TWI813235B - 無方向性電磁鋼板及其製造方法 - Google Patents

無方向性電磁鋼板及其製造方法 Download PDF

Info

Publication number
TWI813235B
TWI813235B TW111112300A TW111112300A TWI813235B TW I813235 B TWI813235 B TW I813235B TW 111112300 A TW111112300 A TW 111112300A TW 111112300 A TW111112300 A TW 111112300A TW I813235 B TWI813235 B TW I813235B
Authority
TW
Taiwan
Prior art keywords
content
inclusions
less
mass
steel plate
Prior art date
Application number
TW111112300A
Other languages
English (en)
Other versions
TW202239986A (zh
Inventor
名取義顯
屋鋪裕義
福地美菜子
竹田和年
Original Assignee
日商日本製鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本製鐵股份有限公司 filed Critical 日商日本製鐵股份有限公司
Publication of TW202239986A publication Critical patent/TW202239986A/zh
Application granted granted Critical
Publication of TWI813235B publication Critical patent/TWI813235B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Laminated Bodies (AREA)

Abstract

本案的無方向性電磁鋼板含有預定化學組成,其抗拉強度為580MPa以上,基鐵之再結晶部的平均結晶粒徑為50μm以下;基鐵內所含之等效圓直徑為1μm以上且S含量為5質量%以上的夾雜物中,相較於Mg含量為5質量%以下且Mn含量為5質量%以上之夾雜物的個數,Mg含量為大於5質量%且Mn含量為5質量%以上之夾雜物的個數為5倍以上。

Description

無方向性電磁鋼板及其製造方法
發明領域 本發明是有關於無方向性電磁鋼板及其製造方法。本案基於2021年3月31日在日本申請之日本特願2021-61872號主張優先權,並在此援引其內容。
發明背景 近年來,隨著世界上電器節能化的提高,對於馬達材料所使用的無方向性電磁鋼板也逐漸要求更高性能之特性。尤其強烈要求降低鐵損;增加Si、Al含量而提高比電阻(specific resistance)並使結晶粒徑增大,藉此實現了低鐵損化。
專利文獻1揭示一種鐵損更低的無方向性電磁鋼板,其針對硫化物變得無害且提升粒成長後的鋼板,解決了其中顯然存在之氮化問題。
先前技術文獻 專利文獻 [專利文獻1]日本國日本特開2005-330527號公報
發明概要 發明所欲解決之課題 將馬達使用至混合動力(hybrid)汽車之驅動馬達的用途等時,便是使用在伴隨應力變化之環境下;所述應力變化是歸因於:因應駕駛加減速所致之旋轉數變化、車體振動、磁石插孔內的磁石振動等。因而也要求:可適用於高速旋轉時、應力集中部之高強度,同時在反覆應力下的疲勞特性亦即疲勞強度要高。
惟,就抗拉強度達580MPa以上的這種高強度化無方向性電磁鋼板而言,有時無法獲得與強度相襯的疲勞強度。在本發明中,課題在於提供一種具備580MPa以上的抗拉強度且疲勞強度優異的無方向性電磁鋼板。
用以解決課題之手段 本案發明人等關於無方向性電磁鋼板之疲勞強度進行了精心探討。結果瞭解到,在疲勞強度低的電磁鋼板中,軟質的MnS會變形而成為龜裂的起點。還瞭解到,在疲勞強度高的電磁鋼板中,夾雜物中的MnS量相對較少。
進一步進行精心探討後,結果瞭解到,使夾雜物中的硫化物成為一種含Mg且更為硬化的夾雜物,藉此會提升疲勞強度。
本發明是基於上述見解進一步進行檢討而完成者,其要點如以下所述。
(1)本發明之一態樣的無方向性電磁鋼板,其特徵在於:其化學組成以質量%計含有:Si:2.5~4.5%、sol.Al:0~2.0%、Mn:0.1~3.5%、C:0~0.0030%、P:0~0.10%、S:0~0.0030%、N:0~0.050%、O:0~0.050%、Mg:0.0003~0.0050%、Ti:0~0.0030%、V:0~0.10%、Sb:0~0.10%、Nd:0~0.10%、Bi:0~0.10%、W:0~0.10%、Nb:0~0.10%、Y:0~0.10%,還有選自下列所構成群組之1種以上:Ni:0~0.5%、Cr:0~0.5%、Cu:0~0.5%、Sn:0~0.2%、La:0~0.0050%、及、Ce:0~0.0050%,且剩餘部分:Fe及不純物;其抗拉強度為580MPa以上;基鐵之再結晶部的平均結晶粒徑為50μm以下;基鐵內所含之等效圓直徑為1μm以上且S含量為5質量%以上的夾雜物中,相較於Mg含量為5質量%以下且Mn含量為5質量%以上之夾雜物的個數,Mg含量為大於5質量%且Mn含量為5質量%以上之夾雜物的個數為5倍以上。
(2)上述(1)所記載的無方向性電磁鋼板中,等效圓直徑為5μm以上之夾雜物其個數密度亦可小於1.0個/mm 2
(3)上述(1)所記載的無方向性電磁鋼板,其板厚亦可小於0.30mm。
(4)本發明其他態樣之無方向性電磁鋼板的製造方法,其特徵在於其係製造上述(1)所記載的無方向性電磁鋼板的方法,並具備下列步驟:透過鑄造來製造鋼胚料的步驟,加熱前述鋼胚料的步驟,將加熱後的前述鋼胚料進行熱輥軋而作成熱軋鋼板的步驟,捲取前述熱軋鋼板的捲取步驟,將前述熱軋鋼板進行冷輥軋而作成冷軋鋼板的步驟,及將前述冷軋鋼板進行精加工退火而獲得無方向性電磁鋼板的步驟;在前述鑄造中,1300℃起至1200℃為止的冷卻速度設為50℃/s以下;在前述鋼胚料之加熱中,在中心溫度1100℃以上的滯留時間設為小於2小時(不含0);在前述捲取步驟中,前述熱軋鋼板的捲取溫度設為700℃以上;在上述精加工退火中,最高到達溫度設為700~900℃。
發明效果 依照本發明,即可獲得一種具備580MPa以上的抗拉強度且疲勞強度優異的無方向性電磁鋼板。
本發明的實施形態 用以實施發明之形態 以下,詳細說明本發明之實施形態。
在本發明之一實施形態之無方向性電磁鋼板中,是使基鐵內的夾雜物中的硫化物成為一種含Mg且更為硬化的夾雜物,藉此提升疲勞強度。在本發明中,含Mg且更為硬化的夾雜物乃定義如下。在能量分散型X射線分析法(Energy Dispersive X-ray Spectrometry;以下亦稱「EDS」)進行的元素濃度分析中,針對所檢測出的全部元素(其中,排除C)進行定量時,檢測出Mg大於5質量%且檢測出S為5質量%以上的夾雜物定義為「含Mg且更為硬化的夾雜物」。在本發明中,上述含Mg且更為硬化的夾雜物之中,是聚焦在等效圓直徑為1μm以上的夾雜物。
然後,等效圓直徑為1μm以上的夾雜物且S含量為5質量%以上的夾雜物中,相較於「Mg含量為5質量%以下且Mn含量為5質量%以上之夾雜物」的個數,使「Mg含量為大於5質量%且Mn含量為5質量%以上之夾雜物」的個數達5倍以上。
藉此,夾雜物會硬化,夾雜物變形而成為龜裂起點之情況會變少,而疲勞強度會提升。基鐵內所含之等效圓直徑為1μm以上且S含量為5質量%以上的夾雜物中,相較於Mg含量為5質量%以下且Mn含量為5質量%以上之夾雜物的個數,Mg含量為大於5質量%且Mn含量為5質量%以上之夾雜物的個數宜為10倍以上。
關於夾雜物的分析,是使用SEM觀察板厚所有厚度的區域。為了獲得可觀察之面積,亦可透過傾斜研磨來準備觀察面,亦可將鋼板以複數片進行積層來準備觀察面。使包含寬度方向(與輥軋呈垂直方向)及板厚方向的面為觀察面之方式,切出鋼板並以樹脂包埋。接著,對於被樹脂包埋的鋼板其觀察面進行研磨。所欲觀察之面積可視夾雜物的存在個數來變更,並無妨;不過設為5mm 2以上。夾雜物尺寸在判斷上,是使用影像分析軟體來計算夾雜物尺寸並以換算成相當於圓時的直徑來予以定義。關於夾雜物,可使用EDS來進行元素分析;關於成分,則是透過各個夾雜物中以一塊全體計的平均值來予以定義。 求出各視野中,等效圓直徑為1.0μm以上且檢測出S含量為5質量%以上的夾雜物其個數。具體而言,首先,經由對比(contrast)來鑑別各視野中的夾雜物。所鑑別出的夾雜物之中,針對等效圓直徑為1.0μm以上的夾雜物,實施元素濃度分析(EDS分析)。針對所檢測出的全部元素(其中,排除C)進行定量,並鑑別出下列夾雜物:等效圓直徑為1.0μm以上、Mg含量為5質量%以下且Mn含量為5質量%以上之夾雜物,以及,等效圓直徑為1.0μm以上、Mg含量為大於5質量%且Mn含量為5質量%以上之夾雜物。 在所觀察之面積5mm 2以上的視野範圍內,針對所鑑別出的夾雜物中,等效圓直徑為1.0μm以上、S含量為5質量%以上且Mn含量為5質量%以上的夾雜物之中,求出Mg含量為5質量%以下的夾雜物與Mg含量大於5質量%的夾雜物各自的個數,並計算其比值。 基於所觀察視野之總面積求出個數密度(個/mm 2)時,所得之數值的小數點第3位作四捨五入。另外,個數密度在測定上,是使用掃描式顯微鏡附有組成分析功能的裝置(SEM-EDS裝置)來進行。
又,若存在粗大夾雜物,則該夾雜物會成為龜裂的起點,有時疲勞極限會降低。因此,粗大夾雜物越少越好。具體而言,等效圓直徑為5μm以上之夾雜物其個數密度宜小於1.0個/mm 2。 等效圓直徑為5μm以上之夾雜物的個數密度設為小於1.0個/mm 2,其方法並不特別限制,可舉例如下述方法:鋼液滯留在餵槽(tundish)的過程中使夾雜物浮出鋼液表面,或者,在連續鑄造中對鑄模內之鋼液使電磁制動器作用,使鋼液滯留在鑄模內的時間增長而使夾雜物浮出鋼液表面,或者,使用鉛直方向上長形的鑄模,使鋼液滯留在鑄模內的時間增長而使夾雜物浮出鋼液表面等;之後再除去浮出的夾雜物。
又,實現本發明規定之含Mg夾雜物,此舉也有助於將等效圓直徑為5μm以上之夾雜物的個數密度設為小於1.0個/mm 2。關於等效圓直徑達5μm以上的這種粗大夾雜物,認為例如Al 2O 3、MnS等。就Al與Mg而言,Mg的脫氧力是高於Al。因此,在活用Mg的本發明中,於製鋼階段會附帶還原Al 2O 3而易於生成MgO。若是維持在Al 2O 3,比重較大而容易殘留於鋼液中;然而,MgO的比重小而容易浮出,因而容易予以除去。再者,關於MnS,Mg是比Mn還要容易形成硫化物,且比MnS還容易在高溫下開始析出。因此,要減少MnS析出量。更甚者,先前已均等分散的MgS會成為後續析出之MnS的析出位點,藉此,以單一個體形式所形成之粗大MnS,其形成頻率會受抑制。據此,透過控制Mg夾雜物,便能抑制形成粗大夾雜物。
在本實施形態之無方向性電磁鋼板中,顯微組織具有將近100%的肥粒鐵。顯微組織之剩餘部分為夾雜物等。然後,再結晶部之平均結晶粒徑為50μm以下。若結晶粒粗大化,則強度會降低。在此所謂再結晶部是指:肥粒鐵粒之中,縱橫比(輥軋方向長度/板厚方向長度)為3以下的結晶粒(再結晶粒)。另一方面,未再結晶粒則為上述縱橫比大於3者。觀察顯微組織並求出未再結晶粒及再結晶粒之粒徑時,可透過以下方法來求得。製作試驗片,該試驗片所具有的觀察面包含鋼板之輥軋方向及板厚方向;並觀察板厚中心部。將試驗片之觀察面研磨成鏡面後,浸漬於3%硝太蝕劑(nital)腐蝕液10秒,透過蝕刻使組織現形。對於蝕刻後的觀察面,使用光學顯微鏡以500倍之倍率進行觀察。從蝕刻後之觀察面鑑別出縱橫比為3以下的結晶粒,並由此等來算出平均結晶粒徑。平均結晶粒徑是定為根據JIS G 0551:2013「鋼-結晶粒度之顯微鏡試驗方法」來求算者。再結晶部之平均結晶粒徑下限無需特別限定,不過若結晶粒過度微細化而平均結晶粒徑變得過小,則鋼板的板形狀有時會變差。因此,再結晶部之平均結晶粒徑宜設為10μm以上,較宜為12μm以上,更宜為15μm以上。又,未再結晶粒之比例亦可為100%。當沒有觀察到再結晶粒時,本發明所規定之平均結晶粒徑則定為0。
本實施形態之無方向性電磁鋼板的抗拉強度為580MPa以上。用以提高抗拉強度的化學組成已屬習知,故適宜調整即可。本實施形態之無方向性電磁鋼板其化學組成可設為例如後述之化學組成。又,為了使抗拉強度為580MPa以上,需要如後述這般調整精加工退火溫度。 抗拉強度是使用JIS Z2241:2011之13B號抗拉試驗片進行測定。
關於本實施形態之無方向性電磁鋼板的化學組成,只要可適用於抗拉強度達580MPa以上之無方向性電磁鋼板,則不特別限定。以下出示本實施形態之無方向性電磁鋼板適宜之化學組成的例子。化學組成之說明中的「%」,是定為「質量%」之意。本實施形態之無方向性電磁鋼板其化學組成以質量%計含有:Si:2.5~4.5%、sol.Al:0~2.0%、Mn:0.1~3.5%、C:0~0.0030%、P:0~0.10%、S:0~0.0030%、N:0~0.050%、O:0~0.050%、Mg:0.0003~0.0050%、Ti:0.0030%以下、V:0~0.10%、Sb:0~0.10%、Nd:0~0.10%、Bi:0~0.10%、W:0~0.10%、Nb:0~0.10%、Y:0~0.10%,還有選自下列所構成群組之1種以上:Ni:0~0.5%、Cr:0~0.5%、Cu:0~0.5%、Sn:0~0.2%、La:0~0.0050%、及Ce:0~0.0050%,且剩餘部分:Fe及不純物。
Si是會提高鋼板強度的元素。又,Si是會使電阻率增加的元素,為了減低鐵損而添加。由該效果與降低飽和磁通量密度、防止鋼脆化之觀點來看,Si含量宜設為2.5~4.5%。Si含量宜為2.8%以上,更宜為3.0%以上。又,Si含量較宜為4.2%以下,更宜為4.0%以下。
關於sol.Al,其與Si同樣是會使電阻率增加的元素,為了減低鐵損而添加。由於降低鐵損效果也可透過Si來取得,故亦可不含sol.Al。因此,sol.Al含量亦可為0%。sol.Al含量亦可為:0.3%以上、0.4%以上、0.5%以上、或0.6%以上。另一方面,從防止飽和磁通量密度降低之觀點來看,sol.Al含量宜設為2.0%以下。sol.Al含量較宜為1.8%以下,更宜為1.5%以下。sol.Al含量亦可為1.2%以下。在此所謂sol.Al意指:不會變成Al 2O 3等氧化物且可溶於酸中的酸可溶Al;其可定為:扣除Al分析過程產生在濾紙上的不溶解殘渣後所測定出的Al,並以此來求得。
Mn由於與Si、sol.Al同樣具有使電阻率增加之作用,故為了減低鐵損而添加。又,Mn也是會提高鋼板強度的元素。由該效果與降低飽和磁通量密度、防止鋼脆化之觀點來看,Mn含量宜設為0.1~3.5%。Mn含量較宜為0.4%以上,更宜為0.6%以上,再更宜為0.8%以上。Mn含量亦可為:0.9%以上、1.0%以上、1.2%以上。又,Mn含量較宜為3.3%以下,更宜為3.5%以下。Mn含量亦可為3.0%以下。
C是以不純物形式而被含有。為了降低鐵損,C含量宜設為0.0030%以下。C含量較宜為0.0025%以下,更宜為0.0020%以下。C含量之下限並不特別限制,亦可為0%;不過從製造成本之觀點來看,C含量亦可為0.0010%以上。
P是會提升鋼板強度的元素。鋼板強度亦可透過Si、Mn來予以提升,故亦可不含P。因此,P含量亦可為0%。P含量亦可為:0.01%以上、0.02%以上、0.04%以上。另一方面,從防止鋼板脆化之觀點來看,P含量宜設為0.10%以下。P含量較宜為0.08%以下,更宜為0.06%以下。P含量亦可為0.04%以下。
S是以不純物形式而被含有。為了降低鐵損,S含量宜設為0.0030%以下。S含量較宜為0.0025%以下,更宜為0.0020%以下。又,為了形成出S含量為5質量%以上的夾雜物,鋼板之S含量為大於0%。S含量亦可為:0.0006%以上、0.0007%以上。
N是以不純物形式而被含有。為了降低鐵損,N含量宜設為0.050%以下。N含量若為0.050%以下,就能抑制生成過量的夾雜物、析出物,可進一步抑制磁特性、疲勞強度降低。N含量亦可為:0.0027%以下、0.0025%以下、0.0020%以下。又,N亦可不含於無方向性電磁鋼板中,故N含量之下限亦可為0%;但為了抑制成本過度增加,N含量宜為0.0010%以上。N含量亦可為:0.0014%以上、0.0017%以上、0.0020%以上。
O是以不純物形式而被含有。為了降低鐵損,O含量宜設為0.050%以下。O含量若為0.050%以下,就能抑制生成過量的夾雜物、析出物,可進一步抑制磁特性、疲勞強度降低。O含量亦可為:0.0027%以下、0.0025%以下、0.0020%以下。又,O亦可不含於無方向性電磁鋼板中,故O含量之下限亦可為0%;但為了抑制成本過度增加,O含量宜為0.0010%以上。O含量亦可為:0.0014%以上、0.0017%以上、0.0020%以上。
Mg是一種透過促進結晶粒成長之作用而降低鐵損的元素,其同時也是一種會使夾雜物中的硫化物成為含Mg且更為硬化的夾雜物而提升疲勞強度的元素。為了獲得此效果,考量成本面,Mg含量宜設為0.0003~0.0050%。Mg含量較宜為0.0005%以上,更宜為0.0010%以上。Mg含量較宜為0.0040%以下,更宜為0.0030%以下。
Ti是以不純物形式而被含有的元素。Ti會與基鐵中的C、N、O等結合形成TiN、TiC、Ti氧化物等微小析出物,而阻礙退火中的結晶粒成長使磁特性劣化。因此,Ti含量宜設為0.0030%以下。Ti含量較宜為0.0020%以下,更宜為0.0010%以下。Ti並不一定要含有,故含量之下限為0%。考量精煉成本,Ti含量亦可設為0.0003%以上或0.0005%以上。
化學組成之剩餘部分為Fe及不純物。所謂不純物是原材料所含成分或製造過程中混入的成分,且是指非刻意含於鋼板中的成分。不純物可舉例如:Zn、B。
又,本實施形態之無方向性電磁鋼板亦可含有:V:0~0.10%、Zr:0~0.10%、Sb:0~0.10%、Nd:0~0.10%、Bi:0~0.10%、W:0~0.10%、Nb:0~0.10%、Y:0~0.10%、Ca:0~0.0050%。
V、Nb是有助於增加無方向性電磁鋼板強度的元素。由於亦可不含V及Nb,故V及Nb各自的含量亦可為0%;但為了獲得上述效果,V及Nb各自的含量宜為0.0010%以上。V及Nb各自的含量亦可為0.0023%以上。另一方面,過量含有V及N之各元素時,微細析出物會阻礙粒成長性而鐵損會變成劣等,故V及Nb各自的含量宜為0.10%以下。V及Nb各自的含量宜為0.0050%以下。
Zr、Nd、Bi、W、及Y是一種會減少微細析出物而改善結晶粒之粒成長性的元素。結果,生產性可獲改善。亦可不含上述元素,故Zr、Nd、Bi、W、及Y各自的含量亦可為0%;但為了獲得上述效果,Zr、Nd、Bi、W、及Y各自的含量宜為0.0010%以上。Zr、Nd、Bi、W、及Y各自的含量較宜為0.0015%以上。另一方面,即使過量含有Zr、Nd、Bi、W、及Y之各元素,而上述效果也仍達飽和,故Zr、Nd、Bi、W、及Y各自的含量宜為0.10%以下。Zr、Nd、Bi、W、及Y各自的含量宜為0.0010%以下。
Sb是會提升磁特性例如B50的元素。由於亦可不含Sb,故Sb含量亦可為0%;但為了獲得上述效果,Sb含量宜為0.0050%以上。Sb含量較宜為0.01%以上。另一方面,即使過量含有Sb而上述效果仍達飽和,故Sb含量宜為0.10%以下。Sb含量宜為0.05%以下。
又,上述元素以外,亦可使鋼板含有選自Ni、Cr、Cu、Sn、La、及Ce所構成群組之1種以上元素來替代Fe之一部分。
Ni是會提高鋼板電阻並降低鐵損的元素。Ni並不一定要含有,Ni含量之下限為0%。含有Ni之效果即使微量也能獲得,但為了確實獲得含有之效果,Ni含量宜設為0.01%以上,更宜設為0.02%以上。從製品成本之觀點來看,Ni含量宜設為0.5%以下,較宜設為0.4%以下。
Cr是提升耐蝕性、高頻特性的元素。Cr並不一定要含有,Cr含量之下限為0%。含有Cr之效果即使微量也能獲得,但為了確實獲得含有之效果,Cr含量宜設為0.01%以上,更宜設為0.02%以上。從製品成本之觀點來看,Cr含量宜設為0.5%以下,較宜設為0.4%以下。
Cu是會提高鋼板電阻並降低鐵損的元素。Cu並不一定要含有,Cu含量之下限為0%。含有Cu之效果即使微量也能獲得,但為了確實獲得含有之效果,Cu含量宜設為0.01%以上,更宜設為0.02%以上。從製品成本之觀點、防止鋼脆化之觀點來看,Cu含量宜設為0.5%以下,較宜設為0.4%以下。
Sn是一種如下的元素:使對磁特性有益之結晶方位發達。Sn並不一定要含有,Sn含量之下限為0%。含有Sn之效果即使微量也能獲得,但為了確實獲得含有之效果,含量宜設為0.01%以上,更宜設為0.02%以上。從防止磁特性劣化之觀點來看,Sn含量宜設為0.2%以下,較宜設為0.1%以下。
La會使硫化物粗大化而改善熱處理步驟中的結晶粒成長性,是有助於低鐵損化的元素。La並不一定要含有,La含量之下限為0%。含有La之效果即使微量也能獲得,但為了確實獲得含有之效果,La含量宜設為0.005%以上,較宜設為0.0010%以上。從防止磁特性劣化之觀點來看,La含量宜設為0.0050%以下,較宜設為0.0030%以下。
Ce會使硫化物粗大化而改善熱處理步驟中的結晶粒成長性,是有助於低鐵損化的元素。Ce並不一定要含有,Ce含量之下限為0%。含有Ce之效果即使微量也能獲得,但為了確實獲得含有之效果,Ce含量宜設為0.005%以上,較宜設為0.0010%以上。從防止磁特性劣化之觀點來看,Ce含量宜設為0.0050%以下,較宜設為0.0030%以下。
又,除了上述元素以外,亦可進一步含有選自As、Ga、Ge、Se、Co、及Pb所構成群組之一種以上的元素來替代Fe,且各自為0~0.01%之範圍。
本實施形態之無方向性電磁鋼板的板厚宜小於0.30mm。板厚小於0.30mm時,會抑制磁特性降低。
接著,針對本發明實施形態之無方向性電磁鋼板的製造方法進行說明。
首先,製造出具有預定之化學組成的鋼胚料。關於胚料,首先透過轉爐、電爐等進行熔煉,再進一步因應所需而進行真空脫氣處理並獲得鋼液。然後,將所得之鋼液進行連續鑄造或造塊後分塊輥軋,作成厚度30~400mm左右的胚料。此時,1300℃起至1200℃為止的冷卻速度設為50℃/s以下。若該冷卻速度過快,則無法比MnS還優先製造出MgS,Mg含量為大於5質量%且Mn含量為5質量%以上之夾雜物的個數會降低,結果,無方向性電磁鋼板之疲勞強度會降低。鋼胚料之厚度亦可為150mm以上。又,鋼胚料之厚度亦可為350mm以下。
製造出鋼胚料後,將鋼胚料再次加熱並施予熱輥軋而作成熱軋鋼板。此時,在鋼胚料之加熱中,中心溫度達1100℃以上之滯留時間設為小於2小時(但不含0)。若該滯留時間過長,則Mg含量低的硫化物會增加,結果,無方向性電磁鋼板之疲勞強度會降低。熱輥軋之條件並不特別限定。例如,精輥軋時之最終輥軋溫度可設為700~1050℃。
熱輥軋後,施行捲取、熱軋板退火、冷輥軋。熱輥軋的捲取溫度設為700℃以上。熱輥軋的捲取溫度例如設為700~1000℃。捲取溫度低於700℃時,在該時間點下原本呈固溶狀態的S會形成單獨形式的MnS,而變得容易形成不含Mg的MnS,因而不佳。其他條件並不特別限定。熱軋板退火亦可省略。關於熱軋板退火,例如可在950℃以上且1050℃以下保持10秒鐘以上且3分鐘以下來實施連續退火。關於冷輥軋,則例如可在室溫~300℃之溫度範圍並將軋縮率設為70~90%來進行。
施予冷輥軋而作成冷軋鋼板後,對鋼板實施精加工退火而獲得無方向性電磁鋼板。為了作成抗拉強度高且疲勞強度優異的無方向性電磁鋼板,精加工退火要在低溫下實施。具體而言,最高到達溫度設為700~900℃,均熱時間則例如設為10~60秒來實施精加工退火。在此所謂均熱時間是指:保持在最高到達溫度-10℃的時間。更適切的最高到達溫度則因應化學成分作適宜調整即可。透過低溫下的精加工退火,會抑制結晶粒成長,並使再結晶部之平均結晶粒徑為50μm以下,而能獲得抗拉強度高且疲勞強度優異的無方向性電磁鋼板。
如以上方式所製造出的無方向性電磁鋼板,具有580MPa以上之高抗拉強度的同時具有優異的疲勞強度。
疲勞強度可透過根據JIS Z2273:2011之脈動抗拉試驗來求得。具體而言,從無方向性電磁鋼板採取出疲勞試驗片,並使所述疲勞試驗片之輥軋方向與抗拉方向一致。試驗片形狀是使用JIS2-15號試驗片。以600號研磨紙將平行部與R部端面進行研磨後,在室溫、大氣氣體環境中實施脈動抗拉試驗。在應力比0.10、頻率20Hz、反覆應力之次數200萬次循環後仍未斷裂之最大應力定為疲勞強度(MPa)。在本發明中,若疲勞強度為450MPa以上,則判斷為具有優異的疲勞強度。
本發明適宜的實施形態之一例已說明完畢,不過本發明並不受限於上述者。上述乃例示;具有與本發明申請專利範圍所記載技術思想實質相同的構成且達成同樣作用效果者,不論為何都被包含在本發明之技術範圍內。例如,在本實施形態之無方向性電磁鋼板的製造方法中,亦可含有其他已知製造步驟。 [實施例]
以下,例示實施例而具體說明本發明,不過,本發明並不受此限。應瞭解的是,只要是所屬技藝人士,自然能在申請專利範圍所記載之思想的範疇內想出各種變更例或修正例,此等當然屬於本發明之技術範圍中。
(實施例1) 使用下列鋼種製作出電磁鋼板,再以前述方法測定抗拉強度、疲勞強度: 鋼種(無Mg)其化學組成為Si:3.3%、sol.Al:0.7%、Mn:1.2%、C:0.002%、P:0.02%、S:0.0010%、Ti:0.0015%,剩餘部分:Fe及不純物);以及 鋼種(添加Mg)其含有Mg:0.0013%來替換上述鋼種之部分Fe。
在電磁鋼板之製造中,鑄造時的1300℃起至1200℃為止的冷卻速度設為30℃/s;熱輥軋前加熱鋼胚料時,在中心溫度1100℃以上的滯留時間設為1小時;捲取溫度設為750℃;精加工退火溫度在750~1000℃之間變動。
表1列示:變動精加工退火溫度、有無Mg後,各個電磁鋼板的抗拉強度、疲勞強度。在本試驗中,抗拉強度580MPa以上且疲勞強度450MPa以上者判斷為良好。具有上述化學成分且添加有Mg的電磁鋼板中,精加工退火溫度設為750~800℃時獲得良好結果。
[表1]
(實施例2) 將具有表2A、B所示成分的無方向性電磁鋼板,以表3A所示鑄造時之冷卻速度、熱輥軋前之加熱爐中1100℃以上之滯留時間、捲取溫度、精加工退火之最高到達溫度的條件,製造出表3A所示板厚的無方向性電磁鋼板。
所製造出的無方向性電磁鋼板其「Mg含量為5質量%以下且Mn含量為5%以上的夾雜物」每1mm 2的個數、「Mg含量大於5%且Mn含量為5%以上的夾雜物」每1mm 2的個數、再結晶部之平均結晶粒徑、抗拉強度、疲勞強度,是透過前述方法來測定。
[顯微組織觀察試驗] 透過下述方法觀察各試驗編號之鋼板的顯微組織,求出肥粒鐵組織之再結晶部的粒徑。製作各試驗片,所述試驗片具有:包含各鋼板之輥軋方向及板厚方向的面;將試驗片之觀察面研磨成鏡面後,浸漬於3%硝太蝕劑(nital)腐蝕液10秒,透過蝕刻使組織現形。對於蝕刻後的觀察面,使用光學顯微鏡以倍率100倍觀察3個視野。鑑別出肥粒鐵粒之縱橫比(輥軋方向長度/板厚方向長度)為3以下之區域,並依據JIS G 0551:2013「鋼-結晶粒度之顯微鏡試驗方法」,求出該區域中肥粒鐵的平均結晶粒徑。
[夾雜物的個數密度測定試驗] 疊合8片板厚0.25mm之鋼板,使包含寬度方向(與輥軋呈垂直方向)及板厚方向之面為觀察面之方式,將試驗片以樹脂包埋,再對於被樹脂包埋之試驗片的觀察面進行研磨。對於疊合後的板厚全部厚度之區域,使用附帶EDS的SEM進行觀察。夾雜物尺寸是使用影像分析軟體測量、計算尺寸,並算出換算成等效圓直徑時之直徑。針對5mm 2之範圍,觀察等效圓直徑為1μm以上的夾雜物全部。然後,針對達1μm以上之夾雜物,則進行EDS分析,並測定出:「S含量為5質量%以上」且「Mn含量為5質量%以上」的夾雜物之中,「Mg量為5質量%以下以及大於5質量%」的夾雜物其個數密度。依據總面積來求出個數密度(個/mm 2)時,所得之數值的小數點第3位作四捨五入,並定為等效圓直徑為1μm以上之夾雜物的個數密度。關於等效圓直徑大於5μm的夾雜物,無關乎成分而僅以大小來辨別,並同樣依據總面積來測定個數密度。此等由於無須計算比率,故小數點第2位作四捨五入後定為個數密度。
[磁特性] 以JIS C 2550-1:2011所記載的愛普斯坦(Epstein)試驗器進行電磁鋼帶磁特性測定方法中的激磁電流法,求出無方向性電磁鋼板在頻率400Hz、磁通量密度1.0T時的鐵損W 10/400
結果列示於表3B。表3B中的「Mg:5%以下」意指:「Mg含量為5質量%以下且Mn含量為5%以上的夾雜物」每1mm 2的個數,「Mg:大於5%」意指:「Mg含量大於5%且Mn含量為5%以上的夾雜物」每1mm 2的個數,比率則意指:「Mg含量大於5%且Mn含量為5%以上的夾雜物」的個數相對於「Mg含量為5質量%以下且Mn含量為5%以上的夾雜物」的個數之比率。又,表3中的「5μm以上」意指:等效圓直徑為5μm以上之夾雜物其個數密度(個/mm 2)。
[表2A]
[表2B]
[表3A]
[表3B]
依照本發明,可確認出能獲得一種具有580MPa以上之抗拉強度且疲勞強度為450MPa以上的無方向性電磁鋼板。
(無)

Claims (4)

  1. 一種無方向性電磁鋼板,其特徵在於: 其化學組成以質量%計含有: Si:2.5~4.5%、 sol.Al:0~2.0%、 Mn:0.1~3.5%、 C:0~0.0030%、 P:0~0.10%、 S:0~0.0030%、 N:0~0.050%、 O:0~0.050%、 Mg:0.0003~0.0050%、 Ti:0~0.0030%、 V:0~0.10%、 Sb:0~0.10%、 Nd:0~0.10%、 Bi:0~0.10%、 W:0~0.10%、 Nb:0~0.10%、 Y:0~0.10%, 還有選自下列所構成群組之1種以上: Ni:0~0.5%、 Cr:0~0.5%、 Cu:0~0.5%、 Sn:0~0.2%、 La:0~0.0050%、及 Ce:0~0.0050%,且 剩餘部分:Fe及不純物; 其抗拉強度為580MPa以上; 基鐵之再結晶部的平均結晶粒徑為50μm以下; 基鐵內所含之等效圓直徑為1μm以上且S含量為5質量%以上的夾雜物中,相較於Mg含量為5質量%以下且Mn含量為5質量%以上之夾雜物的個數,Mg含量為大於5質量%且Mn含量為5質量%以上之夾雜物的個數為5倍以上。
  2. 如請求項1之無方向性電磁鋼板,其中,等效圓直徑為5μm以上之夾雜物其個數密度小於1.0個/mm 2
  3. 如請求項1之無方向性電磁鋼板,其板厚小於0.30mm。
  4. 一種無方向性電磁鋼板的製造方法,其特徵在於其係製造如請求項1之無方向性電磁鋼板的方法,並具備下列步驟: 透過鑄造來製造鋼胚料的步驟, 加熱前述鋼胚料的步驟, 將加熱後的前述鋼胚料進行熱輥軋而作成熱軋鋼板的步驟, 捲取前述熱軋鋼板的捲取步驟, 將前述熱軋鋼板進行冷輥軋而作成冷軋鋼板的步驟,及 將前述冷軋鋼板進行精加工退火而獲得無方向性電磁鋼板的步驟; 在前述鑄造中,1300℃起至1200℃為止的冷卻速度設為50℃/s以下; 在前述鋼胚料之加熱中,在中心溫度1100℃以上的滯留時間設為小於2小時(不含0); 在前述捲取步驟中,前述熱軋鋼板的捲取溫度設為700℃以上; 在上述精加工退火中,最高到達溫度設為700~900℃。
TW111112300A 2021-03-31 2022-03-30 無方向性電磁鋼板及其製造方法 TWI813235B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061872 2021-03-31
JP2021061872 2021-03-31

Publications (2)

Publication Number Publication Date
TW202239986A TW202239986A (zh) 2022-10-16
TWI813235B true TWI813235B (zh) 2023-08-21

Family

ID=83459534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111112300A TWI813235B (zh) 2021-03-31 2022-03-30 無方向性電磁鋼板及其製造方法

Country Status (8)

Country Link
US (1) US20240035131A1 (zh)
EP (1) EP4317475A1 (zh)
JP (1) JP7222444B1 (zh)
KR (1) KR102706843B1 (zh)
CN (1) CN117157421A (zh)
BR (1) BR112023019556A2 (zh)
TW (1) TWI813235B (zh)
WO (1) WO2022210890A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202024355A (zh) * 2018-12-27 2020-07-01 日商杰富意鋼鐵股份有限公司 無方向性電磁鋼板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263920A (ja) * 1989-04-03 1990-10-26 Nippon Steel Corp 低温用無方向性高磁束密度電磁鋼の製造方法
JPH07116510B2 (ja) * 1990-01-23 1995-12-13 日本鋼管株式会社 無方向性電磁鋼板の製造方法
JP4280201B2 (ja) 2004-05-19 2009-06-17 新日本製鐵株式会社 磁気特性に優れた無方向性電磁鋼板
JP7159593B2 (ja) * 2018-03-30 2022-10-25 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
KR102516331B1 (ko) * 2018-10-31 2023-03-31 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판과 그 제조 방법 및 모터 코어와 그 제조 방법
KR102176347B1 (ko) * 2018-11-30 2020-11-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법
MX2021008802A (es) * 2019-01-24 2021-08-24 Jfe Steel Corp Chapa de acero electrico no orientado y metodo para producir el mismo.
CN113474472B (zh) * 2019-02-14 2023-09-26 日本制铁株式会社 无方向性电磁钢板
JP7284383B2 (ja) * 2019-02-28 2023-05-31 日本製鉄株式会社 無方向性電磁鋼板
JP7346226B2 (ja) 2019-10-10 2023-09-19 株式会社三共 遊技機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202024355A (zh) * 2018-12-27 2020-07-01 日商杰富意鋼鐵股份有限公司 無方向性電磁鋼板

Also Published As

Publication number Publication date
US20240035131A1 (en) 2024-02-01
CN117157421A (zh) 2023-12-01
BR112023019556A2 (pt) 2023-10-31
EP4317475A1 (en) 2024-02-07
WO2022210890A1 (ja) 2022-10-06
KR102706843B1 (ko) 2024-09-20
JP7222444B1 (ja) 2023-02-15
KR20230143192A (ko) 2023-10-11
JPWO2022210890A1 (zh) 2022-10-06
TW202239986A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
TWI658152B (zh) 無方向性電磁鋼板及無方向性電磁鋼板之製造方法
TWI665313B (zh) 無方向性電磁鋼板及其製造方法
KR102009587B1 (ko) 무방향성 전자 강판
TWI683912B (zh) 無方向性電磁鋼板
JP7462737B2 (ja) 600MPa級無方向性電磁鋼板及びその製造方法
JP6825758B1 (ja) 無方向性電磁鋼板とその製造方法およびモータコア
CN112654723B (zh) 无取向电磁钢板
JP2012149337A (ja) 高強度電磁鋼板およびその製造方法
JP7028313B2 (ja) 無方向性電磁鋼板
TWI814327B (zh) 無方向性電磁鋼板及無方向性電磁鋼板的製造方法
TWI777498B (zh) 無方向性電磁鋼板及其製造方法
KR20190077025A (ko) 무방향성 전기 강판 및 그 제조 방법
JP6969473B2 (ja) 無方向性電磁鋼板
JP4660474B2 (ja) 打抜き加工性と歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板とその製造方法
JP7231895B1 (ja) 無方向性電磁鋼板とその製造方法
TWI813235B (zh) 無方向性電磁鋼板及其製造方法
TWI809799B (zh) 無方向性電磁鋼板及其製造方法
TWI857539B (zh) 無方向性電磁鋼板及馬達鐵芯
TWI855858B (zh) 高強度無方向性電磁鋼板及其製造方法
JP7211532B2 (ja) 無方向性電磁鋼板の製造方法
WO2024080140A1 (ja) 無方向性電磁鋼板とその製造方法
JP7415135B2 (ja) 無方向性電磁鋼板の製造方法
WO2023282072A1 (ja) 無方向性電磁鋼板とその製造方法
TW202409309A (zh) 無方向性電磁鋼板及馬達鐵芯
WO2024150732A1 (ja) 無方向性電磁鋼板