TWI832037B - 用來監視監視對象的監視裝置、監視方法、電腦程式及物品製造方法 - Google Patents
用來監視監視對象的監視裝置、監視方法、電腦程式及物品製造方法 Download PDFInfo
- Publication number
- TWI832037B TWI832037B TW110105619A TW110105619A TWI832037B TW I832037 B TWI832037 B TW I832037B TW 110105619 A TW110105619 A TW 110105619A TW 110105619 A TW110105619 A TW 110105619A TW I832037 B TWI832037 B TW I832037B
- Authority
- TW
- Taiwan
- Prior art keywords
- monitoring
- mentioned above
- model
- models
- time series
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims description 53
- 238000012806 monitoring device Methods 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000004590 computer program Methods 0.000 title claims 2
- 238000001514 detection method Methods 0.000 claims abstract description 37
- 230000005856 abnormality Effects 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims description 45
- 230000008569 process Effects 0.000 claims description 38
- 238000012545 processing Methods 0.000 claims description 22
- 238000011156 evaluation Methods 0.000 claims description 16
- 230000007717 exclusion Effects 0.000 claims description 11
- 238000003379 elimination reaction Methods 0.000 claims description 10
- 230000008030 elimination Effects 0.000 claims description 8
- 238000011161 development Methods 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims 1
- 230000036962 time dependent Effects 0.000 claims 1
- 230000010365 information processing Effects 0.000 abstract description 55
- 238000003860 storage Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 239000003507 refrigerant Substances 0.000 description 11
- 230000006870 function Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/705—Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/7065—Defects, e.g. optical inspection of patterned layer for defects
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706837—Data analysis, e.g. filtering, weighting, flyer removal, fingerprints or root cause analysis
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706839—Modelling, e.g. modelling scattering or solving inverse problems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706843—Metrology apparatus
- G03F7/706851—Detection branch, e.g. detector arrangements, polarisation control, wavelength control or dark/bright field detection
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2602—Wafer processing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
資訊處理裝置係具備:取得部,係從具有複數個感測器的監視對象取得表示前記複數個感測器之每一者的輸出值之變化的複數個時間序列資料;和模型生成部,係藉由從前記複數個時間序列資料中的複數個期間之各者而生成表示前記複數個時間序列資料之相互關係的1個模型,以生成分別對應於前記複數個期間的複數個模型;和偵測部,係基於前記複數個模型與前記複數個時間序列資料而偵測前記監視對象之異常。前記複數個期間,係可包含彼此部分性重疊的2個期間。
Description
本發明係有關於資訊處理裝置、監視方法、程式及物品製造方法。
日本特開2017-021702號公報中係記載了,監視工廠中所被配置之機器之故障預兆的方法。在該方法中是使用,基於用來計測工廠內所被配置之各機器之舉動的感測器所測定到的測定資料以監視該機器之故障預兆的故障預兆監視裝置。故障預兆監視裝置,係基於工廠之啟動過程中的運轉內容,而將啟動過程內劃分成複數個期間,基於測定資料,在各期間每一者的結束時確認舉動狀態之妥當性,而顯示各機器之故障預兆地點。又,故障預兆監視裝置,係在確認了各期間中的舉動狀態為妥當的情況下,才往下個期間前進。
為了故障預兆之監視,基於將某個期間中的表示複數個感測器之每一者的輸出值之變化的複數個時間序列資料,而可生成表示複數個時間序列資料之相互關係的模型。該模型之輸出值與該模型所對應之感測器之輸出值的差分若超過閾值,則暗示了異常(故障之徵兆、或故
障)的發生。
如上記的模型因為某些理由而會有不適切的情況,即使實際上已經發生了異常,只要該不適切的模型之輸出值與感測器之輸出值係為近似,就無法偵測出異常的發生。可是,模型是否不適切,要進行驗證並非容易。又,即使在偵測到異常的情況下,仍不保證該模型係為適切。
本發明係提供一種有利於以更高的精度來偵測監視對象之異常之發生的技術。
本發明的1個側面,係有關於資訊處理裝置,前記資訊處理裝置係具備:取得部,係從具有複數個感測器的監視對象取得表示前記複數個感測器之每一者的輸出值之變化的複數個時間序列資料;和模型生成部,係藉由從前記複數個時間序列資料中的複數個期間之各者而生成表示前記複數個時間序列資料之相互關係的1個模型,以生成分別對應於前記複數個期間的複數個模型;和偵測部,係基於前記複數個模型與前記複數個時間序列資料而偵測前記監視對象之異常。前記複數個期間,係可包含彼此部分性重疊的2個期間。
以下參照添附圖式來詳細說明實施形態。此外,以下的實施形態並非用來限定申請專利範圍所涉及之發明。實施形態中雖然記載了複數特徵,但這些複數特徵之全部並不限於發明所必須者,又,複數特徵亦可做任意組合。再者,於添附圖式中,對相同或是同樣之構成係給予相同的元件符號,並省略重複說明。
圖1中係圖示實施形態的資訊處理裝置100之構成例。資訊處理裝置100係可成為用來監視監視對象150之狀態的監視裝置,或者成為執行用來監視監視對象150之狀態之監視方法的裝置而作動。資訊處理裝置100,係可藉由具備儲存程式的記憶體、和基於該程式而作動之處理器的電腦,而被構成。程式,係可儲存在記憶媒體中而被搬運。或者,程式係可透過網路等之通訊路而被傳輸。資訊處理裝置100,係亦可藉由單一台電腦而被構成,亦可藉由透過網路等之通訊路而被相互連接之複數個電腦而被構成,亦可藉由其他形態而被構成。在一個例子中,資訊處理裝置100係可含有:CPU101、ROM102、RAM103、輔助記憶裝置104、輸入裝置105、顯示裝置106、通訊裝置107、匯流排108。
CPU101,係可基於ROM102中所被儲存之程式而作動,規定了資訊處理裝置100之機能。CPU101,係可透過匯流排108而與ROM102、RAM103、輔助記憶裝置104、輸入裝置105、顯示裝置106及通訊裝置107進行通訊,並且控制這些裝置。RAM103,係可被利用於例如,資料的暫時性記憶。輔助記憶裝置104,係可為由1或複數個記憶元件所構成的非揮發性之記憶裝置。控制CPU101的程式,係亦可被儲存在輔助記憶裝置104中。記憶元件係可包含例如:HDD(硬碟機)、記憶體碟及/或記憶卡。
輸入裝置105,係可包含鍵盤、指標裝置、掃描器等。顯示裝置106,係可包含液晶螢幕、有機EL螢幕等。通訊裝置107,係具有與外部裝置進行通訊之機能。通訊裝置107,係可透過網路等之通訊路而與監視對象150進行通訊。通訊裝置107係可將例如,將表示監視對象150所擁有的複數個感測器151之每一者的輸出值之變化的複數個時間序列資料,從監視對象150加以取得或接收。監視對象150,係為用來製造物品所需之製造裝置,係可為例如基板處理裝置。該基板處理裝置係可為例如:曝光裝置、壓印裝置等之圖案形成裝置或是光微影裝置。
如圖2A所例示,可對1個監視對象150,設置用來監視其之1個資訊處理裝置100。或者,如圖2B所示,可對複數個監視對象150,設置用來監視它們的1個資訊處理裝置100。或者,雖然未圖示,但亦可對監視對象150而內嵌資訊處理裝置100。
圖3中係記載了,資訊處理裝置100之另一觀點下的構成例。資訊處理裝置100,係可具備取得部121、模型生成部122及偵測部123。取得部121係可被構成為,從具有複數個感測器151的監視對象150取得表示複數個感測器151之每一者的輸出值之變化的複數個時間序列資料。模型生成部122,係藉由從該複數個時間序列資料中的複數個期間之各者,生成表示該複數個時間序列資料之相互關係的1個模型,而可生成對應於該複數個期間的複數個模型。偵測部123,係可基於該複數個模型與該複數個時間序列資料而偵測監視對象150之異常。資訊處理裝置100,係亦可還具備:排除部124,係從該複數個模型中,將不需使用於偵測監視對象150之異常的模型予以排除。資訊處理裝置100,係亦可還具備:報知部125,係將偵測部123偵測到監視對象150之異常的事實,予以報知。
取得部121,係從監視對象150取得表示錯誤之發生的錯誤資訊,模型生成部122,係可於未發生錯誤之期間中,決定上記之複數個期間。監視對象150,係可具有用來偵測錯誤之發生的錯誤偵測機能,錯誤資訊,係可藉由該錯誤偵測機能而被提供。藉由於未發生錯誤之期間中決定上記之複數個期間,就可防止基於不適切的時間序列資料而生成模型。
模型生成部122,係亦可以帶有彼此部分性重疊的期間的方式,來決定上記之複數個期間。這是有利於縮短用來生成複數個模型所需要的期間。
排除部124,係可被構成為,從複數個模型中,將不需使用於偵測監視對象150之異常的模型予以排除。排除部124係例如,可基於模型生成部122所致之模型之生成時起算的經過時間,而決定應排除之模型。例如,排除部124,係可將模型生成部122所致之模型之生成時起算的經過時間是超過了所定時間的模型,決定成為應排除之模型。在沒有排除部124的情況下,模型的個數會持續增大。又,在沒有排除部124的情況下,舊的模型會對異常之偵測造成影響,因此會降低對監視對象150及/或感測器之經時變化的敏感性。
偵測部123,係可針對複數個感測器之各者,計算感測器之輸出值與藉由模型而被給出之輸出值的差分。在該情況下,偵測部123,係可在將該差分進行處理所得之值是超過所定值的情況下,偵測出監視對象150中的異常之發生。
排除部124係例如,可將偵測到異常之發生的輸出值的產生之頻繁度是超過所定頻繁度的模型,決定成為應排除之模型。排除部124係亦可例如,基於使用複數個期間之中按照時間經過順序而排列的至少3個期間所各自對應的至少3個模型而偵測到異常之發生的頻繁度,而從該至少3個模型中,決定出應排除之模型。例如,排除部124,係可基於使用至少3個模型而偵測到異常之發生的頻繁度,來決定閾值。然後,排除部124,係可將使用該至少3個模型而偵測到異常之發生的頻繁度之中,將發生頻繁度超過該閾值的模型,決定成為應排除之模型。
排除部124,係亦可根據基於將使用已經存在之模型之各者而被計算的異常值而被決定之閾值,而決定是否應將其後藉由模型生成部122所被生成之模型予以排除。
偵測部123係亦可對使用複數個模型之各者而被計算的複數個差分(感測器之輸出值與模型所產生之輸出值的差分)進行加權並計算評價值,基於該評價值而偵測監視對象150之狀態。偵測部123,係亦可基於模型生成部122所致之模型之生成時起算的經過時間而進行加權。偵測部123,係該經過時間越長的模型則權重就可設成越小。或者,偵測部123,係該經過時間越短的模型則權重就可設成越小。
報知部125係可被構成為,將偵測部123偵測到監視對象150之異常的事實,予以報知。如此的報知,對於監視對象150的迅速維修是有利的。
資訊處理裝置100,係亦可理解成為用來執行含有分別對應於取得部121、模型生成部122及偵測部123的取得過程、模型生成過程及偵測過程的方法的裝置。該方法係亦可含有還有,對應於排除部124的排除方法及/或對應於報知部125的報知過程。
圖4中係將基板處理裝置,更具體而言是作為曝光裝置10而被構成的監視對象150予以例示性地圖示。曝光裝置10,係可具備含有光源的光源單元1。光源係可為例如高壓汞燈或準分子雷射等。光源是準分子雷射的情況下,則光源單元1係有被配置在曝光裝置10的處理室之外的情況,但亦可被配置在該處理室的內部。
曝光裝置10係具備:照明系2、母版平台3、投影光學系5、基板平台6。照明系2係可使用來自光源單元1的光線,來照明被母版平台3所保持的母版R。照明光學系2,係可將所被照明的母版R之圖案,投影至基板S。基板平台6,係可具有用來保持基板S的基板吸盤7。基板平台6,係可在藉由基板吸盤7而保持住基板S的狀態下進行移動,以將基板S進行定位。曝光裝置10,係亦可被構成為是以步進以及反覆方式來將基板S進行曝光,亦可被構成為是以步進以及掃描方式來將基板S進行曝光。
對曝光裝置10係可提供例如,保持有複數個基板S的基板匣12。曝光裝置10,係可具備預先對位儀9。曝光裝置10,係可具備未圖示的機器人,該機器人係可從基板匣12取出基板S,然後搬送至預先對位儀9。預先對位儀9,係可實施基板S的預先對位(方向及位置之對位)。藉由預先對位儀9而被預先對位的基板S,係可藉由該機器人而被搬送至基板平台6的基板吸盤7。
曝光裝置10上係亦可被連接有其他裝置。其他裝置,係可為塗布顯影裝置。藉由塗布顯影裝置而被塗布了阻劑的基板S係被搬入至曝光裝置10,藉由曝光裝置10而被曝光的基板S係被搬出至塗布顯影裝置,可藉由塗布顯影裝置而被顯影。
曝光裝置10,係可具備用來控制其動作的控制部11。控制部11係可控制光源單元、照明系2、母版平台3、投影光學系5、基板平台6、預先對位儀9等。控制部11,係可與資訊處理裝置100(的通訊裝置107)進行通訊。圖4中雖然未圖示,但曝光裝置10係具備有複數個感測器,控制部11係可將表示複數個感測器之每一者的輸出值之變化的複數個時間序列資料,發送或是提供給資訊處理裝置100(的通訊裝置107)。該複數個時間序列資料,係亦可透過其他裝置而被發送或是提供給資訊處理裝置100(的通訊裝置107)。
圖5中係例示,圖4的曝光裝置10中所被內嵌的調溫系統300之構成。調溫系統300,係為監視對象的150之一例。於圖5中,粗線的箭頭係表示冷媒的流動,細線的箭頭係表示資訊的流動。調溫系統300係可含有例如:第1區塊301、第2區塊302。第2區塊302中係可配置有複數個調溫對象416~419。複數個調溫對象416~419係可包含有例如:光源1、照明光學系2、母版平台3、投影光學系5、基板平台6。第1區塊301,係可將冷媒進行調溫,並將已被調溫之冷媒供給至第2區塊302。於第1區塊301中已被調溫之冷媒,係可於第2區塊302中從1或複數個單元奪走熱量而將該1或複數個單元予以調溫,其後,會返回第1區塊301。
第1區塊301係可含有例如:調溫單元401、調溫單元402、溫度感測器401S、溫度感測器402、控制單元401C及控制單元402C。調溫單元401,係可令冷媒的溫度降低到目標溫度然後供給至調溫單元402。控制單元401C,係隨應於藉由溫度感測器401S而被測定到的溫度,以決定控制量而使得冷媒的溫度會與目標溫度一致,隨應於該控制量而令調溫單元401作動。調溫單元402,係可將冷媒的溫度調整成第2區塊302所容許的溫度範圍內然後供給至第2區塊302。控制單元402C,係隨應於藉由溫度感測器402S而被測定到的溫度,以決定控制量而使得冷媒的溫度會落在第2區塊302所容許的溫度範圍內,隨應於該控制量而令調溫單元402作動。
在第2區塊302中,係可藉由調溫單元412~415來調整冷媒的溫度,以使得調溫對象416~419之各者落在目標溫度範圍內。控制單元412C,係隨應於溫度感測器412S1及412S2所測定到的溫度而決定控制量以使得調溫對象416會落在目標溫度範圍內,並隨應於該控制量而令調溫單元412作動。控制單元413C,係隨應於溫度感測器413S1及413S2所測定到的溫度而決定控制量以使得調溫對象417會落在目標溫度範圍內,並隨應於該控制量而令調溫單元413作動。
控制單元411C,係隨應於溫度感測器411S所測定到的溫度、及來自於控制單元414C、415C的資訊,而決定控制量以使得冷媒的溫度會落在目標溫度範圍內,隨應於該控制量而令調溫單元411作動。控制單元414C,係隨應於溫度感測器414S1及414S2所測定到的溫度而決定控制量以使得調溫對象418會落在目標溫度範圍內,並隨應於該控制量而令調溫單元414作動。控制單元415C,係隨應於溫度感測器415S1及415S2所測定到的溫度而決定控制量以使得調溫對象419會落在目標溫度範圍內,並隨應於該控制量而令調溫單元415作動。
調溫單元401、402、412~415亦可為熱交換所致之加熱/冷卻單元。在另一觀點中,調溫單元401係可為冷卻單元,調溫單元402、412~415係可為加熱單元。冷媒亦可為液體,亦可為氣體。
在圖5所示的調溫系統300中,調溫對象的溫度係被控制,作為感測器是設置有溫度感測器401S、402S、411S~415S2。可是,調溫系統300係亦可包含有測定溫度以外之資訊的感測器(例如流量感測器、壓力感測器、加速度感測器、位置感測器)。又,曝光裝置10中亦可被內嵌有關於溫度以外之參數而將控制對象予以控制的控制系統。
此處,例示性說明藉由模型生成部122而被生成的模型。此處,為了簡化,在圖5中所被例示的調溫系統中,將時刻t上的2個溫度感測器(例如溫度感測器401S、402S)之輸出值令作at
、bt
。該2個溫度感測器之輸出值at
、bt
的關係,係可用(1)式所給定的模型(函數)來定義。
模型f係可為例如,基於藉由2個溫度感測器而被測定出來的測定資料,以最小平方法等而被決定的回歸式。或者,模型f係亦可為例如,使用機器學習而被生成的學習模型。例如,模型f係可為含有神經網路的模型。所謂神經網路,係為具有輸入層、中間層、輸出層這種多層網路結構的模型。使用表示作為輸入資料的at
與作為訓練資料的bt
之關係的學習資料,依照誤差反向傳播法等之演算法而使神經網路內部的結合加權係數等做最佳化,藉此就可取得學習模型。誤差反向傳播法係為,以使得輸出資料與訓練資料的差會變小的方式,而將各神經網路之節點間的結合加權係數等進行調整的手法。又,模型f亦可並非含有神經網路的模型,而是例如含有SVM(支持向量機)的學習模型。
將感測器Si
之輸出值(以下稱作預測輸出值)xij
予以給定的模型fij
(xj
),係作為感測器Sj
之輸出值(以下稱作測定輸出值)xj
的函數,而可用(2)式來給定。此處,i係為1~N之整數,N係為感測器之個數。j係為1~N之中i以外之整數。
此處,(2)式係可意指如以下的數式群。
圖6中係例示性圖示,關於模型之生成的資訊處理裝置100之動作。在步驟S301中,資訊處理裝置100,係藉由取得部121,從具有複數個感測器的監視對象150取得表示該複數個感測器之每一者的輸出值的複數個資料。在步驟S302中,資訊處理裝置100,係將步驟S301中所被取得之複數個資料,保存在輔助記憶裝置104的保存領域中。此處,由步驟S301及S302所構成的處理單位是跨越複數次而被執行,藉此,在輔助記憶裝置104的保存領域中,就會保存有表示複數個感測器之輸出值之變化的複數個時間序列資料。各時間序列資料,係由將1個感測器之輸出值按照時間序列做排列而成的資料所構成。在步驟S303中,資訊處理裝置100係判斷,輔助記憶裝置104的保存領域中所被保存之時間序列資料是否已經達到模型之作成上所需要的量。然後,資訊處理裝置100,係在輔助記憶裝置104的保存領域中所被保存之時間序列資料已經達到模型之作成上所需要的量的情況下往步驟S304前進,若非如此則回到步驟S301。
在步驟S304中,資訊處理裝置100,係藉由模型生成部122,基於輔助記憶裝置104的保存領域中所被保存之時間序列資料而生成複數個模型fij
(xj
)。此處,模型生成部122,係藉由從複數個時間序列資料中的複數個期間之各者而生成表示該複數個時間序列資料之相互關係的1個模型,以生成分別對應於該複數個期間的複數個模型fij
(xj
)。在步驟S305中,資訊處理裝置100,係將步驟S304中已被模型生成部122所生成的複數個模型fij
(xj
),保存在輔助記憶裝置104的保存領域中。
圖7A中例示,溫度感測器401S之輸出值之變化。圖7B中例示,溫度感測器402S之輸出值之變化。於圖7A、7B中,橫軸係表示時刻,縱軸係表示溫度感測器401S、402S之輸出值(表示溫度的值)。期間P1
~P5
,係為用來生成複數個模型所需之期間。1個期間P1
,係為用來生成1個模型所需之期間,1個期間P2
,係為用來生成1個模型所需之期間,1個期間P3
,係為用來生成1個模型所需之期間。又,1個期間P4
,係為用來生成1個模型所需之期間,1個期間P5
,係為用來生成1個模型所需之期間。
在一個例子中,為了生成1個模型而需要的輸出值(資料),係為以5秒間隔而被測定到的5天份的輸出值。在此例中,期間P1
~P5
,係分別為5天的期間。期間P1
~P5
,係亦可被決定成具有彼此部分性重疊的期間。例如,若假設為了生成各模型而需要的輸出值(資料)為5天份的輸出值,則若使期間P1
~P5
不互相重疊的話則需要25天份的計測資料,但若使1天份的輸出值相互重疊的話,則只需要21天份的輸出值。
圖8中係例示性圖示,關於使用到模型之預測的資訊處理裝置100之動作。圖8所示的處理,係可藉由偵測部123而被執行。在步驟S401中,資訊處理裝置100,係判斷藉由圖7A、7B中所被例示的處理而被生成的模型是否存在1個以上,在該模型是存在1個以上的情況下則往步驟S402前進,若非如此則結束圖8所示的處理。
在步驟S402中,判斷是否有對藉由取得部121而被新取得的感測器之輸出值而不適用的模型(未適用之模型)存在,若該模型為存在則往步驟S403前進,若非如此則結束圖8所示的處理。此處,藉由取得部121而被新取得的感測器之輸出值,係為在模型之生成後藉由取得部121而被取得的感測器之輸出值。又,對藉由取得部121而被新取得的感測器之輸出值而不適用的模型不存在的這件事情是意味著,對該輸出值所能夠適用的所有模型都已經對該輸出值做了適用。
在步驟S404中,資訊處理裝置100,係從輔助記憶裝置104的保存領域讀出未適用之模型,並判斷該未適用之模型是否為有效。然後,資訊處理裝置100,係在該未適用之模型為有效的情況下則往步驟S405前進,若非如此則結束圖8所示的處理。該判斷係為例如,可根據模型被生成起算的經過時間而為之,例如,模型被生成起算的經過時間是超過了所定時間的情況,則可判斷為該模型並非有效。
在步驟S405中,資訊處理裝置100,係使用步驟S403中所讀出之模型fij
(xj
)來計算預測輸出值xij
。接下來,在步驟S406中,資訊處理裝置100係判斷,步驟S405中所計算出來的預測輸出值xij
是否為有效。具體而言,資訊處理裝置100係例如,在預測輸出值xij
與測定輸出值xi
的差分或比率是超過了閾值的情況下,則可判斷為預測輸出值xij
並非有效。在步驟S405中所計算出來的預測輸出值xij
並非有效情況下,資訊處理裝置100係回到步驟S402。另一方面,在步驟S405中所計算出來的預測輸出值xij
是有效的情況下,則資訊處理裝置100係將步驟S405中所計算出來的預測輸出值xij
,保存在輔助記憶裝置104的保存領域中。
圖9中係例示性圖示,關於使用模型來偵測異常之發生之處理的資訊處理裝置100之動作。圖9所示的處理,係藉由偵測部123而被執行。在步驟S501中,資訊處理裝置100係判斷輔助記憶裝置104的保存領域中所被保存之預測輸出值是否存在有1個以上,若該預測輸出值是存在1個以上則往步驟S502前進,若非如此則結束圖9所示的處理。
在步驟S502中,資訊處理裝置100係將輔助記憶裝置104的保存領域中所被保存之預測輸出值,予以讀出。在步驟S503中,資訊處理裝置100係基於步驟S502中所讀出之預測輸出值,來計算評價值。評價值係可為例如,複數個預測輸出值xij
之各者與其所對應之測定輸出值xi
的差分進行過處理的值,例如,將該差分予以合計而成的合計值,以複數個模型之數量進行了正規化而得的值。在步驟S504中,資訊處理裝置100,係將步驟S503中所計算出來的評價值,保存在輔助記憶裝置104的保存領域中。在步驟S504中,資訊處理裝置100係基於步驟S503中所計算出來的評價值,而偵測異常之發生。資訊處理裝置100係可為例如,在評價值是超過了所定值的情況下,偵測出異常之發生。在步驟S505中,資訊處理裝置100,係將步驟S504中的偵測結果,保存在輔助記憶裝置104的保存領域中。
在圖10中係例示,藉由本實施形態而被計算的評價值之變化。圖11中係例示,比較例中的評價值之變化。於圖10及圖11中,橫軸係表示時刻,縱軸係表示評價值。在圖10所示的本實施形態中,係從複數個時間序列資料中的複數個期間之各者,而生成表示該複數個時間序列資料之相互關係的1個模型,藉此,對應於該複數個期間的複數個模型會被生成,並且會使用該複數個模型來計算評價值。使用到如此的複數個模型而做的評價,係可發揮機能以降低關於每個模型是否為適切之不確定性。另一方面,在圖11所示的比較例中,係從複數個時間序列資料中的1個期間,而生成表示該複數個時間序列資料之相互關係的1個模型,並使用該模型來計算評價值。
在圖10所示的本實施形態中,雖然於時刻t1上有被偵測到異常之發生,但在圖11所示的比較例中,若沒有來到時刻t1之後的時刻t2,則偵測不出異常。如此,若依據本實施形態,則可早期偵測出異常之發生。
又,於比較例中,係從1個期間所被生成的模型若因為某些理由而為不適切的情況下,即使實際上已經發生了異常,只要該不適切的模型之輸出值與感測器之輸出值係為近似,就無法偵測出異常的發生。可是,模型是否適切,要進行驗證並非容易。又,即使在偵測到異常的情況下,仍不保證該模型係為適切。
實施形態的物品製造方法係可包含有:曝光過程,係將具有複數個感測器的曝光裝置當作監視對象並且使用該曝光裝置而將基板予以曝光;和顯影過程,係將該曝光過程中所被曝光之基板,予以顯影;和處理過程,係將該顯影過程中所被顯影之基板,進行處理而獲得物品。該物品製造方法係可還包含有上記的取得過程及上記的模型生成過程。該物品製造方法係可還包含有:偵測過程,係基於複數個模型與複數個時間序列資料而將作為該監視對象之該曝光裝置之狀態予以偵測;和維修過程,係基於該偵測過程中所偵測到的該曝光裝置之狀態而將該曝光裝置進行維修。
發明係不被限制成上記實施形態,在不脫離發明的精神及範圍下,可進行各式各樣的變更及變形。因此,為了公開發明的範圍而附上請求項。
1:光源單元
2:照明系
3:母版平台
5:投影光學系
6:基板平台
7:基板吸盤
9:預先對位儀
10:曝光裝置
11:控制部
12:基板匣
R:母版
S:基板
100:資訊處理裝置
101:CPU
102:ROM
103:RAM
104:輔助記憶裝置
105:輸入裝置
106:顯示裝置
107:通訊裝置
108:匯流排
121:取得部
122:模型生成部
123:偵測部
124:排除部
125:報知部
150:監視對象
151:感測器
300:調溫系統
301:第1區塊
302:第2區塊
401,402,411~415:調溫單元
416~419:調溫對象
401C,402C,411C,412C,413C,414C,415C:控制單元
401S,402S,411S,412S1,412S2,413S1,413S2,414S1,414S2,415S1,415S2:溫度感測器
[圖1]實施形態的資訊處理裝置之構成的例示圖。
[圖2A]監視對象與資訊處理裝置之關係的例示圖。
[圖2B]監視對象與資訊處理裝置之關係的例示圖。
[圖3]實施形態的資訊處理裝置之構成的例示圖。
[圖4]作為監視對象之基板處理裝置之構成的例示圖。
[圖5]作為監視對象之調溫系統的例示圖。
[圖6]資訊處理裝置之動作的例示圖。
[圖7A]溫度感測器之輸出值的例示圖。
[圖7B]溫度感測器之輸出值的例示圖。
[圖8]資訊處理裝置之動作的例示圖。
[圖9]資訊處理裝置之動作的例示圖。
[圖10]實施形態所致之異常之偵測的例示圖。
[圖11]比較例所致之異常之偵測的例示圖。
Claims (19)
- 一種用來監視監視對象的監視裝置,係用來監視具有複數個感測器之監視對象的監視裝置,其特徵為,具備:取得部,係從前記監視對象取得表示前記複數個感測器之每一者的輸出值之變化的複數個時間序列資料;和模型生成部,係藉由從前記複數個時間序列資料中的複數個期間之各者而生成表示前記複數個時間序列資料之相互關係的1個模型,以生成分別對應於前記複數個期間的複數個模型;和偵測部,係基於前記複數個模型與前記複數個時間序列資料而偵測前記監視對象之異常;和排除部,係從前記複數個模型中,將不需使用於偵測前記監視對象之異常的模型予以排除。
- 如請求項1所記載之用來監視監視對象的監視裝置,其中,前記取得部,係從前記監視對象取得表示錯誤之發生的錯誤資訊;前記模型生成部,係於未發生錯誤之期間中決定前記複數個期間。
- 如請求項1所記載之用來監視監視對象的監視裝置,其中,前記複數個期間,係包含彼此部分性重疊的2個期間。
- 如請求項1所記載之用來監視監視對象的監視裝置,其中,前記排除部,係基於前記模型生成部所致之模型之生成時起算的經過時間,而決定應排除之模型。
- 如請求項1所記載之用來監視監視對象的監視裝置,其中,前記排除部,係基於前記複數個感測器之每一者的輸出值之經時變化,而決定應排除之模型。
- 如請求項5所記載之用來監視監視對象的監視裝置,其中,前記偵測部,係針對前記複數個感測器之各者,計算感測器之輸出值與模型所產生之輸出值的差分。
- 如請求項6所記載之用來監視監視對象的監視裝置,其中,前記偵測部,係在將前記差分進行處理所得之值超過所定值的情況下,偵測出前記監視對象中的異常之發生。
- 如請求項7所記載之用來監視監視對象的監視裝置,其中,前記排除部,係將偵測到前記異常之發生的輸出值的產生之頻繁度是超過所定頻繁度的模型,決定成為應排除之模型。
- 如請求項7所記載之用來監視監視對象的監視裝置,其中,前記排除部,係基於使用前記複數個期間之中按照時 間經過順序而排列的至少3個期間所各自對應的至少3個模型而偵測到前記異常之發生的頻繁度,而從前記至少3個模型中,決定出應排除之模型。
- 如請求項6所記載之用來監視監視對象的監視裝置,其中,前記排除部,係根據基於將使用已經存在之模型之各者而被計算的前記差分進行處理所得之值而被決定之閾值,而決定是否應將其後藉由前記模型生成部所被生成之模型予以排除。
- 如請求項6所記載之用來監視監視對象的監視裝置,其中,前記偵測部,係對使用前記複數個模型之各者而被計算的複數個前記差分進行加權並計算評價值,基於前記評價值而偵測前記監視對象之狀態。
- 如請求項11所記載之用來監視監視對象的監視裝置,其中,前記偵測部,係基於前記模型生成部所致之模型之生成時起算的經過時間而進行前記加權。
- 如請求項12所記載之用來監視監視對象的監視裝置,其中,前記偵測部,係前記經過時間越長的模型則權重就設成越小。
- 如請求項12所記載之用來監視監視對象的監視裝置,其中, 前記偵測部,係前記經過時間越短的模型則權重就設成越小。
- 如請求項1至14之任1項所記載之用來監視監視對象的監視裝置,其中,還具備:報知部,係將前記偵測部偵測到前記監視對象之異常的事實,予以報知。
- 一種物品製造裝置,係為用來製造物品的物品製造裝置,其特徵為,具備:具有複數個感測器的基板處理裝置;和如請求項1至14之任1項所記載之用來監視監視對象的監視裝置,係被構成為,用來偵測前記監視對象之狀態。
- 一種用來監視監視對象的監視方法,係為用來監視具有複數個感測器之基板處理裝置的監視方法,其特徵為,含有:取得過程,係從前記基板處理裝置取得表示前記複數個感測器之每一者的輸出值之變化的複數個時間序列資料;和模型生成過程,係藉由從前記複數個時間序列資料中的複數個期間之各者而生成表示前記複數個時間序列資料之相互關係的1個模型,以生成分別對應於前記複數個期間的複數個模型;和偵測過程,係基於前記複數個模型與前記複數個時間序列資料而偵測前記基板處理裝置之狀態;和排除過程,係從前記複數個模型中,將不需使用於偵 測前記基板處理裝置之異常的模型予以排除。
- 一種電腦程式,其特徵為,令電腦執行如請求項17所記載之用來監視監視對象的監視方法。
- 一種物品製造方法,係為將基板進行處理以獲得物品的物品製造方法,其特徵為,含有:曝光過程,係使用具有複數個感測器的曝光裝置而將基板予以曝光;和顯影過程,係將前記曝光過程中所被曝光之基板,予以顯影;和處理過程,係將前記顯影過程中所被顯影之基板,進行處理而獲得物品;和取得過程,係從前記曝光裝置取得表示前記複數個感測器之每一者的輸出值之變化的複數個時間序列資料;和模型生成過程,係藉由從前記複數個時間序列資料中的複數個期間之各者而生成表示前記複數個時間序列資料之相互關係的1個模型,以生成分別對應於前記複數個期間的複數個模型;和偵測過程,係基於前記複數個模型與前記複數個時間序列資料而偵測前記曝光裝置之狀態;和維修過程,係基於前記偵測過程中所偵測到的前記曝光裝置之狀態而將前記曝光裝置進行維修;和排除過程,係從前記複數個模型中,將不需使用於偵測前記基板處理裝置之異常的模型予以排除。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-037158 | 2020-03-04 | ||
JP2020037158A JP7482651B2 (ja) | 2020-03-04 | 2020-03-04 | 情報処理装置、監視方法、プログラムおよび物品製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202202960A TW202202960A (zh) | 2022-01-16 |
TWI832037B true TWI832037B (zh) | 2024-02-11 |
Family
ID=77613049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110105619A TWI832037B (zh) | 2020-03-04 | 2021-02-19 | 用來監視監視對象的監視裝置、監視方法、電腦程式及物品製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220412894A1 (zh) |
EP (1) | EP4089496A4 (zh) |
JP (1) | JP7482651B2 (zh) |
KR (1) | KR20220143884A (zh) |
CN (1) | CN115210666A (zh) |
TW (1) | TWI832037B (zh) |
WO (1) | WO2021177176A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115442247B (zh) * | 2022-11-03 | 2023-03-24 | 湖南警云智慧信息科技有限公司 | 一种采用人工智能数据处理运维箱 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200515112A (en) * | 2003-09-12 | 2005-05-01 | Tokyo Electron Ltd | Method and system of diagnosing a processing system using adaptive multivariate analysis |
TW200807203A (en) * | 2006-03-31 | 2008-02-01 | Tokyo Electron Ltd | Monitoring a system during low-pressure processes |
WO2014141682A1 (ja) * | 2013-03-13 | 2014-09-18 | 日本電気株式会社 | センサー端末および信号取得方法 |
TW201734684A (zh) * | 2015-12-17 | 2017-10-01 | 蘭姆研究公司 | 藉由表面動力模型最佳化之蝕刻輪廓匹配用方法及設備 |
CN109564393A (zh) * | 2016-08-01 | 2019-04-02 | Asml荷兰有限公司 | 量测方法和设备、计算机程序和光刻系统 |
US10281827B2 (en) * | 2016-12-15 | 2019-05-07 | Taiwan Semiconductor Manufacturing Co., Ltd | Noise reduction for overlay control |
CN109863457A (zh) * | 2016-08-24 | 2019-06-07 | 株式会社尼康 | 测量系统及基板处理系统、以及元件制造方法 |
JP2019159786A (ja) * | 2018-03-13 | 2019-09-19 | 日本電気株式会社 | 情報処理装置、情報処理方法、プログラム |
CN110546576A (zh) * | 2017-04-28 | 2019-12-06 | Asml荷兰有限公司 | 优化针对产品单元制造的工艺序列 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5301310B2 (ja) * | 2009-02-17 | 2013-09-25 | 株式会社日立製作所 | 異常検知方法及び異常検知システム |
CN102473660B (zh) * | 2009-06-30 | 2015-03-18 | 朗姆研究公司 | 等离子加工系统自动瑕疵检测和分类及其方法 |
JP5414703B2 (ja) | 2011-01-20 | 2014-02-12 | 東京エレクトロン株式会社 | 処理装置の異常診断方法及びその異常診断システム |
JP6627258B2 (ja) | 2015-05-18 | 2020-01-08 | 日本電気株式会社 | システムモデル生成支援装置、システムモデル生成支援方法、及び、プログラム |
JP6853617B2 (ja) | 2015-07-14 | 2021-03-31 | 中国電力株式会社 | 故障予兆監視方法 |
JP6840953B2 (ja) * | 2016-08-09 | 2021-03-10 | 株式会社リコー | 診断装置、学習装置および診断システム |
US10375098B2 (en) * | 2017-01-31 | 2019-08-06 | Splunk Inc. | Anomaly detection based on relationships between multiple time series |
JP7109779B2 (ja) | 2018-09-05 | 2022-08-01 | 株式会社長谷川機械製作所 | ネジ加工用工具、および、工具ホルダ位置調整方法 |
-
2020
- 2020-03-04 JP JP2020037158A patent/JP7482651B2/ja active Active
-
2021
- 2021-02-19 TW TW110105619A patent/TWI832037B/zh active
- 2021-02-26 CN CN202180017724.5A patent/CN115210666A/zh active Pending
- 2021-02-26 EP EP21765499.5A patent/EP4089496A4/en active Pending
- 2021-02-26 KR KR1020227031889A patent/KR20220143884A/ko unknown
- 2021-02-26 WO PCT/JP2021/007403 patent/WO2021177176A1/ja unknown
-
2022
- 2022-08-29 US US17/897,493 patent/US20220412894A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200515112A (en) * | 2003-09-12 | 2005-05-01 | Tokyo Electron Ltd | Method and system of diagnosing a processing system using adaptive multivariate analysis |
TW200807203A (en) * | 2006-03-31 | 2008-02-01 | Tokyo Electron Ltd | Monitoring a system during low-pressure processes |
WO2014141682A1 (ja) * | 2013-03-13 | 2014-09-18 | 日本電気株式会社 | センサー端末および信号取得方法 |
TW201734684A (zh) * | 2015-12-17 | 2017-10-01 | 蘭姆研究公司 | 藉由表面動力模型最佳化之蝕刻輪廓匹配用方法及設備 |
CN109564393A (zh) * | 2016-08-01 | 2019-04-02 | Asml荷兰有限公司 | 量测方法和设备、计算机程序和光刻系统 |
CN109863457A (zh) * | 2016-08-24 | 2019-06-07 | 株式会社尼康 | 测量系统及基板处理系统、以及元件制造方法 |
US10281827B2 (en) * | 2016-12-15 | 2019-05-07 | Taiwan Semiconductor Manufacturing Co., Ltd | Noise reduction for overlay control |
CN110546576A (zh) * | 2017-04-28 | 2019-12-06 | Asml荷兰有限公司 | 优化针对产品单元制造的工艺序列 |
JP2019159786A (ja) * | 2018-03-13 | 2019-09-19 | 日本電気株式会社 | 情報処理装置、情報処理方法、プログラム |
Also Published As
Publication number | Publication date |
---|---|
CN115210666A (zh) | 2022-10-18 |
US20220412894A1 (en) | 2022-12-29 |
EP4089496A1 (en) | 2022-11-16 |
TW202202960A (zh) | 2022-01-16 |
JP2021140428A (ja) | 2021-09-16 |
WO2021177176A1 (ja) | 2021-09-10 |
KR20220143884A (ko) | 2022-10-25 |
EP4089496A4 (en) | 2024-01-24 |
JP7482651B2 (ja) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11543814B2 (en) | Methods of modelling systems or performing predictive maintenance of lithographic systems | |
US11461675B2 (en) | Methods of modelling systems or performing predictive maintenance of systems, such as lithographic systems and associated lithographic systems | |
CN109863456B (zh) | 确定图案化过程的校正的方法 | |
JP7423396B2 (ja) | 情報処理装置、検出方法、プログラム、基板処理システム、及び物品の製造方法 | |
TW202014809A (zh) | 用以預測器件製造製程之良率的方法 | |
KR20210105424A (ko) | 반도체 제조 공정에서의 의사 결정 방법 | |
JP2010034180A (ja) | 半導体製造装置の制御方法および半導体装置の製造方法 | |
TWI832037B (zh) | 用來監視監視對象的監視裝置、監視方法、電腦程式及物品製造方法 | |
CN114008535B (zh) | 用于确定特征对性能的贡献的方法和设备 | |
US20230296987A1 (en) | Tool drift compensation with machine learning | |
KR20240124300A (ko) | 기계 진단을 위하여 기준 모집단에서 이탈 모듈을 식별하는 기술 | |
TWI777678B (zh) | 概念漂移減輕之方法及設備 | |
US11740560B2 (en) | Method for determining an inspection strategy for a group of substrates in a semiconductor manufacturing process | |
JP7545278B2 (ja) | サンプルショット領域のセットを決定する方法、計測値を得る方法、情報処理装置、リソグラフィ装置、プログラム、および物品製造方法 | |
KR20230098587A (ko) | 샘플링 방식 생성 모델의 구성을 위한 방법들 및 컴퓨터 프로그램들 | |
JP7177183B2 (ja) | 装置の動作を説明するパラメータ間の重要な関係の決定 | |
KR20220133987A (ko) | 리소그래피 시스템과 같은 시스템의 예측 유지 보수를 수행하기 위하여 시스템을 모델링하는 방법 | |
JP2021140428A5 (zh) | ||
EP3910417A1 (en) | Method for determining an inspection strategy for a group of substrates in a semiconductor manufacturing process | |
TW202338516A (zh) | 資訊處理裝置、曝光裝置及物品之製造方法 |