US10199811B2 - Plastic corrugated tube for surrounding pipes and method for producing such a corrugated tube - Google Patents

Plastic corrugated tube for surrounding pipes and method for producing such a corrugated tube Download PDF

Info

Publication number
US10199811B2
US10199811B2 US15/321,720 US201515321720A US10199811B2 US 10199811 B2 US10199811 B2 US 10199811B2 US 201515321720 A US201515321720 A US 201515321720A US 10199811 B2 US10199811 B2 US 10199811B2
Authority
US
United States
Prior art keywords
corrugated tube
corrugations
closed position
longitudinal slit
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/321,720
Other languages
English (en)
Other versions
US20170141553A1 (en
Inventor
Van Ngoc Chu
Matthias Buettner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delfingen FR Anteuil SA
Original Assignee
Schlemmer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlemmer GmbH filed Critical Schlemmer GmbH
Publication of US20170141553A1 publication Critical patent/US20170141553A1/en
Application granted granted Critical
Publication of US10199811B2 publication Critical patent/US10199811B2/en
Assigned to DELFINGEN FR-ANTEUIL S.A. reassignment DELFINGEN FR-ANTEUIL S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHLEMMER GMBH
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0462Tubings, i.e. having a closed section
    • H02G3/0468Corrugated
    • B29C47/0023
    • B29C47/0033
    • B29C47/0059
    • B29C47/0066
    • B29C47/065
    • B29C47/126
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/303Extrusion nozzles or dies using dies or die parts movable in a closed circuit, e.g. mounted on movable endless support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/22Corrugating
    • B29C53/30Corrugating of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/11Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall
    • F16L11/118Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall having arrangements for particular purposes, e.g. electrically conducting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • B29K2021/003Thermoplastic elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness

Definitions

  • the invention pertains to a plastic corrugated tube for the encasing of conductors, with encircling corrugations alternating in succession and distributed along its length, and having a longitudinal slit extending along a lateral longitudinal line, as well as a method for making such a corrugated tube.
  • Lengthwise-slit plastic corrugated tubes are generally known and are used in particular for encasing electrical conductors which are laid in motor vehicles.
  • the longitudinal slit serves for an easier placement of the cables inside the corrugated tubes, for which purpose the particular corrugated tube is spread apart, either using a special tool or also by hand, to expose the slit, which can be opened wide enough so that the prepared cables or cable harnesses can be inserted there through the slit.
  • the corrugated tubes with the enclosed electrical conductors are closed so that they also afford a protection against penetration of unwanted influences (such as dirt, chemical or corrosive elements, etc.).
  • the problem which the invention proposes to solve is to propose a corrugated hose of the kind mentioned above which can be used for a certain range of nominal widths, without needing to be modified for this, resulting in a distinctly broader area of application and a more favorable inventory situation, and also consequentially a greater economy of use.
  • the first-mentioned problem is solved by a plastic corrugated tube for the encasing of conductors, with corrugations alternating in succession and distributed along its length, i.e., corrugation peaks and corrugation valleys, and having a longitudinal slit extending along a lateral longitudinal line, wherein the corrugated tube for the inserting of the conductors can be converted into an opened position, exposing the longitudinal slit, and also into a closed position, in which the edge regions of the corrugated tube lying on either side of the longitudinal slit overlap, wherein the corrugated tube is elastically prestressed in the direction of assuming its closed position, and the edge region of the corrugated tube lying radially underneath the other edge region of this corrugated tube in the closed position is likewise provided with corrugations on its circumference over a predetermined circumferential region, which corresponds to a maximum overlap region of the two edge regions in the closed position, which corrugations are however offset radially inwards as
  • the edge regions of the corrugated tube shell lying on either side of the longitudinal slit are brought into an overlapping closed position in which the longitudinal slit is closed by this overlapping of the edge regions.
  • no closure elements are arranged at these overlapping edge regions, which enter into a locking engagement with each other in the closed position and thus secure the two edge regions to each other.
  • the design principle is adopted that in its closed position the overlapping edge regions are only elastically prestressed into their closed position and thus in the direction of a mutual overlapping.
  • the two edge regions are converted into a mutual overlapping arrangement to assume a closed position under the action of this elastic prestressing and are held in this position automatically by the prestressing, without requiring the use of interlocking closure elements for this.
  • the one of the two edge regions of the corrugated tube lies radially underneath the other edge region, the edge region lying radially underneath being termed hereafter the “bottom” edge region and the edge region lying radially on top of it the “top” edge region.
  • the bottom edge region there are arranged corrugations (in the form of corrugation peaks and corrugation valleys on its circumference over a predetermined circumferential region thereof, yet these are offset radially inwards relative to the corrugations outside this predetermined circumferential region (which also correspond to those at the other edge region).
  • the corrugations of the bottom edge region lie against the radial underside of the corrugations on the other, top edge region and engage with them, being overlapped h the latter in the circumferential direction and the corrugations of the two edge regions being displaceable relative to each other in the circumferential direction of the corrugated tube.
  • the closed position will be achieved in that the top edge region overlaps the radially downwardly offset corrugations on the bottom edge region over the entire predetermined circumferential region, which corrugations are present only in this circumferential region and which are then adjoined in the further circumference of the corrugated tube by the corrugations which lie further radially outward and which extend continuously as far as the end of the other edge region.
  • the top edge region automatically continuing the mutual overlapping under the action of the elastic prestressing, is prevented from further displacement on the bottom edge region in the circumferential direction, because the adjoining corrugations there at the bottom edge region are again radially offset outwards, so that a mechanical stop to prevent further relative displacement in the circumferential direction is thus produced at this transition site for the top edge region.
  • the top edge region upon releasing of the two edge regions no longer runs so far in the circumferential direction under the elastic prestressing in the direction of a closed position that an overlapping of the two edge regions exists over the entire predetermined circumferential region. Instead, the closed position here is reached already upon reaching a smaller overlap distance of the two edge regions, such as is only just possible upon closing the corrugated tube due to the greater filling of the internal space of the corrugated tube with electrical conductors.
  • the corrugated tube according to the invention affords the possibility of being used over a certain range of different nominal widths, without requiring a modification of the corrugated tube according to the invention.
  • the range of variation of its application depends substantially on the size of the predetermined circumferential region with its radially inwardly offset corrugations, so that for conventional corrugated tube sizes a range of two or three nominal widths is easy to achieve, such as 17 and 18 or 17 to 19.
  • the predetermined circumferential region therefore corresponds to the maximum possible overlap of the two edge regions of the corrugated tube, i.e., the smallest nominal width which can be used for the filling.
  • the corrugated tube according to the invention has no need for the facing edge regions on either side of the longitudinal slit to be interlocked with each other in the closed position, which avoids a more costly manufacturing and a more complicated design of the closure.
  • the invention realizes a self-closing corrugated hose of very diversified use, which affords significant advantages both in manufacturing technology and the installation process over corrugated hoses requiring closure elements able to interlock with each other in the circumferential direction in their closed position.
  • the mutually engaging corrugations of the two edge regions of the corrugated tube along the longitudinal slit are brought together by a displacement movement relative to each other with a form fitting in the displacement direction, which reliably prevents the edge regions bordering; the longitudinal slit from being able to be displaced relative to each other in the axial direction of the corrugated tube, thus preventing the occurrence of sharp-edged pieces at the sliced end of the tube, which might stick out and damage the conductors situated on the inside.
  • the corrugated tube according to the invention that its inner surface is provided with a layer of a material which is softer than the rest of the material of the corrugated tube.
  • Another advantageous embodiment of the invention also consists in that in the corrugated tube according to the invention the radially bottom of the two edge regions in the closed position at its end segment directly next to the longitudinal slit consists of a material which is softer than the rest of the material of the corrugated tube.
  • the softer material used is preferably a thermoplastic elastomer (TPE) with a Shore A hardness of less than 80 and for the rest of the material of the corrugated tube a polypropylene is used with a Shore D hardness of more than 60.
  • TPE thermoplastic elastomer
  • the configuration of the radially lower of the two edge regions in the closed position at its end segment directly next to the longitudinal slit being made of a softer material than the rest of the material of the corrugated tube means that its freely projecting end forms a side of the longitudinal slit projecting somewhat radially into the inside of the corrugated tube in the closed. position and thanks to its configuration there made of a softer material it also forms a soft slit edge, which reliably prevents a damaging of the electrical conductors contained therein.
  • the invention furthermore concerns a method for manufacturing corrugated tubes according to the invention, as are described above, involving the following steps:
  • the longitudinal slit is made along the lateral longitudinal line, on one side of which corrugations are applied on the outer circumference of the corrugated tube along a predetermined circumferential region which corrugations are offset radially inwards with respect to the other corrugations.
  • the longitudinal slit is thus formed in the slitting device at the location of the transition between the corrugations which are placed further outside radially and those which are formed offset radially inwards.
  • a thermal deformation of the lengthwise-slit corrugated tube is performed, which is heated to a temperature lying below the melting temperature of its thermoplastic material, and its edge regions upon moving through shaping rollers are shoved stepwise one across the other and brought into an increasing overlap relative to each other, until a predetermined closed position (maximum overlap of both edge regions) is achieved.
  • the corrugated tube is spread out into an open position with a suitable device, in which the longitudinal slit is released and opened far enough so that the conductors to be inserted can be placed inside.
  • a spontaneous closing of the corrugated tube occurs as a result of the elastic prestressing, which presses it in the direction of its closed position, corresponding at most to the overlap of the two edge regions that was imprinted on the corrugated tube in the IR deformation layout during the manufacturing of the corrugated tube.
  • a larger quantity of conductors is placed inside the opened corrugated tube that requires a space that would correspond to a.
  • the closed position achieved by the thermal deformation of the corrugated tube during its manufacturing results in a strove elastic prestressing in the direction of the closed position when the corrugated tube is spread open for the inserting of conductors, which produces a secure and effective closure of the corrugated tube in the closed position when it is filled with conductors, so that even after its installation there is achieved a long-lasting fixation and a good protection against unwanted penetration of din particles and the like.
  • a most especially favorable embodiment of the method according to the invention results when the injection head is further fed with a second thermoplastic material from a second extruder, which is softer than the plastic fed from the other extruder, wherein the plastic tube extruded from the injection head consists of a lengthwise strip of the softer thermoplastic material extending over a predetermined circumferential width along the lateral longitudinal line where the longitudinal slit will be made afterwards, while the rest of the shell of the plastic tube is formed from the other, harder thermoplastic material.
  • the making of the longitudinal slit in the slitting device is done in such a way that its lengthwise side facing the corrugations of the radially outward edge region of the corrugated tube in the closed position coincides with the end surface of the softer lengthwise strip of the plastic tube there, and the longitudinal slit is sliced, looking in the circumferential direction of the plastic tube, with a width which is less than the predetermined circumferential width of the softer lengthwise strip in the plastic tube. It has been found to be advantageous in many instances for the longitudinal slit formed on the corrugated tube in the slitting device to be cut out in a width of 3 mm to 5 mm in the opened position of the corrugated tube.
  • a corrugated tube according to the invention whose entire inner surface is provided with a layer of a softer material than the rest of the material of the corrugated tube by performing the two-component extrusion for this in a way so that a plastic tube is extruded from the extruder consisting in the radial direction of a softer internal layer and a radially adjoining outer, harder layer, which is provided with the desired corrugations on its circumference in the following corrugator and then the longitudinal slit is made in the slitting device M the same position as is used during a one-component extrusion.
  • FIG. 1 a perspective view of a corrugated tube according to the invention in the condition directly before making the longitudinal slit;
  • FIG. 2 a perspective representation of the tube of FIG. 1 directly after making the longitudinal slit
  • FIG. 3 a perspective representation of the tube of FIGS. 1 and 2 in its closed position with maximum overlap of the edge regions lying on either side of the longitudinal slit, after performing the thermal deformation;
  • FIG. 4 detail A of FIG. 1 , magnified;
  • FIG. 5 detail B of FIG. 2 , magnified
  • FIG. 6 detail C of FIG. 3 , magnified
  • FIG. 7 a perspective representation of another embodiment of a corrugated tube according to the invention with a lengthwise strip of softer material, directly before making the longitudinal slit;
  • FIG. 8 a perspective representation of the corrugated tube of FIG. 7 directly after making the longitudinal slit
  • FIG. 9 a perspective representation of the corrugated tube from FIGS. 7 and 8 in its dosed position with maximum overlap of the edge regions, after performing the thermal deformation;
  • FIG. 10 detail D of FIG. 8 , magnified
  • FIG. 11 detail F of FIG. 9 , magnified
  • FIG. 12 a perspective representation of a corrugated tube according to the invention filled with electrical conductors in the closed position with maximum overlap of its edge regions on either side of the longitudinal slit;
  • FIG. 13 the corrugated tube according to the invention of FIG. 12 , but here with a greater filling of electrical conductors in the closed position and with a smaller mutual overlap of the edge regions than in the case of FIG. 12 ;
  • FIG. 14 a basic diagram of a layout for the manufacture of corrugated tubes according to the invention.
  • FIG. 15 a basic diagram of a longitudinal section through an injection head for a two-component coextrusion.
  • FIGS. 1 to 6, 7 to 9 and FIGS. 12 and 13 each pertain to alternative embodiments of a corrugated tube according to the invention.
  • FIG. 1 shows a perspective view of such a corrugated tube immediately before making a longitudinal slit
  • FIG. 2 shows a perspective view of the same corrugated tube after making the longitudinal slit 4
  • FIG. 3 shows a perspective view of the same corrugated tube 1 in the closed position, while in the dosed position per FIG. 3 the edge regions 5 and 6 of the corrugated tube 1 lying on either side of the longitudinal slit 4 (see FIG. 2 ) span across a maximum overlap region a (in the circumferential direction).
  • FIG. 1 shows the corrugated tube 1 in the form which it has during its manufacture after leaving the corrugator and immediately before entering a slicing device.
  • the corrugated tube 1 is provided here with encircling corrugations 2 on its outer side, consisting of an alternating succession of corrugation peaks and corrugation valleys in the circumferential direction, yet these corrugations 2 do not extend across the entire circumference, as is shown by FIGS. 1 and 2 , to which reference is made.
  • corrugations 3 are likewise provided in the circumferential direction (with corrugation peaks and corrugation valleys), being made between the ends of the corrugations 2 lying opposite each other in the circumferential direction and in positions corresponding to their position.
  • corrugations 3 within this definite circumferential region a′ are however offset relative to the corrugations 2 covering the entire remaining circumference of the corrugated tube 1 by a distance 8 radially toward the inside of the corrugated tube 1 , so that here, as shown by the representations of FIGS. 1 and 2 and especially the magnified representation of feature A of FIG. 1 in FIG. 4 , the radial underside of the corrugation valleys within this defined circumferential region a′ projects somewhat into the inside of the corrugated tube 1 .
  • the radial distance 8 and the radial shoulder 7 are chosen such that, after making the longitudinal slit 4 along a longitudinal lateral line M-M (see FIGS. 1 and 2 ) and during a subsequent pressing together of the edge regions 5 and 6 of the corrugated tube 1 present on either side of the longitudinal slit 4 the radial underside 9 of the corrugations 2 of the edge region 6 can be shoved across the radial top side of the corrugations 3 of the other edge region 5 , so that the longitudinal slit 4 disappears and an overlap of the edge regions 5 and 6 occurs.
  • the corrugations 3 of the edge region 5 are situated radially deeper by the radial shoulder 7 than the corrugations 2 at the edge region 6 , so that after making the longitudinal slit 4 and with a total overlap of the two edge regions 5 , 6 to achieve a closed position, as shown in FIG. 3 , an external form for the corrugated tube 1 is obtained showing no radial step in the circumferential direction.
  • the closed position of the corrugated tube 1 represented in FIG. 3 with maximum overlap of the edge regions 5 and 6 is created during its manufacture by means of thermal deformation in an IR deformation layout (or another deformation layout equally suitable for a thermal deformation treatment), wherein after the cooldown which then occurs the corrugated tube 1 created in this arrangement, as shown by FIG. 3 , has its initial form for a subsequent use, which will be discussed separately below.
  • FIG. 6 The magnified representation of feature C from FIG. 3 , as shown in FIG. 6 , yet again shows in detail the local condition which occurs in this magnified region in the closed position of the corrugated tube represented in FIG. 3 .
  • this is provided on its entire inner side with a soft layer 10 (also see FIG. 5 as a magnified representation of feature Bin FIG. 2 ), so that after making the longitudinal slit 4 the entire radial interior slit edge of the cut surfaces on either side of the longitudinal slit 4 is formed by a soft material, and thus the radial inner edges at the projections 8 also consist of a soft material.
  • the embodiment of the corrugated tube 1 as is shown in FIGS. 7 to 11 differs from that of FIGS. 1 to 6 in that the entire inner surface of the corrugated tube 1 here is not lined with a layer of softer material, but instead the corrugated tube 1 upon emerging from the corrugator is provided with a lengthwise strip 11 of a softer thermoplastic material than the rest of the material of the corrugated tube 1 , running in the lengthwise direction of the corrugated tube 1 , but extending across the entire radial wall thickness of the corrugated tube 1 .
  • this lengthwise strip 11 of softer material is arranged along the longitudinal lateral line M-M, such that it extends on either side of the longitudinal lateral line M-M.
  • the cut 3 will be situated such that the cut edge of the longitudinal slit 4 facing the edge region 6 coincides precisely with the end edge of the strip 11 situated there and thus, as shown by a comparison of FIGS. 7 and 8 , the cut edge of the lengthwise strip 4 runs there inside the end segment of the edge region 6 , so that after making the cut at the cut edge no more soft material remains at the cut edge at this end of the edge region 6 .
  • the opposite cut surface of the longitudinal out 4 still extends within the region of softer material, as is especially well seen from the magnified representation of feature 1 ) in FIG. 10 , so that at that end of the edge region 5 the entire cut plane of the longitudinal cut 4 lies within the soft region, so that, as shown by FIG. 10 , a residual soft segment 12 remains at that end of the edge region 5 (with the corrugations 3 being somewhat radially deeper).
  • the entire cut surface of the longitudinal slit 4 lies there in the soft material and accordingly is also formed entirely of this soft material.
  • the width b of the longitudinal slit 4 is smaller than the width of the strip 11 of softer material, which ensures that even after performing the slitting process a small end segment 12 of softer material still remains at the end of the edge region 5 where the corrugations 3 are formed (see FIG. 10 ).
  • FIG. 9 now shows once more the closed position of the corrugated hose 1 with maximum overlap of the edge regions 5 and 6 , i.e., the condition in which the edge region 6 shoved onto the edge region 5 comes to bear by its cut surface lying at its end against the radial shoulder 7 at the other end of the edge region 5 and thus against the end surface of the corrugations 2 there.
  • corrugated tube 1 as represented in FIGS. 12 and 13 shows a corrugated tube 1 which is provided with neither a soft internal layer 10 nor a lengthwise strip 11 of softer material, but instead has been made solely from one thermoplastic material.
  • a longitudinal slit 4 is made along a longitudinal lateral line M-M (only present in concealed form in FIGS. 12 and 13 ) and a subsequent thermal deformation brings it into a closed position corresponding to FIG. 3 or also corresponding to the representation of FIG. 12 , in which the edge regions 5 , 6 completely overlap radially across the entire circumferential region a.
  • corrugated tube 1 to contain a bundle of cables 15 is shown by the representation of FIG. 12 .
  • the space needed by the cable bundle inside the corrugated tube 1 is such that, in the closed state, a total overlap of the edge regions 5 and 6 occurs along the entire circumferential region a.
  • the corrugated tube 1 is spread apart or opened up from its starting state, corresponding to FIG. 3 or 9 or 12 , by means of a suitable device, far enough so that the longitudinal slit 4 is opened and then the cables 15 can be inserted through it into the inside of the corrugated tube 1 .
  • any suitable thermoplastic material can be used, wherein polypropylene (PP) or a polyamide (PA) with a Shore D hardness (per ISO 868) greater than 60 is recommended in particular as the harder material and a thermoplastic elastomer (TPE with a Shore A hardness less than 80 as the softer material.
  • PP polypropylene
  • PA polyamide
  • TPE thermoplastic elastomer
  • FIG. 14 shows the principle of a layout for the manufacturing of such a corrugated tube.
  • a plastic tube 21 is extruded from an injection die (injection head) 20 and then taken to a following corrugator 22 of known kind, in which the plastic tube 21 is provided with corrugations encircling the circumference in the desired manner.
  • the extrusion die 20 is connected to a first extruder 17 and a second extruder 18 , wherein the first extruder 17 feeds a suitable thermoplastic material, such as a polypropylene or a polyamide with a Shore D hardness greater than 60, and the second extruder 18 a thermoplastic elastomer which is softer and has a Shore A hardness less than 80 to the injection head 20 .
  • a suitable thermoplastic material such as a polypropylene or a polyamide with a Shore D hardness greater than 60
  • the second extruder 18 a thermoplastic elastomer which is softer and has a Shore A hardness less than 80 to the injection head 20 .
  • the corrugated plastic tube 1 then emerges from the corrugator 22 and is provided in a following slicing device 23 with a longitudinal slit along a lateral longitudinal line and then delivered to a device 24 for thermal deformation, preferably an IR deformation layout, in which the slit corrugated tube is heated to a temperature below the melting temperature of the thermoplastic material used and then converted stepwise while running through deforming rollers to a final shape, in which the edge regions 5 , 6 on either side of the longitudinal slit 4 are brought into a radial overlap with each other in the circumferential direction until finally an overlap position is reached in which a complete overlap of the region of radially deeper lying corrugations at the one edge region by the radially higher lying corrugations at the other edge region occurs.
  • a device 24 for thermal deformation preferably an IR deformation layout
  • the corrugated tube 1 is taken from the IR deformation layout 24 to a following cooling system 25 with a suitable cooling bath, and after moving through this the corrugated hose 1 is wound up or stored in pieces separated from each other.
  • a plastic tube is being extruded having a striplike length segment 11 made of a second, different thermoplastic material
  • this can be done in coextrusion, by placing a torpedo insert centrally in the injection head of the extruder 17 , acting as a displacement body and forming the emerging melt from the extruder 17 into a ring-shaped tube or hose 21 .
  • thermoplastic material such as a softer material
  • a second thermoplastic material is fed radially from the side into the flow of melt around the torpedo, being coextruded with it, thereby forming a strip of this other material along the extruded plastic tube 21 , after which in the following corrugator 22 the desired shaping with corrugations along the circumference can take place.
  • FIG. 15 shows in only a very basic manner a longitudinal section through an injection head 20 for a two-component coextrusion.
  • This comprises a nozzle body 16 , in which a torpedo 19 is arranged, serving as a displacement body for the movement of the plastic melt 17 ′ which is supplied by the first extruder 17 and representing the main flow of material, in order to form the plastic melt (arrow S) emerging from the injection head 20 into a ring-shaped tube 21 .
  • the second extruder 18 extrudes a plastic melt 18 ′ of a softer material through a feed channel 26 on the injection head 20 into the main material flow of the plastic melt 17 ′ displaced radially outwards by the torpedo 19 .
  • the two plastic melts 17 ′ and 18 ′ chosen to be well compatible with each other, are combined and also react chemically so that a lengthwise strip of softer material is formed along the extruded tube 21 , yet it is firmly joined to the harder material of the rest of the tube 21 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Details Of Indoor Wiring (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Diaphragms And Bellows (AREA)
US15/321,720 2014-06-23 2015-05-19 Plastic corrugated tube for surrounding pipes and method for producing such a corrugated tube Active US10199811B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102014108757 2014-06-23
DE102014108757.7A DE102014108757A1 (de) 2014-06-23 2014-06-23 Wellrohr aus Kunststoff zum Ummanteln von Leitungen sowie Verfahren zur Herstellung eines solchen Wellrohres
DE102014108757.7 2014-06-23
PCT/EP2015/061018 WO2015197266A1 (de) 2014-06-23 2015-05-19 Wellrohr aus kunststoff zum ummanteln von leitungen sowie verfahren zur herstellung eines solchen wellrohres

Publications (2)

Publication Number Publication Date
US20170141553A1 US20170141553A1 (en) 2017-05-18
US10199811B2 true US10199811B2 (en) 2019-02-05

Family

ID=53199987

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/321,720 Active US10199811B2 (en) 2014-06-23 2015-05-19 Plastic corrugated tube for surrounding pipes and method for producing such a corrugated tube

Country Status (6)

Country Link
US (1) US10199811B2 (enExample)
EP (1) EP3158614B1 (enExample)
CN (1) CN106663929B (enExample)
BR (1) BR112016030238B1 (enExample)
DE (1) DE102014108757A1 (enExample)
WO (1) WO2015197266A1 (enExample)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961038B2 (en) 2013-12-24 2021-03-30 Orbis Corporation Plastic corrugated container with soft score line
US11072140B2 (en) * 2017-06-20 2021-07-27 Orbis Corporation Balanced process for extrusion of plastic corrugated sheet and subsequent converting into plastic boxes
US11072455B2 (en) 2013-12-24 2021-07-27 Orbis Corporation Process for forming plastic corrugated container and intermediary blank
US11325740B2 (en) 2013-12-24 2022-05-10 Orbis Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
US11643242B2 (en) 2013-12-24 2023-05-09 Orbis Corporation Air vent for welded portion in plastic corrugated material, and process for forming welded portion
US11702241B2 (en) 2011-10-13 2023-07-18 Orbis Corporation Plastic corrugated container with sealed edges
US12394537B2 (en) * 2022-06-30 2025-08-19 Yazaki Corporation Exterior material, exterior material connecting body, wire harness, and method of manufacturing wire harness

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016220170A1 (de) * 2016-10-14 2018-04-19 Leoni Kabel Gmbh Kabelsatz und Verfahren zur Herstellung eines Kabelsatzes
DE102016220167A1 (de) * 2016-10-14 2018-04-19 Leoni Kabel Gmbh Kabelsatz und Verfahren zur Herstellung eines Kabelsatzes
DE102016123040A1 (de) * 2016-11-29 2018-05-30 Schlemmer Gmbh Aufklappbarer Wellschlauch und Kabelbaum
DE102017105807B3 (de) * 2017-03-17 2018-08-16 Schlemmer Holding GmbH Mehrkomponenten-Extrusionsspritzkopf, Mehrkomponenten-Extrusionsanlage und Verfahren zum Herstellen eines Verbundschlauchs
CN106992477B (zh) * 2017-05-12 2019-03-26 深圳市骏鼎达新材料股份有限公司 一种平滑锁合式波纹管及其制造方法
CN107013766A (zh) * 2017-05-25 2017-08-04 江苏省埃迪机电设备实业有限公司 一种波形为波浪形的金属波纹管
CN109900389B (zh) * 2019-03-14 2020-11-03 中北大学 一种灌浆套筒浆料温度测量装置及其测量方法
JP7019272B2 (ja) * 2019-06-07 2022-02-15 矢崎総業株式会社 コルゲートチューブ及びワイヤハーネス
CN112590154A (zh) * 2020-12-04 2021-04-02 长春百思特汽车零部件有限公司 一种波纹管的生产方法、生产装置及波纹管

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336950A (en) * 1964-05-19 1967-08-22 Continental Oil Co Culvert construction
DE3246594A1 (de) 1982-12-16 1984-06-20 Hegler, Wilhelm, 8730 Bad Kissingen Huellwellrohr
DE3405552A1 (de) 1984-02-16 1985-08-29 Fränkische Rohrwerke Gebrüder Kirchner GmbH & Co, 8729 Königsberg Kunststoff-schutzrohr
US4766662A (en) * 1984-08-15 1988-08-30 Dayco Products, Inc. Method of protecting hose with a plastic abrasion-resistant protective sleeve
EP0291418A1 (fr) 1987-05-15 1988-11-17 Compagnie Plastic Omnium Tube profilé en matière plastique
US4986575A (en) 1986-11-25 1991-01-22 Frankische Rohrwerk Gebr. Kirchner Gmbh & Co. Plastic protective tube arrangement for lines
WO1994011663A1 (en) 1992-11-17 1994-05-26 Proprietary Technology, Inc. Self locking slitted corrugated tubing
US5566722A (en) * 1992-11-17 1996-10-22 Proprietary Technology, Inc. Self locking slitted corrugated tubing
DE19641421A1 (de) 1996-10-08 1998-04-09 Schlemmer & Co Josef Wellrohr zur schützenden Ummantelung elektrischer Leitungen
DE19700916A1 (de) 1997-01-14 1998-07-16 Ralph Peter Dr Ing Hegler Einteiliges Hüll-Wellrohr und Verfahren zu seiner Herstellung
DE19705761A1 (de) 1997-02-14 1998-08-20 Kirchner Fraenk Rohr Kunststoffwellrohr
EP0860921A1 (en) 1997-02-21 1998-08-26 Sumitomo Wiring Systems, Ltd. Corrugated tube
US6034329A (en) 1996-09-03 2000-03-07 Sumitomo Wiring Systems, Ltd. Corrugated tube and an automatic wire-loading device therefor
US6096975A (en) * 1996-02-28 2000-08-01 Sofanou S.A. Split grooved sheath and method and apparatus for making same
US6323425B1 (en) * 1999-02-06 2001-11-27 Ralph Peter Hegler Method of producing a one-piece corrugated jacket pipe from thermoplastic and method of inserting at least one electric line into such a corrugated jacket pipe
US6341626B1 (en) * 1998-04-18 2002-01-29 Federal-Mogul Technology Limited Flexible protective sleeve
US6488053B1 (en) * 2001-06-12 2002-12-03 Yazaki Corporation Corrugated tube
US6843276B2 (en) 2001-06-12 2005-01-18 Yazaki Corporation Corrugated tube and method for producing the same
US20050011569A1 (en) * 2001-11-21 2005-01-20 Lucia Della Putta Protective sleeve for fluid circulation tube
US20050274535A1 (en) * 2004-06-15 2005-12-15 Yazaki Corporation Corrugated tube
EP2182599A1 (de) 2008-10-30 2010-05-05 Schlemmer Gmbh Wellrohr aus Kunststoff, insbesondere zum Ummanteln elektrischer Leitungen
US7891383B2 (en) * 2006-07-05 2011-02-22 Delfingen Fr-Anteuil S.A. Ringed tubular sheath and device for making such a sheath
US20140027002A1 (en) * 2011-04-04 2014-01-30 Yazaki Corporation Corrugated tube
US20140255627A1 (en) * 2012-04-11 2014-09-11 Federal-Mogul Powertrain, Inc. Self-curling non-woven sleeve and method of construction thereof
US20170030498A1 (en) * 2015-07-27 2017-02-02 Schlemmer Gmbh Openable corrugated hose, cable harness and method for producing and openable corrugated hose of this kind

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079021A (ja) * 2001-08-31 2003-03-14 Yazaki Corp コルゲートチューブ及びその形成方法

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336950A (en) * 1964-05-19 1967-08-22 Continental Oil Co Culvert construction
DE3246594A1 (de) 1982-12-16 1984-06-20 Hegler, Wilhelm, 8730 Bad Kissingen Huellwellrohr
US4513787A (en) 1982-12-16 1985-04-30 Wilhelm Hegler Corrugated sheathing hose
DE3405552A1 (de) 1984-02-16 1985-08-29 Fränkische Rohrwerke Gebrüder Kirchner GmbH & Co, 8729 Königsberg Kunststoff-schutzrohr
US4766662A (en) * 1984-08-15 1988-08-30 Dayco Products, Inc. Method of protecting hose with a plastic abrasion-resistant protective sleeve
US4986575A (en) 1986-11-25 1991-01-22 Frankische Rohrwerk Gebr. Kirchner Gmbh & Co. Plastic protective tube arrangement for lines
EP0291418A1 (fr) 1987-05-15 1988-11-17 Compagnie Plastic Omnium Tube profilé en matière plastique
US5566722A (en) * 1992-11-17 1996-10-22 Proprietary Technology, Inc. Self locking slitted corrugated tubing
WO1994011663A1 (en) 1992-11-17 1994-05-26 Proprietary Technology, Inc. Self locking slitted corrugated tubing
US6096975A (en) * 1996-02-28 2000-08-01 Sofanou S.A. Split grooved sheath and method and apparatus for making same
DE69711787T2 (de) 1996-09-03 2002-11-28 Sumitomo Wiring Systems, Ltd. Ein Hüllwellrohr und ein automatischer Kabellader
US6034329A (en) 1996-09-03 2000-03-07 Sumitomo Wiring Systems, Ltd. Corrugated tube and an automatic wire-loading device therefor
DE19641421A1 (de) 1996-10-08 1998-04-09 Schlemmer & Co Josef Wellrohr zur schützenden Ummantelung elektrischer Leitungen
DE19700916A1 (de) 1997-01-14 1998-07-16 Ralph Peter Dr Ing Hegler Einteiliges Hüll-Wellrohr und Verfahren zu seiner Herstellung
US6079451A (en) 1997-01-14 2000-06-27 Bayerische Motoren Werke Aktingesellschaft Integral corrugated jacket pipe and method of producing the same
DE19705761A1 (de) 1997-02-14 1998-08-20 Kirchner Fraenk Rohr Kunststoffwellrohr
US6078009A (en) 1997-02-21 2000-06-20 Sumitomo Wiring Systems, Ltd. Corrugated tube
EP0860921A1 (en) 1997-02-21 1998-08-26 Sumitomo Wiring Systems, Ltd. Corrugated tube
US6341626B1 (en) * 1998-04-18 2002-01-29 Federal-Mogul Technology Limited Flexible protective sleeve
US6323425B1 (en) * 1999-02-06 2001-11-27 Ralph Peter Hegler Method of producing a one-piece corrugated jacket pipe from thermoplastic and method of inserting at least one electric line into such a corrugated jacket pipe
US6488053B1 (en) * 2001-06-12 2002-12-03 Yazaki Corporation Corrugated tube
US6843276B2 (en) 2001-06-12 2005-01-18 Yazaki Corporation Corrugated tube and method for producing the same
US20050011569A1 (en) * 2001-11-21 2005-01-20 Lucia Della Putta Protective sleeve for fluid circulation tube
US20050274535A1 (en) * 2004-06-15 2005-12-15 Yazaki Corporation Corrugated tube
US7891383B2 (en) * 2006-07-05 2011-02-22 Delfingen Fr-Anteuil S.A. Ringed tubular sheath and device for making such a sheath
EP2182599A1 (de) 2008-10-30 2010-05-05 Schlemmer Gmbh Wellrohr aus Kunststoff, insbesondere zum Ummanteln elektrischer Leitungen
US20140027002A1 (en) * 2011-04-04 2014-01-30 Yazaki Corporation Corrugated tube
US20140255627A1 (en) * 2012-04-11 2014-09-11 Federal-Mogul Powertrain, Inc. Self-curling non-woven sleeve and method of construction thereof
US20170030498A1 (en) * 2015-07-27 2017-02-02 Schlemmer Gmbh Openable corrugated hose, cable harness and method for producing and openable corrugated hose of this kind

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ISA European Patent Office, International Search Report and Written Opinion Issued in Application No. PCT/EP2015/061018, dated Aug. 11, 2015, WIPO, 11 pages.
State Intellectual Property Office of the People's Republic of China, Office Action and Search Report Issued in Application No. 201580034396.4, dated Aug. 3, 2018, 16 pages.
The State Intellectual Property Office of the People's Republic of China, First Office Action Issued in Chinese Application No. 201580034396.4, dated Oct. 23, 2017, 15 pages. (Submitted with English Translation of First Office Action).

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702241B2 (en) 2011-10-13 2023-07-18 Orbis Corporation Plastic corrugated container with sealed edges
US10961038B2 (en) 2013-12-24 2021-03-30 Orbis Corporation Plastic corrugated container with soft score line
US11072455B2 (en) 2013-12-24 2021-07-27 Orbis Corporation Process for forming plastic corrugated container and intermediary blank
US11319132B2 (en) 2013-12-24 2022-05-03 Orbis Corporation Plastic corrugated container with soft score line
US11325740B2 (en) 2013-12-24 2022-05-10 Orbis Corporation Straight consistent body scores on plastic corrugated boxes and a process for making same
US11643241B2 (en) 2013-12-24 2023-05-09 Orbis Corporation Process for forming plastic corrugated container and intermediary blank
US11643242B2 (en) 2013-12-24 2023-05-09 Orbis Corporation Air vent for welded portion in plastic corrugated material, and process for forming welded portion
US11760530B2 (en) 2013-12-24 2023-09-19 Orbis Corporation Process for forming plastic corrugated container with ultrasonically formed score lines
US11072140B2 (en) * 2017-06-20 2021-07-27 Orbis Corporation Balanced process for extrusion of plastic corrugated sheet and subsequent converting into plastic boxes
US12394537B2 (en) * 2022-06-30 2025-08-19 Yazaki Corporation Exterior material, exterior material connecting body, wire harness, and method of manufacturing wire harness

Also Published As

Publication number Publication date
CN106663929A (zh) 2017-05-10
BR112016030238A2 (enExample) 2017-08-22
US20170141553A1 (en) 2017-05-18
DE102014108757A1 (de) 2015-12-24
EP3158614A1 (de) 2017-04-26
CN106663929B (zh) 2019-03-29
WO2015197266A1 (de) 2015-12-30
EP3158614B1 (de) 2022-04-20
BR112016030238B1 (pt) 2022-09-20

Similar Documents

Publication Publication Date Title
US10199811B2 (en) Plastic corrugated tube for surrounding pipes and method for producing such a corrugated tube
US9759360B2 (en) Openable corrugated hose, cable harness and method for producing an openable corrugated hose of this kind
US6317968B1 (en) Corrugated tube and an automatic wire-loading device therefor
US6096975A (en) Split grooved sheath and method and apparatus for making same
US20240159330A1 (en) Pipe with an outer wrap
DE10142719A1 (de) Wärmeisoliertes Leitungsrohr
KR101974401B1 (ko) 선을 수용하기 위한 주름 튜브 조립체 및 이러한 주름 튜브 조립체를 제조하기 위한 방법
JP2009180311A (ja) ホース口金具用樹脂製ニップルおよびホース口金具接続構造
EP4311050A2 (de) Hülleinheit für kompakte leitungsführung für reinraumanwendungen, sowie herstellverfahren hierfür
WO2018099686A1 (de) Aufklappbarer wellschlauch und kabelbaum
US20170336000A1 (en) Pipe with an outer wrap
EP1303391B1 (en) Method and device for manufacturing insulated tube
DE19817109C2 (de) Nicht-kreisringförmige Wellrohre
US4509911A (en) Coupling structure and method and apparatus for its manufacture
JP3647857B1 (ja) 管継手の製造方法
MX2010013129A (es) Junta de tubo y metodo relacionado.
JP2003502195A (ja) 母線に沿って延びるスリット開口部を有するコルゲートチューブを製造する方法
DE102016119604A1 (de) Kabelummantelung und Kabelbaum
JP6909316B2 (ja) コンポジットチューブ
EP3125383B1 (de) Aufklappbarer wellschlauch, kabelbaum und verfahren zum herstellen eines derartigen aufklappbaren wellschlauchs
KR890005306B1 (ko) 합성수지제 플랜지가 붙은 코러게이트관과 그 제조방법
JP6699865B2 (ja) コルゲート管
JP6835048B2 (ja) コルゲート管
EP2985133B1 (de) Verfahren zur nachumhüllung eines rohrformteils
EP2146412B1 (de) Schrumpfschlauch

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: DELFINGEN FR-ANTEUIL S.A., FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHLEMMER GMBH;REEL/FRAME:059294/0987

Effective date: 20210322

Owner name: DELFINGEN FR-ANTEUIL S.A., FRANCE

Free format text: ASSIGNMENT OF ASSIGNOR'S INTEREST;ASSIGNOR:SCHLEMMER GMBH;REEL/FRAME:059294/0987

Effective date: 20210322

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4