US11365282B2 - SMA resin formulation - Google Patents

SMA resin formulation Download PDF

Info

Publication number
US11365282B2
US11365282B2 US16/320,282 US201716320282A US11365282B2 US 11365282 B2 US11365282 B2 US 11365282B2 US 201716320282 A US201716320282 A US 201716320282A US 11365282 B2 US11365282 B2 US 11365282B2
Authority
US
United States
Prior art keywords
resin
talc
silica
bisphenol
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/320,282
Other languages
English (en)
Other versions
US20190270873A1 (en
Inventor
Edward Kelley
Teck Kai Wong
Rebekah F. Theisen
Christopher G. Clark, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isola USA Corp
Original Assignee
Isola USA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isola USA Corp filed Critical Isola USA Corp
Priority to US16/320,282 priority Critical patent/US11365282B2/en
Assigned to ISOLA USA CORP. reassignment ISOLA USA CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLARK, CHRISTOPHER G., JR, KELLEY, EDWARD, THEISEN, Rebekah F., WONG, Teck Kai
Publication of US20190270873A1 publication Critical patent/US20190270873A1/en
Assigned to CERBERUS BUSINESS FINANCE, LLC reassignment CERBERUS BUSINESS FINANCE, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISOLA USA CORP.
Assigned to CERBERUS BUSINESS FINANCE, LLC reassignment CERBERUS BUSINESS FINANCE, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISOLA USA CORP.
Application granted granted Critical
Publication of US11365282B2 publication Critical patent/US11365282B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2435/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2463/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • This invention relates to resin compositions used to impregnate woven materials that are then partially or fully cured to form prepreg and laminate sheets that are used to manufacture printed circuit boards.
  • the prepregs and laminates that are prepared using the resin compositions of this invention possess excellent electrical performance suitable for high frequency application in electronics, as well as excellent thermal and mechanical performance.
  • Fillers such as talc can be important ingredients in resins used to manufacture prepregs and laminates that are subsequently used in printed circuit board manufacturing.
  • Talc provides thermal stability, fills voids and improves PCB drilling.
  • Styrene maleic anhydride (SMA) is an ingredient of certain resins used to prepare prepregs and laminates. SMA can be included in resins to improve glass transition temperatures (Tg).
  • Tg glass transition temperatures
  • Talc and SMA when used together in a resin system for PCB applications can provide prepregs with improved thermal reliability under reflow.
  • Tg glass transition temperatures
  • Another aspect is a resin composition
  • styrene maleic anhydride co-polymer comprising styrene maleic anhydride co-polymer; at least one epoxy resin; at least one cross-linking agent; talc; and silica.
  • Still another aspect is a resin composition
  • a resin composition comprising: from about 5 to about 40 wt % on a dry solvent free resin basis of a styrene maleic anhydride co-polymer; from about 10 to about 50 wt % on a dry solvent free resin basis of at least one epoxy resin is selected from a brominated bisphenol A, a brominated bisphenol F, a non-brominated bisphenol A, a non-brominated bisphenol F and combinations thereof; from about greater than 0 to about 20 wt % on a dry solvent free resin basis of at least one cross-linking agent is selected from tetrabromobisphenol A, tetra-DOPO-bisphenol A and mixtures thereof; from about 2.5 to about 15 wt % on a dry resin basis of talc; and from about 2.5 to about 15 wt % on a dry resin basis of fumed silica.
  • prepregs and/or laminates including a reinforcing material impregnated with the resins described herein as well as resin coated copper foils comprising a copper foil sheet having a first planar surface and a second planar surface and a layer of B-staged or C-staged resin described herein applied to at least one of the planar surfaces.
  • This disclosure is directed generally to resins made from a plurality of ingredients as well as to prepregs and laminates including the partially or fully cured resins.
  • the resins of the invention include: (1) at least one SMA co-polymer; (2) at least one epoxy resin; (3) at least one co-crosslinking agent; (4) talc; (5) fused silica; and a catalyst.
  • the resins can include a variety of optional ingredients including a UV blocker, flame retardant and solvents.
  • a first component of the resins of this invention is one or more SMA copolymers.
  • Copolymers of styrene and maleic anhydride have been described, inter alia, in Encyclopedia of Polymer Science and Engineering Vol. 9 (1987), page 225. Within the framework of the invention the term “copolymer” likewise refers to SMA or mixtures of SMA.
  • SMA styrene and maleic anhydrides
  • SMA copolymers which have a molecular weight in the range of about 1400 to about 50,000 and an anhydride content of more than 15% by weight. Preference is given to SMA copolymers having a molecular weight in the range of 1400 to 10,000. Examples of such copolymers include the commercially available SMA 1000, SMA 2000, SMA 3000, and SMA 4000. These copolymers have a styrene:maleic anhydride ratios of, for example, 1:1, 2:1, 3:1, and 4:1, 5:1, 6:1, 7:1; 8:1 and 9:1 respectively, and a molecular weight ranging from about 1400 to about 4000. Mixtures of these SMAs may also be used.
  • the amount of SMA copolymer employed in the resins will range from about 5 to about 40 wt % on a dry solids basis and more suitably from about 5 to about 30 wt % .
  • epoxy resin in this context refers to a curable composition of oxirane ring-containing compounds as described in C. A. May, Epoxy Resins, 2nd Edition, (New York & Basle: Marcel Dekker Inc.), 1988.
  • epoxy resins include: those based on the diglycidyl ether of bisphenol A; on polyglycidyl ethers of phenol-formaldehyde novolac or cresol-formaldehyde novolac; on the triglycidyl ether of tris(p-hydroxyphenyl)methane or on the tetraglycidyl ether of tetraphenylethane; amine types such as those based on tetraglycidyl-methylenedianiline or on the triglycidyl ether of p-aminoglycol; cycloaliphatic types such as those based on 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate.
  • epoxy resin also stands for reaction products of compounds containing an excess of epoxy (for instance, of the aforementioned types) and aromatic dihydroxy compounds. These compounds may be halogen substituted.
  • epoxy resins which are derivative of bisphenol A, particularly FR4, especially on account of their low price.
  • FR4 is made by an advancing reaction of an excess of bisphenol A diglycidyl ether with tetrabromobisphenol A. Mixtures of epoxy resins with bismaleimide resin, cyanate resin and/or bismaleimide triazine resin can also be applied.
  • epoxy resins are generally represented by a single, unequivocal structural formula. The skilled person will know that this should be taken to include deviating products resulting from side reactions occurring during epoxy resin preparation. As these side products constitute a normal component of cured epoxy resins, they likewise constitute a normal component of the resins according to the invention.
  • One or more epoxy resins are included in the resins in a total amount ranging from about 5 wt % to about 50 wt % on a dry basis and more narrowly from about 10 wt % to about 40 wt %.
  • the resin includes two different epoxy resins.
  • the resins will include one or more cross-linking agents.
  • Useful cross-linking agents include brominated and non-brominated bisphenol A, brominated and non-brominated bisphenol A diglycidyl ether, tetrabromobisphenol A and tetra-DOPO-bisphenol A.
  • each cross-linking agent may be optionally be brominated, i.e. substituted with one or more bromine atoms.
  • Brominated co-cross-linking agents are useful because of their flame retarding properties.
  • the aromatic moieties of both BPA and BPADGE are substituted with two bromine atoms each, to give tetrabromo-TBBPA and TBBPADGE, respectively.
  • brominated novolacs can also be used as cross-linking agents.
  • the amount of cross-linking agent(s) used in the resins will range from about greater that 0 to about 20 wt % on a solvent free or solids basis and more narrowly from about 0.05 to about 10 wt %.
  • the resins of this invention include two or more different fillers.
  • the fillers can be selected from one or more of fused silica, amorphous fused silica, crystalline silica, fumed silica, talc, core shell particles, Teflon®, quartz, ceramics, particulate metal oxides in amorphous or crystalline form such as silica, titanium dioxide, alumina, ceria, clay, calcined clay, boron nitride, wollastonite, particulate rubber, polyphenylene oxide and mixtures thereof.
  • Other examples of useful fillers include calcined clay, fused silica and combinations thereof.
  • Especially useful fillers are talc and silica with fused silica and talc being an especially useful combination.
  • the first filler and second filler are present in the resin in an amount ranging from about 5 wt % to about 50 wt % on a dry resin basis, and more narrowly from about 5 wt % to about 37.5 wt % on a dry resin basis and finally, more narrowly from about 5 wt % to about 25 wt % on a dry resin basis.
  • the talc should be present in an amount ranging from about 2.5 wt % to about 25 wt % and the silica should be present in an amount ranging from about 2.5 wt % to about 25 wt %. More narrowly, the talc should be present in an amount ranging from about 2.5 wt % to about 15 wt % and the silica should be present in an amount ranging from about 2.5 wt % to about 15 wt % both on a dry resin basis.
  • the weight ratio of silica or fumed silica to talc in the resin will range from about 1:2.5 to about 5:1 and more narrowly from about 1:1 to about 2.5:1.
  • talc is Microtuff AGD manufactured by Barretts Minerals, Inc.
  • the talc can be silane treated or untreated.
  • the average talc particle size will be less than about 1.2 microns and preferably less than about 0.9 microns. Smaller talc particles are able to fill resin voids in smaller amounts and as a result the resins are less prone to expansion upon heating.
  • silica filler is an amorphous fused silica and in particular and amorphous fused silica having a D 50 particle size less than about 6.0 microns and more narrowly less than 4.0.
  • the silica has percolation threshold of from 2-4 microns. Silica's having a 2-4 micron percolation ration have been found to enhance prepreg or PCB properties such as electrical properties while such properties as well as mechanical properties begin to degrade when using silica having a percolation threshold outside of this range.
  • the silica may be silated (silane treated) or non-silated (not treated with silane).
  • Silane treatment uses silence and silazanes to chemically modify the silica (or talc) surface to render the surface hydrophobic.
  • the compounded resins of this invention may include one or more flame retardants. Any flame retardant that is known to be useful in resin compositions used to manufacture composites and laminates use to manufacture printed circuit boards may be used.
  • the flame retardants may contain halogens or they may be halogen free.
  • useful flame retardants include, but are not limited to, halides of glycidyl etherified bifunctional alcohols, halides of novolac resins such as bisphenol A, bisphenol F, polyvinylphenol or phenol, creosol, alkylphenol, catechol, and novolac resins, inorganic flame retardants such as antimony trioxide, red phosphorus, zirconium hydroxide, barium metaborate, aluminum hydroxide, and magnesium hydroxide, and phosphorous-based flame retardants such as tetraphenyl phosphine, tricresyl-diphenyl phosphate, triethyiphosphate, cresyldiphenylphosphate, xylenyl-diphenyl phosphate, acid phosphate esters, ammonia phosphate, ammonia polyphosphate, ammonia cyanurate, phosphate compounds containing nitrogen, and phosphate esters containing halides.
  • novolac resins such as bis
  • Phosphorous-based flame retardants may include, for example those disclosed in U.S. Pat. Nos. 6,645,631, 7,687,556 and 8,129,456 the specifications of each of which is incorporated herein by reference.
  • Flame retardants will be present in the resin compositions of this invention in an amount sufficient to allow laminates made from the resin compositions to pass the UL-94 flammability test. More narrowly, the flame retardant or combinations thereof may be present in the resin in an amount ranging from about 5 wt % to about 50 wt %, or from about 10 wt % to about 30 wt % on a dry weight basis.
  • the flame retardant is the solid flame retardant decabromodiphenylethane, which has the following structure:
  • Decabromodiphenylethane is commercially available, for example, from Albemarle Corporation (451 Florida St., Baton Rouge, La. 70801). The Albemarle product is sold as SaytexTM 8010. Decabromodiphenylethane also unexpectedly improves the dielectric properties of the cured resin composition. As a result, decabromodiphenylethane can be included in the resin compositions in amounts far greater than is necessary for a flame retardant in order to also enhance the dielectric properties of the cured resin. Another useful high bromine content insoluble flame retardant is ethylenebistetrabromophthalimide which is sold as Saytex BT93 W by Albemarle Corporation. Other similar useful flame retardants include decabromodiphenyl oxide and brominated polystyrene.
  • the resins will further include an initiator/catalyst the promotes the cross-linking of resin ingredients by, for example, performing a variety of functions such as encouraging homopolymerization and/or crosslinking resin ingredients and to be available during resin thermosetting to enhance the rate of resin cure.
  • the initiators/catalysts chosen may be any compound that is known to be useful in resin synthesis or curing whether or not it performs one of these functions.
  • azo-type initiator/catalyst such as azobisisobutyronitrile (AIBN), 2-propyl imidiazole (2-PI), tetrabutylphophonium acid acetate (TBPAAc) and 2-methylimidazole (2-MI).
  • AIBN azobisisobutyronitrile
  • 2-PI 2-propyl imidiazole
  • TPAAc tetrabutylphophonium acid acetate
  • 2-MI 2-methylimidazole
  • the amount of initiator used depends upon its application. When used in a resin, the initiator will be present in an amount ranging from about 0.01 to about 3.0 wt % and more narrowly from about 0.05 to about 1 wt %.
  • the resins will generally include the ingredients in amounts reported in Table 1 below where the amounts are reported in parts by weight on a solvent-free or solids only basis.
  • One or more solvents are typically incorporated into the resin compositions of this invention in order to solubilize the appropriate resin composition ingredients, and/or to control resin viscosity, and/or in order to maintain the ingredients in a suspended dispersion.
  • Any solvent known by one of skill in the art to be useful in conjunction with thermosetting resin systems can be used.
  • Particularly useful solvents include methyl ethyl ketone (MEK), toluene, dimethylformamide (DMF), acetone, propyl acetate, cyclohexanone and combinations thereof.
  • solvents are present in the resin in an amount of from about 20 wt % to about 50 wt % as a weight percentage of the total weight of the solvent-containing resin composition.
  • a useful solvent is a combination of a low and high boiling point solvent such as methyl ethyl ketone and cyclohexane.
  • the thermosetting resin compositions of this invention may include one or more tougheners.
  • the tougheners are added to the resin compositions to improve the drilling performance of the resulting composites and laminates.
  • Useful tougheners include methyl methacrylate/butadiene/styrene copolymer, methacrylate butadiene styrene core shell particles, and mixtures thereof.
  • a preferred toughener is methacrylate butadiene styrene core shell particles, which is available from Rohm & Haas (100 Independence Mall West, Philadelphia, Pa.) under the trade name Paraloid®.
  • tougheners are present in the thermosetting resin compositions of this invention in an amount from about 1% to about 5%, preferably from about 2 to about 4%, based on 100% by weight solids of the composition.
  • the compounded resin may also contain other additives such as defoaming agents, leveling agents, dyes, and pigments.
  • a fluorescent dye can be added to the resin composition in a trace amount to cause a laminate prepared therefrom to fluoresce when exposed to light with optical inspection equipment.
  • a useful fluorescent dye is a highly conjugated diene dye.
  • UVITEX® OB (2,5-thiophenediylbis(5-tert-butyl-1,3-benzoxazole), available from Ciba Specialty Chemicals, Tarrytown, N.Y.
  • This expansion improvement caused by the combination of fillers improves even more with increasing SMA steric to anhydride ratios with anhydride to styrene ratios of 1:1; 1:2; 1:3; 1:4; 1:5; 1:6, 1:7, 1:8, and 1:9 being especially useful.
  • the resins can include different ratios of SMA's and different combinations of SMA's.
  • a combination that would include having two or more of the anhydride to styrene ratios, 1:3, 1:4, 1:5, 1:6, together with the talc and fumed silica combined filler may be used.
  • Extensions of these filler combinations include any filler type similar to talc that is composed of platelets in combination with spherical or oblong or even porous shaped silica fillers. This would include a combination of any of these shaped filler such as a shell rubber core particle that is generally spherical.
  • Resins including such a filler combination are more homogenous thereby improving thermal properties that are specific to laminates and prepreg materials used in the PCB industry.
  • the industry has a long history of thermal requirements that help to prevent any delamination of the laminates inside a printed circuit boards.
  • the resins including the combination of fillers disclosed above when incorporated into laminates that are used in PCB's prevent PCB delamination in addition to reducing laminate expansion under thermal stress.
  • the combination of two fillers in the resins described herein help decrease expansion and thermal stability especially under thermal stress and reflow and decrease the threat of delamination and/or white glass crazing and/or wicking.
  • the resins described above are useful for preparing prepregs and/or laminates used in the manufacture of printed circuit boards.
  • the laminates can be partially cured or B-staged (in which instance they are referred to as prepregs) in which state they can be laid up with additional material sheets and fully cured (“C-staged”) to form a layup or PCB.
  • the resins can incorporated into C-staged laminate sheets, resin coated copper sheets or interlayer sheets.
  • the resin is used to manufacture prepregs in a batch or in a continuous process.
  • Prepregs are generally manufactured using a reinforcing material such a woven glass web (fabric) which is unwound into a series of drive rolls.
  • the web is then conveyed to a coating area where the web is immersed in a tank containing the thermosetting resin including solvent at which point the glass web becomes saturated with the resin.
  • the resin saturated glass web is then passed through a pair of metering bars or rolls to remove excess resin from the saturated glass web and thereafter, the resin coated web travels the length of a drying tower for a selected period of time until the solvent is evaporated from the web.
  • Optional second and subsequent coatings of resin can be applied to the web by repeating these steps until the preparation of the prepreg is complete whereupon the prepreg is wound.
  • the woven glass web can be substituted with a woven fabric material, paper, plastic sheets, felt, and/or particulate materials such as glass fiber particles or particulate materials.
  • thermosetting resins of this invention are premixed in a mixing vessel under ambient temperature and pressure.
  • the viscosity of the pre-mix is ⁇ 600-1000 cps and can be adjusted by adding or removing solvent from the resin.
  • Fabric substrate typically but not limited to E glass
  • the prepreg is rolled or sheeted to size, layed up between Cu foil in various constructions depending on glass weave style, resin content & thickness requirements.
  • thermosetting resin (resin) mix can also be applied in a thin layer to a Cu foil substrate (RCC—resin coated Cu) using slot-die or other related coating techniques.
  • the prepregs, laminates, resin coated copper foils and like, all made using resins described herein are useful in manufacturing printed circuit boards (PCBs) using manufacturing techniques that are well known in the art.
  • Resins were prepared having a single talc filler (ISE-S4) and having a filler including silica and talc (ISE-S3) according to the formulation below.
  • the resins were used to prepare prepregs and laminates including resin impregnated glass fabrics of the same type.
  • the prepregs and laminates were then used to prepare a 24 layer multi-layer printed circuit test boards having the specifications set forth in Table 3 below and subsequently tested for many properties including their ability to withstand delamination, their ability to withstand wicking and their ability to withstand white glass crazing.
  • 1 ⁇ 2116RC57.8% refers for example to a prepreg having 1-ply layer of 2116 woven glass having a resin content (RC) of 57.8%.
  • 4 mil[2 ⁇ 106]H/H refers to a fully cured 4 mm laminate made from two resin coated layers of 106 glass cloth.
  • IS415 a commercially available SMA/epoxy resin prepreg (without any fillers) was also used in preparing a test boards as described in Table 3 above.
  • the ISE-S3 resin had the formula set forth in Table 4 below.
  • the printed circuit board tested was a test vehicle including:
  • the ISE-S4 resin had a similar formula but used all talc (11.6 wt %).
  • the IS415 resin had a similar formula but omitted fillers altogether.
  • Tables 6-7 detail the results of IR reflow tests at 260 degrees centigrade.
  • the IR reflow tests infrared reflow soldering) of vias and ball grid arrays.
  • the reflow tests indicate that the boards made with the ISE-S3 prepregs and laminates exhibited wicking and white glass crazing results that were consistently better than the boards made with IS415 and ISE-S4 prepregs and laminates.
  • wicking is a measure of the distance copper migrates into glass bundles adjacent to plated through holes.
  • “crazing” or “white glass” as it is referred to in the tables above refers to the amount (distance) of separation between the epoxy system and individual glass fibers. When viewed with a microscope in a cross-section, crazing produces a silver or white sheen running down individual glass fibers. The silver sheen is created by the air gap around the individual glass fibers reflecting light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
US16/320,282 2016-07-25 2017-07-25 SMA resin formulation Active 2037-10-26 US11365282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/320,282 US11365282B2 (en) 2016-07-25 2017-07-25 SMA resin formulation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662366115P 2016-07-25 2016-07-25
PCT/US2017/043633 WO2018022563A1 (en) 2016-07-25 2017-07-25 Improved sma resin formulation
US16/320,282 US11365282B2 (en) 2016-07-25 2017-07-25 SMA resin formulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/043633 A-371-Of-International WO2018022563A1 (en) 2016-07-25 2017-07-25 Improved sma resin formulation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/845,720 Continuation US11891475B2 (en) 2016-07-25 2022-06-21 SMA resin formulation

Publications (2)

Publication Number Publication Date
US20190270873A1 US20190270873A1 (en) 2019-09-05
US11365282B2 true US11365282B2 (en) 2022-06-21

Family

ID=59656169

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/320,282 Active 2037-10-26 US11365282B2 (en) 2016-07-25 2017-07-25 SMA resin formulation
US17/845,720 Active US11891475B2 (en) 2016-07-25 2022-06-21 SMA resin formulation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/845,720 Active US11891475B2 (en) 2016-07-25 2022-06-21 SMA resin formulation

Country Status (9)

Country Link
US (2) US11365282B2 (ko)
EP (1) EP3487932A1 (ko)
JP (1) JP7046907B2 (ko)
KR (1) KR102414272B1 (ko)
CN (2) CN109790358B (ko)
CA (1) CA3032191C (ko)
SG (1) SG11201900686XA (ko)
TW (1) TWI780060B (ko)
WO (1) WO2018022563A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017551A1 (ja) 2018-07-18 2020-01-23 日立化成株式会社 銅張積層板、プリント配線板、半導体パッケージ及び銅張積層板の製造方法
CN110328914A (zh) * 2019-06-17 2019-10-15 吉安市宏瑞兴科技有限公司 一种适用于pcb制程具有良好阻燃性的覆铜板及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509414B2 (en) 1996-10-29 2003-01-21 Isola Laminate Systems Corporation Epoxy resin, styrene-maleic anhydride copolymer and co-crosslinking agent
WO2003048251A1 (en) 2001-12-05 2003-06-12 Isola Laminate Systems Corp. Prepreg and composition of epoxy resin(s), sma copolymers(s) and bis-maleimide triazine resin(s)
US6645631B2 (en) 1999-12-13 2003-11-11 Dow Global Technologies Inc. Flame retardant phosphorus element-containing epoxy resin compositions
US20060074151A1 (en) 2004-09-28 2006-04-06 Polyclad Laminates, Inc. Low expansion dielectric compositions
US20090117388A1 (en) * 2005-10-21 2009-05-07 Masataka Nakanishi Epoxy Resin, Curable Resin Composition and Cured Product Thereof
US7687556B2 (en) 2004-09-28 2010-03-30 Isola Usa Corp. Flame retardant compositions
US20110132646A1 (en) * 2009-06-12 2011-06-09 Icl-Ip America Inc. Flame retardant epoxy resin composition, prepreg and laminate thereof
US20110278052A1 (en) * 2010-05-12 2011-11-17 Hsu Hsuan Hao Halogen-free flame-retardant epoxy resin composition, and prepreg and printed circuit board using the same
US8129456B2 (en) 2004-09-28 2012-03-06 Isola Usa Corp. Flame retardant compositions with a phosphorated compound
US20120238709A1 (en) * 2009-12-02 2012-09-20 Guillaume Metral Epoxy resin compositions
CN102746616A (zh) 2011-04-19 2012-10-24 台燿科技股份有限公司 一种树脂组合物及其应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943846A (ja) * 1995-05-25 1997-02-14 Toyo Ink Mfg Co Ltd フォトソルダーレジスト組成物
US8313836B2 (en) * 1996-10-29 2012-11-20 Isola Usa Corp. Copolymer of styrene and maleic anhydride comprising an epoxy resin composition and a co-cross-linking agent
US6534181B2 (en) * 2000-03-27 2003-03-18 Neltec, Inc. Styrene-maleic anhydride copolymer and epoxy resin blend crosslinked with multifunctional amine compounds
JP2008133353A (ja) * 2006-11-28 2008-06-12 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、この樹脂組成物を用いたプリプレグ及び積層板
JP5181216B2 (ja) * 2007-09-28 2013-04-10 日立化成株式会社 シート状ガラス基材プリプレグ、積層板及びプリント配線板
US8217099B2 (en) * 2008-05-22 2012-07-10 Iteq (Dongguan) Corporation Thermosetting resin composition
US20100240811A1 (en) * 2009-03-18 2010-09-23 He Yufang Thermosetting Resin Composition and Application Thereof
CN101643571B (zh) * 2009-08-24 2012-02-08 广东生益科技股份有限公司 热固性树脂组合物及用其制成的半固化片与印制电路用层压板
CN102250447B (zh) * 2010-05-21 2014-10-22 台燿科技股份有限公司 无卤素的阻燃性环氧树脂组合物及由其制成的预浸材和印刷电路板
CN102372900B (zh) * 2010-08-10 2014-04-02 台燿科技股份有限公司 环氧树脂组合物及其制成的预浸材和印刷电路板
US9005761B2 (en) * 2011-12-22 2015-04-14 Elite Material Co., Ltd. Halogen-free resin composition and its application for copper clad laminate and printed circuit board
CN103421273B (zh) * 2012-05-22 2016-02-10 中山台光电子材料有限公司 无卤素树脂组成物
CN103881299B (zh) * 2012-12-20 2016-08-31 中山台光电子材料有限公司 无卤素树脂组合物及其应用
CN103881059A (zh) * 2012-12-21 2014-06-25 台光电子材料(昆山)有限公司 低介电树脂组合物及其应用
CN103724944A (zh) * 2013-12-31 2014-04-16 广东生益科技股份有限公司 一种无卤环氧树脂组合物及其用途
AU2014411038B2 (en) * 2014-11-11 2019-10-03 Shengyi Technology Co., Ltd. Thermoset resin composition, and prepreg and laminated board made of same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509414B2 (en) 1996-10-29 2003-01-21 Isola Laminate Systems Corporation Epoxy resin, styrene-maleic anhydride copolymer and co-crosslinking agent
US6645631B2 (en) 1999-12-13 2003-11-11 Dow Global Technologies Inc. Flame retardant phosphorus element-containing epoxy resin compositions
WO2003048251A1 (en) 2001-12-05 2003-06-12 Isola Laminate Systems Corp. Prepreg and composition of epoxy resin(s), sma copolymers(s) and bis-maleimide triazine resin(s)
US20060074151A1 (en) 2004-09-28 2006-04-06 Polyclad Laminates, Inc. Low expansion dielectric compositions
US7687556B2 (en) 2004-09-28 2010-03-30 Isola Usa Corp. Flame retardant compositions
US8129456B2 (en) 2004-09-28 2012-03-06 Isola Usa Corp. Flame retardant compositions with a phosphorated compound
US20090117388A1 (en) * 2005-10-21 2009-05-07 Masataka Nakanishi Epoxy Resin, Curable Resin Composition and Cured Product Thereof
US20110132646A1 (en) * 2009-06-12 2011-06-09 Icl-Ip America Inc. Flame retardant epoxy resin composition, prepreg and laminate thereof
US20120238709A1 (en) * 2009-12-02 2012-09-20 Guillaume Metral Epoxy resin compositions
US20110278052A1 (en) * 2010-05-12 2011-11-17 Hsu Hsuan Hao Halogen-free flame-retardant epoxy resin composition, and prepreg and printed circuit board using the same
CN102746616A (zh) 2011-04-19 2012-10-24 台燿科技股份有限公司 一种树脂组合物及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tao Wu et al. "Curing of Epoxy Resin with Poly(m-phenylenemethylphosphonate)", Journal of Applied Polymer Science 101(6): 4011-4022 (Sep. 15, 2006).

Also Published As

Publication number Publication date
CA3032191C (en) 2023-08-29
WO2018022563A1 (en) 2018-02-01
CN115340737A (zh) 2022-11-15
JP2019528338A (ja) 2019-10-10
US11891475B2 (en) 2024-02-06
KR20190034566A (ko) 2019-04-02
JP7046907B2 (ja) 2022-04-04
KR102414272B1 (ko) 2022-06-28
SG11201900686XA (en) 2019-02-27
CA3032191A1 (en) 2018-02-01
TW201829606A (zh) 2018-08-16
TWI780060B (zh) 2022-10-11
US20230141772A1 (en) 2023-05-11
CN109790358A (zh) 2019-05-21
EP3487932A1 (en) 2019-05-29
CN109790358B (zh) 2022-06-17
US20190270873A1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
US7521494B2 (en) Epoxy resin, SMA copolymer and bis-maleimidetriazine resin
US11891475B2 (en) SMA resin formulation
JP3412585B2 (ja) プリント配線板及び多層プリント配線板の製造に用いられるプリプレグ用エポキシ樹脂組成物、プリプレグ、多層プリント配線板
US11155687B2 (en) High Tg epoxy formulation with good thermal properties
CA2925392C (en) Varnishes and prepregs and laminates made therefrom
TWI710596B (zh) 一種樹脂組合物、包含其的預浸料以及層壓板和印刷電路板
US7255927B2 (en) Laminate composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: ISOLA USA CORP., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KELLEY, EDWARD;WONG, TECK KAI;THEISEN, REBEKAH F.;AND OTHERS;REEL/FRAME:048125/0182

Effective date: 20160811

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: CERBERUS BUSINESS FINANCE, LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:ISOLA USA CORP.;REEL/FRAME:051368/0775

Effective date: 20191225

Owner name: CERBERUS BUSINESS FINANCE, LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:ISOLA USA CORP.;REEL/FRAME:051369/0038

Effective date: 20191225

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE