TWI840655B - 容器用樹脂被覆金屬板 - Google Patents

容器用樹脂被覆金屬板 Download PDF

Info

Publication number
TWI840655B
TWI840655B TW110107809A TW110107809A TWI840655B TW I840655 B TWI840655 B TW I840655B TW 110107809 A TW110107809 A TW 110107809A TW 110107809 A TW110107809 A TW 110107809A TW I840655 B TWI840655 B TW I840655B
Authority
TW
Taiwan
Prior art keywords
resin
metal plate
ethylene
ethylene terephthalate
layer
Prior art date
Application number
TW110107809A
Other languages
English (en)
Other versions
TW202136028A (zh
Inventor
河合佑哉
北川淳一
大島安秀
Original Assignee
日商杰富意鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商杰富意鋼鐵股份有限公司 filed Critical 日商杰富意鋼鐵股份有限公司
Publication of TW202136028A publication Critical patent/TW202136028A/zh
Application granted granted Critical
Publication of TWI840655B publication Critical patent/TWI840655B/zh

Links

Images

Abstract

本發明的目的在於提供一種於高加工度的兩片罐的製罐時不會產生由加工後的熱處理引起的褶皺狀的缺陷的容器用樹脂被覆金屬板。一種容器用樹脂被覆金屬板,其於金屬板的兩面包括樹脂被膜層,所述容器用樹脂被覆金屬板中,至少單面的所述樹脂被膜層包含對苯二甲酸乙二酯單元為90 mol%以上、可動非晶量為80%以上的樹脂材料。

Description

容器用樹脂被覆金屬板
本發明是有關於一種於金屬板的至少單面包括樹脂被膜層的容器用樹脂被覆金屬板。
一般而言,金屬容器大致分為兩片罐(two-piece can)與三片罐。所謂兩片罐是包括與罐底成為一體的罐體和蓋體、或者與罐蓋成為一體的罐體和罐底這兩個部分的金屬容器。另一方面,所謂三片罐是包括罐身、上蓋、及底蓋這三個部分的金屬容器。兩片罐由於罐體上不具有焊接部,因此外觀美麗,另一方面,一般要求高的加工度。
先前,對用作金屬容器的原材料的無錫鋼(tin free steel,TFS)及鋁等金屬板實施以提高耐腐蝕性為目的的塗裝。但是,實施該塗裝的技術於複雜的塗裝及烘焙的步驟中需要大量的處理時間,而且會排出大量的溶劑或二氧化碳,因此存在對環境的負荷大的課題。作為解決該些問題的手段,開發了於金屬表面具有熱塑性膜的容器用樹脂被覆金屬板,目前以飲料罐用原材料為中心於工業上廣泛使用。
於專利文獻1~專利文獻3中揭示如下技術:將於金屬板的兩面包括樹脂被膜層的樹脂被覆金屬板作為原材料,利用拉深加工法或拉深減薄(Draw&Ironing,DI)加工法來製造兩片罐。另外,於專利文獻4、專利文獻5中揭示如下技術:為了能夠進行印刷處理等提高罐體的設計性的處理,於成形加工後向位於金屬容器的外表面側的樹脂被膜層添加白色顏料。
近年來,隨著罐體形狀的多樣化,罐體的高加工度化的需求不斷提高。藉由減小罐直徑、增高罐高度,可增加於每單位面積中能夠保管的罐體的數量,另一方面,隨著高加工度化,樹脂被覆金屬板的要接受的加工變得更嚴格。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開平2-303634號公報 [專利文獻2]日本專利特開平4-91825號公報 [專利文獻3]日本專利特開2004-148324號公報 [專利文獻4]日本專利特開平8-169098號公報 [專利文獻5]日本專利特開2004-130536號公報 [專利文獻6]WO2013/030972號公報
[發明所欲解決之課題] 於使用樹脂被覆金屬板製造高加工度的兩片罐體的情況下,出於提高樹脂被膜層與金屬板的密接性、及位於罐內表面側的樹脂被膜層的被覆性的目的,於加工後在樹脂被膜層的熔點附近實施熱處理。然而,發現隨著兩片罐的高加工度化,於製罐加工後的熱處理時樹脂被膜層產生褶皺狀的缺陷。因此,於使用樹脂被覆金屬板製造高加工度的兩片罐體的情況下,需要抑制製罐加工後的熱處理時產生的褶皺狀的缺陷。
一般而言,於樹脂被膜層中混合存在結晶、剛性非晶、及可動非晶,可藉由熱量測定來算出該些的比例。於專利文獻6中介紹如下技術:藉由控制由結晶化熱量與熔解熱量的差求出的樹脂被膜層的結晶度,減少成形加工後的殘留應力,抑制由製罐加工後的熱處理引起的外觀上的缺陷(斑點狀圖案)。然而,即便於將結晶度降低至專利文獻6中所揭示的結晶度(結晶化熱量與熔解熱量的差為20 J/g以下≒結晶量14%以下)的範圍的情況下,亦會產生製罐加工後的熱處理時產生的褶皺狀的缺陷,因此無法藉由控制結晶度來抑制褶皺狀的缺陷。
本發明是鑑於所述而成,其目的在於提供一種於高加工度的兩片罐的製罐時具備良好的成形性,並且不會產生由加工後的熱處理引起的褶皺狀的缺陷的容器用樹脂被覆金屬板。 [解決課題之手段]
本發明者等人重覆努力研究,結果發現:製罐加工後的熱處理時產生的褶皺狀的缺陷是因為樹脂被膜層中混合存在有剛性相(結晶及剛性非晶)與柔軟相(可動非晶)而產生。於樹脂被膜層中混合存在有剛性相(結晶及剛性非晶)與柔軟相(可動非晶)的情況下,於高加工度的製罐加工時的變形時,樹脂被膜層中會產生不均勻的應變。因此,於製罐加工後的熱處理時,加熱至熔點附近而變得柔軟的樹脂被膜層不均勻地變形,形成褶皺狀的缺陷。
本發明者等人基於所述見解而重覆進行了進一步的研究。結果發現:藉由將可動非晶於樹脂被膜層中所佔的比例設為特定值以上,抑制製罐加工時產生的樹脂被膜層中的不均勻的應變,結果能夠抑制製罐加工後的熱處理時產生的褶皺狀的缺陷。
本發明基於以上見解而成,其主旨如以下般。 [1]一種容器用樹脂被覆金屬板,其於金屬板的至少單面包括樹脂被膜層,所述容器用樹脂被覆金屬板中,所述至少單面的所述樹脂被膜層包含對苯二甲酸乙二酯單元為90 mol%以上、可動非晶量為80%以上的樹脂材料。 [2]如[1]所述的容器用樹脂被覆金屬板,其中所述至少單面的所述樹脂被膜層含有0.010質量%以上且1.5質量%以下的潤滑成分。 [3]如[1]或[2]所述的容器用樹脂被覆金屬板,其中所述至少單面的所述樹脂被膜層含有30質量%以下的無機顏料。 [4]如[3]所述的容器用樹脂被覆金屬板,其中所述至少單面的所述樹脂被膜層具有包含最表面層、中間層、及最下層的至少三層的結構,所述最表面層及所述最下層的膜厚為1.0 μm以上且5.0 μm以下,所述中間層的膜厚為6.0 μm以上且30 μm以下,所述最表面層及所述最下層含有0質量%以上且2.0質量%以下的無機顏料,所述中間層含有10質量%以上且30質量%以下的無機顏料。 [發明的效果]
根據本發明,可提供一種於高加工度的兩片罐的製罐時具備良好的成形性,並且不會產生由加工後的熱處理引起的褶皺狀的缺陷的容器用樹脂被覆金屬板。
以下,對作為本發明的一實施形態的容器用樹脂被覆金屬板進行說明。
圖1是表示作為本發明的一實施形態的容器用樹脂被覆金屬板的結構的剖面圖。如圖1所示,作為本發明的一實施形態的容器用樹脂被覆金屬板1包括:金屬板2、形成於金屬板2的表面側的樹脂被膜層3、以及形成於金屬板2的背面側的樹脂被膜層4。樹脂被膜層3及樹脂被膜層4分別於成形加工後位於金屬容器的外表面側及內表面側。
金屬板2由鍍錫鋼板或無錫鋼等鋼板形成。作為鍍錫鋼板,理想的是使用鍍敷量為0.5 g/m2 以上且15 g/m2 以下的範圍內者。作為無錫鋼,理想的是於表面具有附著量為50 mg/m2 以上且200 g/m2 以下的金屬鉻層、與金屬鉻換算的附著量為3 mg/m2 以上且30 g/m2 以下的鉻氧化物層。鋼板的種類只要可成形為目標形狀,則並無特別問題,但理想的是以下所示的成分或製法的鋼板。
(1)使用C(碳)量處於超過0.003質量%且為0.10質量%以下左右的範圍內的低碳鋼,並藉由連續退火進行再結晶退火而成者。 (2)使用C量處於超過0.003質量%且為0.10質量%以下左右的範圍內的低碳鋼,並藉由連續退火進行再結晶退火及過時效處理而成者。 (3)使用C量處於超過0.003質量%且為0.10質量%以下左右的範圍內的低碳鋼,並藉由箱式退火進行再結晶退火而成者。 (4)使用C量處於超過0.003質量%且為0.10質量%以下左右的範圍內的低碳鋼,並藉由連續退火或箱式退火進行再結晶退火後,進行二次冷軋(DR(Double Reduced)壓延)而成者。 (5)使用於C量大概為0.003質量%以下左右的極低碳鋼中添加了Nb、Ti等將固溶的C固定的元素的無間隙原子(lnterstitial Free,IF)鋼,並藉由連續退火進行再結晶退火而成者。
鋼板的機械特性只要可成形為目標形狀,則並無特別限定。為了不損害加工性且保持充分的罐體強度,理想的是使用屈服點(yield point,YP)為220 MPa以上且580 MPa以下者。另外,關於塑性各向異性的指標即蘭克福特值(Lankford value)(r值),理想的是0.8以上。進而,關於r值的面內各向異性Δr,理想的是其絕對值為0.7以下。
用以達成所述特性的鋼的成分並無特別限定,例如只要含有Si、Mn、P、S、Al、N等成分即可。Si含量較佳為0.001質量%以上且0.1質量%以下,Mn含量較佳為0.01質量%以上且0.6質量%以下,P含量較佳為0.002質量%以上且0.05質量%以下,S含量較佳為0.002質量%以上且0.05質量%以下,Al含量較佳為0.005質量%以上且0.100質量%以下,N含量較佳為0.0005質量%以上且0.020質量%以下。另外,可含有Ti、Nb、B、Cu、Ni、Cr、Mo、V等其他成分,但就確保耐腐蝕性等的觀點而言,該些成分的含量理想的是以總量計設為0.02質量%以下。
本發明中,至少單面的樹脂被膜層3(藉由成形加工而成為容器的外表面側的樹脂被膜層)由對苯二甲酸乙二酯單元為90 mol%以上的樹脂材料形成。具體而言,樹脂被膜層3設為構成聚對苯二甲酸乙二酯的對苯二甲酸乙二酯單元為90 mol%以上的聚酯,所述聚對苯二甲酸乙二酯包含作為羧酸成分的對苯二甲酸、作為二醇成分的乙二醇。於樹脂被膜層3中包含無機添加材料(氧化鈦等)的情況下,減去該些無機添加材料的重量後的樹脂材料中的對苯二甲酸乙二酯單元的比例為90 mol%以上。較佳為由對苯二甲酸乙二酯單元為92 mol%以上的樹脂材料形成。於對苯二甲酸乙二酯單元未滿90 mol%的情況下,因連續製罐加工時施加的熱而導致樹脂軟化,從而於樹脂被膜層3發生斷裂或切削。
於不損害耐熱性或加工性的範圍內,可使對苯二甲酸、乙二醇以外的多個二羧酸成分、二醇成分與構成樹脂被膜層3的樹脂材料共聚。作為二羧酸成分,可例示:間苯二甲酸、萘二羧酸、二苯基二羧酸、二苯基碸二羧酸、二苯氧基乙烷二羧酸、5-鈉磺基間苯二甲酸、鄰苯二甲酸等芳香族二羧酸、乙二酸、丁二酸、己二酸、癸二酸、二聚物酸、馬來酸、富馬酸等脂肪族二羧酸、環己烷二羧酸等脂環族二羧酸、對羥基苯甲酸等羥基羧酸等。作為二醇成分,可例示:丙二醇、丁二醇、戊二醇、己二醇、新戊二醇等脂肪族二醇、環己烷二甲醇等脂環族二醇、雙酚A、雙酚S等芳香族二醇、二乙二醇等。
形成樹脂被膜層3的樹脂材料不受其製法限定。例如,可利用如下方法等來形成樹脂材料,即:(1)使對苯二甲酸、乙二醇、及共聚成分進行酯化反應,繼而使所獲得的反應生成物縮聚而製成共聚聚酯的方法,或(2)使對苯二甲酸二甲酯、乙二醇、及共聚成分進行酯交換反應,繼而使所獲得的反應生成物進行縮聚反應而製成共聚聚酯的方法。另外,於聚酯的製造中,視需要可添加螢光增白劑、抗氧化劑、熱穩定化劑、紫外線吸收劑、抗靜電劑等添加物。
另外,樹脂被膜層3由可動非晶量為80%以上的樹脂材料形成。藉由作為柔軟相的可動非晶佔樹脂被膜層3的樹脂材料中的80%以上,可抑制製罐加工時的不均勻的應變,抑制製罐加工後的熱處理時產生的褶皺狀的缺陷。較佳為樹脂被膜層3的可動非晶量為85%以上。進而佳為樹脂被膜層3的可動非晶量為85%以上且98%以下。若可動非晶量為98%以下,則可於樹脂被膜層中確保剛性相,因此可獲得更優異的耐衝擊性。於樹脂被膜層3中包含無機添加材料(無機顏料等)的情況下,減去無機添加材料的質量後的樹脂材料中的可動非晶量需要為80%以上。再者,本發明的可動非晶量如後述的實施例所記載般,可由藉由溫度調變差示掃描熱量測定而獲得的玻璃轉移溫度下的比熱差來算出。
樹脂被覆金屬板1藉由利用層壓輥分別將樹脂被膜層3、樹脂被膜層4壓接於加熱至樹脂被膜層3、樹脂被膜層4的熔點以上的金屬板2的表背,之後進行冷卻來製作。樹脂被膜層3的可動非晶量可藉由改變壓接後的金屬板2的溫度、及壓接後的金屬板2保持在樹脂被膜層3的熔融開始溫度以上的時間來調整。
為了設為本發明的可動非晶量,需要將樹脂被膜層3壓接於金屬板2後,金屬板2保持在樹脂被膜層3的熔融開始溫度以上達0.50秒以上且3.0秒以下的時間之後,藉由水冷等進行驟冷。將樹脂被膜層3壓接於金屬板2後,金屬板2保持在樹脂被膜層3的熔融開始溫度以上的時間未滿0.50秒時,樹脂被膜層的熔融不充分,無法設為本發明的可動非晶量。另外,於將樹脂被膜層3壓接於金屬板2後,金屬板2保持在樹脂被膜層3的熔融開始溫度以上的時間設為超過3.0秒的情況下,由於生產線變長而生產性明顯降低。進而,由於壓接後金屬板2亦自然放置冷卻,因此為了將樹脂被膜層3壓接於金屬板2後,金屬板2保持在樹脂被膜層3的熔融開始溫度以上超過3.0秒,需要明顯提高壓接時的金屬板2的溫度。於該情況下,產生樹脂被膜層3向層壓輥的熔接。因此,將樹脂被膜層3壓接於金屬板後,金屬板2保持在樹脂被膜層3的熔融開始溫度以上的時間較佳為3.0秒以下。
將金屬板2保持在樹脂被膜層3的熔融開始溫度以上的溫度後,藉由自然放置冷卻設為未滿熔融開始溫度時,於樹脂被膜層中生成剛性相(結晶及剛性非晶),無法獲得本發明的可動非晶量。因此,需要將金屬板2保持在熔融開始溫度以上後,藉由水冷等方法進行驟冷。再者,所謂驟冷是指自熔融開始溫度至100℃為止以150℃/秒以上的冷卻速度冷卻。較佳為冷卻速度為200℃/秒以上。
為了提高壓接了樹脂被膜層3之後的金屬板2的溫度,有如下方法:提高壓接前的金屬板2的加熱溫度、減小壓接時的層壓輥的壓力、提高壓接時的層壓輥的溫度等。為了設為作為本發明的目標的可動非晶量,金屬板2的加熱溫度較佳為比樹脂被膜層3的熔點高20℃至50℃左右。另外,藉由降低壓接時的輥的按壓壓力,可減小壓接時的輥帶來的冷卻效果,將壓接後的金屬板溫度保持得高。另外,層壓輥的溫度越高,越可減小壓接時的輥帶來的冷卻效果,將壓接後的金屬板溫度保持得越高。但是,若層壓輥的溫度成為比樹脂被膜層3的玻璃轉移點+60℃高的溫度,則隨著樹脂被膜層3的軟化而層壓輥的粗糙度被轉印,從而產生外觀缺陷。因此,層壓輥的溫度需要設為樹脂被膜層3的玻璃轉移點+60℃以下。
樹脂被膜層3出於減少製罐加工時的摩擦係數的目的而可含有0.010質量%以上且1.5質量%以下的潤滑成分。若潤滑成分的含量為0.010質量%以上,則可充分獲得與製罐加工時的模具的滑動性,即便為更嚴格的加工亦不會發生樹脂被膜層3的切削。另外,若潤滑成分的含量為1.5質量%以下,則樹脂被膜層3保持為硬質,即便為更嚴格的加工亦不會發生樹脂被膜層3的切削。潤滑成分的含量較佳為0.020質量%以上,且較佳為0.80質量%以下。
作為樹脂被膜層3含有的潤滑成分,較佳為有機潤滑劑。作為有機潤滑劑,可例示:聚乙烯、聚丙烯等聚烯烴、酸改質聚乙烯、酸改質聚丙烯、氧化聚乙烯、氧化聚丙烯等改質聚烯烴、硬脂酸、硬脂酸酯等脂肪酸或脂肪酸酯、棕櫚蠟等天然蠟等。
為了提高印刷後的設計性,有時會要求樹脂被膜層3為白色。於此種情況下,可於樹脂被膜層3中含有30質量%以下的無機顏料。無機顏料的含量較佳為10質量%以上,且較佳為25質量%以下。更佳為12質量%以上,且更佳為22質量%以下。若無機顏料的含量為10質量%以上,則可獲得更優異的加工後的白色度。另外,若無機顏料的含量超過30質量%,則有時於加工度高的成形時金屬板2與樹脂被膜層3的密接性或樹脂被膜層3的加工性會產生問題。
作為無機顏料,可例示:氧化鈦、氧化鋁、碳酸鈣、硫酸鋇等。樹脂被膜層3含有的無機顏料並無特別限定,較佳為氧化鈦。特別是若為金紅石型氧化鈦的純度為90%以上者,則與樹脂材料混合時的分散性更優異,因此較佳。
再者,於不阻礙本發明的目的的範圍內,視需要可於樹脂被膜層3中添加其他添加材。作為添加材,可例示:抗黏連劑、螢光增白劑、抗氧化劑、熱穩定劑、紫外線吸收劑、抗靜電劑等。特別是於提高白色度的情況下,有效的是添加螢光增白劑。
另外,如圖2所示,樹脂被膜層3可具有包含最表面層3a、中間層3b、及最下層3c的至少三層結構。於該情況下,最表面層3a及最下層3c的膜厚較佳為1.0 μm以上且5.0 μm以下。更佳為1.5 μm以上,且更佳為4.0 μm以下,進而佳為2.0 μm以上,且進而佳為3.0 μm以下。另外,中間層3b的膜厚較佳為6.0 μm以上且30 μm以下。更佳為8.0 μm以上,且更佳為25 μm以下,進而佳為10 μm以上,且進而佳為20 μm以下。
於樹脂被膜層3中添加無機顏料的情況下,若最表面層3a的無機顏料的量多,則有可能因最表面層3a的脆化而發生樹脂被膜層3的斷裂或切削,因此最表面層3a含有的無機顏料的量較佳為0質量%以上且2.0質量%以下。另外,若最下層3c的無機顏料的量多,則有可能樹脂被膜層3與金屬板之間的密接性會降低,因此最下層3c含有的無機顏料的量較佳為0質量%以上且2.0質量%以下。進而,就確保加工後的白色度的觀點而言,中間層3b含有的無機顏料的量較佳為10質量%以上且30質量%以下。
於最表面層3a及最下層3c的膜厚小的情況下,有可能無法充分確保樹脂被膜層3的光澤,或有可能發生樹脂被膜層3的斷裂或切削。另一方面,於最表面層3a及最下層3c的膜厚大的情況下,為了確保白色度而需要加厚中間層3b的膜厚,或者使中間層3b含有的無機顏料的量增加,就經濟性或加工性的觀點而言欠佳。因此,較佳為最表面層3a及最下層3c的膜厚為1.0 μm以上且5.0 μm以下,中間層3b的膜厚為6.0 μm以上且30 μm以下,最表面層3a及最下層3c含有0質量%以上且2.0質量%以下的無機顏料,中間層3b含有10質量%以上且30質量%以下的無機顏料。
再者,作為形成樹脂被膜層4的樹脂材料,較佳為構成聚對苯二甲酸乙二酯的對苯二甲酸乙二酯單元為90 mol%以上的聚酯,所述聚對苯二甲酸乙二酯包含作為羧酸成分的對苯二甲酸、作為二醇成分的乙二醇。 [實施例]
作為金屬板,使用厚度0.22 mm的TFS(無錫鋼,金屬Cr層:120 mg/m2 、Cr氧化物層:以金屬Cr換算計為10 mg/m2 、調質度:T3CA),利用膜層壓法(膜熱熔接法)形成表1〜表4所示的樹脂被膜層。實施例1〜實施例30及比較例7中,將金屬板加熱至比樹脂被膜層的熔點高20℃〜40℃的溫度,使用層壓輥將藉由雙軸延伸法製作的膜熱壓接於金屬板上後,將金屬板保持在容器外表面側的樹脂被膜層的熔融開始溫度以上達0.50秒〜3.0秒,繼而藉由水冷進行冷卻,藉此於金屬板的兩面被覆樹脂被膜層。另外,關於比較例1〜比較例6及比較例8〜比較例12,於膜的熱壓接後,將金屬板保持在容器外表面側的樹脂被膜層的熔融開始溫度以上的時間設為未滿0.50秒,繼而進行水冷,藉此於金屬板的兩面被覆樹脂被膜層。
對於所獲得的容器用樹脂被覆金屬板,利用以下所示的方法測定位於容器外表面側的樹脂被膜層的無機添加材含量(所謂無機添加材是指無機顏料、及無機顏料以外的添加材中的無機系的添加劑)、可動非晶量、結晶量。
(1)無機添加材含量 於室溫下將樹脂被覆金屬板浸漬於濃鹽酸(12 mol/L):蒸餾水=1:1的混合溶液中,溶解金屬表面,將位於容器外表面側的樹脂被膜層自金屬板剝離。之後,利用蒸餾水充分清洗剝離後的樹脂被膜層後進行真空乾燥。對乾燥後的樹脂被膜層,使用熱重量測定裝置,於室溫至800℃、空氣流量300 mL/min、升溫速度10℃/min的條件下實施熱重量測定。根據熱重量測定的結果,將800℃下的重量相對於室溫下的重量的比例作為無機添加材含量。無機添加材含量的算出按照以下的式(1)進行。 無機添加材含量[%]=800℃下的重量[mg]/室溫下的重量[mg]×100···(1) (2)可動非晶量 於室溫下將樹脂被覆金屬板浸漬於濃鹽酸(12 mol/L):蒸餾水=1:1的混合溶液中,溶解金屬表面,將位於容器外表面側的樹脂被膜層自金屬板剝離。之後,利用蒸餾水充分清洗剝離後的樹脂被膜層後進行真空乾燥。對乾燥後的樹脂被膜層,於0℃至300℃、氮氣流量30 mL/min、平均升溫速度2℃/min、調變振幅±0.5℃、調變週期40秒的條件下進行溫度調變差示掃描熱量測定。根據由溫度調變差示掃描熱量測定獲得的可逆熱流量的測定結果,算出50℃至87.5℃之間存在的玻璃轉移點前後的比熱差,使用以下的式(2)進行可動非晶量的算出。關於無機添加材含量,使用利用所述方法求出的值。 可動非晶量[%]=玻璃轉移點前後的比熱差[J/(g·℃)]×100/(100-無機添加材含量[%])/0.405[J/(g·℃)]×100···(2) (3)結晶量 於室溫下將樹脂被覆金屬板浸漬於濃鹽酸(12 mol/L):蒸餾水=1:1的混合溶液中,溶解金屬表面,將位於容器外表面側的樹脂被膜層自金屬板剝離。之後,利用蒸餾水充分清洗剝離後的樹脂被膜層後進行真空乾燥。對乾燥後的樹脂被膜層,於0℃至300℃、氮氣流量30 mL/min、平均升溫速度2℃/min、調變振幅±0.5℃、調變週期40秒的條件下進行溫度調變差示掃描熱量測定。根據由溫度調變差示掃描熱量測定獲得的總熱流量的測定結果,根據由87.5℃至175℃之間存在的結晶化峰值的面積求出的結晶化熱量、由200℃至275℃之間存在的熔解峰值的面積求出的熔解熱量,使用以下的式(3)進行結晶量的算出。關於無機添加材含量,使用利用所述方法求出的值。 結晶量[%]=(熔解熱量[J/g]-結晶化熱量[J/g])×100/(100-無機添加材含量[%])/140.2[J/g]×100 對於實施例1〜實施例30及比較例1〜比較例12的容器用樹脂被覆金屬板,利用以下所示的方法評價成形性及熱處理後外觀。
(1)成形性 於實施例1〜實施例30及比較例1〜比較例12的容器用樹脂被覆金屬板塗佈石蠟後,沖裁出直徑180 mm的圓板。藉由利用深拉壓力機(cupping press machine)的拉深成形、繼而二段的再拉深成形及一段的減薄成形對該圓板實施加工,成形內徑52 mm、罐高度163 mm的罐。對於成形後的罐,藉由目視觀察罐外表面側的樹脂被膜層表面,按照以下的基準評價成形性。 評價「◎◎」:未觀察到切削。 評價「◎」:於距罐凸緣部2 mm以內的高度發生切削。無實用方面的問題。 評價「○」:於距罐凸緣部超過2 mm且為5 mm以內的高度發生切削。無實用方面的問題。 評價「△」:於距罐凸緣部超過5 mm且為20 mm以內的高度發生切削。有實用方面的問題。 (2)熱處理後外觀 於實施例1〜實施例30及比較例1〜比較例12的容器用樹脂被覆金屬板塗佈石蠟後,沖裁出直徑180 mm的圓板。藉由利用深拉壓力機的拉深成形、繼而二段的再拉深成形及一段的減薄成形對該圓板實施加工,成形內徑52 mm、罐高度163 mm的罐。對於所獲得的罐體,使用熱風乾燥爐於罐體溫度以90秒達到250℃的條件下加熱後,利用冷風實施驟冷。藉由目視觀察冷卻後的罐體外表面的樹脂被膜層,按照以下的基準評價熱處理後外觀。 評價「◎」:未觀察到褶皺狀的缺陷。 評價「○」:於距罐凸緣部15 mm的範圍觀察到褶皺狀的缺陷。無實用方面的問題。 評價「△」:於距罐凸緣部超過15 mm且為50 mm的範圍觀察到褶皺狀的缺陷。有實用方面的問題。 評價「×」:於距罐凸緣部超過50 mm觀察到褶皺狀的缺陷。有實用方面的問題。
表5中示出成形性與熱處理後外觀的評價結果。
[表1]
  容器外表面側的樹脂被膜層 容器內表面側的樹脂被膜層
樹脂組成[mol%] 膜厚[μm] 無機顏料[質量%] 無機顏料種類 可動非晶量[%] 結晶量[%] 潤滑成分 潤滑成分添加量[質量%] 樹脂組成[mol%] 膜厚[μm]
實施例1 對苯二甲酸乙二酯100 20 14 氧化鈦 85 11 棕櫚蠟 0.2 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例2 對苯二甲酸乙二酯100 20 16 氧化鈦 89 7 棕櫚蠟 1.2 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例3 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 0 - 89 8 酸改質聚乙烯 0.4 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例4 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 80 14 酸改質聚乙烯 0.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 80 15 - - 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例6 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 83 11 酸改質聚乙烯 0.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例7 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 22 氧化鈦 85 8 聚乙烯 0.2 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例8 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 85 7 酸改質聚乙烯 0.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例9 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 85 9 聚乙烯 1.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例10 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 89 7 酸改質聚乙烯 0.4 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例11 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 94 4 酸改質聚乙烯 0.6 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例12 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 98 2 酸改質聚乙烯 0.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例13 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 30 氧化鈦 89 6 酸改質聚乙烯 0.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例14 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20 16 氧化鈦 85 8 聚乙烯 0.8 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例15 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20 16 氧化鈦 87 11 酸改質聚乙烯 1.6 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例16 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20 32 氧化鈦 86 10 聚乙烯 0.4 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例17 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 0 - 88 10 - - 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例18 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 15 氧化鋁 87 10 聚乙烯 0.4 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
[表2]
  容器外表面側的樹脂被膜層 容器內表面側的樹脂被膜層
最表面層 中間層 最下層 樹脂被膜層整體 樹脂被膜層整體
樹脂組成[mol%] 膜厚[μm] 無機顏料[質量%] 無機顏料種類 潤滑成分 潤滑成分添加量[質量%] 樹脂組成[mol%] 膜厚[μm] 無機顏料[質量%] 無機顏料種類 潤滑成分 樹脂組成[mol%] 膜厚[μm] 無機顏料[質量%] 無機顏料種類 潤滑成分 潤滑成分添加量[質量%] 可動非晶量[%] 結晶量[%] 膜厚[μm] 樹脂組成[mol%] 膜厚[μm]
實施例19 對苯二甲酸乙二酯100 2 0 - 棕櫚蠟 1.2 對苯二甲酸乙二酯100 16 18 氧化鈦 - 對苯二甲酸乙二酯100 2 0 - 棕櫚蠟 1.2 82 14 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例20 對苯二甲酸乙二酯100 2 0 - 棕櫚蠟 1.2 對苯二甲酸乙二酯100 16 20 氧化鈦 - 對苯二甲酸乙二酯100 2 0 - 棕櫚蠟 1.2 86 9 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例21 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - - - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - - - 85 10 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例22 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 酸改質聚乙烯 0.5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 酸改質聚乙烯 0.5 80 14 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例23 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 5 0 - 酸改質聚乙烯 0.5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 5 0 - 酸改質聚乙烯 0.5 87 9 30 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例24 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 聚乙烯 0.05 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 聚乙烯 0.05 84 11 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例25 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 聚乙烯 0.1 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 聚乙烯 0.1 88 9 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例26 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 酸改質聚乙烯 0.5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 酸改質聚乙烯 0.5 87 10 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例27 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 2 氧化鈦 酸改質聚乙烯 0.5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 19 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 2 氧化鈦 酸改質聚乙烯 0.5 92 7 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例28 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 3 氧化鈦 酸改質聚乙烯 0.5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 19 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 3 氧化鈦 酸改質聚乙烯 0.5 88 11 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例29 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 3 0 - 酸改質聚乙烯 0.6 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 15 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 6 0 - 酸改質聚乙烯 0.6 89 7 24 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
實施例30 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 3 0 - 酸改質聚乙烯 0.5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 14 32 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 3 0 - 酸改質聚乙烯 0.5 84 12 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
[表3]
  容器外表面側的樹脂被膜層 容器內表面側的樹脂被膜層
樹脂組成[mol%] 膜厚[μm] 無機顏料[質量%] 無機顏料種類 可動非晶量[%] 結晶量[%] 潤滑成分 潤滑成分添加量[質量%] 樹脂組成[mol%] 膜厚[μm]
比較例1 對苯二甲酸乙二酯100 20 16 氧化鈦 78 13 棕櫚蠟 1.2 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例2 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 70 20 酸改質聚乙烯 0.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例3 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 74 16 酸改質聚乙烯 0.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例4 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 76 13 酸改質聚乙烯 0.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 77 11 - - 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例6 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 20 16 氧化鈦 79 13 酸改質聚乙烯 0.5 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例7 對苯二甲酸乙二酯88 間苯二甲酸乙二酯12 20 16 氧化鈦 80 14 - - 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
[表4]
  容器外表面側的樹脂被膜層 容器內表面側的樹脂被膜層
最表面層 中間層 最下層 樹脂被膜層整體 樹脂被膜層整體
樹脂組成[mol%] 膜厚[μm] 無機顏料[質量%] 無機顏料種類 潤滑成分 潤滑成分添加量[質量%] 樹脂組成[mol%] 膜厚[μm] 無機顏料[質量%] 無機顏料種類 潤滑成分 樹脂組成[mol%] 膜厚[μm] 無機顏料[質量%] 無機顏料種類 潤滑成分 潤滑成分添加量[質量%] 可動非晶量[%] 結晶量[%] 膜厚[μm] 樹脂組成[mol%] 膜厚[μm]
比較例8 對苯二甲酸乙二酯100 2 0 - 棕櫚蠟 1.2 對苯二甲酸乙二酯100 16 18 氧化鈦 - 對苯二甲酸乙二酯100 2 0 - 棕櫚蠟 1.2 77 13 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例9 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - - - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - - - 78 14 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例10 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 聚乙烯 0.05 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 聚乙烯 0.05 73 15 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例11 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 酸改質聚乙烯 0.5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 酸改質聚乙烯 0.5 79 12 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
比較例12 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 酸改質聚乙烯 0.5 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 16 20 氧化鈦 - 對苯二甲酸乙二酯96 間苯二甲酸乙二酯4 2 0 - 酸改質聚乙烯 0.5 74 16 20 對苯二甲酸乙二酯90 間苯二甲酸乙二酯10 20
[表5]
  成形性 熱處理後外觀
實施例1 ◎◎
實施例2 ◎◎
實施例3 ◎◎
實施例4 ◎◎
實施例5
實施例6 ◎◎
實施例7 ◎◎
實施例8 ◎◎
實施例9
實施例10 ◎◎
實施例11 ◎◎
實施例12 ◎◎
實施例13
實施例14
實施例15
實施例16
實施例17
實施例18 ◎◎
實施例19 ◎◎
實施例20 ◎◎
實施例21
實施例22 ◎◎
實施例23
實施例24
實施例25 ◎◎
實施例26 ◎◎
實施例27 ◎◎
實施例28
實施例29
實施例30
比較例1 ◎◎
比較例2 ◎◎ ×
比較例3 ◎◎ ×
比較例4 ◎◎
比較例5
比較例6 ◎◎
比較例7
比較例8 ◎◎
比較例9
比較例10 ×
比較例11 ◎◎
比較例12 ◎◎ ×
如表5所示,於實施例1〜實施例30的容器用樹脂被覆金屬板中,成形性及熱處理後外觀均良好,但於比較例1〜比較例6、比較例8〜比較例12中熱處理後外觀的評價結果不充分。另外,比較例7中成形性的評價結果不充分。
1:容器用樹脂被覆金屬板 2:金屬板 3、4:樹脂被膜層 3a:最表面層 3b:中間層 3c:最下層
圖1是表示作為本發明的一實施形態的容器用樹脂被覆金屬板的結構的剖面圖。 圖2是表示作為本發明的另一實施形態的容器用樹脂被覆金屬板的結構的剖面圖。
1:容器用樹脂被覆金屬板
2:金屬板
3、4:樹脂被膜層

Claims (3)

  1. 一種容器用樹脂被覆金屬板,其於金屬板的至少單面包括樹脂被膜層,所述容器用樹脂被覆金屬板中,所述至少單面的所述樹脂被膜層包含對苯二甲酸乙二酯單元為90mol%以上、可動非晶量為80%以上的樹脂材料,所述至少單面的樹脂被膜層含有0.010質量%以上且1.5質量%以下的潤滑成分。
  2. 如請求項1所述的容器用樹脂被覆金屬板,其中所述至少單面的樹脂被膜層含有30質量%以下的無機顏料。
  3. 如請求項2所述的容器用樹脂被覆金屬板,其中所述至少單面的樹脂被膜層具有包含最表面層、中間層、及最下層的至少三層的結構,所述最表面層及所述最下層的膜厚為1.0μm以上且5.0μm以下,所述中間層的膜厚為6.0μm以上且30μm以下,所述最表面層及所述最下層含有0質量%以上且2.0質量%以下的無機顏料,所述中間層含有10質量%以上且30質量%以下的無機顏料。
TW110107809A 2020-03-11 2021-03-05 容器用樹脂被覆金屬板 TWI840655B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020041697 2020-03-11
JP2020-041697 2020-03-11

Publications (2)

Publication Number Publication Date
TW202136028A TW202136028A (zh) 2021-10-01
TWI840655B true TWI840655B (zh) 2024-05-01

Family

ID=

Similar Documents

Publication Publication Date Title
JP5733405B2 (ja) 樹脂被膜金属板
US11407203B2 (en) Resin-coated metal sheet for container
JP6380280B2 (ja) 容器用樹脂被膜金属板
JP6683260B2 (ja) 容器用樹脂被膜金属板
WO2019116707A1 (ja) 容器用樹脂被膜金属板
JP6019823B2 (ja) 樹脂被膜金属板
JP7226555B2 (ja) 容器用樹脂被覆金属板
TWI840655B (zh) 容器用樹脂被覆金屬板
WO2016136099A1 (ja) 樹脂被膜金属板、樹脂被膜金属板の製造方法、及び金属容器
TW202411128A (zh) 容器用樹脂被覆金屬板及其製造方法
JPH11216805A (ja) 積層体及びそれを用いた容器