WO2008059578A1 - Multiplex pcr method - Google Patents

Multiplex pcr method Download PDF

Info

Publication number
WO2008059578A1
WO2008059578A1 PCT/JP2006/322898 JP2006322898W WO2008059578A1 WO 2008059578 A1 WO2008059578 A1 WO 2008059578A1 JP 2006322898 W JP2006322898 W JP 2006322898W WO 2008059578 A1 WO2008059578 A1 WO 2008059578A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
snp
annealing
minutes
reaction
Prior art date
Application number
PCT/JP2006/322898
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Tanabe
Nobuhiko Morimoto
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to PCT/JP2006/322898 priority Critical patent/WO2008059578A1/en
Publication of WO2008059578A1 publication Critical patent/WO2008059578A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a multiplex PCR method.
  • the multiplex typing method has been proposed in the late 90s to meet the recent demands for lowering genotyping costs and higher throughput.
  • a microarray for SNP detection of cytochrome P450 protein from Roche is also more complex and more flexible in detection than a multiplex method in terms of reaction and detection in a single reaction vessel.
  • a method is proposed.
  • This method is widely used for genetic diagnosis and the like.
  • gene analysis is multiplexed using DCN. If the PCR that cuts around the SNP could be multiplexed in the same way, it would be desirable in terms of cost and work efficiency.
  • the key to such a multiplex typing method is an artificial sequence called a DNA tag, a reaction that converts a natural gene sequence into an artificial sequence, a probe shape for the reaction, and a DNA tag. It is the identification detection technology. Since multiple genes are converted into DNA tags in a one-to-one correspondence within the same solution and detected, each DNA tag does not cross-hybridize with each other so that it reacts independently. It is designed to have the same reaction force and melting temperature (Tm). Unlike microarrays, in which gene sequences themselves are probed using a detection device, they can be freely associated with genes, and if the same DNA tag is always detected at the detection stage, the same detection is possible even if the target gene changes.
  • Tm melting temperature
  • PCR product length force Set the primer spacing so that it is relatively short, about 3 ⁇ 400 base pairs.
  • Primers should be designed with a length of up to about 30 bases, which is inconvenient to synthesize.
  • an object of the present invention is to provide an efficient multiplex PCR method in which primer design is easy and the certainty of obtaining an amplification product is high.
  • the present inventors predicted that the cause of failure of the multiplex PCR method was cross-hybridization and variation in amplification efficiency.
  • the cross hive The focus was on suppression of redization, and variations in amplification efficiency were not considered. Therefore, focusing on this point, it is assumed that the main cause of "variation in amplification efficiency" is “variation in primer efficiency and irregularization efficiency", and a multiplex that suppresses variation in amplification efficiency.
  • the present invention is a multiplex PCR method
  • primers with a length of 30 bases or more Using primers with a length of 30 bases or more,
  • Annealing at least once in a thermal cycle 3 min. To 10 min.Including extension reaction, or annealing.Extension reaction time is extended to 3 min. To 10 min in the last thermal cycle according to the cycle. And
  • a multiplex PCR method is provided.
  • a PCR amplification method comprising the steps of:
  • the primer provides a method that is 30-60 bases in length.
  • the primer provides a method that is 32-50 bases in length.
  • the primer provides a method that is 35-45 bases in length.
  • the annealing / extension reaction provides a method that is performed to include at least one or more annealing period of 4 minutes or more during the thermal cycle.
  • the annealing / elongation reaction provides a method in which at least one annealing cycle of 6 to 10 minutes is performed in the thermal cycle.
  • the annealing temperature is based on the evaluation value (Q-Score) predicted by Visual OMP (DNA Software)! /, And the hybridization efficiency and prediction of an evaluation value (Q-Score) of 850 or more A method is provided that is less than or equal to the Tm of the primer to be produced.
  • FIG. 1A is a graph showing a prediction result of hybridization efficiency.
  • FIG. 1B is a graph showing a prediction result of hybridization efficiency.
  • FIG. 2 is an electrophoretogram showing the PCR results in a single plex.
  • FIG. 3 is an electrophoretogram showing the results of annealing temperature examination.
  • FIG. 4 is an electrophoretogram showing the results of examining the primer concentration.
  • FIG. 5 is an electrophoretogram showing the results of examination of the enzyme DMSO concentration.
  • FIG. 6 is an electrophoretogram showing the results of thermal cycle studies.
  • FIG. 7 is a schematic diagram showing an outline of a method used in Examples.
  • FIG. 8 is a scatter plot of array detection intensity showing the typing results for each SNP using the method of the present invention.
  • FIG. 9 is a scatter plot of array detection intensity showing the typing results for each SNP using the method of the present invention.
  • FIG. 10 is a scatter diagram of array detection intensities showing typing results for each SNP using the method of the present invention.
  • FIG. 11 is a diagram showing definitions of SNP typing results and QV values.
  • the multiplex PCR method of the present invention is characterized in that a primer longer than the primer length (for example, less than 30 bases) as in general common sense in ordinary PCR is used. It is considered that such primer design can make the primer hybridization efficiency uniform. At the same time, the primer specificity can be increased by designing the primer length longer. Therefore, even for a sample mixed with a long base such as 1000 bases, a multiplex PCR product can be obtained specifically by making the annealing efficiency uniform. In addition, even for a sample containing many complex or similar sequences such as the human genome, it is thought that the target product can be specifically amplified with the same amplification efficiency.
  • the length of the primer used in the multiplex PCR method of the present invention needs to be long enough to avoid cross-hybridization, and is longer than the range of general common sense.
  • the length of the primer is, for example, about 30 to 60 bases, preferably about 32 to 50 bases, and more preferably about 35 to 45 bases.
  • the Tm value of a normal primer is usually higher than that of a short primer.
  • the primers used in the multiplex PCR method of the present invention can be designed with various sequences depending on the vertical sequence to be amplified.
  • the primers used in the multiplex PCR method had to be designed so that the PCR product could be up to 300 bases or the length of the amplified product would be the same.
  • the length of is not limited. Therefore, the selection range of primer design is increased, and it is possible to design a primer set that was impossible with the conventional multiplex PCR method.
  • the primer predicts the secondary structure of the cage and the primer, makes the hybridization efficiency uniform, and provides a multiplex PCR product.
  • Such design, secondary structure prediction, and calculation of high hybridization efficiency can be performed using, for example, Visual OMP (DNA Software).
  • the optimal sequence can be selected by setting the design parameters as follows: primer length 30-45mer; primer design Tm 70 ° C to 100 ° C.
  • Other design parameters can be determined based on the results of analyzing the correlation between primer design parameters and PCR.
  • those skilled in the art will be able to easily design a primer having the long sequence as described above and capable of amplifying a desired saddle type.
  • a target nucleic acid amplification step is performed using the above primers.
  • nucleic acid means all DNA and RNA including cDNA, genomic DNA, synthetic DNA, mRNA, total RNA, hnRNA, and synthetic RNA.
  • the target nucleic acid to be detected or quantified can be any nucleic acid having an arbitrary sequence, but a nucleic acid that can serve as a disease marker, such as a gene causing a disease, a cancer-related gene, or a nucleic acid derived from a virus, Preferred target nucleic acids. Therefore, the sample includes body fluids such as blood, urine and saliva, but any sample other than body fluids can be used.
  • the sample may be dissolved in the liquid by an appropriate method such as enzyme treatment, addition of a surfactant or organic solvent.
  • the target nucleic acid can be arbitrarily changed in carrying out this method. For example, by preparing a large amount of human genomic DNA necessary for this method by culturing cells in large quantities and culturing them in large quantities, or by obtaining a large amount of peripheral blood, the genomic DNA force detection reaction can be started directly. Alternatively, a small amount of genomic DNA is obtained, and a detection reaction is detected from a sample that has amplified genomic DNA nonspecifically using the WGA method (Whole Genome Amplification) such as the reagent kit GenomiPhi of Amersham Biosciences. You may start.
  • WGA method Whole Genome Amplification
  • the detection reaction may be started from the amplification of a specific sequence using primers such as PCR, multiplex PCR, and asymmetric PCR.
  • primers such as PCR, multiplex PCR, and asymmetric PCR.
  • the target nucleic acid is assumed to be genomic DNA or the like. It may be amplified by such as.
  • the obtained sample is heated to 95 ° C and rapidly cooled to 4 ° C to form a single strand, or heated to 95 ° C in a solution with a very low salt concentration. Then, after performing fragmentation operations such as single-strand and fragmentation, such as fragmentation with ultrasound, fragmentation with restriction enzymes, and cleavage with restriction enzymes, perform detection.
  • the target nucleic acid amplification step first, the primer, the target nucleic acid, and an appropriate reaction solution are mixed and thermally denatured.
  • This step may be performed using general PCR conditions. For example, it is preferable to perform denaturation by heating at 94 ° C for 2 minutes before each cycle, and at 94 ° C for 30 seconds as the denaturation step for each cycle.
  • reaction solution used in the amplification step a general PCR reaction solution can be used, and a commercially available kit can also be used.
  • enzyme AccuPnme II (Invitrogen), noffer ⁇ : AccuPnme II master mix, filma ⁇ 0.1 ⁇ each, vertical DNA: 5 ng, reaction volume: 20 L be able to.
  • a primer is annealed to the single-stranded nucleic acid generated by heat denaturation.
  • the multiplex PCR method of the present invention is characterized by annealing at a temperature relatively lower than the Tm value of the primer designed as described above. In particular, it is preferable to perform annealing at a temperature that is significantly lower than conventionally considered. Thereby, the hybridization efficiency is increased, and it is considered that the hybridization efficiency of the probe can be increased for any of the saddle types. Therefore, in the conventional multiplex PCR method, fragments that have not been amplified can be amplified, and the amplification efficiency is increased.
  • the Tm value of a primer is a Tm value predicted by a method well known in the art, and is a Tm value predicted by, for example, Visual OMP (DNA Software).
  • the temperature is significantly lower than the Tm value of the primer even at a relatively high annealing temperature.
  • the annealing temperature is lowered too much, nonspecific annealing of the primer is likely to occur, and the amplification of the target sequence is inhibited by nonspecific amplification, but the primer used in the present invention is more than the conventional primer. It is considered that amplification efficiency is good because of sufficient forex annealing efficiency.
  • the annealing temperature is 68. Even at ° c, the temperature is sufficiently low.
  • the multiplex PCR method of the present invention is characterized in that an extension reaction is performed for a longer time compared to a normal extension time.
  • the extension reaction is, for example, 3 minutes, 4 minutes, 5 minutes, and 6 minutes to less than 10 minutes, 5 minutes to less than 8 minutes, preferably about 6 minutes. Therefore, it is preferable that the enzyme used in the multiplex PCR method of the present invention has long-lasting activity.
  • the primer used in the multiplex PCR method of the present invention since the primer used in the multiplex PCR method of the present invention is long in length, it has a relatively high annealing temperature. Therefore, when annealing is performed, the temperature may reach a temperature at which the extension reaction proceeds. In such a case, it is also possible to use shuttle PCR, in which both the annealing temperature and the extension reaction temperature are the same, so that both proceed simultaneously.
  • the multiplex PCR method of the present invention since the multiplex PCR method of the present invention has a long extension time, the amplification reaction can sufficiently proceed even if the amplification product is long. Therefore, even if the length of the amplification product is not the same as in the conventional multiplex PCR method, according to the multiplex status PCR method of the present invention, all the different amplification products can be amplified uniformly.
  • the multiplex PCR method of the present invention uses a primer longer than the length of the primer (eg, less than 30 bases) as in common general knowledge in normal PCR, and normal extension.
  • the reaction can be performed in the same process as the conventional PCR method, without being limited to the above-described step, except that the extension reaction is performed for a longer time compared to the time.
  • the step of heat denaturing a DNA strand and the step of synthesizing a complementary strand with a polymerase can be carried out under general reaction conditions depending on the type to be amplified.
  • the reaction conditions to be considered include, for example, the temperature and time of each step, the composition of the reaction solution, the concentration of constituents, and the like.
  • reaction conditions used can be those according to the seller's instructions if a commercially available enzyme is used. Those skilled in the art can easily select the temperature and time, conditions of the reaction mixture, the concentration of the components, etc., excluding the conditions peculiar to the multiplex PCR method of the present invention described above. Let's go.
  • the following modes are conceivable.
  • the following can be considered as uses and places of the detection method of the present invention.
  • the relationship between human genotype and disease There are research applications such as detection of drug sensitivity, detection of protein binding changes in the gene regulatory region, and molecular biological analysis of gene polymorphisms when the target organism is changed from human to another. These studies will be conducted in research institutes and laboratories such as universities and companies.
  • the relationship between the gene and a specific disease, risk of morbidity, and drug sensitivity are identified, testing to select treatment methods at the hospital's laboratory center and prevention at the clinical dock It can be used for medical purposes such as diagnosis and drug sensitivity testing for the selection of anticancer drugs with small side effects.
  • the user himself / herself carries out as a genetic polymorphism detection reagent kit for research and diagnosis for carrying out the method, and by an automatic reaction apparatus that automatically processes the method. It is possible to conduct a contract research on behalf of the subject or a diagnosis at a laboratory.
  • Example 1 Examination of SNP sequence amplification by multiplex PCR method
  • the SNP base sequence to be detected was obtained from the Japanese SNP database JSNP (http://snp.ims.u-tokyo.ac.jp/indexja.html) maintained by the Institute of Medical Science, the University of Tokyo. .
  • the respective accession numbers are IMS-JST164838 (SNP # 3), IMS-JST058048 (SNP # 4), IMS-JS T005689 (SNP # 5), IMS-JST054229 (SNP # 6), IMS-JST001164 (SNP # 7) ), IMS-JST017 558 (SNP # 8), IMS-JSTl 75404 (SNP # 9), IMS-JST054214 (SNP # 10), IMS-JST011815 (SNP # 11), IMS-JST156026 (SNP # 12) A total of 10 SNPs.
  • Table 2 shows the results of sequencing the samples using the Sanger method.
  • PRISM 3100 Genetic Analyzer from Applied Biosystems, and each of them using the Mitsui Information Development's sequencer output waveform analysis software wave flat. The SNP allele was determined.
  • the method of processing each genomic sample will be described in detail.
  • Visual OMP DNA Software
  • This software can calculate the hybridization efficiency of DNA by inputting DNA concentration, solution salt concentration, humidity, etc.
  • the hybridization efficiency at the PCR primer concentration in the PCR buffer was 30 to 40 mer primer length in order to make this value 100% for all primers.
  • secondary structure prediction is also performed on other design parameters, primers, and the template to be hybridized with the primer, and in particular, the selected primer sequence is predicted to be truly hybridized and more difficult. Primer sequences that have stable intramolecular structure and high hybridization efficiency were selected.
  • Fig. 1 shows the design results related to hybridization efficiency, which is an important guideline for the above-mentioned multiplex PCR primer design. In the MTL series with longer primer lengths, hybridization efficiency was expected to be close to 100% at any SNP site ( Figure 1 and Table 3).
  • the condition examination process is shown.
  • the condition study proceeded in the following order:
  • PCR was performed using a single plex, and it was confirmed that the primer was working. The result is shown in figure 2. Although amplification was confirmed in all 10 SNP sites, multiplex PCR was not possible under the same PCR conditions.
  • DMSO was also added at the same time. Amplification is improved by adding DMSO. There was a part where the amplification weakened with the addition of DMSNO, and it became clear that uniform amplification could not be obtained with DMSO.
  • Figure 3 shows the results of the annealing temperature study.
  • the result of the PCR reaction is greatly affected by the enzyme system. Therefore, the reaction was carried out using four types of enzymes, AmpliTaq Gold Master Mix (ABI), AccuPrime Super Mix I / II (Invitrogen), and HotStar Taq (Qiagen), and compared. In the AmpliTaq Gold Master Mix system, the effect was confirmed by changing the DMSO concentration at the same time. The results are shown in FIG.
  • extension time was sufficiently long using shuttle PCR, amplification was performed uniformly and strongly. Therefore, the extension time was determined to be 6 minutes, which is considered to be a sufficiently long extension time. Seven bands were visible on electrophoresis, and up to eight bands could be observed on the bioanalyzer. Forces with unresolved peaks Clearly unamplified SNPs are gone. (Resolution head
  • Example 2 SNP detection using multiplex PCR
  • Two probes shown in Fig. 1 are prepared to detect the target nucleic acid contained in the solution.
  • One is a common probe of an oligonucleotide containing a sequence complementary to a partial sequence (partial sequence) of a target nucleic acid and labeled with 3 'end such as piotin.
  • the label of the above-mentioned common probe may be any substance that can specifically bind to a specific substance such as piotin or an antibody that is not limited to piotin (for example, in the case of piotin, it is specific to streptavidin. Can be combined).
  • the other oligonucleotide has an artificially designed tag with a base sequence force of SD, D1 and ED at the 5 'end, is complementary to the sequence of a part of the target nucleic acid, and is A query probe having a sequence adjacent to the sequence complementary to the probe target.
  • the probe is referred to herein as a tag nucleic acid.
  • the artificially designed base sequence is arranged on the 5 ′ end side with respect to the complementary sequence.
  • the 5 'end of the sequence complementary to the target cDNA of the above common probe is phosphated.
  • the tag portion and the query probe portion of the tag nucleic acid may be oligonucleotides that are partially or entirely in a stranded state. At this time, construct a double-stranded oligonucleotide. The other strand formed is an oligonucleotide with a sequence complementary to the sequence of SD, 01 ⁇ and ED.
  • the query probe portion and the common probe of the tag nucleic acid can be arbitrarily designed for each target gene that has been detected to be present or absent in the solution.
  • the D1 sequence is designed to be different for each target, and SD and ED are designed to be common to all tag nucleic acids. Since these artificial arrays can be designed arbitrarily, it is possible to set a desired Tm value. Therefore, it is possible to carry out a reaction that is stable and has little mishybridization. For example, it is preferable to use an orthonormalized array as the artificial array.
  • An orthonormalized sequence is a sequence of nucleic acid molecules having a uniform Tm value, that is, a sequence designed so that the Tm values are aligned within a certain range, and the nucleic acid molecule itself is within the molecule.
  • (Intramolecular) is a sequence that does not inhibit hybridization with a complementary sequence, and a base sequence that does not form a stable hybrid other than a complementary base sequence. means. That is, a sequence included in one orthonormalized sequence group hardly reacts between sequences other than the desired combination and within a self-sequence, or does not generate a reaction.
  • the orthonormalized sequence when the orthonormalized sequence is amplified by PCR, the amount corresponding to the initial amount of the nucleic acid molecule having the orthonormalized sequence is not affected by the problems such as the above-mentioned crossnodification and hybridization.
  • This nucleic acid molecule has the property of being amplified quantitatively.
  • the above orthonormalized sequence is described in detail in H. Yshida and A Suyama, "Solution to 3—SAT by breadth first search", DIMACS Vol.54 9-20 (2 000) and Japanese Patent Application 2003-108126. Is described. Orthonormalized sequences can be designed using the methods described in these references.
  • a plurality of base sequences are randomly generated in advance, an average value of their melting temperatures is obtained, and candidate sequences are obtained based on a threshold value limited by ⁇ t ° C of the average value.
  • a method for preparing an orthonormalized sequence group from a candidate sequence obtained using whether or not the sequence reacts independently as an index is randomly generated in advance, an average value of their melting temperatures is obtained, and candidate sequences are obtained based on a threshold value limited by ⁇ t ° C of the average value.
  • a primer 1 having the same sequence as the SD sequence and a primer having a sequence complementary to the ED sequence labeled at the 5 'end are required.
  • a sample for detecting or quantifying the presence of the target nucleic acid, and a tag nucleic acid And the common probe are mixed, and the target nucleic acid is hybridized with the query probe portion of the tag nucleic acid and the common probe.
  • the second step of the present method is a step of linking a query probe portion of a tag nucleic acid hybridized to each corresponding target nucleic acid and a common probe.
  • the query probe portion and the common probe bind to the corresponding target nucleic acid, so that the ligation reaction is performed by ligase or the like, so that the query probe portion and the common probe are connected via the linking portion. Can be connected.
  • the linked tag nucleic acid and common probe are recovered.
  • the linked oligonucleotide can be extracted via the piotin label of the common probe by using magnetic beads with streptavidin bound to the surface.
  • the linked tag nucleic acid and common probe are dissociated from the corresponding target nucleic acid.
  • the target nucleic acid is present in the first solution, an oligonucleotide containing the corresponding Dl_sequence is extracted.
  • an amplification reaction is performed using an amplification method that yields a single-stranded amplification product, with the tag portion of the dissociated linking oligonucleotide as a template.
  • the amplified tag portion is detected.
  • typing according to the method of the present invention was performed according to the following procedure.
  • Encoding reaction including common probe, tag nucleic acid, and target nucleic acid are mixed and made into a hybrid, producing a linked oligonucleotide of tag nucleic acid and common probe, and recovering the linked oligonucleotide )
  • a region containing the target SNP was amplified from 5 ng of genomic DNA by multiplex PCR. This operation was performed according to the following procedure.
  • the thermal cycle for the reaction is as follows.
  • the thermal cycler was a Bio-Rad PTC-200.
  • the encoding reaction includes mixing and hybridizing the common probe, the tag nucleic acid, and the target nucleic acid, producing a linked oligonucleotide of the tag nucleic acid and the common probe, and recovering the linked oligonucleotide.
  • the reaction of 50 master mixes is as follows. Since New England Biolab Taq ligase was used for the ligase, the attached 10 X buffer was used. Tables 5 and 6 show the sequences of the common probe and tag nucleic acid.
  • Each tag sequence has a length of 23 bases.
  • the ply sequence 1 (SD), the sequence for identifying each allele (Dl_.), And the ply sequence 2 (ED) were arranged in the 5 'end.
  • Tag nucleic acid sequence Is an orthonormalized array.
  • the first genome PCR product is double-stranded, so it is not suitable for ligase reaction. Therefore, degeneration is performed.
  • the PCR reaction solution was stored frozen and once the enzyme activity was lost, the solution was denatured by the following procedure. First, it was denatured by heating at 95 ° C for 5 minutes. Immediately after denaturation, it was placed in ice, and the denatured DNA strands took an intramolecular structure, making them difficult to reassociate.
  • an encoding reaction solution having the following composition was prepared.
  • the Taq ligase used is from New England Biolab.
  • Ultrapure water was prepared by Milli-Q Synthesis from Millipore.
  • the encode reaction solution was reacted at the following temperature.
  • the solution composition is as follows.
  • the magnetic beads coated with streptavidin were Dynal ⁇ -280 magnetic beads.
  • a solution having the following composition was used as a B & W buffer according to the bead's instructions. [0076] Tris-HCl (pH 7.5) 10 mM
  • Streptavidin magnetic beads (hereinafter referred to as magnetic beads) are obtained by taking 1 ⁇ 1 from the stock solution containing preservatives and replacing the stock solution with B & W to 1 ⁇ 1 again. The solution thus prepared is shaken at room temperature for 15 minutes so that the magnetic beads are well dispersed in the solution.
  • This washing operation yielded magnetic beads from which non-specifically attached DNA was removed. This is called an encoded magnetic bead.
  • Primer 1 is a sequence corresponding to SD
  • primer 2 is a sequence corresponding to ED
  • Cy5-rED has a sequence corresponding to the complementary strand of ED and has a fluorescent dye Cy5 at the 5 'end. Is a label.
  • the ratio of SD: Cy5-rED is 1: 5, but it may be 1:10.
  • the concentration ratio may be appropriately selected if it is obtained in the state of a fluorescently labeled chain force i-strand as guasymmetric PCR. Since Takara Bio's Ex Taq was used as the polymerase, the 10-fold concentration buffer and dNTP mixture used for the preparation were the ones included in the kit. A 10-fold concentration buffer containing 20 mM magnesium ions was used.
  • the primer was diluted with ultrapure water. Here, if cycle elongation is performed, the primer amount should be set to 0 without one detection label.
  • the reaction solution was mixed with the encoded magnetic beads to disperse the beads.
  • the thermal cycle of the reaction is as follows.
  • the PTC-200 was used for the thermal cycler. If the cycle elongation method is used, the number of cycles is preferably 30 to 40 cycles.
  • the capillary array is a device that detects nucleic acids using a hybridization similar to a DNA microarray, and is probed with a probe force S along a groove-shaped channel.
  • the capillary array has 10 tag detection probes fixed in one groove, and the groove capacity is 25 1.
  • the slide is formed on a silicon rubber plate, and is attached to a slide glass in which the probe is spotted in a straight line using the adhesiveness of silicon rubber.
  • Silicone rubber is pasted in advance to fit the spot on the glass slide. Warm to C ⁇ .
  • the labeled PCR product was hybridized to this capillary array. Since magnetic beads remain in the asymmetric PCR solution, V was collected, and the magnetic beads were collected and collected as a supernatant.
  • This hybridization solution was warmed to 50 ° C. in advance, and 25 ⁇ l was injected into the similarly heated capillary array and hybridized at 50 ° C. for 30 minutes. A paper towel moistened with ultrapure water was laid so that the hybridization solution did not evaporate, and the hybridization was carried out by placing it in a tape cloth. Subsequently, washing was performed according to the following procedure.
  • Example 3 In order to confirm the further effect of the present invention, the inventors conducted a 96SNP co-typing experiment using the multiplex PCR method of the present invention! /, V, and an effective multiplex of shoes. It was verified whether amplification was performed. Since the success or failure of SNP typing is affected by the quality of the probe sequence of the SNP typing reaction, a typing failure does not necessarily indicate a failure of the multiplex amplification. In other words, SNPs that could be typed were because both amplification and probe detection were successful, and those that could not be typed were either amplification or probe detection either failed, or both were not successful. it is conceivable that.
  • SNPs that were sequenced using the Sangha method to obtain SNP sequences for controls were difficult to sequence and were not considered for PCR success. Also, depending on the sample population due to SNP, the probability of mutation is very low, and when alleles are present, even if a scatter diagram for type determination is drawn, cluster power may not appear. Such SNPs were excluded because their accuracy could not be evaluated.
  • the composition of the reaction solution is Titanium Taq Buffer (Takara BioClontech) 2 ⁇ 1
  • Primer mix (each primer 1 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ) 0.74 ⁇ 1
  • Genomic DNA (5ng / 1) 2 ⁇ ⁇
  • the thermal cycle was as follows, and PTC-200 manufactured by Bio-Rad was used for the thermal cycler.
  • the encoding reaction conditions are slightly different from those of 10SNP.
  • the query uses ED and ED 'sequences depending on the alleles, so that they are labeled with different dyes at the detection stage so that each allele is detected with a different color fluorescence intensity on the same spot in the microarray.
  • Table 11 shows the common probe sequences and Table 12 shows the query probe sequences.
  • Table 12A Table 12 Query probe for 96 SNP
  • a liquid having the following composition was prepared.
  • a liquid having the following composition was prepared.
  • the hybridization solution should have a final concentration of So.5 X SSC, 0.1% SDS, 15% formamide, and lm M EDTA.
  • the solution obtained in the amplification reaction was combined with 101 to prepare 201, and hybridized with a hybrid array at 37 ° C for 60 minutes.
  • the silicon rubber groove was removed from the slide glass and washed with 0.1 SSC, 0.1% SDS washing solution for 5 minutes with shaking. Thereafter, the surface was quickly washed with ultrapure water, and the slide glass was dried and detected with GenePix 4000 of Molecular Devices.
  • QV Quality Value
  • This QV value was calculated for all the measurement points that make up the entire scatter plot, and the average value was taken as the QV value of the scatter plot (Equation 2).
  • the QV value is larger as the cluster to which the measurement point belongs is denser, the farther away the other cluster is closer, the larger the value, so the larger the QV value is, the better the scatter plot is, the better the SNP. It is thought that detection has been performed.
  • the scatter plot has a QV value of 44.74, and the vertical axis represents the fluorescence intensity value of the microarray.
  • the scatter diagram in Fig. 11 shows the detection result for SN P65, and the QV value was 44.74.
  • Table 15 shows the typing results of 96SNP.
  • the multiplex PCR method of the present invention accurately amplifies the target sequence with the SNP that was determined, and in the amplification of 66 SNP excluding 30 SNP from 96 SNP, PCR was performed with at least 53 of the 66 primers. It was a success. Some of the 13SNPs with poor scatter plot separation and inaccurate correct answers could be presumed to be successful in multiplex PCR, and the amplification success rate was considered to be even higher.

Abstract

It is intended to provide a PCR amplification method which is a multiplex PCR method characterized by comprising using a primer of 32 bases or more in length, conducting annealing at a temperature lower than the Tm value of the above-described primer, and performing an extension reaction over a long period of time of 1 minute to 10 minutes.

Description

明 細 書  Specification
マルチプレックス PCR法  Multiplex PCR method
技術分野  Technical field
[0001] 本発明は、マルチプレックス PCR法に関する。  [0001] The present invention relates to a multiplex PCR method.
背景技術  Background art
[0002] 最近の遺伝子タイピングの低コスト化、高スループットィヒの要求に応えるベぐ 90年 代後半力も提案されてきたのがマルチプレックスタイピング法である。たとえば、ロシ ュ社のシトクローム P450蛋白質の SNP検出用マイクロアレイも、 1本の反応容器で反応 し検出する点ではマルチプレックス法と呼ぶことができる力 これよりもより複雑で検出 の柔軟性が高 、方法が提案されて 、る。  [0002] The multiplex typing method has been proposed in the late 90s to meet the recent demands for lowering genotyping costs and higher throughput. For example, a microarray for SNP detection of cytochrome P450 protein from Roche is also more complex and more flexible in detection than a multiplex method in terms of reaction and detection in a single reaction vessel. A method is proposed.
[0003] この方法は、遺伝子診断などに広く用いられており、たとえば、 DNAコンピューター を用いた SNP解析では DCNを用いて遺伝子解析の多重化を行うが、このときに、前処 理にあたるゲノム力 SNP周囲を切り出す PCRも同様に多重化できればコストや作 業効率の面で望まし力つた。  [0003] This method is widely used for genetic diagnosis and the like. For example, in SNP analysis using a DNA computer, gene analysis is multiplexed using DCN. If the PCR that cuts around the SNP could be multiplexed in the same way, it would be desirable in terms of cost and work efficiency.
[0004] このようなマルチプレックスタイピング法の鍵となるのは、 DNAタグと呼ばれる人工配 列部分であり、天然の遺伝子配列を人工の配列に変換する反応とそのためのプロ一 ブ形状、 DNAタグの識別検出技術である。同一の溶液内で複数の遺伝子を 1対 1対 応で DNAタグに変換し検出するので、それぞれの DNAタグは独立に反応するよう互 いにクロスハイブリダィゼーシヨンせず、同一溶液で同時に反応すること力 融解温 度 (Tm)が揃うように設計されている。検出デバイスにより遺伝子配列そのものをプロ ーブでとらえるマイクロアレイとは異なり、遺伝子との対応付けは自由で、検出段階で いつも同じ DNAタグを検出すればよぐ検出対象の遺伝子が変わっても同一の検出 手法、検出デバイスが使えるので柔軟性がある。 イマ一のデザインと、その量の最適化が最も重要であり、一糸且のプライマー対を用い る PCR法に比べて、より注意が必要とされる。現在まで使用されてきたマルチプレック ス PCR法では、特許文献 1および 2などにあるように、設計指針は産物長が 300塩基 前後で揃っていること、プライマーの長さは 18塩基〜 30塩基であることがよいとする文 献ゃ論文が多い。従って、従来のマルチプレックス PCR法のためのプライマー設計は 、以下の基準を満たすことが適当であるとされてきた: [0004] The key to such a multiplex typing method is an artificial sequence called a DNA tag, a reaction that converts a natural gene sequence into an artificial sequence, a probe shape for the reaction, and a DNA tag. It is the identification detection technology. Since multiple genes are converted into DNA tags in a one-to-one correspondence within the same solution and detected, each DNA tag does not cross-hybridize with each other so that it reacts independently. It is designed to have the same reaction force and melting temperature (Tm). Unlike microarrays, in which gene sequences themselves are probed using a detection device, they can be freely associated with genes, and if the same DNA tag is always detected at the detection stage, the same detection is possible even if the target gene changes. Since the method and detection device can be used, there is flexibility. Immediate design and optimization of the amount is of utmost importance and requires more care than PCR using a single strand and primer pair. In the multiplex PCR method used so far, the design guideline is 300 bases in product length as described in Patent Documents 1 and 2. Many papers have written that it should be in front and back and that the primer length should be between 18 and 30 bases. Thus, primer design for conventional multiplex PCR methods has been considered appropriate to meet the following criteria:
(1) PCR産物の長さ力 ¾00塩基対程度と比較的短く揃っているようにプライマーの間 隔を設定する。  (1) PCR product length force Set the primer spacing so that it is relatively short, about ¾00 base pairs.
(2) PCRの一般的な常識にあるように、プライマーは、合成費用が力さまない 30塩基 程度までの長さに設計する。  (2) Primers should be designed with a length of up to about 30 bases, which is inconvenient to synthesize.
(3)ヒトゲノムなどを増幅するときは、プライマーの特異性ができるだけあがるように、 BLASTなどで相同部位がな 、かを調査して選別する。  (3) When amplifying the human genome, etc., investigate and select for homologous sites with BLAST etc. so that the specificity of the primer is as high as possible.
全ての铸型に対して、このような基準を満たすプライマー配列を設計することは非 常に困難であった。すなわち、産物長が制限されていること、およびプライマーの長 さが制限されていることから、適切なプライマーを選択する自由度が制限されていた 。このようなプライマー選択の制限により、一回の設計で全ての铸型に対する PCR産 物を得られな 、ことも多かった。ー且マルチプレックス PCR法のためのプライマーを設 計しても、全ての铸型に対する PCR産物を得ることができなければ何度も実験で選び 直すことが必要であるため、従来のマルチプレックス PCR法のためのプライマー設計 は、非常に困難なものであった。  It was very difficult to design primer sequences that met these criteria for all saddle types. That is, because the product length is limited and the primer length is limited, the degree of freedom in selecting an appropriate primer is limited. Due to this limitation of primer selection, it was often impossible to obtain PCR products for all types of molds in a single design. -Even if you design primers for the multiplex PCR method, if you cannot obtain PCR products for all types, it will be necessary to re-select them over and over again. The primer design for the method was very difficult.
[0006] また、これまでにもマルチプレックス PCRに対して様々な試みがなされており、例え ば、 DMSOを添加、 KC1濃度の変更、プライマーの Tmに応じてプライマーの濃度を 変化させるなどが挙げられる力 シングルプレックスで動作するプライマーセットを用 いても、マルチプレックス PCR法ではしばしば失敗し、プライマー設計の成功率が低 かった。また、マルチプレックス PCR法を成功させるために特殊な蛋白質、添加剤を 加える必要があった。 [0006] Various attempts have been made for multiplex PCR so far, such as adding DMSO, changing the KC1 concentration, and changing the primer concentration depending on the Tm of the primer. Forces Used Even when using a primer set that operates in a single plex, the multiplex PCR method often failed and the success rate of primer design was low. In addition, special proteins and additives had to be added to make the multiplex PCR method successful.
発明の開示  Disclosure of the invention
[0007] 上記事情に鑑み、本発明の目的は、プライマー設計が容易であり、また増幅産物 が得られる確実性が高い効率マルチプレックス PCR法を提供することである。  [0007] In view of the above circumstances, an object of the present invention is to provide an efficient multiplex PCR method in which primer design is easy and the certainty of obtaining an amplification product is high.
[0008] 本発明者らは、マルチプレックス PCR法の失敗の原因はクロスハイブリダィゼーショ ンと増幅効率のばらつきであると予想した。従来のプライマー設計では、クロスハイブ リダィゼーシヨンの抑制に主眼がおかれ、増幅効率のばらつきは考慮されていなかつ た。そこで、この点に着目し、「増幅効率のばらつき」の主因は、「プライマーと铸型の ノ、イブリダィゼーシヨン効率のばらつき」であると仮定し、増幅効率のばらつきを抑制 したマルチプレックス PCR法プライマーの設計を試みた。 [0008] The present inventors predicted that the cause of failure of the multiplex PCR method was cross-hybridization and variation in amplification efficiency. In conventional primer design, the cross hive The focus was on suppression of redization, and variations in amplification efficiency were not considered. Therefore, focusing on this point, it is assumed that the main cause of "variation in amplification efficiency" is "variation in primer efficiency and irregularization efficiency", and a multiplex that suppresses variation in amplification efficiency. An attempt was made to design PCR primers.
[0009] 具体的には、マルチプレックス PCR法のプライマーの設計において考慮するべき重 要な点を以下の二点に定めて、新たなマルチプレックス PCR法を開発した: [0009] Specifically, a new multiplex PCR method was developed with the following two important points to be considered in the primer design of the multiplex PCR method:
1.クロスハイブリダィゼーシヨンの抑制、すなわちプライマーの特異性の向上; 1. Suppression of cross-hybridization, ie improvement of primer specificity;
2.増幅効率の均一化、すなわちプライマーと铸型のハイブリダィゼーシヨン効率の向 上。 2. Uniform amplification efficiency, that is, improving the efficiency of primer-type hybridization.
[0010] すなわち、本発明は、マルチプレックス PCR法であって、  [0010] That is, the present invention is a multiplex PCR method,
1千塩基以下の長さの増幅産物を生成するプライマーの位置で、  At the position of the primer that produces an amplification product with a length of 1000 bases or less,
長さが 30塩基以上のプライマーを使用することと、  Using primers with a length of 30 bases or more,
各プライマーのハイブリダィゼーシヨン効率が 90%以上である温度のうち、最も高い 温度でアニーリングさせることと、  Annealing at the highest temperature among the temperatures at which the hybridization efficiency of each primer is 90% or more,
熱サイクルに少なくとも 1回以上の、 3分以上 10分間までのアニーリング ·伸長反応を 含む、もしくはアニーリング ·伸長反応の時間がサイクルにしたがって最後の熱サイク ルで 3分以上 10分間までに延長されることと、  Annealing at least once in a thermal cycle, 3 min. To 10 min.Including extension reaction, or annealing.Extension reaction time is extended to 3 min. To 10 min in the last thermal cycle according to the cycle. And
を特徴とするマルチプレックス PCR法を提供する。  A multiplex PCR method is provided.
[0011] また、本発明は、上記記載の方法であって、 [0011] Further, the present invention is the method described above,
前記プライマーおよび標的 DNA鎖を混合して熱変性させることと、  Mixing the primer and target DNA strand and heat denaturing;
前記プライマーの Tm値よりも低い温度において、前記プライマーをテンプレートに アニーリングさせることと、  Annealing the primer to the template at a temperature lower than the Tm value of the primer;
熱サイクルの中で少なくとも 1回以上の、 3分以上 10分間までのアニーリング ·伸長 反応を行う、もしくはアニーリング ·伸長反応の時間がサイクルにしたがって最後の熱 サイクルで 3分以上 10分間までに延長するよう行うことによって、前記相補的な DNAを 合成させることと、  At least once in the thermal cycle, 3 minutes to 10 minutes of annealing-extension reaction, or annealing-extension reaction time is extended from 3 minutes to 10 minutes in the last thermal cycle according to the cycle To synthesize the complementary DNA,
の工程を含むことを特徴とする PCR増幅方法を提供する。  A PCR amplification method comprising the steps of:
[0012] さらに、上記記載の方法であって、 前記プライマーは、長さが 30〜60塩基である方法を提供する。 [0012] Furthermore, the method described above, The primer provides a method that is 30-60 bases in length.
[0013] さらに、上記記載の方法であって、 [0013] Further, the method described above,
前記プライマーは、長さが 32〜50塩基である方法を提供する。  The primer provides a method that is 32-50 bases in length.
[0014] さらに、上記記載の方法であって、 [0014] Further, the method described above,
前記プライマーは、長さが 35〜45塩基である方法を提供する。  The primer provides a method that is 35-45 bases in length.
[0015] さらに、上記記載の方法であって、 [0015] Further, the method described above,
前記アニーリング ·伸長反応は、熱サイクルの中で少なくとも 1回以上の 4分以上の アニーリング '伸長サイクルを含むよう行われる方法を提供する。  The annealing / extension reaction provides a method that is performed to include at least one or more annealing period of 4 minutes or more during the thermal cycle.
[0016] さらに、上記記載の方法であって、  [0016] Further, the method described above,
前記アニーリング ·伸長反応は、熱サイクルの中で少なくとも 1回以上の 6分以上 10 分間以下のアニーリング '伸長サイクルを含むよう行われる方法を提供する。  The annealing / elongation reaction provides a method in which at least one annealing cycle of 6 to 10 minutes is performed in the thermal cycle.
[0017] さらに、上記記載の方法であって、 [0017] Further, the method described above,
前記アニーリング温度は、 Visual OMP(DNA Software社)によって予測される評価 値 (Q- Score)に基づ!/、て、 850以上の評価値 (Q- Score)のハイブリダィゼーシヨン効率 と予測されるプライマーの Tm以下である方法を提供する。  The annealing temperature is based on the evaluation value (Q-Score) predicted by Visual OMP (DNA Software)! /, And the hybridization efficiency and prediction of an evaluation value (Q-Score) of 850 or more A method is provided that is less than or equal to the Tm of the primer to be produced.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1A]図 1Aは、ハイブリダィゼーシヨン効率の予測結果を示すグラフである。 [0018] FIG. 1A is a graph showing a prediction result of hybridization efficiency.
[図 1B]図 1Bは、ハイブリダィゼーシヨン効率の予測結果を示すグラフである。  FIG. 1B is a graph showing a prediction result of hybridization efficiency.
[図 2]図 2は、シングルプレックスでの PCR結果を示す電気泳動写真である。  [FIG. 2] FIG. 2 is an electrophoretogram showing the PCR results in a single plex.
[図 3]図 3は、アニーリング温度検討結果を示す電気泳動写真である。  FIG. 3 is an electrophoretogram showing the results of annealing temperature examination.
[図 4]図 4は、プライマー濃度の検討結果を示す電気泳動写真である。  [FIG. 4] FIG. 4 is an electrophoretogram showing the results of examining the primer concentration.
[図 5]図 5は、酵素 'DMSO濃度の検討結果を示す電気泳動写真である。  [FIG. 5] FIG. 5 is an electrophoretogram showing the results of examination of the enzyme DMSO concentration.
[図 6]図 6は、サーマルサイクルの検討結果を示す電気泳動写真である。  FIG. 6 is an electrophoretogram showing the results of thermal cycle studies.
[図 7]図 7は、実施例に使用した方法の概要を示す模式図である。  FIG. 7 is a schematic diagram showing an outline of a method used in Examples.
[図 8]図 8は、本発明の方法を使用して各 SNPについてのタイピング結果を示すアレイ 検出強度の散布図である。  FIG. 8 is a scatter plot of array detection intensity showing the typing results for each SNP using the method of the present invention.
[図 9]図 9は、本発明の方法を使用して各 SNPについてのタイピング結果を示すアレイ 検出強度の散布図である。 [図 10]図 10は、本発明の方法を使用して各 SNPについてのタイピング結果を示すァ レイ検出強度の散布図である。 FIG. 9 is a scatter plot of array detection intensity showing the typing results for each SNP using the method of the present invention. [FIG. 10] FIG. 10 is a scatter diagram of array detection intensities showing typing results for each SNP using the method of the present invention.
[図 11]図 11は、 SNPタイピング結果と QV値の定義を示す図である。  [FIG. 11] FIG. 11 is a diagram showing definitions of SNP typing results and QV values.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明のマルチプレックス PCR法について詳細に説明する。  Hereinafter, the multiplex PCR method of the present invention will be described in detail.
[0020] 本発明のマルチプレックス PCR法は、通常の PCRにおける一般的な常識にあるよう なプライマーの長さ(例えば 30塩基未満)よりも長いプライマーを使用することを特徴 とする。このようなプライマーデザインにより、プライマーのハイブリダィゼーシヨン効率 を均一にすることができると考えられる。これと同時に、プライマーの長さを長く設計 することによって、プライマーの特異性を高めることができる。従って、たとえば 1000塩 基のような長大な塩基が混ざっている試料であっても、アニーリング効率を均一にす ることによって特異的にマルチプレックス PCR産物を得ることができる。また、ヒトゲノム のような複雑な配列や類似配列を多く含む試料であっても、 目的の産物を増幅効率 を揃えながら特異的に増幅することができると考えられる。  [0020] The multiplex PCR method of the present invention is characterized in that a primer longer than the primer length (for example, less than 30 bases) as in general common sense in ordinary PCR is used. It is considered that such primer design can make the primer hybridization efficiency uniform. At the same time, the primer specificity can be increased by designing the primer length longer. Therefore, even for a sample mixed with a long base such as 1000 bases, a multiplex PCR product can be obtained specifically by making the annealing efficiency uniform. In addition, even for a sample containing many complex or similar sequences such as the human genome, it is thought that the target product can be specifically amplified with the same amplification efficiency.
[0021] 本発明のマルチプレックス PCR法に使用されるプライマーの長さは、クロスハイブリ ダイゼーシヨンを回避するために十分な長さであることが必要であり、一般的な常識 の範囲よりも長い。プライマーの長さは、たとえば 30〜60塩基、好ましくは 32〜50塩基 、さらに好ましくは 35〜45塩基程度の長さである。このように長いプライマーデザイン の場合、通常プライマーの Tm値は、短いプライマーよりも高くなる。  [0021] The length of the primer used in the multiplex PCR method of the present invention needs to be long enough to avoid cross-hybridization, and is longer than the range of general common sense. The length of the primer is, for example, about 30 to 60 bases, preferably about 32 to 50 bases, and more preferably about 35 to 45 bases. For such a long primer design, the Tm value of a normal primer is usually higher than that of a short primer.
[0022] また、本発明のマルチプレックス PCR法に使用するプライマーは、増幅する铸型配 列に応じて種々の配列でデザインすることができる。従来、マルチプレックス PCR法に 使用するプライマーは、 PCR産物を 300塩基までとしたり、増幅産物の長さが揃うよう にデザインする必要があった力 本発明のマルチプレックス PCR法では、増幅される 産物の長さが限定されない。従って、プライマーのデザインの選択範囲が増大するこ ととなり、従来のマルチプレックス PCR法では不可能であったプライマーセットをデザ インすることちできる。  [0022] In addition, the primers used in the multiplex PCR method of the present invention can be designed with various sequences depending on the vertical sequence to be amplified. Previously, the primers used in the multiplex PCR method had to be designed so that the PCR product could be up to 300 bases or the length of the amplified product would be the same. The length of is not limited. Therefore, the selection range of primer design is increased, and it is possible to design a primer set that was impossible with the conventional multiplex PCR method.
[0023] プライマーは、たとえば以下の実施例に示したように、铸型およびプライマーの二 次構造を予測し、ハイブリダィゼーシヨン効率を均一にしてマルチプレックス PCR用プ ライマーのデザインを行うことができる。このようなデザイン、二次構造予測、ハイプリ ダイゼーシヨン効率の計算は、たとえば Visual OMP(DNA Software社)を使用してお こなうことができる。すべてのプライマーにおいてハイブリダィゼーシヨン効率を 100 % 近くにするためには、たとえば以下のように設計パラメーターを定めて最適な配列を 選択することができる:プライマー長 30〜45mer;プライマーの設計 Tm 70°C〜100 °C。その他の設計パラメーターに関してはプライマー設計パラメーターと PCRの相関 を解析した結果に基づいて定めることができる。上記したデザイン法の他、当業者で あれば、上記のような長い配列であって、所望の铸型を増幅することができるプライマ 一を容易にデザインすることができるであろう。 [0023] As shown in the following examples, for example, the primer predicts the secondary structure of the cage and the primer, makes the hybridization efficiency uniform, and provides a multiplex PCR product. Can design a rimer. Such design, secondary structure prediction, and calculation of high hybridization efficiency can be performed using, for example, Visual OMP (DNA Software). In order to achieve a hybridization efficiency of nearly 100% for all primers, the optimal sequence can be selected by setting the design parameters as follows: primer length 30-45mer; primer design Tm 70 ° C to 100 ° C. Other design parameters can be determined based on the results of analyzing the correlation between primer design parameters and PCR. In addition to the design method described above, those skilled in the art will be able to easily design a primer having the long sequence as described above and capable of amplifying a desired saddle type.
[0024] 次に、上記プライマーを使用して、標的核酸の増幅工程を行う。 Next, a target nucleic acid amplification step is performed using the above primers.
[0025] ここで、本明細書にぉ 、て、「核酸」には、 cDNA、ゲノム DNA、合成 DNA、 mRNA、 全 RNA、 hnRNA、合成 RNAを含む全ての DNA及び RNAを意味するものとする。検出 又は定量すべき前記標的核酸は、任意の配列を有する任意の核酸であり得るが、遺 伝病の原因遺伝子、癌関連遺伝子、又はウィルス由来の核酸など疾病のマーカーと なり得る核酸は、とりわけ好ましい標的核酸である。それ故、前記試料には、血液、尿 、唾液等の体液が含まれるが、体液以外の任意の試料を使用し得る。試料が固体で あれば、酵素処理、界面活性剤又は有機溶媒の添加等の適切な方法で液体に溶解 させればよい。上記の他にも、本方法の実施に当たって標的核酸は、随意に変更す ることができる。例えば細胞を株化して大量培養したり、抹消血を多めに取得したりす ることで本方法に必要なヒトゲノム DNAを大量に調製することにより、直接ゲノム DNA 力 検出反応を始めることができる。また、これに代わって、少量のゲノム DNAを取得 し、アマ一シャムバイオサイエンス社の試薬キット GenomiPhiのような WGA法(Whole Genome Amplification )で、非特異的にゲノム DNAを増幅した試料から検出反応を 始めてもよい。また、 PCR法や、マルチプレックス PCR法、ァシンメトリック PCR法のよう なプライマーを用いて特定の配列を増幅したものから検出反応を始めてもよい。特に 、本発明の方法を SNP特異的配列を検出するために使用する場合、標的核酸は、ゲ ノム DNAなどであることが想定される力 この場合は、予め標的の SNPを含む領域を P CRなどで増幅しておいてもよい。そのほかの酵素的に増幅する方法によりそれぞれ 得られた試料は、 2重鎖試料の場合は、 95°Cまで加熱してカゝら 4°Cに急冷して 1本鎖 化したり、塩濃度のきわめて低い溶液中で 95°Cまで加熱し断片化する、また、超音波 で断片化する、制限酵素で切断する等の 1本鎖化、断片化操作を加えてから検出操 作してちょい。 [0025] Here, as used herein, "nucleic acid" means all DNA and RNA including cDNA, genomic DNA, synthetic DNA, mRNA, total RNA, hnRNA, and synthetic RNA. . The target nucleic acid to be detected or quantified can be any nucleic acid having an arbitrary sequence, but a nucleic acid that can serve as a disease marker, such as a gene causing a disease, a cancer-related gene, or a nucleic acid derived from a virus, Preferred target nucleic acids. Therefore, the sample includes body fluids such as blood, urine and saliva, but any sample other than body fluids can be used. If the sample is solid, it may be dissolved in the liquid by an appropriate method such as enzyme treatment, addition of a surfactant or organic solvent. In addition to the above, the target nucleic acid can be arbitrarily changed in carrying out this method. For example, by preparing a large amount of human genomic DNA necessary for this method by culturing cells in large quantities and culturing them in large quantities, or by obtaining a large amount of peripheral blood, the genomic DNA force detection reaction can be started directly. Alternatively, a small amount of genomic DNA is obtained, and a detection reaction is detected from a sample that has amplified genomic DNA nonspecifically using the WGA method (Whole Genome Amplification) such as the reagent kit GenomiPhi of Amersham Biosciences. You may start. Alternatively, the detection reaction may be started from the amplification of a specific sequence using primers such as PCR, multiplex PCR, and asymmetric PCR. In particular, when the method of the present invention is used for detecting an SNP-specific sequence, the target nucleic acid is assumed to be genomic DNA or the like. It may be amplified by such as. Depending on other enzymatic amplification methods In the case of a double-stranded sample, the obtained sample is heated to 95 ° C and rapidly cooled to 4 ° C to form a single strand, or heated to 95 ° C in a solution with a very low salt concentration. Then, after performing fragmentation operations such as single-strand and fragmentation, such as fragmentation with ultrasound, fragmentation with restriction enzymes, and cleavage with restriction enzymes, perform detection.
[0026] 標的核酸の増幅工程では、まず上記プライマー、標的核酸、および適切な反応溶 液を混合して熱変性させる。本工程は、一般的な PCRの条件を使用して行えばよい。 たとえば、各サイクルの前にプレ加熱による変性として 94°Cで 2分、また各サイクルの 変性工程として、 94°Cで 30秒行うことが好まし 、。  [0026] In the target nucleic acid amplification step, first, the primer, the target nucleic acid, and an appropriate reaction solution are mixed and thermally denatured. This step may be performed using general PCR conditions. For example, it is preferable to perform denaturation by heating at 94 ° C for 2 minutes before each cycle, and at 94 ° C for 30 seconds as the denaturation step for each cycle.
[0027] また、増幅工程に使用する反応溶液は、一般的な PCR反応溶液を使用することが でき、市販のキットを使用することもできる。たとえば、以下の実施例に示したように、 酵素: AccuPnme II (Invitrogen)、ノッファ ~~: AccuPnme II master mix、フフイマ ~~ それぞれ 0.1 μ Μ、铸型 DNA: 5ng、反応体積: 20 Lとすることができる。  [0027] As a reaction solution used in the amplification step, a general PCR reaction solution can be used, and a commercially available kit can also be used. For example, as shown in the following examples, enzyme: AccuPnme II (Invitrogen), noffer ~~: AccuPnme II master mix, filma ~~ 0.1 μΜ each, vertical DNA: 5 ng, reaction volume: 20 L be able to.
[0028] 次に、熱変性により生じた 1本鎖核酸にプライマーをアニーリングさせる。本発明の マルチプレックス PCR法は、上記のようにデザインしたプライマーの Tm値よりも比較的 低い温度でアニーリングさせることを特徴とする。特に、従来考えられているよりも有 意に低い温度でアニーリングさせることが好ましい。これにより、ハイブリダィゼーショ ン効率が高くなり、いずれの铸型に対しても、プローブのハイブリダィゼーシヨン効率 を高くすることができると考えられる。従って、従来のマルチプレックス PCR法では、増 幅されなかった断片を増幅することができ、増幅効率も高くなる。  [0028] Next, a primer is annealed to the single-stranded nucleic acid generated by heat denaturation. The multiplex PCR method of the present invention is characterized by annealing at a temperature relatively lower than the Tm value of the primer designed as described above. In particular, it is preferable to perform annealing at a temperature that is significantly lower than conventionally considered. Thereby, the hybridization efficiency is increased, and it is considered that the hybridization efficiency of the probe can be increased for any of the saddle types. Therefore, in the conventional multiplex PCR method, fragments that have not been amplified can be amplified, and the amplification efficiency is increased.
[0029] プライマーの Tm値は、当該技術分野において周知の方法によって予測される Tm 値であり、たとえば上記 Visual OMP(DNA Software社)などによって予測される Tm値 である。また、本発明のマルチプレックス PCR法に使用するプライマーは、その長さが 長いので、比較的高いアニーリング温度であっても、プライマーの Tm値からは有意に 低い温度となる。通常、アニーリング温度を下げすぎるとプライマーの非特異的なァ ニーリングが起こりやすくなり、非特異的増幅により標的位牌列の増幅が阻害されて しまうが、本発明に使用するプライマーは、従来のプライマーよりも十分な外為ァニー リング効率が高ぐ増幅効率がよいと考えられる。たとえば、以下の実施例に使用した プライマーにおいても、最も低い Tmでも 70.0°Cであるため、アニーリング温度は、 68 °cであっても十分に低 、温度となる。 [0029] The Tm value of a primer is a Tm value predicted by a method well known in the art, and is a Tm value predicted by, for example, Visual OMP (DNA Software). In addition, since the primer used in the multiplex PCR method of the present invention is long, the temperature is significantly lower than the Tm value of the primer even at a relatively high annealing temperature. Usually, if the annealing temperature is lowered too much, nonspecific annealing of the primer is likely to occur, and the amplification of the target sequence is inhibited by nonspecific amplification, but the primer used in the present invention is more than the conventional primer. It is considered that amplification efficiency is good because of sufficient forex annealing efficiency. For example, even in the primer used in the following examples, even at the lowest Tm, the annealing temperature is 68. Even at ° c, the temperature is sufficiently low.
[0030] 次に、ポリメラーゼによって相補鎖を合成する。本発明のマルチプレックス PCR法は 、通常の伸長時間と比較して長時間の伸長反応を行うことを特徴とする。伸長反応は 、たとえば 3分、 4分、 5分、および 6分以上 10分未満、 5分以上 8分未満、好ましくは、 約 6分である。したがって、本発明のマルチプレックス PCR法に使用する酵素は、長 時間活性が持続するものが好ましい。また、本発明のマルチプレックス PCR法に使用 するプライマーは、その長さが長いので、比較的高いアニーリング温度であるため、 アニーリングをさせると、伸長反応が進行する温度になる場合もある。このような場合 は、アニーリング温度と伸長反応温度を同じにすることにより、両者を同時進行させる シャトル PCRにすることもできる。  [0030] Next, a complementary strand is synthesized by a polymerase. The multiplex PCR method of the present invention is characterized in that an extension reaction is performed for a longer time compared to a normal extension time. The extension reaction is, for example, 3 minutes, 4 minutes, 5 minutes, and 6 minutes to less than 10 minutes, 5 minutes to less than 8 minutes, preferably about 6 minutes. Therefore, it is preferable that the enzyme used in the multiplex PCR method of the present invention has long-lasting activity. In addition, since the primer used in the multiplex PCR method of the present invention is long in length, it has a relatively high annealing temperature. Therefore, when annealing is performed, the temperature may reach a temperature at which the extension reaction proceeds. In such a case, it is also possible to use shuttle PCR, in which both the annealing temperature and the extension reaction temperature are the same, so that both proceed simultaneously.
[0031] このように、本発明のマルチプレックス PCR法は伸長時間が長いので、増幅産物が 長いものであっても十分に増幅反応を進行させることができる。従って、従来のマル チプレックス PCR法のように増幅産物の長さが同じでなくても、本発明のマルチプレツ タス PCR法によれば、異なった増幅産物の全てについて均一に増幅することができる  [0031] Thus, since the multiplex PCR method of the present invention has a long extension time, the amplification reaction can sufficiently proceed even if the amplification product is long. Therefore, even if the length of the amplification product is not the same as in the conventional multiplex PCR method, according to the multiplex status PCR method of the present invention, all the different amplification products can be amplified uniformly.
[0032] 本発明のマルチプレックス PCR法は、上記のとおり、通常の PCRにおける一般的な 常識にあるようなプライマーの長さ(例えば 30塩基未満)よりも長いプライマーを使用 すること、通常の伸長時間と比較して長時間の伸長反応を行うことを除き、上記のェ 程に限定されることなぐ従来の PCR法と同じ工程で行うことができる。たとえば、 DNA 鎖の熱変性の工程やポリメラーゼによる相補鎖の合成工程は、増幅する铸型に応じ て、一般的な反応条件で行うことができる。考慮すべき反応条件としては、たとえば各 工程の温度および時間、反応液のノ ッファー組成と構成成分の濃度などが挙げられ る。また、使用する反応条件は、市販の酵素を使用する場合であれば、販売者の説 明書に従った条件を使用することができる。上記した本発明のマルチプレックス PCR 法に特有の条件を除ぐこのような温度および時間、反応液のバッファー組成と構成 成分の濃度などは、当業者であれば容易に選択することができるであろう。 [0032] As described above, the multiplex PCR method of the present invention uses a primer longer than the length of the primer (eg, less than 30 bases) as in common general knowledge in normal PCR, and normal extension. The reaction can be performed in the same process as the conventional PCR method, without being limited to the above-described step, except that the extension reaction is performed for a longer time compared to the time. For example, the step of heat denaturing a DNA strand and the step of synthesizing a complementary strand with a polymerase can be carried out under general reaction conditions depending on the type to be amplified. The reaction conditions to be considered include, for example, the temperature and time of each step, the composition of the reaction solution, the concentration of constituents, and the like. Moreover, the reaction conditions used can be those according to the seller's instructions if a commercially available enzyme is used. Those skilled in the art can easily select the temperature and time, conditions of the reaction mixture, the concentration of the components, etc., excluding the conditions peculiar to the multiplex PCR method of the present invention described above. Let's go.
[0033] 本発明の実施態様としては、以下の形態が考えられる。特に、本発明の検出方法 の用途、場所には次のものが考えられる。例えばヒト遺伝子型と疾患の関連性の解 明、薬剤感受性の検出、遺伝子制御領域の蛋白結合性の変化の検出、対象生物を ヒトから別の生物に変えての遺伝子多型の分子生物学的な解析などの研究用途が ある。これら研究は、大学、企業等の研究所、研究室で行われるであろう。また、遺伝 子と特定の疾患との関連性、罹患リスクや、薬剤感受性が明らかにされた時点で、病 院の検査センターでの治療方法を選択するための検査や人間ドックでの予防のため の診断、副作用の小さい抗ガン剤の選択のための薬剤感受性検査等、医療用に使 えると考えられる。 [0033] As embodiments of the present invention, the following modes are conceivable. In particular, the following can be considered as uses and places of the detection method of the present invention. For example, the relationship between human genotype and disease There are research applications such as detection of drug sensitivity, detection of protein binding changes in the gene regulatory region, and molecular biological analysis of gene polymorphisms when the target organism is changed from human to another. These studies will be conducted in research institutes and laboratories such as universities and companies. In addition, when the relationship between the gene and a specific disease, risk of morbidity, and drug sensitivity are identified, testing to select treatment methods at the hospital's laboratory center and prevention at the clinical dock It can be used for medical purposes such as diagnosis and drug sensitivity testing for the selection of anticancer drugs with small side effects.
[0034] 本発明の方法を実施するための形態としては、ユーザー自らが本方法を実施する ための研究用および診断用遺伝子多型検出試薬キットとしての実施、自動的に処理 する自動反応装置による実施、並びにユーザーゃ被検者に代わっての受託研究ま たは検査センターでの診断等の実施が考えられる。  [0034] As a mode for carrying out the method of the present invention, the user himself / herself carries out as a genetic polymorphism detection reagent kit for research and diagnosis for carrying out the method, and by an automatic reaction apparatus that automatically processes the method. It is possible to conduct a contract research on behalf of the subject or a diagnosis at a laboratory.
[0035] 以下、 SNPのタイピングを行うためにマルチプレックス PCR法を例にして、本発明の マルチプレックス PCR法を行うための条件検討および解析結果を示す。  [0035] Hereinafter, the examination of conditions and analysis results for performing the multiplex PCR method of the present invention will be described by taking the multiplex PCR method as an example for performing SNP typing.
実施例  Example
[0036] 実施例 1:マルチプレックス PCR法による SNP配列増幅の検討  [0036] Example 1: Examination of SNP sequence amplification by multiplex PCR method
(1)検出対象とする SNPの塩基配列  (1) SNP base sequence to be detected
検出対象とする SNPの塩基配列は、東大医科学研究所の整備した日本人の SNPの データベース JSNP (http://snp.ims.u-tokyo.ac.jp/indexja.html)力ら得た。それぞれ のァクセシヨン番号は、 IMS- JST164838 (SNP#3) , IMS- JST058048 (SNP#4) , IMS- JS T005689 (SNP#5) , IMS-JST054229 (SNP#6) , IMS-JST001164 (SNP#7) , IMS-JST017 558 (SNP#8) , IMS-JSTl 75404 (SNP#9) , IMS- JST054214 (SNP#10) , IMS- JST011815 (SNP#11) , IMS-JST156026 (SNP#12)であり、合計 10個の SNPである。以後、名前が 長いために 0内の略番号で記すことにする。検出したサンプルは (財)ヒューマンサイ エンス振興財団のヒューマンサイエンス研究資源バンクが頒布(http:〃 www. jhsf.or.jp /bank/psc.html)して!/、るヒト抹消血細胞を株化したもの力 抽出したヒトゲノム DNAで ある。購入したサンプルは PSCDA0503, PSCDA0328, PSCDA0719, PSCDA0785, PS CDA0415, PSCDA0716, PSCDA0693, PSCDA0117なる番号であった。以降それぞ れ数字部分の 503, 328, 719, 785, 415, 716, 693, 117で呼ぶことにする。 1] 表 1 (1) 対象 SNPのアレル
Figure imgf000012_0001
The SNP base sequence to be detected was obtained from the Japanese SNP database JSNP (http://snp.ims.u-tokyo.ac.jp/indexja.html) maintained by the Institute of Medical Science, the University of Tokyo. . The respective accession numbers are IMS-JST164838 (SNP # 3), IMS-JST058048 (SNP # 4), IMS-JS T005689 (SNP # 5), IMS-JST054229 (SNP # 6), IMS-JST001164 (SNP # 7) ), IMS-JST017 558 (SNP # 8), IMS-JSTl 75404 (SNP # 9), IMS-JST054214 (SNP # 10), IMS-JST011815 (SNP # 11), IMS-JST156026 (SNP # 12) A total of 10 SNPs. Hereafter, since the name is long, it will be written with an abbreviated number in 0. The detected sample was distributed by the Human Science Research Resource Bank (http://www.jhsf.or.jp/bank/psc.html)!/, and human peripheral blood cells were stocked. This is the extracted human genomic DNA. The purchased samples were PSCDA0503, PSCDA0328, PSCDA0719, PSCDA0785, PS CDA0415, PSCDA0716, PSCDA0693, PSCDA0117. In the following, they will be called the numbers 503, 328, 719, 785, 415, 716, 693, 117 respectively. 1] Table 1 (1) Target SNP alleles
Figure imgf000012_0001
[表 2] [Table 2]
Figure imgf000013_0001
Figure imgf000013_0001
[0037] 表 2は、試料のサンガー法によるシーケンシング結果であり、このシーケンシングに はァプライド 'バイオシステムズ社の PRISM 3100Genetic Analyzerを用い、三井情報 開発のシーケンサー出力波形解析ソフトウェア波平を使用して各 SNPのアレルを決 定した。以下、それぞれのゲノム試料を処理した方法について具体的に記す。 [0037] Table 2 shows the results of sequencing the samples using the Sanger method. For this sequencing, we used the PRISM 3100 Genetic Analyzer from Applied Biosystems, and each of them using the Mitsui Information Development's sequencer output waveform analysis software wave flat. The SNP allele was determined. Hereinafter, the method of processing each genomic sample will be described in detail.
[0038] (2)プライマーのデザイン ブは、以下のようにデザインした。 [0038] (2) Primer design Bu designed as follows.
[0039] 近年、計算機の発達と DNAの熱力学的なパラメーターの決定により、精度高く二次 構造が予測できるようになつてきた。そこで、ハイブリダィゼーシヨン効率を均一にし、 テンプレート、プライマーの二次構造を予測したマルチプレックス RPCR用のプライマ 一の設計を行った。  [0039] In recent years, it has become possible to predict secondary structures with high accuracy by the development of computers and the determination of thermodynamic parameters of DNA. Therefore, we designed a primer for multiplex RPCR that made the hybridization efficiency uniform and predicted the secondary structure of the template and primer.
[0040] ハイブリダィゼーシヨン効率、二次構造予測の計算には、 Visual OMP(DNA Softwar e社)を使用した。このソフトウェアは、 DNAの濃度や溶液の塩濃度、湿度などを入力 すれば、 DNAのハイブリダィゼーシヨン効率を算出することができる。様々なパラメ一 ターを試したところ、 PCRバッファ中、 PCRのプライマー濃度でのハイブリダィゼーショ ン効率は、この値を全てのプライマーで 100%にするためには、プライマー長 30〜40 mer、プライマーの設計 Tm70〜100°Cとして計算するのが適当だと分力つた。上記 Vis ual OMPでの選択においては、他の設計パラメーター、プライマーと、プライマーのハ イブリダィズするテンプレートに二次構造予測も行い、特に、選んだプライマー配列 が真にハイブリダィズしゃすいかを予測し、より不安定な分子内構造をとる、ハイプリ ダイゼーシヨン効率の高いプライマー配列を選択した。  [0040] Visual OMP (DNA Software) was used for calculation of hybridization efficiency and secondary structure prediction. This software can calculate the hybridization efficiency of DNA by inputting DNA concentration, solution salt concentration, humidity, etc. When various parameters were tested, the hybridization efficiency at the PCR primer concentration in the PCR buffer was 30 to 40 mer primer length in order to make this value 100% for all primers. Primer design It was a force to calculate as Tm70 ~ 100 ° C. In the selection by the above Visual OMP, secondary structure prediction is also performed on other design parameters, primers, and the template to be hybridized with the primer, and in particular, the selected primer sequence is predicted to be truly hybridized and more difficult. Primer sequences that have stable intramolecular structure and high hybridization efficiency were selected.
[0041] 上記のマルチプレックス PCRプライマー設計の重要な指針としたハイブリダィゼー シヨン効率に関する設計結果を図 1に示す。プライマーの鎖長を長くした MTLシリー ズでは、ハイブリダィゼーシヨン効率力 どの SNP部位においても 100%近くになること が予想された(図 1および表 3)。  [0041] Fig. 1 shows the design results related to hybridization efficiency, which is an important guideline for the above-mentioned multiplex PCR primer design. In the MTL series with longer primer lengths, hybridization efficiency was expected to be close to 100% at any SNP site (Figure 1 and Table 3).
[表 3] [Table 3]
键薩 键 薩
STの 」εοΊ1Ν906 2.  ST '' εοΊ1Ν906 2.
。 ϋ 9寸. 「 . ο ϋ 59/·lls.  . ϋ 9 inch. ". ο ϋ 59 / · lls.
1 ο ϋ 8Ό∞山926 8. 1 ο ϋ 8Ό∞ Mountain 926 8.
。 ϋ 68Ζ-の. . ϋ 68Ζ-.
Figure imgf000015_0001
ο ϋ 6S卜.NV826 6..
Figure imgf000015_0001
ο ϋ 6S 卜 .NV826 6 ..
cO L Lo m t L r^ o c o sJ to cM m csi m cD in m oo  cO L Lo m t L r ^ o c o sJ to cM m csi m cD in m oo
寸 寸 寸 寸 w SN3 寸 寸 寸  Dimension Dimension Dimension w SN3 Dimension Dimension
山の c c 。。L ϋ丁 6寸一 1NV.  Mountain c c. . L Kenting 6 inch 1NV.
。 VF . VF
2 9.  2 9.
。 S 〇T Iの  . S 〇 T I
。 628 9S92906 21..  . 628 9S92906 21 ..
Figure imgf000015_0002
Figure imgf000015_0002
[0042] (3)マルチプレックス PCR法の条件検討結果 [0042] (3) Results of examination of multiplex PCR conditions
アニーリング温度、プライマー濃度、酵素系、サーマルサイクルに関して、条件検討 を行い、最適なマルチプレックス PCR条件を探索した。その結果、 8/10 SNPsまで増 幅産物が観測され、明らかに増幅されていない SNPは無くなった。最適化された反 応条件を以下に示す。  We examined conditions regarding annealing temperature, primer concentration, enzyme system, and thermal cycle, and searched for optimal multiplex PCR conditions. As a result, amplification products were observed up to 8/10 SNPs, and there were no SNPs clearly amplified. The optimized reaction conditions are shown below.
[0043] 3.1.条件検討結果 [0043] 3.1. Conditional examination results
1.PCR条件 (現在の最適化条件)  1.PCR conditions (current optimization conditions)
溶液条件 酵素: AccuPrime II (Invitrogen) Solution conditions Enzyme: AccuPrime II (Invitrogen)
ノ ッファ ~~: AccuPrime II master mix  Noffa ~~: AccuPrime II master mix
プライマーそれぞれ 0.1 μ Μ  0.1 μ そ れ ぞ れ each primer
铸型 DNA: 5ng  Vertical DNA: 5ng
反応体積: 20 μ L  Reaction volume: 20 μL
2.サーマノレサイクノレ  2.Therma no Cycling
プレ加熱: 94 °C 2 min  Preheating: 94 ° C 2 min
変性: 94 °C 0.5 min  Denaturation: 94 ° C 0.5 min
アニーリングおよび伸長: 68 °C 6 min  Annealing and stretching: 68 ° C 6 min
サイクル数: 40  Number of cycles: 40
貯蔵: 10 °C  Storage: 10 ° C
3.2.条件検討過程  3.2 Condition review process
条件検討過程を示す。条件検討は以下の順に進めた:  The condition examination process is shown. The condition study proceeded in the following order:
1.シングルプレックスでの PCR  1. PCR in a single plex
2.アニーリング温度検討  2. Annealing temperature study
3.プライマー濃度検討  3. Primer concentration study
4.酵素 ' DMSO濃度検討  4. Enzyme '' DMSO concentration study
5.サーマルサイクル検討  5. Thermal cycle study
まずシングルプレックスで PCRを行い、プライマーが動作することを確認した。結果 を図 2に示す。 10個の SNP部位の全てにおいて、増幅が確認されたが、同じ PCR条件 ではマルチプレックス PCRはできなかった。  First, PCR was performed using a single plex, and it was confirmed that the primer was working. The result is shown in figure 2. Although amplification was confirmed in all 10 SNP sites, multiplex PCR was not possible under the same PCR conditions.
[0044] 次に、アニーリング温度を検討するために、 20種類のプライマーを全て添カ卩し、 60 °C〜70°Cの範囲で温度グラディエントをかけて最適なアニーリング温度を検討した。 結果を図 3に示す。アニーリング温度を変更しても、電気泳動像の変化は乏しぐ今 回は、 67.5°Cを最適な温度とした。プライマーの鎖長が 30〜45塩基であり、 Tmが 70 °C以上であるため、 60〜70°Cの範囲の実験では変化が見られな力つたと考えられる [0044] Next, in order to examine the annealing temperature, all 20 types of primers were added, and a temperature gradient was applied in the range of 60 ° C to 70 ° C to examine the optimum annealing temperature. The results are shown in Figure 3. Even though the annealing temperature was changed, the change in the electrophoretic image was scarce. The optimum temperature was 67.5 ° C. Since the primer chain length is 30 to 45 bases and Tm is 70 ° C or more, it seems that the experiment in the range of 60 to 70 ° C showed no change.
[0045] また、同時に DMSOの添加も行った。 DMSOの添カ卩により増幅が改善される SNP部 位も見られた力 DMSNOの添カ卩に伴い増幅が弱くなる部位もあり、必ずしも DMSOの 添カ卩により均一な増幅が得られないことが明らかになった。図 3にアニーリング温度検 討結果を示してある。 [0045] DMSO was also added at the same time. Amplification is improved by adding DMSO. There was a part where the amplification weakened with the addition of DMSNO, and it became clear that uniform amplification could not be obtained with DMSO. Figure 3 shows the results of the annealing temperature study.
[0046] さらに、プライマー濃度を 0.1〜0.4 /ζ Mの範囲でふり、最適な条件を探索した。その 結果、 0.1 μ Μで均一で強い増幅が認められた (図 4)。  [0046] Further, optimum conditions were searched for by varying the primer concentration in the range of 0.1 to 0.4 / ζ M. As a result, uniform and strong amplification was observed at 0.1 μΜ (Fig. 4).
[0047] 酵素系により PCRの反応の結果は大きな影響を受ける。そこで、 AmpliTaq Gold M aster Mix (ABI), AccuPrime Super Mix I/II (Invitrogen), HotStar Taq(Qiagen)の 4 ¾ 類の酵素で反応を行い比較を行った。また、 AmpliTaq Gold Master Mixの系では同 時に DMSO濃度を変化させて影響を確認した。結果を図 5に示してある。  [0047] The result of the PCR reaction is greatly affected by the enzyme system. Therefore, the reaction was carried out using four types of enzymes, AmpliTaq Gold Master Mix (ABI), AccuPrime Super Mix I / II (Invitrogen), and HotStar Taq (Qiagen), and compared. In the AmpliTaq Gold Master Mix system, the effect was confirmed by changing the DMSO concentration at the same time. The results are shown in FIG.
[0048] 最も良い結果を示した酵素系は、 AccuPrime Super Mix Ι/Πであり、長鎖の産物量 が多く得られた AccuPrime Super Mix IIを最適とした。他の酵素系では、 AmpliTaq Go Id Master Mixは、全体的に増幅量が少なぐ DMSOを添カ卩しても均一な増幅結果は 得られなかった。また、 HotStar Taqは強い増幅結果が得られた力 450塩基付近の バンドが欠損しており、全ての部位を増幅することができな力つた。  [0048] The enzyme system that showed the best results was AccuPrime Super Mix IV / Ι, and AccuPrime Super Mix II, which produced a large amount of long-chain products, was optimized. In other enzyme systems, AmpliTaq Go Id Master Mix did not give a uniform amplification result even when DMSO with a small amount of amplification was added. In addition, HotStar Taq lacked a band around 450 bases that gave strong amplification results, and was unable to amplify all sites.
[0049] 最後に AccuPrime Super Mix IIを用いてサーマルサイクルの検討を行った。 67.5°C のアニーリング温度は、 AccuPrime Super Mixの至適伸長温度の 68°Cに近いため、 68 °Cのシャトル PCRを行うこととし、伸長反応時間の検討を行った。結果を図 6に示して ある。  [0049] Finally, thermal cycle was examined using AccuPrime Super Mix II. Since the annealing temperature of 67.5 ° C is close to the optimal extension temperature of AccuPrime Super Mix, 68 ° C, we decided to perform a 68 ° C shuttle PCR and examined the extension reaction time. The results are shown in Fig. 6.
[0050] シャトル PCRを用いて伸長時間を十分に長く取ると均一に強く増幅されることがわ かった。そこで、伸長時間は、十分な長さの伸長時間であると考えられる 6分間に決 定した。電気泳動上には、バンドが 7本見え、バイオアナライザーでは 8本まで観測で きた。分解できていないピークがある力 明らかに増幅されていない SNPは無くなった 。(分解能のカタ口  [0050] It was found that when the extension time was sufficiently long using shuttle PCR, amplification was performed uniformly and strongly. Therefore, the extension time was determined to be 6 minutes, which is considered to be a sufficiently long extension time. Seven bands were visible on electrophoresis, and up to eight bands could be observed on the bioanalyzer. Forces with unresolved peaks Clearly unamplified SNPs are gone. (Resolution head
グ値は、 100〜500bpの時 ±5 %, 500〜1000bpの時 ± 10%)  (The value is ± 5% for 100 to 500bp, ± 10% for 500 to 1000bp)
(4)検討の結論  (4) Conclusion of study
•DNAコンピューター技術を用いた 10SNP解析用のマルチプレックス PCRプライマー の設  • Installation of multiplex PCR primers for 10SNP analysis using DNA computer technology
計に成功した。 '長い鎖長 (30-45b)のプライマーを用いることで、ハイブリダィゼーシヨン効率の均一 化 The total was successful. 'Hybridization efficiency is uniformized by using primers with long chain length (30-45b)
が図れることが明らかになった。  It became clear that it was possible to plan.
'マルチプレックス PCRプライマーの設計にはハイブリダィゼーシヨン効率の均一化 が  'Multiplex PCR primer design requires uniform hybridization efficiency
有効であることが示唆された。  It was suggested to be effective.
[0051] 実施例 2:マルチプレックス PCR法を利用した SNPの検出 [0051] Example 2: SNP detection using multiplex PCR
以下、本発明のマルチプレックス PCR法を使用して、ゲノム DNAから SNPを含む領 域を増幅し、 DNAコンピューター技術を用いて該 SNPを検出した例にっ 、ての詳細 を説明する。  Hereinafter, the details of an example in which a region containing SNP is amplified from genomic DNA using the multiplex PCR method of the present invention and the SNP is detected using DNA computer technology will be described in detail.
[0052] ここで、 DNAコンピューター技術を用いて SNPを検出するための方法の概要を図 11 を参照しながら説明する。本解析方法には以下のような分子が必要である。従って、 本解析に先駆けて、以下の分子を調製する。当該調製はそれ自身公知の方法により 行うことが可能である。  [0052] Here, an outline of a method for detecting SNPs using DNA computer technology will be described with reference to FIG. This analysis method requires the following molecules. Therefore, the following molecules are prepared prior to this analysis. The preparation can be performed by a method known per se.
[0053] 溶液に含まれる標的核酸を検出するために図 1に示す 2つのプローブを準備する。  [0053] Two probes shown in Fig. 1 are prepared to detect the target nucleic acid contained in the solution.
一方は、標的核酸の一部分の配列 (部分配列)に相補的な配列を含み且つ 3 '端に ピオチンなどで標識したオリゴヌクレオチドのコモンプローブである。上記コモンプロ ーブの標識は、ピオチンだけでなぐピオチンや抗体など、特定の物質と特異的に結 合し得る任意の物質であってもよい(たとえば、ピオチンであれば、ストレプトアビジン と特異的に結合できる)。  One is a common probe of an oligonucleotide containing a sequence complementary to a partial sequence (partial sequence) of a target nucleic acid and labeled with 3 'end such as piotin. The label of the above-mentioned common probe may be any substance that can specifically bind to a specific substance such as piotin or an antibody that is not limited to piotin (for example, in the case of piotin, it is specific to streptavidin. Can be combined).
[0054] 他方のオリゴヌクレオチドは、人工的に設計された SD、 D1 および EDなる塩基配列 力 なるタグを 5'端側に有し、標的核酸の一部分の配列に相補的であり且つ上記コ モンプローブの標的に相補的な配列に隣接するような配列を有するクエリプローブを [0054] The other oligonucleotide has an artificially designed tag with a base sequence force of SD, D1 and ED at the 5 'end, is complementary to the sequence of a part of the target nucleic acid, and is A query probe having a sequence adjacent to the sequence complementary to the probe target.
3'端側に含む。該プローブは、本明細書においてタグ核酸と呼ぶ。また、上記人工 的に設計した塩基配列は、当該相補的な配列よりも 5'末端側に配置される。また、上 記コモンプローブの標的 cDNAに相補的な配列の 5'端はリン酸ィ匕されている。また、 上記タグ核酸のタグ部分およびクエリプローブ部分は、その一部または全て力 ¾本鎖 になったオリゴヌクレオチドであってもよい。このとき、 2本鎖のオリゴヌクレオチドを構 成するもう一方の鎖は、 SD、 01Ίおよび EDの配列に相補的な配列をもつオリゴヌタレ ォチドである。上記タグ核酸のクエリプローブ部分およびコモンプローブは、溶液中 に存在するまたは存在しな 、ことを検出した 、標的遺伝子のそれぞれにつ 、て任意 に設計することができる。またこのとき、 D1 の配列は標的ごとに異なる配列になるよう に設計し、 SDおよび EDはすべてのタグ核酸で共通する配列になるように設計する。 これらの人工的な配列は、任意に設計可能であるので、所望する Tm値を設定するこ とが可能である。従って、安定に且つミスハイブリダィゼーシヨンの少ない反応を行う ことが可能である。たとえば、上記人工的な配列として、正規直交化配列を使用する ことが好ましい。正規直交化配列とは、核酸分子の配列であって、その Tm値が均一 であるもの、即ち Tm値が一定範囲内に揃うように設計された配列であって、核酸分 子自身が分子内(intramolecular)で構造ィ匕して、相補的な配列とのハイブリッド形成 を阻害することのない配列であり、尚且つこれに相補的な塩基配列以外とは安定し たハイブリッドを形成しない塩基配列を意味する。すなわち、 1つの正規直交化配列 群に含まれる配列は、所望の組み合わせ以外の配列間および自己配列内において 反応が生じ難いか、または反応が生じない。また、正規直交化配列は、 PCRにおいて 増幅させると、たとえば上述のクロスノ、イブリダィゼーシヨンのような問題に影響され ずに、当該正規直交化配列を有する核酸分子の初期量に応じた量の核酸分子が定 量的に増幅される性質を有している。上記のような正規直交化配列は、 H. Yshida an d A. Suyama, "Solution to 3— SAT by breadth first search", DIMACS Vol.54 9—20 (2 000)および特願 2003-108126に詳細が記載されている。これらの文献に記載の方法 を使用して正規直交化配列を設計することができる。簡単には、予め無作為に塩基 配列を複数作出することと、それらの融解温度の平均値を求めることと、その平均値 の ±t°Cで制限される閾値を基に候補配列を得ることと、独立して反応する配列であ るか否かを指標に得られた候補配列から正規直交化配列群を得ることを具備する方 法によって作製することができる。 Including at the 3 'end. The probe is referred to herein as a tag nucleic acid. In addition, the artificially designed base sequence is arranged on the 5 ′ end side with respect to the complementary sequence. In addition, the 5 'end of the sequence complementary to the target cDNA of the above common probe is phosphated. In addition, the tag portion and the query probe portion of the tag nucleic acid may be oligonucleotides that are partially or entirely in a stranded state. At this time, construct a double-stranded oligonucleotide. The other strand formed is an oligonucleotide with a sequence complementary to the sequence of SD, 01Ί and ED. The query probe portion and the common probe of the tag nucleic acid can be arbitrarily designed for each target gene that has been detected to be present or absent in the solution. At this time, the D1 sequence is designed to be different for each target, and SD and ED are designed to be common to all tag nucleic acids. Since these artificial arrays can be designed arbitrarily, it is possible to set a desired Tm value. Therefore, it is possible to carry out a reaction that is stable and has little mishybridization. For example, it is preferable to use an orthonormalized array as the artificial array. An orthonormalized sequence is a sequence of nucleic acid molecules having a uniform Tm value, that is, a sequence designed so that the Tm values are aligned within a certain range, and the nucleic acid molecule itself is within the molecule. (Intramolecular) is a sequence that does not inhibit hybridization with a complementary sequence, and a base sequence that does not form a stable hybrid other than a complementary base sequence. means. That is, a sequence included in one orthonormalized sequence group hardly reacts between sequences other than the desired combination and within a self-sequence, or does not generate a reaction. In addition, when the orthonormalized sequence is amplified by PCR, the amount corresponding to the initial amount of the nucleic acid molecule having the orthonormalized sequence is not affected by the problems such as the above-mentioned crossnodification and hybridization. This nucleic acid molecule has the property of being amplified quantitatively. The above orthonormalized sequence is described in detail in H. Yshida and A Suyama, "Solution to 3—SAT by breadth first search", DIMACS Vol.54 9-20 (2 000) and Japanese Patent Application 2003-108126. Is described. Orthonormalized sequences can be designed using the methods described in these references. In brief, a plurality of base sequences are randomly generated in advance, an average value of their melting temperatures is obtained, and candidate sequences are obtained based on a threshold value limited by ± t ° C of the average value. And a method for preparing an orthonormalized sequence group from a candidate sequence obtained using whether or not the sequence reacts independently as an index.
[0055] 上記核酸に加えて、 SD配列と同じ配列を有するプライマー 1と、 5'端に標識をした E D配列に相補的な配列を有するプライマーが必要である。  [0055] In addition to the nucleic acid, a primer 1 having the same sequence as the SD sequence and a primer having a sequence complementary to the ED sequence labeled at the 5 'end are required.
[0056] 本方法の第 1工程では、標的核酸の存在を検出又は定量すべき試料と、タグ核酸 およびコモンプローブを混合して、標的核酸にタグ核酸のクエリプローブ部分および コモンプローブをハイブリダィズさせる工程である。 [0056] In the first step of the present method, a sample for detecting or quantifying the presence of the target nucleic acid, and a tag nucleic acid And the common probe are mixed, and the target nucleic acid is hybridized with the query probe portion of the tag nucleic acid and the common probe.
[0057] 本方法の第 2工程では、対応する各標的核酸にハイブリダィズしたタグ核酸のクエリ プローブ部分およびコモンプローブを連結する工程である。ハイブリダィゼーシヨンを 行うと、クエリプローブ部分およびコモンプローブは、対応する標的核酸に結合する ので、リガーゼ等を作用させてライゲーシヨン反応をおこなうことにより、連結部を介し てクエリプローブ部分およびコモンプローブを連結させることが可能となる。 [0057] The second step of the present method is a step of linking a query probe portion of a tag nucleic acid hybridized to each corresponding target nucleic acid and a common probe. When hybridization is performed, the query probe portion and the common probe bind to the corresponding target nucleic acid, so that the ligation reaction is performed by ligase or the like, so that the query probe portion and the common probe are connected via the linking portion. Can be connected.
[0058] 第 3の工程では、連結されたタグ核酸およびコモンプローブを回収する。たとえば、 コモンプローブをピオチンで標識した場合、ストレプトアビジンを表面に結合した磁気 ビーズを使用することにより、コモンプローブのピオチン標識を介して連結オリゴヌク レオチドを抽出することができる。  [0058] In the third step, the linked tag nucleic acid and common probe are recovered. For example, when the common probe is labeled with piotin, the linked oligonucleotide can be extracted via the piotin label of the common probe by using magnetic beads with streptavidin bound to the surface.
[0059] 第 4の工程では、対応する標的核酸から、連結されたタグ核酸およびコモンプロ一 ブを解離させる。この操作によって、最初の溶液に標的核酸が存在していれば、それ に対応する Dl_配列を含んだオリゴヌクレオチドが抽出される。  [0059] In the fourth step, the linked tag nucleic acid and common probe are dissociated from the corresponding target nucleic acid. By this operation, if the target nucleic acid is present in the first solution, an oligonucleotide containing the corresponding Dl_sequence is extracted.
[0060] 続いて、第 5の工程では、 1本鎖の増幅産物が得られる増幅方法を使用して、解離 した連結オリゴヌクレオチドのタグ部分をテンプレートとした増幅反応を行う。  [0060] Subsequently, in a fifth step, an amplification reaction is performed using an amplification method that yields a single-stranded amplification product, with the tag portion of the dissociated linking oligonucleotide as a template.
[0061] 次いで、第 6の工程では、増幅されたタグ部分を検出する。  [0061] Next, in the sixth step, the amplified tag portion is detected.
[0062] 具体的には、本発明の方法によるタイピングは次の手順でおこなった。  Specifically, typing according to the method of the present invention was performed according to the following procedure.
[0063] (1)ゲノム DNAの増幅  [0063] (1) Amplification of genomic DNA
(2)エンコード反応 (コモンプローブ、タグ核酸、および標的核酸を混合してハイプリ ダイス、させること、タグ核酸およびコモンプローブの連結オリゴヌクレオチドを作製す ること、並びに連結オリゴヌクレオチドを回収することを含む)  (2) Encoding reaction (including common probe, tag nucleic acid, and target nucleic acid are mixed and made into a hybrid, producing a linked oligonucleotide of tag nucleic acid and common probe, and recovering the linked oligonucleotide )
(3)増幅反応  (3) Amplification reaction
(4)検出  (4) Detection
(l) SNP領域の増幅  (l) Amplification of SNP region
実施例の検出では最初に、ゲノム DNA 5ngから標的の SNPを含む領域をマルチプ レックス PCRにて増幅した。この操作は次の手順でおこなった。  In the detection of the Examples, first, a region containing the target SNP was amplified from 5 ng of genomic DNA by multiplex PCR. This operation was performed according to the following procedure.
[0064] この PCR反応に用いる溶液にはマスターミックスとして 50回分の反応液を作成した。 液の糸且成は次のとおりであり、プライマー配列は、表 4のとおりである, 4][0064] As a master mix, 50 reaction solutions were prepared for the solution used in this PCR reaction. The yarn composition is as follows, and the primer sequences are as shown in Table 4, 4]
Figure imgf000021_0001
[0065] 反応液には、 Invitrogen社の製品である AccuPrime Super Mix IIを用いた。
Figure imgf000021_0001
[0065] AccuPrime Super Mix II, a product of Invitrogen, was used as the reaction solution.
[0066] AccuPrime SuperMix II (Invitrogen社製) 500 μ 1 [0066] AccuPrime SuperMix II (Invitrogen) 500 μ 1
フォワードプライマー 10種(各 50 μ Μ) 各  10 forward primers (50 μΜ each) each
リバースプライマー 10種(各 50 μ Μ) 各  10 reverse primers (50 μΜ each) each
合計 540 1  Total 540 1
このマスターミックス 10.8 1にゲノム DNA 5 ngをカ卩え、さらに 20 1になるまで超純 水をカ卩えて、反応液が完成する。反応のための熱サイクルは次のとおりである。サー マルサイクラ一には Bio-Rad社の PTC-200を用 、た。  Add 5 ng of genomic DNA to this master mix 10.8 1 and add ultrapure water to 20 1 to complete the reaction solution. The thermal cycle for the reaction is as follows. The thermal cycler was a Bio-Rad PTC-200.
[0067] 1.プレ加熱 94°C 2分 [0067] 1. Preheating 94 ° C 2 minutes
2.変性 94°C 30秒  2. Denaturation 94 ° C 30 seconds
3.伸長 68°C 6分 [2, 3を 40サイクル]  3. Elongation 68 ° C 6 minutes [2, 3 40 cycles]
4.最終加熱 68°C 10分  4.Final heating 68 ° C 10 minutes
5.保存 4°C 温度固定  5.Storage 4 ° C temperature fixed
以上により標的 SNPを含むゲノムの PCR産物が得られた。  As described above, a genomic PCR product containing the target SNP was obtained.
[0068] (2)エンコード反応 [0068] (2) Encoding reaction
次にエンコード反応をおこなった。エンコード反応は、コモンプローブ、タグ核酸、 および標的核酸を混合してハイブリダィズさせること、タグ核酸およびコモンプローブ の連結オリゴヌクレオチドを作製すること、並びに連結オリゴヌクレオチドを回収するこ とを含む。  Next, the encoding reaction was performed. The encoding reaction includes mixing and hybridizing the common probe, the tag nucleic acid, and the target nucleic acid, producing a linked oligonucleotide of the tag nucleic acid and the common probe, and recovering the linked oligonucleotide.
[0069] 反応 50回分のマスターミックスの糸且成は次のとおりである。リガーゼに New England Biolab社の Taqリガーゼを用いたので、付属の 10 Xバッファーを使用した。コモンプロ ーブ、タグ核酸の配列は表 5および表 6のとおりである。  [0069] The reaction of 50 master mixes is as follows. Since New England Biolab Taq ligase was used for the ligase, the attached 10 X buffer was used. Tables 5 and 6 show the sequences of the common probe and tag nucleic acid.
[表 5] 表 5 コモン [Table 5] Table 5 Common
Figure imgf000023_0001
Figure imgf000023_0001
[表 6] [Table 6]
Figure imgf000024_0001
Figure imgf000024_0001
タグ配列は各 23塩基の長さであり、プライ 配列 1(SD)、各アレルを識別するた めの配列(Dl_.)、プライ 配列 2 (ED)の順に 5'端力 配置した。タグ核酸の配列 は、正規直交化配列である。 Each tag sequence has a length of 23 bases. The ply sequence 1 (SD), the sequence for identifying each allele (Dl_.), And the ply sequence 2 (ED) were arranged in the 5 'end. Tag nucleic acid sequence Is an orthonormalized array.
[0071] コモンプローブ (ΙΟΟηΜ) 10種 各 5 1  [0071] Common probe (ΙΟΟηΜ) 10 types 5 1 each
タグ核酸 (ΙΟΟηΜ) 20種 各 5 1  Tag nucleic acid (ΙΟΟηΜ) 20 species 5 1 each
10 X Taq DNAリガーゼ反応バッファー 150 μ 1  10 X Taq DNA ligase reaction buffer 150 μ 1
合計 300 1  Total 300 1
最初のゲノムの PCR産物は 2重鎖なのでそのままではリガーゼ反応に適さない。よつ て、変性をおこなう。 PCR反応液を冷凍保存して一度酵素活性をなくしたあとの溶液 を次の手順で変性した。最初 95°Cで 5分間加熱し、変性させた。変性後、ただちに氷 中に入れ、変性した DNAの鎖が分子内構造をとることで再会合しにくい状態にした。  The first genome PCR product is double-stranded, so it is not suitable for ligase reaction. Therefore, degeneration is performed. The PCR reaction solution was stored frozen and once the enzyme activity was lost, the solution was denatured by the following procedure. First, it was denatured by heating at 95 ° C for 5 minutes. Immediately after denaturation, it was placed in ice, and the denatured DNA strands took an intramolecular structure, making them difficult to reassociate.
[0072] これをもとに次の組成のエンコード反応液を作製した。用いた Taqリガーゼは New En gland Biolab社製である。超純水はミリポア社の Milli- Q Synthesisにより作製した。 Based on this, an encoding reaction solution having the following composition was prepared. The Taq ligase used is from New England Biolab. Ultrapure water was prepared by Milli-Q Synthesis from Millipore.
[0073] ゲノム PCR産物 1 μ 1 [0073] Genomic PCR product 1 μ 1
エンコードマスターミックス 6 μ 1  Encoding master mix 6 μ 1
Taq DNAリガーゼ 0.5 μ 1  Taq DNA ligase 0.5 μ 1
超純水 22.5 μ 1  Ultrapure water 22.5 μ 1
合計 30 1  Total 30 1
このエンコード反応液を次の温度で反応させた。加熱に用いたのはサーマルサイク ラー、 PTC-200である。  The encode reaction solution was reacted at the following temperature. The thermal cycler, PTC-200, was used for heating.
[0074] 1.リガーゼ反応 58°C 15分 [0074] 1. Ligase reaction 58 ° C 15 minutes
2.保存 4°C 温度固定  2.Storage 4 ° C temperature fixed
これによりエンコード反応のうち、リガーゼによる連結反応を終わる。次に、ストレプト アビジン磁気ビーズに、ピオチン化コモンプローブおよび、連結されたタグ核酸とコモ ンプローブをとらえる操作をおこなった。溶液組成は次のとおりである。  As a result, the ligase ligation reaction is terminated in the encoding reaction. Next, a streptavidin magnetic bead was subjected to an operation for capturing a piotinated common probe and a linked tag nucleic acid and a common probe. The solution composition is as follows.
[0075] エンコード産物 30 [0075] Encoding product 30
2 X B&Wバッフー 16.5  2 X B & W Buffow 16.5
ストレプトアビジン磁気ビーズ 1 μ 1  Streptavidin magnetic beads 1 μ 1
ストレプトアビジンで表面をコートした磁気ビーズは、 Dynal社の Μ-280磁気ビーズ で、このビーズの説明書に従い、次の組成の溶液を B&Wバッファ一として用いた。 [0076] Tris-HCl (pH 7.5) 10 mM The magnetic beads coated with streptavidin were Dynal Μ-280 magnetic beads. A solution having the following composition was used as a B & W buffer according to the bead's instructions. [0076] Tris-HCl (pH 7.5) 10 mM
EDTA 1 mM  EDTA 1 mM
NaCl 0.2 M  NaCl 0.2 M
ストレプトアビジン磁気ビーズ (以降磁気ビーズと呼ぶ)は、出荷された防腐剤を含 む原液から 1 μ 1をとり、原液を B&Wで置換して再び 1 μ 1にしたものである。このように して作製した溶液を磁気ビーズが溶液によく分散するようにして室温下で、 15分間振 盪する。  Streptavidin magnetic beads (hereinafter referred to as magnetic beads) are obtained by taking 1 μ 1 from the stock solution containing preservatives and replacing the stock solution with B & W to 1 μ 1 again. The solution thus prepared is shaken at room temperature for 15 minutes so that the magnetic beads are well dispersed in the solution.
[0077] 振盪が終了したら、磁気ビーズの洗浄をおこなう。洗浄は次の手順でおこなった。  [0077] When the shaking is completed, the magnetic beads are washed. Washing was performed by the following procedure.
[0078] 1.磁石にて磁気ビーズを凝集させ、 B&Wバッファーをのぞく。  [0078] 1. Aggregate the magnetic beads with a magnet and remove the B & W buffer.
[0079] 2.室温下で 100 μ ΐの I X B&Wバッファーに再分散し、ピペッティングした後、磁石で 磁気ビーズを凝集させ B&Wバッファーをのぞく洗浄操作を 2回おこなう。  [0079] 2. Re-disperse in 100 μΐ I X B & W buffer at room temperature, pipette, agglomerate magnetic beads with a magnet, and wash twice except B & W buffer.
[0080] 3.室温下で 0.2Νの NaOH水溶液 100 μ 1に再分散し 4分間振盪機で振盪する。 [0080] 3. Re-disperse in 100 µ 1 of 0.2Ν NaOH aqueous solution at room temperature and shake for 4 minutes on a shaker.
[0081] 4.磁石で磁気ビーズを凝集させ NaOH水溶液をのぞく。 [0081] 4. Aggregate the magnetic beads with a magnet and remove the aqueous NaOH solution.
[0082] 5.室温下で 100 μ 1の ΤΕで、 2の要領で 2回洗浄する。 [0082] 5. Wash twice with 100 µ 1 at room temperature in the same way as in step 2.
[0083] この洗浄操作で、非特異的に付着した DNAがのぞかれた磁気ビーズが得られた。こ れをエンコード済み磁気ビーズと呼ぶ。  [0083] This washing operation yielded magnetic beads from which non-specifically attached DNA was removed. This is called an encoded magnetic bead.
[0084] 次に、増幅反応でァシンメトリック PCRをおこない、タグの増幅と標識をおこなった。  [0084] Next, asymmetric PCR was performed in the amplification reaction, and tag amplification and labeling were performed.
これもまた 50回分のマスターミックス溶液を作製し、組成は次のとおりである。用いた プライマーは表 7の通りである。  This also produced a master mix solution for 50 batches with the following composition. Table 7 shows the primers used.
[表 7] 表 7 プライマー  [Table 7] Table 7 Primers
Figure imgf000026_0001
Figure imgf000026_0001
[0085] プライマー 1は SDに相当する配列であり、プライマー 2は、 EDに相当する配列であり 、 Cy5-rEDとは、 EDの相補鎖に相当する配列を有し 5 '端に蛍光色素 Cy5を標識した ものである。今回の実施例では SD : Cy5-rEDの量比は 1 :5になっているが、 1 : 10でもよ ぐァシンメトリック PCRとして蛍光標識した鎖力 i本鎖の状態で得られるならば濃度比 は適当に選んでよい。ポリメラーゼにタカラバイオ社の Ex Taqを用いたため、作製に 用いる 10倍濃度バッファーと dNTP混合物はキットに付属のものを用いた。なお 10倍 濃度バッファーにはマグネシウムイオンを 20mM含むタイプを使用した。プライマーは 超純水で希釈した。ここで、もしサイクルエロンゲーシヨンを行う場合は、片方の検出 用標識のな 、プライマーの量を 0とすればょ 、。 [0085] Primer 1 is a sequence corresponding to SD, primer 2 is a sequence corresponding to ED, and Cy5-rED has a sequence corresponding to the complementary strand of ED and has a fluorescent dye Cy5 at the 5 'end. Is a label. In this example, the ratio of SD: Cy5-rED is 1: 5, but it may be 1:10. The concentration ratio may be appropriately selected if it is obtained in the state of a fluorescently labeled chain force i-strand as guasymmetric PCR. Since Takara Bio's Ex Taq was used as the polymerase, the 10-fold concentration buffer and dNTP mixture used for the preparation were the ones included in the kit. A 10-fold concentration buffer containing 20 mM magnesium ions was used. The primer was diluted with ultrapure water. Here, if cycle elongation is performed, the primer amount should be set to 0 without one detection label.
[0086] プライマー SD (10 /z M) 12.5 1 [0086] Primer SD (10 / z M) 12.5 1
プライマー Cy5— rED (10 μ Μ) 62.5 μ 1  Primer Cy5— rED (10 μΜ) 62.5 μ 1
10 X Ex Taqバッファー 250 1  10 X Ex Taq buffer 250 1
dNTP混合物 200 μ 1  dNTP mixture 200 μ 1
超純水 62.5 μ 1  Ultrapure water 62.5 μ 1
合計 587.5 μ 1  Total 587.5 μ 1
以上のマスターミックスを用いて、次の反応液を作製した。  The following reaction liquid was produced using the above master mix.
[0087] ァシンメトリック PCRマスターミックス 11.75 1 [0087] Asymmetric Metric Master Mix 11.75 1
超純水 37.75 1  Ultrapure water 37.75 1
Ex Taqポリメラーゼ 0.5 μ 1  Ex Taq polymerase 0.5 μ 1
合計 50 1  Total 50 1
溶液をのぞ 、たエンコード済み磁気ビーズにこの反応液を混ぜて、ビーズを分散さ せた。反応の熱サイクルは次のとおりである。サーマルサイクラ一には PTC-200を用 いた。もしサイクルエロンゲーシヨン法を用いるならば、サイクル数は 30〜40サイクル が好ましい。  Except for the solution, the reaction solution was mixed with the encoded magnetic beads to disperse the beads. The thermal cycle of the reaction is as follows. The PTC-200 was used for the thermal cycler. If the cycle elongation method is used, the number of cycles is preferably 30 to 40 cycles.
[0088] 1.変性 94°C 1分 [0088] 1. Denaturation 94 ° C 1 min
2.変性 94°C 30秒  2. Denaturation 94 ° C 30 seconds
3.アニーリング 65°C 1分  3.Annealing 65 ° C 1 minute
4.伸長 72°C 1分 [2〜4を 15サイクル]  4. Elongation 72 ° C 1 min [2-4, 15 cycles]
5.冷却 4°C 温度固定  5. Cooling 4 ° C temperature fixed
以上により増幅反応が完了した。ここで得られたものを標識 PCR産物と呼ぶことに する。 最後に検出反応をおこなった。検出には、キヤビラリアレイ (特開平 11-75812)を用 V、た。キヤビラリアレイは DNAマイクロアレイに似たノヽイブリダィゼーシヨンで核酸を検 出するデバイスであり、溝状の流路に沿ってプローブ力 Sスポットされている。今回使つ たキヤビラリアレイは 1本の溝の中にタグ検出用のプローブが 10点固定してあるもので 、溝の容量は 25 1であった。キヤビラリはシリコンゴムの板に形成されており、プロ一 ブを直線状にスポットしたスライドガラスにシリコンゴムの粘着性を利用して貼り付ける ものである。この溝の両端には溝の反対側の面に貫通する穴があけてあり、溝のある 面をスライドガラス側に貼り付けても、それら貫通穴から試料液を注入 ·抜き取り出来 るようになっている。プローブ固定用ガラススライドにはタカラバイオ社が発売するハツ ブノレスライドを用い、プローブのスポッティングには日立ソフトウェアエンジニアリング 社の SP-BIOを用いた。プローブ DNAの配列は表 8にあるとおりで、増幅反応で得られ るタグの識別用配列に相補的な配列を使用した。 Thus, the amplification reaction was completed. The product obtained here is called the labeled PCR product. Finally, a detection reaction was performed. For detection, a capillary array (JP-A-11-75812) was used. The capillary array is a device that detects nucleic acids using a hybridization similar to a DNA microarray, and is probed with a probe force S along a groove-shaped channel. In this case, the capillary array has 10 tag detection probes fixed in one groove, and the groove capacity is 25 1. The slide is formed on a silicon rubber plate, and is attached to a slide glass in which the probe is spotted in a straight line using the adhesiveness of silicon rubber. At the both ends of this groove, there is a hole that penetrates the opposite surface of the groove, and even if the grooved surface is attached to the slide glass side, the sample solution can be injected and extracted from these through holes. ing. For the probe fixing glass slide, a pineapple slide released by Takara Bio Inc. was used. For spotting the probe, Hitachi Software Engineering SP-BIO was used. The sequence of the probe DNA is as shown in Table 8, and a sequence complementary to the tag identification sequence obtained in the amplification reaction was used.
[表 8] [Table 8]
表 8 検出アレイプロープ Table 8 Detection array probe
Figure imgf000029_0002
Figure imgf000029_0002
[0090] 事前にシリコンゴムはスライドガラスのスポットに合うように貼り付け、 50。Cに温めて ぉ 、た。 [0090] Silicone rubber is pasted in advance to fit the spot on the glass slide. Warm to C ぉ.
[0091] 標識 PCR産物をこのキヤビラリアレイにハイブリダィゼーシヨンさせた。ァシンメトリツ ク PCR溶液中には磁気ビーズが残留して V、るので、これを吸わな V、ように磁気ビーズ を集めて上清をとつた。  [0091] The labeled PCR product was hybridized to this capillary array. Since magnetic beads remain in the asymmetric PCR solution, V was collected, and the magnetic beads were collected and collected as a supernatant.
[0092] 標識 PCR産物 50 μ 1[0092] Labeled PCR product 50 μ 1
Figure imgf000029_0001
Figure imgf000029_0001
10% SDS 2 μ \  10% SDS 2 μ \
超純水 23 μ 1  Ultrapure water 23 μ 1
合計 100 このハイブリダィゼーシヨン溶液を事前に 50°Cに温めておき、同様に温めておいたキ ャビラリアレイに 25 μ 1注入して 50°Cで 30分間ハイブリダィゼーシヨンした。ハイブリダ ィゼーシヨン溶液が蒸発しな 、ように超純水で湿らせたペーパータオルを敷 、たタツ パウェアに入れてハイブリダィゼーシヨンをおこなった。続いて、洗いは次の手順でお こなった。 Total 100 This hybridization solution was warmed to 50 ° C. in advance, and 25 μl was injected into the similarly heated capillary array and hybridized at 50 ° C. for 30 minutes. A paper towel moistened with ultrapure water was laid so that the hybridization solution did not evaporate, and the hybridization was carried out by placing it in a tape cloth. Subsequently, washing was performed according to the following procedure.
[0093] 1.ピペットでハイブリダィゼーシヨン液を抜き取る。  [0093] 1. Pull out the hybridization solution with a pipette.
2.乾燥を防ぐためただちに 1 X SSCと 0.2%SDSを成分とするゥォッシング液を 20 μ 1注 入する。  2. Immediately add 20 μl of washing solution containing 1 X SSC and 0.2% SDS to prevent drying.
3.スライドガラス力 シリコンゴム製の溝を外す。  3. Slide glass force Remove the silicon rubber groove.
4.スライドガラスを 1 X SSCと 0.2%SDSを成分とするゥォッシング液中にて室温下で 5分 振盪する。  4. Shake the glass slide in a washing solution containing 1 X SSC and 0.2% SDS at room temperature for 5 minutes.
5.続いて 0.1 X SSCにて室温下で 10分スライドガラスを振盪洗浄する。  5. Next, shake and wash the glass slide with 0.1 X SSC at room temperature for 10 minutes.
6.エアスプレーまたは、遠心機にてスライドガラスを乾燥させる。  6. Dry the glass slide with air spray or centrifuge.
[0094] 以上の手順でハイブリダィゼーシヨン反応を終了した。つづいてマイクロアレイスキ ャナによって蛍光検出をおこなった。スキャナとしては Axon社の GenePix 4000を使用 し、 Cy5検出波長にて検出した。レーザー出力は 100%で、 PMTゲインは 750であった。 取得した蛍光イメージは装置に付属のソフトウェアで解析し、各アレルの溶液中の存 在量を検出した。この数値結果が表 9にあるとおりで、各 SNPについてすべての 8試料 のタイピング結果をアレイ検出強度の散布図で示したのが図 8〜10である。  [0094] The hybridization reaction was completed by the above procedure. Subsequently, fluorescence was detected with a microarray scanner. Axon GenePix 4000 was used as the scanner, and detection was performed at the Cy5 detection wavelength. The laser power was 100% and the PMT gain was 750. The acquired fluorescence image was analyzed with the software attached to the device, and the abundance of each allele in the solution was detected. The numerical results are as shown in Table 9. Figures 8-10 show the scatter plots of array detection intensities for all eight samples for each SNP.
[表 9] [Table 9]
LL1 ε699 Φτί 6ί-τ Λ dMS ε〇ςヘ LL1 ε699 Φτί 6ί-τ Λ dMS ε〇ς
τ 9〇ε^ ε 。 LZ-6τ 08 S τ ττττ  τ 90 ε ^ ε. LZ-6τ 08 S τ ττττ
9〇ί ε〇ς 9〇ί ε〇ς
OT s〇s  OT s〇s
〇^τ 6 τ τ#ττ ν 〇 ^ τ 6 τ τ # ττ ν
τ LZ 88ττ 606 SI  τ LZ 88ττ 606 SI
80ョ  80
τττ 68 L o  τττ 68 L o
0 ττ 8
Figure imgf000031_0001
# ∞<3N
0 ττ 8
Figure imgf000031_0001
# ∞ <3N
ε τ 8 τ  ε τ 8 τ
S 6  S 6
9ST τ:τョ.  9ST τ: τ
95τ.  95τ.
0 Sョ 6  0 S 6
τ 00ST  τ 00ST
9  9
なお、 719番試料の SNP#7の Tアレルの強度がキヤビラリスポットの形状が悪かった ためにバックグラウンドがシグナルを上回り蛍光検出値がマイナスと計算されたが、わ ずかなマイナスの値 (-2)だったため散布図を描きやすくするため検出値を 0とした。 [0096] 以上の実験により得られたデータを、タイピング基準に従ってタイピングした。タイピ ングは、あるアレルの強度が対立するアレルの強度の、 3倍以上になっている場合を そのアレルのホモ、それ以外をへテロと判定した。この結果、試料 719番の SNP#4以 外は、タイピング結果が全くサンガー法によるものと一致しており、正答率は、 80分の 79、すなわち 98.75%であった。 Although the intensity of the SNP # 7 T allele of sample 719 was poor in the shape of the chiral spot, the background exceeded the signal and the fluorescence detection value was calculated to be negative. -2), the detection value was set to 0 to make it easier to draw a scatter diagram. [0096] Data obtained by the above experiment was typed according to the typing standard. Typing determined that an allele was more than 3 times the strength of the opposing allele and that the allele was homozygous and the others were heterogeneous. As a result, except for SNP # 4 of sample 719, the typing result was completely consistent with that of the Sanger method, and the correct answer rate was 79/80, or 98.75%.
[0097] 実施例 3 :発明者らは本発明のさらなる効果を確かめるため、 96SNP同時タイピング 実験を本発明のマルチプレックス PCR法を使用しておこな!/、、 V、くつの有効なマルチ プレックス増幅が行われているかを検証した。なお、 SNPタイピングの成否は SNPタイ ビング反応のプローブ配列の良し悪しにも影響を受けるため、タイピングの失敗はマ ルチプレックス増幅の失敗を示すとは限らない。つまり、タイピングできた SNPは増幅 とプローブ検出が両方うまく 、つたためであり、タイピングできなかつたものは増幅もし くはプローブ検出のいずれかがうまく行かなかった、もしくは両方がうまく行かなかつ たためであると考えられる。さらに言うと、対照のための SNP配列を得るためにサンガ 一法により配列決定した力 配列決定が難し力つた SNPは PCRの成否の検討対象と しなかった。また、 SNPによりサンプルのポピュレーションに依存して変異の確率がご く低 、アレルがあつたとき、型判定のための散布図を描 、てもクラスタ力^個現れな ヽ ことがある。このような SNPは精度を評価することができな 、ので除外した。  [0097] Example 3: In order to confirm the further effect of the present invention, the inventors conducted a 96SNP co-typing experiment using the multiplex PCR method of the present invention! /, V, and an effective multiplex of shoes. It was verified whether amplification was performed. Since the success or failure of SNP typing is affected by the quality of the probe sequence of the SNP typing reaction, a typing failure does not necessarily indicate a failure of the multiplex amplification. In other words, SNPs that could be typed were because both amplification and probe detection were successful, and those that could not be typed were either amplification or probe detection either failed, or both were not successful. it is conceivable that. Furthermore, SNPs that were sequenced using the Sangha method to obtain SNP sequences for controls were difficult to sequence and were not considered for PCR success. Also, depending on the sample population due to SNP, the probability of mutation is very low, and when alleles are present, even if a scatter diagram for type determination is drawn, cluster power may not appear. Such SNPs were excluded because their accuracy could not be evaluated.
[0098] 96SNPの同時タイピングでは 10SNPのタイピングと同じヒューマンサイエンス振興財 団研究リソースバンク力 入手したヒトゲノム 16サンプルと、 10SNPと同様な反応原理 を使用した。マルチプレックス PCRに用いたプライマーは表 10にあるとおりである。  [0098] In the simultaneous typing of 96SNP, the same human science promotion resource bank power as the 10SNP typing 16 human genome samples obtained and the same reaction principle as 10SNP were used. Table 10 shows the primers used for multiplex PCR.
[表 10A] [Table 10A]
Figure imgf000033_0002
Figure imgf000033_0001
Figure imgf000033_0002
Figure imgf000033_0001
表 10 96 SNP増幅のための追加 P CRプライマー配列 Table 10 Additional PCR primer sequences for 96 SNP amplification
Figure imgf000034_0001
Figure imgf000034_0001
(続く) (Continue)
〕〔 ] [
Figure imgf000035_0001
Figure imgf000035_0001
〕〔 ] [
Figure imgf000036_0001
Figure imgf000036_0001
Figure imgf000037_0001
表 10 96 SNP增幅のための追加 P CRプライマー配列
Figure imgf000037_0001
Table 10 Additional PCR primer sequences for 96 SNP augmentation
Figure imgf000037_0002
Figure imgf000037_0002
(続く) (Continue)
s星 s star
表 10 96 SNP増幅のための追加 P CRプライマー配列 Table 10 Additional PCR primer sequences for 96 SNP amplification
Figure imgf000038_0001
Figure imgf000038_0001
(続く) (Continue)
Figure imgf000039_0002
Figure imgf000039_0001
Figure imgf000039_0002
Figure imgf000039_0001
§ΰ〔 §Ϋ́ [
表 10 96 SNP增幅のための追加 P CRプライマー配列 Table 10 Additional PCR primer sequences for 96 SNP augmentation
Figure imgf000040_0001
Figure imgf000040_0001
(続く) (Continue)
96 SNP増幅のための追加 PC Rプライマー配列 96 Additional PC R primer sequences for SNP amplification
Figure imgf000041_0001
Figure imgf000041_0001
反応には、 Clontech社の Titanium Taqを使用した。反応液の組成は、 Titanium Taq Buffer (タカラバイオクロンテック製) 2 μ 1 Clontech Titanium Taq was used for the reaction. The composition of the reaction solution is Titanium Taq Buffer (Takara BioClontech) 2 μ 1
Titanium Ί aq 0.4 μ 1  Titanium Ί aq 0.4 μ 1
プライマーミックス(プライマー各 1 μ Μ) 0.74 μ 1  Primer mix (each primer 1 μ プ ラ イ マ ー) 0.74 μ 1
MgCl (25mM) 2.4 ^ 1  MgCl (25mM) 2.4 ^ 1
2  2
dNTP (lOmM) 1.6 ^ 1  dNTP (lOmM) 1.6 ^ 1
ゲノム DNA (5ng/ 1) 2 μ \  Genomic DNA (5ng / 1) 2 μ \
超純水 13.26 1  Ultrapure water 13.26 1
合計 20 1  Total 20 1
とした。  It was.
[0099] 熱サイクルは、次のとおりでサーマルサイクラ一には Bio-Rad社の PTC-200を用い た。  [0099] The thermal cycle was as follows, and PTC-200 manufactured by Bio-Rad was used for the thermal cycler.
[0100] 1.プレ加熱 94°C 3分  [0100] 1. Preheating 94 ° C 3 minutes
2.変性 94°C 15秒  2. Denaturation 94 ° C 15 seconds
3.アニーリング伸長 73°C 1分  3.Annealing elongation 73 ° C 1 min
(3.を 1サイクルごとに温度を 0.1°C下げ、伸長時間をサイクルごとに 5秒延長) [2、 3を 50サイクル]  (3. Reduce the temperature by 0.1 ° C per cycle and extend the extension time by 5 seconds per cycle) [2 and 3 are 50 cycles]
4.保存 10°C 温度固定  4.Storage 10 ° C temperature fixed
とした。  It was.
[0101] エンコード反応の条件も 10SNPのときと若干異なる。クエリーにはアレルに応じて ED と ED '配列を使い分け、検出段階で異なる色素で標識されるようにし、マイクロアレイ の同じスポット上で各アレルが異なる色の蛍光強度で検出されるようにした。コモンプ ローブ配列は表 11、クエリープローブ配列は表 12に示す。  [0101] The encoding reaction conditions are slightly different from those of 10SNP. The query uses ED and ED 'sequences depending on the alleles, so that they are labeled with different dyes at the detection stage so that each allele is detected with a different color fluorescence intensity on the same spot in the microarray. Table 11 shows the common probe sequences and Table 12 shows the query probe sequences.
[表 11A]
Figure imgf000043_0001
[Table 11A]
Figure imgf000043_0001
[表 11B]
Figure imgf000044_0001
[Table 11B]
Figure imgf000044_0001
[表 11C] 表 1 1 96 SNP用コモンプローブ 5 '端はリン酸化、 3 端はビォチン修飾
Figure imgf000045_0001
[Table 11C] Table 1 1 96 SNP common probe 5 'end phosphorylated, 3 end biotin modified
Figure imgf000045_0001
[表 12A] 表 12 96 SNP用クエリープローブ [Table 12A] Table 12 Query probe for 96 SNP
Figure imgf000046_0001
Figure imgf000046_0001
(続く) (Continue)
表 12 96 SNP用クエリープローブ Table 12 Query probe for 96 SNP
Figure imgf000047_0002
Figure imgf000047_0002
Figure imgf000047_0001
<)
Figure imgf000047_0001
<)
表 1 2 96 SNP用クエリープローブ Table 1 2 96 SNP Query Probe
Figure imgf000048_0001
Figure imgf000048_0001
(練く) (Knead)
表 12 96 SNP用クエリープローブ Table 12 Query probe for 96 SNP
Figure imgf000049_0001
Figure imgf000049_0001
(続く) (Continue)
表 1 2 96 SNP用クエリ一プローブ Table 1 2 Query for 96 SNP
Figure imgf000050_0001
Figure imgf000050_0001
(続く) (Continue)
表 1 2 96 SNP用クエリープローブ Table 1 2 96 SNP Query Probe
Figure imgf000051_0001
Figure imgf000051_0001
(続く (Continue
^s〔12 ^ s [12
表 12 96 SNP用クエリ一プロー Table 12 Query for 96 SNP
Figure imgf000052_0001
Figure imgf000052_0001
(続く) (Continue)
表 12 96 SNP用クエリープローブ Table 12 Query probe for 96 SNP
Figure imgf000053_0001
Figure imgf000053_0001
〔続く) 〔Continue)
Figure imgf000054_0002
Figure imgf000054_0002
Figure imgf000054_0001
Figure imgf000054_0001
クエリーコモンミックス液として、 As a query common mix solution,
クエリープローブ 各配列 ΙΟΟηΜ  Query probe sequence ΙΟΟηΜ
コモンプローブ 各配列 ΙΟΟηΜ  Common probe each array ΙΟΟηΜ
Tris-HCl (pH8.0) lOmM  Tris-HCl (pH8.0) lOmM
EDTA 100  EDTA 100
なる組成の液を調製した。  A liquid having the following composition was prepared.
[0102] リガーゼには New England Biolabの Taq DNAリガーゼを用い、反応液の糸且成は、 [0102] New England Biolab Taq DNA ligase was used as the ligase,
Taqリガーゼバッファ(10倍濃度) 3 μ 1  Taq ligase buffer (10x concentration) 3 μ 1
Taq DNAリガーゼ (40U/ μ 1) 0.5 μ 1  Taq DNA ligase (40U / μ 1) 0.5 μ 1
クエリーコモンミックス 0.1 ^ 1  Query common mix 0.1 ^ 1
ゲノム PCR産物 4 μ 1  Genomic PCR product 4 μ 1
超純水 22.4 1  Ultrapure water 22.4 1
合計 30 1  Total 30 1
とした。  It was.
[0103] 反応条件は、 [0103] The reaction conditions were
1.変性 95°C 1分  1. Denaturation 95 ° C 1 min
2.リガーゼ反応 58°C 60分  2.Ligase reaction 58 ° C 60 minutes
3.保存 10°C 温度固定  3.Storage 10 ° C temperature fixed
とした。  It was.
[0104] 増幅反応は、次のように条件を変更した。プライマーとして SDを使わず、表 13にある ような Cy3-rED、 Cy5-rED'と、 SDに代えて各 SNPに割り当てたタグ配列をそのままプ ライマーとして増幅に使用した。  [0104] The conditions for the amplification reaction were changed as follows. Instead of using SD as a primer, Cy3-rED and Cy5-rED 'as shown in Table 13 and the tag sequence assigned to each SNP in place of SD were directly used as primers for amplification.
[表 13A]
Figure imgf000056_0001
[Table 13A]
Figure imgf000056_0001
表 1 3 タグ増幅プライマー Table 1 3 Tag amplification primers
Figure imgf000057_0001
Figure imgf000057_0001
(続く) 表 1 3 タグ増幅プライマー (Continue) Table 1 3 Tag amplification primers
名称 修飾 配列 (5 ' ->3 ' ) Name Modification Array (5 '-> 3')
SNP#67 CGATCACGGATTAATGTCACCCCSNP # 67 CGATCACGGATTAATGTCACCCC
SNP#68 AAGAGATTTAACTTGAGCTCGCCSNP # 68 AAGAGATTTAACTTGAGCTCGCC
SNP#69 TTTGTTGTTCGATATCAGGCGTGSNP # 69 TTTGTTGTTCGATATCAGGCGTG
SNP#70 GCCCGGGAATAGATTATAACGCASNP # 70 GCCCGGGAATAGATTATAACGCA
SNP#71 GCATTTTTAGTAATCCGAGCGCCSNP # 71 GCATTTTTAGTAATCCGAGCGCC
SNP#72 CAT GGATAAGT TTT CAAGC TGCGSNP # 72 CAT GGATAAGT TTT CAAGC TGCG
SNP#73 GAGACAGGTAAACCCTCAGAGCASNP # 73 GAGACAGGTAAACCCTCAGAGCA
SNP#74 TAGCACCCGTTAAAACGGAAATGSNP # 74 TAGCACCCGTTAAAACGGAAATG
SNP#75 TATGTTTAGTTGTTGAACCGGCGSNP # 75 TATGTTTAGTTGTTGAACCGGCG
SNP#76 CGATCAGCTCTATTTCCCTCCCASNP # 76 CGATCAGCTCTATTTCCCTCCCA
SNP#77 AG T CAG T TAAT CAGACGT GAGCASNP # 77 AG T CAG T TAAT CAGACGT GAGCA
SNP#78 TGGCAATACAATAACGTATCGCGSNP # 78 TGGCAATACAATAACGTATCGCG
SNP#79 CGCAGT T TGCAAGAACGAACAAASNP # 79 CGCAGT T TGCAAGAACGAACAAA
SNP#80 CGCGATAATTGATACCTACGGGCSNP # 80 CGCGATAATTGATACCTACGGGC
SNP#81 GGGGTGTGAGAGCTTTTTAGACGSNP # 81 GGGGTGTGAGAGCTTTTTAGACG
SNP#82 GGGATCCGTAACAAGTGTGTTAGSNP # 82 GGGATCCGTAACAAGTGTGTTAG
SNP#83 ACCACTATGATTGAGGAAACGCGSNP # 83 ACCACTATGATTGAGGAAACGCG
SNP#84 CGTCTTTAGTATCAACCCTCCGCSNP # 84 CGTCTTTAGTATCAACCCTCCGC
SNP#85 GCATACGAACTTCTATATCGGCGSNP # 85 GCATACGAACTTCTATATCGGCG
SNP#86 CCGTGTG TAT GAGTAT GACAGCASNP # 86 CCGTGTG TAT GAGTAT GACAGCA
SNP#87 TGCTGTCTTCGTGTTTTACCTAGSNP # 87 TGCTGTCTTCGTGTTTTACCTAG
SNP#88 CGATCATGTAAAGCTAACTCGCGSNP # 88 CGATCATGTAAAGCTAACTCGCG
SNP#89 TGCCGTCATTTAAACGTAAGGGTSNP # 89 TGCCGTCATTTAAACGTAAGGGT
SNP#90 TGGCAAT TACAGT TGT TAACGCASNP # 90 TGGCAAT TACAGT TGT TAACGCA
SNP#91 GAGTCGAAGACCTCCTCCTACTCSNP # 91 GAGTCGAAGACCTCCTCCTACTC
SNP#92 ATGCCAATATGTACTCGTGACTCSNP # 92 ATGCCAATATGTACTCGTGACTC
SNP#93 GCATATAGTGACGGTAAGGCGAASNP # 93 GCATATAGTGACGGTAAGGCGAA
SNP#94 GCCT CAC T TGTAATAAGCGGGACSNP # 94 GCCT CAC T TGTAATAAGCGGGAC
SNP#95 GTCCCAAAAGCTTCTTACGGACGSNP # 95 GTCCCAAAAGCTTCTTACGGACG
SNP#96 CTAGGTACAACACCAACTGTCTCSNP # 96 CTAGGTACAACACCAACTGTCTC
SNP#97 TGCCGGTTATACCTTTAAGGACGSNP # 97 TGCCGGTTATACCTTTAAGGACG
SNP#98 GGCTGGTTAAA.TGTAAATCCGCG プライマーミックス液として SNP # 98 GGCTGGTTAAA.TGTAAATCCGCG As primer mix solution
Cy3-rED 各配列 25 μ Μ  Cy3-rED each sequence 25 μΜ
Cy5-rED ' 各配列 25 μ Μ  Cy5-rED 'each sequence 25 μΜ
タグ配列 各配列 25ηΜ  Tag array Each array 25ηΜ
Tris-HCl (pH8.0) 10mM  Tris-HCl (pH8.0) 10mM
EDTA 100  EDTA 100
なる組成の液を調製した。  A liquid having the following composition was prepared.
[0105] 反応液は、  [0105] The reaction solution is
プライマーミックス  Primer mix
Ex Taqノ ッファ (10倍濃度) 5 1  Ex Taq Knaffa (10x concentration) 5 1
Ex Taqポリメラーゼ 0.5 μ 1  Ex Taq polymerase 0.5 μ 1
dNTP 4 μ 1  dNTP 4 μ 1
超純水 39.5 μ 1  Ultrapure water 39.5 μ 1
合計 50 1  Total 50 1
とし、磁気ビーズを混ぜて反応させた。  Then, magnetic beads were mixed and reacted.
[0106] 熱サイクルは、  [0106] Thermal cycle is
1.変性 94°C  1.Modification 94 ° C
2.変性 94°C  2.Modification 94 ° C
3.アニーリング 55°C  3.Annealing 55 ° C
4.伸長 72°C 4を 40サイクル] 4.保存 10°C  4. Elongation 72 ° C 4 cycles 40] 4. Storage 10 ° C
とした c C
[0107] 10SNPのときと異なり表 14にある 96個のプローブをマイクロアレイにスポッティングし て検出に使用した。  [0107] Unlike 10SNP, 96 probes in Table 14 were spotted on a microarray and used for detection.
[表 14A]
Figure imgf000060_0001
[Table 14A]
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000061_0002
Figure imgf000061_0001
Figure imgf000061_0002
Figure imgf000062_0001
Figure imgf000062_0001
察難 y;ヾ〜. Detective y;
SSI ハイブリダィゼーシヨン液は最終濃度力 So.5 X SSC、 0.1%SDS、 15%フオルムアミド、 lm M EDTAとなるようにする。増幅反応で得られた液を 10 1と合わせて 20 1調製し、キ ャビラリアレイにて、 37°C、 60分間ハイブリダィズした。ハイブリダィゼーシヨンが終わ つたらスライドガラスからシリコンゴム製の溝をはずし、 0.1SSC、 0.1%SDSのゥォッシン グ液にて 5分間振盪洗浄した。このあと超純水で表面をさっと洗い、スライドガラスを 乾燥させて Molecular devices社の GenePix 4000にて検出した。 SSI The hybridization solution should have a final concentration of So.5 X SSC, 0.1% SDS, 15% formamide, and lm M EDTA. The solution obtained in the amplification reaction was combined with 101 to prepare 201, and hybridized with a hybrid array at 37 ° C for 60 minutes. When the hybridization was completed, the silicon rubber groove was removed from the slide glass and washed with 0.1 SSC, 0.1% SDS washing solution for 5 minutes with shaking. Thereafter, the surface was quickly washed with ultrapure water, and the slide glass was dried and detected with GenePix 4000 of Molecular Devices.
[0108] この実験結果の解析では検出の分離のよさを評価するため QV (Quality Value)なる 評価値を用いた。この QV値とは、ある SNPの測定結果で図 11のような散布図が得ら れたときに、クラスタを構成するあるサンプルの測定結果の点から同じクラスタに属す るサンプルの測定点までの極座標系での角度差 D1の平均を分母とし、異なるクラス タに属するサンプル測定点の中でもっとも近い点までの角度差 D2を分子として割り 算をして得られる値である(式 1)。これがサンプル測定点の QV値であり、散布図全体 を構成する測定点すべてについてこの QV値を計算しそれらの平均値を、散布図の QV値とした (式 2)。 QV値はその測定点の属するクラスタが密であればあるほど、近 接する他のクラスタが遠ければ遠 、ほど大きな値をとるので、 QV値が大き 、散布図 ほどより分離がよぐよりよい SNP検出が行われていると考えられる。この散布図の QV 値は 44.74であり縦軸横軸はマイクロアレイの蛍光強度値である。図 11の散布図は SN P65番の検出結果であり QV値は 44.74であった。  In the analysis of the experimental results, an evaluation value called QV (Quality Value) was used in order to evaluate the separation of detection. This QV value means that when a scatter diagram as shown in Fig. 11 is obtained for a measurement result of a certain SNP, the measurement result of a sample that constitutes the cluster to the measurement point of a sample that belongs to the same cluster. This is a value obtained by dividing the average of the angle difference D1 in the polar coordinate system as the denominator and dividing the angle difference D2 up to the nearest sample measurement point belonging to a different cluster as the numerator (Equation 1). This is the QV value at the sample measurement point. This QV value was calculated for all the measurement points that make up the entire scatter plot, and the average value was taken as the QV value of the scatter plot (Equation 2). The QV value is larger as the cluster to which the measurement point belongs is denser, the farther away the other cluster is closer, the larger the value, so the larger the QV value is, the better the scatter plot is, the better the SNP. It is thought that detection has been performed. The scatter plot has a QV value of 44.74, and the vertical axis represents the fluorescence intensity value of the microarray. The scatter diagram in Fig. 11 shows the detection result for SN P65, and the QV value was 44.74.
[0109] 表 15に 96SNPのタイピング結果を示す。  [0109] Table 15 shows the typing results of 96SNP.
[表 15] [Table 15]
Figure imgf000064_0001
マルチプレックス PCRが成功した SNP座を決めるのに、 QV値が 3以上の散布図が得 られていること、正確な SNPタイピングができていることを基準にした。 QV値の計算に はデル社の OptiPlexl50を用い、自社で製作したソフトウェアを用い、データの整理に はマイクロソフト社のアクセス 2002を用いた。 96個の SNPのうちサンガー法で 2種類以 下のアレルしかな 、、もしくはサンガー法による結果が出てこなかった SNPは 30個あり 考察の範囲外とした。また、 QV値力 ¾以上のクラスタ分離ができている SNPは 53個あ つた。サンガー法の結果を参照し、 53SNPの 848測定点のうち判定を誤ったと考えら れる測定点は 19あり、正答率は 97.8%であった。すなわち、 53個の SNPで正確なタイピ ングができたと考えられた。この判定できた SNPで本発明のマルチプレックス PCR法 は標的配列を正確に増幅しており、 96SNPから 30SNPを除いた 66SNPの増幅におい て、 66組のプライマーのうち少なくとも 53組のプライマーで PCRが成功していたといえ た。なお散布図の分離が悪ぐ正答率が劣った 13SNPの中にもマルチプレックス PCR が成功していると推定できるものもあり、増幅の成功率はさらに高いと考えられた。
Figure imgf000064_0001
To determine the SNP locus for which multiplex PCR was successful, a scatter plot with a QV value of 3 or higher was obtained. And that SNP typing is accurate. The QV value was calculated using Dell OptiPlexl50, in-house software, and Microsoft Access 2002 was used to organize the data. Of the 96 SNPs, there were no more than two types of alleles by the Sanger method, or 30 SNPs that did not produce results by the Sanger method and were excluded from the scope of consideration. In addition, there were 53 SNPs that were able to separate clusters with a QV value of ¾ or more. Referring to the results of the Sanger method, 19 out of 848 measurement points of 53 SNP were considered to be wrong, and the correct answer rate was 97.8%. In other words, it was considered that 53 SNPs were used for accurate typing. The multiplex PCR method of the present invention accurately amplifies the target sequence with the SNP that was determined, and in the amplification of 66 SNP excluding 30 SNP from 96 SNP, PCR was performed with at least 53 of the 66 primers. It was a success. Some of the 13SNPs with poor scatter plot separation and inaccurate correct answers could be presumed to be successful in multiplex PCR, and the amplification success rate was considered to be even higher.

Claims

請求の範囲 The scope of the claims
[1] マルチプレックス PCR法であって、  [1] Multiplex PCR method,
1千塩基以下の長さの増幅産物を生成するプライマーの位置で、  At the position of the primer that produces an amplification product with a length of 1000 bases or less,
長さが 30塩基以上のプライマーを使用することと、  Using primers with a length of 30 bases or more,
各プライマーのハイブリダィゼーシヨン効率が 90%以上である温度のうち、最も高い 温度でアニーリングさせることと、  Annealing at the highest temperature among the temperatures at which the hybridization efficiency of each primer is 90% or more,
熱サイクルに少なくとも 1回以上の、 3分以上 10分間までのアニーリング ·伸長反応を 含む、もしくはアニーリング ·伸長反応の時間がサイクルにしたがって最後の熱サイク ルで 3分以上 10分間までに延長されることと、  Annealing at least once in a thermal cycle, 3 min. To 10 min.Including extension reaction, or annealing.Extension reaction time is extended to 3 min. To 10 min in the last thermal cycle according to the cycle. And
を特徴とするマルチプレックス PCR法。  A multiplex PCR method characterized by
[2] 請求項 1に記載の方法であって、 [2] The method of claim 1, wherein
前記プライマーおよび標的 DNA鎖を混合して熱変性させることと、  Mixing the primer and target DNA strand and heat denaturing;
前記プライマーをテンプレートにアニーリングさせることと、  Annealing the primer to a template;
熱サイクルの中で少なくとも 1回以上の、 3分以上 10分間までのアニーリング ·伸長 反応を行う、もしくはアニーリング ·伸長反応の時間がサイクルにしたがって最後の熱 サイクルで 3分以上 10分間までに延長するよう行うことによって、前記相補的な DNAを 合成させることと、  At least once in the thermal cycle, 3 minutes to 10 minutes of annealing-extension reaction, or annealing-extension reaction time is extended from 3 minutes to 10 minutes in the last thermal cycle according to the cycle To synthesize the complementary DNA,
の工程を含むことを特徴とする PCR増幅方法。  A PCR amplification method comprising the steps of:
[3] 請求項 1に記載の方法であって、 [3] The method of claim 1, wherein
前記プライマーは、長さが 30〜60塩基である方法。  The primer is 30 to 60 bases in length.
[4] 請求項 1に記載の方法であって、 [4] The method of claim 1, wherein
前記プライマーは、長さが 32〜50塩基である方法。  The primer is 32 to 50 bases in length.
[5] 請求項 1に記載の方法であって、 [5] The method of claim 1, comprising:
前記プライマーは、長さが 35〜45塩基である方法。  The primer has a length of 35 to 45 bases.
[6] 請求項 1に記載の方法であって、 [6] The method of claim 1, wherein
前記アニーリング ·伸長反応は、熱サイクルの中で少なくとも 1回以上の 4分以上の アニーリング '伸長サイクルを含むよう行われる方法。  The annealing / extension reaction is carried out to include at least one or more annealing for 4 minutes or more during the thermal cycle.
[7] 請求項 1に記載の方法であって、 前記アニーリング ·伸長反応は、熱サイクルの中で少なくとも 1回以上の 6分以上 10 分間以下のアニーリング '伸長サイクルを含むよう行われる方法。 [7] The method of claim 1, wherein The annealing / extension reaction is carried out so as to include at least one annealing cycle of 6 minutes to 10 minutes in the thermal cycle.
請求項 1に記載の方法であって、  The method of claim 1, comprising:
前記アニーリング温度は、 Visual OMP(DNA Software社)によって予測される評価 値 (Q- Score)に基づ!/、て、 850以上の評価値 (Q- Score)のハイブリダィゼーシヨン効率 と予測されるプライマーの Tm以下である方法。  The annealing temperature is based on the evaluation value (Q-Score) predicted by Visual OMP (DNA Software)! /, And the hybridization efficiency and prediction of an evaluation value (Q-Score) of 850 or more That is below the Tm of the primer to be prepared.
PCT/JP2006/322898 2006-11-16 2006-11-16 Multiplex pcr method WO2008059578A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/322898 WO2008059578A1 (en) 2006-11-16 2006-11-16 Multiplex pcr method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/322898 WO2008059578A1 (en) 2006-11-16 2006-11-16 Multiplex pcr method

Publications (1)

Publication Number Publication Date
WO2008059578A1 true WO2008059578A1 (en) 2008-05-22

Family

ID=39401392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322898 WO2008059578A1 (en) 2006-11-16 2006-11-16 Multiplex pcr method

Country Status (1)

Country Link
WO (1) WO2008059578A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223940A (en) * 2010-04-21 2011-11-10 Asahi Breweries Ltd Pcr test method for eliminating false-negative, and primer used in the same
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10017812B2 (en) 2010-05-18 2018-07-10 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10061890B2 (en) 2009-09-30 2018-08-28 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US10113196B2 (en) 2010-05-18 2018-10-30 Natera, Inc. Prenatal paternity testing using maternal blood, free floating fetal DNA and SNP genotyping
US10179937B2 (en) 2014-04-21 2019-01-15 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10227652B2 (en) 2005-07-29 2019-03-12 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US10351906B2 (en) 2014-04-21 2019-07-16 Natera, Inc. Methods for simultaneous amplification of target loci
US10526658B2 (en) 2010-05-18 2020-01-07 Natera, Inc. Methods for simultaneous amplification of target loci
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
US10894976B2 (en) 2017-02-21 2021-01-19 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11306357B2 (en) 2010-05-18 2022-04-19 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11322224B2 (en) * 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101844A (en) * 2004-10-08 2006-04-20 Univ Of Tokyo Method for detecting or determining target nucleic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101844A (en) * 2004-10-08 2006-04-20 Univ Of Tokyo Method for detecting or determining target nucleic acid

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NISHIDA N. AND SUYAMA A.: "DNA Computing ni yoru Idenshi Kaiseki (Gene analysis by DNA computing)", GENE & MEDICINE, vol. 5, 2001, pages 685 - 688, XP003012779 *
NISHIDA N. ET AL.: "DigiTag assay for multiplex single nucleotide polymorphism typing with high success rate", ANAL. BIOCHEM., vol. 346, August 2005 (2005-08-01), pages 281 - 288, XP005126674 *
NISHIDA N. ET AL.: "I Kenshutsu Gijutsu no Kaihatsu 1. DNA Computing no Genri ni Motozuku Shinki SNP Typing-ho no Kaihatsu (A novel SNP typing method based on DNA computing)", DAN POLYMORPHISM, vol. 13, 30 May 2005 (2005-05-30), pages 14 - 16, XP003012778 *
TANAKA T. AND SAITO Y.: "Rinsho Biseibutsugaku - Chumoku sareru Saikin no Tenkai - I Atarashii Shugi no Genri to Oyo Multiplex PCR", RINSHO TO BISEIBUTSU, vol. 31, 2004, pages 111 - 115, XP003022573 *

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10266893B2 (en) 2005-07-29 2019-04-23 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10392664B2 (en) 2005-07-29 2019-08-27 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10260096B2 (en) 2005-07-29 2019-04-16 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10227652B2 (en) 2005-07-29 2019-03-12 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10240202B2 (en) 2005-11-26 2019-03-26 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US11306359B2 (en) 2005-11-26 2022-04-19 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10597724B2 (en) 2005-11-26 2020-03-24 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10711309B2 (en) 2005-11-26 2020-07-14 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10061889B2 (en) 2009-09-30 2018-08-28 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10216896B2 (en) 2009-09-30 2019-02-26 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10061890B2 (en) 2009-09-30 2018-08-28 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10522242B2 (en) 2009-09-30 2019-12-31 Natera, Inc. Methods for non-invasive prenatal ploidy calling
JP2011223940A (en) * 2010-04-21 2011-11-10 Asahi Breweries Ltd Pcr test method for eliminating false-negative, and primer used in the same
US10774380B2 (en) 2010-05-18 2020-09-15 Natera, Inc. Methods for multiplex PCR amplification of target loci in a nucleic acid sample
US10017812B2 (en) 2010-05-18 2018-07-10 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US10526658B2 (en) 2010-05-18 2020-01-07 Natera, Inc. Methods for simultaneous amplification of target loci
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US10538814B2 (en) 2010-05-18 2020-01-21 Natera, Inc. Methods for simultaneous amplification of target loci
US10557172B2 (en) 2010-05-18 2020-02-11 Natera, Inc. Methods for simultaneous amplification of target loci
US11746376B2 (en) 2010-05-18 2023-09-05 Natera, Inc. Methods for amplification of cell-free DNA using ligated adaptors and universal and inner target-specific primers for multiplexed nested PCR
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US10590482B2 (en) 2010-05-18 2020-03-17 Natera, Inc. Amplification of cell-free DNA using nested PCR
US10597723B2 (en) 2010-05-18 2020-03-24 Natera, Inc. Methods for simultaneous amplification of target loci
US11525162B2 (en) 2010-05-18 2022-12-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11519035B2 (en) 2010-05-18 2022-12-06 Natera, Inc. Methods for simultaneous amplification of target loci
US11482300B2 (en) 2010-05-18 2022-10-25 Natera, Inc. Methods for preparing a DNA fraction from a biological sample for analyzing genotypes of cell-free DNA
US10655180B2 (en) 2010-05-18 2020-05-19 Natera, Inc. Methods for simultaneous amplification of target loci
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US10731220B2 (en) 2010-05-18 2020-08-04 Natera, Inc. Methods for simultaneous amplification of target loci
US10174369B2 (en) 2010-05-18 2019-01-08 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10793912B2 (en) 2010-05-18 2020-10-06 Natera, Inc. Methods for simultaneous amplification of target loci
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11111545B2 (en) 2010-05-18 2021-09-07 Natera, Inc. Methods for simultaneous amplification of target loci
US10113196B2 (en) 2010-05-18 2018-10-30 Natera, Inc. Prenatal paternity testing using maternal blood, free floating fetal DNA and SNP genotyping
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11286530B2 (en) 2010-05-18 2022-03-29 Natera, Inc. Methods for simultaneous amplification of target loci
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11306357B2 (en) 2010-05-18 2022-04-19 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11312996B2 (en) 2010-05-18 2022-04-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11322224B2 (en) * 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
US10597708B2 (en) 2014-04-21 2020-03-24 Natera, Inc. Methods for simultaneous amplifications of target loci
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
US11319595B2 (en) 2014-04-21 2022-05-03 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11530454B2 (en) 2014-04-21 2022-12-20 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10597709B2 (en) 2014-04-21 2020-03-24 Natera, Inc. Methods for simultaneous amplification of target loci
US11371100B2 (en) 2014-04-21 2022-06-28 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11390916B2 (en) 2014-04-21 2022-07-19 Natera, Inc. Methods for simultaneous amplification of target loci
US10179937B2 (en) 2014-04-21 2019-01-15 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11408037B2 (en) 2014-04-21 2022-08-09 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11414709B2 (en) 2014-04-21 2022-08-16 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10351906B2 (en) 2014-04-21 2019-07-16 Natera, Inc. Methods for simultaneous amplification of target loci
US11319596B2 (en) 2014-04-21 2022-05-03 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11486008B2 (en) 2014-04-21 2022-11-01 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
US11946101B2 (en) 2015-05-11 2024-04-02 Natera, Inc. Methods and compositions for determining ploidy
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US11519028B2 (en) 2016-12-07 2022-12-06 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US11530442B2 (en) 2016-12-07 2022-12-20 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10577650B2 (en) 2016-12-07 2020-03-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10533219B2 (en) 2016-12-07 2020-01-14 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10894976B2 (en) 2017-02-21 2021-01-19 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA

Similar Documents

Publication Publication Date Title
WO2008059578A1 (en) Multiplex pcr method
JP4420564B2 (en) Fluorescence polarization in nucleic acid analytes
US5834189A (en) Method for evaluation of polymorphic genetic sequences, and the use thereof in identification of HLA types
US8236498B2 (en) Method of detecting nucleotide sequence with an intramolecular probe
CN105331733B (en) Polymorphic detection probe, amplification primers and its application of EGFR gene
KR20100063050A (en) Analysis of nucleic acids of varying lengths by digital pcr
CN1882703A (en) Multiplexed nucleic acid analysis by fragmentation of double-stranded DNA
JP5663491B2 (en) Target nucleic acid detection method
WO2008118839A1 (en) Exon grouping analysis
KR101953176B1 (en) Methods for pcr and hla typing using raw blood
JP2003534812A (en) Detection of nucleotide sequence variation by restriction primer extension
KR20130077207A (en) Snp markers and methods for highly fetile pig
US20090061440A1 (en) Method for amplifying plural nucleic acid sequences for discrimination
CN106319079B (en) Method for detecting 22q11.2 copy number loss
WO2013105774A1 (en) Method for detecting c-met gene using cuttable probe
JP6756835B2 (en) Method for detecting gene mutation of viral hemorrhagic septicemia virus
JP2008125471A (en) Multiplex method of nucleic acid amplification
US20210340611A1 (en) Digital polymerase chain reaction method for detecting nucleic acids in samples
RU2539733C2 (en) Set of differentiating nucleotides and biochip applicable in method for genetic typing of human y-chromosomes haplogroup markers: m130 (c), m145 (de)
JP2006320217A (en) Multiplex pcr method
TWI570242B (en) Method of double allele specific pcr for snp microarray
JP2006101844A (en) Method for detecting or determining target nucleic acid
RU2695783C1 (en) Method for determining polymorphic markers in slco1b1, apoe and abcb1 genes for determining individual sensitivity to statins
JP2004187545A (en) Method for examining nucleic acid sequence and method for preparing sample
Zhussupova PCR–diagnostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06832778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP