:i SNPs, based on likelihood of 1 to (i-1) SNPs with either the same hypothesis and no crossover, or the opposite hypothesis and a crossover, multiplied by the likelihood of the SNP i
For SNP 1, i=l, LIK(D|E, 1: 1) = LIK(D|E, 1).
For SNP 2, i=2, LIK(D|E, 1: 2) = LIK(D|E, 2) + log(exp(LIK(D|E, 1)) * (l - pc(2)) + exp(LIK(D|~E, 1)) * pc(2)),
and so on for i=3:N.
In some embodiments, the child fraction may be determined. The child fraction may refer to the proportion of sequences in a mixture of DNA that originate from the child. In the context of non-invasive prenatal diagnosis, the child fraction may refer to the proportion of sequences in the maternal plasma that originate from the fetus or the portion of the placenta with fetal genotype. It may refer to the child fraction in a sample of DNA that has been prepared from the maternal plasma, and may be enriched in fetal DNA. One purpose of determining the child fraction in a sample of DNA is for use in an algorithm that can make ploidy calls on the fetus, therefore, the child fraction could refer to whatever sample of DNA was analyzed by sequencing for the purpose of non-invasive or invasive prenatal diagnosis.
Some of the algorithms presented in this disclosure that are part of a method of noninvasive or invasive prenatal aneuploidy diagnosis assume a known child fraction, which may not always the case. In an embodiment, it is possible to find the most likely child fraction by maximizing the likelihood for disomy on selected chromosomes, with or without the presence of the parental data
In particular, suppose that LIK(D| HI 1, cf, chr) = log likelihood as described above, for the disomy hypothesis, and for child fraction cf on chromosome chr. For selected chromosomes in Cset (usually 1: 16), assumed to be euploid, the full likelihood is:
LIK(cf) = V Lik(D | Hll, cf, chr)
'chrECset
The most likely child fraction (c/*)is derived as cf* = argmax^ LIK(cf).
It is possible to use any set of chromosomes. It is also possible to derive child fraction without assuming euploidy on the reference chromosomes. Using this method it is possible to determine the child fraction for any of the following situations: (1) one has array data on the parents and shotgun sequencing data on the sample (such as maternal plasma); (2) one has array data on the parents and targeted sequencing data on the maternal plasma; (3) one has targeted sequencing data on both the parents and maternal plasma; (4) one has targeted sequencing data on both the mother and the maternal plasma fraction; (5) one has targeted sequencing data on the maternal plasma fraction; (6) other combinations of parental and child fraction measurements .
In some embodiments the informatics method may incorporate data dropouts; this may result in ploidy determinations of higher accuracy. Elsewhere in this disclosure it has been assumed that the probability of getting an A is a direct function of the true mother genotype, the true child genotype, the fraction of the child in the mixture, and the child copy number. It is also possible that mother or child alleles can drop out, for example instead of measuring true child AB in the mixture, it may be the case that only sequences mapping to allele A are measured. One may denote the parent dropout rate for genomic ILLULMINA data dpg, parent dropout rate for sequence data dps and child dropout rate for sequence data dcs. In some embodiments, the mother dropout rate may be assumed to be zero, and child dropout rates are relatively low; in this case, the results are not severely affected by dropouts. In some embodiments the possibility of allele dropouts may be sufficiently large that they result in a significant effect of the predicted ploidy call. For such a case, allele dropouts have been incorporated into the algorithm here:
Parent S P array data dropouts: For mother genomic data M, suppose that the genotype after the dropout is η¾, then P(M|m, i) = ^ P(M|md,i)P(md|m)
md where P(M|md,i) = ^d as before, and P(md|m) is the likelihood of genotype md after the possible dropout given the true genotype m, defined as below, for dropout rate d
md
m AA AB BB A B : nocall
AA (l-d)A2 0 0 2d(l-d) D dA2
AB 0 (l-d)A2 0 d(l-d) d(l-d) dA2
BB 0: 0; (l-d)A2 0 2d(l-d) dA2
A similar equation applies for father S P array data.
Parent sequence data dropouts: For mother sequence data SM
Figure imgf000133_0001
where P(md|m) is defined as in previous section and Px|md(an i) probability from a binomial distribution is defined as before in the parent data likelihood section. A similar equation applies to the paternal sequence data.
Free floating DNA sequence data dropout:
P(S|m, c, H, cf,i) = ^ P(S^(md, cd, cf, H), i)P(md|m)P(cd|c)
md,cd
where P(S^(md, cd, cf, H), i) is as defined in the section on free floating data likelihood.
In an embodiment,
Figure imgf000133_0002
is the probability of observed mother genotype md, given true mother genotype m, assuming dropout rate dps, and p(cd|c)is the probability of observed child genotype cd, given true child genotype c, assuming dropout rate dcs. If ηΑχ = number of A alleles in true genotype c, IIAD = number of A alleles in observed genotype cd, where ηΑχ > nAD, and similarly nBT = number of B alleles in true genotype c, nBD = number of B alleles in observed genotype cd, where ηΒχ > nBo and d = dropout rate, then
# άηΒτ_ηΒ]} # (1 _
Figure imgf000133_0003
In an embodiment, the informatics method may incorporate random and consistent bias. In an ideal word there is no per SNP consistent sampling bias or random noise (in addition to the binomial distribution variation) in the number of sequence counts. In particular, on SNP i, for mother genotype m, true child genotype c and child fraction cf, and X = the number of A' s in the set of (A+B) reads on SNP i, X acts like a X~Binomial(p, A+B), where p = μ(πι, c, cf, H) = true probability of A content.
In an embodiment, the informatics method may incorporate random bias. As is often the case, suppose that there is a bias in the measurements, so that the probability of getting an A on this SNP is equal to q, which is a bit different than p as defined above. How much different p is from q depends on the accuracy of the measurement process and number of other factors and can be quantified by standard deviations of q away from p. In an embodiment, it is possible to model q as having a beta distribution, with parameters a, β depending on the mean of that distribution being centered at p, and some specified standard deviation s. In particular, this gives X\q~Bin(q, D ), where q~Beta(u^). If we let E(q = p, V(q) = s2, and parameters α, β can be derived as a = ρΝ,β = (1— p)N, where N = Ρ^2 Ρ^— 1.
This is the definition of a beta-binomial distribution, where one is sampling from a binomial distribution with variable parameter q, where q follows a beta distribution with mean p. So, in a setup with no bias, on SNP i, the parent sequence data (SM) probability assuming true mother genotype (m), given mother sequence A count on SNP i (ami) and mother sequence B count on SNP i (bmj) may be calculated as:
P(SM|m,i)=Px|m(anii) where X|m~Binom(pm(A), amj+bmi) Now, including random bias with standard deviation s, this becomes:
X|m~BetaBinom(pm(A), ami+bnii,s)
In the case with no bias, the maternal plasma DNA sequence data (S) probability assuming true mother genotype (m), true child genotype (c), child fraction (cf), assuming child hypothesis H, given free floating DNA sequence A count on SNP i (a;) and free floating sequence B count on SNP i (bj) may be calculated as
P(S|m, c, cf, H, i) = Px(a1)
where X~Binom(p(A), aj+bi) with p(A)= μ(πι, c, cf, H).
In an embodiment, including random bias with standard deviation s, this becomes
X~BetaBinom(p(A),ai+bi,s), where the amount of extra variation is specified by the deviation parameter s, or equivalently N. The smaller the value of s (or the larger the value of N) the closer this distribution is to the regular binomial distribution. It is possible to estimate the amount of bias, i.e. estimate N above, from unambiguous contexts AA|AA, BB|BB, AA|BB, BB|AA and use estimated R in the above probability. Depending on the behavior of the data, N may be made to be a constant irrespective of the depth of read aj+bi, or a function of aj+bi, making bias smaller for larger depths of read.
In an embodiment, the informatics method may incorporate consistent per-S P bias. Due to artifacts of the sequencing process, some S Ps may have consistently lower or higher counts irrespective of the true amount of A content. Suppose that S P i consistently adds a bias of w; percent to the number of A counts. In some embodiments, this bias can be estimated from the set of training data derived under same conditions, and added back in to the parent sequence data estimate as:
P(SM|m,i)=Px|m(anii) where X|m~BetaBinom(pm(A)+ wj, ami+bnii,s) and with the free floating DNA sequence data probability estimate as:
P (S I m, c, cf, H, i) = Px (aj) where X~BetaBinom(p(A)+ Wi,ai+bi,s),
In some embodiments, the method may be written to specifically take into account additional noise, differential sample quality, differential SNP quality, and random sampling bias. An example of this is given here. This method has been shown to be particularly useful in the context of data generated using the massively multiplexed mini-PCR protocol, and was used in Experiments 7 through 13. The method involves several steps that each introduce different kind of noise and/or bias to the final model:
(1) Suppose the first sample that comprises a mixture of maternal and fetal DNA contains an original amount of DNA of size=No molecules, usually in the range 1,000-40,000, where p = true %refs
(2) In the amplification using the universal ligation adaptors, assume that molecules are sampled; usually ~ N0/2 molecules and random sampling bias is introduced due to sampling. The amplified sample may contain a number of molecules N2 where N2 » Nt. Let represent the amount of reference loci (on per SNP basis) out of sampled molecules, with a variation in pt= Xi/Ni that introduces random sampling bias throughout the rest of protocol. This sampling bias is included in the model by using a Beta-Binomial (BB) distribution instead of using a simple Binomial distribution model. Parameter N of the Beta- Binomial distribution may be estimated later on per sample basis from training data after adjusting for leakage and amplification bias, on S Ps with 0<p<l. Leakage is the tendency for a S P to be read incorrectly.
(3) The amplification step will amplify any allelic bias, thus amplification bias introduced due to possible uneven amplification. Suppose that one allele at a locus is amplified f times another allele at that locus is amplified g times, where f=geb, where b=0 indicates no bias. The bias parameter, b, is centered at 0, and indicates how much more or less the A allele get amplified as opposed to the B allele on a particular SNP. The parameter b may differ from SNP to SNP. Bias parameter b may be estimated on per SNP basis, for example from training data.
(4) The sequencing step involves sequencing a sample of amplified molecules. In this step there may be leakage, where leakage is the situation where a SNP is read incorrectly. Leakage may result from any number of problems, and may result in a SNP being read not as the correct allele A, but as another allele B found at that locus or as an allele C or D not typically found at that locus. Suppose the sequencing measures the sequence data of a number of DNA molecules from an amplified sample of size N3, where N3 < N2. In some embodiments, N3 may be in the range of 20,000 to 100,000; 100,000 to 500,000; 500,000 to 4,000,000; 4,000,000 to 20,000,000; or 20,000,000 to 100,000,000. Each molecule sampled has a probability pg of being read correctly, in which case it will show up correctly as allele A. The sample will be incorrectly read as an allele unrelated to the original molecule with probability l-pg, and will look like allele A with probability pr, allele B with probability pm or allele C or allele D with probability p0, where
Figure imgf000136_0001
Parameters pg, pr, pm, p0 are estimated on per SNP basis from the training data.
Different protocols may involve similar steps with variations in the molecular biology steps resulting in different amounts of random sampling, different levels of amplification and different leakage bias. The following model may be equally well applied to each of these cases. The model for the amount of DNA sampled, on per SNP basis, is given by:
X3~BetaBinomial(L(F(p,b),pr,pg), N*H(p,b))
where p = the true amount of reference DNA, b = per SNP bias, and as described above, pg is the probability of a correct read, pr is the probability of read being read incorrectly but serendipitously looking like the correct allele, in case of a bad read, as described above, and:
F(p,b)= peb/(peb+(l-p)), H(p,b) = (ebp+(l-p))2/eb, L(p,pr,pg)=p*pg+pr*(l-pg). In some embodiments, the method uses a Beta-Binomial distribution instead of a simple binomial distribution; this takes care of the random sampling bias. Parameter N of the Beta-Binomial distribution is estimated on per sample basis on an as needed basis. Using bias correction F(p,b), H(p,b), instead of just p, takes care of the amplification bias. Parameter b of the bias is estimated on per S P basis from training data ahead of time.
In some embodiments the method uses leakage correction L(p,pr,pg), instead of just p; this takes care of the leakage bias, i.e. varying SNP and sample quality. In some embodiments, parameters pg, pr, p0 are estimated on per SNP basis from the training data ahead of time. In some embodiments, the parameters pg, pr, p0 may be updated with the current sample on the go, to account for varying sample quality.
The model described herein is quite general and can account for both differential sample quality and differential SNP quality. Different samples and SNPs are treated differently, as exemplified by the fact that some embodiments use Beta-Binomial distributions whose mean and variance are a function of the original amount of DNA, as well as sample and SNP quality.
Platform modeling
Consider a single SNP where the expected allele ratio present in the plasma is r (based on the maternal and fetal genotypes). The expected allele ratio is defined as the expected fraction of A alleles in the combined maternal and fetal DNA. For maternal genotype gm and child genotype gc, the expected allele ratio is given by equation 1, assuming that the genotypes are represented as allele ratios as well.
r = fgc + (l - f)gm (1)
The observation at the SNP consists of the number of mapped reads with each allele present, na and ¾, which sum to the depth of read d. Assume that thresholds have already been applied to the mapping probabilities and phred scores such that the mappings and allele observations can be considered correct. A phred score is a numerical measure that relates to the probability that a particular measurement at a particular base is wrong. In an embodiment, where the base has been measured by sequencing, the phred score may be calculated from the ratio of the dye intensity corresponding to the called base to the dye intensity of the other bases. The simplest model for the observation likelihood is a binomial distribution which assumes that each of the d reads is drawn independently from a large pool that has allele ratio r. Equation 2 describes this model.
P(na,nb|r) = pbino(na; na + nb, r) = ( a * "b) n"(l - )n* (2)
The binomial model can be extended in a number of ways. When the maternal and fetal genotypes are either all A or all B, the expected allele ratio in plasma will be 0 or 1, and the binomial probability will not be well-defined. In practice, unexpected alleles are sometimes observed in practice. In an embodiment, it is possible to use a corrected allele ratio t = l/(na + nb) to allow a small number of the unexpected allele. In an embodiment, it is possible to use training data to model the rate of the unexpected allele appearing on each S P, and use this model to correct the expected allele ratio. When the expected allele ratio is not 0 or 1, the observed allele ratio may not converge with a sufficiently high depth of read to the expected allele ratio due to amplification bias or other phenomena. The allele ratio can then be modeled as a beta distribution centered at the expected allele ratio, leading to a beta-binomial distribution for P(na, nb|r) which has higher variance than the binomial.
The platform model for the response at a single SNP will be defined as F(a, b, gc, gm, f)
(3), or the probability of observing na = a and nb = b given the maternal and fetal genotypes, which also depends on the fetal fraction through equation 1. The functional form of F may be a binomial distribution, beta-binomial distribution, or similar functions as discussed above.
F(a, b, go, gm, f) = P(na = a, nb = b|gc, gm, f) = P(na = a, nb = b|r(gc, gm, f)) (3)
In an embodiment, the child fraction may be determined as follows. A maximum likelihood estimate of the fetal fraction f for a prenatal test may be derived without the use of paternal information. This may be relevant where the paternal genetic data is not available, for example where the father of record is not actually the genetic father of the fetus. The fetal fraction is estimated from the set of SNPs where the maternal genotype is 0 or 1, resulting in a set of only two possible fetal genotypes. Define So as the set of SNPs with maternal genotype 0 and Si as the set of SNPs with maternal genotype 1. The possible fetal genotypes on So are 0 and 0.5, resulting in a set of possible allele ratios Ro(f) = {0,f/2}. Similarly, R^f) = { l-f/2, 1}. This method can be trivially extended to include SNPs where maternal genotype is 0.5, but these SNPs will be less informative due to the larger set of possible allele ratios. Define Nao and Nbo as the vectors formed by nas and nt,s for SNPs s in So, and Nal and NM similarly for S^ The maximum likelihood estimate / of f is defined by equation 4.
/ = arg maxf P(Na0, Nb0|f) P(Nai, NM|f) (4)
Assuming that the allele counts at each SNP are independent conditioned on the SNP's plasma allele ratio, the probabilities can be expressed as products over the SNPs in each set (5).
P(Na0, Nbo|f) = rises0 P(¾s, nbs|f) (5)
P(Nah Nbi|f) = rises, P(¾s, nbs|f)
The dependence on f is through the sets of possible allele ratios R0(f) and
Figure imgf000139_0001
The SNP probability P(nas,
Figure imgf000139_0002
can be approximated by assuming the maximum likelihood genotype conditioned on f. At reasonably high fetal fraction and depth of read, the selection of the maximum likelihood genotype will be high confidence. For example, at fetal fraction of 10 percent and depth of read of 1000, consider a SNP where the mother has genotype zero. The expected allele ratios are 0 and 5 percent, which will be easily distinguishable at sufficiently high depth of read. Substitution of the estimated child genotype into equation 5 results in the complete equation (6) for the fetal fraction estimate.
/ = arg maxf [nses0(maxrsej?0(f) P(nas, nbs\rs) ses1
Figure imgf000139_0003
nbs\rs) ] (6)
The fetal fraction must be in the range [0, 1] and so the optimization can be easily implemented by a constrained one-dimensional search.
In the presence of low depth of read or high noise level, it may be preferable not to assume the maximum likelihood genotype, which may result in artificially high confidences. Another method would be to sum over the possible genotypes at each SNP, resulting in the following expression (7) for P(na, nt,|f) for a SNP in S0. The prior probability P(r) could be assumed uniform over Ro(f), or could be based on population frequencies. The extension to group Si is trivial.
P(na, nb|f) =∑reJ?o( ) P( na, nJr)P(r) (7) In some embodiments the probabilities may be derived as follows. A confidence can be calculated from the data likelihoods of the two hypotheses Ht and Hf. The likelihood of each hypothesis is derived based on the response model, the estimated fetal fraction, the mother genotypes, allele population frequencies, and the plasma allele counts.
Define the following notation:
Gm, Gc true maternal and child genotypes
Gaf, Gtf true genotypes of alleged father and of true father
G(gc, gm, gtf) =P(GC =gc|Gm =gm,Gtf =gtf) inheritance probabilities
P(g) = P(Gtf = g) population frequency of genotype g at particular S P
Assuming that the observation at each SNP is independent conditioned on the plasma allele ratio, the likelihood of a paternity hypothesis is the product of the likelihoods on the SNPs. The following equations derive the likelihood for a single SNP. Equation 8 is a general expression for the likelihood of any hypothesis h, which will then be broken down into the specific cases of Ht and Hf.
P(na, nb|h, Gm, Gtf, f)
Figure imgf000140_0001
= 9c> Gm> Gtf> h>f)p .Gc = 9c> Gm> Gtf> h> f)
=5ce(0,0.5,l) P( n > nb I Gc = 9c> Gm> f)P(.Gc = 9c I Gm> Gtf>
=∑gce(o,os,i) F( na, nb, gc, gm,f)P(Gc = 0c |GTO, Gt , /i) (8)
In the case of Ht, the alleged father is the true father and the fetal genotypes are inherited from the maternal genotypes and alleged father genotypes according to equation 9.
P(na, nb|Ht,Gm,Gtf,f) =∑gce(o,Q.s,1) F( na, nb, gc, gm,f)P(fic = 0c |GTO, Gt , Ht) (9)
=5ce(0,0.5,l) p( na> nb> 9c> 9m>f)G(.9c> Gm> Gtf)
In the case of Hf, the alleged father is not the true father. The best estimate of the true father genotypes are given by the population frequencies at each SNP. Thus, the probabilities of child genotypes are determined by the known mother genotypes and the population frequencies, as in equation 10. P(na, nb|Ht,Gm,Gtf,f) =∑gce(o,o.s,i) F( na, nb, gc, gm, f P(Gc = gc \Gm, Gtf, Hf)
i) F( na, nb, gc, gm, f)P(Gc = gc \Gm)
=5ce(0,0.5,l)∑5t e(0-0-5,l) F( na> ^b> 9c> 9m> f)P(Gc = 9c \ Gm> Gtf = 9tf)P .Gtf = 9tf) =∑5ce(0,0.5,l)∑5t/e(0,0.5,l) F( na> ^b> 9c> 9m> f)G(.9c> Gm> 9tf)P(9tf)
The confidence Cp on correct paternity is calculated from the product over S Ps of the two likelihoods using Bayes rule (11).
Us P ( as. bs I Ht.Gms.Gtf.f)
Figure imgf000141_0001
+ s i as.nbslHf.Grns.Gtf.f)
Maximum Likelihood Model using Percent Fetal Fraction
Determining the ploidy status of a fetus by measuring the free floating DNA contained in maternal serum, or by measuring the genotypic material in any mixed sample, is a non- trivial exercise. There are a number of methods, for example, performing a read count analysis where the presumption is that if the fetus is trisomic at a particular chromosome, then the overall amount of DNA from that chromosome found in the sample (such as maternal blood) will be elevated with respect to a reference chromosome. One way to detect trisomy in such fetuses is to normalize the amount of DNA expected for each chromosome, for example, according to the number of SNPs in the analysis set that correspond to a given chromosome, or according to the number of uniquely mappable portions of the chromosome. Once the measurements have been normalized, any chromosomes for which the amount of DNA measured exceeds a certain threshold are determined to be trisomic. This approach is described in Fan, et al. PNAS, 2008; 105(42); pp. 16266-16271, and also in Chiu et al. BMJ 201 l;342:c7401. In the Chiu et al. paper, the normalization was accomplished by calculating a Z score as follows:
Z score for percentage chromosome 21 in test case = ((percentage chromosome 21 in test case) - (mean percentage chromosome 21 in reference controls)) / (standard deviation of percentage chromosome 21 in reference controls). These methods determine the ploidy status of the fetus using a single hypothesis rejection method. However, they suffer from some significant shortcomings. Since these methods for determining ploidy in the fetus are invariant according to the percentage of fetal DNA in the sample, they use one cut off value; the result of this is that the accuracies of the determinations are not optimal, and those cases where the percentage of fetal DNA in the mixture are relatively low will suffer the worst accuracies.
In an embodiment, a method of the present disclosure is used to determine the ploidy state of the fetus involves taking into account the fraction of fetal DNA in the sample. In another embodiment of the present disclosure, the method involves the use of maximum likelihood estimations. In an embodiment, a method of the present disclosure involves calculating the percent of DNA in a sample that is fetal or placental in origin. In an embodiment, the threshold for calling aneuploidy is adaptively adjusted based on the calculated percent fetal DNA. In some embodiments, the method for estimating the percentage of DNA that is of fetal origin in a mixture of DNA, comprises obtaining a mixed sample that comprises genetic material from the mother, and genetic material from the fetus, obtaining a genetic sample from the father of the fetus, measuring the DNA in the mixed sample, measuring the DNA in the father sample, and calculating the percentage of DNA that is of fetal origin in the mixed sample using the DNA measurements of the mixed sample, and of the father sample.
In an embodiment of the present disclosure, the fraction of fetal DNA, or the percentage of fetal DNA in the mixture can be measured. In some embodiments the fraction can be calculated using only the genotyping measurements made on the mixed sample, such as maternal plasma sample itself, which is a mixture of fetal and maternal DNA. In some embodiments the fraction may be calculated also using the measured or otherwise known genotype of the mother and/or the measured or otherwise known genotype of the father. In some embodiments the percent fetal DNA may be calculated using the measurements made on the mixture of maternal and fetal DNA along with the knowledge of the parental contexts. In an embodiment, the fraction of fetal DNA may be calculated using population frequencies to adjust the model on the probability on particular allele measurements.
In an embodiment of the present disclosure, a confidence may be calculated on the accuracy of the determination of the ploidy state of the fetus. In an embodiment, the confidence of the hypothesis of greatest likelihood (Hmaj0r) may be calculated as (1- Hmaj0r) / ∑(all H). It is possible to determine the confidence of a hypothesis if the distributions of all of the hypotheses are known. It is possible to determine the distribution of all of the hypotheses if the parental genotype information is known. It is possible to calculate a confidence of the ploidy determination if the knowledge of the expected distribution of data for the euploid fetus and the expected distribution of data for the aneuploid fetus are known. It is possible to calculate these expected distributions if the parental genotype data are known. In an embodiment one may use the knowledge of the distribution of a test statistic around a normal hypothesis and around an abnormal hypothesis to determine both the reliability of the call as well as refine the threshold to make a more reliable call. This is particularly useful when the amount and/or percent of fetal DNA in the mixture is low. It will help to avoid the situation where a fetus that is actually aneuploid is found to be euploid because a test statistic, such as the Z statistic does not exceed a threshold that is made based on a threshold that is optimized for the case where there is a higher percent fetal DNA.
In an embodiment, a method disclosed herein can be used to determine a fetal aneuploidy by determining the number of copies of maternal and fetal target chromosomes in a mixture of maternal and fetal genetic material. This method may entail obtaining maternal tissue comprising both maternal and fetal genetic material; in some embodiments this maternal tissue may be maternal plasma or a tissue isolated from maternal blood. This method may also entail obtaining a mixture of maternal and fetal genetic material from said maternal tissue by processing the aforementioned maternal tissue. This method may entail distributing the genetic material obtained into a plurality of reaction samples, to randomly provide individual reaction samples that comprise a target sequence from a target chromosome and individual reaction samples that do not comprise a target sequence from a target chromosome, for example, performing high throughput sequencing on the sample. This method may entail analyzing the target sequences of genetic material present or absent in said individual reaction samples to provide a first number of binary results representing presence or absence of a presumably euploid fetal chromosome in the reaction samples and a second number of binary results representing presence or absence of a possibly aneuploid fetal chromosome in the reaction samples. Either of the number of binary results may be calculated, for example, by way of an informatics technique that counts sequence reads that map to a particular chromosome, to a particular region of a chromosome, to a particular locus or set of loci. This method may involve normalizing the number of binary events based on the chromosome length, the length of the region of the chromosome, or the number of loci in the set. This method may entail calculating an expected distribution of the number of binary results for a presumably euploid fetal chromosome in the reaction samples using the first number. This method may entail calculating an expected distribution of the number of binary results for a presumably aneuploid fetal chromosome in the reaction samples using the first number and an estimated fraction of fetal DNA found in the mixture, for example, by multiplying the expected read count distribution of the number of binary results for a presumably euploid fetal chromosome by (1 + n/2) where n is the estimated fetal fraction. In some embodiments, the sequence reads may be treated at probabilistic mappings rather than binary results; this method would yield higher accuracies, but require more computing power. The fetal fraction may be estimated by a plurality of methods, some of which are described elsewhere in this disclosure. This method may involve using a maximum likelihood approach to determine whether the second number corresponds to the possibly aneuploid fetal chromosome being euploid or being aneuploid. This method may involve calling the ploidy status of the fetus to be the ploidy state that corresponds to the hypothesis with the maximum likelihood of being correct given the measured data.
Note that the use of a maximum likelihood model may be used to increase the accuracy of any method that determines the ploidy state of a fetus. Similarly, a confidence maybe calculated for any method that determines the ploidy state of the fetus. The use of a maximum likelihood model would result in an improvement of the accuracy of any method where the ploidy determination is made using a single hypothesis rejection technique. A maximum likelihood model may be used for any method where a likelihood distribution can be calculated for both the normal and abnormal cases. The use of a maximum likelihood model implies the ability to calculate a confidence for a ploidy call.
Further Discussion of the Method
In an embodiment, a method disclosed herein utilizes a quantitative measure of the number of independent observations of each allele at a polymorphic locus, where this does not involve calculating the ratio of the alleles. This is different from methods, such as some microarray based methods, which provide information about the ratio of two alleles at a locus but do not quantify the number of independent observations of either allele. Some methods known in the art can provide quantitative information regarding the number of independent observations, but the calculations leading to the ploidy determination utilize only the allele ratios, and do not utilize the quantitative information. To illustrate the importance of retaining information about the number of independent observations consider the sample locus with two alleles, A and B. In a first experiment twenty A alleles and twenty B alleles are observed, in a second experiment 200 A alleles and 200 B alleles are observed. In both experiments the ratio (A/(A+B)) is equal to 0.5, however the second experiment conveys more information than the first about the certainty of the frequency of the A or B allele. The instant method, rather than utilizing the allele ratios, uses the quantitative data to more accurately model the most likely allele frequencies at each polymorphic locus.
In an embodiment, the instant methods build a genetic model for aggregating the measurements from multiple polymorphic loci to better distinguish trisomy from disomy and also to determine the type of trisomy. Additionally, the instant method incorporates genetic linkage information to enhance the accuracy of the method. This is in contrast to some methods known in the art where allele ratios are averaged across all polymorphic loci on a chromosome. The method disclosed herein explicitly models the allele frequency distributions expected in disomy as well as and trisomy resulting from nondisjunction during meiosis I, nondisjunction during meiosis II, and nondisjunction during mitosis early in fetal development. To illustrate why this is important, if there were no crossovers nondisjunction during meiosis I would result a trisomy in which two different homologs were inherited from one parent; nondisjunction during meiosis II or during mitosis early in fetal development would result in two copies of the same homolog from one parent. Each scenario results in different expected allele frequencies at each polymorphic locus and also at all physically linked loci (i.e., loci on the same chromosome) considered jointly. Crossovers, which result in the exchange of genetic material between homologs, make the inheritance pattern more complex, but the instant method accommodates for this by using genetic linkage information, i.e. recombination rate information and the physical distance between loci. To better distinguish between meiosis I nondisjunction and meiosis II or mitotic nondisjunction the instant method incorporates into the model an increasing probability of crossover as the distance from the centromere increases. Meiosis II and mitotic nondisjunction can distinguished by the fact that mitotic nondisjunction typically results in identical or nearly identical copies of one homolog while the two homologs present following a meiosis II nondisjunction event often differ due to one or more crossovers during gametogenesis. In an embodiment, a method of the present disclosure may not determine the haplotypes of the parents if disomy is assumed. In an embodiment, in case of trisomy, the instant method can make a determination about the haplotypes of one or both parents by using the fact that the mixed sample such as plasma takes two copies from one parent, and parent phase information can be determined by noting which two copies have been inherited from the parent in question. In particular, a child can inherit either two of the same copies of the parent (matched trisomy) or both copies of the parent (unmatched trisomy). At each S P one can calculate the likelihood of the matched trisomy and of the unmatched trisomy. A ploidy calling method that does not use the linkage model accounting for crossovers would calculate the overall likelihood of the trisomy as a simple weighted average of the matched and unmatched trisomies over all chromosomes. However, due to the biological mechanisms that result in disjunction error and crossing over, trisomy can change from matched to unmatched (and vice versa) on a chromosome only if a crossover occurs. The instant method probabilistically takes into account the likelihood of crossover, resulting in ploidy calls that are of greater accuracy than those methods that do not.
In an embodiment, a reference chromosome is used to determine the child fraction and noise level amount or probability distribution. In an embodiment, the child fraction, noise level, and/or probability distribution is determined using only the genetic information available from the chromosome whose ploidy state is being determined. The instant method works without the reference chromosome, as well as without fixing the particular child fraction or noise level. This is a significant improvement and point of differentiation from methods known in the art where genetic data from a reference chromosome is necessary to calibrate the child fraction and chromosome behavior.
In an embodiment where a reference chromosome is not needed to determine the fetal fraction, determining the hypothesis is done as follows:
H* = argmaxH LIK(D|H)*priorprob(H)
With the algorithm with reference chromosome, one typically assumes that the reference chromosome is a disomy, and then one may either (a) fix the most likely child fraction and random noise level N based on this assumption and reference chromosome data :
[cfr*, N*] = argmax LIK(D(ref. chrom)|Hll, cfr, N)
cfr,N
And then reduce LIK(D|H) = LIK(D|H, cfr*, N*)
or (b) estimate the child fraction and noise level distribution based on this assumption and reference chromosome data. In particular, one would not fix just one value for cfr and N, but assign probability p(cfr, N) for the wider range of possible cfr, N values:
p(cfr, N)~LIK(D(ref. chrom) |H11, cfr, N) * priorprob(cfr, N) where priorprob(cfr, N) is the prior probability of particular child fraction and noise level, determined by prior knowledge and experiments. If desired, just uniform over the range of cfr, N. One may then write:
LIK(D|H) = LIK(D|H, cfr, N)* p(cfr, N)
Figure imgf000147_0001
Both methods above give good results.
Note that in some instances using a reference chromosome is not desirable, possible or feasible. In such a case, it is possible to derive the best ploidy call for each chromosome separately. In particular:
LIK(D|H) = ^ LIK(D|H, cfr, N)* p(cfr, N|H)
cfr,N
p(cfr, N|H) may be determined as above, for each chromosome separately, assuming hypothesis H, not just for the reference chromosome assuming disomy. It is possible, using this method, to keep both noise and child fraction parameters fixed, fix either of the parameters, or keep both parameters in probabilistic form for each chromosome and each hypothesis.
Measurements of DNA are noisy and/or error prone, especially measurements where the amount of DNA is small, or where the DNA is mixed with contaminating DNA. This noise results in less accurate genotypic data, and less accurate ploidy calls. In some embodiments, platform modeling or some other method of noise modeling may be used to counter the deleterious effects of noise on the ploidy determination. The instant method uses a joint model of both channels, which accounts for the random noise due to the amount of input DNA, DNA quality, and/or protocol quality.
This is in contrast to some methods known in the art where the ploidy determinations are made using the ratio of allele intensities at a locus. This method precludes accurate SNP noise modeling. In particular, errors in the measurements typically do not specifically depend on the measured channel intensity ratio, which reduces the model to using one-dimensional information. Accurate modeling of noise, channel quality and channel interaction requires a two-dimensional joint model, which can not be modeled using allele ratios.
In particular, projecting two channel information to the ratio r where f(x,y) is r = x/y, does not lend itself to accurate channel noise and bias modeling. Noise on a particular SNP is not a function of the ratio, i.e. noise(x,y)≠ f(x,y) but is in fact a joint function of both channels. For example, in the binomial model, noise of the measured ratio has a variance of r(l-r)/(x+y) which is not a function purely of r. In such a model, where any channel bias or noise is included, suppose that on SNP i, the observed channel X value is x=aiX+bi, where X is the true channel value, b; is the extra channel bias and random noise. Similarly, suppose that y=C}Y+di. The observed ratio r=x/y can not accurately predict the true ratio X/Y or model the leftover noise, since (aiX+bi)/(ciY+di) is not a function of X/Y.
The method disclosed herein describes an effective way to model noise and bias using joint binomial distributions of all of the measurement channels individually. Relevant equations may be found elsewhere in the document in sections which speaks of per SNP consistent bias, P(good) and P(ref|bad), P(mut|bad) which effectively adjust SNP behavior. In an embodiment, a method of the present disclosure uses a BetaBinomial distribution, which avoids the limiting practice of relying on the allele ratios only, but instead models the behavior based on both channel counts.
In an embodiment, a method disclosed herein can call the ploidy of a fetus (such as a gestating fetus or a POC sample) from genetic data found in a sample such as maternal plasma by using all available measurements. In an embodiment, a method disclosed herein can call the ploidy of a fetus (such as a gestating fetus or a POC sample) from genetic data found in the sample such as maternal plasma by using the measurements from only a subset of parental contexts. Some methods known in the art only use measured genetic data where the parental context is from the AA|BB context, that is, where the parents are both homozygous at a given locus, but for a different allele. One problem with this method is that a small proportion of polymorphic loci are from the AA|BB context, typically less than 10%. In an embodiment of a method disclosed herein, the method does not use genetic measurements of the maternal plasma made at loci where the parental context is AA|BB. In an embodiment, the instant method uses plasma measurements for only those polymorphic loci with the AA|AB, AB|AA, and AB|AB parental context. Some methods known in the art involve averaging allele ratios from S Ps in the AA|BB context, where both parent genotypes are present, and claim to determine the ploidy calls from the average allele ratio on these SNPs. This method suffers from significant inaccuracy due differential SNP behavior. Note that this method assumes that have both parent genotypes are known. In contrast, in some embodiments, the instant method uses a joint channel distribution model that does not assume the presence of either of the parents, and does not assume the uniform SNP behavior. In some embodiments, the instant method accounts for the different SNP behavior/weighing. In some embodiments, the instant method does not require the knowledge of one or both parental genotypes. An example of how the instant method may accomplish this follows :
In some embodiments, the log likelihood of a hypothesis may be determined on a per SNP basis. On a particular SNP i, assuming fetal ploidy hypothesis H and percent fetal DNA cf, the log likelihood of observed data D is defined as: I m, f, c, H, cf, i) P(c I m, f, H)P(m|i)P(f| i)
Figure imgf000149_0001
where m are possible true mother genotypes, f are possible true father genotypes, where m,f 6 {ΑΑ,ΑΒ,ΒΒ}, and where c are possible child genotypes given the hypothesis H. In particular, for monosomy c {A, B}, for disomy c 6 {ΑΑ,ΑΒ, ΒΒ}, for trisomy c 6 {AAA, ΑΑΒ,ΑΒΒ, ΒΒΒ). Note that including parental genotypic data typically results in more accurate ploidy determinations, however, parental genotypic data is not necessary for the instant method to work well.
Some methods known in the art involve averaging allele ratios from SNPs where the mother is homozygous but a different allele is measured in the plasma (either AA|AB or AA|BB contexts), and claim to determine the ploidy calls from the average allele ratio on these SNPs. This method is intended for cases where the paternal genotype is not available. Note that it is questionable how accurately one can claim that plasma is heterozygous on a particular SNP without the presence of homozygous and opposite father BB: for cases with low child fraction, what looks like presence of B allele could be just presence of noise; additionally, what looks like no B present could be simple allele drop out of the fetal measurements. Even in a case where one can actually determine heterozygosity of the plasma, this method will not be able to distinguish paternal trisomies. In particular, for SNPs where mother is AA, and where some B is measured in the plasma, if the father is GG, the resulting child genotype is AGG, resulting in an average ratio of 33% A (for child fraction=100%). But in the case where the father is AG, the resulting child genotype could be AGG for matched trisomy, contributing to the 33% A ratio, or AAG for unmatched trisomy, drawing the average ratio more toward 66% A. Given that many trisomies are on chromosomes with crossovers, the overall chromosome can have anywhere between no unmatched trisomy and all unmatched trisomy, this ratio can vary anywhere between 33-66%. For a plain disomy, the ratio should be around 50%. Without the use of a linkage model or an accurate error model of the average, this method would miss many cases of paternal trisomy. In contrast, the method disclosed herein assigns parental genotype probabilities for each parental genotypic candidate, based on available genotypic information and population frequency, and does not explicitly require parental genotypes. Additionally, the method disclosed herein is able to detect trisomy even in the absence or presence of parent genotypic data, and can compensate by identifying the points of possible crossovers from matched to unmatched trisomy using a linkage model.
Some methods known in the art claim a method for averaging allele ratios from SNPs where neither the maternal or paternal genotype is known, and for determining the ploidy calls from average ratio on these SNPs. However, a method to accomplish these ends is not disclosed. The method disclosed herein is able to make accurate ploidy calls in such a situation, and the reduction to practice is disclosed elsewhere in this document, using a joint probability maximum likelihood method and optionally utilizes SNP noise and bias models, as well as a linkage model.
Some methods known in the art involve averaging allele ratios and claim to determine the ploidy calls from the average allele ratio at one or a few SNPs. However, such methods do not utilize the concept of linkage. The methods disclosed herein do not suffer from these drawbacks.
Using Raw Genotyping Data
There are a number of methods that can accomplish NPD using fetal genetic information measured on fetal DNA found in maternal blood. Some of these methods involve making measurements of the fetal DNA using SNP arrays, some methods involve untargeted sequencing, and some methods involve targeted sequencing. The targeted sequencing may target SNPs, it may target STRs, it may target other polymorphic loci, it may target non- polymorphic loci, or some combination thereof. Some of these methods may involve using a commercial or proprietary allele caller that calls the identity of the alleles from the intensity data that comes from the sensors in the machine doing the measuring. For example, the ILLUMINA INFINIUM system or the AFFYMETRIX GENECfflP microarray system involves beads or microchips with attached DNA sequences that can hybridize to complementary segments of DNA; upon hybridization, there is a change in the fluorescent properties of the sensor molecule that can be detected. There are also sequencing methods, for example the ILLUMINA SOLEXA GENOME SEQUENCER or the AM SOLID GENOME SEQUENCER, wherein the genetic sequence of fragments of DNA are sequenced; upon extension of the strand of DNA complementary to the strand being sequenced, the identity of the extended nucleotide is typically detected via a fluorescent or radio tag appended to the complementary nucleotide. In all of these methods the genotypic or sequencing data is typically determined on the basis of fluorescent or other signals, or the lack thereof. These systems are typically combined with low level software packages that make specific allele calls (secondary genetic data) from the analog output of the fluorescent or other detection device (primary genetic data). For example, in the case of a given allele on a SNP array, the software will make a call, for example, that a certain SNP is present or not present if the fluorescent intensity is measure above or below a certain threshold. Similarly, the output of a sequencer is a chromatogram that indicates the level of fluorescence detected for each of the dyes, and the software will make a call that a certain base pair is A or T or C or G. High throughput sequencers typically make a series of such measurements, called a read, that represents the most likely structure of the DNA sequence that was sequenced. The direct analog output of the chromatogram is defined here to be the primary genetic data, and the base pair / SNP calls made by the software are considered here to be the secondary genetic data. In an embodiment, primary data refers to the raw intensity data that is the unprocessed output of a genotyping platform, where the genotyping platform may refer to a SNP array, or to a sequencing platform. The secondary genetic data refers to the processed genetic data, where an allele call has been made, or the sequence data has been assigned base pairs, and/or the sequence reads have been mapped to the genome.
Many higher level applications take advantage of these allele calls, SNP calls and sequence reads, that is, the secondary genetic data, that the genotyping software produces. For example, DNA NEXUS, ELAND or MAQ will take the sequencing reads and map them to the genome. For example, in the context of non-invasive or invasive prenatal diagnosis, complex informatics, such as PARENTAL SUPPORT, may leverage a large number of SNP calls to determine the genotype of an individual. Also, in the context of preimplantation genetic diagnosis, it is possible to take a set of sequence reads that are mapped to the genome, and by taking a normalized count of the reads that are mapped to each chromosome, or section of a chromosome, it may be possible to determine the ploidy state of an individual. In the context of non-invasive prenatal diagnosis it may be possible to take a set of sequence reads that have been measured on DNA present in maternal plasma, and map them to the genome. One may then take a normalized count of the reads that are mapped to each chromosome, or section of a chromosome, and use that data to determine the ploidy state of an individual. For example, it may be possible to conclude that those chromosomes that have a disproportionately large number of reads are trisomic in the fetus that is gestating in the mother from which the blood was drawn.
However, in reality, the initial output of the measuring instruments is an analog signal. When a certain base pair is called by the software that is associated with the sequencing software, for example the software may call the base pair a T, in reality the call is the call that the software believes to be most likely. In some cases, however, the call may be of low confidence, for example, the analog signal may indicate that the particular base pair is only 90% likely to be a T, and 10% likely to be an A. In another example, the genotype calling software that is associated with a SNP array reader may call a certain allele to be G. However, in reality, the underlying analog signal may indicate that it is only 70% likely that the allele is G, and 30% likely that the allele is T. In these cases, when the higher level applications use the genotype calls and sequence calls made by the lower level software, they are losing some information. That is, the primary genetic data, as measured directly by the genotyping platform, may be messier than the secondary genetic data that is determined by the attached software packages, but it contains more information. In mapping the secondary genetic data sequences to the genome, many reads are thrown out because some bases are not read with enough clarity and or mapping is not clear. When the primary genetic data sequence reads are used, all or many of those reads that may have been thrown out when first converted to secondary genetic data sequence read can be used by treating the reads in a probabilistic manner.
In an embodiment of the present disclosure, the higher level software does not rely on the allele calls, SNP calls, or sequence reads that are determined by the lower level software. Instead, the higher level software bases its calculations on the analog signals directly measured from the genotyping platform. In an embodiment of the present disclosure, an informatics based method such as PARENTAL SUPPORT is modified so that its ability to reconstruct the genetic data of the embryo / fetus / child is engineered to directly use the primary genetic data as measured by the genotyping platform. In an embodiment of the present disclosure, an informatics based method such as PARENTAL SUPPORT is able to make allele calls, and/or chromosome copy number calls using primary genetic data, and not using the secondary genetic data. In an embodiment of the present disclosure, all genetic calls, SNPs calls, sequence reads, sequence mapping is treated in a probabilistic manner by using the raw intensity data as measured directly by the genotyping platform, rather than converting the primary genetic data to secondary genetic calls. In an embodiment, the DNA measurements from the prepared sample used in calculating allele count probabilities and determining the relative probability of each hypothesis comprise primary genetic data.
In some embodiments, the method can increase the accuracy of genetic data of a target individual which incorporates genetic data of at least one related individual, the method comprising obtaining primary genetic data specific to a target individual's genome and genetic data specific to the genome(s) of the related individual(s), creating a set of one or more hypotheses concerning possibly which segments of which chromosomes from the related individual(s) correspond to those segments in the target individual's genome, determining the probability of each of the hypotheses given the target individual's primary genetic data and the related individual(s)'s genetic data, and using the probabilities associated with each hypothesis to determine the most likely state of the actual genetic material of the target individual. In some embodiments, the method can determining the number of copies of a segment of a chromosome in the genome of a target individual, the method comprising creating a set of copy number hypotheses about how many copies of the chromosome segment are present in the genome of a target individual, incorporating primary genetic data from the target individual and genetic information from one or more related individuals into a data set, estimating the characteristics of the platform response associated with the data set, where the platform response may vary from one experiment to another, computing the conditional probabilities of each copy number hypothesis, given the data set and the platform response characteristics, and determining the copy number of the chromosome segment based on the most probable copy number hypothesis. In an embodiment, a method of the present disclosure can determine a ploidy state of at least one chromosome in a target individual, the method comprising obtaining primary genetic data from the target individual and from one or more related individuals, creating a set of at least one ploidy state hypothesis for each of the chromosomes of the target individual, using one or more expert techniques to determine a statistical probability for each ploidy state hypothesis in the set, for each expert technique used, given the obtained genetic data, combining, for each ploidy state hypothesis, the statistical probabilities as determined by the one or more expert techniques, and determining the ploidy state for each of the chromosomes in the target individual based on the combined statistical probabilities of each of the ploidy state hypotheses. In an embodiment, a method of the present disclosure can determine an allelic state in a set of alleles, in a target individual, and from one or both parents of the target individual, and optionally from one or more related individuals, the method comprising obtaining primary genetic data from the target individual, and from the one or both parents, and from any related individuals, creating a set of at least one allelic hypothesis for the target individual, and for the one or both parents, and optionally for the one or more related individuals, where the hypotheses describe possible allelic states in the set of alleles, determining a statistical probability for each allelic hypothesis in the set of hypotheses given the obtained genetic data, and determining the allelic state for each of the alleles in the set of alleles for the target individual, and for the one or both parents, and optionally for the one or more related individuals, based on the statistical probabilities of each of the allelic hypotheses.
In some embodiments, the genetic data of the mixed sample may comprise sequence data wherein the sequence data may not uniquely map to the human genome. In some embodiments, the genetic data of the mixed sample may comprise sequence data wherein the sequence data maps to a plurality of locations in the genome, wherein each possible mapping is associated with a probability that the given mapping is correct. In some embodiments, the sequence reads are not assumed to be associated with a particular position in the genome. In some embodiments, the sequence reads are associated with a plurality of positions in the genome, and an associated probability belonging to that position.
Counting Method to Determine Chromosome Copy Number
In one aspect, the invention features methods of testing for an abnormal distribution of a fetal chromosome by comparing the number of sequence tags that align to different chromosomes {see, e.g., U.S. Pat. No. 8,296,076, filed April 20, 2012, which is hereby incorporated by reference in its entirety). As is known in the art, the term "sequence tag" refers to a relatively short (e.g., 15-100) nucleic acid sequence that can be used to identify a certain larger sequence, e.g., be mapped to a chromosome or genomic region or gene. In some embodiments, the method involves (i) contacting a sample that includes a mixture of maternal and fetal DNA with a primers that simultaneously hybridize to different target loci to produce a reaction mixture; wherein the target loci are from a plurality of different chromosomes; and wherein the plurality of different chromosomes comprise at least one first chromosome suspected of having an abnormal distribution in the sample and at least one second chromosome presumed to be normally distributed in the sample; (ii) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products; (iii) sequencing the amplified products to obtain a plurality of sequence tags aligning to the target loci; wherein the sequence tags are of sufficient length to be assigned to a specific target locus; (iv) assigning on a computer the plurality of sequence tags to their corresponding target loci; (v) determining on a computer a number of sequence tags aligning to the target loci of the first chromosome and a number of sequence tags aligning to the target loci of the second chromosome; and (vi) comparing the numbers from step (v) to determine the presence or absence of an abnormal distribution of the first chromosome.
In one aspect, the invention provides methods for detecting the presence or absence of a fetal aneuploidy by comparing the relative frequency of target amplicons between chromosomes (see, e.g., PCT Publ. No. WO 2012/103031, filed Jan. 23, 2012, which is hereby incorporated by reference in its entirety). In some embodiments, the method involves (i) contacting a sample that includes a mixture of maternal and fetal DNA with primers that simultaneously hybridize to different non-polymorphic target loci to produce a reaction mixture; wherein the target loci are from a plurality of different chromosomes; (ii) subjecting the reaction mixture to primer extension reaction conditions to produce amplified products that includes target amplicons; (iii) quantifying on a c omputer a relative frequency of the target amplicons from the first and second chromosomes of interest; (iv) comparing on a c omputer the relative frequency of the target amplicons from the first and second chromosomes of interest; and (v) identifying the presence or absence of an aneuploidy based on the compared relative frequencies of the first and second chromosome of interest. In some embodiments, the first chromosome is a chromosome suspected of being euploid. In some embodiments, the second chromosome is a chromosome suspected of being aneuploidy DNA from Children from Previous Pregnancies in Maternal Blood
One difficulty to non-invasive prenatal diagnosis is differentiating fetal cells from the current pregnancy from fetal cells from previous pregnancies. Some believe that genetic matter from prior pregnancies will go away after some time, but conclusive evidence has not been shown. In an embodiment of the present disclosure, it is possible to determine fetal DNA present in the maternal blood of paternal origin (that is, DNA that the fetus inherited from the father) using the PARENTAL SUPPORT (PS) method, and the knowledge of the paternal genome. This method may utilize phased parental genetic information. It is possible to phase the parental genotype from unphased genotypic information using grandparental genetic data (such as measured genetic data from a sperm from the grandfather), or genetic data from other born children, or a sample of a miscarriage. One could also phase unphased genetic information by way of a HapMap-based phasing, or a haplotyping of paternal cells. Successful haplotyping has been demonstrated by arresting cells at phase of mitosis when chromosomes are tight bundles and using microfluidics to put separate chromosomes in separate wells. In another embodiment it is possible to use the phased parental haplotypic data to detect the presence of more than one homolog from the father, implying that the genetic material from more than one child is present in the blood. By focusing on chromosomes that are expected to be euploid in a fetus, one could rule out the possibility that the fetus was afflicted with a trisomy. Also, it is possible to determine if the fetal DNA is not from the current father, in which case one could use other methods such as the triple test to predict genetic abnormalities.
There may be other sources of fetal genetic material available via methods other than a blood draw. In the case of the fetal genetic material available in maternal blood, there are two main categories: (1) whole fetal cells, for example, nucleated fetal red blood cells or erythroblats, and (2) free floating fetal DNA. In the case of whole fetal cells, there is some evidence that fetal cells can persist in maternal blood for an extended period of time such that it is possible to isolate a cell from a pregnant woman that contains the DNA from a child or fetus from a prior pregnancy. There is also evidence that the free floating fetal DNA is cleared from the system in a matter of weeks. One challenge is how to determine the identity of the individual whose genetic material is contained in the cell, namely to ensure that the measured genetic material is not from a fetus from a prior pregnancy. In an embodiment of the present disclosure, the knowledge of the maternal genetic material can be used to ensure that the genetic material in question is not maternal genetic material. There are a number of methods to accomplish this end, including informatics based methods such as PARENTAL SUPPORT, as described in this document or any of the patents referenced in this document.
In an embodiment of the present disclosure, the blood drawn from the pregnant mother may be separated into a fraction comprising free floating fetal DNA, and a fraction comprising nucleated red blood cells. The free floating DNA may optionally be enriched, and the genotypic information of the DNA may be measured. From the measured genotypic information from the free floating DNA, the knowledge of the maternal genotype may be used to determine aspects of the fetal genotype. These aspects may refer to ploidy state, and/or a set of allele identities. Then, individual nucleated red blood cells may be genotyped using methods described elsewhere in this document, and other referent patents, especially those mentioned in the first section of this document. The knowledge of the maternal genome would allow one to determine whether or not any given single blood cell is genetically maternal. And the aspects of the fetal genotype that were determined as described above would allow one to determine if the single blood cell is genetically derived from the fetus that is currently gestating. In essence, this aspect of the present disclosure allows one to use the genetic knowledge of the mother, and possibly the genetic information from other related individuals, such as the father, along with the measured genetic information from the free floating DNA found in maternal blood to determine whether an isolated nucleated cell found in maternal blood is either (a) genetically maternal, (b) genetically from the fetus currently gestating, or (c) genetically from a fetus from a prior pregnancy.
Prenatal Sex Chromosome Aneuploidy Determination
In methods known in the art, people attempting to determine the sex of a gestating fetus from the blood of the mother have used the fact that fetal free floating DNA (fffDNA) is present in the plasma of the mother. If one is able to detect Y-specific loci in the maternal plasma, this implies that the gestating fetus is a male. However, the lack of detection of Y- specific loci in the plasma does not always guarantee that the gestating fetus is a female when using methods known in the art, as in some cases the amount of fffDNA is too low to ensure that the Y-specific loci would be detected in the case of a male fetus.
Presented here is a novel method that does not require the measurement of Y-specific nucleic acids, that is, DNA that is from loci that are exclusively paternally derived. The PARENTAL SUPPORT method, disclosed previously, uses crossover frequency data, parental genotypic data, and informatics techniques, to determine the ploidy state of a fetus (such as a gestating fetus or a POC sample). The sex of a fetus is simply the ploidy state of the fetus at the sex chromosomes. A child that is XX is female, and XY is male. The method described herein is also able to determine the ploidy state of the fetus. Note that sexing is effectively synonymous with ploidy determination of the sex chromosomes; in the case of sexing, an assumption is often made that the child is euploid, therefore there are fewer possible hypotheses.
The method disclosed herein involves looking at loci that are common to both the X and Y chromosome to create a baseline in terms of expected amount of fetal DNA present for a fetus. Then, those regions that are specific only to the X chromosome can be interrogated to determine if the fetus is female or male. In the case of a male, we expect to see less fetal DNA from loci that are specific to the X chromosome than from loci that are specific to both the X and the Y. In contrast, in female fetuses, we expect the amount of DNA for each of these groups to be the same. The DNA in question can be measured by any technique that can quantitate the amount of DNA present on a sample, for example, qPCR, SNP arrays, genotyping arrays, or sequencing. For DNA that is exclusively from an individual we would expect to see the following:
Figure imgf000158_0001
In the case of DNA from a fetus that is mixed with DNA from the mother, and where the fraction of fetal DNA in the mixture is F, and where the fraction of maternal DNA in the mixture is M, such that F+M = 100%, we would expect to see the following:
Figure imgf000158_0002
In the case where F and M are known, the expected ratios can be computed, and the observed data can be compared to the expected data. In the case where M and F are not known, a threshold can be selected based on historical data. In both cases, the measured amount of DNA at loci specific to both X and Y can be used as a baseline, and the test for the sex of the fetus can be based on the amount of DNA observed on loci specific to only the X chromosome. If that amount is lower than the baseline by an amount roughly equal to ½ F, or by an amount that causes it to fall below a predefined threshold, the fetus is determined to be male, and if that amount is about equal to the baseline, or if is not lower by an amount that causes it to fall below a predefined threshold, the fetus is determined to be female.
In another embodiment, one can look only at those loci that are common to both the X and the Y chromosomes, often termed the Z chromosome. A subset of the loci on the Z chromosome are typically always A on the X chromosome, and B on the Y chromosome. If SNPs from the Z chromosome are found to have the B genotype, then the fetus is called a male; if the SNPs from the Z chromosome are found to only have A genotype, then the fetus is called a female. In another embodiment, one can look at the loci that are found only on the X chromosome. Contexts such as AA|B are particularly informative as the presence of a B indicates that the fetus has an X chromosome from the father. Contexts such as AB|B are also informative, as we expect to see B present only half as often in the case of a female fetus as compared to a male fetus. In another embodiment, one can look at the SNPs on the Z chromosome where both A and B alleles are present on both the X and the Y chromosome, and where the it is known which SNPs are from the paternal Y chromosome, and which are from the paternal X chromosome.
In an embodiment, it is possible to amplify single nucleotide positions known to varying between the homologous non-recombining (HNR) region shared by chromosome Y and chromosome X. The sequence within this HNR region is largely identical between the X and Y chromosomes. Within this identical region are single nucleotide positions that, while invariant among X chromosomes and among Y chromosomes in the population, are different between the X and Y chromosomes. Each PCR assay could amplify a sequence from loci that are present on both the X and Y chromosomes. Within each amplified sequence would be a single base that can be detected using sequencing or some other method. In an embodiment, the sex of the fetus could be determined from the fetal free floating DNA found in a sample such as maternal plasma, the method comprising some or all of the following steps: 1) Design PCR (either regular or mini-PCR, plus multiplexing if desired) primers amplify X/Y variant single nucleotide positions within HNR region, 2) obtain maternal plasma, 3) PCR Amplify targets from maternal plasma using HNR X/Y PCR assays, 4) sequence the amplicons, 5) Examine sequence data for presence of Y-allele within one or more of the amplified sequences. The presence of one or more would indicate a male fetus. Absence of all Y-alleles from all amplicons indicates a female fetus.
In an embodiment, one could use targeted sequencing to measure the DNA in the sample (e.g., maternal plasma) and/or the parental genotypes. In an embodiment, one could ignore all sequences that clearly originate from paternally sourced DNA. For example, in the context AA|AB, one could count the number of A sequences and ignore all the B sequences. In order to determine a heterozygosity rate for the above algorithm, one could compare the number of observed A sequences to the expected number of total sequences for the given probe. There are many ways one could calculate an expected number of sequences for each probe on a per sample basis. In an embodiment, it is possible to use historical data to determine what fraction of all sequence reads belongs to each specific probe and then use this empirical fraction, combined with the total number of sequence reads, to estimate the number of sequences at each probe. Another approach could be to target some known homozygous alleles and then use historical data to relate the number of reads at each probe with the number of reads at the known homozygous alleles. For each sample, one could then measure the number of reads at the homozygous alleles and then use this measurement, along with the empirically derived relationships, to estimate the number of sequence reads at each probe.
In some embodiments, it is possible to determine the sex of the fetus by combining the predictions made by a plurality of methods. In some embodiments the plurality of methods are taken from methods described in this disclosure. In some embodiments, at least one of the plurality of methods are taken from methods described in this disclosure.
In some embodiments the method described herein can be used to determine the ploidy state of the fetus (such as a gestating fetus or a POC sample). In an embodiment, the ploidy calling method uses loci that are specific to the X chromosome, or common to both the X and Y chromosome, but does not make use of any Y-specific loci. In an embodiment, the ploidy calling method uses one or more of the following: loci that are specific to the X chromosome, loci that are common to both the X and Y chromosome, and loci that are specific to the Y chromosome. In an embodiment, where the ratios of sex chromosomes are similar, for example 45,X (Turner Syndrome), 46,XX (normal female) and 47,XXX (trisomy X), the differentiation can be accomplished by comparing the allele distributions to expected allele distributions according to the various hypotheses. In another embodiment, this can be accomplished by comparing the relative number of sequence reads for the sex chromosomes to one or a plurality of reference chromosomes that are assumed to be euploid. Also note that these methods can be expanded to include aneuploid cases. Single Gene Disease Screening
In an embodiment, a method for determining the ploidy state of the fetus may be extended to enable simultaneous testing for single gene disorders. Single-gene disease diagnosis leverages the same targeted approach used for aneuploidy testing, and requires additional specific targets. In an embodiment, the single gene NPD diagnosis is through linkage analysis. In many cases, direct testing of the cfDNA sample is not reliable, as the presence of maternal DNA makes it virtually impossible to determine if the fetus has inherited the mother's mutation. Detection of a unique paternally-derived allele is less challenging, but is only fully informative if the disease is dominant and carried by the father, limiting the utility of the approach. In an embodiment, the method involves PCR or related amplification approaches.
In some embodiments, the method involves phasing the abnormal allele with surrounding very tightly linked SNPs in the parents using information from first-degree relatives. Then PARENTAL SUPPORT may be run on the targeted sequencing data obtained from these SNPs to determine which homologs, normal or abnormal, were inherited by the fetus from both parents. As long as the SNPs are sufficiently linked, the inheritance of the genotype of the fetus can be determined very reliably. In some embodiments, the method comprises (a) adding a set of SNP loci to densely flank a specified set of common diseases to our multiplex pool for aneuploidy testing; (b) reliably phasing the alleles from these added SNPs with the normal and abnormal alleles based on genetic data from various relatives; and (c) reconstructing the fetal haplotype, or set of phased SNP alleles on the inherited maternal and paternal homologs in the region surrounding the disease locus to determine fetal genotype. In some embodiments additional probes that are closely linked to a disease linked locus are added to the set of polymorphic locus being used for aneuploidy testing.
Reconstructing fetal diplotype is challenging because the sample is a mixture of maternal and fetal DNA. In some embodiments, the method incorporates relative information to phase the S Ps and disease alleles, then take into account physical distance of the S Ps and recombination data from location specific recombination likelihoods and the data observed from the genetic measurements of the maternal plasma to obtain the most likely genotype of the fetus.
In an embodiment, a number of additional probes per disease linked locus are included in the set of targeted polymorphic loci; the number of additional probes per disease linked locus may be between 4 and 10, between 11 and 20, between 21 and 40, between 41 and 60, between 61 and 80, or combinations thereof.
Phasing the diploid data from the parents can be challenging, and there are a number of ways this can be accomplished. Some are discussed in this disclosure, others are described in greater detail in other disclosures (see, e.g., PCT Publ. No. WO2009105531, filed February 9, 2009; PCT Publ. No. WO2010017214, filed August 4, 2009; and U.S. Utility Application Serial No. 13/683,604, filed November 21, 2012, which are each hereby incorporated by reference in its entirety). In one embodiment, a parent can be phased by inference by measuring tissue from the parent that is haploid, for example by measuring one or more sperm or eggs. In one embodiment the parent can be phased by inference using the measured genotypic data of a first degree relative such as the parent's parent(s) or siblings. In one embodiment, the parent can be phased by dilution where the DNA is diluted, in one or a plurality of wells, to the point where there is expected to be no more than approximately one copy of each haplotype in each well, and then measuring the DNA in the one or more wells. In one embodiment, the parent genotype can be phased by using computer programs that use population based haplotype frequencies to infer the most likely phase. In one embodiment, the parent can be phased if the phased haplotypic data is known for the other parent, along with the unphased genetic data of one or more genetic offspring of the parents. In some embodiments, the genetic offspring of the parents may be one or more embryos, fetuses, and/or born children. Some of these methods and other methods for phasing one or both parents are disclosed in greater detail in, e.g., U.S. Publ. No. 2011/0033862, filed August 19, 2010; U.S. Publ. No. 2011/0178719, filed Feb. 3, 2011; U.S. Publ. No. 2007/0184467, filed Nov. 22, 2006; U.S. Publ. No. 2008/0243398, filed March 17, 2008, which are each hereby incorporated by reference in its entirety.
Fetal Genome Reconstruction
In one aspect, the invention features methods for determining a haplotype of a fetus see, e.g., U.S. Utility Application Serial No. 13/683,604, filed November 21, 2012, which is hereby incorporated by reference in its entirety). In various embodiments, this method allows one to determine which polymorphic loci (such as SNPs) were inherited by the fetus and to reconstruct which homologs (including recombination events) are present in the fetus (and thereby interpolate the sequence between the polymorphic loci). If desired, essentially the entire genome of the fetus can be reconstructed. If there is some remaining ambiguity in the genome of the fetus (such as in intervals with a crossover), this ambiguity can be minimized if desired by analyzing additional polymorphic loci. In various embodiments, the polymorphic loci are chosen to cover one or more of the chromosomes at a density to reduce any ambiguity to a desired level. This method has important applications for the detection of polymorphisms or other mutations of interest in a fetus since it enables their detection based on linkage (such as the presence of linked polymorphic loci in the fetal genome) rather than by directing detecting the polymorphism or other mutation of interest in the fetal genome. For example, if a parent is a carrier for a mutation associated with cystic fibrosis (CF), a nucleic acid sample that includes maternal DNA from the mother of the fetus and fetal DNA from the fetus can be analyzed to determine whether the fetal DNA include the haplotype containing the CF mutation. In particular, polymorphic loci can be analyzed to determine whether the fetal DNA includes the haplotype containing the CF mutation without having to detect the CF mutation itself in the fetal DNA.
In some embodiments, the method involves determining a parental haplotype {e.g., a haplotype of the mother or father of the fetus). In some embodiments, this determination is made without using data from a relative of the mother or father. In some embodiments, a parental haplotype is determined using a dilution approach followed by SNP genotyping or sequencing as described herein and elsewhere {see, e.g., U.S. Publ. No. 2011/0033862, filed August 19, 2010, which is hereby incorporated by reference in its entirety). This parental haplotype data can be used to determine if the fetus inherited the parental haplotype. In various embodiments, SNP array or sequencing data is used to determine a parental haplotype by using data about the probability of chromosomes crossing over at different locations in a chromosome (such as by using recombination data such as may be found in the HapMap database to create a recombination risk score for any interval) to model dependence between polymorphic alleles on the chromosome. In some embodiments, allele counts at the polymorphic loci are calculated on a computer based on the sequencing data. In some embodiments, a plurality of ploidy hypotheses each pertaining to a different possible ploidy state of the chromosome are created on a computer; a model (such as a joint distribution model) for the expected allele counts at the polymorphic loci on the chromosome is built on a computer for each ploidy hypothesis; a relative probability of each of the ploidy hypotheses is determined on a computer using the joint distribution model and the allele counts; and the ploidy state of the fetus is called by selecting the ploidy state corresponding to the hypothesis with the greatest probability. In some embodiments, building a joint distribution model for allele counts and the step of determining the relative probability of each hypothesis are done using a method that does not require the use of a reference chromosome.
Some Embodiments
In some embodiments, a method is disclosed herein for generating a report disclosing the determined ploidy status of a chromosome in a fetus (such as a gestating fetus or a POC sample), the method comprising: obtaining a first sample that contains DNA from the mother of the fetus and DNA from the fetus; obtaining genotypic data from one or both parents of the fetus; preparing the first sample by isolating the DNA so as to obtain a prepared sample; measuring the DNA in the prepared sample at a plurality of polymorphic loci; calculating, on a computer, allele counts or allele count probabilities at the plurality of polymorphic loci from the DNA measurements made on the prepared sample; creating, on a computer, a plurality of ploidy hypotheses concerning expected allele count probabilities at the plurality of polymorphic loci on the chromosome for different possible ploidy states of the chromosome; building, on a computer, a joint distribution model for allele count probability of each polymorphic locus on the chromosome for each ploidy hypothesis using genotypic data from the one or both parents of the fetus; determining, on a computer, a relative probability of each of the ploidy hypotheses using the joint distribution model and the allele count probabilities calculated for the prepared sample; calling the ploidy state of the fetus by selecting the ploidy state corresponding to the hypothesis with the greatest probability; and generating a report disclosing the determined ploidy status.
In some embodiments, the method is used to determine the ploidy state of a plurality of fetuses (such as gestating fetuses or POC samples) in a plurality of respective mothers, the method further comprising: determining the percent of DNA that is of fetal origin in each of the prepared samples; and wherein the step of measuring the DNA in the prepared sample is done by sequencing a number of DNA molecules in each of the prepared samples, where more molecules of DNA are sequenced from those prepared samples that have a smaller fraction of fetal DNA than those prepared samples that have a larger fraction of fetal DNA.
In some embodiments, the method is used to determine the ploidy state of a plurality of fetuses (such as gestating fetuses or POC samples) in a plurality of respective mothers, and where the measuring the DNA in the prepared sample is done, for each of the fetuses, by sequencing a first fraction of the prepared sample of DNA to give a first set of measurements, the method further comprising: making a first relative probability determination for each of the ploidy hypotheses for each of the fetuses, given the first set of DNA measurements; resequencing a second fraction of the prepared sample from those fetuses where the first relative probability determination for each of the ploidy hypotheses indicates that a ploidy hypothesis corresponding to an aneuploid fetus has a significant but not conclusive probability, to give a second set of measurements; making a second relative probability determination for ploidy hypotheses for the fetuses using the second set of measurements and optionally also the first set of measurements; and calling the ploidy states of the fetuses whose second sample was resequenced by selecting the ploidy state corresponding to the hypothesis with the greatest probability as determined by the second relative probability determination.
In some embodiments, a composition of matter is disclosed, the composition of matter comprising: a sample of preferentially enriched DNA, wherein the sample of preferentially enriched DNA has been preferentially enriched at a plurality of polymorphic loci from a first sample of DNA, wherein the first sample of DNA consisted of a mixture of maternal DNA and fetal DNA derived from maternal plasma, where the degree of enrichment is at least a factor of 2, and wherein the allelic bias between the first sample and the preferentially enriched sample is, on average, selected from the group consisting of less than 2%, less than 1%, less than 0.5%, less than 0.2%, less than 0.1%, less than 0.05%, less than 0.02%, and less than 0.01%. In some embodiments, a method is disclosed to create a sample of such preferentially enriched DNA.
In some embodiment, a method is disclosed for determining the presence or absence of a fetal aneuploidy in a maternal tissue sample comprising fetal and maternal genomic DNA, wherein the method comprises: (a) obtaining a mixture of fetal and maternal genomic DNA from said maternal tissue sample; (b) selectively enriching the mixture of fetal and maternal DNA at a plurality of polymorphic alleles; (c) distributing selectively enriched fragments from the mixture of fetal and maternal genomic DNA of step a to provide reaction samples comprising a single genomic DNA molecule or amplification products of a single genomic DNA molecule; (d) conducting massively parallel DNA sequencing of the selectively enriched fragments of genomic DNA in the reaction samples of step c) to determine the sequence of said selectively enriched fragments; (e) identifying the chromosomes to which the sequences obtained in step d) belong; (f) analyzing the data of step d) to determine i) the number of fragments of genomic DNA from step d) that belong to at least one first target chromosome that is presumed to be diploid in both the mother and the fetus, and ii) the number of fragments of genomic DNA from step d) that belong to a second target chromosome, wherein said second chromosome is suspected to be aneuploid in the fetus; (g) calculating an expected distribution of the number of fragments of genomic DNA from step d) for the second target chromosome if the second target chromosome is euploid, using the number determined in step f) part i); (h) calculating an expected distribution of the number of fragments of genomic DNA from step d) for the second target chromosome if the second target chromosome is aneuploid, using the first number is step f) part i) and an estimated fraction of fetal DNA found in the mixture of step b); and (i) using a maximum likelihood or maximum a posteriori approach to determine whether the number of fragments of genomic DNA determined in step f) part ii) is more likely to be part of the distribution calculated in step g) or the distribution calculated in step h); thereby indicating the presence or absence of a fetal aneuploidy.
Experimental Section
The presently disclosed embodiments are described in the following Examples, which are set forth to aid in the understanding of the disclosure, and should not be construed to limit in any way the scope of the disclosure as defined in the claims which follow thereafter. The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to use the described embodiments, and are not intended to limit the scope of the disclosure nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by volume, and temperature is in degrees Centigrade. It should be understood that variations in the methods as described may be made without changing the fundamental aspects that the experiments are meant to illustrate. Experiment !
The objective was to show that a Bayesian maximum likelihood estimation (MLE) algorithm that uses parent genotypes to calculate fetal fraction improves accuracy of noninvasive prenatal trisomy diagnosis compared to published methods.
Simulated sequencing data for maternal cfDNA was created by sampling reads obtained on trisomy-21 and respective mother cell lines. The rate of correct disomy and trisomy calls were determined from 500 simulations at various fetal fractions for a published method (Chiu et al. BMJ 2011;342:c7401) and our MLE-based algorithm. We validated the simulations by obtaining 5 million shotgun reads from four pregnant mothers and respective fathers collected under an IRB-approved protocol. Parental genotypes were obtained on a 290K S P array (see Figure 14).
In simulations, the MLE-based approach achieved 99.0% accuracy for fetal fractions as low as 9% and reported confidences that corresponded well to overall accuracy. We validated these results using four real samples wherein we obtained all correct calls with a computed confidence exceeding 99%. In contrast, our implementation of the published algorithm for Chiu et al. required 18% fetal fraction to achieve 99.0% accuracy, and achieved only 87.8% accuracy at 9% fetal DNA.
Fetal fraction determination from parental genotypes in conjunction with a MLE-based approach achieves greater accuracy than published algorithms at the fetal fractions expected during the 1st and early 2nd trimester. Furthermore, the method disclosed herein produces a confidence metric that is crucial in determining the reliability of the result, especially at low fetal fractions where ploidy detection is more difficult. Published methods use a less accurate threshold method for calling ploidy based on large sets of disomy training data, an approach that predefines a false positive rate. In addition, without a confidence metric, published methods are at risk of reporting false negative results when there is insufficient fetal cfDNA to make a call. In some embodiments, a confidence estimate is calculated for the called ploidy state.
Experiment 2
The objective was to improve non- invasive detection of fetal trisomy 18, 21, and X particularly in samples consisting of low fetal fraction by using a targeted sequencing approach combined with parent genotypes and Hapmap data in a Bayesian Maximum Likelihood Estimation (MLE) algorithm.
Maternal samples from four euploid and two trisomy-positive pregnancies and respective paternal samples were obtained under an IRB-approved protocol from patients where fetal karyotype was known. Maternal cfDNA was extracted from plasma and roughly 10 million sequence reads were obtained following preferential enrichment that targeted specific S Ps. Parent samples were similarly sequenced to obtain genotypes.
The described algorithm correctly called chromosome 18 and 21 disomy for all euploid samples and normal chromosomes of aneuploid samples. Trisomy 18 and 21 calls were correct, as were chromosome X copy numbers in male and female fetuses. The confidence produced by the algorithm was in excess of 98% in all cases.
The method described accurately reported the ploidy of all tested chromosomes from six samples, including samples comprised of less than 12% fetal DNA, which account for roughly 30% of 1st and early 2nd-trimester samples. The crucial difference between the instant MLE algorithm and published methods is that it leverages parent genotypes and Hapmap data to improve accuracy and generate a confidence metric. At low fetal fractions, all methods become less accurate; it is important to correctly identify samples without sufficient fetal cfDNA to make a reliable call. Others have used chromosome Y specific probes to estimate fetal fraction of male fetuses, but concurrent parental genotyping enables estimation of fetal fraction for both sexes. Another inherent limitation of published methods using untargeted shotgun sequencing is that accuracy of ploidy calling varies among chromosomes due to differences in factors such as GC richness. The instant targeted sequencing approach is largely independent of such chromosome-scale variations and yields more consistent performance between chromosomes. Experiment 3
The objective was to determine if trisomy is detectable with high confidence on a triploid fetus, using novel informatics to analyze SNP loci of free floating fetal DNA in maternal plasma.
20mL of blood was drawn from a pregnant patient following abnormal ultrasound. After centrifugation, maternal DNA was extracted from the buffy coat (DNEASY, QIAGEN); cell-free DNA was extracted from plasma (QIAAMP QIAGEN). Targeted sequencing was applied to SNP loci on chromosomes 2, 21, and X in both DNA samples. Maximum- Likelihood Bayesian estimation selected the most likely hypothesis from the set of all possible ploidy states. The method determines fetal DNA fraction, ploidy state and explicit confidences in the ploidy determination. No assumptions are made about the ploidy of a reference chromosome. The diagnostic uses a test statistic that is independent of sequence read counts, which is the recent state of the art.
The instant method accurately diagnosed trisomy of chromosomes 2 and 21. Child fraction was estimated at 11.9% [CI 11.7-12.1]. The fetus was found to have one maternal and two paternal copies of chromosomes 2 and 21 with confidence of effectively 1 (error probability<10"30). This was achieved with 92,600 and 258,100 reads on chromosomes 2 and 21 respectively.
This is the first demonstration of non-invasive prenatal diagnosis of trisomic chromosomes from maternal blood where the fetus was triploid, as confirmed by metaphase karyotype. Extant methods of non-invasive diagnosis would not detect aneuploidy in this sample. Current methods rely on a surplus of sequence reads on a trisomic chromosome relative to disomic reference chromosomes; but a triploid fetus has no disomic reference. Furthermore, extant methods would not achieve similarly high-confidence ploidy determination with this fraction of fetal DNA and number of sequence reads. It is straightforward to extend the approach to all 24 chromosomes.
Experiment 4
The following protocol was used for 800-plex amplification of DNA isolated from maternal plasma from a euploid pregnancy and also genomic DNA from a triploidy 21 cell line using standard PCR (meaning no nesting was used). Library preparation and amplification involved single tube blunt ending followed by A-tailing. Adaptor ligation was run using the ligation kit found in the AGILENT SURESELECT kit, and PCR was run for 7 cycles. Then, 15 cycles of STA (95°C for 30s; 72°C for 1 min; 60°C for 4 min; 65°C for 1 min; 72°C for 30s) using 800 different primer pairs targeting SNPs on chromosomes 2, 21 and X. The reaction was run with 12.5 nM primer concentration. The DNA was then sequenced with an ILLUMINA IIGAX sequencer. The sequencer output 1.9 million reads, of which 92% mapped to the genome; of those reads that mapped to the genome, more than 99% mapped to one of the regions targeted by the targeted primers. The numbers were essentially the same for both the plasma DNA and the genomic DNA. Figure 15 shows the ratio of the two alleles for the -780 SNPs that were detected by the sequencer in the genomic DNA that was taken from a cell line with known trisomy at chromosome 21. Note that the allele ratios are plotted here for ease of visualization, because the allele distributions are not straightforward to read visually. The circles represent SNPs on disomic chromosomes, while the stars represent SNPs on a trisomic chromosome. Figure 16 is another representation of the same data as in Figure X, where the Y-axis is the relative number of A and B measured for each SNP, and where the X-axis is the SNP number where the SNPs are separated by chromosome. In Figure 16, SNP 1 to 312 are found on chromosome 2, from SNP 313 to 605 are found on chromosome 21 which is trisomic, and from SNP 606 to 800 are on chromosome X. The data from chromosomes 2 and X show a disomic chromosome, as the relative sequence counts lie in three clusters: AA at the top of the graph, BB at the bottom of the graph, and AB in the middle of the graph. The data from chromosome 21, which is trisomic, shows four clusters: AAA at the top of the graph, AAB around the 0.65 line (2/3), ABB around the .35 line (1/3), and BBB at the bottom of the graph.
Figures 17A-17D show data for the same 800-plex protocol, but measured on DNA that was amplified from four plasma samples from pregnant women. For these four samples, we expect to see seven clusters of dots: (1) along the top of the graph are those loci where both the mother and the fetus are AA, (2) slightly below the top of the graph are those loci where the mother is AA and the fetus is AB, (3) slightly above the 0.5 line are those loci where the mother is AB and the fetus is AA, (4) along the 0.5 line are those loci where the mother and the fetus are both AB, (5) slightly below the 0.5 line are those loci where the mother is AB and the fetus is BB, (6) slightly above the bottom of the graph are those loci where the mother is BB and the fetus is AB, (1) along the bottom of the graph are those loci where both the mother and the fetus are BB. The smaller the fetal fraction, the less the separation between clusters (1) and (2), between clusters (3), (4) and (5), and between clusters (6) and (7). The separation is expected to be half of the fraction of DNA that is of fetal origin. For example if the DNA is 20% fetal, and 80% maternal, we expect (1) through (7) to be centered at 1.0, 0.9, 0.6, 0.5, 0.4, 0.1 and 0.0 respectively; see for example Figure 17D, POOLl_BC5_ref_rate. If, instead the DNA is 8% fetal, and 92% maternal, we expect (1) through (7) to be centered at 1.00, 0.96, 0.54, 0.50, 0.46, 0.04 and 0.00 respectively; see for example Figure 17B, POOLl_BC2_ref_rate. If there is not fetal DNA detected, we do not expect to see (2), (3), (5), or (6); alternately we could say that the separation is zero, and therefore (1) and (2) are on top of each other, as are (3), (4) and (5), and also (6) and (7); see e.g. Figure 17C, POOLl_BC7_ref_rate. Note that the fetal fraction for Figure 17A, POOLl_BCl_ref_rate is about 25%.
Experiment 5
Most methods of DNA amplification and measurement will produce some allele bias, wherein the two alleles that are typically found at a locus are detected with intensities or counts that are not representative of the actual amounts of alleles in the sample of DNA. For example, for a single individual, at a heterozygous locus we expect to see a 1:1 ratio of the two alleles, which is the theoretical ratio expected for a heterozygous locus; however due to allele bias, we may see 55:45, or even 60:40. Also note that in the context of sequencing, if the depth of read is low, then simple stochastic noise could result in significant allele bias. In an embodiment, it is possible to model the behavior of each SNP such that if a consistent bias is observed for particular alleles, this bias can be corrected for. Figure 18 shows the fraction of data that can be explained by binomial variance, before and after bias correction. In Figure 18, the stars represent the observed allele bias on raw sequence data for the 800-plex experiment; the circles represent the allele bias after correction. Note that if there were no allele bias at all, we would expect the data to fall along the x=y line. A similar set of data that was produced by amplifying DNA using a 150-plex targeted amplification produced data that fell very closely on the 1:1 line after bias correction.
Experiment 6 Universal amplification of DNA using ligated adaptors with primers specific to the adaptor tags, where the primer annealing and extension times are limited to a few minutes has the effect of enriching the proportion of shorter DNA strands. Most library protocols designed for creating DNA libraries suitable for sequencing contain such a step, and example protocols are published and well known to those in the art. In some embodiments of the invention, adaptors with a universal tag are ligated to the plasma DNA, and amplified using primers specific to the adaptor tag. In some embodiments, the universal tag can be the same tag as used for sequencing, it can be a universal tag only for PCR amplification, or it can be a set of tags. Since the fetal DNA is typically short in nature, while the maternal DNA can be both short and long in nature, this method has the effect of enriching the proportion of fetal DNA in the mixture. The free floating DNA, thought to be DNA from apoptotic cells, and which contains both fetal and maternal DNA, is short - mostly under 200 bp. Cellular DNA released by cell lysis, a common phenomenon after phlebotomy, is typically almost exclusively maternal, and is also quite long - mostly above 500 bp. Therefore, blood samples that have sat around for more than a few minutes will contain a mixture of short (fetal + maternal) and longer (maternal) DNA. Performing a universal amplification with relatively short extension times on maternal plasma followed by targeted amplification will tend to increase the relative proportion of fetal DNA when compared to the plasma that has been amplified using targeted amplification alone. This can be seen in Figure 19 which shows the measured fetal percent when the input is plasma DNA (vertical axis) vs. the measured fetal percent when the input DNA is plasma DNA that has had a library prepared using the ILLUMINA GAIIx library preparation protocol. All the dots fall below the line, indicating that the library preparation step enriches the fraction of DNA that is of fetal origin. Two samples of plasma that were red, indicating hemolysis and therefore that there would be an increased amount of long maternal DNA present from cell lysis, show a particularly significant enrichment of fetal fraction when the library preparation is performed prior to targeted amplification. The method disclosed herein is particularly useful in cases where there is hemolysis or some other situation has occurred where cells comprising relatively long strands of contaminating DNA have lysed, contaminating the mixed sample of short DNA with the long DNA. Typically the relatively short annealing and extension times are between 30 seconds and 2 minutes, though they could be as short as 5 or 10 seconds or less, or as long as 5 or 10 minutes. Experiment 7
The following protocol was used for 1,200-plex amplification of DNA isolated from maternal plasma from a euploid pregnancy and also genomic DNA from a triploidy 21 cell line using a direct PCR protocol, and also a semi-nested approach. Library preparation and amplification involved single tube blunt ending followed by A-tailing. Adaptor ligation was run using a modification of the ligation kit found in the AGILENT SURESELECT kit, and PCR was run for 7 cycles. In the targeted primer pool, there were 550 assays for SNPs from chromosome 21, and 325 assays for SNPs from each of chromosomes 1 and X. Both protocols involved 15 cycles of STA (95°C for 30s; 72°C for 1 min; 60°C for 4 min; 65°C for 30s; 72°C for 30s) using 16 nM primer concentration. The semi-nested PCR protocol involved a second amplification of 15 cycles of STA (95°C for 30s; 72°C for 1 min; 60°C for 4 min; 65°C for 30s; 72°C for 30s) using an inner forward tag concentration of 29 nM, and a reverse tag concentration of 1 uM or 0.1 uM. The DNA was then sequenced with an ILLUMINA IIGAX sequencer. For the direct PCR protocol, 73% of the reads map to the genome; for the semi- nested protocol, 97.2% of the sequence reads map to the genome. Therefore, the semi-nested protocol result in approximately 30% more information, presumably mostly due to the elimination of primers that are most likely to cause primer dimers.
The depth of read variability tends to be higher when using the semi-nested protocol than when the direct PCR protocol is used (see Figure 20) where the diamonds refer to the depth of read for loci run with the semi-nested protocol, and the squares refer to the depth of read for loci run with no nesting. The SNPs are arranged by depth of read for the diamonds, so the diamonds all fall on a curved line, while the squares appear to be loosely correlated; the arrangements of the SNPs is arbitrary, and it is the height of the dot that denotes depth of read rather than its location left to right.
In some embodiments, the methods described herein can achieve excellent depth of read (DOR) variances. For example, in one version of this experiment (Figure 21) using a 1,200-plex direct PCR amplification of genomic DNA, of the 1,200 assays: 1186 assays had a DOR greater than 10; the average depth of read was 400; 1063 assays (88.6%) had a depth of read of between 200 and 800, and ideal window where the number of reads for each allele is high enough to give meaningful data, while the number of reads for each allele is not so high that the marginal use of those reads was particularly small. Only 12 alleles had higher depth of read with the highest at 1035 reads. The standard deviation of the DOR was 290, the average DOR was 453, the coefficient of variance of the DOR was 64%, there were 950,000 total reads, and 63.1% of the reads mapped to the genome. In another experiment (Figure 22) using a 1,200-plex semi-nested protocol, the DOR was higher. The standard deviation of the DOR was 583, the average DOR was 630, the coefficient of variance of the DOR was 93%, there were 870,000 total reads, and 96.3% of the reads mapped to the genome. Note, in both these cases, the SNPs are arranged by the depth of read for the mother, so the curved line represents the maternal depth of read. The differentiation between child and father is not significant; it is only the trend that is significant for the purpose of this explanation. Experiment s
In an experiment, the semi-nested 1,200-plex PCR protocol was used to amplify DNA from one cell and from three cells. This experiment is relevant to prenatal aneuploidy testing using fetal cells isolated from maternal blood, or for preimplantation genetic diagnosis using biopsied blastomeres or trophectoderm samples. There were 3 replicates of 1 and 3 cells from 2 individuals (46 XY and 47 XX+21) per condition. Assays targeted chromosomes 1, 21 and X. Three different lysis methods were used: ARCTURUS, MPERv2 and Alkaline lysis. Sequencing was run multiplexing 48 samples in one sequencing lane. The algorithm returned correct ploidy calls for each of the three chromosomes, and for each of the replicates. Experiment 9
In one experiment, four maternal plasma samples were prepared and amplified using a hemi-nested 9,600-plex protocol. The samples were prepared in the following way: Up to 40 mL of maternal blood were centrifuged to isolate the buffy coat and the plasma. The genomic DNA in the maternal sample was prepared from the buffy coat and paternal DNA was prepared from a blood sample or saliva sample. Cell-free DNA in the maternal plasma was isolated using the QIAGEN CIRCULATING NUCLEIC ACID kit and eluted in 45 uL TE buffer according to manufacturer's instructions. Universal ligation adapters were appended to the end of each molecule of 35 uL of purified plasma DNA and libraries were amplified for 7 cycles using adaptor specific primers. Libraries were purified with AGENCOURT AMPURE beads and eluted in 50 ul water.
3 ul of the DNA was amplified with 15 cycles of STA (95°C for 10 min for initial polymerase activation, then 15 cycles of 95°C for 30s; 72°C for 10 s; 65°C for 1 min; 60°C for 8 min; 65°C for 3 min and 72°C for 30s; and a final extension at 72°C for 2 min) using 14.5 nM primer concentration of 9600 target-specific tagged reverse primers and one library adaptor specific forward primer at 500 nM.
The hemi-nested PCR protocol involved a second amplification of a dilution of the first STAs product for 15 cycles of STA (95°C for 10 min for initial polymerase activation, then 15 cycles of 95°C for 30s; 65°C for 1 min; 60°C for 5 min; 65°C for 5 min and 72°C for 30s; and a final extension at 72°C for 2 min) using reverse tag concentration of 1000 nM, and a concentration of 16.6 u nM for each of 9600 target-specific forward primers.
An aliquot of the STA products was then amplified by standard PCR for 10 cycles with 1 uM of tag-specific forward and barcoded reverse primers to generate barcoded sequencing libraries. An aliquot of each library was mixed with libraries of different barcodes and purified using a spin column.
In this way, 9,600 primers were used in the single-well reactions; the primers were designed to target SNPs found on chromosomes 1, 2, 13, 18, 21, X and Y. The amplicons were then sequenced using an ILLUMINA GAIIX sequencer. Per sample, approximately 3.9 million reads were generated by the sequencer, with 3.7 million reads mapping to the genome (94%), and of those, 2.9 million reads (74%) mapped to targeted SNPs with an average depth of read of 344 and a median depth of read of 255. The fetal fraction for the four samples was found to be 9.9%, 18.9%, 16.3%, and 21.2%
Relevant maternal and paternal genomic DNA samples amplified using a semi-nested
9600-plex protocol and sequenced. The semi-nested protocol is different in that it applies 9,600 outer forward primers and tagged reverse primers at 7.3 nM in the first STA. Thermocycling conditions and composition of the second STA, and the barcoding PCR were the same as for the hemi-nested protocol.
The sequencing data was analyzed using informatics methods disclosed herein and the ploidy state was called at six chromosomes for the fetuses whose DNA was present in the 4 maternal plasma samples. The ploidy calls for all 28 chromosomes in the set were called correctly with confidences above 99.2% except for one chromosome that was called correctly, but with a confidence of 83%.
Figure 23 shows the depth of read of the 9,600-plex hemi-nesting approach along with the depth of read of the 1,200-plex semi-nested approach described in Experiment 7, though the number of SNPs with a depth of read greater than 100, greater than 200 and greater than 400 was significantly higher than in the 1,200-plex protocol. The number of reads at the 90 percentile can be divided by the number of reads at the 10 percentile to give a dimensionless metric that is indicative of the uniformity of the depth of read; the smaller the number, the more uniform (narrow) the depth of read. The average 90 percentile/ 10 percentile ratio is 11.5 for the method run in Experiment 9, while it is 5.6 for the method run in Experiment 7. A narrower depth of read for a given protocol plexity is better for sequencing efficiency, as fewer sequence reads are necessary to ensure that a certain percentage of reads are above a read number threshold. Experiment 10
In one experiment, four maternal plasma samples were prepared and amplified using a semi-nested 9,600-plex protocol. Details of Experiment 10 were very similar to Experiment 9, the exception being the nesting protocol, and including the identity of the four samples. The ploidy calls for all 28 chromosomes in the set were called correctly with confidences above 99.7%. 7.6 million (97%) of reads mapped to the genome, and 6.3 million (80%) of the reads mapped to the targeted SNPs. The average depth of read was 751, and the median depth of read was 396.
Experiment 11
In one experiment, three maternal plasma samples were split into five equal portions, and each portion was amplified using either 2,400 multiplexed primers (four portions) or 1,200 multiplexed primers (one portion) and amplified using a semi-nested protocol, for a total of 10,800 primers. After amplification, the portions were pooled together for sequencing. Details of Experiment 11 were very similar to Experiment 9, the exception being the nesting protocol, and the split and pool approach. The ploidy calls for all 21 chromosomes in the set were called correctly with confidences above 99.7%, except for one missed call where the confidence was 83%. 3.4 million reads mapped to targeted SNPs, the average depth of read was 404 and the median depth of read was 258. Experiment 12
In one experiment, four maternal plasma samples were split into four equal portions, and each portion was amplified using 2,400 multiplexed primers and amplified using a semi- nested protocol, for a total of 9,600 primers. After amplification, the portions were pooled together for sequencing. Details of Experiment 12 were very similar to Experiment 9, the exception being the nesting protocol, and the split and pool approach. The ploidy calls for all 28 chromosomes in the set were called correctly with confidences above 97%, except for one missed call where the confidence was 78%. 4.5 million reads mapped to targeted S Ps, the average depth of read was 535 and the median depth of read was 412.
Experiment 13
In one experiment, four maternal plasma samples were prepared and amplified using a 9,600-plex triply hemi-nested protocol, for a total of 9,600 primers. Details of Experiment 12 were very similar to Experiment 9, the exception being the nesting protocol which involved three rounds of amplification; the three rounds involved 15, 10 and 15 STA cycles respectively. The ploidy calls for 27 of 28 chromosomes in the set were called correctly with confidences above 99.9%, except for one that was called correctly with 94.6%, and one missed call with a confidence of 80.8%. 3.5 million reads mapped to targeted SNPs, the average depth of read was 414 and the median depth of read was 249.
Experiment 14
In one experiment 45 sets of cells were amplified using a 1,200-plex semi-nested protocol, sequenced, and ploidy determinations were made at three chromosomes. 15 individual single cells and 30 sets of three cells were placed in 45 individual reaction tubes for a total of 45 reactions where each reaction contained cells from only one cell line, but the different reactions contained cells from different cell lines. The cells were prepared into 5 ul washing buffer and lysed the by adding 5 ul ARCTURUS PICOPURE lysis buffer (APPLIED BIOSYSTEMS) and incubating at 56°C for 20 min, 95°C for 10 min..
The DNA of the single/three cells was amplified with 25 cycles of STA (95 °C for 10 min for initial polymerase activation, then 25 cycles of 95°C for 30s; 72°C for 10 s; 65°C for 1 min; 60°C for 8 min; 65°C for 3 min and 72°C for 30s; and a final extension at 72°C for 2 min) using 50 nM primer concentration of 1200 target-specific forward and tagged reverse primers.
The semi-nested PCR protocol involved three parallel second amplification of a dilution of the first STAs product for 20 cycles of STA (95°C for 10 min for initial polymerase activation, then 15 cycles of 95°C for 30s; 65°C for 1 min; 60°C for 5 min; 65°C for 5 min and 72°C for 30s; and a final extension at 72°C for 2 min) using reverse tag specific primer concentration of 1000 nM, and a concentration of 60 nM for each of 400 target-specific nested forward primers. In the three parallel 400-plex reactions the total of 1200 targets amplified in the first STA were thus amplified.
An aliquot of the STA products was then amplified by standard PCR for 15 cycles with 1 uM of tag-specific forward and barcoded reverse primers to generate barcoded sequencing libraries. An aliquot of each library was mixed with libraries of different barcodes and purified using a spin column.
In this way, 1,200 primers were used in the single cell reactions; the primers were designed to target S Ps found on chromosomes 1, 21 and X. The amplicons were then sequenced using an ILLUMINA GAIIX sequencer. Per sample, approximately 3.9 million reads were generated by the sequencer, with 500,000 to 800,000 million reads mapping to the genome (74% to 94% of all reads per sample).
Relevant maternal and paternal genomic DNA samples from cell lines were analyzed using the same semi-nested 1200-plex assay pool with a similar protocol with fewer cycles and 1200-plex second STA, and sequenced.
The sequencing data was analyzed using informatics methods disclosed herein and the ploidy state was called at the three chromosomes for the samples.
Figure 24 shows normalized depth of read ratios (vertical axis) for six samples at three chromosomes (1 = chrom 1; 2 = chrom 21; 3 = chrom X). The ratios were set to be equal to the number of reads mapping to that chromosome, normalized, and divided by the number of reads mapping to that chromosome averaged over three wells each comprising three 46XY cells. The three sets of data points corresponding to the 46XY reactions are expected to have ratios of 1:1. The three sets of data points corresponding to the 47XX+21 cells are expected to have ratios of 1:1 for chromosome 1, 1.5:1 for chromosome 21, and 2:1 for chromosome X.
Figure 25A-25C show allele ratios plotted for three chromosomes (1, 21, X) for three reaction. The reaction in the lower left shows a reaction on three 46XY cells (Figure 25B). The left region are the allele ratios for chromosome 1, the middle region are the allele ratios for chromosome 21, and the right region are the allele ratios for chromosome X. For the 46XY cells, for chromosome 1 we expect to see ratios of 1, 0.5 and 0, corresponding to AA, AB and BB S P genotypes. For the 46XY cells, for chromosome 21 we expect to see ratios of 1, 0.5 and 0, corresponding to AA, AB and BB SNP genotypes. For the 46XY cells, for chromosome X we expect to see ratios of 1 and 0, corresponding to A, and B SNP genotypes. The reaction in the lower right shows a reaction on three 47XX+21 cells (Figure 25C). The allele ratios are segregated by chromosome as in the lower left graph. For the 47XX+21 cells, for chromosome 1 we expect to see ratios of 1, 0.5 and 0, corresponding to AA, AB and BB SNP genotypes. For the 47XX+21 cells, for chromosome 21 we expect to see ratios of 1, 0.67, 0.33 and 0, corresponding to AAA, AAB, ABB and BBB SNP genotypes. For the 47XX+21 cells, for chromosome X we expect to see ratios of 1, 0.5 and 0, corresponding to AA, AB, and BB SNP genotypes. The plot in the upper right was made on a reaction comprising 1 ng of genomic DNA from the 47XX+21 cell line (Figure 25A). Figures 26A and 26B show the same graphs as in Figure 25A-25C, but for reactions performed on only one cell. The left graph was a reaction that contained a 47XX+21 cell (Figure 26A), and the right graph was for a reaction that contained a 46XX cell (Figure 26B).
From the graphs shown in Figures 25A-25C and Figures 26A and 26B, it is visually apparent that there are two clusters of dots for chromosomes where we expect to see ratios of 1 and 0; three clusters of dots for chromosomes where we expect to see ratios of 1, 0.5, and 0, and four clusters of dots for chromosomes where we expect to see ratios of 1, 0.67, 0.33 and 0. The parental support algorithm was able to make correct calls on all of the three chromosomes for all of the 45 reactions.
Experiment 15
The objective of the following study is to examine the efficiency and accuracy of the informatics based technique in combination with single nucleotide polymorphism microarrays on POC samples after first trimester miscarriage in a prospective cohort. We evaluated in a blinded, head-to-head fashion a new informatics enhanced technique that uses genotypic data of both the POC sample and the mother, measured with SNP microarrays, to detect the number of copies of all 24 chromosomes simultaneously (Johnson, D.S., et al., Preclinical validation of a microarray method for full molecular karyotyping ofblastomeres in a 24-h protocol. Hum Reprod, 2010. 25(4): p. 1066-75). These arrays afford faster turnaround time and when combined with the PARENTAL SUPPORT algorithm are able to determine parental source of chromosomes and abnormalities. Minimal tissue is required for karyotype analysis using SNP microarrays, and the technology is able to confidently differentiate between maternal and fetal chromosomes in case of 46XX.
Methods
This study was approved by the Stanford University Institutional Review Board and all subject gave written and verbal consent to participate. Couples treated at an academic reproductive endocrinology and infertility practice with a documented intrauterine pregnancy loss between February 2010 and August 2010 were eligible. Patients were offered enrollment if both parents were available to give DNA samples and desired chromosome testing of the miscarried tissue.
POC samples were collected as part of a commercial diagnostic test to detect the number of copies of all 24 chromosomes simultaneous (Johnson, D.S., et al., Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod, 2010. 25(4): p. 1066-75; Lathi, R.B.; Loring, M.; Massie, J.A.M.; Demko, Z.P.; Johnson, D.; Sigurjonsson, S.; Gemelos, G.; Rabinowitz, M. Informatics Enhanced SNP Microarray Analysis of 30 Miscarriage Samples Compared to Routine Cytogenetics PLoS One, 2012. 7(3):e31282). A missed abortion was diagnosed by transvaginal ultrasound and confirmed by repeat ultrasound prior to the dilation and curettage (D&C) procedure (Landres, I.V., A.A. Milki, and R.B. Lathi, Karyotype of miscarriages in relation to maternal weight. Hum Reprod., 2010. 25(5): p. 1123-6). Suction curettage was performed in the usual fashion under ultrasound guidance. Chorionic villi were separated from maternal deciduas as necessary via a standardized technique (Lathi, R.B. and A.A. Milki, Tissue sampling technique affects accuracy of karyotype from missed abortions. J Assist Reprod Genet, 2002. 19(11): p. 536-8). Once chorionic villi were separated and cleaned, the specimen was divided into equal samples and sent for microarray testing in parallel with routine cytogenetic testing. Chorionic villi from a miscarriage were grown in culture, the cells were then arrested and Giemsa used to stain bands in the chromosomes to allow for visualization and identification, known as G-banding. Routine cytogenetic testing consisted of cell culture and analysis by the Giemsa-trypsin-wrights banding methods by a university reference lab.
Thirty samples were analyzed by both microarray and traditional cytogenetics. The mean age of women was 37.2 years old; range 29-41 years. Mean maternal body mass index (BMI) was 26.7 kg/m2; range 20-32. Figure 29 includes all demographic data from the study population. The mean gestational age at time of D&C was 8.75 weeks; with a range 7-12 weeks; 27% of pregnancies were spontaneous conceptions whereas 73% were conceived using assisted reproductive technologies (33% intrauterine insemination (IUI), 37% in vitro fertilization (IVF), and 3% IVF with donor egg).
Genotyping of the maternal and POC samples was performed at a commercial reference lab using ILLUMINA CytoS P-12 genotyping microarrays, which measure approximately 300,000 SNPs across the genome, (roughly one every 10 kb) according to the manufacturer's instructions. The informatics technique (PARENTAL SUPPORT), using the output of the SNP arrays, determined the number and origin of each of the chromosomes in the POC sample.
In order to determine the ploidy state, the informatics technique compares, for each SNP measured on a given chromosome, the intensity of the signal from each of the two possible alleles. The relative intensities have a statistical distribution that is indicative of the number of copies of that chromosome. Figures 27A-27F graphically illustrate different aneuploidy states; each plot represents one chromosome, and each spot represents one SNP. The x-axis is the relative SNP location along the chromosome, and the y-axis is a representation of the relative intensity of the two allelic measurements at that SNP. SNPs that are homozygous are found either at the top or the bottom of the plot, while SNPs that are heterozygous are found toward the middle.
In the case of a monosomy (Figure 27A), all alleles are homozygous so only the top and bottom cluster are observed. In the case of a disomy (Figure 27B), the two sets of homozygous alleles appear at the top and bottom, as well as the set of heterozygous alleles at about 50%, as the relative proportion of the two alleles in the sample is expected to be about 1: 1 (subject to stochastic variation). In the case of a trisomy (Figure 27C), there are two sets of homozygous alleles plus two sets of heterozygous alleles (AAB and ABB) at about 33% and 67%, as the relative proportion of the two alleles in the sample are expected to be either 2: 1 or 1:2. Figure 27D shows an example of a partial duplication where the right 70% of the chromosome is diploid, and the left 30% is triploid.
In contrast to techniques such as cytogenetic karyotyping or aCGH, the PARENTAL
SUPPORT method can detect if the POC sample is genetically maternal in nature. If desired, to visualize how the informatics technique detects maternal cell contamination (MCC), each SNP in the POC sample is optionally colored according to the genotype of the mother, such as red for those SNPs that are homozygous for one allele, blue for those SNPs that are homozygous for the other allele, and green for those alleles that are heterozygous. In the case of MCC (Figure 27E), the SNPs segregate by color, indicating that the tissue is genetically identical to the mother (color not shown). When the POC sample is genetically fetal (Figure 27F), the SNPs are no longer segregated by color - some alleles that were heterozygous in the mother are homozygous in the fetus, and some alleles that are homozygous in the mother are heterozygous in the fetus, though note that they could not be homozygous for the other allele (color not shown). The informatics technique leverages this concept to detect MCC. Note that contamination of foreign tissue can be detected as tissue unrelated to the mother will result in SNPs that are homozygous for one allele in the mother appearing as homozygous for the other allele in the POC sample.
Partial maternal cell contamination also poses a challenge for conventional methods. Copy number differentiation can be seen by observing the plots in Figures 28A-28D. Figures 28A and 28B are disomic and trisomic (respectively) chromosomes from a case with -30% maternal cells, and Figures 28C and 28D are disomic and trisomic (respectively) chromosomes from a case with -70% maternal cells. Note that the dark band represents the centromere. An explanation of the results follow.
First, let us denote the two possible alleles at each SNP as A and B. As above, the relative intensities of the measurements for the two alleles are graphed along the vertical axis, with the SNPs arranged sequentially along the horizontal axis. If desired, the measurements are optionally colored according to the mother's genotype, such as red if the mother is AA, green if the mother is AB, and blue if the mother is BB. Also note that the maternal and fetal measurements do not result in different spots, rather, they are additive along the vertical axis. Therefore, increasing the proportion of maternal cells from 0% to 100% will gradually shift some dots up or down in bands as the graphs change from resembling Figure 27F to 27E.
For the euploid chromosomes, the upper green band is where the mother is AB and the fetus is BB, the middle green band is where the mother is AB and the fetus is AB, and the lower green band is where the mother is AB and the fetus is AA. The upper red band is where the mother and fetus are both BB, and the lower red band is where the mother is BB and the fetus is AB. The upper blue band is where the mother is AA and the fetus is AB, and the lower blue band is where the both the mother and fetus are AA. For the trisomic chromosomes, the situation is complicated by the fact that there are four types of trisomy: maternal matching trisomy where the mother contributes two identical chromosomes, maternal unmatching trisomy where the mother contributes two different chromosomes, and the same two trisomies but where the father contributes the two chromosomes. Additionally, due to crossovers during meiosis, each trisomic chromosome can consist of one or more matching and unmatching regions.
The trisomy shown in Figure 28B is a maternal trisomy where the left 10% of the plot is a matched trisomy region, and the right 90% of the graph is an unmatched trisomy region. Observe the green dots, where the mother is heterozygous, or AB. In the matched trisomy region, the top green band contain alleles where the fetus is BBB, the second band contain alleles where the fetus is ABB (BB from mother, A from father), the third band contain alleles where the fetus is AAB (AA from mother, B from father), and the bottom band contain alleles where the fetus is AAA. In the unmatched trisomy region, the fetus got one of each chromosome from the mother, so the mother's contribution is AB. The top green band is where the father contributed B, and so the fetus is ABB, and bottom green band is where father contributed A, and the fetus is AAB.
Results
Overall, 63% of karyotyped POC were chromosomally abnormal on routine cytogenetics. The majority of abnormalities were due to autosomal trisomies (15 out of 19) and, not surprisingly, 14 of 15 of these were due to excess maternal chromosomes. In addition to the autosomal trisomies, there were two unbalanced translocations (one inherited and one de novo). There was one triploidy and one tetraploidy in our data set. All 46,XX results from cytogentics were confirmed to be POC samples as microarray analysis clearly detected one maternal and one paternal copy of each chromosome, ruling out maternal contamination.
The cytogenetic karyotyping took, on average, 29 days to return results. In contrast, the microarray based karyotyping took 12 days for the initial research samples. The last eight microarray samples, run in a production setting, averaged only 7 days for turn around.
Of the 30 samples, four results were discordant between the cytogenetic and microarray techniques, giving a concordance of 87% between the two techniques. In one case, cytogenetic karyotyping returned a 92XXXX result, while the informatics technique found 46XX. In a second case, cytogenetics reported a 46,XY,der(14)t(3;14) karyotype, while the informatics technique returned a result of trisomy 14. In a third case, cytogenetics found trisomy 22, while the informatics technique found maternal cell contamination (note that different biopsies were used for the two techniques). In the last case, the cytogenetics reported a 45, X, +22 karyotype, while the informatics technique reported only trisomy 22.
The first two cases with a discordant result can be easily explained by the known limitation of quantitative genetics and their inability to detect whole genome duplication and balanced structural rearrangements. However, only one would be considered a false negative result (meaning that the reported result was normal non-maternal when the true karyotype of the POC was tetraploid). The missed unbalanced structural rearrangement was reported as abnormal and lethal. In this case the parental karyotypes were normal and the translocation was considered de novo, and no more likely to recur than a de novo aneuploidy. The latter two cases of discrepancies illustrate a limitation of the study. Although the samples analyzed by the two methods came from the same procedure, the tissue sample analyzed was different and, therefore, the discrepancies can be explained by sampling error, tissue mosaicism, or culture artifact. Again, in the case or trisomy 22 with or without monosomy X, the patient would be counseled the same and no further evaluation for maternal causes of miscarriage are indicated,
Discussion
The application of informatics and microarray technology to analysis of miscarriage tissues gives fetal karyotype results in significantly less time than routine cytogenetic testing, and avoids the potential pitfalls of cell culture. While array comparative genomic hybridization (aCGH) has been reported in this context (Benkhalifa, M., et al., Array comparative genomic hybridization profiling of first-trimester spontaneous abortions that fail to grow in vitro. Prenat Diagn, 2005. 25(10): p. 894-900; Ballif, B.C., et al, Detecting sex chromosome anomalies and common triploidies in products of conception by array-based comparative genomic hybridization. Prenat Diagn, 2006. 26(4): p. 333-9), o our knowledge, this is the first application of S P microarray technology to determining the karyotype of POC samples. The use of the informatics enhanced SNP microarray technique gives us additional information about parental source of aneuploidy, enables detection of uniparental disomy (UPD), and is able to differentiate POC from maternal DNA in the setting of a 46,XX result.
Although definitive testing is not routinely done in the case of a 46,XX result, studies show that maternal contamination is present in 29-58% of cases where 46,XX is reported with routine cytogenetics (Bell, K.A., et al, Cytogenetic diagnosis of "normal 46,XX" karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril, 1999. 71(2): p. 334-41). In a study by Robberecht et al, 37 cases of 46,XX resulted from routine cytogenetics (Robberecht, C, et al., Diagnosis of miscarriages by molecular karyotyping: benefits and pitfalls. Genet Med, 2009. 11(9): p. 646-54). Only four of these samples were confirmed to be accurate (true 46,XX). The large discrepancy was attributed to maternal contamination and to possible mosaicism. The inability to trust a 46,XX result leads the patient and provider to either disregard the information given or conclude the miscarriage was chromosomally normal. Being able to differentiate maternal contamination from a chromosomally normal female improves the accuracy of this test significantly.
Tetraploidy is found in 2% of POC samples (Menasha, J., et al., Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med, 2005. 7(4): p. 251-63) and can be classified into two categories: the more common type, 2:2 tetraploidy, is where each parent contributes a full extra set of chromosomes for a total of 2 identical sets from the mother and 2 identical sets from the father, and is likely due to failure of cytokinesis at all of the chromosomes. The less common, 3:1 tetraploidy, is where 3 sets of chromosomes are from one parent and 1 is from the other, and has a more complicated origin. S P microarrays are able to detect triploidy (3 chromosome sets) due to their genotyping ability, and when using the informatics technique used in this study, able to detect 3: 1 tetraploidy. However detection of multiples of entire chromosome sets, such as 2:2 tetraploidy or 3:3 hexaploidy, remains a limitation of the technology. These types of abnormalities can be detected with traditional cytogenetic karyotyping, or with microarray techniques used in combination with flow cytometry, or FISH (Robberecht, C, et al., Diagnosis of miscarriages by molecular karyotyping: benefits and pitfalls. Genet Med, 2009. 11(9): p. 646-54; Lomax, B., et al., Comparative genomic hybridization in combination with flow cytometry improves results of cytogenetic analysis of spontaneous abortions. Am J Hum Genet, 2000. 66(5): p. 1516-21; Menten, B., et al., Array comparative genomic hybridization and flow cytometry analysis of spontaneous abortions and mors in utero samples. BMC Med Genet, 2009. 10: p. 89).
Errors involving structural chromosome rearrangement, such as balanced translocations and Robertsonian translocations, are found in approximately 0.5% of POC samples (Stephenson, M.D., K.A. Awartani, and W.P. Robinson, Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum Reprod, 2002. 17(2): p. 446-51). Note that a Robertsonian translocation is formally a balanced translocation, although in practice, the complementary chromosome made up of the two tiny p-arms found in acrocentric chromosomes is often lost after a few rounds of mitosis. The inability to detect balanced chromosomal structural rearrangements, or differentiate between actual trisomy due to three separate copies of the chromosome versus a specious trisomy resulting from an isochromosome or Robertsonian translocation, is a limitation inherent to all microarray testing (Schaeffer, A.J., et al., Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet, 2004. 74(6): p. 1168-74). These types of abnormalities can only be detected with traditional cytogenetic techniques where the chromosome itself and banding pattern can be viewed. A balanced translocation is not lethal and, therefore, would not be expected to cause a miscarriage. If the genetic material is not balanced, then the array would be able to identify any unbalanced karyotype. Couples at risk for having balanced structural rearrangements in either parent should undergo routing cytogentic analysis of peripheral blood to accurately identify whether a translocation is present.
These two limitations are potentially clinically relevant since they can result in misdiagnosis of ploidy state in the event of 2:2 tetraploidy, or, erroneous recurrence risk for subsequent miscarriage if a trisomy occurred due to an inherited unbalanced Robertsonian translocation when the presumption was pure trisomy. However, options exist for addressing these limitations. Trisomic results involving the acrocentric chromosomes can be followed up with parental karyotyping, if found in the setting of recurrent pregnancy loss or recurrent trisomy. An advantage of the informatics technique is the ability to determine the parental source of aneuploidy, enabling karyotyping to be done only on the parent of origin. To address tetraploidy, reflex testing of normal results with two-probe FISH would enable confirmation or detection of tetrasomic state leading to a conclusion of tetraploidy.
The other two discordant results are likely due to discordant samples. The case of maternal cell contamination is surprising only in that of sixty biopsies (samples from 30 study subjects x2); only one was contaminated with maternal cells. This includes eight cases of 46,XX as called by cytogenetic karyotyping, which were confirmed as genuine 46,XX by the microarray informatics technique. The final discordance was due to a finding of 46,X0+22 by cytogenetics, and a finding of 47,XX +22 by the informatics technique. This may be due to a culturing artifact that resulted in a dropped chromosome in the cytogenetic sample, or to mosaicism in the POC sample, rather than testing error since the microarray informatics result delivered exceptionally clean data illustrating two distinct genotypes (see Figure 27B).. The finding of discrepant results involving complex aneuploidies between cytogenetic and molecular methods (aCGH) have been previously reported and may be as high as 50% (Stephenson, M.D., K.A. Awartani, and W.P. Robinson, Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum Reprod, 2002. 17(2): p. 446-51). The authors postulate an alternative explanation of placental mosaicism that is revealed through analysis of direct versus cultured chorionic villi (Scott, S.A., et al., Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization. Genet Med. 12(2): p. 85-92).
Though interesting, these discrepancies are not clinically significant in terms of misdiagnosis or incorrect prognosis. A 46,XO,+22 and a 47,XX,+22 are both aneuploid and associated with the same clinical conclusion, and a finding of maternal contamination is simply interpreted as non-fetal.
Since the two types of aneuploidy that the informatics based technique can not detect typically account for approximately 3% of POC cases, this indicates that this technique should, in theory, be roughly concordant with 97% of the results from cytogenetic karyotyping, making the strong assumption of no cell culture artifacts or other errors during cytogenetic karyotyping. In this study, the concordance rate was 87% (26/30), with the clinically relevant concordance rate being 93% (28/30). The clinically relevant concordance was defined as differences in molecular karyotype and routine karyotype that would change how patients were counseled about the cause of their miscarriage. Given the small sample size of this study, we would expect the concordance to be higher with larger numbers as tetraploidy and Robersonian translocations are rare but both occurred in our sample.
The invention provides methods for chromosome copy number calling on genetic samples, such as fetal samples subject to contamination from maternal DNA. The present disclosure provides methods for determining the ploidy status of a chromosome in a fetus (such as a gestating fetus or a POC sample) from genotypic data measured from a mixed sample of DNA comprising DNA from both the mother of the fetus and from the fetus, and optionally from genotypic data from the mother and father. In some embodiments, the ploidy state is determined by using a joint distribution model to create a plurality of expected allele distributions for different possible fetal ploidy states given the parental genotypic data, and comparing the expected allelic distributions to the pattern of measured allelic distributions measured in the mixed sample, and choosing the ploidy state whose expected allelic distribution pattern most closely matches the observed allelic distribution pattern. The mixed sample of DNA may be preferentially enriched at a plurality of polymorphic loci in a way that minimizes the allelic bias, for example using massively multiplexed targeted PCR.
All patents, patent applications, and published references cited herein are hereby incorporated by reference in their entirety. While the methods of the present disclosure have been described in connection with the specific embodiments thereof, it will be understood that it is capable of further modification. Furthermore, this application is intended to cover any variations, uses, or adaptations of the methods of the present disclosure, including such departures from the present disclosure as come within known or customary practice in the art to which the methods of the present disclosure pertain, and as fall within the scope of the appended claims.

Claims

CLAIMS What is claimed is:
1. An ex vivo method for determining a number of copies of a chromosome or chromosome segment of interest in the genome of a fetus, the method comprising:
making genotypic measurements at a plurality of polymorphic loci on the chromosome or chromosome segment from a sample comprising cellular genetic material from the fetus and/or the mother of the fetus;
obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the mother;
determining, on a computer, based on the genotypic measurements, whether the sample comprises (i) DNA from the fetus with essentially no DNA from the mother, (ii) maternal DNA with essentially no DNA from the fetus, or (iii) DNA from both the mother and the fetus; and
determining, on a computer, based on the genotypic measurements, the number of copies of a chromosome or chromosome segment in the genome of the fetus when the sample comprises DNA from the fetus.
2. The method of claim 1, wherein the sample comprises DNA from the fetus, and wherein the determining the number of copies of the chromosome further comprises: creating, on a computer, a set of one or more hypotheses about the number of copies of the chromosome or chromosome segment in the genome of the fetus;
determining, on a computer, the probability of each of the hypotheses given the genotypic measurements; and
using the probabilities associated with each hypothesis to determine the most likely number of copies of the chromosome or chromosome segment in the genome of the fetus.
3. An ex vivo method for determining a number of copies of a chromosome or chromosome segment of interest in the genome of a fetus, the method comprising: making genotypic measurements at a plurality of polymorphic loci on the chromosome or chromosome segment from a mixed sample that comprises (i) cellular genetic material from the fetus and (ii) cellular genetic material from the mother of the fetus;
creating, on a computer, a set of one or more hypotheses about the number of copies of the chromosome or chromosome segment in the genome of the fetus;
determining, on a computer, the probability of each of the hypotheses given the genotypic measurements; and
using the probabilities associated with each hypothesis to determine the most likely number of copies of the chromosome or chromosome segment in the genome of the fetus.
4. The method of claim 3, wherein the fetal cellular genetic material is from a gestating fetus.
5. The method of claim 3, wherein the fetal cellular genetic material is from a products of conception sample.
6. The method of claim 3, wherein the mixed sample is a maternal whole blood sample, cells isolated from a maternal blood sample, amniocentesis sample, placental tissue sample, cervical mucus sample, or sample from a fetus.
7. The method of claim 6, wherein the placental tissue sample is from chorionic villus, decidua, or placental membrane.
8. The method of claim 3, wherein at least 10% of cells in the mixed sample are maternal cells.
9. The method of claim 8, wherein at least 50% of the cells in the mixed sample are maternal cells.
10. The method of claim 9, wherein at least 90% of the cells in the mixed sample are maternal cells.
11. The method of claim 3, wherein the mixed sample is enriched for fetal cells.
12. The method of claim 11, wherein at least 1% of the cells in the mixed sample are fetal cells.
13. The method of claim 12, wherein at least 4% of the cells in the mixed sample are fetal cells.
14. The method of claim 3, further comprising obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the mother, wherein the probability of each hypotheses is determined using (i) the genotypic measurements made on the genetic material from the mother and (ii) the genotypic measurements made on the mixed sample.
15. The method of claim 14, wherein the genotypic measurements made on the genetic material from the mother facilitate the detection or quantitation of maternal DNA in the mixed sample.
16. The method of claim 3, further comprising obtaining genotypic measurements at the plurality of polymorphic loci from genetic material from the mother and from genetic material from the father, wherein the probability of each hypotheses is determined using (i) the genotypic measurements made on the genetic material from the mother, (ii) the genotypic measurements made on the genetic material from the father, and (iii) the genotypic measurements made on the mixed sample.
17. The method of claim 16, w herein DNA cross-linking inhibits the measuring of the genetic material from the mixed sample, and wherein the genotypic measurements made on the genetic material from the father facilitate the copy number determination.
18. The method of claim 3, wherein the plurality of loci comprise single nucleotide polymorphisms (SNPs).
19. The method of claim 18, wherein plurality of loci comprises at least 100 S Ps.
20. The method of claim 3, wherein the probability of each of the hypotheses is determined using data about the probability of chromosomes crossing over at different locations in the chromosome or chromosome segment of interest.
21. The method of claim 3 , wherein the method comprises
calculating, on a computer, allele counts at the plurality of polymorphic loci from the genotypic measurements,
building, on a computer, a joint distribution model for the expected allele counts at the plurality of polymorphic loci on the chromosome or chromosome segment for each hypothesis; determining, on a computer, a relative probability of each of the copy number hypotheses using the joint distribution model and the allele counts.
22. The method of claim 3, wherein a S P genotyping array is used to make the genotypic measurements.
23. The method of claim 3, wherein high throughput DNA sequencing is used to make the genotypic measurements.
24. The method of claim 3, wherein a confidence for the copy number determination is at least 95%.
25. The method of claim 3, further comprising using the genotypic measurements to determine whether or not the fetus has inherited one or more disease linked haplotypes.
26. The method of claim 3, further comprising performing a clinical action based on the copy number determination.
27. The method of claim 26, wherein the clinical action is terminating the pregnancy or maintaining the pregnancy.
28. The method of claim 26, wherein the clinical action is selected from the group consisting of performing amniocentesis on the fetus, performing amniocentesis on a subsequent fetus that that inherits genetic material from the mother and/or father, performing chorion villus biopsy on the fetus, performing chorion villus biopsy on a subsequent fetus that that inherits genetic material from the mother and/or father, performing in vitro fertilization, performing preimplantation genetic diagnosis on one or more embryos that inherited genetic material from the mother and/or father, karyotyping the mother, karyotyping the father, and combinations thereof.
29. The method of claim 3, wherein the chromosome of interest is selected from the group consisting of chromosome 13, chromosome 18, chromosome 21, the X chromosome, the Y chromosome, and combinations thereof.
30. The method of claim 3, wherein the method comprises screening for a chromosomal abnormality selected from the group consisting of monosomy, uniparental disomy, trisomy, other aneuploidies, mosaicism, unbalanced translocations, insertions, deletions, and combinations thereof.
31. The method of claim 3, wherein the method comprises determining whether the individual has Down syndrome, Edwards syndrome, Patau syndrome, Klinefelters syndrome, 47,XXX, 47,XYY, Turner syndrome, triploidy, DiGeorge syndrome, Cri du Chat syndrome, Angelman syndrome, Praeder- Willi syndrome, Wolf-Hirschhorn syndrome, Smith- Magenis syndrome, Williams-Beuren syndrome, Phelan-McDermid syndrome, Sotos Syndrome, Cystic Fibrosis, Muscular Dystrophy, Spinal Muscular Atrophy, Fragile X, Tay- Sachs disease, Gaucher disease, Torsion Dystonia, Niemann-Pick disease, Mucolipidosis, Fanconi Anemia, Canavan disease, Sickle Cell Anemia, or Bloom Syndrome.
32. A report displaying a copy number determination for a chromosome or chromosome segment of interest in the genome of a fetus generated using the method of claim 3.
PCT/US2013/028378 2012-02-29 2013-02-28 Informatics enhanced analysis of fetal samples subject to maternal contamination WO2013130848A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201261634431P 2012-02-29 2012-02-29
US61/634,431 2012-02-29
US201261675020P 2012-07-24 2012-07-24
US61/675,020 2012-07-24
PCT/US2012/058578 WO2013052557A2 (en) 2011-10-03 2012-10-03 Methods for preimplantation genetic diagnosis by sequencing
USPCT/US2012/058578 2012-10-03
US13/683,604 2012-11-21
US13/683,604 US20130123120A1 (en) 2010-05-18 2012-11-21 Highly Multiplex PCR Methods and Compositions
US13/780,022 2013-02-28
US13/780,022 US20130196862A1 (en) 2009-07-17 2013-02-28 Informatics Enhanced Analysis of Fetal Samples Subject to Maternal Contamination

Publications (1)

Publication Number Publication Date
WO2013130848A1 true WO2013130848A1 (en) 2013-09-06

Family

ID=49083295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/028378 WO2013130848A1 (en) 2012-02-29 2013-02-28 Informatics enhanced analysis of fetal samples subject to maternal contamination

Country Status (1)

Country Link
WO (1) WO2013130848A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164432A1 (en) * 2014-04-21 2015-10-29 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US9334541B2 (en) 2010-05-18 2016-05-10 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
WO2016183106A1 (en) * 2015-05-11 2016-11-17 Natera, Inc. Methods and compositions for determining ploidy
US9499870B2 (en) 2013-09-27 2016-11-22 Natera, Inc. Cell free DNA diagnostic testing standards
CN106460070A (en) * 2014-04-21 2017-02-22 纳特拉公司 Detecting mutations and ploidy in chromosomal segments
US9639657B2 (en) 2008-08-04 2017-05-02 Natera, Inc. Methods for allele calling and ploidy calling
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10017812B2 (en) 2010-05-18 2018-07-10 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10061890B2 (en) 2009-09-30 2018-08-28 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10113196B2 (en) 2010-05-18 2018-10-30 Natera, Inc. Prenatal paternity testing using maternal blood, free floating fetal DNA and SNP genotyping
WO2018236911A1 (en) * 2017-06-20 2018-12-27 Illumina, Inc. Methods and systems for decomposition and quantification of dna mixtures from multiple contributors of known or unknown genotypes
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
CN110257371A (en) * 2019-07-05 2019-09-20 中国科学院长春应用化学研究所 The method of dissociative DNA is extracted in a kind of human plasma
EP2877594B1 (en) * 2012-07-20 2019-12-04 Verinata Health, Inc. Detecting and classifying copy number variation in a fetal genome
US10526658B2 (en) 2010-05-18 2020-01-07 Natera, Inc. Methods for simultaneous amplification of target loci
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
WO2020051542A3 (en) * 2018-09-07 2020-04-16 Illumina, Inc. A method to determine if a circulating fetal cell isolated from a pregnant mother is from either the current or a historical pregnancy
US10894976B2 (en) 2017-02-21 2021-01-19 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
RU2795796C1 (en) * 2022-10-25 2023-05-11 Публичное акционерное общество "Центр Генетики и Репродуктивной Медицины "ГЕНЕТИКО" Preimplantation genetic testing method for achondroplasia
CN116497106A (en) * 2023-06-30 2023-07-28 北京大学第三医院(北京大学第三临床医学院) Identification method for maternal pollution in prenatal diagnosis
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972602A (en) * 1993-08-27 1999-10-26 Australian Red Cross Society Quantitative PCR-based method of gene detection
US20110105353A1 (en) * 2009-11-05 2011-05-05 The Chinese University of Hong Kong c/o Technology Licensing Office Fetal Genomic Analysis From A Maternal Biological Sample
US20110288780A1 (en) * 2010-05-18 2011-11-24 Gene Security Network Inc. Methods for Non-Invasive Prenatal Ploidy Calling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972602A (en) * 1993-08-27 1999-10-26 Australian Red Cross Society Quantitative PCR-based method of gene detection
US20110105353A1 (en) * 2009-11-05 2011-05-05 The Chinese University of Hong Kong c/o Technology Licensing Office Fetal Genomic Analysis From A Maternal Biological Sample
US20110288780A1 (en) * 2010-05-18 2011-11-24 Gene Security Network Inc. Methods for Non-Invasive Prenatal Ploidy Calling

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10260096B2 (en) 2005-07-29 2019-04-16 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10266893B2 (en) 2005-07-29 2019-04-23 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10392664B2 (en) 2005-07-29 2019-08-27 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10227652B2 (en) 2005-07-29 2019-03-12 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US11306359B2 (en) 2005-11-26 2022-04-19 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10711309B2 (en) 2005-11-26 2020-07-14 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US9430611B2 (en) 2005-11-26 2016-08-30 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US9695477B2 (en) 2005-11-26 2017-07-04 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10240202B2 (en) 2005-11-26 2019-03-26 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10597724B2 (en) 2005-11-26 2020-03-24 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US9639657B2 (en) 2008-08-04 2017-05-02 Natera, Inc. Methods for allele calling and ploidy calling
US10522242B2 (en) 2009-09-30 2019-12-31 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10061890B2 (en) 2009-09-30 2018-08-28 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10061889B2 (en) 2009-09-30 2018-08-28 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10216896B2 (en) 2009-09-30 2019-02-26 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10655180B2 (en) 2010-05-18 2020-05-19 Natera, Inc. Methods for simultaneous amplification of target loci
US10538814B2 (en) 2010-05-18 2020-01-21 Natera, Inc. Methods for simultaneous amplification of target loci
US10174369B2 (en) 2010-05-18 2019-01-08 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11746376B2 (en) 2010-05-18 2023-09-05 Natera, Inc. Methods for amplification of cell-free DNA using ligated adaptors and universal and inner target-specific primers for multiplexed nested PCR
US10113196B2 (en) 2010-05-18 2018-10-30 Natera, Inc. Prenatal paternity testing using maternal blood, free floating fetal DNA and SNP genotyping
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US11525162B2 (en) 2010-05-18 2022-12-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11519035B2 (en) 2010-05-18 2022-12-06 Natera, Inc. Methods for simultaneous amplification of target loci
US10017812B2 (en) 2010-05-18 2018-07-10 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11482300B2 (en) 2010-05-18 2022-10-25 Natera, Inc. Methods for preparing a DNA fraction from a biological sample for analyzing genotypes of cell-free DNA
US10774380B2 (en) 2010-05-18 2020-09-15 Natera, Inc. Methods for multiplex PCR amplification of target loci in a nucleic acid sample
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US10526658B2 (en) 2010-05-18 2020-01-07 Natera, Inc. Methods for simultaneous amplification of target loci
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10793912B2 (en) 2010-05-18 2020-10-06 Natera, Inc. Methods for simultaneous amplification of target loci
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10557172B2 (en) 2010-05-18 2020-02-11 Natera, Inc. Methods for simultaneous amplification of target loci
US10731220B2 (en) 2010-05-18 2020-08-04 Natera, Inc. Methods for simultaneous amplification of target loci
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US10590482B2 (en) 2010-05-18 2020-03-17 Natera, Inc. Amplification of cell-free DNA using nested PCR
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10597723B2 (en) 2010-05-18 2020-03-24 Natera, Inc. Methods for simultaneous amplification of target loci
US11312996B2 (en) 2010-05-18 2022-04-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11306357B2 (en) 2010-05-18 2022-04-19 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US9334541B2 (en) 2010-05-18 2016-05-10 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11286530B2 (en) 2010-05-18 2022-03-29 Natera, Inc. Methods for simultaneous amplification of target loci
US11111545B2 (en) 2010-05-18 2021-09-07 Natera, Inc. Methods for simultaneous amplification of target loci
EP2877594B1 (en) * 2012-07-20 2019-12-04 Verinata Health, Inc. Detecting and classifying copy number variation in a fetal genome
US9499870B2 (en) 2013-09-27 2016-11-22 Natera, Inc. Cell free DNA diagnostic testing standards
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
US11414709B2 (en) 2014-04-21 2022-08-16 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11408037B2 (en) 2014-04-21 2022-08-09 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
US11530454B2 (en) 2014-04-21 2022-12-20 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
CN106460070A (en) * 2014-04-21 2017-02-22 纳特拉公司 Detecting mutations and ploidy in chromosomal segments
WO2015164432A1 (en) * 2014-04-21 2015-10-29 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
CN109971852A (en) * 2014-04-21 2019-07-05 纳特拉公司 Detect the mutation and ploidy in chromosome segment
CN106460070B (en) * 2014-04-21 2021-10-08 纳特拉公司 Detection of mutations and ploidy in chromosomal segments
US10351906B2 (en) 2014-04-21 2019-07-16 Natera, Inc. Methods for simultaneous amplification of target loci
US11486008B2 (en) 2014-04-21 2022-11-01 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10179937B2 (en) 2014-04-21 2019-01-15 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10597708B2 (en) 2014-04-21 2020-03-24 Natera, Inc. Methods for simultaneous amplifications of target loci
US10597709B2 (en) 2014-04-21 2020-03-24 Natera, Inc. Methods for simultaneous amplification of target loci
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11319595B2 (en) 2014-04-21 2022-05-03 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
RU2717641C2 (en) * 2014-04-21 2020-03-24 Натера, Инк. Detection of mutations and ploidy in chromosomal segments
US11319596B2 (en) 2014-04-21 2022-05-03 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11390916B2 (en) 2014-04-21 2022-07-19 Natera, Inc. Methods for simultaneous amplification of target loci
US11371100B2 (en) 2014-04-21 2022-06-28 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
WO2016183106A1 (en) * 2015-05-11 2016-11-17 Natera, Inc. Methods and compositions for determining ploidy
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
US11946101B2 (en) 2015-05-11 2024-04-02 Natera, Inc. Methods and compositions for determining ploidy
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US10533219B2 (en) 2016-12-07 2020-01-14 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10577650B2 (en) 2016-12-07 2020-03-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US11530442B2 (en) 2016-12-07 2022-12-20 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US11519028B2 (en) 2016-12-07 2022-12-06 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10894976B2 (en) 2017-02-21 2021-01-19 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
JP2020529648A (en) * 2017-06-20 2020-10-08 イルミナ インコーポレイテッド Methods and systems for degradation and quantification of DNA mixtures from multiple contributors of known or unknown genotypes
AU2018288772B2 (en) * 2017-06-20 2022-02-24 Illumina, Inc. Methods and systems for decomposition and quantification of dna mixtures from multiple contributors of known or unknown genotypes
JP7009518B2 (en) 2017-06-20 2022-01-25 イルミナ インコーポレイテッド Methods and systems for the degradation and quantification of DNA mixtures from multiple contributors of known or unknown genotypes
KR20200010464A (en) * 2017-06-20 2020-01-30 일루미나, 인코포레이티드 Methods and systems for digesting and quantifying DNA mixtures from multiple contributors of known or unknown genotypes
WO2018236911A1 (en) * 2017-06-20 2018-12-27 Illumina, Inc. Methods and systems for decomposition and quantification of dna mixtures from multiple contributors of known or unknown genotypes
CN110770840A (en) * 2017-06-20 2020-02-07 伊鲁米那股份有限公司 Method and system for the decomposition and quantification of a mixture of DNA from multiple contributors of known or unknown genotypes
KR102487135B1 (en) * 2017-06-20 2023-01-10 일루미나, 인코포레이티드 Methods and systems for digesting and quantifying DNA mixtures from multiple contributors of known or unknown genotype
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
WO2020051542A3 (en) * 2018-09-07 2020-04-16 Illumina, Inc. A method to determine if a circulating fetal cell isolated from a pregnant mother is from either the current or a historical pregnancy
CN112955960A (en) * 2018-09-07 2021-06-11 Illumina公司 Method for determining whether circulating fetal cells isolated from a pregnant mother are from a current or past pregnancy
CN110257371B (en) * 2019-07-05 2023-05-16 中国科学院长春应用化学研究所 Method for extracting free DNA from human plasma
CN110257371A (en) * 2019-07-05 2019-09-20 中国科学院长春应用化学研究所 The method of dissociative DNA is extracted in a kind of human plasma
RU2795824C1 (en) * 2022-10-25 2023-05-11 Публичное акционерное общество "Центр Генетики и Репродуктивной Медицины "ГЕНЕТИКО" Method for preimplantation genetic testing of type 1 hereditary multiple osteochondromas
RU2795796C1 (en) * 2022-10-25 2023-05-11 Публичное акционерное общество "Центр Генетики и Репродуктивной Медицины "ГЕНЕТИКО" Preimplantation genetic testing method for achondroplasia
CN116497106A (en) * 2023-06-30 2023-07-28 北京大学第三医院(北京大学第三临床医学院) Identification method for maternal pollution in prenatal diagnosis
CN116497106B (en) * 2023-06-30 2024-03-12 北京大学第三医院(北京大学第三临床医学院) Identification method for maternal pollution in prenatal diagnosis

Similar Documents

Publication Publication Date Title
US11482300B2 (en) Methods for preparing a DNA fraction from a biological sample for analyzing genotypes of cell-free DNA
US20210355536A1 (en) Methods for non-invasive prenatal ploidy calling
US20200350034A1 (en) Method for Non-Invasive Prenatal Testing Using Parental Mosaicism Data
US11339429B2 (en) Methods for non-invasive prenatal ploidy calling
US11332785B2 (en) Methods for non-invasive prenatal ploidy calling
US20190284623A1 (en) Methods for non-invasive prenatal ploidy calling
US20190309358A1 (en) Methods for non-invasive prenatal ploidy calling
US20190323076A1 (en) Methods for non-invasive prenatal ploidy calling
US20130196862A1 (en) Informatics Enhanced Analysis of Fetal Samples Subject to Maternal Contamination
WO2013130848A1 (en) Informatics enhanced analysis of fetal samples subject to maternal contamination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755822

Country of ref document: EP

Kind code of ref document: A1