TWM589589U - 流體機動效應之物質乾式奈米化處理設備 - Google Patents
流體機動效應之物質乾式奈米化處理設備 Download PDFInfo
- Publication number
- TWM589589U TWM589589U TW108211131U TW108211131U TWM589589U TW M589589 U TWM589589 U TW M589589U TW 108211131 U TW108211131 U TW 108211131U TW 108211131 U TW108211131 U TW 108211131U TW M589589 U TWM589589 U TW M589589U
- Authority
- TW
- Taiwan
- Prior art keywords
- pressure
- fluid
- generating unit
- item
- patent application
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/0012—Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain)
- B02C19/0018—Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain) using a rotor accelerating the materials centrifugally against a circumferential breaking surface
- B02C19/0025—Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain) using a rotor accelerating the materials centrifugally against a circumferential breaking surface by means of a rotor with radially extending channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/26—Details
- B02C13/286—Feeding or discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/26—Details
- B02C13/288—Ventilating, or influencing air circulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/0012—Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain)
- B02C19/0043—Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain) the materials to be pulverised being projected against a breaking surface or breaking body by a pressurised fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C13/00—Disintegrating by mills having rotary beater elements ; Hammer mills
- B02C13/26—Details
- B02C13/286—Feeding or discharge
- B02C2013/28609—Discharge means
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Disintegrating Or Milling (AREA)
Abstract
一種流體機動效應之物質乾式奈米化處理設備,為提供可目視細粒物質,以乾式處理為奈米尺度之處理設備,系統設有一壓力發生單元,藉由該壓力發生單元所發生高壓氣流,及所設增壓葉輪高速機構運轉,以在壓力缸內部發生高度流體動作和機械性撞擊,始得物理性高速動量,將所在之微粒物質進行壓縮、拉扯、撞擊、切磋等多功性的分化功能,分化為奈米尺度。
Description
為提供可目視細粒物質,以乾式處理為奈米尺度之處理設備所需之裝置系統,藉由氣流的高低壓差,和機械工作產生高度動量,進行物理效應分化微粒物質為奈米尺度之處理設備。
物質奈米化,提供工業材料的嶄新運用,以及創新領域提供生活所需,相關物質奈米化的工法有電離、或磁切、或超音波、或噴流、或化學分散溶解,若材料素質符合最根本分法,以研磨方式達成奈米尺度分化,該研磨方式如台灣專利第100106419案(請參閱第1圖所示),提供一種研磨機可將物質研磨成奈米化的尺度,該系統由一單體組合之研磨筒101,內置有一筒形導流工件102,以及一螺旋渦輪103,底部有一底板104封合,該渦輪下端設有結合部105,提供底部馬達106連結動力,研磨筒101上方設有一開口,該開口提供物質的進出,進入的加工物首先經過中央導流工件所設中央管,落置到螺旋渦輪的頂盤位置,並由該螺旋葉片造成徑向甩出動
作,以碎化進入之加工物,之後被加工後的工作物,整體又沿著導流構件外圍,受壓力推斥作用,再回位到中央管的上方入口,重複落下再度進入螺旋渦輪重複性再加工。
該機構為一循環式的作業,置入的加工物在研磨筒內部重複循環被研磨,最後將研磨筒整體脫離馬達,再由該上方所設開口反向倒出被奈米化的研磨物,該種實施由於在研磨筒內部不斷循環重複研磨,已被奈米化的物質,有很高的機率為重複研磨,因此研磨效率不高,另外所倒出的研磨物因未被篩選,因此粒度不均,達成率不高。
一種流體機動效應之物質乾式奈米化處理設備,為提供可目視細粒物質,以乾式處理為奈米尺度之處理設備,系統設有一壓力發生單元,藉由該壓力發生單元所發生高壓氣流,及所設增壓葉輪高速機構運轉,以在壓力缸內部發生高度流體動作和機械性撞擊,始得物理性高速動量,將所在之微粒物質進行壓縮、拉扯、撞擊、切磋等多功性的分化功能,分化為奈米尺度為其主要目的。
本創作第二目的為壓力發生單元設有一罩覆鼓體,內部設有一引流軸筒帶動一增壓葉輪,引流軸筒軸向設有一半開放的壓力艙胴,運轉時,由壓力艙胴所連通的汲入口以負壓汲入被加工物,經壓動槽口及通匯槽口散發在罩覆鼓體的壓力缸體之中,系統受引流軸筒及增壓葉輪作動而得分化
操作。
本創作第三目的為該增壓葉輪所設扇翼之翼面為與迴轉軸心線平行,經由原動軸驅動之後,翼面工作方向與增壓葉輪運轉方向相同。
本創作第四目的為該增壓葉輪所設扇翼之側向形狀可為平直狀、或為拱曲狀,為拱曲狀可增加翼面面積,以及發生不同工作效率。
本創作第五目的為該增壓葉輪所設扇翼翼面縱身,相反增壓葉輪運轉方向,槽狀凹入設有一縱向的集流槽,集流槽連通外端匯流口,工作時,在匯流口的最低點位置,對施力的氣體,因密度集中而提升壓力。
本創作第六目的為該壓力缸體內部,可經由一喂給單元匯入待加工之微粒物質,同一輸入側,再經由一輔助裝置混合輸入低溫可進行冷卻之氣體,或防爆之惰性氣體。
本創作第七目的為該罩覆鼓體所設之釋出口,其縱身線為通過系統工作之迴轉軸心線,或與該迴轉軸心線之切線平行,以決定不同的空氣動量輸出,其中可改變進入壓力缸體的微粒物質在壓力缸體內部循環的機率,提升被分化的效果。
本創作第八目的為在釋出口外端可設有一加速管,加速管出口方向垂直設有一剛質之迎擊枕體,利用該迎擊枕體所發生的反作用力輔助分化。
本創作第九目的為該罩覆鼓體所設壓力缸體,在其圓周表面岐向設有一內循環輔助之回授管,該回授管設有口徑大的循入口,及口較小的回釋口,循入口為面對增壓葉輪運轉方向,回釋口為尾隨增壓葉輪運轉方向,使在壓力缸體內部的物質可增加重複循環的機率。
本創作第十目的為該壓力發生單元可共軸前後複合,前置壓力發生單
元汲入加工物,所作業之氣流向後置壓力發生單元增壓,後置壓力發生單元對外設有釋出口往外釋出。
本創作第十一目的為系統壓力發生單元後續接設有一分離裝置,該分離裝置為壓力的分離操作方式分離奈米化與否的加工物,以及該分離裝置可串接為多組,單位時間內可提高篩選率。
本創作第十二目的為該分離裝置設有囤置空間,囤置空間經一回取裝置所設回取通路回取未完成的加工物,並反向回遞到喂給單元,以對未達工作目標之原料加工物,產生自體回取回遞再加工之功能。
10‧‧‧壓力發生單元
11‧‧‧動力元
12‧‧‧製冷裝置
13‧‧‧迎擊枕體
14‧‧‧箱體
120‧‧‧推送單元
20‧‧‧罩覆鼓體
21‧‧‧釋出口
22‧‧‧加速管
23‧‧‧壓力缸體
24‧‧‧浮載間隙
201‧‧‧環圍
231‧‧‧後送通口
232‧‧‧游動路徑
30‧‧‧引流軸筒
31‧‧‧原動軸
32‧‧‧汲入口
33‧‧‧壓力艙胴
34‧‧‧壓動槽口
35‧‧‧腰身
36‧‧‧輻向板
37‧‧‧回授管
371‧‧‧循入口
372‧‧‧回釋口
40‧‧‧增壓葉輪
41‧‧‧根部
42‧‧‧扇翼
43‧‧‧翼尖
44‧‧‧輪輻
45‧‧‧翼側
46‧‧‧集流槽
47‧‧‧匯流口
410‧‧‧通匯槽口
50‧‧‧喂給單元
51‧‧‧管路
52‧‧‧喂給端口
53‧‧‧備料單元
54‧‧‧輔助裝置
55‧‧‧喂入管路
60‧‧‧回取裝置
61‧‧‧回取通路
62‧‧‧回遞通路
F‧‧‧流體壓力
S‧‧‧迴轉軸心線
R‧‧‧游動路徑
A‧‧‧向量
T‧‧‧切線
70‧‧‧分離裝置
71‧‧‧第一分離裝置
72‧‧‧中置分離裝置
73‧‧‧後端分離裝置
74‧‧‧罩覆箱體
75‧‧‧囤置空間
76‧‧‧礙口
77‧‧‧緩衝空間
78‧‧‧過濾元件
80‧‧‧串流路徑
81‧‧‧串接通道
90‧‧‧集納裝置
91‧‧‧負壓汲流單元
92‧‧‧出口
93‧‧‧轉載單元
P‧‧‧微粒物質
L‧‧‧壓力匯流線
101‧‧‧研磨筒
102‧‧‧導流工件
103‧‧‧螺旋渦輪
104‧‧‧底板
105‧‧‧結合部
106‧‧‧馬達
第1圖係為習用奈米研磨機之結構圖。
第2圖係為本創作壓力發生單元主體裝置示意圖。
第3圖係為本創作壓力發生單元所設之引流軸筒之立體圖。
第4圖係為第3圖之側剖視圖。
第5圖係為本創作壓力發生單元內部機構側視關係示意圖。
第6圖係為本創作壓力發生單元機構正視簡示圖。
第7圖係為本創作壓力發生單元所設釋出口安排位置示意圖。
第8圖係為第7圖之一。
第9圖係為本創作在釋出口出口方向設有迎擊枕體之示意圖。
第10圖係為本創作罩覆鼓體導通有回授管之正視示意圖。
第11圖係為本創作增壓葉輪之形狀示意圖。
第12圖係為本創作第11圖之一。
第13圖係為本創作增壓葉輪所設扇翼之翼面形狀示意圖。
第14圖係為本創作第13圖之一。
第15圖係為本創作壓力發生單元相關分離裝置組合簡示圖。
第16圖係為本創作前後複合壓力發生單元之示意圖。
第17圖係為本創作附設裝備之整體系統示意圖。
一種流體機動效應之物質乾式奈米化處理設備,為提供可目視細粒物質,以乾式處理為奈米尺度之處理設備系統,利用流體工作原理,加上機械動量的操作,將可目視之微粒物質,以高動能分化處理為奈米尺度。
系統利用一動力元帶動一壓力發生單元,該壓力發生單元設有一剛性罩覆鼓體,內部依系統迴轉軸心線設有一圓艙形之壓力缸體,壓力缸體圓周一處對外導通有一釋出口,內部設有一中心線與迴轉軸心線重疊之引流軸筒,引流軸筒徑向結合有增壓葉輪,整體共軸就位於壓力缸體之中,引流軸筒一端設有一汲入口,汲入口外圓輻向經徑向開設之壓動槽口導通增壓葉輪空間,被加工物由汲入口受壓力缸體內部壓力作用汲引進入壓力缸體,藉由壓力缸體內部所發生的氣流高低壓力差,和高速氣流甚至為音速臨界狀態,及機械運轉所發生的動量,複合多種物理性的操作,作用在被加工之物質微粒,使之易於分化為奈米尺度。
該壓力發生單元配合一喂給單元及一分離裝置和一集納裝置,作業終端可獲取均等尺度之目標物,及在運轉過程中,藉由一回取裝置的回取,
將未完成的工作物回遞再加工,使系統可得高效精準自控生產能力。
有關本創作的裝置實施和工作方式,請參閱圖式說明如下:首先請參閱第2圖所示,本創作主要由一壓力發生單元10發生高值工作能量,以將可目視微粒尺寸的待加工物質(原料)有效分化為奈米尺度,該物質為乾狀質地,為有機或無機之微粒物,在此說明中,定義為被加工物、或細粒物質、或原料,以及該細粒物質可為被事先粗碎或細碎之穀類或無機礦物。
系統設有一工作之迴轉軸心線S,依該迴轉軸心線S設有一原動軸31,原動軸31經由一動力元11所帶動,該動力元11為電力、或流體的動力機械,原動軸31往壓力發生單元10內部帶動一引流軸筒30,引流軸筒30帶動增壓葉輪40,整體運轉於一剛性罩覆鼓體20內部所設壓力缸體23,壓力缸體23工作徑向圓表,向外導通有一釋出口21。
引流軸筒30一端設有汲入口32,汲入口32迎接由管路51喂送的待加工微粒物質(圖上未示),該加工物質經由引流軸筒30的壓動槽口34傳遞進入增壓葉輪40的工作區間。
請再參閱第3圖所示,該引流軸筒30為一胴狀體,一端開口設為汲入口32,與汲入口32同軸往裡凹入開設有一壓力艙胴33,壓力艙胴33輻向經由等角開通分設的壓動槽口34導通外圓表,另一端同軸線聯結一原動軸31,以及該端經由一圓片狀的輻向板36封合,使壓力艙胴33為一圓槽體狀,在引流軸筒30的外圓表可以包含壓動槽口34槽體長度範圍,徑向凹入縮設有一腰身35。
請再參閱第4圖所示,如前述引流軸筒30一端設有一輻向板36,輻向板
36中心同軸組合有原動軸31,另一端為汲入口32,同軸往裡開設有壓力艙胴33,壓力艙胴33經由輻向等角開設的壓動槽口34向外導通,引流軸筒30外表凹入設有腰身35,其前後寬度可大於壓動槽口34的長度。
請再參閱第5圖(請配合第2圖)所示,該壓力發生單元10基礎上設有一剛性的罩覆鼓體20,該罩覆鼓體20內部與迴轉軸心線S同軸,以共軛旋轉圍繞的方式,形成一圓艙形的壓力缸體23,壓力缸體23內部同軸裝設有一引流軸筒30,該引流軸筒30外圓表結合有一組增壓葉輪40,引流軸筒30一端聯結原動軸31,原動軸31係穿出罩覆鼓體20外側聯結動力元11,罩覆鼓體20另一端提供管路51所密接組合,管路51所設喂給端口52為對正汲入口32導通壓力艙胴33空間,壓力艙胴33經壓動槽口34導通增壓葉輪40的工作區間。
增壓葉輪40設有多數扇翼42(請配合第11、12圖),每一扇翼42由該根部41依據迴轉軸心線S以輻向等角分設結合在引流軸筒30的外圓,增壓葉輪40的主體結構,在其前後、端面,分別由所屬輪輻44結合每一扇翼42的翼側45,以組成圓塊狀(請配合第13、14圖)。
由於壓動槽口34的數量與扇翼42不等,以及為了均勻加工物進入壓力缸體23的散播角度,和每一扇翼42之間夾角內為了獲得均等的壓力,因此壓動槽口34得藉由通匯槽口410在引流軸筒30外圓表作環狀的貫通,該結構形式為在根部41與引流軸筒30外圓之間預留有一通匯槽口410,該通匯槽口410可由根部41相鄰引流軸筒30外表一側邊凹入開設,或由該腰身35相對根部41底邊的凹入空間所形成,主要該通匯槽口410可環形貫穿圍繞在引流軸筒30的外圓表,以將經壓動槽口34導通的氣流,可等壓流佈在增壓葉輪40
所設每一扇翼42互對的夾角區間,連同壓力缸體23的空間中,整體組合引流軸筒30與增壓葉輪40為共軸旋轉在壓力缸體23內部,壓力缸體23經由罩覆鼓體20包封,除了必要的氣流通路外,為一氣流限制空間。
系統工作時,壓力缸體23內部發生壓力,被加工物質(圖上未示)受該壓力(負壓)作用經由管路51進入壓力艙胴33,再由壓動槽口34包含通匯槽口410傳遞到增壓葉輪40的容積空間,該喂入物質的游動路徑R,除了喂入被加工物之外,也導入外部大氣壓力氣體,該氣體經扇翼42散播轉進壓力缸體23之後,被動產生一正壓的流體壓力F。
系統分化作業,其工作主體為原動軸31輸入的軸動力,發生一扭矩扭轉引流軸筒30聯動增壓葉輪40,過程中,由游動路徑R轉達的物質,首先受到壓力艙胴33因增壓葉輪40作用產生的負壓所汲入,在引流軸筒30高速的運轉下,流經壓動槽口34的物質,受到壓動槽口34開孔槽面的切壓撞擊,會發生前置性的粉碎操作,物質流經通匯槽口410的結構邊緣,再次受到該通匯槽口410的結構邊緣如角端所撞擊,造成二次機械撞擊性的粉化,增壓葉輪40與引流軸筒30同步運轉,所設扇翼42又迎接由該通匯槽口410傳達的原料物質。
扇翼42旋轉所產生的壓力,作用向處於該翼面位置的物質造成機械性擠切及氣壓性壓縮,該物質受壓縮後分子結構又再次崩裂,再隨高速氣流速度因質量速度關係所產生的動量,讓物質最後又作用在壓力缸體23的徑向內圓表,依運動定律該動量作用向壓力缸體23內圓表,壓力缸體23即相對產生一等量但相反方向的力量,直接作用在該粒狀物質本體,因此該物質又再次受到碎裂分化,上述為物質在壓力缸體23內一次性循環游移,過
程中受到機械性擊碎,擠壓以及崩裂等多種物理能量共同作用而分化,另外加上速度為高速的關係,明顯增益該分化的動量,使進入的物質可提高被分化的效率。
該管路51設有一喂給端口52提供物質進入通路,喂給端口52在壓力艙胴33的所在位置為鄰近於壓動槽口34中央位置,並且讓所汲入的物質能定向沿著扇翼42的縱向中線傳達,讓扇翼42的表面受力可得平衡、或均衡,因此該管路51依據汲入口32的推拔形狀,縮設為尖口狀,讓喂給端口52所處位置,可探入壓力艙胴33的居中空間。
該增壓葉輪40前、後二端面由翼側45所間接組合,形成一圓塊狀的轉體,扇翼42的翼尖43為可切動於壓力缸體23的內圓表面,壓力缸體23前、後二端面與輪輻44相對之間,間隔有一氣態浮載間隙24,提供了氣態緩衝的氣墊作用,且二側浮載間隙24因輪輻44圓面積與壓力缸體23相對面積為均等,填佈在浮載間隙24的空氣壓力即為均等,因此形成二側均衡壓力的氣墊效果,可提供增壓葉輪40高速運轉時,避免增壓葉輪40軸向偏走,原則上增壓葉輪40受到原動軸31的支持而定向運轉,該運轉方向與迴轉軸心線S為垂直,浮載間隙24的氣墊效應可為輔助支持增壓葉輪40定位,另外由於所輸入的空氣均等充斥在壓力缸體23內部,單位時間內,空氣為相等密度,作為氣墊的作用下,可避免增壓葉輪40的板面震盪,其中輪輻44包含扇翼42與罩覆鼓體20之材質機械強度為能滿足對抗過壓力缸體23內部的工作壓力。
請再參閱第6圖所示,壓力發生單元10的增壓葉輪40位在罩覆鼓體20的壓力缸體23內部工作,加工物質由汲入口32被汲引進入壓力艙胴33,再從
壓動槽口34傳達給增壓葉輪40工作區間,在加工過程中,物質受到增壓葉輪40的作用,至少在壓力缸體23內部一次性循環游動一圈,壓力缸體23外圓表一處向外導通設有一釋出口21,釋出口21接觸到外部大氣壓力,因此在壓力缸體23內部所形成高壓,會循從釋出口21釋出,讓物質(被加工後的材料)可依向外的游動路徑R釋出。
釋出口21的縱身線與迴轉軸心線S為重疊,它可讓進入的微粒物質P在壓力缸體23內部取得多次循環機率,而較細化成奈米狀的成品由於質量小,相乘速度關係不會產生足夠的向量,因此會隨著游動路徑R往釋出口21方向向外流佈,其中該釋出口21的縱身線與該迴轉軸心線S為重疊,其中之一扇翼42到達時,該翼面與之平行,壓動效率較低,增壓葉輪40運轉所產生的壓力僅部份由釋出口21釋出,部份為在壓力缸體23內部循環,循環過程中,內部循環游動的物質,可重複受到壓力缸體23內部擠壓力及流體壓力變化所分化。
所形成的壓力波,又會把鄰近於壓力缸體23外圓的微粒物質P往增壓葉輪40內部拉回,再受到扇翼42翼面的機械動量所撞擊等可能發生的動量所再分化,所進入的微粒物質P在壓力缸體23內部部份循環,該循環的微粒物質P即增加被高壓擊碎的機率,而被細化為奈米的物質質量微小,容易隨著游動路徑R的氣流流線從釋出口21帶出。
請再參閱第7圖所示,該壓力發生單元10在罩覆鼓體20內部旋轉的增壓葉輪40所產生的壓力由釋出口21釋出,釋出口21的縱向線與迴轉軸心線S重疊,所發生壓力會在釋出口21相對旋轉方向的一側開口開始釋出,在該角度所發生的向量A為短小,因此進入壓力缸體23內部的加工物質,部份會在
壓力缸體23內部造成明顯的循環動作,提高被分化的機率。
請再參閱第8圖所示,該壓力發生單元10所設增壓葉輪40工作產生的壓力由釋出口21釋出,釋出口21的縱身線若偏離迴轉軸心線S平行運轉的切線切線T位置,則可增加由該釋出口21迎向運轉方向的開口寬度,始發生一較大的排出向量A。
請再參閱第9圖所示,該釋出口21縱身線若平行於增壓葉輪40外圍的切線T位置,則從該釋出口21的開口位置即可流放氣流,發生一最大的排出向量A,此種方式,物質進入壓力缸體23內部的循環機率較低,可利用一迎擊枕體13提供由釋出口21釋出帶有高度動量的微粒物質P,相同反作用力效應而達捶擊效果,以輔助分化動作,另該捶擊的空間可由分離裝置70所包覆,分化的物質不會飄散外揚,其中釋出口21輸出的氣流動量,可再經由一加速管22提升該速度,讓經過的物質利用其本身的質量相乘高速而得更大動量,以相互垂直的角度,捶擊在迎擊枕體13表面,迎擊枕體13則反饋相等的力量,以震碎粒狀物質,更加分化其細度,上述之迎擊枕體13實施,可實施在本體任一釋出口21之出口。
請再參閱第10圖所示,釋出口21的縱身線為與該迴轉軸心線S重疊,因此增壓葉輪40所發生的壓力差變化小但轉速高,為了更明確控制所進入的加工物可在壓力缸體23內部多次循環,則在壓力缸體23圓表一處導通組合有回授管37,該回授管37設有一循入口371及一回釋口372,該循入口371為迎向增壓葉輪40運轉方向,回釋口372為尾隨增壓葉輪40運轉方向,循入口371為較大開口,由增壓葉輪40所發生的壓力可由循入口371進入,並由回釋口372高速輸出,利用該回授管37的輔助,所進入的物質,除了在罩覆鼓
體20的壓力缸體23內部循環之外,更可藉由回授管37的前後引送動作,而增加物質在壓力缸體23內部循環提高分化的機率,其中該回授管37可設對稱二組,等角搭接於罩覆鼓體20的外圓並導通壓力缸體23。
請再參閱第11圖所示,該壓力發生單元10所設增壓葉輪40為位在罩覆鼓體20內部,其中該扇翼42為由根部41結合在引流軸筒30,扇翼42外觀形狀為一平板狀的片體,在相同功率單位轉速下,其發生的壓力較高。
請再參閱第12圖所示,該壓力發生單元10為由增壓葉輪40就位在罩覆鼓體20之中,其中該扇翼42由根部41結合在引流軸筒30,扇翼42的側向截面形狀為一拱曲狀,利用該曲線,在翼面寬度不變情況下,則可加長扇翼42的表面積,在相同速度下可增加往釋出口21方向壓出的流體壓力F。
請再參閱第13圖所示,該增壓葉輪40前後為由輪輻44中間組合,輻狀等角序列的扇翼42所組成,該扇翼42由根部41結合引流軸筒30,二側翼側45分別結合輪輻44,相對內面以形成一圓塊體的增壓葉輪40,其中該扇翼42的縱身方向,相反增壓葉輪40運轉的方向,凹入設有一具長度的集流槽46,該集流槽46可從根部41往外方向漸進形成,到達翼尖43的位置,形成一凹入截面的匯流口47,配合增壓葉輪40運轉之後,所產生的氣流,會從匯流口47的點獲得最高氣體密度,相對形成最高壓力,並形成一環形流佈的壓力匯流線L,藉由該匯流口47讓壓力分佈在壓力匯流線L的線性位置,除了可集中進入工作微粒之外,也集中壓力,讓該顆粒之間彼此可獲得互撞的機率,及壓力擠碎狀態,增加分化效率。
請再參閱第14圖所示,該增壓葉輪40所設扇翼42,徑向截面為曲形,在該扇翼42表面相反運轉方向,縱向設有一集流槽46,該集流槽46可從根
部41開始延伸到達翼尖43位置,該集流槽46即預留出一凹入的匯流口47,相同如第13圖的工作方式,可集中形成一壓力匯流線L。
請再參閱第15圖所示,本創作所設壓力發生單元10,系統經由動力元11帶動引流軸筒30之後作動增壓葉輪40,居於罩覆鼓體20內部壓力缸體23作壓力發生的操作,可目視被加工的物質微粒(圖上未示),該供給為由喂給單元50進入備料單元53之中,備料單元53經由管路51傳達,最後由喂給端口52喂給入引流軸筒30的汲入口32,再由引流軸筒30的壓動槽口34傳遞到壓力缸體23的空間,經由壓力發生單元10工作後的分化完成物質,首先可經由一分離裝置70的罩覆箱體74包封,再由該礙口76作壓力的傳達,並由緩衝空間77作緩衝之後,讓所進入被加工完成的微粒物質P可從過濾元件78的表體均勻濾過,濾過為達成目標的奈米尺度物質,被濾下的較大物質則會囤留在囤置空間75的空間,該囤積的動作可藉由地心引力、或以外力如氣體壓載動力所處理為囤積狀。
經壓力發生單元10加工後的微粒物質P從釋出口21輸出之後,另一方式可作用向一迎擊枕體13,由迎擊枕體13表面再造成創擊作用,作為後續分化輔助,被分化為奈米或細小的物相同從礙口76壓送向緩衝空間77的空間,經由迎擊枕體13再度分化,較大的顆粒相同會囤積在該空間所屬的囤置空間75。
系統利用分離裝置70的分離操作,使過濾元件78可有效選取需求目標的奈米化微粒。
壓力發生單元10所設增壓葉輪40的運轉,若該動力元11驅動軸轉速高達1萬五千轉,且增壓葉輪40的總體直徑為45公分情況之下,其運轉的結果
會在汲入口32及壓力缸體23的外圍產生極大的壓差,甚至翼尖43位置的圓切速率可達音速臨界,超出音速的狀況下,壓力缸體23內圓表與翼尖43之間的空氣會造成剝離,該剝離的動作,可能產生音爆,甚至高速運轉所發生的溫度極高,為了維持壓力發生單元10內部系統安全,則可經由一喂入管路55從汲入口32導入惰性氣體例如氮氣,或是避免壓力發生單元10內部的高溫從輔助裝置54可導入低溫空氣以維護系統安全。
請再參閱第16圖所示,本裝置該壓力發生單元10可設為前後二組,依該迴轉軸心線S共軸同步運轉,差異為在前置的壓力發生單元10所設罩覆鼓體20外圓外圍,脫離壓力缸體23的包覆限制,擴設有一前後搭接的環圍201,該環圍201為鼓腹狀,以在壓力缸體23周邊位置讓出一後送通口231,以及前後二組的罩覆鼓體20間隔之間形成有游動路徑232,工作時物質由管路51經由前置壓力發生單元10的汲入口32進入所屬引流軸筒30及增壓葉輪40的工作空間,增壓葉輪40所發生的壓力經由後送通口231和游動路徑232傳達,向後進入後置壓力發生單元10的汲入口32以對後置壓力發生單元10增壓,後置壓力發生單元10所屬壓力缸體23空間作更高壓分化操作,最後由該後置壓力發生單元10所設的釋出口21往外釋出,藉由前後重疊並同一原動軸31帶轉,最後結果可獲得明顯的增壓分化能力。
請再參閱第17圖所示,本創作壓力發生單元10應用在一精準作業系統,壓力發生單元10可藉由一箱體14所包覆,所設釋出口21後端接續有分離裝置70,分離裝置70末端結合有一收納之集納裝置90,其中分離裝置70可分設為多組串接,而設有第一分離裝置71、中置分離裝置72、後端分離裝置73,互通之間分別由所屬串接通道81所串接,在第一分離裝置71、中
置分離裝置72、後端分離裝置73分別由一回取通路61並聯該內部的囤置空間75空間,該回取裝置60發生一機械動作的推送操作,實施回取通路61可以發生類如螺旋推進的推斥動作,回取囤置空間75所囤積再加工需求的工作物,最後由連接喂給單元50的回遞通路62反向回遞物質進入壓力發生單元10的喂給單元50之中,系統功能使未加工完成的物質(圖上未示),可經回取裝置60回取而反向投遞喂給單元50造成循環加工的動作。
該集納裝置90經由一出口92能將完成的目標產物由一轉載單元93收納,集納裝置90可藉由一負壓汲流單元91輔助產生氣態壓力差,其中所設負壓汲流單元91生成之負壓力作用於分離裝置70方向,以及所發生的正壓力作用於出口92方向輸出。
在壓力發生單元10的空間中,可經由一製冷裝置12發生製冷的功能,製冷裝置12所發生的低溫能量傳遞給壓力發生單元10,讓壓力發生單元10內部系統可得冷卻,其中可經由一推送單元120將該低溫輸送向壓力發生單元10內部,或經由另一通路傳輸到喂給單元50,喂給單元50則可將製冷裝置12所發生的低溫能量傳達給壓力發生單元10。
系統利用串接方式在壓力發生單元10與集納裝置90之間形成一串流路徑80,其中分離裝置70為多段,可更有效在終點獲取均勻尺度的奈米物質,其中壓力發生單元10所加工的物質為乾燥的物質,包含有機物、無機物或化合物。
集納裝置90為積納工作,該工作的壓力可相等或小於釋出口21出口的正壓力,系統從壓力發生單元10輸出的壓力經由第一分離裝置71、中置分離裝置72、後端分離裝置73的空間及濾過阻力消耗,最後到達集納裝置90
之時,串流路徑80的流動速率即降低為緩和狀態,因此利用該負壓汲流單元91輔助串流路徑80引流動力。
10‧‧‧壓力發生單元
20‧‧‧罩覆鼓體
23‧‧‧壓力缸體
24‧‧‧浮載間隙
30‧‧‧引流軸筒
31‧‧‧原動軸
32‧‧‧汲入口
33‧‧‧壓力艙胴
34‧‧‧壓動槽口
35‧‧‧腰身
36‧‧‧輻向板
40‧‧‧增壓葉輪
41‧‧‧根部
42‧‧‧扇翼
43‧‧‧翼尖
44‧‧‧輪輻
45‧‧‧翼側
410‧‧‧通匯槽口
51‧‧‧管路
52‧‧‧喂給端口
F‧‧‧流體壓力
S‧‧‧迴轉軸心線
R‧‧‧游動路徑
Claims (19)
- 一種流體機動效應之物質乾式奈米化處理裝置,包含有:一動力元;一壓力發生單元,進一步包含有:一剛性罩覆鼓體,內部依迴轉軸心線共軛旋轉圍繞形成有一圓胴狀之壓力缸體,壓力缸體外圓一處向外導通有一釋出口;一中心線與迴轉軸心線重疊之引流軸筒,一端共軸設有一原動軸,原動軸受動於上述動力元,另一端設有一汲入口,汲入口沿迴轉軸心線方向往內部導通有一共軸所設圓胴狀之壓力艙胴,壓力艙胴為於原動軸方向之一端,由一輻向板所封閉,以及在引流軸筒外圓表往裡,以等角對稱分設有至少二口以上的壓動槽口導通壓力艙胴;一組圓板狀之增壓葉輪,由多數等角輻向分佈之扇翼所組成,每一扇翼所設根部為結合在上述引流軸筒的外圓表,並與引流軸筒外表之間,設有一通匯槽口。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中增壓葉輪所設扇翼之翼面方向,與迴轉軸心線平行。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中增壓葉輪二端面,分別結合有輪輻。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中該增壓葉輪所設扇翼之板面為平板狀。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中該增壓葉輪所設扇翼之板面為弧曲狀。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中該增壓葉輪所設扇翼之板面縱向,相反運轉方向,凹入設有一 縱向之集流槽,並依該集流槽之形狀,在與翼尖交接處,形成一匯流口。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中該喂給單元所設管路之喂給端口,為就入於引流軸筒的壓力艙胴空間之中。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中該罩覆鼓體所設釋出口之縱身線,為通過系統之迴轉軸心線。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中該罩覆鼓體所設釋出口之縱身線,為與系統運轉之切線平行。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中該罩覆鼓體所設釋出口,在其出口方向設有一加速管,加速管出口方向與加速管流線方向垂直設有一剛質之迎擊枕體。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中在罩覆鼓體所設壓力缸體圓周表面岐向,依旋轉運行方向,旁通設有對稱角位之二弧曲狀的回授管,回授管設有口徑大的循入口及口徑小的回釋口,依回授管管身曲線為方向基礎,安排該循入口為面對增壓葉輪運轉方向,該回釋口為尾隨增壓葉輪運轉方向。
- 如申請專利範圍第1項所述之流體機動效應之物質乾式奈米化處理裝置,其中該壓力發生單元可共軸為前、後二組,二組之間間隔有游動路徑,前置壓力發生單元之壓力缸體外圍,向後經環圍延伸包封並開通有後送通口導通該游動路徑,游動路徑中央環形導接後置壓力發生單元之汲入口,以及該後置壓力發生單元,設有釋出口。
- 一種流體機動效應之物質乾式奈米化處理系統,為提供可目視微粒物質,以乾式處理為奈米尺度之系統,包含有:一如專利範圍第1項至第12項所述之流體機動效應之物質乾式奈米化處 理裝置;一分離裝置,導接壓力發生單元所述釋出口;一喂給單元,導通壓力發生單元;一回取裝置,設有一以機構推送動作之回取通路及回遞通路,回取通路導接分離裝置內底因重力結果的囤置空間,回遞通路導接喂給單元形成回料運載路徑;一集納裝置,接續於分離裝置。
- 如申請專利範圍第13項所述之流體機動效應之物質乾式奈米化處理系統,其中分離裝置可串流為二組以上,其中第一分離裝置經串接通道導接壓力發生單元之釋出口,後續串接有後端分離裝置,後端分離裝置連通一集納裝置。
- 如申請專利範圍第13項所述之流體機動效應之物質乾式奈米化處理系統,其中集納裝置集納工作壓力,小於釋出口之出口壓力。
- 如申請專利範圍第13項所述之流體機動效應之物質乾式奈米化處理系統,其中集納裝置設有一負壓汲流單元,所生成負壓作用於分離裝置,所生成正壓作用於出口。
- 如申請專利範圍第13項所述之流體機動效應之物質乾式奈米化處理系統,其中該壓力發生單元連接有一製冷裝置,製冷裝置發生能量作用於壓力發生單元所設罩覆鼓體的表體。
- 如申請專利範圍第13項所述之流體機動效應之物質乾式奈米化處理系統,其中該壓力發生單元組合有一製冷裝置,製冷裝置發生能量輸入於喂給單元工作路徑。
- 如申請專利範圍第13項所述之流體機動效應之物質乾式奈米化處理系統,其中在引流軸筒的汲入口,向外導接有一輔助裝置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108211131U TWM589589U (zh) | 2019-08-20 | 2019-08-20 | 流體機動效應之物質乾式奈米化處理設備 |
US16/655,564 US11253867B2 (en) | 2019-08-20 | 2019-10-17 | Dry nano-sizing equipment with fluid mobility effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108211131U TWM589589U (zh) | 2019-08-20 | 2019-08-20 | 流體機動效應之物質乾式奈米化處理設備 |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM589589U true TWM589589U (zh) | 2020-01-21 |
Family
ID=69944479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108211131U TWM589589U (zh) | 2019-08-20 | 2019-08-20 | 流體機動效應之物質乾式奈米化處理設備 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11253867B2 (zh) |
TW (1) | TWM589589U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI792660B (zh) * | 2021-03-09 | 2023-02-11 | 日商蘆澤精美技術股份有限公司 | 分散粉碎裝置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2609995A (en) * | 1948-05-07 | 1952-09-09 | Ernest Markus | Centrifugal mill |
US4101080A (en) * | 1975-07-11 | 1978-07-18 | Schmidt & Sonner Maskinfabrik A/S | Beater mill |
ZA806469B (en) * | 1979-10-30 | 1981-10-28 | British Rema Mfg Co Ltd | Pulverizing and classifying mill |
JPS61283361A (ja) * | 1985-06-05 | 1986-12-13 | 株式会社 奈良機械製作所 | 衝撃粉砕機 |
DE19641781A1 (de) * | 1996-10-10 | 1998-04-16 | Clariant Gmbh | Verfahren und Vorrichtung zum gleichzeitigen Mahlen und Trocknen eines feuchten Celluloseether enthaltenden Mahlgutes |
US6431477B1 (en) * | 1998-10-20 | 2002-08-13 | Pallmann Maschinenfabrik Gmbh & Co. Kg | Gas flow-type chipping machine |
WO2005089948A1 (fr) * | 2004-03-23 | 2005-09-29 | Fumao Yang | Broyeur a turbulence elevee et sa turbine a pression bi-negative |
TWI428186B (zh) | 2011-02-25 | 2014-03-01 | Ching Chung Chen | Dry type nano grinding machine |
RU2473390C1 (ru) * | 2011-08-17 | 2013-01-27 | Закрытое Акционерное Общество "Твин Трейдинг Компани" | Мельница "трибос" |
DE102014112599A1 (de) * | 2014-09-02 | 2016-03-03 | Pallmann Maschinenfabrik Gmbh & Co. Kg | Vorrichtung zum Zerkleinern von Aufgabegut mit vorgeschalteter Sichtung |
-
2019
- 2019-08-20 TW TW108211131U patent/TWM589589U/zh unknown
- 2019-10-17 US US16/655,564 patent/US11253867B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI792660B (zh) * | 2021-03-09 | 2023-02-11 | 日商蘆澤精美技術股份有限公司 | 分散粉碎裝置 |
Also Published As
Publication number | Publication date |
---|---|
US11253867B2 (en) | 2022-02-22 |
US20210053070A1 (en) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021208162A1 (zh) | 流化床对撞式气流机械超微粉碎设备与方法 | |
CN104258929A (zh) | 一种粉磨设备 | |
WO2019223367A1 (zh) | 一种筒状磨粉转子及其工作方法 | |
CN112718188B (zh) | 一种医用中草药材研磨加工设备 | |
CN108435370B (zh) | 一种超微中草药粉碎机 | |
TWM589589U (zh) | 流體機動效應之物質乾式奈米化處理設備 | |
CN109225513A (zh) | 一种剪切球磨一体化装置 | |
CN113417859A (zh) | 带通风道的分离杂物型污水泵 | |
US3710558A (en) | Separator of fluid-solid mixtures | |
CN113369140A (zh) | 一种基于半成品粗细分离的超细选粉机设计方法 | |
CN206229683U (zh) | 一种大流量多分级装置 | |
CN208302949U (zh) | 一种超微中草药粉碎机 | |
CN210935282U (zh) | 物质干式奈米化处理装置 | |
CN102441953A (zh) | 一种涡螺双旋组合式上料方法及装置 | |
CN2390695Y (zh) | 流化床式气流超微粉碎机 | |
CN204503270U (zh) | 一种造纸钛白生产用气流粉碎机 | |
CN203874845U (zh) | 一种立式砂磨机 | |
CN216233105U (zh) | 一种粉剂农药加工用气流粉碎机的出料装置 | |
CN203754772U (zh) | 离心加速喷射轰击金属表面纳米化装置 | |
CN207805773U (zh) | 一种直接喂入式干蘑菇低温超细粉碎机 | |
CN206454739U (zh) | 一种智能型在线出料干式球磨机 | |
CN221157053U (zh) | 一种离心高能外环研磨机 | |
CN202207617U (zh) | 一种振动研磨设备 | |
CN102441465A (zh) | 微粉碎机及粉碎分离系统 | |
CN221156910U (zh) | 一种分级研磨机 |