TWI809570B - 用於高速輸入/輸出裕度測試的系統、方法和裝置 - Google Patents

用於高速輸入/輸出裕度測試的系統、方法和裝置 Download PDF

Info

Publication number
TWI809570B
TWI809570B TW110143595A TW110143595A TWI809570B TW I809570 B TWI809570 B TW I809570B TW 110143595 A TW110143595 A TW 110143595A TW 110143595 A TW110143595 A TW 110143595A TW I809570 B TWI809570 B TW I809570B
Authority
TW
Taiwan
Prior art keywords
margin
test
dut
tester
testing
Prior art date
Application number
TW110143595A
Other languages
English (en)
Other versions
TW202235897A (zh
Inventor
丹尼爾 弗洛里奇
山姆 史崔克林
Original Assignee
美商泰克特洛尼克斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商泰克特洛尼克斯公司 filed Critical 美商泰克特洛尼克斯公司
Publication of TW202235897A publication Critical patent/TW202235897A/zh
Application granted granted Critical
Publication of TWI809570B publication Critical patent/TWI809570B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31708Analysis of signal quality
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31707Test strategies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31708Analysis of signal quality
    • G01R31/3171BER [Bit Error Rate] test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/316Testing of analog circuits
    • G01R31/3161Marginal testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/31813Test pattern generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • G01R31/318314Tools, e.g. program interfaces, test suite, test bench, simulation hardware, test compiler, test program languages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • G01R31/318385Random or pseudo-random test pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318572Input/Output interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31903Tester hardware, i.e. output processing circuits tester configuration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2115/00Details relating to the type of the circuit
    • G06F2115/12Printed circuit boards [PCB] or multi-chip modules [MCM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/12Timing analysis or timing optimisation

Abstract

裕度測試裝置包含一個介面,該介面用於連接到受測試裝置(DUT)並將測試信號發送到DUT。裕度測試器包含被配置為產生資料序列的偽隨機二進制序列產生器,以及用於產生表示所產生的資料序列的測試信號的控制器。定義操作包絡以將該測試信號限制為一個或多個預定義信號參數。還描述了用所揭露的裕度測試器和其他測試裝置測試DUT的方法和系統。

Description

用於高速輸入/輸出裕度測試的系統、方法和裝置
本揭露涉及測試和測量系統,並且更具體地涉及用於對電性受測試裝置(DUT)使用電性裕度測試的系統和方法來開發裝置特性。
相關申請案交互參照
本揭露是2020年11月24日提出的名稱為「用於高速輸入/輸出裕度測試的系統、方法和裝置」的美國臨時專利申請案63/117,971的非臨時專利申請案並請求該臨時專利申請案的權益,該臨時專利申請案以引用方式併入於此。本揭露還涉及轉讓給本揭露的受讓人的US 16/778,249,其以引用方式併入於此。
許多通訊標準概述了一系列壓力測試情景,以確定受測試裝置(DUT)是否通過所有性能測試並具有指 定的一致性裕度。具有信號源的測試和測量儀器(例如任意波形或函數產生器和誤碼率測試器(BERT))可用於產生用於壓力測試的波形,以響應於接收到的信號測量DUT的性能裕度。這種測試可以在設計新裝置的工程特性化階段執行,以便將裝置的實際電性性能與模擬性能進行比較,以確保裝置按設計運行。這樣的測試也可以在工程設計完成後在生產製造環境中執行,以便發現每個生產的裝置中的任何製造缺陷。
許多電性裝置包含高速I/O信號路徑或匯流排。例如,現代個人電腦(PC)主機板以及其他類型的電性裝置通常包含高速串行快速PCI(也縮寫為PCIe,或PCI-e)匯流排,這些匯流排符合併執行根據快速PCI高速串行電腦擴展匯流排標準。快速PCI標準的格式規範由PCI特別興趣小組(PCI-SIG)維護和開發。這些匯流排通常用於主機板和插入主機板上PCIe連接器插槽或埠的插/子卡之間的通訊。除了主機板之外,許多其他電子裝置也採用PCIe匯流排和連接器來實現高速I/O。PCIe第4代(第4代或第4版)裝置可實現高達每秒16千兆傳輸(GT/s)的頻寬。PCIe第5代(第5代或第5版)裝置可實現高達32GT/s的頻寬。
PCIe裝置透過稱為互連或鏈路的邏輯連接體進行通訊。鏈路是兩個PCIe埠之間的點對點通訊通道,允許同時進行雙向通信。在實體層,一條鏈路由一個或多個線路組成。低速PCIe裝置使用單線路(x1)鏈路,而高速PCIe裝置(例如圖形配接器)通常使用更寬、更快的16線路 (x16)鏈路。一條線路由兩對差分信號對所組成,一對用於接收資料,另一對用於傳送。因此,每個線路由四根導線或信號跡線所組成。習用上,使用位元錯誤率測試器(BERT)及/或高速信號產生器和示波器(觀測器)測試PCIe裝置的線路性能。
在印刷電路板(PCB)開發的工程台架測試及/或工程特性化階段,模擬電路板設計高速路線(例如PCIe互連),或遵循設計「配方」或參考設計。然後通常會構建和測試預生產的電路板樣品。然而,由於成本、時間和複雜性限制,使用位元錯誤率測試器(BERT)和示波器測試所有高速I/O的每個電路板樣品和每個線路通常是不可行的。特別是,隨著資料速率的提高,用於測試高速I/O標準(如PCIe)的傳統BERT和示波器的成本和複雜性不斷增加。一次測試單PCIe線路的單傳送器(Tx)和接收器(Rx)測試站的成本可能超過一百萬美元。這些儀器也難以用於傳統的Tx和Rx測試和校準以及專家(通常是博士級別)使用者,並且需要大量時間來確保正確進行測量並且儀器保持良好的工作狀態。此外,典型的BERT一次只能測試一個線路,因此測試發生在與這些I/O鏈路的真實世界操作不同的環境中,這些I/O鏈路通常形成多線路鏈路並且可能會遭受嚴重的串擾(cross-talk)和實際操作期間的加載問題。因此,使用BERT測試多線路裝置的所有線路既昂貴又耗時,並且不一定要測試真實世界情景。由於這些限制,傳統的BERT和示波器很少用於預生產矽、電路板、 PCB和電纜的批量電性測試,並且通常根本不用於生產測試。
目前的裕度測試器能夠遵循預定義的合規性包測試腳本,例如PCIe、USB、DDR等。通過這些腳本可確保對設計和操作規範的遵從性最低。然而,開發穩健的設計可能需要的不僅僅是確保新設計通過最低限度的測試腳本。目前,裕度測試器無法開發測試腳本來徹底測試新設計或無法充分表現裝置之表徵。
本揭露的實施方式解決了當今裕度測試裝置的這些和其他問題。
102:裕度測試器
103:資料連接體
104:DUT
105:波形產生器
106:顯示裝置
108:資料眼圖
110:多線路高速I/O鏈路
202:插卡裕度測試器
204:受測試主機板
206:主機板插槽
208:連接器
210:控制器
212:PCB
214:記憶體
302:主機板裕度測試器
304:PCIe x16插卡DUT
306:快速PCI插槽
310:控制器
312:PCB
314:記憶體
402:圖表
404:介面
405:波形或函數產生器
410:控制器
414:記憶體
500:裕度測試器
502:HSIO輸出單元
504:HSIO輸入單元
506:I/O連接器
508:時基單元
510:支援單元
512:前面板指示器
514:FPGA
516:AC/DC電源單元
602:區域網路連接
604:暫存器介面
606:控制器
608:控制器
610:控制器
612:PCIe實體層16x SerDes
614:USB/Thunderbolt/Displayport PHY x4單元
616:抖動控制單元
617:PRBS產生器
626:偏斜控制單元
701:切換器
700:裕度測試器
702:HSIO輸出單元
704:HSIO輸入單元
706:I/O連接器
708:時基單元
710:支援單元
712:前面板指示器
714:FPGA
818:FPGA直接驅動選項
820:緩衝驅動選項
822:變容器延遲注入選項
824:抖動注入選項
826:線性緩衝器
828:變容器組件
830:抖動注入電路
902:圖表
1000:介面
1010:窗口
1012:窗口
1020:窗口
1030:窗口
1040:窗口
1050:窗口
1060:窗口
1070:窗口
1080:窗口
1082:窗口
1084:開始按鈕
1090:窗口
1100:介面
1110:窗口
1120:窗口
1130:窗口
1140:窗口
[圖1]是繪示示例環境的概覽方塊圖,在該示例環境中可以施行用於高速輸入/輸出(I/O)裕度測試的系統、裝置和方法的實施方式,根據示例實施方式。
[圖2]是繪示符合快速周邊組件互連(PCI)高速串行電腦擴展匯流排標準以裕度測試快速PCI主機板插槽的示例技術特定插卡裕度測試器的方塊圖,根據示例實施方式。
[圖3]是繪示具有符合快速PCI高速串行電腦擴展匯流排標準以裕度測試快速PCI插卡的插槽的主機板的方塊圖,根據示例實施方式。
[圖4]是繪示具有複數介面的通用裕度測試器的方塊圖,該介面配置為連接到至少一個測試夾具,以 評估DUT的多線路高速I/O鏈路在兩個傳送(Tx)和接收(Rx)方向上的電性裕度,根據一個示例實施方式。
[圖5]是示例裕度測試器的方塊圖,用於測試DUT的多線路高速I/O鏈路在Tx和Rx方向中的兩個方向上的電性裕度,根據示例實施方式。
[圖6]是配置的現場可程式閘陣列(FPGA)示例的方塊圖,該陣列可用於裕度測試器的控制器中,用於測試DUT的多線路高速I/O鏈路在Tx和Rx兩個方向上的電性裕度,根據示例實施方式。
[圖7]是另一裕度測試器的方塊圖,用於測試DUT的多線路高速I/O鏈路在Tx和Rx方向中的兩個方向上的電性裕度,根據示例實施方式。
[圖8A、8B、8C和8D]是是說明FPGA的示例輸出驅動選項的方塊圖,該選項可用於裕度測試器的控制器中,用於測試DUT的多線路高速I/O鏈路在Tx方向上的電性裕度,根據示例實施方式。
[圖9]是顯示由高速I/O裕度測試器所執行的受測試裝置(DUT)的示例裕度測試結果,以及根據裕度測試結果識別潛在DUT組合件或生產問題的圖表,根據一個示例實施方式。
[圖10]是介面的示例,其讓使用者得以在裕度錯誤測試器中使用PRBS模式來定義客製的測試,根據本發明的實施方式。
[圖11]是介面的示例,其顯示使用圖10的介 面所定義的客製定義的測試的結果,根據本發明的實施方式。
【發明內容】及【實施方式】
圖1是繪示示例環境的概覽方塊圖,在該示例環境中可以施行用於高速I/O裕度測試的系統、裝置和方法的實施方式。裕度測試器102經由多線路高速I/O鏈路110耦接到受測試裝置(DUT)104。I/O鏈路110包含Tx和Rx方向兩者。
裕度測試器102可以經由資料連接體103耦接到測試站、PC、終端、示波器、或其他顯示裝置106,其可以處理、複製及/或呈現代表多線路高速I/O鏈路110的各個態樣的眼圖顯示或資料眼圖108。在一些實施方式中,顯示裝置106與裕度測試器102整合。經由資料連接體103所傳遞的資料可以包含時脈信號,使得裕度測試器102的操作可以與可以在測試設置中連接的其他儀器同步。資料連接體103還可用於將在I/O鏈路110的傳送(Tx)或接收(Rx)部分、或兩者上所發送或接收的資料的副本發送到示波器或其他儀器。資料連接體103可以進一步傳遞由裕度測試器102基於某些測試結果所產生的一個或多個觸發。可選的波形產生器105(例如任意波形產生器(AWG)或任意函數產生器(AFG),或兩者)可以耦接到裕度測試器102以提供用於測試的信號,如下所述。在一些實施方式中,波形產生器105可以被包含在裕度測試器102內。
眼圖顯示或資料眼圖108是高速數位信號的表示,其允許信號的電性品質的關鍵參數被快速可視化和確定,因此來自其的資料可用於確定DUT的統計上有效的操作裕度。眼圖顯示或資料眼圖108由數位波形所構成,藉由將對應於每個單獨位元的波形部分折疊成單圖形,信號幅度在垂直軸上,時間在水平軸上。藉由在波形的許多樣品上重複這種構造,產生的圖形將代表信號的平均統計資料,並且將類似於眼。眼開口對應於一個位元週期,通常稱為眼圖顯示或資料眼圖108的單位間隔(UI)寬度。位元週期是眼圖在眼交叉點處水平開口的度量,並且對於高速數位信號,通常以皮秒為單位來測量(即,200ps用於5Gbps信號)。資料速率是位元週期的倒數(1/位元週期)。在描述眼圖時,位元週期通常稱為單元間隔(UI)。在水平軸上使用UI而不是實際時間的優點是它是標準化的,並且可以輕鬆比較具有不同資料速率的眼圖。眼寬是眼圖水平開口的度量。它是藉由測量眼交叉點的統計平均值之間的差異來計算的。上升時間是眼圖上升斜率上資料的平均轉換時間的度量。通常在20%和80%或10%和90%的斜率程度下進行測量。下降時間是眼圖下降斜率上資料的平均轉換時間的度量。通常在20%和80%或10%和90%的斜率程度下進行測量。抖動(Jitter)是資料位元事件的理想時序的時間偏差,是高速數位資料信號的一個重要特徵。為了計算抖動,需要測量交叉點處眼圖上升沿和下降沿轉換的時間偏差。波動可以是隨機的及/或確定性的。可以分析偏差的 時間直方圖以確定抖動量。峰-峰(p-p)抖動定義為直方圖的整個寬度,即所有資料點都存在。均方根(RMS)抖動定義為直方圖的標準偏差。對高速數位信號進行抖動測量的單位通常以皮秒為單位。
裕度測試器102的實施方式可以採取至少兩種形式:技術專用和通用。裕度測試器102可以與任何鏈路寬度(線路數)的任何高速I/O協定鏈路一起使用,並使用任何形式的高速差分信號,包含但不限於不歸零(NRZ)、脈衝幅度調變-3(PAM-3)和脈衝幅度調變-4(PAM-4)。為了測試的特定示例實施方式,將使用快速PCI。然而,可以使用不同的高速串行匯流排標準、硬體和協定。
圖2是繪示符合快速PCI高速串行電腦擴展匯流排標準以裕度測試快速PCI主機板插槽206的示例技術特定插卡裕度測試器202的方塊圖,根據示例實施方式。在特定技術的形式中,裕度測試器的實施方式可以施行為(舉例來說)快速PCI插卡裕度測試器202,以測試受測試主機板204的快速PCI主機板插槽206。例如,快速PCI插卡裕度測試器202可以是快速PCI x16卡機電規範(CEM)形狀因子插卡。
快速PCI插卡裕度測試器202可以是標準快速PCI兼容插卡的形狀因子,用於特定的快速PCI形狀因子(例如,CEM或M.2(以前稱為下一代形狀因子(NGFF)或U.2(以前稱為SFF-8639)等)。快速PCI插卡裕度測試器202可以包含一個或多個印刷電路板(PCB),例如PCB 212,以 及一個或多個為每個線路施行兼容的快速PCI實體和邏輯鏈路層的組件。快速PCI插卡裕度測試器202可以具有多種耦接到PCB 212和控制器210的介面,例如連接器208。控制器210不限於單控制器,而是可以包含協同工作的一個或多個控制器。連接器208連接主機板插槽206和裕度測試器傳送器,在控制器210的控制下,它們可選地包含將受控雜訊注入鏈路以測試主機板204的能力。注入的雜訊可以包含(例如)電壓擺動和正弦抖動。然後,在注入這種雜訊之後,在受測試主機板204的接收器處所預期的眼圖裕度可以改變為時序或電壓裕度的特定目標,而無需在受測試主機板204上運行軟體。控制器210還可以耦接到記憶體214,記憶體214可以儲存控制器210可以讀取、使用及/或執行以執行本文描述的功能之指令和其他資料。
裕度測試器的各種實施方式可以帶有或不帶有雜訊注入。對於注重成本的生產測試,沒有雜訊注入的實施方式可能更有吸引力。兼容實體層實施方案中的裕度測試器接收器可能包含按照快速PCI 4.0/5.0線路裕度規範中定義的鏈路裕度功能,但也可能包含額外和更複雜的晶粒上裕度功能。在一個實施方式中,裕度測試器接收器可以藉由移動獨立錯誤檢測器並與資料採樣器比較失配來測量眼裕度。在一種實施方案中,控制器210使裕度測試器102執行本文所述的功能,可以使用現場可程式閘陣列(FPGA)和FPGA I/O來施行,其在圖5、6和7中更詳細地顯示。可以使用可配置控制器硬體、韌體及/或軟體的其他 組合。
圖3是繪示具有符合快速PCI高速串行電腦擴展匯流排標準以裕度測試快速PCI插卡的插槽的示例技術特定的主機板裕度測試器302的方塊圖,根據示例實施方式。主機板裕度測試器302是本文所揭露的裕度測試器102的技術特定的實施方式的另一示例,其施行為具有一個或多個快速PCI插槽306的主機板裕度測試器302以測試快速PCI插卡,例如PCIe x16插卡DUT 304,如圖3所示。主機板裕度測試器302可以包含耦接到PCB 312和控制器310的幾個介面(例如,一個或多個快速PCI插槽306)。例如,這樣的介面可以具有包含一個或多個快速PCI插槽306,PCIe x16插卡DUT 304可以插入其中以進行測試。與圖2中描述的實施方式不同,主機板裕度測試器302包含控制器310和記憶體314以對形成為PCIe卡的DUT 304執行上述裕度測試。控制器310和記憶體314可以是上面參考圖2描述的控制器210和記憶體214的實施方式並且執行與控制器210和記憶體214相同的功能。控制器310還可以被配置成藉由至少被配置成在多線路之間引入不同量的傾斜線路到線路來評估單線路或多線路高速I/O鏈路的電性裕度。
圖4是繪示具有多種個別介面404的通用裕度測試器402的方塊圖,該介面404配置為連接到(例如,透過一個或多個纜線)至少一個測試夾具,以評估DUT的多線路高速I/O鏈路在Tx和Rx方向中的任一方向或兩個方向上的電性裕度,根據一個示例實施方式。通用裕度測試器 402包含控制器410和相關聯的記憶體414,其可以儲存控制器410可以讀取、使用及/或執行的其他資料,以執行參考如上所述的控制器210和記憶體214描述的功能。裕度測試器402可以接受來自波形或函數產生器405的輸入以用於測試。為簡潔起見,省略了對這些功能和操作的重複描述。裕度測試器402還可用於藉由電纜連接到測試夾具來測試插卡,包含用於測試插卡的標準快速PCI兼容基座板(CBB)。裕度測試器402的介面404可以包含用於每個高速差分信號的標準同軸連接器或其他連接器和電纜,或者在各種其他實施方式中,包含客製的高密度連接器和固定裝置以最小化電纜數量並更有效率地從一個DUT進行切換到另一個DUT。
在一些示例中,DUT可以是受測試互連,傳統上使用向量網路分析儀(VNA)對其進行測試。然而,VNA通常既昂貴又複雜。此外,由VNA測量產生的散射參數(s參數)通常被認為在高頻下越來越不可靠,尤其是在用於高速串行鏈路的統計模擬時。
然而,本揭露的示例可以使用裕度測試器102、202、302或402中的任一者來測試被動或主動互連,包含一個或多個電纜及/或PCB段,以快速評估跨許多線路和部件的實際裕度差異。這些測試可以輕鬆識別互連的最壞情況和風險級別。因此,裕度測試器可以包含「VNA」模式以測試主動或被動互連。
如果使用單埠裕度測試器,則單埠的傳送器 通常連接到受測試互連的一側,而單埠的接收器連接到互連的另一側。然後可以運行非協定PRBS中的裕度測試來測試受測試互連。然而,本揭露的示例不限於單裕度測試器來測試受測試互連。相反,也可以在一個裕度測試器的傳送器連接到受測試互連並且另一裕度測試器的接收器連接到受測試互連的另一端的情況下運行測試。在本描述中,用語裕度測試器100可以指裕度測試器102、202、302或402中的任何一個,或稍後描述的裕度測試器500或700,或它們的等同物。
附加地或替代地,多埠裕度測試器100可用於在訓練之後測量處於主動協定狀態的受測試互連。在這樣的設置中,受測試互連可以連接到多埠裕度測試器100的一個埠,並且受測試互連的另一側可以連接到多埠裕度測試器100的不同的另一個埠。然後,可以測試受測試互連,以測量訓練後處於主動協定狀態的協定的裕度。或者,可以使用多個裕度測試器100而不是多埠測試器100來運行受測試互連的裕度測試。
圖5是示例裕度測試器500的方塊圖,用於測試DUT的多線路高速I/O鏈路在Tx和Rx方向中的任一個或兩個方向上的電性裕度,根據示例實施方式。裕度測試器102、202、302和402中的任何一個可以包含參考裕度測試器500描述的組件及/或功能。圖5的裕度測試器500包含可操作地耦接到支援單元510(其可以包含乙太網和其他通訊功能)的FPGA 514、用於提供系統參考時脈的時基單元 508、高速I/O(HSIO)輸出單元502和HSIO輸入單元504。裕度測試器500也可以藉由AC/DC電源單元516供電。HSIO輸出單元502和HSIO輸入單元504也可操作地耦接到I/O連接器506。FPGA 514是一種半導體裝置,它基於透過可程式化互連所連接的可配置邏輯塊(CLB)的矩陣。在各種實施方式中,裕度測試器500可以具有比所示出的更少或更多的組件,並且所示出的一些組件或組件的功能雖然與裕度測試器500可操作地通訊,但可以位於裕度測試器的外部或與裕度測試器分開,或者位於或整合在FPGA 514中。
FPGA 514可以在製造之後被重新程式化為期望的應用或功能要求,例如執行這裡描述的裕度測試器500的功能。例如,FPGA 514上的韌體可以充當標準快速PCI上游埠,也稱為端點(用於測試主機板,如在插卡裕度測試器202的實施方式中)或標準快速PCI根埠,也稱為上游埠或根複合體,(用於測試插卡,例如在主機板裕度測試器302的實施方式中),包含用於裕度測試器100中的任一者的一些鏈路層邏輯,以基於相反方向的通信推斷錯誤何時開始於DUT接收器,並在發生錯誤時快速降低裕度壓力,以防止災難性的鏈路故障。在一些實施方式中,FPGA 514可以使用或者可以以其他方式包含系統級模組(SoM)架構來施行,該架構可以在FPGA 514中併入記憶體、介面等。例如,SoM可以使用高級精簡指令集(RISC)機器來實現,該機器最初是Acorn RISC機器(ARM)架構。
配置應用程式及/或腳本可以透過FPGA 514 施行或儲存在另一個可存取的記憶體裝置或其他非暫時性電腦可讀儲存媒體上,使最終使用者能夠容易地配置裕度測試器500的裕度測試器選項,包含帶有一個或多個以下選項的多次運行。在一些實施方式中,可以為裕度掃描設置位元錯誤率(BER)目標的選項(E-6類型裕度為毫秒,E-12類型裕度為分鐘)。例如,此類目標可包含但不限於與以下相關的目標:裕度的次數、裕度時序及/或電壓;固定裕度測試器或DUT傳送器的Tx等化;並固定裕度測試器接收器的Rx CTLE和DFE。在一些實施方式中,提供了可選的應用程式及/或腳本,該應用程式及/或腳本從裕度測試器500中移除資料並為使用者提供可視化工具以查看跨多個產品/樣品的大量裕度資料,並查看平均值、批次變化和隨時間變化的趨勢,並比較使用不同配置選項(固定Tx等化等)在同一DUT上多次運行的裕度。在一些實施方式中,提供了可在可啟動驅動器上施行以安裝在受測試主機板上的可選應用程式,可選應用程式針對主機板測試來解鎖附加選項,包含但不限於:在回送而不是L0中運行和使用特定模式;使用DUT矽中的晶粒上裕度特性,而不是來自DUT傳送器的電壓擺動和Sj裕度,並雙向運行並比較結果。
在一些實施方式中,如果為特定DUT矽提供插件,則提供可選插件模型,該插件模型將允許裕度測試器配置應用程式也配置DUT矽上的RX等化設置。在一些實施方式中,為每個單獨的裕度測試單元提供可選的 IBIS-AMI(或類似)軟體模型,設計人員和系統整合商可以使用該軟體模型將其包含在他們的模擬中,以幫助建立針對特定客戶設置的測試限制/方法。IBIS-AMI是串聯器/解串器(SerDes)實體層(PHY)的建模標準,可實現對數千兆位元串行鏈路的快速、準確、具有統計意義的模擬。在一些實施方式中,為裕度測試單元提供可選的IBIS-AMI模型,以及客戶模型(IBIS-AMI或散射(S)參數),並且還可以藉由後續努力來利用,以包含某種程度的系統設計去嵌入,以便提高準確性和可重複性。可以提供裕度測試器500的通用模型作為模型,或者可以產生特定裕度測試器500的特定調整模型,其中調整作為製造測試的一部分執行,並且可以產生特性化。
圖6是配置的現場可程式閘陣列(FPGA)514(諸如圖5所繪示的)示例的方塊圖,該陣列可用於裕度測試器100的控制器210、310和410中的任一者中,用於測試DUT的多線路高速I/O鏈路在Tx和Rx方向中的任一個或兩個方向上的電性裕度,根據示例實施方式。在各種實施方式中,FPGA 514可以具有比所示出的更多或更少的組件,並且所示出的一些組件及/或與FPGA 514可操作地通訊的那些組件的功能可以位於FPGA 514外部或與FPGA 514分離。所示的是可操作地耦接到區域網路(LAN)連接體602的暫存器介面604,其可以包含SerDes。暫存器介面604也可操作地耦接到鏈路訓練狀態機(LTSSM)、Rx控制器606。在裕度測試器100的操作的實體層處的過程之一是 鏈路初始化和訓練過程。在快速PCI裝置中,這個過程建立了許多重要的任務,例如鍊路寬度協商、鏈路資料速率協商、每個線路的位元鎖定、每個線路的符號鎖定/塊對齊等。所有這些功能都由LTSSM裝置完成,其觀察來自遠端鏈路夥伴的激勵以及鏈路的當前狀態,並做出相應的響應。暫存器介面604也可操作地耦接到一個或多個附加LTSSM控制器單元,例如LTSSM通用串行匯流排(USB)控制器608和附加LTSSM USB控制器610。在所示的示例實施方式中,LTSSM Rx控制器606可操作地耦接到PCIe實體層(PHY)16x SerDes 612,並且LTSSM USB控制器608可操作地耦接到USB/Thunderbolt/Displayport(USB/TBT/DP)PHY x4單元614。
用於控制可程式化偏斜,偏斜控制單元626也可以是FPGA 514的一部分(或可操作地耦接到FPGA 514)。以前,可以跨多線路的產生不同數量的偏斜線路到線路的唯一測試儀器是非常複雜且昂貴的多線路BERT。然而,多線路BERT不能像本文所揭露的裕度測試器那樣運行完整的訓練協定,包含像PCIe這樣的現代協定的傳送等化訓練。因此,以前沒有辦法在沒有極其昂貴和複雜的測試設置的情況下使用協定和各種不同的偏差進行實驗室測試。然而,本揭露的示例可以使用偏斜控制單元626以多種不同方式添加每個線路傳送偏斜。
例如,偏斜控制單元626可以包含單獨的每線路可程式化長度先進先出(FIFO)緩衝器以設置每條線路 的偏斜量。附加地或替代地,偏斜控制單元626可以為每個線路在FPGA 514結構中對每個線路可變長度傳送FIFO進行程式化。附加地或替代地,偏斜控制單元626可以包含軟控制器,該軟控制器可以修改控制器邏輯以使可變長度可程式化的每線路傳送FIFO饋送到每個實體層傳送器。
用於控制抖動插入單元,抖動控制單元616也作為FPGA 514的一部分存在(或可操作地耦接到FPGA 514),使得在DUT接收器處所預期的眼裕度可以依時序或電壓裕度的特定目標而變化,而無需要在DUT上運行軟體。
偽隨機二進制序列(PRBS)產生器617可以作為FPGA 514的一部分存在或可操作地耦接到FPGA 514,用於創建用於測試DUT的隨機測試資料。PRBS產生器617可以與能夠模擬抖動和其他測試行為的外部或內部任意波形產生器協作工作,如下所述。
當裕度測試器100正在測試特定協定,例如PCIe時,裕度測試器正在運行完整協定,並且可以在鏈路經由LTSSM控制器單元606、608和610訓練到主動狀態時追蹤鏈路狀態。裕度測試器500的FPGA 514可以在訓練進行時重複地執行裕度測量,並及時擷取鏈路訓練狀態相對於一個或兩個方向上的電性裕度的日誌。
圖7繪示了具有自校準的裕度測試器700的示例。可以藉由將傳送器電連接到接收器來執行裕度測試器700的校準。例如,這可以藉由裕度測試器700內的切換器 將傳送器電連接到同一裕度測試器700中的接收器來完成。這消除了對外部測試設備的需求。該技術可用於上述任何裕度測試器100。
圖7類似於參照圖5描述的實施方式。圖7是裕度測試器700的方塊圖,用於測試DUT的多線路高速I/O鏈路在Tx和Rx方向中的任一個方向或兩個方向上的電性裕度,並且具有自校準。為了執行自校準,可以提供一個或多個切換器701以將HSIO輸出單元702中的每個傳送器連接到HSIO輸入單元704中的每個接收器。傳送器可以輸出信號並且接收器可以接收信號並且確定裕度測試器700是否在期望的範圍內。為了便於說明,圖7中示出了單切換器701,但是如本領域技術人員將理解的,可以提供多個開關701以將傳送器連接到接收器。作為切換器701的替代,校準裝置或固定裝置可以設置在I/O連接器706處,以使傳送器回送到接收器以執行自校準。
可以提供不同的操作模式來執行裕度測試器700的校準。例如,自校準可以僅在工廠使用可以經由一個或多個I/O連接器706將傳送器連接到接收器的特殊回送夾具來執行。可以提供的另一種操作模式是讓最終使用者執行裕度測試器700的自測試。這可以藉由啟用切換器701或插入可以將傳送器路由到裕度測試器700的接收器的夾具來執行。在自測期間,如果結果在指定範圍之外,裕度測試器700可以輸出到前面板指示器712。
在一些示例中,可以在協定模式、PRBS模 式非協定模式或兩者中執行校準。然而,在協定模式中,I/O連接器706可能不能同時充當主機和測試裝置。如果裕度測試器700具有兩組I/O連接器706,則裕度測試器700可能必須連接兩組不同的I/O連接器706,或者可能連接第二裕度測試器700。與傳統儀器相比,內部校準可為裕度測試器700提供更快且可能更便宜的工廠校準。內部校準還可以使最終使用者能夠執行他們自己的校準測試。
圖8A、8B、8C和8D是繪示FPGA(諸如上圖的FPGA 514)的示例輸出驅動選項的方塊圖,該選項可用於裕度測試器的控制器(諸如控制器210、310或410)中,用於測試DUT的多線路高速I/O鏈路在Tx和Rx方向中的任一個或兩個方向上的電性裕度,根據示例實施方式。
圖8A繪示FPGA直接驅動選項818,它沒有緩衝並且不包含任何變容器延遲注入或抖動注入。圖8B所繪示的第二輸出驅動選項是緩衝驅動選項820,其包含線性緩衝器或限制放大器826,其具有不包含任何變容器延遲注入或抖動注入的差分輸出電壓(Vod)。圖8C所繪示的第三輸出驅動選項是變容器延遲注入選項822,其包含線性緩衝器826和變容器組件828,其導致符號間干擾(ISI)加上一些延遲,例如,可能是~3-5ps。圖8D所繪示的第四輸出驅動選項是抖動注入選項824,在一個實施方式中,其可以包含可選的線性緩衝器826和抖動注入電路830。在一個實施方式中,抖動注入電路830是產生抖動(在32GBd時約100ps)的專用積體電路(ASIC),也可從ADSANTEC獲 得。在一些實施方式中,不包含線性緩衝器826。在其他實施方式中,抖動注入電路可以藉由差分雜訊注入或其他已知方法來執行。
在各種實施方式中,裕度測試器100可以使用不同種類的應力來識別各種不同的對應故障模式,包含但不限於與以下相關的故障模式:組合件;互連(表面安裝技術(SMT)、封裝、連接器、過孔、通孔等);缺陷;影響串聯電阻;導致ISI和基線漂移的故障模式;閉眼影響;導致寬度閉合以外的故障模式;功能測試逃逸;作業員配置錯誤;來料;製程變異;接收器頻寬,其類似於互連變化;電源拒斥比(PSRR);垂直/水平閉眼;鎖相環穩定性;設計;線路之間的增量。用於抖動插入的基於變容器的方法可能更有效地加劇與組裝相關的缺陷。
如上所述,裕度測試器100可以被配置或程式化為對DUT執行裕度測試。在一些實施方式中,在建立受測試裝置(DUT)的多線路高速I/O鏈路之後,該裕度測試器100評估該多線路高速I/O鏈路的每個高速輸入/輸出(I/O)線路在傳送(Tx)和接收(Rx)方向中的一個或兩個方向上的電性裕度。例如,評估電性裕度可以包含在多線路高速I/O鏈路的裕度測試傳送器上注入可調節應力。可調應力可以包含同時注入多線路高速I/O鏈路的所有線路上的抖動以及施加電壓擺動。評估電性裕度還可以包含評估該多線路高速I/O鏈路的每個高速輸入/輸出(I/O)線路同時在傳送(Tx)和接收(Rx)方向中的兩個方向上的電性裕度。
裕度測試器100還可用於基於在Tx和Rx方向中的一個或兩個方向上的DUT的多線道高速I/O鏈路的裕度測試電性裕度來識別潛在DUT組合件或生產問題。在該操作模式中,對於每個DUT的多線路高速I/O鏈路的高速輸入/輸出(I/O)線路,裕度測試器100為複數DUT的每個DUT評估在Tx和接收Rx方向中的任一個方向或兩個方向上的時序眼寬裕度。在一個示例中,裕度測試器100基於對複數DUT中的每個DUT的時序眼寬裕度測量的檢測識別潛在的DUT設計問題,時序眼寬裕度測量持續低於跨複數DUT的相同線路的最小預定閾值。檢測還可以或替代地包含基於評估來檢測複數DUT中的多個DUT的時序眼寬裕度測量,其中的每一個低於跨多個DUT的不同線路的預定閾值。
在一些實施方式中,舉例來說,裕度測試器100可以被程式化或配置:基於DUT的多線路高速I/O鏈路,選擇一種或多種不同的高速I/O協定進行裕度測試;同時使用混合協定測試DUT的多個埠;在多線路高速I/O鏈路上的裕度測試器的任意數量的裕度測試運行中,輸出裕度的批次變化;在DUT上施行固定的Tx等化(EQ),以測試有多少裕度變化是由於Tx EQ訓練變化引起的;在裕度測試器的接收器中使用固定CTLE來測試接收器等化對DUT多線路高速I/O鏈路裕度的影響;在裕度測試器的接收器中使用決策回授等化(DFE)來測試接收器等化對DUT多線路高速I/O鏈路裕度的影響;根據目標通道計算裕度 測試器的預期裕度;當檢測到低裕度作為評估多線路高速I/O鏈路的電性裕度的結果時,自動產生除錯資訊;切換到使用可變符號間干擾(ISI)源來查找有多少ISI導致多線路高速I/O鏈路的線路發生故障;單獨測試每個線路,以確定由於DUT的多線路高速I/O鏈路的串擾而導致的裕度損失量;關閉裕度測試器接收器中的DFE,以評估有和沒有DFE的裕度以及與多線路高速I/O鏈路相關的每個通道中的非線性不連續量;針對裕度測試器,產生特徵化資料,其顯示參考接收器和典型通道的預期裕度,並即使當低於預期裕度在DUT和多個DUT的多線路高速I/O鏈路的所有線路上保持一致時,允許標記低於預期裕度;從在其上執行電性裕度評估的多線路高速I/O鏈路的多個速度中進行選擇;裕度測試器使用協定特定知識,根據多線路高速I/O鏈路上相反方向行進的通信推斷DUT的接收器何時發生錯誤,以使裕度測試器能夠在DUT上沒有軟體的情況下在生產線上執行裕度測試;自動擷取作為多線路高速I/O鏈路電性裕度評估結果而檢測到的低裕度通道的時域反射讀數(TDR);當由於評估多線路高速I/O鏈路的電性裕度而檢測到低裕度時,執行與示波器的自動連接以自動擷取數位化波形;並且,提供軟體插件,藉由配置DUT矽施行一個或多個使用者可選選項,為DUT配置一個或多個使用者可選選項。
在一些實施方式中,裕度測試器100可以提供選項以執行或可以執行DUT的校準,從而使使用者能夠 接收具有一系列參考通道的一組預期裕度。在這些實施方式中,已校準的裕度測試器100被配置為測量受測試裝置(DUT)的傳送(Tx)和接收(Rx)方向中的任一個方向或兩個方向上的電性眼裕度,而DUT的完全運行的操作鏈路無需特殊測試模式並擷取滿載和串擾效應。還可以為裕度測試器提供單獨已校準的模型,從而能夠使用以下一項或多項計算預期裕度:個性化系統通道、接收器模型和傳送器模型。此外,在DUT矽中提供了一項功能,使裕度測試器能夠使用供應商定義的訊息或其他協定機制來指示裕度測試器即將進行裕度測試,從而使DUT矽能夠禁用邏輯由於在裕度測試期間的錯誤,會降低鏈路寬度或鏈路速度。
還提供了裕度測試器的軟體應用程式,該應用程式可以在使用裕度測試器的測試配置中藉由裕度測試器對受測試通道組件(例如,裸印刷電路板(PCB)或電纜)進行測試在受測試線路組件的任一側或兩側。在一些實施方式中,裕度測試器的硬體被提供給製造印刷電路板(PCB)的公司,並且與裕度測試器的使用相關聯的資料被提供給提供在PCB的生產中使用的矽的矽公司。
裕度測試器100還可以配置已連接的DUT,以由裕度測試器100在DUT的矽的不同條件下運行裕度測試。裕度測試器100可以接收軟體插件,該插件啟用配置和DUT矽參數,以便由裕度測試器100在DUT的矽的不同條件下運行裕度測試。DUT矽參數可以包含但不限於以下一項或多項:與接收器連續時間CTLE相關的參數和與DFE 相關的參數。
所揭露的實施方式的益處、優點和改進包含但不限於以下特徵。一些實施方式幾乎可以完全使用現成的組件來施行,包含標準FPGA和正弦抖動注入晶片或延遲線,並且與傳統的BERT和示波器相比成本非常低。示例實施方式可以在以正常操作狀態操作的完整多線路鏈路上運行,而無需特殊軟體並擷取由於所有線路同時操作而產生的任何影響。另一個優點是本揭露的實施方式可以在單自含有單元中在任一個方向或兩個方向(Tx和Rx)上進行測試。各種實施方式也可以在生產環境中(例如,在主機板生產測試環境中)運行,而不需要對DUT進行任何軟體或修改。可以在裕度測試器102矽/韌體中提供隨協定而變化的測試特定邏輯,以根據受測試裝置傳送回裕度測試器的資料非常快速地識別DUT接收器何時發生錯誤。一些示例實施方式包含在DUT矽中施行的特徵,以經由快速PCI供應商特定訊息或其他標準協定特徵識別將進行裕度測試並將DUT矽置於不會降低鏈路寬度及/或速度的狀態通常是由於錯誤。這有助於確保使用雜訊注入或電壓擺動調整對DUT接收器進行裕度處理,而不會有經由正常協定機制降低鏈路寬度或速度的風險。這是一種特殊邏輯的替代方法,可以快速推斷錯誤何時開始,並在鏈路或速度下降之前減少壓力。
所揭露技術的實施方式的附加特徵可以包含可以在控制器210、310、410中的一個的控制下執行的以 下功能(例如,根據配置的FPGA執行指令及/或執行從另一個非暫時性電腦可讀儲存媒體所讀取的指令):基於DUT的多線路高速I/O鏈路,選擇一種或多種不同的高速I/O協定執行裕度測試;同時使用混合協定測試DUT的多個埠;在多線路高速I/O鏈路上的裕度測試器的任意數量的裕度測試運行中,輸出裕度的批次變化;在DUT上施行固定的Tx等化(EQ),以測試有多少裕度變化是由於Tx EQ訓練變化引起的;在裕度測試器的接收器中使用固定連續時間線性等化(CTLE)來測試接收器等化對DUT多線路高速I/O鏈路裕度的影響;在裕度測試器的接收器中使用決策回授等化(DFE)來測試接收器等化對DUT多線路高速I/O鏈路裕度的影響;根據目標通道計算裕度測試器的預期裕度;當檢測到低裕度作為評估多線路高速I/O鏈路的電性裕度的結果時,自動產生除錯資訊;切換到使用可變符號間干擾(ISI)源來查找有多少ISI導致多線路高速I/O鏈路的線路發生故障;單獨測試每個線路,以確定由於DUT的多線路高速I/O鏈路的串擾而導致的裕度損失量;關閉裕度測試器接收器中的DFE,以評估有和沒有DFE的裕度以及與多線路高速I/O鏈路相關的每個通道中的非線性不連續量;顯示參考接收器和典型通道的預期裕度,並即使當低於預期裕度在DUT和多個DUT的多線路高速I/O鏈路的所有線路上保持一致時,也允許標記低於預期裕度;從在其上執行電性裕度評估的多線路高速I/O鏈路的多個速度中進行選擇;裕度測試器使用協定特定知識,根據多線路高速I/O 鏈路上相反方向行進的通信推斷DUT的接收器何時發生錯誤,以使裕度測試器能夠在DUT上沒有軟體的情況下在生產線上執行裕度測試;自動擷取作為多線路高速I/O鏈路電性裕度評估結果而檢測到的低裕度通道的時域反射讀數(TDR);當由於評估多線路高速I/O鏈路的電性裕度而檢測到低裕度時,執行與示波器的自動連接以自動擷取數位化波形;並且提供軟體插件,藉由配置DUT矽施行一個或多個使用者可選選項,為DUT配置一個或多個使用者可選選項。在控制器210的控制下,所有上述功能中的一些功能也可以作為使用者可選選項提供,用於操作裕度測試器102。
在示例實施方式中,裕度測試可以包含由裕度測試器100為複數受測試裝置(DUT)的每個DUT評估在Tx和Rx方向中的任一個方向或兩個方向上的時序眼寬裕度,對於每個DUT的多線路高速I/O鏈路的高速輸入/輸出(I/O)線路。裕度測試器100然後可以檢測針對複數DUT中的多個DUT的時序眼寬裕度測量,其對於跨複數DUT的不同線路均低於預定閾值。然後可以基於對多個DUT的時序眼寬裕度測量的檢測來檢測潛在的DUT組合件或生產問題(由裕度測試器102可視地或自動地),其中,對於跨多個DUT的不同線路,該多個DUT的時序眼寬裕度測量均低於的預定閾值。
作為示例,在一個實施方式中,插卡裕度測試器(例如圖2中所示的插卡裕度測試器202)可用於具有一 個PCIe x8插槽的主機板的預生產樣品的基準測試/特性化。下面的示例測試過程可以使用插卡裕度測試器202來執行,其中E-6時序眼寬裕度(左+右)在每個線路上同時在幾毫秒測試中針對該插槽進行測量。本示例僅為簡單起見包含時序,但其他實施方式可以包含其他測量。本例中的每次測量進行3次。然而,這在各種實施方式中可以是使用者可程式化的。圖表902(圖9)中所示的測量是在裕度測試器接收器以及主機板DUT接收器處執行的。在主機板DUT接收器上進行的測量可以由兩種方式進行。第一種方法可能是使用裕度測試器抖動(Sj)和電壓擺動掃描。第二種方法可能是在主機板接收器上使用晶粒上裕度測試。例如,在主機板接收器處的晶粒上裕度測試可以在插卡裕度測試器202的控制器210的控制下,經由連接到主機板DUT或基本輸入/輸出系統(BIOS)的可啟動驅動器上的軟體運行主機板DUT上的軟體,針對所支援的速度。在本示例中,測量以16GT/s的速度完成,但可能會有所不同並且可能是使用者可配置的。
圖9是顯示由高速I/O裕度測試器102所執行的幾個DUT的示例裕度測試結果,以及根據裕度測試結果識別潛在DUT組合件或生產問題的圖表902,根據一個示例實施方式。如圖表902所示,因為低裕度出現在所有DUT上,所以線路2上所有五個DUT(DUT #1到DUT #5)的持續低裕度可能是裝置的潛在設計問題的指標。相比之下,DUT #1線路4、DUT #3在線路0和DUT #4在線路6上的 低裕度可能是這些特定DUT上的這些特定線路存在潛在的組合件或生產問題的指標,在於這些低裕度數字沒有不良裕度的固定模式。
本發明的實施方式提供了一種裕度測試器的PRBS測試模式,允許使用者在非兼容模式下測試DUT,或者允許使用者藉由發送隨機二進數字制序列作為測試資料來靈活測試DUT。PRBS通常是隨機產生的二進制(即1和0)數字序列。在將作為資料信號的該資料發送到DUT之前,本發明的實施方式可以進一步將抖動、偏斜和電壓幅度變化結合到PRBS資料,以使用隨機化的資料和裕度提供完整的裕度測試。
PRBS測試允許進行穩健的測試以測試模擬傳送或對DUT的某些部分進行壓力測試。本發明的實施方式允許使用者定義自定義測試過程,而無需使用先前定義的標準測試模式,例如各種標準的兼容測試。因為PRBS資料是隨機資料,根據本發明實施方式的裕度測試器允許使用者定義用於測試的參數,然後允許PRBS測試模式在定義的參數內產生隨機資料。作為一組隨機資料,裕度測試器允許使用者訓練方差,而不是局限於完全已知的狀態。使用PRBS測試模式還可以提高錯誤訓練的有效性,因為PRBS資料在統計上是平衡的。因此,在一系列測試中使用PRBS測試模式可以顯示DUT性能隨時間的變化、線路之間的偏差,並可用於除錯設計。
圖10是介面1000的示例,其讓使用者得以在 裕度錯誤測試器中使用PRBS模式來定義客製的測試或操作參數,根據本發明的實施方式。介面1000可以整合到上述裕度測試器100之一中,或者在一些實施方式中可以可操作地連接到裕度測試器之一。
一般而言,介面1000讓使用者針對以PRBS模式發送到DUT的一組測試信號來產生客製的設計。如上文和下文所述,使用PRBS模式為DUT產生測試資料讓使用者靈活地控制特定測試DUT的部分,這是使用傳統的、定義的、兼容測試是不可能的。
在窗口1010中,使用者可以選擇先前定義的測試模式配置文件,並且窗口1012允許使用者將當前設置保存為新的模式配置文件。此功能允許使用者輕鬆地重新運行配置文件,而無需輸入介面1000上可用的所有條件和選項。在一些實施方式中,測試模式配置文件可以儲存在區域網路上的中央儲存庫中,因此鏈接的機器可以使用在另一台機器上定義的配置文件。在其他實施方式中,配置文件可以儲存在雲端網路上,例如互聯網儲存,並且可供有權存取儲存位置的人使用,例如藉由密碼存取。
通常,PRBS測試模式的操作包絡或操作沙盒由使用者選擇時間裕度、電壓裕度和電源狀態的一個或多個參數來定義。在窗口1020中選擇時間裕度。如果使用者沒有啟用時間裕度測試,那麼PRBS資料將被發送到與時脈信號對齊的附著DUT。換言之,當時間裕度被取消選擇時,不會將偏斜或抖動添加到PRBS資料的時序。與目 前的測試系統不同,本發明的實施方式為使用者提供了定義通過和失敗裕度閾值的能力,而不是被限制於預定義的時序裕度閾值。窗口1020為使用者提供輸入以客製設計這樣的失敗和通過閾值。此外,同樣如窗口1020所示,本發明的實施方式允許使用者自定義定義警告級別,即,將導致裕度測試器產生警告信號的裕度級別或裕度級別間隔。此功能對設計工程師非常有幫助,因為目前的系統提供的測試反饋只有通過/失敗資訊,沒有警告信號。如窗口1020所示,使用者已選擇在時序裕度小於10ps時設置通過閾值,在時序裕度小於4ps時設置失敗閾值,並當時序裕度在5ps和9ps之間時選擇使測試器產生警告信號。
介面1000的窗口1030為使用者提供了在DUT測試中包含電壓裕度測試的能力。正如在裝置測試中已知的,電壓裕度測量裝置基於在電壓裕度測試期間變化的信號幅度來正確地確定信號狀態的能力。窗口1030首先允許使用者確定他或她是否將包含電壓裕度測試作為測試參數。如果不是,則發送到DUT的測試資料的幅度不會發生變化。如果使用者選擇包含電壓裕度測試,則PRBS資料信號的幅度將在PRBS模式測試期間發生變化。與時間裕度一樣,本發明的實施方式允許使用者選擇通過和失敗的電壓裕度級別,以及將導致測試系統標記為警告的電壓裕度水平的範圍。
PRBS測試模式的一些實施方式還允許使用者選擇是否將測試限制在特定的鏈路功率狀態,如窗口 1040所示。然後,PRBS測試模式中的鏈路功率狀態被限制為選定的狀態,這進一步允許使用者定義非常具體的DUT測試。
在一些實施方式中,可以包含其他最小及/或最大操作參數作為對測試環境的限制,例如DUT的溫度範圍或其他測試參數,例如上述那些。
窗口1080允許使用者控制測試將運行多長的時間。因為根據本發明實施方式的裕度測試器正在向DUT發送隨機資料,並且沒有根據預定義的測試計劃進行操作,所以使用者管理測試持續時間。測試持續時間可以從幾秒到幾小時,甚至更長,並且可以使用窗口1080中的滑塊來選擇持續時間或直接在文字框中輸入該持續時間。選擇快速測試可能會及早突出顯著錯誤,而選擇更長的測試可能有助於對具有大量PRBS資料的DUT進行壓力測試。
窗口1070讓使用者控制有多少個DUT的並行線路的數量被測試。如果選擇了最大線路數,那麼當然所有線路都使用PRBS資料進行測試。如果選擇的線路數少於最大線路數,則根據本發明的實施方式的裕度測試器可以隨機選擇將被測試的、以及有多少個(最多該最大線路數)將被測試。例如,如果從8線路裝置中選擇了7個線路,則在任何特定測試運行期間都不會測試該DUT的一個或多個線路。由於PRBS測試是隨機測試,因此也可以隨機選擇未選擇的線路。
窗口1050讓使用者選擇是否以及(如果是)如 何將資料傳送到DUT的傳送器(Tx)通道。資料可以以裝置狀態的預設值發送,即,基於先前定義的值。或者,可以使用一種展頻時脈(SSC)形式發送資料,它允許可變速率測試,而不是預定義速率。相似地,窗口1060讓使用者選擇使用連續時間線性均衡器(CTLE)還是決策回饋等化器(DFE)於從接收器(Rx)通道所接收的資料。
當使用者進入PRBS測試模式時,藉由按下開始按鈕1084,裕度測試器開始向DUT發送隨機產生的資料。原始二進制資料由PRBS產生器所產生。然後,如果使用者在窗口1020中啟用了時間裕度測試,則資料的時序將隨機變化直到最大時序誤差,該最大時序誤差也可以是使用者選擇的。此外,如果使用者在窗口1030中啟用了電壓裕度測試,則傳送該資料的信號的幅度將隨機變化,直到最大幅度誤差,該最大幅度誤差也可以是使用者選擇的。PRBS產生的資料經過修改以測試時序誤差和電壓誤差,然後成為在PRBS測試模式期間發送到DUT的一組測試信號。此外,由於測試信號是在實體層發送的,因此可以將雜訊與PRBS產生的資料混合,並將混合後的版本作為模擬信號發送到DUT,而不是作為修改後的數位信號。
提供給DUT的隨機資料允許使用者訓練方差而非完全已知的狀態。換言之,PRBS測試模式的隨機性可能會導致DUT中的響應超出標準測試計劃中的響應。例如PRBS資料可能導致DUT在沒有經過中間狀態的情況下從低鏈路功率狀態跳到高鏈路功率狀態,然後裕度測試器 可以確定DUT的響應。使用這樣的隨機資料,而不是預定義的測試模式,可能會導致DUT以意想不到的方式運行,或進入意想不到的模式,一旦檢測到,可能會進一步調查。藉由這種方式,PRBS測試模式讓使用者快速有效地探索DUT操作,特別是與以下預定義的測試情景相比。此外,PRBS測試模式可以發現運行預定義測試腳本無法發現的潛在問題。此外,PRBS測試模式能夠以高度可配置的方式對DUT中的特定感興趣區域進行壓力測試。
如果示波器是測試設備的一部分,則示波器可以在PRBS測試模式期間監控DUT上的資料。由示波器所測量的這些附加資訊可以進一步告知測試器關於DUT的操作。如上所述,裕度測試器和示波器之間的資料連接體103可以包含時脈信號,因此裕度測試器可以與其他測量設備(例如上述示波器)配對。包含PRBS測試模式與示波器相結合的裕度測試器可以像BERT和示波器一樣運行,並以低得多的成本提供相同或相似的DUT測試功能。使用者可以定義裕度測試器的PRBS測試模式的測試參數,如上文參考圖10所述,然後驅動DUT失效,同時示波器監控DUT線路上的流量。裕度檢測器可以報告DUT錯誤並提供通道的眼圖,而示波器可用於擷取導致特定錯誤的資料。
相關地,根據本發明實施方式的具有PRBS測試模式的裕度測試器也可以用於基於在PRBS測試期間引發的DUT響應來產生觸發事件。然後可以將觸發發送到連接的示波器,以擷取DUT線路上的資料流量,以讓使用 者解釋由PRBS測試模式產生的特定資料,從而引發觸發事件。觸發可以在圖10的介面1000的窗口1090中定義。觸發定義不必是僅由示波器識別的定義,而是可以配置為在事件狀態(例如,特定電壓狀態或電平)上產生觸發。其他觸發也是可能的。
PRBS測試模式的另一個好處是DUT不一定要進入特定的操作狀態,因此測試設備能夠讓使用者在沒有任何狀態限制的情況下調查DUT操作。
圖11是介面1100的示例,其顯示使用圖10的介面所定義的客製定義的測試的結果,根據本發明的實施方式。介面1100可以整合到上述裕度測試器100之一中,或者在一些實施方式中可以可操作地連接到裕度測試器之一。
介面1100包含幾個報告窗口。整體報告窗口1110通知使用者PRBS測試的狀態。在所示實施方式中,整體測試失敗。窗口1110中的細節表明兩個線路未達到其使用者定義的裕度參數,如上所述。窗口1110還指示兩個線路通過了裕度參數,但是它們在閾值內,即,在圖10的介面1000中定義的警告閾值,未通過測試。包含可設置的警告閾值對開發人員來說是一個有用的工具,因為它提供了查看參數是否接近閾值但仍然通過的能力,而使用現有工具很難或不可能清楚地看到這一點。窗口1110還報告經過的時間是1分7秒。測試的實際運行時間可能與在窗口1080(圖10)中選擇的預期運行時間不匹配,例如,因為不 同上電和鏈路連接狀態的時間變化,或DUT的其他狀態變化。
報告窗口1120重呼叫使用者針對特定PRBS測試所選擇的裕度閾值。
報告窗口1130和1140相互關聯,並說明PRBS測試的測試結果。在這些報告的結果中,線路15未通過裕度測試。此外,線路8在DUT的接收器側產生警告,而線路13在DUT的傳送器側產生警告。測試結果的詳細資訊顯示在窗口1140中,該窗口在圖11中被截斷。詳細資訊包含傳送和接收資料的數字指示,此外,如果測試時間足夠長,則會產生一個眼圖,說明通道的裕度健康狀況。儘管沒有說明,但通道8、13和15的詳細資訊提供了有關它們為何失敗或處於未通過測試的閾值內的資訊。
本揭露的各態樣可以在特別創建的硬體、韌體、數位信號處理器上或在包含根據程式化指令操作的處理器的特別程式化的通用電腦上操作。如本文所用的術語控制器或處理器旨在包含一個或多個微處理器、微型電腦、專用積體電路(ASIC)和獨立工作或彼此結合工作的專用硬體控制器。本揭露的一個或多個態樣可以實施在電腦可用資料和電腦可執行指令中,例如在一個或多個程式模組中,由一台或多台電腦(包含監控模組和控制器)或其他裝置執行。通常,程序模組包含在由電腦或其他裝置中的處理器執行時執行特定任務或實現特定抽像資料類型的常式、程式、物件、組件、資料結構等。電腦可執行指令可 以儲存在非暫時性電腦可讀儲存媒體上,例如硬碟、光碟、可移除儲存媒體、固態記憶體、DDR記憶體、隨機存取記憶體(RAM)等。如本領域技術人員將理解的,程式模組的功能可以根據需要在各個態樣進行組合或分佈。此外,該功能可以全部或部分體現在韌體或硬體等同物中,例如積體電路、FPGA等。特定資料結構可用於更有效地施行本揭露的一個或多個方面,並且此類資料結構被設想在本文描述的電腦可執行指令和電腦可用資料的範圍內。
在一些情況下,可以在硬體、韌體、軟體或其任何組合中施行所揭露的態樣。所揭露的態樣還可以施行為由一個或多個或非暫時性電腦可讀媒體承載或儲存在其上的指令,其可由一個或多個處理器讀取和執行。這樣的指令可以被稱為電腦程式產品。如本文所討論的,電腦可讀媒體是指可以由計算裝置存取的任何媒體。作為示例而非限制,電腦可讀媒體可以包括電腦儲存媒體和通訊媒體。
電腦儲存媒體是指可用於儲存電腦可讀資訊的任何媒體。作為示例而非限制,電腦儲存媒體可包含RAM、ROM、電可抹除可程式化唯讀記憶體(EEPROM)、快閃記憶體或其他記憶體技術、光碟唯讀記憶體(CD-ROM)、數位視訊光碟(DVD)或其他光碟儲存裝置、磁卡匣、磁帶、磁碟儲存裝置或其他磁性儲存裝置,以及以任何技術施行的任何其他揮發性或非揮發性、可移除或不可移除媒體。電腦儲存媒體不包含信號本身和信號傳送的暫 時形式。
通訊媒體是指可用於電腦可讀資訊通訊的任何媒體。作為示例而非限制,通訊媒體可包含同軸電纜、光纖電纜、空氣或任何其他適合於電、光、射頻(RF)、紅外線、聲學或其他類型的信號的通訊的媒體。
此外,該書面描述參考了特定特徵。應當理解,本說明書中的揭露內容包含那些特定特徵的所有可能組合。例如,在特定方面的上下文中揭露了特定特徵的情況下,該特徵也可以在可能的範圍內用於其他態樣的上下文中。
此外,當在本申請中提及具有兩個或更多個限定的步驟或操作的方法時,限定的步驟或操作可以以任何順序或同時執行,除非上下文排除那些可能性。
儘管為了說明的目的已經說明和描述了本揭露的特定態樣,但是應當理解,在不背離本揭露的精神和範圍的情況下可以進行各種修改。因此,本揭露不應受限制,除了由所附申請專利範圍來限制。
1000:介面
1010:窗口
1012:窗口
1020:窗口
1030:窗口
1040:窗口
1050:窗口
1060:窗口
1070:窗口
1080:窗口
1082:窗口
1084:開始按鈕
1090:窗口

Claims (20)

  1. 一種裕度測試裝置,包括:被建構成連接到受測試裝置(DUT)的至少一介面;被建構成根據偽隨機資料序列和一個或多個預定義信號參數創建一組測試信號的一個或多個控制器;以及被建構成將該組測試信號發送到該DUT的輸出端,用於裕度測試該DUT,其中,該裕度測試裝置為主機板,以及該DUT為耦接到該主機板的插卡,或者其中,該DUT為主機板,以及該裕度測試裝置為耦接到該主機板的插卡。
  2. 如請求項1之裕度測試裝置,其中,該一個或多個預定義信號參數包含時間裕度、電壓裕度、或時間裕度和電壓裕度兩者。
  3. 如請求項1之裕度測試裝置,進一步包括到該一個或多個控制器的任意波形產生器輸入端,以及其中,該一個或多個控制器將該任意波形產生器輸入端上所接收的信號與隨機產生的二進制數組合以創建該資料偽隨機序列。
  4. 如請求項1之裕度測試裝置,進一步包含觸發輸出端,其根據該DUT的狀態產生觸發信號。
  5. 如請求項1之裕度測試裝置,進一步包括使用者介面,使用者能經由該使用者介面修改用於創建操作包絡的該預定義信號參數。
  6. 如請求項5之裕度測試裝置,其中,測試結果被顯示在該使用者介面的測試報告螢幕上,以及其中該測試結果中的一個是在錯誤的臨界值數量內通過特定測試。
  7. 如請求項6之裕度測試裝置,其中,該臨界值數量為使用者可定義的。
  8. 一種操作裕度測試器的方法,包括:藉由該裕度測試器產生偽隨機二進制資料序列;藉由該裕度測試器根據所產生的該偽隨機二進制資料序列和一個或多個預定義信號參數創建一組測試信號;以及將該組測試信號發送到受測試裝置(DUT),用於裕度測試該DUT,其中,該裕度測試器為主機板,以及該DUT為耦接到該主機板的插卡,或者其中,該DUT為主機板,以及該裕度測試器為耦接到該主機板的插卡。
  9. 如請求項8之方法,其中,根據所產生的該偽隨機二進制資料序列和該一個或多個預定義信號參數創建該組測試信號包含將時間裕度加到所產生的該偽隨機二進制資料序列、將電壓裕度加到所產生的該偽隨機二進制資料序列、或將時間裕度和電壓裕度兩者加到所產生的該偽隨機二進制資料序列。
  10. 如請求項8之方法,其中,產生該偽隨 機二進制資料序列包括使用任意波形產生器作為輸入端產生該偽隨機二進制資料序列。
  11. 如請求項8之方法,進一步包含根據該DUT的狀態產生觸發信號。
  12. 如請求項8之方法,進一步包括經由使用者介面從使用者接受該預定義信號參數。
  13. 如請求項12之方法,進一步包括在該使用者介面的測試報告螢幕上顯示該裕度測試的測試結果,其中,該測試結果中的一個是在錯誤的臨界值數量內通過特定測試。
  14. 如請求項13之方法,進一步包括經由該使用者介面從該使用者接受該臨界值數量。
  15. 一種測試系統,包括:受測試裝置;經由一個或多個資料探針耦接到該受測試裝置的示波器,該示波器經由該一個或多個資料探針擷取在該受測試裝置上的信號;以及裕度測試裝置,包含:被建構成連接到該受測試裝置的至少一介面,其中,當該受測試裝置為插卡且該插卡被連接到該至少一介面時,該裕度測試裝置對該插卡來說表現為主機板,或者其中,當該受測試裝置為主機板且該主機板被連接到該至少一介面時,該裕度測試裝置對該主機板來 說表現為插卡,被組態以產生資料序列的偽隨機二進制序列產生器,被組態以產生代表所產生的該資料序列的測試信號的控制器,被組態以根據一個或多個預定義信號參數限制該測試信號的操作包絡定義器,以及被建構成用於裕度測試該受測試裝置將所限制的該測試信號發送到該受測試裝置的輸出端。
  16. 如請求項15之測試系統,其中,該一個或多個預定義信號參數包含時間裕度、電壓裕度、或時間裕度和電壓裕度兩者。
  17. 如請求項15之測試系統,進一步包括到該偽隨機二進制序列產生器的任意波形產生器輸入端,以及其中,該偽隨機二進制序列產生器將該任意波形產生器輸入端上所接收的波形信號與隨機產生的二進制數組合以產生該資料序列。
  18. 如請求項15之測試系統,進一步包含該裕度測試裝置的觸發輸出端,其根據該受測試裝置的狀態產生觸發信號,以及進一步包含用以接收該觸發信號的該示波器的觸發輸入端。
  19. 如請求項15之測試系統,進一步包括使用者介面,使用者能經由該使用者介面修改藉由該操作包絡定義器所使用的該預定義信號參數來限制該測試信號。
  20. 如請求項19之測試系統,其中,該裕度測試的測試結果被顯示在該使用者介面的測試報告螢幕上,以及其中,該測試結果中的一個是在錯誤的臨界值數量內通過特定測試。
TW110143595A 2020-11-24 2021-11-23 用於高速輸入/輸出裕度測試的系統、方法和裝置 TWI809570B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063117971P 2020-11-24 2020-11-24
US63/117,971 2020-11-24

Publications (2)

Publication Number Publication Date
TW202235897A TW202235897A (zh) 2022-09-16
TWI809570B true TWI809570B (zh) 2023-07-21

Family

ID=78918529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110143595A TWI809570B (zh) 2020-11-24 2021-11-23 用於高速輸入/輸出裕度測試的系統、方法和裝置

Country Status (7)

Country Link
US (2) US11927627B2 (zh)
JP (2) JP2023550646A (zh)
KR (1) KR20230108337A (zh)
CN (2) CN116802510A (zh)
DE (2) DE112021006166T5 (zh)
TW (1) TWI809570B (zh)
WO (2) WO2022115495A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815548B2 (en) * 2020-07-20 2023-11-14 Tektronix, Inc. Test and measurement instrument accessory with reconfigurable processing component
US20220091185A1 (en) * 2020-09-21 2022-03-24 Tektronix, Inc. Margin test data tagging and predictive expected margins
KR102559387B1 (ko) * 2021-05-25 2023-07-26 에스케이하이닉스 주식회사 PCIe 인터페이스 장치 및 그 동작 방법
US11960367B2 (en) 2021-05-24 2024-04-16 SK Hynix Inc. Peripheral component interconnect express device and operating method thereof
KR102635457B1 (ko) 2021-05-24 2024-02-13 에스케이하이닉스 주식회사 PCIe 장치 및 이를 포함하는 컴퓨팅 시스템
KR20230103130A (ko) * 2021-12-31 2023-07-07 에스케이하이닉스 주식회사 메모리 컨트롤러 및 그 동작 방법
US11979263B2 (en) * 2022-03-03 2024-05-07 Samsung Electronics Co., Ltd. Method and wire-line transceiver for performing serial loop back test

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI342403B (en) * 2007-09-29 2011-05-21 Ind Tech Res Inst Jitter measuring system and method
US20130145212A1 (en) * 2008-10-10 2013-06-06 Teledyne Lecroy, Inc. Link Equalization Tester
TWI440858B (zh) * 2006-07-14 2014-06-11 Dft Microsystems Inc 測試高速重複的資料訊號之系統及使用示波器分析高速資料訊號之方法
US20140229666A1 (en) * 2013-02-08 2014-08-14 Theodore Z. Schoenborn Memory subsystem i/o performance based on in-system empirical testing
US20180285225A1 (en) * 2017-03-31 2018-10-04 Stmicroelectronics International N.V. Generic bit error rate analyzer for use with serial data links
US20200025824A1 (en) * 2018-07-19 2020-01-23 Futurewei Technologies, Inc. Receiver equalization and stressed eye testing system

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243273A (en) 1990-09-12 1993-09-07 Hewlett-Packard Company General purpose, reconfigurable system for processing serial bit streams
US6351827B1 (en) 1998-04-08 2002-02-26 Kingston Technology Co. Voltage and clock margin testing of memory-modules using an adapter board mounted to a PC motherboard
US6449742B1 (en) 1999-08-11 2002-09-10 Intel Corporation Test and characterization of source synchronous AC timing specifications by trace length modulation of accurately controlled interconnect topology of the test unit interface
US6765877B1 (en) 1999-08-30 2004-07-20 Cisco Technology, Inc. System and method for detecting unidirectional links
US7076714B2 (en) * 2000-07-31 2006-07-11 Agilent Technologies, Inc. Memory tester uses arbitrary dynamic mappings to serialize vectors into transmitted sub-vectors and de-serialize received sub-vectors into vectors
WO2003032000A1 (fr) 2001-10-05 2003-04-17 Matsushita Electric Industrial Co., Ltd. Procede et systeme de verification d'une lsi, et appareil d'essai de la lsi
US7099438B2 (en) 2002-06-14 2006-08-29 Ixia Multi-protocol, multi-interface communications device testing system
US7139949B1 (en) 2003-01-17 2006-11-21 Unisys Corporation Test apparatus to facilitate building and testing complex computer products with contract manufacturers without proprietary information
US7505862B2 (en) 2003-03-07 2009-03-17 Salmon Technologies, Llc Apparatus and method for testing electronic systems
US7398514B2 (en) 2004-09-29 2008-07-08 Microsoft Corporation Test automation stack layering
US7313496B2 (en) 2005-02-11 2007-12-25 Advantest Corporation Test apparatus and test method for testing a device under test
US7941718B2 (en) 2006-03-07 2011-05-10 Freescale Semiconductor, Inc. Electronic device testing system
EP2092358B1 (en) 2006-12-22 2010-09-01 Verigy (Singapore) Pte. Ltd. Tester, method for testing a device under test and computer program
US20080192814A1 (en) 2007-02-09 2008-08-14 Dft Microsystems, Inc. System and Method for Physical-Layer Testing of High-Speed Serial Links in their Mission Environments
US8289839B2 (en) 2007-07-05 2012-10-16 Cisco Technology, Inc. Scaling BFD sessions for neighbors using physical / sub-interface relationships
US7808252B2 (en) 2007-12-13 2010-10-05 Advantest Corporation Measurement apparatus and measurement method
JP5148690B2 (ja) 2008-04-14 2013-02-20 株式会社アドバンテスト 半導体試験装置および試験方法
US8726112B2 (en) 2008-07-18 2014-05-13 Mentor Graphics Corporation Scan test application through high-speed serial input/outputs
US8626474B2 (en) 2010-04-19 2014-01-07 Altera Corporation Simulation tool for high-speed communications links
JP2012118002A (ja) * 2010-12-03 2012-06-21 Yokogawa Electric Corp デバイステスタ
WO2012123969A2 (en) 2011-03-14 2012-09-20 Indian Institute Of Technology Bombay Methods for generating multi-level pseudo-random sequences
US9275187B2 (en) * 2011-03-21 2016-03-01 Ridgetop Group, Inc. Programmable test chip, system and method for characterization of integrated circuit fabrication processes
US20130033285A1 (en) * 2011-08-02 2013-02-07 Globalfoundries Inc. Methods for reliability testing of semiconductor devices
KR101598746B1 (ko) 2012-10-22 2016-02-29 인텔 코포레이션 고성능 상호연결 물리 계층
GB2530518A (en) 2014-09-24 2016-03-30 Ibm Method and apparatus for generating a multi-level Pseudo-Random Test
TW201809712A (zh) * 2014-10-29 2018-03-16 因諾帝歐股份有限公司 積體電路晶片測試裝置,方法及系統
KR101618822B1 (ko) * 2014-10-29 2016-05-18 (주)이노티오 스캔 테스트 시간 최소화 방법 및 그 장치
US9551746B2 (en) 2015-03-11 2017-01-24 Dell Products L.P. Backplane testing system
US9692589B2 (en) 2015-07-17 2017-06-27 Intel Corporation Redriver link testing
JP6741947B2 (ja) 2016-09-29 2020-08-19 富士通株式会社 情報処理装置、診断制御装置および通信装置
US10255151B1 (en) 2016-12-19 2019-04-09 Amazon Technologies, Inc. Security testing using a computer add-in card
US10475677B2 (en) * 2017-08-22 2019-11-12 Globalfoundries Inc. Parallel test structure
US11940483B2 (en) 2019-01-31 2024-03-26 Tektronix, Inc. Systems, methods and devices for high-speed input/output margin testing
CN113396396A (zh) * 2019-01-31 2021-09-14 特克特朗尼克公司 高速输入/输出裕度测试的系统、方法和设备
US11782809B2 (en) 2020-06-30 2023-10-10 Tektronix, Inc. Test and measurement system for analyzing devices under test
US20220091185A1 (en) 2020-09-21 2022-03-24 Tektronix, Inc. Margin test data tagging and predictive expected margins
US11774496B2 (en) 2021-03-23 2023-10-03 Indian Institute Of Technology Pseudo-random binary sequences (PRBS) generator for performing on-chip testing and a method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI440858B (zh) * 2006-07-14 2014-06-11 Dft Microsystems Inc 測試高速重複的資料訊號之系統及使用示波器分析高速資料訊號之方法
TWI342403B (en) * 2007-09-29 2011-05-21 Ind Tech Res Inst Jitter measuring system and method
US20130145212A1 (en) * 2008-10-10 2013-06-06 Teledyne Lecroy, Inc. Link Equalization Tester
US20140229666A1 (en) * 2013-02-08 2014-08-14 Theodore Z. Schoenborn Memory subsystem i/o performance based on in-system empirical testing
US20180285225A1 (en) * 2017-03-31 2018-10-04 Stmicroelectronics International N.V. Generic bit error rate analyzer for use with serial data links
US20200025824A1 (en) * 2018-07-19 2020-01-23 Futurewei Technologies, Inc. Receiver equalization and stressed eye testing system

Also Published As

Publication number Publication date
KR20230108337A (ko) 2023-07-18
DE112021006159T5 (de) 2023-10-12
DE112021006166T5 (de) 2023-09-14
CN116745630A (zh) 2023-09-12
US11927627B2 (en) 2024-03-12
JP2023550645A (ja) 2023-12-04
CN116802510A (zh) 2023-09-22
TW202235897A (zh) 2022-09-16
WO2022115495A1 (en) 2022-06-02
US20220163587A1 (en) 2022-05-26
JP2023550646A (ja) 2023-12-04
US20220163588A1 (en) 2022-05-26
WO2022115494A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US11946970B2 (en) Systems, methods and devices for high-speed input/output margin testing
TWI809570B (zh) 用於高速輸入/輸出裕度測試的系統、方法和裝置
US11940483B2 (en) Systems, methods and devices for high-speed input/output margin testing
EP1815262B1 (en) System and method for on-chip jitter injection
JP2004525546A (ja) シリアル・デバイスのループバック検査の改良
JPWO2020160477A5 (zh)
TW202225714A (zh) 用於高速輸入/輸出餘裕測試的系統、方法和裝置
TWI446162B (zh) 使用一測試儀器之方法及測試系統
Hancock et al. Jitter-Understanding It, Measuring It, Eliminating It. Part 2: Jitter Measurements
Ungar et al. Creating Reusable Manufacturing Tests for High-Speed I/O with Synthetic Instruments
Damle et al. Generic system for characterization of BER and JTOL of high speed serial links
Hosman High-speed bus debug and validation test challenges
Lee External loopback testing on high speed serial interface
Hockett PAM4, PCIE, JITTER LIMITS MOVE THE NEEDLE IN HIGH-SPEED DIGITAL.
McKeone et al. Time domain reflectometer measurements on MIPI D-PHY protocol for signal integrity analysis
Aaberge et al. Meeting the test challenges of the 1 Gbps parallel RapidIO/spl reg/interface with new automatic test equipment capabilities
Napier Validating and characterizing high speed datacom devices
Edge Infiniium 90000 Q-Series Oscilloscopes
Jain et al. Testing beyond EPA: TDF methodology solutions matrix
Sung et al. P‐39: DVI Compliance Test Using Test Point Access (TPA) Board and Equivalent Source Board (ESB)
Einy Lior Shkolnitsky