TWI834899B - 電子裝置及其製造方法、影像形成方法及影像形成設備 - Google Patents

電子裝置及其製造方法、影像形成方法及影像形成設備 Download PDF

Info

Publication number
TWI834899B
TWI834899B TW109124826A TW109124826A TWI834899B TW I834899 B TWI834899 B TW I834899B TW 109124826 A TW109124826 A TW 109124826A TW 109124826 A TW109124826 A TW 109124826A TW I834899 B TWI834899 B TW I834899B
Authority
TW
Taiwan
Prior art keywords
metal oxide
layer
electronic device
oxide layer
charge transport
Prior art date
Application number
TW109124826A
Other languages
English (en)
Other versions
TW202114261A (zh
Inventor
紙英利
淺野友晴
石井雅之
井上龍太
Original Assignee
日商理光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020082368A external-priority patent/JP7443922B2/ja
Application filed by 日商理光股份有限公司 filed Critical 日商理光股份有限公司
Publication of TW202114261A publication Critical patent/TW202114261A/zh
Application granted granted Critical
Publication of TWI834899B publication Critical patent/TWI834899B/zh

Links

Abstract

本發明揭露一種電子裝置,包括:一支撐部件;包含電荷傳輸材料的一電荷傳輸層,或包含敏化染料的一敏化染料電極層,其中,該電荷傳輸層或該敏化染料電極層設置在該支撐部件之上或上方;以及一金屬氧化物層,設置在該電荷傳輸層或該敏化染料電極層之上或上方,其中,該金屬氧化物層包含p型半導體金屬氧化物和二氧化矽或金屬氧化物顆粒,以及其中,相對於該金屬氧化物層,包含在該金屬氧化物層中的二氧化矽或金屬氧化物顆粒的含量在0.5質量%以上但在1.5質量%以下。

Description

電子裝置及其製造方法、影像形成方法及影像形成設備
本發明涉及一種電子裝置及一種製造該電子裝置的方法、一種影像形成方法、以及一種影像形成設備。
近年來,已開發包含有機半導體的光電轉換裝置並已在市場上販售。
目前,廣泛使用的光電轉換裝置,例如電子照相感光體,主要是由有機材料所形成的有機電子裝置。然而,有機電子裝置與無機電子裝置相比,具有使用壽命較短的問題。使用壽命較短的原因之一是由於包含在有機電子裝置中的有機材料,因此氣體阻隔性差。相較於無機材料的緻密膜,有機材料的樹脂膜具有許多間隙。因此,將食品包裝材料,例如聚丙烯(PP),與鋁層一起層壓,以增強內容物的氣候抗力。
作為相較於矽基太陽能電池低成本的有機太陽能電池,已開發包括有機敏化染料的染料敏化太陽能電池。
由於染料敏化太陽能電池包括作為有機材料的有機敏化染料,然而所使用的材料與矽基太陽能電池相比容易因溫度、濕度和氣體(例如,氧氣、臭氧、氮氧化物、氨)而劣化,所以染料敏化太陽能電池的功能趨於劣化。因此,與矽基太陽能電池相比,染料敏化太陽能電池的問題是耐久性較差。
在諸如有機電致發光(EL)元件、發光二極體顯示元件、液晶顯示元件之類的顯示元件以及電泳油墨顯示元件之中,將諸如夾在正極與負極之間的有機EL層之類的顯示元件層疊在基板上。與液晶顯示裝置相比,有機EL 顯示裝置具有寬視角和高響應速率,因此,由於有機發光材料的多樣性,有望成為下一代的顯示裝置。
作為有機EL元件的形成方法,考慮到產能和成本,使用利用塗佈的形成方法。此外,有機EL元件由於曝露在熱或諸如濕氣和氧氣的氣體而趨於劣化。導致有機EL元件具有使用壽命短的問題。
已嘗試增強氣體阻隔性以延長有機電子裝置的使用壽命,所述有機電子裝置諸如用於印表機的電子照相感光體、染料敏化太陽能電池和有機EL元件。然而,製程的數量龐大,對有機電子裝置產生不利影響,因此成本與耐用性之間的平衡還有改良的空間。
作為具有優異的耐磨性和影像特性的穩定性的電子照相感光體,例如,提出了一種具有保護層的電子照相感光體,該保護層包括經表面處理劑處理的p型半導體顆粒(例如,參見專利文獻1)。
作為使用壽命長、效能提升和驅動電壓低的有機EL元件,例如,提出了一種有機EL元件,其中有機EL元件的有機電洞傳輸層由無機p型半導體所代替(例如,參見專利文獻2)。
此外,提出了一種層壓體,其中透過氣溶膠沉積在基板上將諸如陶瓷材料和金屬材料的100微米或更小的顆粒材料形成膜,以形成多晶脆性材料層(例如,參見專利文獻3)。
藉由設置具有p型半導體的金屬氧化物作為表面層,可使氣體阻隔性提高。作為金屬氧化物的成膜方法,適合使用具有優異大量生產率的氣溶膠沉積。當原料粉末的流動性差時,金屬氧化物的成膜會趨於不均勻,並且製程能力不足,因此可能無法作為工業產品進行大量生產。
引用清單
專利文獻
專利文獻1:日本專利第5664538號;
專利文獻2:日本未審查專利申請公開第2000-150166號;
專利文獻3:日本未審查專利申請公開第2008-201004號。
本發明的目的是提供一種電子裝置,該電子裝置可以抑制在金屬氧化物層的成膜中的不均勻,並在金屬氧化物層的厚度上具有高均勻性。
根據本發明的一個態樣,一種電子裝置包括:一支撐部件;包含電荷傳輸材料的一電荷傳輸層,或包含敏化染料的一敏化染料電極層,其中該電荷傳輸層或該敏化染料電極層設置在該支撐部件之上或上方;以及一金屬氧化物層,設置在該電荷傳輸層或該敏化染料電極層之上或上方,其中,該金屬氧化物層包含p型半導體金屬氧化物和二氧化矽或金屬氧化物顆粒,以及相對於該金屬氧化物層,包含在該金屬氧化物層中的二氧化矽或金屬氧化物顆粒的含量為0.5質量%以上但為1.5質量%以下。
本發明可以提供一種電子裝置,該電子裝置可以抑制金屬氧化物層的成膜中的不均勻,並具有金屬氧化物層的厚度上的高均勻性。
1:基板
1A:電荷消除裝置
1B:預清潔曝光裝置
1C:驅動單元
1D:第一轉印裝置
1E:第二轉印裝置
1F:中間轉印帶、中間轉印構件
1G:傳輸轉印帶
2:第一電極
3:電洞阻隔層
3A:潤滑劑
3B:塗佈刷
3C:塗佈刀片
4:電子傳輸層
5:敏化材料
6:金屬氧化物
7:第二電極
8,9:引線
10A:電子裝置、電子照相感光體
10B:太陽能電池
10C:有機電致發光元件
11,11Bk,11C,11M,11Y:電子照相感光體
12,12Y,12M,12C,12Bk:充電裝置
13,13Y,13M,13C,13Bk:曝光裝置
14,14Bk,14C,14M,14Y:顯影裝置
16,16Y,16M,16C,16Bk:轉印裝置
17,17Y,17M,17C,17Bk:清潔裝置
18:印刷介質
19:定影裝置
20:基板
20a:主表面
30:有機EL層
40:金屬氧化物層
51:導電支撐部件
52:中間層
53:電荷產生層
54:電荷傳輸層
55:矽硬塗層
56:金屬氧化物層
110:氣瓶
120a,120b,120c:管道
130:氣溶膠產生器
140:成膜室
150:噴嘴
160:基板
170:基板支架
170a:旋轉單元
180:排氣泵
190:壓縮閥
200:顆粒
圖1是說明本發明的影像形成設備的一個示例的示意結構圖。
圖2是說明本發明的影像形成設備的另一個示例的示意結構圖。
圖3是說明在本發明的影像形成設備中的影像形成單元的一個示例的示意結構圖。
圖4是說明本發明的影像形成設備的另一個示例的示意結構圖。
圖5是說明本發明的影像形成設備的另一個示例的示意結構圖。
圖6是說明本發明的電子裝置(電子照相感光體)的一個示例的剖面圖。
圖7是說明本發明的電子裝置(太陽能電池)的一個示例的剖面圖。
圖8是說明本發明的電子裝置(有機EL元件)的一個示例的剖面圖。
圖9是說明用來形成本發明的金屬氧化物層的氣溶膠沉積裝置的一個示例的示意性結構圖。
圖10A是描述成膜陶瓷的一個示例的圖片。
圖10B是描述成膜陶瓷的一個示例的圖片。
圖10C是描述成膜陶瓷的一個示例的圖片。
<電子裝置>
本發明的電子裝置包括支撐部件;包含電荷傳輸材料的電荷傳輸層,或包含敏化染料的敏化染料電極層;以及金屬氧化物層,其中電荷傳輸層或敏化染料電極層設置在支撐部件之上或上方,金屬氧化物層設置在電荷傳輸層或敏化染料電極層之上或上方。金屬氧化物層包含p型半導體金屬氧化物和二氧化矽或金屬氧化物顆粒。相對於金屬氧化物層,包含在金屬氧化物層中的二氧化矽或金屬氧化物顆粒的含量為0.5質量%以上但為1.5質量%以下。
沒有特別對電子裝置做出限制,並可以根據期望目的適當地選擇電子裝置。電子裝置的示例包括諸如電子照相感光體、太陽能電池、有機電致發光(EL)元件、電晶體、積體電路、雷射二極體、以及發光二極體的裝置。
此外已基於以下見解完成了本發明的電子裝置。也就是說,會存在以下情況:在抑制金屬氧化物層的成膜中的不均勻的情況下,現有技術中的電子裝置的金屬氧化物層厚度可能不會具有較高的均勻性(厚度的變化較小)。
根據本領域中已知使用氣溶膠沉積法之包含p型半導體的金屬氧化物的成膜,金屬氧化物的形成在原料粉末的流動性差時趨於不均勻,並且製程能力不足,因此可能無法實現其作為工業產品的大量生產。
本發明包括在電荷傳輸層或敏化染料電極層上的金屬氧化物層,其中金屬氧化物層包括包含p型半導體和二氧化矽或金屬氧化物顆粒的金屬氧化物。因此,可以抑制金屬氧化物層的成膜的不均勻,並可以提供具有高均勻厚度的金屬氧化物層且可以抑制成膜中的不均勻的電子裝置。
在專利文獻1(日本專利第5664538號)中,保護層包括作為p型半導體的陶瓷,但是該陶瓷並非膜狀,而是顆粒狀半導體。專利文獻1的圖1說明顆粒半導體分散在保護層中的概念圖。此處的膜狀指的是在圖10A、10B和10C中所看到之最白的表面層的實施例。
專利文獻2(日本未審查專利申請公開第2000-150166號)沒有揭露使用包含無機p型半導體的電洞傳輸層,但專利文獻2沒有揭露電洞傳輸層包括二氧化矽。
在專利文獻3(日本特開2008-201004號公報)中,形成了由顆粒形成的緻密的多晶脆性材料層,但專利文獻3沒有揭露二氧化矽包含在該些顆粒中。
<金屬氧化物層>
金屬氧化物層包含p型半導體金屬氧化物和二氧化矽或金屬氧化物顆粒。在本發明中,該p型半導體金屬氧化物較佳是銅鐵礦氧化物。
<<銅鐵礦氧化物>>
沒有特別對銅鐵礦氧化物(以下可稱為「p型半導體」或「p型金屬化合物半導體」)做出限制,並且可根據期望目的適當地選擇銅鐵礦氧化物,只要該銅鐵礦氧化物具有p型半導體的功能。銅鐵礦氧化物的示例包括p型金屬氧化物半導體、包含一價銅的p型金屬化合物半導體和其他p型金屬化合物半導體。
p型金屬氧化物半導體的示例包括CoO、NiO、FeO、Bi2O3、MoO2、MoS2、Cr2O3、SrCu2O2、以及CaO-Al2O3
包含一價銅的p型金屬化合物半導體的示例包括CuI、CuInSe2、Cu2O、CuSCN、CuS、CuInS2、CuAlO、CuAlO2,、CuAlSe2、CuGaO2、CuGaS2、以及CuGaSe2
其他p型金屬化合物半導體的示例包括GaP、GaAs、Si、Ge、以及SiC。
在上述示例之中,考量到電荷遷移率和透光性,較佳為銅鋁氧化物,例如CuAlO和CuAlO2
<<二氧化矽>>
包含在本發明的金屬氧化物層中的二氧化矽可以適當地合成以供使用,或者可選自市售產品。市售產品的示例包括REOLOSIL ZD-30S(可購自德山株式會社)、HDK H-2000(可購自Wacker Asahikasei Silicone Co.,Ltd.)、以及AEROSIL R976和AEROSIL RA200HS(可購自NIPPON AEROSIL CO.,LTD.)。
二氧化矽較佳為顆粒形式。二氧化矽顆粒的體積平均粒徑較佳為1微米以上但為50微米以下。
可利用購自MicrotracBEL Corp.的粒度分佈分析儀MT3300EX等來測量二氧化矽顆粒的平均粒徑。
相對於金屬氧化物層,包含在金屬氧化物層中的二氧化矽的含量為0.5質量%以上但為1.5質量%以下,並且較佳為0.7質量%以上但為1.3質量%以下。當二氧化矽的數量在上述範圍內時,可以抑制金屬氧化物層的成膜的不均勻性,並可以獲得具有高均勻性厚度的金屬氧化物層的電子裝置。
<<金屬氧化物顆粒>>
包含在本發明的金屬氧化物層中的金屬氧化物顆粒的示例包括氧化鋁、鈦酸鋇、氧化鉻、氧化銅、氧化鐵、氧化鎂、氧化錳、鈦酸鍶、氧化錫、氧化鈦、氧化鋅、以及氧化鋯。
金屬氧化物顆粒可以適當地合成以供使用,或者可選自市售商品。市售商品的示例包括氧化鋁AKP-50(可購自住友化學株式會社)、氧化鋁AKP-20(可購自住友化學株式會社)、氧化鋁TM-DAR(可購自大明化學工業株式會社)、以及氧化鋅SF-10(可購自堺化學工業株式會社)。
金屬氧化物顆粒的體積平均粒徑較佳為具有p型半導體的金屬氧化物顆粒(基礎顆粒)的尺寸的1/100至1/10,更佳為1微米以上但為3微米以下。
金屬氧化物顆粒的體積平均粒徑的測定方法可與二氧化矽顆粒的測定方法相同。
相對於金屬氧化物層,包含在金屬氧化物層中的金屬氧化物顆粒的含量為0.5質量%以上但為1.5質量%以下,並且較佳為0.7質量%以上但為1.3質量%以下。當金屬氧化物顆粒的含量在上述範圍內時,可以抑制金屬氧化物層的成膜的不均勻性,並可以獲得具有高均勻性厚度的金屬氧化物層的電子裝置。
<<金屬氧化物層的厚度>>
在本發明中,金屬氧化物層的平均厚度較佳為1.2微米以上但為1.8微米以下。更佳地,金屬氧化物層的平均厚度為1.2微米以上但為1.8微米以下,並且金屬氧化物層的厚度的標準偏差為0.07微米以下。
在作為本發明的電子裝置的實施例的電子照相感光體的狀況下,例如,在長度為380毫米和外徑為100毫米的圓柱型光導鼓的5個點處測量感光體的厚度,其中,從距離光導鼓邊緣100毫米的位置到距離光導鼓邊緣300毫米的位置之間以50毫米的間隔在長度方向上取5個點。前述厚度測量是在20個光導鼓上進行,以獲得總共100個點的厚度數據。厚度的測量由使用根據日本專利第5521607號的光干涉的方法執行。確定標準偏差,並從所獲得的數據的平均值確定厚度。
當金屬氧化物層的平均厚度為1.2微米以上但為1.8微米以下時,因為可形成高品質的印刷影像而具有優勢,該高品質的印刷影像在耐磨性與靜電性質之間具有優異的平衡,並且使用壽命長。此外,當金屬氧化物層厚度的標準偏差為0.07微米以下時,因為印刷影像可包含優異的灰階再現性而具有優勢,該灰階再現性會影響印刷影像中人的皮膚或風景的外觀。
<<製程能力>>
此外,根據下述方程式(1)至(3)從獲得的厚度平均值和標準偏差計算製程能力指數Cpk。製程能力指數是評價厚度的算術平均值X相對於標準的中值的偏移程度的值。Cpk越大,表示生產品質穩定的電子裝置的能力越高。
Cpk=Cp(1-K) (1)
Figure 109124826-A0202-12-0007-1
Figure 109124826-A0202-12-0007-2
在上述方程式中,USL是標準的上限值,LSL是標準的下限值,X是厚度的算術平均值,且σ是標準偏差。此外,Cp是成膜製程中指示變異的6 σ與標準寬度之間的比較。
<金屬氧化物層的製造>
金屬氧化物層的製造方法(成膜方法)沒有特別限定,可適當地從普遍使用的無機材料的成膜方法中選擇。其示例包括氣相沉積法、液相生長法、以及固相生長法。
氣相沉積法例如分為物理氣相沉積法(PVD)和化學氣相沉積法(CVD)。
物理氣相沉積方法的示例包括真空沉積、電子束蒸鍍、雷射剝蝕、雷射剝蝕分子束磊晶(laser abrasion MBE)、金屬有機分子束磊晶(MOMBE)、反應性氣相沉積、離子鍍、叢集離子束、輝光放電濺射、離子束濺射、以及反應性濺射。
化學氣相沉積方法的示例包括熱化學氣相沉積(thcrmal CVD)、金屬有機化學氣相沉積(MOCVD)、射頻電漿化學氣相沉積(RF plasma CVD)、電子迴旋共振電漿化學氣相沉積(ECR plasma CVD)、光照射式化學氣相沈積(photo CVD)、以及雷射化學氣相沈積(laser CVD)。
液相生長方法的示例包括液相磊晶(LPE)、電鍍、無電鍍和塗佈。
固相生長法的示例包括固相萃取(SPE)、再結晶、石墨磊晶、LB法、溶膠-凝膠法、以及氣溶膠沉積(AD)。
在以上列出的示例之中,較佳是氣溶膠沉積(AD),因為氣溶膠沉積(AD)不會對較大面積的膜如電子照相感光體的均勻成膜或電子照相感光體的性能造成不良影響。
<<氣溶膠沉積(AD)>>
氣溶膠沉積(AD)是一種將預先製備的顆粒或微粒與氣體混合以形成氣溶膠,再藉由噴嘴將氣溶膠噴射到成膜靶(基板)上以形成膜的技術。
作為AD的特性,可以在室溫環境下進行成膜,並可以在原材料的晶體結構基本保持相同的狀態下進行成膜。因此,AD適合用於在電子裝置(特別是電子照相感光體)上進行的成膜。
將描述根據氣溶膠沉積形成金屬氧化物層的方法。
在該方法中,使用如圖9所示的氣溶膠沉積裝置。圖9所示的氣瓶110儲存惰性氣體,用於產生氣溶膠。藉由管道120a將氣瓶110連接到氣溶膠產生器130,並且管道120a被引導至氣溶膠產生器130內部。將一定量之由金屬氧化物或化合物半導體形成的顆粒200置於氣溶膠產生器130內部。連接至氣溶膠產生器130的另一管道120b在成膜室140內部與噴嘴150耦合。
在本發明中,由p型半導體金屬氧化物和二氧化矽所形成的顆粒200被引入至氣溶膠產生器130中並產生氣溶膠,並且所產生的氣溶膠經由管道120b被引導至噴嘴150。替代地,p型半導體金屬氧化物和二氧化矽的氣溶膠由其中包含p型半導體金屬氧化物和二氧化矽的氣溶膠產生器(圖未顯示)產生,而二氧化矽的氣溶膠由其中包含二氧化矽的氣溶膠產生器(圖未顯示)產生,而所產生的氣溶膠通過管道傳輸並分別從兩個噴嘴以高速朝基板噴出。
在成膜室140內部,基板160被基板支架170夾持以面向噴嘴150。作為基板160,可使用圓筒狀的導電性支撐部件、或諸如感光體、太陽能電池、EL元件等電子裝置。用於調節成膜室140內部的真空度的排氣泵180經由管道120c連接至成膜室140。
儘管圖未示出,但是用於形成本實施例的電極的成膜裝置包括配置以在以旋轉單元170a旋轉基板支架170時高速橫向移動噴嘴150的系統。藉由 在橫向移動噴嘴150的情況下執行成膜,可在基板160上形成具有期望面積的金屬氧化物層。
在形成金屬氧化物層的製程中,首先,關閉壓縮閥190以使用排氣泵180使從成膜室140到氣溶膠產生器130的內部大氣真空。接下來,打開壓縮閥190,以將氣瓶110內部的氣體經由管道120a引入氣溶膠產生器130中,以將顆粒200分散在容器內部。結果,在顆粒200分散於氣體中的狀態下產生氣溶膠。所產生的氣溶膠經由管道120b被噴嘴150以高速噴向基板160。在壓縮閥190打開的狀態下經過0.5秒後,在接下來的0.5秒內將壓縮閥190關閉。此後,再次打開壓縮閥190,並以0.5秒的週期重複壓縮閥190的打開和關閉。來自氣瓶110的氣體的流量為5L/min,成膜時間為1小時,在關閉壓縮閥190時之成膜室140內部的真空度約為10Pa,且當壓縮閥190打開時,成膜室140內部的真空度約為100Pa。
氣溶膠的噴射速度由噴嘴150的形狀、管道120b的長度或內徑、氣瓶110的內部氣壓、或排氣泵180排出的氣體量(成膜室140的內部壓力)控制。當氣溶膠產生器130的內部壓力為數萬Pa,成膜室140的內部壓力為數十Pa至數百Pa,並且噴嘴150的開口形狀為內徑為1.0毫米的圓形時,例如,透過氣溶膠產生器130與成膜室140之間的內部壓力差,可以將氣溶膠的噴射速度設定為每秒數百米。當成膜室140的內部壓力保持在5Pa至100Pa的範圍內並且氣溶膠產生器130的內部壓力維持在50,000Pa時,可形成孔隙率為5%至30%的金屬氧化物層。藉由調節在上述條件下氣溶膠的持續供給時間,較佳地,將金屬氧化物層的平均厚度調節至0.1微米至10微米的範圍。
可針對每個電子裝置將金屬氧化物層的平均厚度調節為適當的厚度。
在作為電子裝置的示例的電子照相感光體的情況下,作為用於得到電子裝置之耐久性和高印刷品質的最佳模式的條件,金屬氧化物層的較佳平均厚度為1.2微米至1.8微米。
透過氣溶膠中的加速度已獲得動能的顆粒200被粉碎壓入基板160中,並且透過碰撞能量將顆粒200粉碎成粉末。當粉末顆粒與基板160結合且粉末顆粒彼此結合時,在電荷傳輸層上依序形成金屬氧化物層。
使用線形圖案數次圖案化加工,或讓光導鼓旋轉,進行成膜。藉由沿基板160縱向和橫向掃描基板(鼓)支架170或噴嘴150來形成包含期望面積的金屬氧化物層。
<電子照相感光體>
本發明的電子裝置的一實施例是電子照相感光體。
電子照相感光體(以下可稱為「感光體」)包括:用作支撐部件的導電支撐部件;包含電荷傳輸材料的電荷傳輸層,其中該電荷傳輸層設置在導電支撐部件之上或上方;以及金屬氧化物層,設置在該電荷傳輸層之上或上方。電子照相感光體進一步包括電荷產生層,並且根據需要可以進一步包括其他層,諸如中間層和保護層。
可以適當地使用上述的金屬氧化物層作為金屬氧化物層。
注意,將電荷產生層和電荷傳輸層依序層疊所得到的層可以稱為光敏層。
以下將敘述電子裝置是電子照相感光體的示例,但是電子裝置的示例不限於電子照相感光體,並且本發明也可以應用於其他電子裝置。
將參照圖6描述作為電子照相感光體的電子裝置10A的結構。圖6是說明電子照相感光體的一個示例的剖面圖。
圖6示出電子照相感光體的實施例。在圖6的實施例中,電子照相感光體10A包括以下列順序設在導電支撐部件51之上的中間層52、電荷產生層53、電荷傳輸層54、矽硬塗層55、以及金屬氧化物層56。中間層52和矽硬塗層55可任意地省略。
<<支撐部件(導電支撐部件)>>
沒有特別對導電支撐部件做出限制,並且可以根據期望的目的適當地選擇導電支撐部件,只要該導電支撐部件展現出體積電阻值為10 10ohm.cm以下的導電性即可。導電支撐部件的示例包括:透過氣相沉積或濺射塗佈有金屬(例如,鋁、鎳、鉻、鎳鉻合金、銅、銀、金、鉑和鐵)或氧化物(例如,氧化錫和氧化銦)的薄膜或圓柱形塑膠或紙;以及藉由透過諸如拉伸引縮、衝擊引縮、擠出引縮、擠出拉伸和加工的方法,然後進行諸如加工、超精加工和研磨的表面處理,將鋁、鋁合金、鎳、不銹鋼等的板削成管子而獲得的管件。
<<中間層>>
電子照相感光體可以包括設置在導電支撐部件與光敏層之間的中間層。設置中間層的目的是為了改善黏著力、防止波紋、改善上層的可塗佈性以及防止從導電性支撐部件注入電荷。
中間層通常包括樹脂作為主要成分。由於將光敏層施加在中間層上,因此,使用在中間層中的樹脂較佳為難溶於有機溶劑的熱固性樹脂。在熱固性樹脂之中,將聚氨酯、三聚氰胺樹脂和醇酸三聚氰胺樹脂作為用於中間層的樹脂是更佳的,因為以上列出的樹脂許多均達到了上述目的。
有機溶劑的示例包括四氫呋喃、環己酮、二噁烷、二氯乙烷、以及丁酮。可利用有機溶劑適當地稀釋樹脂來製備中間層的塗料。
此外,為了調節導電性或防止波紋,可添加金屬、金屬氧化物等的顆粒至中間層。金屬氧化物較佳為氧化鈦或氧化鋅。中間層的塗料可以藉由透過使用球磨機、磨碎機、砂磨機等將顆粒分散在有機溶劑中以製備分散液並混合分散液和樹脂成分來製備。
中間層的製造方法(成膜方法)的示例包括:藉由透過浸塗、噴塗、珠塗等將塗料塗覆在導電性支撐部件上來形成膜的方法;以及將獲得的膜選擇性加熱以固化的方法。通常中間層的平均厚度適當地為約2微米至約20微米。當過度累積感光體的剩餘電勢時,中間層的平均厚度可小於3微米。
<<光敏層>>
感光體的光敏層是層壓光敏層,其中電荷產生層和電荷傳輸層依序層壓。
<<電荷產生層>>
電荷產生層是層壓光敏層的一部分。具有由於曝光而產生電荷的功能的電荷產生層包括電荷產生材料作為主要成分,並且根據需要可以進一步包括黏合劑樹脂。電荷產生材料的示例包括無機電荷產生材料和有機電荷產生材料。
無機電荷產生材料的示例包括結晶硒、非晶硒、硒-碲、硒-碲-鹵素、硒-砷化合物、以及非晶矽。作為非晶矽,較佳使用其中懸鍵以氫原子或鹵素原子封端的非晶矽;以及摻有硼原子、磷原子等的非晶矽。
作為有機電荷產生材料,可使用已知的材料。有機電荷產生材料的示例包括:金屬酞菁,例如鈦氧基酞菁和氯鎵酞菁;無金屬酞菁;薁鎓(azulenium)鹽顏料;方酸次甲基色素;具有咔唑骨架的對稱或不對稱偶氮顏料;具有三苯胺骨架的對稱或不對稱偶氮顏料;具有茀酮骨架的對稱或不對稱偶氮顏料;以及苝基顏料。在上述示例之中,較佳為金屬酞菁、具有茀酮骨架的對稱或不對稱的偶氮顏料、具有三苯胺骨架的對稱或不對稱的偶氮顏料和苝 基顏料,因為電荷產生的量子效率極高。上面列出的電荷產生材料可以單獨使用或結合使用。
黏合劑樹脂的示例包括聚醯胺、聚氨酯、環氧樹脂、聚酮、聚碳酸酯、聚丙烯酸酯、矽樹脂、丙烯酸樹脂、聚乙烯醇縮丁醛、聚乙烯醇縮甲醛、聚乙烯酮、聚苯乙烯、聚-N-乙烯基咔唑、以及聚丙烯醯胺。
在以上列舉的示例中,經常使用聚乙烯醇縮丁醛並且其是有效用的。上面列出的黏合劑樹脂可以單獨使用或結合使用。
<<電荷產生層的製造方法>>
電荷產生層的製造方法大致分為真空薄式成膜方法和溶液分散系統的流延法。
真空薄式成膜方法的示例包括真空氣相沉積、輝光放電分解、離子鍍、濺射、反應性濺射、以及化學氣相沉積(CVD)。上面列出的方法適於用來生產由無機電荷產生材料或有機電荷產生材料形成的層。
作為利用流延法製造電荷產生層的方法,透過球磨機、磨碎機、砂磨機等將無機電荷產生材料或有機電荷產生材料選擇性地與黏合劑樹脂一起分散在有機溶劑中,以製備分散液,適當稀釋分散液,並塗佈產物。
有機溶劑的示例包括四氫呋喃、環己酮、二噁烷、二氯乙烷、以及丁酮。在上述示例中,較佳為甲基乙基酮、四氫呋喃和環己酮,因為與氯苯、二氯甲烷、甲苯和二甲苯相比,上述溶劑具有較低的環境負荷。
可以透過浸塗、噴塗、珠塗等方法進行塗佈。
電荷產生層的平均厚度較佳為0.01微米至5微米。
當降低剩餘電勢和高靈敏度變得重要,增加電荷產生層的厚度通常可以改善上述性能。另一方面,較厚的電荷產生層可能常常會使荷電率如電荷保持或形成空間電荷變差。為了在上述優點與上述缺點之間取得平衡,電荷產生層的平均厚度更佳為0.05微米至2微米。
此外,可以將諸如抗氧化劑、增塑劑,潤滑劑和紫外線吸收劑等低分子化合物和調平劑任選地添加至電荷產生層。上面列出的化合物可以單獨使用或結合使用。當低分子化合物和調平劑與電荷產生層的其他成分組合使用時,靈敏度可能常常會變差。因此,低分子化合物和調平劑的量通常較佳為0.1phr至20phr,並且更佳為0.1phr至10phr。調平劑的使用量較佳為0.001phr至0.1phr。
<<電荷傳輸層>>
電荷傳輸層是層壓光敏層的一部分,並具有注入和傳輸產生在電荷產生層中的電荷以中和帶電荷的感光體的表面電荷的功能。電荷傳輸層包括電荷傳輸材料和結合該電荷傳輸材料的黏合劑成分,作為主要成分。
電荷傳輸材料包括電子傳輸材料和電洞傳輸材料。
電子傳輸材料的示例包括電子接受材料,例如不對稱聯苯醌衍生物、芴衍生物、以及萘二甲醯亞胺衍生物。上面列出的電子傳輸材料可以單獨使用或結合使用。
作為電洞傳輸材料,較佳使用電子供應材料。電子供應材料的示例包括噁唑衍生物、噁二唑衍生物、咪唑衍生物、三苯胺衍生物、丁二烯衍生物、9-(對-二乙基氨基苯乙烯基蒽)、1,1-雙-(4-二芐基氨基苯基)丙烷、苯乙烯基蒽、苯乙烯基吡唑啉、苯基腙、α-苯基二苯乙烯衍生物、噻唑衍生物、三唑衍生物、非那定衍生物、吖啶衍生物、苯并呋喃衍生物、苯並咪唑衍生物、以及噻吩衍生物。上面列出的電洞傳輸材料可以單獨使用或結合使用。
黏合劑成分的示例包括熱塑性或熱固性樹脂,例如聚苯乙烯、聚酯、聚乙烯、聚丙烯酸酯、聚碳酸酯、丙烯酸樹脂、矽樹脂、氟樹脂、環氧樹脂、三聚氰胺樹脂、聚氨酯樹脂、酚醛樹脂、以及醇酸樹脂。在以上列出的示例中,聚苯乙烯、聚酯、聚丙烯酸酯和聚碳酸酯有效地用作電荷傳輸成分的黏合劑成分,因為它們其中許多表現出優異的電荷傳輸性能。
當將電惰性聚合物化合物用於電荷傳輸層的改性時,有效的是:具有巨大骨架的卡哆(Cardo)聚合物型聚酯,諸如芴、聚酯(例如,聚對苯二甲酸乙二醇酯和聚萘二甲酸乙二醇酯);其中雙酚聚碳酸酯如C型聚碳酸酯的酚成分的3,3'位置被烷基取代的聚碳酸酯;其中雙酚A的孿甲基被具有2個以上碳原子的長鏈烷基取代的聚碳酸酯;具有聯苯或聯苯醚骨架的聚碳酸酯;聚己內酯;具有長鏈烷基骨架的聚碳酸酯,如聚己內酯(例如,揭露在日本未審查專利申請公開第07-292095號中);丙烯酸類樹脂;聚苯乙烯;氫化丁二烯等。
在本說明書中,術語「電惰性聚合物化合物」是指沒有表現出光電導性的化學結構如三芳基胺結構的聚合物化合物。當將這種樹脂與黏合劑樹脂一起用來作為添加劑時,考慮到相關於消光靈敏度的限制,其用量相對於電荷傳輸層的總固體含量較佳為50質量%以下。
當使用電荷傳輸材料時,通常電荷傳輸材料的含量較佳為40phr至200phr,並且更佳為70phr至100phr。較佳為使用共聚物,其中相對於電荷傳輸成分的100質量份,樹脂成分以0質量份至200質量份共聚,較佳為以約80質量份至約150質量份共聚。
可以藉由將包含電荷傳輸成分和黏合劑成分作為主要成分的混合物或共聚物溶解或分散在適當的溶劑中以製備電荷傳輸層塗料、並塗佈和乾燥該塗料,來形成電荷傳輸層。作為塗佈方法,可以使用浸塗、噴塗、環塗、輥塗機塗佈、凹版塗佈、噴嘴塗佈、絲網印刷等。
當製備電荷傳輸層塗料時所用的分散溶劑的示例包括:酮,例如甲乙酮、丙酮、甲基異丁基酮和環己酮;醚,例如二噁烷、四氫呋喃和乙基賽路蘇;芳香族,例如甲苯和二甲苯;鹵素,例如氯苯和二氯甲烷;以及酯,例如乙酸乙酯和乙酸丁酯。在上述示例之中,較佳為甲基乙基酮、四氫呋喃和環己酮,因為與氯苯、二氯甲烷、甲苯和二甲苯相比,上述溶劑具有較低的環境負荷。上面列出的溶劑可以單獨使用或結合使用。
為了確保實踐中所需的靈敏度和荷電率,電荷傳輸層的平均厚度較佳為10微米至40微米,並且更佳為15微米至30微米。
此外,可以任選地將諸如抗氧化劑、增塑劑、潤滑劑和紫外線吸收劑等低分子化合物和之後將敘述的調平劑添加至電荷傳輸層。當低分子化合物和調平劑與電荷傳輸層的其他成分組合使用時,靈敏度可能常常會變差。因此,上述化合物的量通常為0.1phr至20phr,並且更佳為0.1phr至10phr。適當的調平劑的量為約0.001phr至約0.1phr。
<<矽硬塗層>>
藉由將具有羥基或可水解基團的有機矽化合物交聯來形成有機矽硬塗層。有機矽硬塗層可根據需要進一步包括催化劑、交聯劑、有機矽溶膠、矽烷偶聯劑、或例如丙烯酸類聚合物的聚合物。
沒有特別對交聯做出限制,並且可以根據期望目的進行適當選擇。交聯較佳為熱交聯。
具有羥基或可水解基團的有機矽化合物的示例包括:具有烷氧基甲矽烷基的化合物;具有烷氧基甲矽烷基的化合物的部分水解縮合物;以及其混合物。
具有烷氧基甲矽烷基的化合物的示例包括:四烷氧基矽烷,例如四乙氧基矽烷;烷基三烷氧基矽烷,例如甲基三乙氧基矽烷;以及芳基三烷氧基矽烷,例如苯基三乙氧基矽烷。
注意,可以將環氧基、甲基丙烯醯基或乙烯基引入任何上述化合物中。
具有烷氧基甲矽烷基的化合物的部分水解縮合物可以透過本領域已知的任何方法來製備,例如藉由將預定量的水、催化劑等加入具有烷氧基甲矽烷基的化合物中以使混合物產生反應。
作為有機矽硬塗層的原料,可以使用市售產品。有機矽硬塗層的原料的具體示例包括GR-COAT(可購自株式會社大賽璐)、玻璃樹脂(可購自OWENS CORNING JAPAN LLC.)、無熱玻璃(可購自大橋化學工業株式會社)、NSC(可購自日本精化株式會社)、玻璃原料液GO150SX和GO200CL(可購自Fine Glass Technologies Co.,Ltd.)、和作為烷氧基甲矽烷基化合物與丙烯酸樹脂或聚酯樹脂之間的共聚物的MKC矽酸鹽(可購自三菱化學株式會社)、以及矽酸鹽/丙烯酸清漆XP-1030-1(可購自大日本色材工業株式會社)。
有機矽硬塗層的厚度較佳為0.1微米以上但為4.0微米以下,並且更佳為0.3微米以上但為1.5微米以下。
<<<金屬氧化物層>>
電子照相感光體的金屬氧化物層及其製造方法可適當地從本發明的電子裝置的金屬氧化物層及其製造方法的描述中選擇。
<電子裝置的製造方法>
本發明之用於製造電子裝置的方法是一種電子裝置的製造方法,該電子裝置包括:支撐部件;包含電荷傳輸材料的電荷傳輸層或包含敏化染料的敏化染料電極層,其中電荷傳輸層或敏化染料電極層設置在支撐部件之上或上方;以及金屬氧化物層,設置在電荷傳輸層或敏化染料電極層之上或上方。該方法包括噴塗p型半導體金屬氧化物和二氧化矽或金屬氧化物顆粒以形成金屬氧化物層。
沒有特別限制噴塗p型半導體金屬氧化物和二氧化矽或金屬氧化物顆粒的方法,並且可以根據期望目的適當地進行選擇。較佳的方法是氣溶膠沉積。
<影像形成設備和影像形成方法>
本發明的影像形成設備包括電子裝置(電子照相感光體)。影像形成設備進一步包括靜電潛像形成單元和顯影單元,且根據需要還可包括其他單元。
與本發明相關聯的影像形成方法至少包括靜電潛像形成步驟和顯影步驟,且根據需要可進一步包括其他步驟。
影像形成方法適於由影像形成設備執行,靜電潛像形成步驟適於由靜電潛像形成單元執行,顯影步驟適於由顯影單元執行,並且上述其他步驟適於由上述其他單元執行。
<影像形成設備的實施例>
下文將參照附圖描述影像形成設備的結構示例。
圖1是影像形成設備的示例。充電裝置12是配置以使電子照相感光體11的表面均勻帶電的單元。作為充電裝置12,可以使用任何已知的單元,例如電暈器(corotron)、柵控電暈器(scorotron)、固態充電器和充電輥。考慮到降低功耗,充電裝置12較佳被用於佈置成與電子照相感光體11接觸或相鄰於電子照相感光體11。為了防止充電裝置12的污染,較佳的是,在電子照相感光體11與充電裝置12的表面之間具有適當間隙的情況下,將充電系統與電子照相感光體11相鄰配置。通常,上述充電器可作為轉印裝置16。作為轉印裝置16,轉印充電器和分離充電器的組合是有效的。
電子照相感光體11由驅動單元1C驅動。重複執行以下步驟:通過充電裝置12的充電;通過曝光裝置13的影像曝光;通過轉印裝置16的顯影、轉印;預清潔曝光裝置1B的預清潔曝光;通過清潔裝置17的清潔;通過電荷消除裝置1A的電荷消除。如圖1所示,潤滑劑3A、用於塗佈潤滑劑的塗佈刷3B和塗佈刮刀3C沿電子照相感光體11的行進方向設置在清潔裝置17與充電裝置12之間。
在圖1中,從電子照相感光體11的支撐部件的一側施加預清潔曝光的光照(在這種情況下,支撐部件是透光的)。
上述光電製程是一個示例。例如,預清潔曝光是從圖1中的支撐部件的一側進行,但是預清潔曝光也可以從感光層的一側進行。此外,也可以從支撐部件的一側執行影像曝光光照和電荷消除光照的施加。同時,影像曝光光照、預清潔曝光光照和電荷消除光照被示為照光步驟。但是,除了照光步驟 以外,可執行轉印預曝光、影像曝光的預曝光和本領域已知的其他照光步驟,以對電子照相感光體進行光照射。
此外,上述影像形成單元可被固定並與影印機、傳真機或印表機一體結合。替代地,影像形成單元可以以處理卡盒的形式與任何上述裝置一體結合。可列出處理卡匣形狀的許多示例,但列舉圖2中所示的形狀作為典型示例。電子照相感光體11是鼓形,但是電子照相感光體11可以是片狀或無端環帶的形狀。
處理卡匣至少包括:電子照相感光體,其上承載有靜電潛像;顯影單元,配置以用碳粉使電子照相感光體上承載的靜電潛像顯影以形成可視影像;以及潤滑劑供應單元,配置以將潤滑劑供應到電子照相感光體之上。處理卡匣可根據需要還包括適當選擇的其他單元,例如充電單元、曝光單元、轉印單元、清潔單元、以及除電單元。顯影單元至少包括:顯影劑容器,配置以在其上儲存碳粉或顯影劑;以及顯影劑載體,配置以承載並傳輸儲存在顯影劑容器中的碳粉或顯影劑。顯影單元還可以包括層厚度調節構件,配置以調節在顯影劑承載體上所承載之碳粉層的厚度。處理卡匣可以可拆卸地安裝在各種電子照相影像形成設備、傳真機和印表機中,並且特別較佳的是可拆卸地安裝在本發明的影像形成設備中。
圖3是影像形成設備的另一個示例。在該影像形成設備中,充電裝置12、曝光裝置13、黑色(Bk)顯影裝置14Bk、青色(C)顯影裝置14C、品紅色(M)顯影裝置14M和黃色(Y)顯影裝置14Y、為中間轉印構件的中間轉印帶1F、以及清潔裝置17依序配置在電子照相感光體11的周邊。
注意,圖3中所示的字母(Bk、C、M和Y)表示碳粉的顏色,並且在必要時適當地省略。顯影裝置14Bk、14C、14M和14Y的每種顏色都可被獨立地控制,並且僅有用於影像形成的顏色的顯影裝置會被驅動。形成在電子照相感光體11上的碳粉影像由設置在中間轉印帶1F內側的第一轉印裝置1D轉印到中間轉印帶1F上。
第一轉印裝置1D以第一轉印裝置1D可與電子照相感光體11接觸的方式設置,並只有在轉印操作期間中間轉印帶1F才會與電子照相感光體11接觸。進行每種顏色的影像形成,並且透過第二轉印裝置1E將重疊在中間轉印帶1F上的碳粉影像集中轉印到印刷介質18上,然後由定影裝置19進行定影以形成 影像。第二轉印裝置1E也以第二轉印裝置1E可與中間轉印帶1F接觸的方式設置,並且只有在轉印操作期間第二轉印裝置1E才會與中間轉印帶1F接觸。
在轉印鼓系統的影像形成設備中,被靜電吸引到轉印鼓的不同顏色的碳粉影像依序轉印到印刷介質上,因此限制了轉印鼓系統的影像形成設備無法在厚紙上進行印刷。同時如圖3所示,在中間轉印系統的影像形成設備中,不同顏色的碳粉影像重疊在中間轉印構件1F上。因此,對於所使用的印刷介質並無限制。上述中間轉印系統不僅可以應用於圖3所示的裝置,而且也可以應用於如圖1、圖2、圖4和圖5所示的影像形成設備。
如圖3所示,潤滑劑3A、用於塗佈潤滑劑的塗佈刷3B和塗佈刮刀3C相對於電子照相感光體11的旋轉方向設置在清潔裝置17與充電裝置12之間。
圖4是影像形成設備的另一個示例。影像形成設備使用四種顏色的碳粉,亦即黃色(Y)、品紅色(M)、青色(C)和黑色(Bk),並且用於每種顏色的影像形成單元設置在影像形成設備中。此外,設置了用於四種顏色的電子照相感光體11Y、11M、11C和11Bk。在每個電子照相感光體11Y、11M、11C或11Bk的周圍,設置了充電裝置12Y、12M、12C或12Bk,曝光裝置13Y、13M、13C或13Bk,顯影裝置14Y、14M、14C或14Bk,清潔裝置17Y、17M、17C或17Bk等。
此外,作為轉印材料載體的傳輸轉印帶1G被驅動單元1C托住,該傳輸轉印帶1G被帶入和帶出沿直線佈置的電子照相感光體11Y、11M、11C和11Bk的每個轉印位置。轉印裝置16Y、16M、16C和16Bk經由傳輸轉印帶1G分別設置在面對電子照相感光體11Y、11M、11C和11Bk的轉印位置處。
圖4所示的串列式系統影像形成設備包括用於每種顏色的電子照相感光體11Y、11M、11C或11Bk,並且將所有顏色的碳粉影像依序轉印到保持在傳輸轉印帶1G上的印刷介質上。因此,與僅包含一個電子照相感光體的全彩影像形成設備相比,串列式系統影像形成裝置能以相當高的速度輸出全彩影像。在作為轉印材料的印刷介質18上顯影的碳粉影像從電子照相感光體11Bk和轉印裝置16Bk彼此相對的位置被傳送到定影裝置19,並且透過定影裝置19將碳粉影像定影在印刷介質18上。
此外,影像形成設備可具有如圖5所示的實施例中的結構。具體地,可以使用如圖5所示的中間轉印帶1F的結構,以代替使用圖4所示的傳輸轉印帶1G的直接轉印系統。
在圖5所示的示例中,影像形成設備包括用於每種顏色的電子照相感光體11Y、11M、11C或11Bk,透過作為第一轉印單元的主要轉印單元1D,將由電子照相感光體形成的所有顏色的碳粉影像依序轉印並層壓到由包含輥1C的驅動單元所驅動和支撐的中間轉印帶1F上,進而形成全彩影像。
接下來,進一步驅動中間轉印帶1F,並且將承載在其上的全彩影像傳送到作為第二轉印裝置的次級轉印單元1E和設置以面對次級轉印單元1E的輥的位置。然後,透過次級轉印單元1E將全彩影像二次轉印到轉印材料18上,以在轉印材料上形成期望的影像。
<太陽能電池>
本發明的電子裝置的一個實施例是太陽能電池。
太陽能電池包括:支撐部件;包括敏化染料的敏化染料電極層;以及設置在敏化染料電極層之上或上方的金屬氧化物層。太陽能電池進一步包括第一電極;電洞阻隔層;以及第二電極,並且根據需要可以進一步包括其他構件。
在下文中將描述電子裝置是太陽能電池的示例,但是電子裝置不限於太陽能電池,並且可以應用於其他電子裝置。
在下文中,將參考圖式描述本發明的太陽能電池(電子裝置)。注意,本發明不限於以下描述的實施例。下述的實施例可以改變,例如可以使用另一實施例,或者可以在本領域中具有通常知識者可達成的範圍內,在下述的實施例中進行添加、校正或省略,並且只要表現出本發明的功能和效果,上述任何實施例都包含在本發明的範圍內。
太陽能電池(電子裝置)包括:用作支撐部件的基板;第一電極;電洞阻隔層;電子傳輸層;敏化染料電極層;用作金屬氧化物層的陶瓷半導體膜;以及第二電極。
將參照圖7描述作為太陽能電池的電子裝置10B的結構。圖7是說明太陽能電池的一個示例的剖面圖。
在圖7所示的實施例中,在用作支撐部件的基板1上形成第一電極2,在第一電極2上形成電洞阻隔層3,在電洞阻隔層3上形成電荷傳輸層,敏化材料5被吸 附在電子傳輸層4的電荷傳輸材料上,並且金屬氧化物6設置在第一電極2與面對第一電極2的第二電極7之間。此外,在圖7中,示出了設置引線8和9以電連接第一電極2和第二電極7的結構的示例。
金屬氧化物和電子傳輸層4可以彼此穿透進而彼此部分滲入。
細節在下文中描述。
<<支撐部件(基板)>>
用作支撐部件的基板1不受特別限制,並且可以選自本領域已知的基板。基板1較佳是透明材料。基板的示例包括玻璃、透明塑膠板、透明塑膠膜和無機透明晶體。
<第一電極>
對第一電極2沒有特別限制,只要第一電極2是對可見光透明的導電材料即可。作為第一電極2,可使用諸如一般的光電轉換元件的本領域已知的電極和液晶面板。
第一電極的材料的示例包括銦錫氧化物(以下稱為ITO)、氟摻雜的錫氧化物(以下稱為FTO)、銻摻雜的錫氧化物(以下稱為ATO)、銦鋅氧化物、鈮鈦氧化物、以及石墨烯。上面列出的材料可以單獨使用或作為層疊結構結合使用。
第一電極的平均厚度較佳為5奈米至10微米,再更佳為50奈米至1微米。
此外,為了保持一定的硬度,第一電極較佳設置在由對可見光透明的材料形成的基板1上。作為基板,例如使用玻璃、透明塑膠板、透明塑膠膜,無機透明晶體等。
可使用與本領域已知的基板一體結合的第一電極。第一電極的示例包括FTO塗佈的玻璃、ITO塗佈的玻璃、氧化鋅:鋁塗佈的玻璃、FTO塗佈的透明塑料膜、ITO塗佈的透明塑料膜。
此外,第一電極可為藉由將氧化錫或氧化銦摻雜有化合價不同的陽離子或陰離子而製備的透明電極,並且可將具有可透光的結構的金屬電極(例如網目或條紋)設置在例如玻璃基板的基板上。
上面列出的示例可以單獨使用、或混合使用、或層疊使用。
另外,為了降低電阻,可並用金屬引線等。
金屬引線的材料的示例包括金屬,例如鋁、銅、銀、金、鉑和鎳。金屬引線透過氣相沉積、濺射、壓力結合等設置在基板上,並且將ITO或FTO設置在金屬引線上。
<<電洞阻隔層>>
對構成電洞阻隔層3的材料沒有特別限制,只要該材料對可見光是透明的且是電子傳輸材料即可。電洞阻隔層的材料特別較佳為氧化鈦。
電洞阻隔層設置以當電極與電解質電洞阻隔層接觸時,抑制由電解質中的電洞與存在於電極表面的電子之間的再結合(即,逆電子傳輸)所引起的電力下降。固態染料敏化太陽能電池特別明顯地示出電洞阻隔層3的上述效果。這是因為與使用電解質溶液的濕式染料敏化太陽能電池相比,使用有機電洞傳輸材料等的固態染料敏化太陽能電池具有在電洞傳輸材料中的電洞與存在於電極表面的電子之間的高再結合(逆電子傳輸)速度。
用於形成電洞阻隔層的方法沒有特別限制,但是具有高的內部電阻對於防止由於室內光所引起的電流損失是重要的。因此,用於形成電洞阻隔層的方法也很重要。電洞阻隔層的示例通常包括為濕式成膜的溶膠凝膠法。該溶膠凝膠法可能無法充分呈現損耗電流。因此,形成電洞阻隔層的方法更佳為乾式成膜,例如濺射,並且該乾式成膜可以提供足夠高的膜密度且可以防止電流損耗。
形成電洞阻隔層是為了防止第一電極2與電洞傳輸層6之間的電子接觸。沒有特別限制電洞阻隔層的平均厚度。電洞阻隔層的平均厚度較佳為5奈米至1微米。在濕式成膜中,其平均厚度更佳為500奈米至700奈米。在乾式成膜中,其平均厚度更佳為10奈米至30奈米。
<<電子傳輸層>>
太陽能電池包括設置在電洞阻隔層3上的多孔電子傳輸層4。該電子傳輸層可以是單層或多層。
電子傳輸層由電子傳輸材料形成。作為電子傳輸材料,較佳的是使用半導體顆粒。
在多層的情況下,可以施加各自包含不同粒度的半導體顆粒的分散液以形成多個層,或者可以提供各自包含不同類型的半導體顆粒或各自具有不同樹脂 或添加劑組成的塗層以形成多個層。當一層塗層不能提供足夠的平均厚度時,多層塗層是有效的。
通常,隨著電子傳輸層的平均厚度的增加,每單位投影面積的光敏材料的承載量增加,因此光的捕獲率也會增加。但是,注入的電子的擴散長度增加,因此由於再結合而導致的電荷損失也增加。因此,電子傳輸層的平均厚度較佳為100奈米至100微米。
沒有對半導體做出特別限制,並且可以使用本領域中已知的任何半導體作為該半導體。半導體的具體示例包括:單一種的半導體,諸如矽和鍺;化合物半導體,例如金屬硫屬化物;以及具有鈣鈦礦結構的化合物。
金屬硫屬化物的示例包括:鈦、錫、鋅、鐵、鎢、鋯、鉿、鍶、銦、鈰、釔、鑭、釩、鈮和鉭的氧化物;鎘、鋅、鉛、銀、銻和鉍的硫化物;鎘和鉛的硒化物;以及鎘的碲化物。
其他化合物半導體的例子包括:鋅、鎵、銦和鎘的磷化物;砷化鎵;硒化銅銦;以及硫化銅銦。
另外,具有鈣鈦礦結構的化合物較佳為鈦酸鍶、鈦酸鈣、鈦酸鈉、鈦酸鋇、或鈮酸鉀。
在以上列舉的示例中,較佳的是氧化物半導體,並且特別較佳的是氧化鈦、氧化鋅、氧化錫和氧化鈮。上面列出的示例可以單獨使用或作為混合物結合使用。對上面列出的半導體的結晶類型沒有特別限制。其結晶類型可以是單晶、多晶或非晶。
半導體顆粒的原始顆粒的平均粒徑沒有特別限制。其平均粒徑較佳為1奈米至100奈米,再更佳為5奈米至50奈米。
此外,由於入射光散射的作用,可由混合或層壓具有較大平均粒徑的半導體顆粒來提高效率。在這種情況下,半導體的平均粒徑較佳為50奈米至500奈米。
電子傳輸層的製造方法沒有特別限制。電子傳輸層的生產方法包括在真空中形成薄膜的方法,例如濺射和濕式成膜方法。
考慮到生產成本,特別較佳的是濕式成膜方法。較佳的是製備其中分散有半導體顆粒的粉末或溶膠的糊劑、並將該糊劑施加到電子集電極基板上的方法。
當使用濕式成膜方法時,對塗佈方法沒有特別限制,並且可以根據本領域已知的任何方法進行塗佈。可以根據各種方法進行塗佈,例如浸塗、噴塗、線 棒塗佈、旋塗、輥塗、刮刀塗佈、凹版塗佈和濕式印刷方法(例如,凸版印刷、膠版印刷、凹版印刷、橡膠板印刷和絲網印刷)。
當透過機械粉碎或使用研磨機形成半導體顆粒的分散液時,藉由至少將單獨的半導體顆粒或包含半導體顆粒和樹脂的混合物分散在水或有機溶劑中來形成分散液。所用樹脂的示例包括:乙烯基化合物的聚合物或共聚物,例如苯乙烯、乙酸乙烯酯、丙烯酸酯和甲基丙烯酸酯;矽樹脂;苯氧基樹脂;聚碸樹脂;聚乙烯醇縮丁醛樹脂;聚乙烯醇縮甲醛樹脂;聚酯樹脂;纖維素酯樹脂;纖維素醚樹脂;聚氨酯樹脂;酚醛樹脂;環氧樹脂;聚碳酸酯樹脂;聚丙烯酸酯樹脂;聚醯胺樹脂;以及聚醯亞胺樹脂。
用於分散半導體顆粒的溶劑的示例包括:水;醇基溶劑,例如甲醇、乙醇、異丙醇和α-萜品醇;酮類溶劑,例如丙酮、甲乙酮和甲基異丁基酮;酯基溶劑,例如甲酸乙酯、乙酸乙酯和乙酸正丁酯;醚基溶劑,例如乙醚、二甲氧基乙烷、四氫呋喃、二氧戊環和二噁烷;醯胺基溶劑,例如N,N-二甲基甲醯胺、N,N-二甲基乙醯胺和N-甲基-2-吡咯烷酮;鹵代烴基溶劑,例如二氯甲烷、氯仿、溴仿、碘甲烷、二氯乙烷、三氯乙烷、三氯乙烯、氯苯、鄰二氯苯、氟苯、溴苯、碘苯和1-氯萘;以及烴基溶劑,例如正戊烷、正己烷、正辛烷、1,5-己二烯、環己烷、甲基環己烷、環己二烯、苯、甲苯、鄰二甲苯、間二甲苯、對二甲苯、乙苯和異丙基苯。上面列出的示例可以單獨使用或結合使用。
半導體顆粒的分散液或透過溶膠-凝膠法等獲得的半導體顆粒的糊劑可以包括酸(例如,鹽酸、硝酸和乙酸)、表面活性劑(例如,聚氧乙烯(10)辛基苯基醚)和螯合劑(例如,乙醯丙酮、2-氨基乙醇和乙二胺)以防止顆粒重新聚集。
另外,為了提高成膜性,添加增稠劑也是有效的。增稠劑的示例包括:聚合物,例如聚乙二醇和聚乙烯醇;以及乙基纖維。
在施加半導體顆粒之後,使顆粒彼此電接觸,並且較佳的是進行燒製、微波照射、電子束照射或雷射照射以提高膜強度或對基板的黏附性。上面列出的示例可以單獨使用或結合使用。
進行燒製時,燒製溫度的範圍沒有特別限定。當溫度太高時,可能會造成基板電阻過高或使基板熔化。因此,定影溫度較佳為攝氏30度至攝氏 700度,並且更佳為攝氏100度至攝氏600度。另外,燒製時間沒有特別限定,但較佳為10分鐘至10小時。
對於微波照射,可以從電子傳輸層的側面或背面施加微波。照射時間沒有特別限定,但微波照射的進行較佳為1小時以內。
燒製完成後,可以使用四氯化鈦水溶液和有機溶劑的混合溶液進行化學鍍,或者使用四氯化鈦水溶液進行電化學鍍,以增加半導體顆粒的表面積,或提高從光敏材料到半導體顆粒的電子注入效率。
藉由透過燒製層壓具有幾十奈米直徑的半導體顆粒所形成的膜來形成多孔狀態。奈米多孔結構具有非常高的表面積,並且該表面積可以由粗糙因數表示。
粗糙因數是表示孔的內部面積的實際面積相對於施加到基板上的半導體顆粒的面積的數值。因此,更大的粗糙因數是更佳的。粗糙因數與電子傳輸層的平均厚度相關。在本發明中,粗糙因數較佳為20以上。
<<敏化染料電極層>>
太陽能電池包括敏化染料電極層,用於進一步提高轉換效率。該敏化染料電極層是在作為電子輸送層4的電子輸送材料的表面上吸附有敏化染料(光敏材料)的層。
-敏化染料(光敏材料)-
用作敏化染料的光敏材料5沒有限制,只要光敏材料5是被激發光進行光激發而拿來使用的化合物即可。
敏化染料的具體示例包括:揭露在PCT國際申請公開第JP-T-07-500630號的日譯本、日本未審查專利申請公開第10-233238、2000-26487、2000-323191和2001-59062號中的金屬錯合物;揭露在日本未審查專利申請公開第10-93118、2002-164089和2004-95450號和J.Phys.Chem.C,7224,Vol.111(2007)中的香豆素化合物;揭露在日本未經審查的專利申請公開第2004-95450號和Chem.Commun.,4887(2007)中的多烯化合物;揭露在日本未經審查的專利申請公開第2003-264010、2004-63274、2004-115636、2004-200068和2004-235052號、J.Am.Chem.Soc.,12218,Vol.126(2004),Chem.Commun.,3036(2003)以及Angew.Chem.Int.Ed.,1923,Vol.47(2008)中的吲哚啉化合物;揭露在J.Am.Chem.Soc.,16701,Vol.128(2006)和J.Am.Chem.Soc.,14256,Vol.128(2006)中的噻吩 化合物;揭露在日本未審查專利申請公開第11-86916、11-214730、2000-106224、2001-76773和2003-7359號中的花青染料;揭露在日本未審查專利申請公開第11-214731、11-238905、2001-52766、2001-76775和2003-7360號中的部花青染料;揭露在日本未審查專利公開第10-92477、11-273754、11-273755和2003-31273號中的9芳基二苯并哌喃化合物;揭露在日本未審查專利申請公開第10-93118和2003-31273號中的三芳基甲烷化合物;以及揭露在日本未審查專利申請公開第09-199744、10-233238、11-204821、11-265738號,J.Phys.Chem.,2342,Vol.91(1987),J.Phys.Chem.B,6272,Vol.97(1993),Electroanal.Chem.,31,Vol.537(2002)、日本未審查專利申請公開第2006-032260號、J.Porphyrins Phthalocyanines,230,Vol.3(1999),Angew.Chem.Int.Ed.,373,Vol.46(2007)以及Langmuir,5436,Vol.24(2008)中的酞青素化合物。在上述示例之中,特別較佳是使用金屬錯合物、香豆素化合物、多烯化合物、二氫吲除化合物和噻吩化合物。
作為讓光敏材料5吸附在電子傳輸層4上的方法,可使用將包括半導體顆粒的電子集電極浸入光敏材料溶液或分散液中的方法,或者是可使用將溶液或分散液施加到電子傳輸層以使半導體顆粒吸附在其上的方法。
在前一個方法的情況下,可使用浸漬、浸塗、輥塗、氣刀塗佈等。
在後一個方法的情況下,可使用線棒塗佈、滑動料斗塗佈、擠出、簾塗佈、旋塗、噴塗等。
此外,半導體顆粒的吸附可在使用二氧化碳等的超臨界流體中進行。
當光敏材料被吸附時,可以組合使用縮合劑。
縮合劑可以是具有催化功能以物理或化學方式將光敏材料和電子傳輸化合物結合到無機材料表面上的試劑、或者是有化學計量功能的試劑以有利地改變化學平衡。此外,可添加硫醇或羥基化合物作為助縮合劑。
用於溶解或分散光敏材料的溶劑的示例包括:水;醇基溶劑,例如甲醇、乙醇和異丙醇;酮類溶劑,例如丙酮、甲乙酮和甲基異丁基酮;酯基溶劑,例如甲酸乙酯、乙酸乙酯和乙酸正丁酯;醚基溶劑,例如乙醚、二甲氧基乙烷、四氫呋喃、二氧戊環和二噁烷;醯胺基溶劑,例如N,N-二甲基甲醯胺、N,N-二甲基乙醯胺和N-甲基-2-吡咯烷酮;鹵代烴基溶劑,例如二氯甲烷、氯仿、溴仿、碘甲烷、二氯乙烷、三氯乙烷、三氯乙烯、氯苯、鄰二氯苯、氟苯、溴 苯、碘苯和1-氯萘;以及烴基溶劑,例如正戊烷、正己烷、正辛烷、1,5-己二烯、環己烷、甲基環己烷、環己二烯、苯、甲苯、鄰二甲苯、間二甲苯、對二甲苯、乙苯和異丙基苯。上面列出的示例可以單獨使用或結合使用。
此外,當依照光敏材料的類型抑制化合物分子之間的聚集功能時,存在更加有效的光敏材料。因此,可以組合使用解聚劑。
解聚劑較佳為類固醇化合物(例如,膽酸和鵝去氧膽酸)、長鏈烷基羧酸、或長鏈烷基膦酸。解聚劑取決於使用的光敏材料而適當選擇。
相對於1質量份的光敏材料,解聚劑的量較佳為0.01質量份至500質量份,並且更佳為0.1質量份至100質量份。
光敏材料或光敏材料與解聚劑的組合的吸附溫度較佳為負50℃以上但為200℃以下。此外,吸附可在靜置或攪拌下進行。
用攪拌的方法的示例包括使用攪拌器、球磨機、塗料調合器、砂磨機、磨碎機和分散器進行攪拌,以及超音波分散,但是該方法不限於以上列舉的示例。吸附所需的時間較佳為5秒以上但為1000小時以下,更佳為10秒以上但為500小時以下,再更佳為1分鐘以上但為150小時以下。此外,吸附較佳是在黑暗中進行。
<<<金屬氧化物層>>
太陽能電池中的金屬氧化物層6及其製造方法可適當地從本發明的電子裝置的金屬氧化物層及其製造方法的描述中選擇。
<<第二電極>>
在形成金屬氧化物層之後設置第二電極。
此外,通常可將與第一電極相同的電極用作第二電極。不必將支撐部件設置在充分保持強度和氣密性的結構中。
第二電極的材料的具體示例包括:金屬,例如鉑、金、銀、銅和鋁;碳基化合物,例如石墨、富勒烯、碳奈米管和石墨烯;導電金屬氧化物,例如ITO、FTO和ATO;以及導電聚合物,例如聚噻吩和聚苯胺。
第二電極的平均厚度沒有特別限制。此外,上面列出的材料可以單獨使用或結合使用。
可取決於所使用的材料或電洞傳輸層的類型,透過諸如塗佈、層壓、氣相沉積、CVD、以及鍵結的方法在電洞傳輸層上適當地形成第二電極。
為了使電子裝置可作用為光電轉換裝置(光電轉換元件),第一電極或第二電極或兩者實質上是透明的。
在本發明的電子裝置中,設置第一電極的一側是透明的,並且較佳是從第一電極的該側施加日照。在這種情況下,較佳在第二電極的一側使用反光材料,並且該材料較佳是透過氣相沉積塗佈有金屬或導電氧化物的玻璃或塑膠,或者是金屬膜。
另外,在施加日照的該側設置抗反射層也是有效的。
本發明的光電轉換元件可以應用於太陽能電池和包括太陽能電池的電源。應用示例可以是已使用太陽能電池的任何裝置,或是使用太陽能電池的電源。例如,光電轉換元件可用在桌上電子計算器或手錶的太陽能電池。利用本發明的光電轉換元件的特性的示例包括手機、電子記事本、電子紙等的電源。此外,光電轉換元件可以用作輔助電源,用於延長充電式或乾電池式電器設備的連續使用時間。此外,可將光電轉換元件用來與二次電池組合作為主電池的替代品,用作感測器的自給電源。
<有機電致發光元件>
本發明的電子裝置的一實施例是有機電致發光(EL)元件。
有機EL元件包括:支撐部件;包含電荷傳輸材料的電荷傳輸層,設置在支撐部件之上或上方;以及金屬氧化物層,設置在電荷傳輸層之上或上方。有機EL元件進一步包括正極(第一電極)、電洞傳輸層、發光層、以及負極(第二電極),並還可以包括其他層,例如阻隔膜。
注意,包含正極(第一電極)、電洞傳輸層、發光層、作為電荷傳輸層的電子傳輸層以及負極(第二電極)的層可稱作「有機EL層」。
在下文中,將描述電子裝置是有機EL元件的示例,但是電子裝置不限於有機EL元件,並可以應用於電子裝置的其他實施例。
圖8示出有機EL元件10C,其是本發明的電子裝置的實施例。提供具有金屬氧化物層的有機EL元件10C,該金屬氧化物層位於有機EL層的最外表層。有機EL元件10C包括作為支撐部件的基板20、有機EL層30、以及金屬氧化物層40。
注意,本發明不限於以下描述的實施例。下述的實施例可以改變,例如可以使用另一實施例,或者可以在本領域中具有通常知識者可達成的範圍內,在 下述的實施例中進行添加、校正或省略,並且只要表現出本發明的功能和效果,上述任何實施例都包含在本發明的範圍內。
<<支撐部件(基板)>>
用作支撐部件的基板20是絕緣基板。基板20可以是塑膠或薄膜基板。
阻隔膜可以設置在基板20的主表面20a上。
阻隔膜是例如由矽、氧和碳形成的膜,或是由二氧化矽、氧、碳和氮形成的膜。阻隔膜的材料的示例包括氧化矽、氮化矽和氧氮化矽。阻隔膜的平均厚度較佳為100奈米以上但為10微米以下。
<<有機EL層>>
有機EL層30包括發光層,並且是用於貢獻發光層之發光的功能部分,例如根據施加在正極與負極之間的電壓促進載體遷移率或載體再結合。例如,藉由從支撐基板20的一側依序層疊正極、電洞傳輸層、發光層、電子傳輸層和負極來形成有機EL層。
沒有對有機EL層30做出特別限制,並且可以根據期望目的從本領域已知的有機EL元件中適當地選擇。
將透明電極進行層疊以作為負極。
藉由使用諸如SnO2、In2O3、ITO、IZO和ZnO:Al之類的導電金屬氧化物來形成透明電極。將透明電極用作負極時,理想上是將電子注入層設置為有機EL層的最上層以提高電子注入效率。透明電極對波長為400奈米至800奈米的光的透射率較佳為50%以上,更佳為85%以上。透明電極的平均厚度較佳為50奈米以上,更佳為50奈米至1微米,再更佳為100奈米至300奈米。
<<<金屬氧化物層>>
有機EL元件的金屬氧化物層40及其製造方法可適當地從本發明的電子裝置的金屬氧化物層及其製造方法的描述中選擇。
金屬氧化物層40設置在負極上以將有機EL層30埋置其中。金屬氧化物層40設置在有機EL層30上相反於設置基板20的一側。金屬氧化物層40具有氣體阻隔功能,特別是濕氣阻隔功能。
示例
將藉由示例和比較例更詳細地描述本發明。本發明不應被解釋為僅限於這些示例。下面的敘述中,「份」表示「質量份」。
-銅鋁氧化物的製備-
銅鋁氧化物以下述方式製備。氧化亞銅和氧化鋁的重量準備為使得其莫耳數相等。將收集的氧化亞銅和氧化鋁轉移到美乃滋瓶中,並利用圓筒狀混合器(T2C型,可購自Willy A.Bachofen AG Maschinenfabrik)攪拌其中的混合物以獲得粉末混合物。將獲得的粉末混合物在攝氏1100度下加熱40小時,再讓產物通過孔徑為100微米的篩。
<粉末混合物材料>
氧化亞銅(NC-803,可購自NC TECH Co.,Ltd.):12公斤
氧化鋁(AA-03,可購自住友化學有限公司):8.58公斤
使用DRYSTAR SDA1(可購自Ashizawa Finetech Ltd.)將所獲得的銅鋁氧化物粉碎,以得到粒度在累積數10%(D10)、50%(D50)、90%(D90)分別為0.7±0.1微米、5.0±0.5微米、26±3微米的銅鋁氧化物粉末。將銅鋁氧化物的粉末在攝氏100度下真空乾燥,以將銅鋁氧化物的水分含量調節為0.2質量%以下。
使用0.2%的六偏磷酸鈉水溶液作為分散介質,並利用MICROTRAC MT3300(MicrotracBEL Corp.)測定,來獲得銅鋁氧化物的粒徑值,其測定時間為10秒。
至於銅鋁氧化物的水分含量測定,使用Karl Fischer水份分析儀(CA-200,可購自株式會社三菱化學分析科技)。
使用X射線螢光光譜儀(ZSX PrimusIV,可購自Rigaku Corporation)確定銅鋁氧化物的元素的組成比例,並使用X射線繞射儀(X'Pert PRO,可購自Spectris Co.,Ltd.)測量晶體結構。
<示例1>
-製造電子照相感光體的示例-
示例1中的20個電子照相感光體分別以下述方式製造。示例1的每個電子照相感光體包括依以下順序設置在導電支撐部件上的中間層、電荷產生層、電荷傳輸層、矽硬塗層、以及金屬氧化物層。
-中間層的形成-
透過浸塗將以下中間層塗佈液塗覆到鋁導電支撐部件上(外徑:100毫米,厚度:1.5毫米)以形成中間層。在攝氏150度下乾燥30分鐘之後,中間層的平均厚度為5微米。
<中間層塗佈液>
氧化鋅顆粒(MZ-300,可購自TAYCA CORPORATION):350份
3,5-二叔丁基水楊酸(可購自東京化學工業株式會社):1.5份
封端的異氰酸酯(Sumidur(註冊商標)3175,固體含量:75質量%,可購自Sumika Bayer Urethane Co.,Ltd.):60份
將丁縮醛樹脂(20質量%)溶解在2-丁酮(BM-1,可購自積水化學株式會社)所得到的溶液:225份
2-丁酮:365份
--電荷產生層的形成--
透過浸塗將以下電荷產生層塗佈液塗覆到所獲得的中間層上,以形成電荷產生層。電荷產生層的平均厚度為0.2微米。
<電荷產生層塗佈液>
Y型鈦氧基酞菁:6份
丁縮醛樹脂(S-LEC BX-1,可購自積水化學株式會社):4份
2-丁酮(可購自關東化學株式會社):200份
--電荷傳輸層的形成--
透過浸塗將以下電荷傳輸層塗佈液塗覆到所獲得的電荷產生層上以形成電荷傳輸層。
在攝氏135度下乾燥20分鐘之後,電荷傳輸層的平均厚度為22微米。
<電荷傳輸層塗佈液>
雙酚Z聚碳酸酯(PANLITE TS-2050,可購自TEIJIN LIMITED):10份
具有以下結構式的低分子電荷傳輸材料:10份
Figure 109124826-A0202-12-0030-3
四氫呋喃:80份
-矽硬塗層的形成-
透過環塗將以下矽硬塗層塗佈液塗覆到所獲得的電荷傳輸層上,以形成矽硬塗層。
在攝氏135度下乾燥20分鐘之後,矽硬塗層的平均厚度為0.5微米。
(矽硬塗層塗佈液)
矽硬塗液:(NSC-5506,可購自日本精化株式會社):80份
四氫呋喃:20份
--金屬氧化物層的形成--
作為成膜室,使用將市售的氣相沉積裝置修改而獲得的腔室。
市售攪拌器(TKAGI HOMO MIXER 2M-03,可購自PRIMIX Corporation)用於氣溶膠產生器。注意,作為氣溶膠產生器,可使用超音波清潔器(SUS-103,可購自島津製作所),其中可使用市售的壓力供給瓶(RBN-S,可購自加藤不銹鋼化學株式會社),其具有1L的容積。
從氣溶膠產生器抽出內徑為4mm的管道送至成膜室,並且在該管的邊緣附接噴嘴(YB1/8MSSP37,可購自Spraying Systems Co.)。將感光體佈置在距離噴嘴50mm的位置。作為感光體支架,設置可旋轉感光體鼓的機構。作為噴嘴,使用可以橫向移動的噴嘴。利用內徑為4毫米的管道將氣溶膠產生器和充滿氮氣的氣瓶連接。
使用上述裝置,利用以下方式製造平均厚度為1.5微米的目標金屬氧化物層。
在氣溶膠產生器中裝入包含銅鋁氧化物和二氧化矽顆粒的粉末混合物,銅鋁氧化物以上述方式獲得,二氧化矽顆粒(Reolosil ZD-30S,可購自德山株式會社)已用二甲基二氯矽烷和六甲基二矽氮烷進行了表面處理,其BET表面積為190±25m2/g,碳含量為2.9質量%,銅鋁氧化物和二氧化矽顆粒的質量比為99.5%:0.5%。
接下來,透過排氣泵從成膜室朝氣溶膠產生器進行真空抽氣。然後,將氮氣從氣瓶送入氣溶膠產生器中,並開始攪拌以產生氣溶膠,其中顆粒分散於氮氣中。產生的氣溶膠經由管道從噴嘴朝感光體噴射。氮氣的流速為13L/min至20L/min。另外,成膜時間為20分鐘,並且在金屬氧化物層形成期間的成膜室內部的真空度為約50Pa至約150Pa。
透過X射線螢光光譜儀(ZSX PrimusIV,可購自Rigaku Corporation)確定包含在感光體表面上的二氧化矽顆粒的量。包含在感光體中的二氧化矽顆粒的量與電荷量相同。
<示例2>
除了將包含用於形成金屬氧化物的銅鋁氧化物和二氧化矽顆粒的粉末混合物中的二氧化矽顆粒的量改變為1.0質量%以外,以與示例1相同的方式製造20個電子照相感光體。
<示例3>
除了將包含用於形成金屬氧化物的銅鋁氧化物和二氧化矽顆粒的粉末混合物中的二氧化矽顆粒的量改變為1.5質量%以外,以與示例1相同的方式製造20個電子照相感光體。
<示例4>
除了將用於形成金屬氧化物之包含銅鋁氧化物和二氧化矽顆粒的粉末混合物中的二氧化矽顆粒改變為已利用二甲基二氯矽烷進行了表面處理的二氧化矽顆粒,其BET比表面積為200±25m2/g,並且碳含量為2.8質量%(HDK H-2000,可購自Wacker Asahikasei Silicone Co.,Ltd.)以外,以與示例2相同的方式製造20個電子照相感光體。
<示例5>
除了將用於形成金屬氧化物之包含銅鋁氧化物和的二氧化矽顆粒的粉末混合物中的二氧化矽顆粒改變為已利用二甲基二氯矽烷進行了表面處理的Aerosil R976(可購自NIPPON AEROSIL CO.,LTD.),其BET比表面積為250±25m2/g,並且碳含量為1.8質量%以外,以與示例2相同的方式製造20個電子照相感光體。
<示例6>
除了將用於形成金屬氧化物之包含銅鋁氧化物和的二氧化矽顆粒的粉末混合物中的二氧化矽顆粒改變為已利用三甲基甲矽烷基和氨基進行了表面處理的Aerosil RA200HS(可購自NIPPON AEROSIL CO.,LTD.),其BET比表面積為140±25m2/g,並且碳含量為1.8質量%以外,以與示例2相同的方式製造20個電子照相感光體。
<比較例1>
除了二氧化矽顆粒添加到用於形成金屬氧化物層之包含銅鋁氧化物和二氧化矽顆粒的粉末混合物中以外,以與示例1相同的方式製造20個電子照相感光體。
<比較例2>
除了將用於形成金屬氧化物之包含銅鋁氧化物和二氧化矽顆粒的粉末混合物中的二氧化矽顆粒的量改變為0.3質量%以外,以與示例1相同的方式製造20個電子照相感光體。
<比較例3>
除了將用於形成金屬氧化物之包含銅鋁氧化物和二氧化矽顆粒的粉末混合物中的二氧化矽顆粒的量改變為2.0質量%以外,以與示例1相同的方式製造20個電子照相感光體。
<示例7>
除了使用包含銅鋁氧化物和氧化鋁顆粒的粉末混合物形成金屬氧化物層,該些氧化鋁顆粒(AKP-50,可購自住友化學株式會社)的體積平均粒徑為0.20微米,且BET比表面積為10.3m2/g,銅鋁氧化物和氧化鋁顆粒的質量比為99.5%:0.5%以外,以與示例1相同的方式製造20個電子照相感光體。
<示例8>
除了將用於形成金屬氧化物之包含銅鋁氧化物和金屬氧化物顆粒的粉末混合物中的金屬氧化物顆粒的量改變為1.0質量%以外,以與示例7相同的方式製造20個電子照相感光體。
<示例9>
除了將用於形成金屬氧化物之包含銅鋁氧化物和金屬氧化物顆粒的粉末混合物中的金屬氧化物顆粒的量改變為1.5質量%以外,以與示例7相同的方式製造20個電子照相感光體。
<示例10>
除了將用於形成金屬氧化物之包含銅鋁氧化物和金屬氧化物顆粒的粉末混合物中的金屬氧化物顆粒改變為氧化鋁(AKP-20,可購自住友化學株式會社),其體積平均粒徑為0.46微米且BET比表面積為4.3m2/g以外,以與示例8相同的方式製造20個電子照相感光體。
<示例11>
除了將用於形成金屬氧化物層之包含銅鋁氧化物和金屬氧化物顆粒的粉末混合物中的金屬氧化物顆粒改變為TM-DAR(可購自大明化學工業株式會社),其體積平均粒徑為0.10微米且BET比表面積為14.5m2/g以外,以與示例8相同的方式製造20個電子照相感光體。
<示例12>
除了將用於形成金屬氧化物層之包含銅鋁氧化物和金屬氧化物顆粒的粉末混合物中的金屬氧化物顆粒改變為SF-10(可購自堺化學工業株式會社),其粒徑為0.28微米且BET比表面積為11.0m2/g以外,以與示例8相同的方式製造20個電子照相感光體。
<比較例4>
除了將用於形成金屬氧化物之包含銅鋁氧化物和金屬氧化物顆粒的粉末混合物中的金屬氧化物顆粒的量改變為0.3質量%以外,以與示例7相同的方式製造20個電子照相感光體。
<比較例5>
除了將用於形成金屬氧化物之包含銅鋁氧化物和金屬氧化物顆粒的粉末混合物中的金屬氧化物顆粒的量改變為2.0質量%以外,以與示例7相同的方式製造20個電子照相感光體。
<電子照相感光體的評估>
在示例1至12和比較例1至5中以上述方法生產的每個電子照相感光體中,長380毫米且外徑100毫米的圓柱形光導鼓的厚度是在距離鼓邊緣100毫米的位置到距離鼓邊緣300毫米的位置之間以50毫米的間隔在縱向取五個點進行測量。厚度的測量在20個光導鼓上進行,以獲得總計100點的厚度數據。厚度的測量是根據日本專利第5521607號使用光干涉的方法來執行。除了從獲得的數據的平均值確定厚度以外,還確定了標準偏差。
基於所獲得的厚度的平均值和標準偏差,根據以下方程式(1)至(3)計算製程能力指數(Cpk)。結果列於表1。製程能力指數是評價厚度的算術平均值X相對於標準的中值的偏移程度而得出的值。Cpk越大,表示製造品質穩定的電子裝置的能力越高。
Cpk=Cp(1-K) (1)
Figure 109124826-A0202-12-0034-4
Figure 109124826-A0202-12-0035-5
在上述方程式中,USL是標準的上限值,LSL是標準的下限值,X是厚度的算術平均值,且σ是標準偏差。此外,Cp是表示成膜製程中指示變異的6 σ與標準寬度之間的比較。
由於在判斷製程能力對市場上的產品的影響時不能測量大量的感光體,因此可以藉由縮小的測量間隔獲得總共100個點的厚度測量值來進行評估。
表1
Figure 109124826-A0202-12-0035-6
從表1的結果發現,在示例1至12中所獲得的每種電子照相感光體的金屬氧化物層在其厚度具有較少的不均勻性。
發現將用於金屬氧化物層之包含銅鋁氧化物和二氧化矽顆粒的粉末混合物中的二氧化矽顆粒的含量從示例1中的0.5質量%改變為示例3中的1.5質量%時,獲得了高Cpk(製程能力指數)。
此外,發現當將用於金屬氧化物層之包含銅鋁氧化物和金屬氧化物顆粒的粉末混合物中的金屬氧化物顆粒的含量從示例7中的0.5質量%改變為示例9中的1.5質量%時,獲得了高Cpk(製程能力指數)。
例如,本發明的實施例如下:
<1>一種電子裝置,包括:
一支撐部件;
包含電荷傳輸材料的一電荷傳輸層,或包含敏化染料的一敏化染料電極層,其中,該電荷傳輸層或該敏化染料電極層設置在該支撐部件之上或上方;以及
一金屬氧化物層,設置在該電荷傳輸層或該敏化染料電極層之上或上方,
其中,該金屬氧化物層包含p型半導體金屬氧化物和二氧化矽或金屬氧化物顆粒,以及
其中,相對於該金屬氧化物層,包含在該金屬氧化物層中的該些二氧化矽或金屬氧化物顆粒的含量為0.5質量%以上但為1.5質量%以下。
<2>根據<1>之電子裝置,其中,該金屬氧化物層的平均厚度為1.2微米以上但為1.8微米以下,並且該金屬氧化物層的厚度的標準偏差為0.07微米以下。
<3>根據<1>之電子裝置,其中,該p型半導體金屬氧化物是銅鐵礦氧化物。
<4>根據<3>之電子裝置,其中,該銅鐵礦氧化物是銅鋁氧化物。
<5>一種製造電子裝置的方法,該方法包括:
噴塗p型半導體金屬氧化物和二氧化矽或金屬氧化物顆粒以形成一金屬氧化物層,
其中,該電子裝置包括:
一支撐部件;
包含電荷傳輸材料的一電荷傳輸層,或包含敏化染料的一敏化染料電極層,其中,該電荷傳輸層或該敏化染料電極層設置在該支撐部件之上或上方;以及
該金屬氧化物層,設置在該電荷傳輸層或該敏化染料電極層之上或上方。
<6>根據<5>之製造電子裝置的方法,其中,該噴塗是氣溶膠沉積。
<7>一種影像形成方法,包括:使用根據<1>至<4>中任一項所述之電子裝置形成一影像。
<8>一種影像形成設備,包括:根據<1>至<4>中任一項所述之電子裝置。
根據<1>至<4>中任一項所述之電子裝置、根據<5>或<6>之製造電子裝置的方法、根據<7>之影像形成方法、以及根據<8>之影像形成設備,可以解決本領域中存在的上述各種問題,並可以實現本發明的目的。
10A:電子裝置、電子照相感光體
51:導電支撐部件
52:中間層
53:電荷產生層
54:電荷傳輸層
55:矽硬塗層
56:金屬氧化物層

Claims (9)

  1. 一種電子裝置,包括:一支撐部件;包含電荷傳輸材料的一電荷傳輸層,或包含敏化染料的一敏化染料電極層,其中,該電荷傳輸層或該敏化染料電極層設置在該支撐部件之上或上方;以及一金屬氧化物層,設置在該電荷傳輸層或該敏化染料電極層之上或上方,其中,該金屬氧化物層包含p型半導體金屬氧化物以及二氧化矽和金屬氧化物顆粒二者中之一者,其中,相對於該金屬氧化物層,包含在該金屬氧化物層中的該些二氧化矽或金屬氧化物顆粒的含量為0.5質量%以上但為1.5質量%以下,其中,該金屬氧化物層的平均厚度為1.2微米以上但為1.8微米以下,以及其中,該金屬氧化物層的厚度的標準偏差為0.07微米以下。
  2. 根據請求項1所述之電子裝置,其中,該p型半導體金屬氧化物是銅鐵礦氧化物。
  3. 根據請求項2所述之電子裝置,其中,該銅鐵礦氧化物是銅鋁氧化物。
  4. 根據請求項1所述之電子裝置,其中,該金屬氧化物層僅由該p型半導體金屬氧化物和該些二氧化矽或金屬氧化物顆粒所組成。
  5. 根據請求項1所述之電子裝置,其中,相對於該金屬氧化物層,包含在該金屬氧化物層中的該些二氧化矽或金屬氧化物顆粒的含量為0.7質量%以上但為1.3質量%以下。
  6. 一種製造電子裝置的方法,該方法包括:噴塗p型半導體金屬氧化物和二氧化矽或金屬氧化物顆粒以形成一金屬氧化物層,其中,該電子裝置包括:一支撐部件;包含電荷傳輸材料的一電荷傳輸層,或包含敏化染料的一敏化染料電極層,其中,該電荷傳輸層或該敏化染料電極層設置在該支撐部件之上或上方;以及該金屬氧化物層,設置在該電荷傳輸層或該敏化染料電極層之上或上方, 其中,該金屬氧化物層包含p型半導體金屬氧化物以及二氧化矽和金屬氧化物顆粒二者中之一者,其中,相對於該金屬氧化物層,包含在該金屬氧化物層中的該些二氧化矽或金屬氧化物顆粒的含量為0.5質量%以上但為1.5質量%以下,其中,該金屬氧化物層的平均厚度為1.2微米以上但為1.8微米以下,以及其中,該金屬氧化物層的厚度的標準偏差為0.07微米以下。
  7. 根據請求項6所述之製造電子裝置的方法,其中,該噴塗是氣溶膠沉積。
  8. 一種影像形成方法,包括:使用根據請求項1至5中任一項所述之電子裝置形成一影像。
  9. 一種影像形成設備,包括:根據請求項1至5中任一項所述之電子裝置。
TW109124826A 2019-09-26 2020-07-22 電子裝置及其製造方法、影像形成方法及影像形成設備 TWI834899B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-174926 2019-09-26
JP2019174926 2019-09-26
JP2020-082368 2020-05-08
JP2020082368A JP7443922B2 (ja) 2019-09-26 2020-05-08 電子デバイス及びその製造方法、画像形成方法、並びに画像形成装置

Publications (2)

Publication Number Publication Date
TW202114261A TW202114261A (zh) 2021-04-01
TWI834899B true TWI834899B (zh) 2024-03-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054397A1 (ja) 2004-11-19 2006-05-26 Mitsubishi Chemical Corporation 下引き層形成用塗布液及び該塗布液を塗布してなる下引き層を有する電子写真感光体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054397A1 (ja) 2004-11-19 2006-05-26 Mitsubishi Chemical Corporation 下引き層形成用塗布液及び該塗布液を塗布してなる下引き層を有する電子写真感光体

Similar Documents

Publication Publication Date Title
US20200287149A1 (en) Hybrid particle, photoelectric conversion element, photosensitive body, and image forming apparatus
JP7435839B2 (ja) 電子写真感光体の製造方法
JP7443922B2 (ja) 電子デバイス及びその製造方法、画像形成方法、並びに画像形成装置
TWI802833B (zh) 電子裝置及其製造方法、影像形成方法及影像形成設備
TWI834899B (zh) 電子裝置及其製造方法、影像形成方法及影像形成設備
EP4034945B1 (en) Electronic device and method for producing the same, image forming method, and image forming apparatus
EP3928162B1 (en) Photoelectric conversion element, organic photoconductor, image forming method, image forming apparatus, and organic el element
JP2019164322A (ja) 光電変換デバイス、プロセスカートリッジ、及び画像形成装置
US20230125171A1 (en) Metal oxide particles having p-type semiconductivity, electronic device using the same, method for manufacturing electronic device, and image forming apparatus
JP2008145737A (ja) 電子写真感光体、その製造方法およびそれを用いた電子写真装置
WO2022038984A1 (en) Laminate, device using the same, and production methods thereof
JP2022035992A (ja) 積層体およびこれを用いたデバイス並びにこれらの製造方法
JPS63163861A (ja) 電子写真感光体
JPS6296952A (ja) 電子写真感光体
JPS63241555A (ja) 電子写真感光体
JPS63178252A (ja) 電子写真感光体