TWI807053B - 熱傳導性片 - Google Patents

熱傳導性片 Download PDF

Info

Publication number
TWI807053B
TWI807053B TW108121500A TW108121500A TWI807053B TW I807053 B TWI807053 B TW I807053B TW 108121500 A TW108121500 A TW 108121500A TW 108121500 A TW108121500 A TW 108121500A TW I807053 B TWI807053 B TW I807053B
Authority
TW
Taiwan
Prior art keywords
thermally conductive
conductive sheet
anisotropic filler
sheet according
anisotropic
Prior art date
Application number
TW108121500A
Other languages
English (en)
Other versions
TW202006027A (zh
Inventor
工藤大希
佐佐木拓
服部佳奈
矢原和幸
日下康成
Original Assignee
日商積水保力馬科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68982987&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI807053(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商積水保力馬科技股份有限公司 filed Critical 日商積水保力馬科技股份有限公司
Publication of TW202006027A publication Critical patent/TW202006027A/zh
Application granted granted Critical
Publication of TWI807053B publication Critical patent/TWI807053B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Abstract

本發明之熱傳導性片10含有高分子基質12及各向異性填充材13,各向異性填充材13配向於厚度方向。於熱傳導性片10之表面10A、10B露出各向異性填充材13,且所露出之各向異性填充材13以3.5~45%之比率配置成傾倒。

Description

熱傳導性片
本發明係關於一種熱傳導性片,例如關於一種配置於發熱體與散熱體之間使用的熱傳導性片。
於電腦、汽車零件、行動電話等電子機器中,為了使自半導體元件或機械零件等發熱體產生之熱散出,通常會使用散熱器等散熱體。為了提高對散熱體之熱的傳熱效率,已知有於發熱體與散熱體之間配置熱傳導性片。 熱傳導性片通常在配置於電子機器內部時壓縮使用,要求高柔軟性。因此,係於橡膠或凝膠等柔軟性高之高分子基質摻合具有熱傳導性之填充材而構成。又,關於熱傳導性片,眾所周知為了提高厚度方向之熱傳導性,而將碳纖維等具有各向異性之填充材配向於厚度方向(例如參照專利文獻1、2)。 先前技術文獻 專利文獻
專利文獻1:日本特開2018-056315號公報 專利文獻2:日本特開2018-014534號公報
[發明所欲解決之課題]
近年來,隨著電氣機器之高功能化,熱傳導性片亦高特性化之需求增高,期望進一步提高厚度方向之熱傳導率。然而,如專利文獻1、2中所揭示般,若僅將填充材配向於厚度方向,則熱傳導率之提高有限,期望進一步改良。 本發明係鑒於以上之問題而完成者,其課題在於提供一種可充分提高厚度方向之熱傳導性的熱傳導性片。 [解決課題之技術手段]
本發明人進行潛心研究後,結果發現藉由將露出至表面之各向異性填充材以特定之比率配置成傾倒,可解決上述課題,從而完成了本發明。本發明提供以下之[1]~[11]。 [1]一種熱傳導性片,其含有高分子基質及各向異性填充材,該各向異性填充材配向於厚度方向, 於該熱傳導性片之表面露出該各向異性填充材,且所露出之該各向異性填充材以3.5~45%之比率配置成傾倒。 [2]如該[1]所記載之熱傳導性片,其中,該各向異性填充材為纖維材料。 [3]如該[2]所記載之熱傳導性片,其中,該纖維材料為碳纖維。 [4]如該[2]或[3]所記載之熱傳導性片,其中,該纖維材料之平均纖維長度為50~500 μm。 [5]如該[1]至[4]中任一項所記載之熱傳導性片,其進而含有非各向異性填充材。 [6]如該[5]所記載之熱傳導性片,其中,該非各向異性填充材係選自由氧化鋁、鋁、氧化鋅、氮化硼及氮化鋁組成之群中的至少1種。 [7]如該[5]或[6]所記載之熱傳導性片,其中,該非各向異性填充材之體積填充率相對於該各向異性填充材之體積填充率的比為2~5。 [8]如該[1]至[7]中任一項所記載之熱傳導性片,其中,於該表面中配置成傾倒之各向異性填充材的至少一部分係配置成相對於該表面傾斜。 [9]如該[1]至[8]中任一項所記載之熱傳導性片,其中,該高分子基質為加成反應硬化型聚矽氧。 [10]如該[1]至[9]中任一項所記載之熱傳導性片,其中,熱傳導性片之厚度為0.1~5 mm。 [11]如該[1]至[10]中任一項所記載之熱傳導性片,其中,該熱傳導性片之厚度方向的熱傳導率為10 w/m・K以上。 [發明之效果]
若根據本發明,可提供一種可充分提高厚度方向之熱傳導性的熱傳導性片。
以下,對本發明之實施形態的熱傳導性片詳細地進行說明。 [第1實施形態] 圖1表示第1實施形態之熱傳導性片。於圖1中,代表性地表示各向異性填充材為纖維材料之情形之例。第1實施形態之熱傳導性片10含有高分子基質12及各向異性填充材13,各向異性填充材13配向於厚度方向。於熱傳導性片10之各表面10A、10B露出各向異性填充材13,且所露出之各向異性填充材13之一部分配置成傾倒。
於本實施形態中,藉由各向異性填充材13露出,且其一部分配置成傾倒,而與和熱傳導性片10接觸之散熱體或發熱體等接觸對象物之接觸面積變大,因此可提高兩表面10A、10B間之熱傳導率。又,配置成傾倒之各向異性填充材13於表面10A、10B附近,與配向於厚度方向之各向異性填充材13接觸而容易形成熱傳導性通道,藉此亦容易提高厚度方向之熱傳導率。
於各表面10A、10B中露出之各向異性填充材13以3.5~45%之比率配置成傾倒。若以傾倒之方式配置的比率未達3.5%,則無法充分地增大表面中之各向異性填充材13之露出面積,進而,配置成傾倒之各向異性填充材13難以與配向於厚度方向之各向異性填充材13接觸,無法充分提高厚度方向之熱傳導率。又,若超過45%,則於表面附近,配向於厚度方向之各向異性填充材之數量變少,有難以提高厚度方向的熱傳導率之虞。又,為了使大量各向異性填充材13傾倒而需要使用更粗齒之研磨紙,因此會損傷片表面,實用性上變得難以使用。 關於上述以傾倒之方式配置的比率,就提高厚度方向之熱傳導率的觀點而言,較佳為10%以上,更佳為15%以上,進而較佳為18%以上。又,就防止片表面之損傷等觀點而言,較佳為40%以下,更佳為30%以下,進而較佳為25%以下。
關於在表面配置成傾倒之各向異性填充材的比率,可藉由在利用掃描式電子顯微鏡拍攝而得之觀察圖像中,求出配置成傾倒之各向異性填充材的數量相對於露出至表面之各向異性填充材的總數之比率而算出。 此處,所謂配置成傾倒之各向異性填充材13,係各向異性填充材13之端面13A以外之部分以於觀察圖像中實質上被觀察到之程度傾倒的填充材。所謂實質上被觀察到之程度,意指關於各向異性填充材13,除端面13A以外之部分被觀察到有較端面13A為2倍以上之面積(投影面積)。因此,於各向異性填充材13為纖維材料之情形時,於觀察圖像中,將纖維材料之外周面13B成為纖維材料之端面13A之2倍以上的纖維材料作為配置成傾倒之各向異性填充材。
關於圖像之解析方法,利用目視自觀察圖像進行觀察即可。又,只要可算出以按照上述基準傾倒之方式配置之各向異性填充材的數量之比率,則解析方法並無限定,亦可使用圖像處理軟體算出。
於各表面10A、10B中,配置成傾倒之各向異性填充材13可配置成平臥在熱傳導性片之表面10A、10B各者,亦可配置成相對於表面10A、10B各者傾斜。又,配置成傾倒之各向異性填充材13較佳為相對於厚度方向之傾斜角度為45~90°左右。再者,傾斜角度於其形成角度超過90°之情形時,將其補角作為傾斜角度。
配置成平臥在熱傳導性片之表面的各向異性填充材13,實質上為沿著表面10A(或10B)配置之各向異性填充材。於圖1中,以各向異性填充材13X表示此種各向異性填充材。 又,相對於表面傾斜之各向異性填充材,係以使各向異性填充材13之一端面13A離開表面10A(或10B)之方式傾斜至嵌埋於高分子基質12中之程度的各向異性填充材。於圖1中,以各向異性填充材13Y表示此種各向異性填充材。 於各表面10A、10B中,配置成傾倒之各向異性填充材13較佳含有配置成相對於表面傾斜之各向異性填充材13Y。配置成傾斜之各向異性填充材13Y變得容易與配向於厚度方向之各向異性填充材13接觸,而容易提高厚度方向之熱傳導性。
再者,所露出之各向異性填充材13,例如亦可藉由在下述研磨步驟等中進行研磨,而對端面13A等研磨。又,於表面10A、10B中,所露出之各向異性填充材13以至少一部分自表面10A、10B突出之方式配置即可。
於本實施形態中,熱傳導性片10進而含有非各向異性填充材14。熱傳導性片10藉由含有非各向異性填充材14,熱傳導性變得更佳。
<高分子基質> 熱傳導性片10中所使用之高分子基質12為彈性體或橡膠等高分子化合物,較佳使用使由主劑及硬化劑之類的混合系構成之液狀高分子組成物(硬化性高分子組成物)硬化而形成者即可。硬化性高分子組成物例如可為由未交聯橡膠及交聯劑構成者,亦可為含有單體、預聚物等及硬化劑等者。又,上述硬化反應可為常溫硬化,亦可為熱硬化。
由硬化性高分子組成物形成之高分子基質可例示聚矽氧橡膠。於聚矽氧橡膠之情形時,作為高分子基質(硬化性高分子組成物),較佳使用加成反應硬化型聚矽氧。又,更具體而言,作為硬化性高分子組成物,使用含有含烯基有機聚矽氧烷及氫化有機聚矽氧烷者即可。
作為橡膠,除上述以外亦可使用各種合成橡膠,作為具體例,例如可列舉:丙烯酸橡膠、腈橡膠、異戊二烯橡膠、胺酯橡膠、乙烯丙烯橡膠、苯乙烯-丁二烯橡膠、丁二烯橡膠、氟橡膠、丁基橡膠等。於使用該等橡膠之情形時,合成橡膠於熱傳導性片中,可交聯,亦可保持未交聯(即未硬化)之狀態。未交聯之橡膠主要於流動配向使用。 又,於交聯(即硬化)之情形時,如上述所說明,將高分子基質設為使硬化性高分子組成物硬化而得者即可,該硬化性高分子組成物係由以該等合成橡膠構成之未交聯橡膠及交聯劑構成。 又,作為彈性體,亦可使用聚酯系熱塑性彈性體、聚胺酯系熱塑性彈性體等熱塑性彈性體,或者由主劑及硬化劑構成之混合系的液狀高分子組成物硬化而形成之熱硬化型彈性體。例如,可例示使含有具有羥基之高分子及異氰酸酯的高分子組成物硬化而形成之聚胺酯系彈性體。 上述之中,例如就硬化後之高分子基質尤其柔軟,熱傳導性填充材之填充性良好之方面而言,較佳使用聚矽氧橡膠,尤其是加成反應硬化型聚矽氧。
又,用於形成高分子基質之高分子組成物,可為由高分子化合物單體構成者,亦可為由高分子化合物及塑化劑構成者。塑化劑適宜用於使用合成橡膠之情形,藉由含有塑化劑,可提高未交聯時之高分子基質之柔軟性。 塑化劑使用與高分子化合物具有相容性者,具體而言,較佳為酯系塑化劑或聚矽氧油。作為酯系塑化劑之具體例,例如可列舉:鄰苯二甲酸酯、己二酸酯、偏苯三甲酸酯、磷酸酯、癸二酸酯、壬二酸酯、順丁烯二酸酯、苯甲酸酯等。作為聚矽氧油,可列舉聚二甲基矽氧烷。
關於塑化劑相對於高分子化合物之含量,較佳為以質量比計,塑化劑/高分子化合物為20/80~60/40,更佳為30/70~55/45。藉由將塑化劑/高分子化合物之質量比設為60/40以下,利用高分子化合物而容易保持填充材。又,藉由設為20/80以上,高分子基質之柔軟性變得充分。塑化劑適宜用於利用下述流動配向而使各向異性填充材配向之情形。 高分子基質之含量若以體積基準之填充率(體積填充率)表示,則相對於熱傳導性片總量,較佳為20~50體積%,更佳為25~45體積%。
(添加劑) 於熱傳導性片10中,高分子基質12中進而亦可於不損害作為熱傳導性片10之功能的範圍內摻合各種添加劑。作為添加劑,例如可列舉選自分散劑、偶合劑、黏著劑、難燃劑、抗氧化劑、著色劑、沉澱防止劑等中之至少1種以上。又,於如上述般使硬化性高分子組成物交聯、硬化等之情形時,亦可摻合促進交聯、硬化之交聯促進劑、硬化促進劑等作為添加劑。
<各向異性填充材> 摻合於高分子基質12之各向異性填充材13為於形狀具有各向異性之填充材,為可配向之填充材。各向異性填充材13為熱傳導填充材。作為各向異性填充材13,可列舉纖維材料、鱗片狀材料等。各向異性填充材13為縱橫比高者,具體而言為縱橫比超過2者,較佳為縱橫比為5以上。藉由使縱橫比大於2,而容易使各向異性填充材13配向於厚度方向,易提高熱傳導性片10之熱傳導性。 又,縱橫比之上限並無特別限定,但實用上為100。 再者,所謂縱橫比,為各向異性填充材13之長軸方向的長度相對於短軸方向的長度之比,於纖維材料中,意指纖維長度/纖維之直徑,於鱗片狀材料中,意指鱗片狀材料之長軸方向的長度/厚度。 關於各向異性填充材13,就提高熱傳導性之觀點,及於表面10A、10B中容易以傾倒之方式配置各向異性填充材13之觀點而言,較佳為纖維材料。
關於熱傳導性片中之各向異性填充材13之含量,相對於高分子基質100質量份,較佳為30~300質量份,更佳為50~270質量份。又,各向異性填充材13之含量若以體積基準之填充率(體積填充率)表示,則相對於熱傳導性片總量,較佳為5~35體積%,更佳為8~30體積%。 藉由將各向異性填充材13之含量設為30質量份以上,而容易提高熱傳導性,藉由設為300質量份以下,下述混合組成物之黏度容易變得適當,各向異性填充材13之配向性變得良好。
於各向異性填充材13為纖維材料之情形時,其平均纖維長度較佳為50~500 μm,更佳為70~350 μm。若將平均纖維長度設為50 μm以上,則於熱傳導性片10內部,各向異性填充材彼此適當地接觸,確保熱之傳遞路徑。又,各向異性填充材13容易於熱傳導性片10之表面配置成傾倒,熱傳導性片10之熱傳導性變得良好。 另一方面,若將平均纖維長度設為500 μm以下,則各向異性填充材之體積降低,而可高填充於高分子基質中。 再者,上述平均纖維長度可利用顯微鏡對各向異性填充材進行觀察而算出。更具體而言,例如可使用電子顯微鏡或光學顯微鏡,測定任意50個各向異性填充材之纖維長度,將其平均值(算術平均值)作為平均纖維長度。
又,纖維材料之平均纖維長度較佳為短於熱傳導性片10之厚度。藉由短於厚度,而防止纖維材料自熱傳導性片10之表面10A、10B過度地突出等。 又,於各向異性填充材13為鱗片狀材料之情形時,其平均粒徑較佳為10~400 μm,更佳為15~200 μm。又,尤佳為15~130 μm。藉由將平均粒徑設為10 μm以上,熱傳導性片10中各向異性填充材13彼此容易接觸,確保熱之傳遞路徑。又,各向異性填充材13容易於熱傳導性片10之表面配置成傾倒,熱傳導性片10之熱傳導性變得良好。另一方面,若將平均粒徑設為400 μm以下,則熱傳導性片10之體積降低,可於高分子基質12中高填充各向異性填充材13。 再者,鱗片狀材料之平均粒徑可利用顯微鏡對各向異性填充材進行觀察並將長徑作為直徑而算出。更具體而言,例如可使用電子顯微鏡或光學顯微鏡,測定任意50個各向異性填充材之長徑,將其平均值(算術平均值)作為平均粒徑。
各向異性填充材13只要使用具有熱傳導性之公知材料即可,但為了可如下述般進行磁場配向,較佳為具備反磁性。 作為各向異性填充材13之具體例,可列舉:碳纖維或鱗片狀碳粉末所代表之碳系材料、金屬纖維所代表之金屬材料或金屬氧化物、氮化硼或金屬氮化物、金屬碳化物、金屬氫氧化物等。該等之中,碳系材料由於比重小,於高分子基質12中之分散性良好,故而較佳,其中更佳為熱傳導率高之石墨化碳材料。石墨化碳材料藉由使石墨面於特定方向上一致而具備反磁性。又,氮化硼等亦藉由使結晶面於特定方向上一致而具備反磁性。又,各向異性填充材13尤佳為碳纖維。
又,各向異性填充材13並無特別限定,但沿著具有各向異性之方向(即長軸方向)的熱傳導率通常為60 W/m・K以上,較佳為400 W/m・K以上。關於各向異性填充材13之熱傳導率,其上限並無特別限定,例如為2000 W/m・K以下。熱傳導率之測定方法為雷射閃光法。
各向異性填充材13可單獨使用1種,亦可併用2種以上。例如,作為各向異性填充材13,可使用至少2個具有互不相同之平均粒徑或平均纖維長度之各向異性填充材13。若使用大小不同之各向異性填充材,則認為藉由在相對較大之各向異性填充材之間混入較小之各向異性填充材,可將各向異性填充材高密度地填充於高分子基質中,並且可提高熱之傳導效率。
用作各向異性填充材13之碳纖維較佳為石墨化碳纖維。又,作為鱗片狀碳粉末,較佳為鱗片狀石墨粉末。該等之中,各向異性填充材13更佳為石墨化碳纖維。 石墨化碳纖維之石墨結晶面於纖維軸方向相連,於其纖維軸方向具備高熱傳導率。因此,藉由使其纖維軸方向於特定之方向上一致,可提高特定方向之熱傳導率。又,鱗片狀石墨粉末之石墨結晶面於鱗片面之面內方向相連,於其面內方向具備高熱傳導率。因此,藉由使其鱗片面於特定之方向上一致,可提高特定方向之熱傳導率。石墨化碳纖維及鱗片石墨粉末較佳為具有高石墨化度者。
作為上述石墨化碳纖維、鱗片狀石墨粉末等石墨化碳材料,可使用將以下之原料進行石墨化而得者。例如可列舉:萘等縮合多環烴化合物、PAN(聚丙烯腈)、瀝青等縮合雜環化合物等,尤佳使用石墨化度高之石墨化中間相瀝青或聚醯亞胺、聚苯并唑。例如藉由使用中間相瀝青,於下述紡絲步驟中,瀝青藉由其各向異性而配向於纖維軸方向,可獲得於其纖維軸方向具有優異之熱傳導性的石墨化碳纖維。 石墨化碳纖維中之中間相瀝青的使用態樣只要可紡絲,則並無特別限定,可單獨使用中間相瀝青,亦可與其他原料組合使用。其中,就高熱傳導化、紡絲性及品質穩定性之方面而言,最佳為單獨使用中間相瀝青,即中間相瀝青含量100%之石墨化碳纖維。
石墨化碳纖維可使用如下者:依次進行紡絲、不熔化及碳化之各處理,粉碎或切割為特定之粒徑後進行石墨化而得者;或於碳化後進行粉碎或切割後進行石墨化而得者。於石墨化前進行粉碎或切割之情形時,由於在因粉碎而新露出至表面之表面上,進行石墨化處理時變得容易進行縮聚反應、環化反應,故而可獲得提高石墨化度、進一步提高熱傳導性之石墨化碳纖維。另一方面,於將經紡絲之碳纖維進行石墨化後加以粉碎之情形時,由於石墨化後之碳纖維較硬,因此容易粉碎,以短時間之粉碎便可獲得纖維長度分佈相對較小之碳纖維粉末。
如上所述,石墨化碳纖維之平均纖維長度較佳為50~500 μm,更佳為70~350 μm。又,如上所述,石墨化碳纖維之縱橫比超過2,較佳為5以上。石墨化碳纖維之熱傳導率並無特別限定,纖維軸方向上之熱傳導率較佳為400 W/m・K以上,更佳為800 W/m・K以上。
各向異性填充材13為如上述般配向於厚度方向者,但長軸方向無需嚴格地與厚度方向平行,即便長軸方向相對於厚度方向略有傾斜,亦算是配向於厚度方向者。具體而言,亦將長軸方向傾斜未達20°左右者算是配向於厚度方向之各向異性填充材13,若此種各向異性填充材13於熱傳導性片10中占大部分(例如,相對於總各向異性填充材之數量超過60%,較佳為超過80%),則算是配向於厚度方向者。
<非各向異性填充材> 非各向異性填充材14為有別於各向異性填充材13而含有於熱傳導性片10中之熱傳導性填充材,為與各向異性填充材13一併對熱傳導性片10賦予熱傳導性之材料。於本實施形態中,藉由填充非各向異性填充材14,於硬化成片之初期,可抑制黏度上升,分散性變得良好。又,各向異性填充材13彼此間,例如若纖維長度變大,則難以提高填充材彼此之接觸面積,但藉由以非各向異性填充材14嵌埋其間,可形成傳熱通道,可獲得熱傳導率高之熱傳導性片10。 非各向異性填充材14係於形狀實質上不具有各向異性之填充材,且係即便於下述磁力線產生下或剪力作用下等各向異性填充材13配向於特定方向之環境下,亦不會配向於特定方向之填充材。
關於非各向異性填充材14,其縱橫比為2以下,較佳為1.5以下。於本實施形態中,藉由以此方式含有縱橫比低之非各向異性填充材14,而可使具有熱傳導性之填充材適當地介於各向異性填充材13之間隙,可獲得熱傳導率高之熱傳導性片10。又,藉由將縱橫比設為2以下,可防止下述混合組成物之黏度上升,使其高度填充。
關於非各向異性填充材14之具體例,例如可列舉:金屬、金屬氧化物、金屬氮化物、金屬氫氧化物、碳材料、金屬以外之氧化物、氮化物、碳化物等。又,關於非各向異性填充材14之形狀,可列舉:球狀、無定形之粉末等。 於非各向異性填充材14中,作為金屬,可例示鋁、銅、鎳等,作為金屬氧化物,可例示氧化鋁(alumina)所代表之氧化鋁(Aluminium oxide)、氧化鎂、氧化鋅等,作為金屬氮化物,可例示氮化鋁等。作為金屬氫氧化物,可列舉氫氧化鋁。進而,作為碳材料,可列舉球狀石墨等。作為金屬以外之氧化物、氮化物、碳化物,可列舉石英、氮化硼、碳化矽等。 上述之中,非各向異性填充材14較佳選自氧化鋁、鋁、氧化鋅、氮化硼及氮化鋁,尤其就填充性或熱傳導率之觀點而言,較佳為氧化鋁。 非各向異性填充材14可單獨使用1種上述者,亦可併用2種以上。
非各向異性填充材14之平均粒徑較佳為0.1~50 μm,更佳為0.5~35 μm。又,尤佳為1~15 μm。藉由將平均粒徑設為50 μm以下,而難以發生擾亂各向異性填充材13之配向等異常情況,。又,藉由將平均粒徑設為0.1 μm以上,非各向異性填充材14之比表面積不會過度地變大,即便大量摻合,混合組成物之黏度亦難以上升,而容易使非各向異性填充材14高填充。 關於非各向異性填充材14,例如作為非各向異性填充材14,可使用至少2個具有互不相同之平均粒徑的非各向異性填充材14。 再者,非各向異性填充材14之平均粒徑可利用電子顯微鏡等進行觀察並測定。更具體而言,例如可使用電子顯微鏡或光學顯微鏡,測定任意50個非各向異性填充材之粒徑,將其平均值(算術平均值)作為平均粒徑。
非各向異性填充材14之含量相對於高分子基質100質量份,較佳為200~800質量份之範圍,更佳為300~700質量份之範圍。 非各向異性填充材14之含量若以體積基準之填充率(體積填充率)表示,則相對於熱傳導性片總量,較佳為30~60體積%,更佳為40~55體積%。 非各向異性填充材14藉由設為200質量份以上,介於各向異性填充材13彼此之間隙的非各向異性填充材14之量變得充分,熱傳導性變良好。另一方面,藉由設為800質量份以下,可獲得依據含量相應地提高熱傳導性之效果,又,亦不存在非各向異性填充材14妨礙各向異性填充材13之熱傳導。進而,藉由設為300~700質量份之範圍內,熱傳導性片10之熱傳導性優異,混合組成物之黏度亦變得適宜。
非各向異性填充材14之體積填充率相對於各向異性填充材13之體積填充率的比較佳為2~5,更佳為2~3。由於藉由將體積填充率之比率的範圍設為上述範圍內,非各向異性填充材14可適度填充於各向異性填充材13之間,形成高效率之傳熱通道,故而可提高熱傳導性片10之熱傳導性。
<熱傳導性片> 熱傳導性片10之厚度方向的熱傳導率例如為5 W/m・K以上,較佳設為10 W/m・K以上,更佳為15 W/m・K以上,進而較佳為18 W/m・K以上。藉由設為該等下限值以上,可使熱傳導性片10之厚度方向的熱傳導性優異。上限並無特別限定,熱傳導性片10之厚度方向的熱傳導率例如為50 W/m・K以下。再者,熱傳導率係利用依據ASTM D5470-06之方法進行測定。
熱傳導性片10藉由如上述般於表面10A、10B中使各向異性填充材13露出,而使表面10A、10B成為非黏著面。又,藉由各向異性填充材13如上述般於表面10A、10B配置成傾倒,各向異性填充材13之露出面積變多,非黏著性提高。 關於為非黏著面之表面10A、10B,即便觸碰到作業人員之手而亦不易黏著,又,即便因加壓而附著於下述發熱體或散熱體等接觸對象物等,亦容易剝下。又,熱傳導性片10藉由表面10A、10B為非黏著面,而可於組裝於電子機器等時進行滑動等。
熱傳導性片10之兩表面10A、10B中之至少一者的表面粗糙度Ra例如為23 μm以下,較佳為20 μm以下,更佳為10 μm以下。藉由將表面粗糙度Ra設為20 μm以下,與下述發熱體或散熱體等接觸對象物之接觸效率變得良好,而容易提高片之熱傳導性。又,熱傳導性片10進而較佳為其表面10A、10B兩者之表面粗糙度Ra為上述範圍內。 再者,表面粗糙度Ra係表示JIS B0601所規定之算術平均高度Ra者。
認為熱傳導性片之厚度於0.1~5 mm之範圍內使用,但無需限定於該厚度範圍。根據搭載熱傳導性片之電子機器之形狀或用途,可適當變更熱傳導性片之厚度。
熱傳導性片10可於電子機器內部等中使用。具體而言,熱傳導性片10介於發熱體與散熱體之間,將自發熱體產生之熱進行熱傳導而移動至散熱體,並自散熱體散出。此處,作為發熱體,可列舉電子機器內部所使用之CPU、功率放大器、電源等各種電子零件。又,散熱體可列舉散熱器、熱泵、電子機器之金屬殼體等。熱傳導性片10之兩表面10A、10B之各者分別與發熱體及散熱體密接,且壓縮使用。
<熱傳導性片之製造方法> 本實施形態之熱傳導性片並無特別限定,例如可藉由具備以下之步驟(A)、(B)及(C)之方法進行製造。 步驟(A):獲得於熱傳導性片中使各向異性填充材沿著成為厚度方向之一方向配向之配向成形體之步驟 步驟(B):切割配向成形體製成片狀,獲得片狀成形體之步驟 步驟(C):對片狀成形體之表面進行研磨之步驟 以下,對各步驟進一步詳細地進行說明。
[步驟(A)] 於步驟(A)中,由含有各向異性填充材、非各向異性填充材及成為高分子基質之原料之高分子組成物的混合組成物成形配向成形體。混合組成物較佳為硬化而製成配向成形體。更具體而言,配向成形體可藉由磁場配向製法、流動配向製法獲得,該等之中,較佳為磁場配向製法。
(磁場配向製法) 於磁場配向製法中,硬化後將含有成為高分子基質之液狀高分子組成物、各向異性填充材及非各向異性填充材之混合組成物注入至模具等之內部後放置於磁場,使各向異性填充材沿著磁場配向後,使高分子組成物硬化,藉此獲得配向成形體。作為配向成形體,較佳為塊體狀。 又,於模具內部,亦可於與混合組成物接觸之部分配置剝離膜。剝離膜例如使用剝離性良好之樹脂膜,或單面由剝離劑等剝離處理過之樹脂膜。藉由使用剝離膜,配向成形體變得容易自模具脫模。
為了進行磁場配向,磁場配向製法中使用之混合組成物之黏度較佳為10~300 Pa・s。藉由設為10 Pa・s以上,各向異性填充材或非各向異性填充材變得難以沉澱。又,藉由設為300 Pa・s以下,流動性變得良好,各向異性填充材藉由磁場而適當地配向,亦不會發生配向過於耗費時間等不良情況。再者,所謂黏度,係使用旋轉黏度計(布氏黏度計DV-E,Spindle SC4-14)於25℃以旋轉速度10 rpm測得之黏度。 其中,於使用難以沉澱之各向異性填充材或非各向異性填充材,或組合沉澱防止劑等添加劑之情形時,混合組成物之黏度可設為未達10 Pa・s。
於磁場配向製法中,作為用於施加磁力線之磁力線產生源,可列舉超導磁鐵、永久磁鐵、電磁鐵等,但就可產生高磁通密度之磁場的方面而言,較佳為超導磁鐵。自該等磁力線產生源產生之磁場之磁通密度較佳為1~30特士拉。若將磁通密度設為1特士拉以上,則可容易地配向由碳材料等構成之上述各向異性填充材。又,藉由設為30特士拉以下,可實用性地製造。 高分子組成物之硬化藉由加熱進行即可,例如於50~150℃左右之溫度下進行即可。又,加熱時間例如為10分鐘~3小時左右。
(流動配向製法) 於流動配向製法中,對混合組成物施加剪力,製造各向異性填充材配向於面方向之預片,將多片之該預片加以積層而製造積層塊體,將該積層塊體作為配向成形體即可。 更具體而言,於流動配向製法中,首先,於高分子組成物中混入各向異性填充材及非各向異性填充材、視需要之各種添加劑並攪拌,製備混入之固形物均質分散而成之混合組成物。此處,使用於高分子組成物中之高分子化合物可為含有常溫(23℃)下為液狀之高分子化合物者,亦可為含有常溫下為固體狀之高分子化合物者。又,高分子組成物亦可含有塑化劑。 混合組成物為了於延伸為片狀時施加剪力而黏度相對較高,混合組成物之黏度具體而言較佳為3~50 Pa・s。混合組成物為了獲得上述黏度,較佳為摻合溶劑。
其次,一面對混合組成物賦予剪力一面平坦地延伸而成形為片狀(預片)。藉由施加剪力,可使各向異性填充材配向於剪切方向。作為片之成形手段,例如藉由棒式塗佈機或刮刀等塗佈用敷料器,或者自擠出成形或噴嘴之噴出等,於基材膜上塗佈混合組成物,其後視需要進行乾燥,或使混合組成物半硬化即可。預片之厚度較佳為設為50~250 μm左右。於預片中,各向異性填充材配向於沿著片之面方向的一方向。 繼而,於將多片預片以配向方向相同之方式重疊積層之後,視需要利用加熱、紫外線照射等將混合組成物進行硬化,並且利用熱壓等使預片相互接著,藉此形成積層塊體,將該積層塊體作為配向成形體即可。
[步驟(B)] 於步驟(B)中,於垂直於各向異性填充材配向之方向,藉由切片等切割步驟(A)中獲得之配向成形體,獲得片狀成形體。切片例如藉由剪切刀等進行即可。片狀成形體藉由切片等之切割,而於作為切割面之各表面,各向異性填充材之前端自高分子基質露出。又,露出之各向異性填充材的至少一部分自各表面突出。露出之各向異性填充材幾乎未傾倒而配向於厚度方向。
[步驟(C)] 於步驟(C)中,對露出片狀成形體之各向異性填充材之表面進行研磨。表面之研磨例如使用研磨紙進行即可。於本製造方法中,藉由對片狀成形體之表面進行研磨,使露出之各向異性填充材之一部分傾倒。其原理雖未明確,但推定如下:因各向異性填充材與高分子基質之彈性模數之差異,研磨時高分子基質沉降,而另一方面,各向異性填充材浮起,且浮起之各向異性填充材以壓抵於表面之方式傾倒。於本製造方法中,為了使更多各向異性填充材傾倒,需要於研磨時將強勁之力量作用於各向異性填充材,且增加研磨次數。 因此,作為研磨紙,需要使用粗齒之研磨紙。作為粗齒之研磨紙,可列舉研磨粒之平均粒徑(D50)為3~60 μm者。藉由使用3 μm以上之研磨紙,且增加研磨次數,可使充足量之各向異性填充材傾倒。又,藉由使用60 μm以下之研磨紙,防止熱傳導性片之表面受到會成為實用上問題之損傷。又,研磨紙較佳為研磨粒之平均粒徑(D50)為9~45 μm。 又,關於研磨次數,例如一面觀察表面狀態,確認各向異性填充材13之傾倒量一面進行即可,但較佳為增加相對次數,具體而言,較佳為以熱傳導性片表面之表面粗糙度Ra成為20 μm以下之方式進行研磨,更佳為進而以表面粗糙度成為10 μm以下之方式進行研磨。
再者,於以上之說明中示出如下態樣:於熱傳導性片10之兩表面10A、10B露出各向異性填充材13,於兩表面10A、10B中,露出之各向異性填充材13如上述般以特定之比率配置成傾倒。其中,於本發明中,亦可僅於兩表面10A、10B中之一者,露出各向異性填充材13,露出之各向異性填充材13以上述特定之比率配置成傾倒。 因此,於兩表面10A、10B中之另一者,露出之各向異性填充材13亦可不傾倒,又,即便傾倒,亦可以不成為上述特定比率之方式傾倒。於此情形時,僅於兩表面中之一者進行步驟(C)之研磨,並且於另一表面不進行研磨,又,即便進行研磨亦以上述步驟(C)所示之條件以外之條件進行研磨即可。
又,可使兩表面10A、10B中之另一者為各向異性填充材13嵌埋於高分子基質12內部之表面。關於藉由上述磁場配向製法製造之配向成形體,其最外面成為各向異性填充材之填充比率低於其他部分之表層,典型為不含有各向異性填充材之表層。因此,例如藉由使配向成形體之最外面成為熱傳導性片10之兩表面10A、10B中之另一者,可使兩表面10A、10B中之另一者成為各向異性填充材13嵌埋於高分子基質12內部之表面。各向異性填充材13嵌埋於高分子基質12內部之表面成為黏著面。黏著面藉由附著於散熱體或發熱體等接觸對象物,而可固定接觸對象物。
[第2實施形態] 其次,使用圖2對本發明之第2實施形態之熱傳導性片進行說明。 於第1實施形態中,熱傳導性片10中,除各向異性填充材13以外,亦含有非各向異性填充材14作為填充材,但如圖2所示,本實施形態之熱傳導性片20不含有非各向異性填充材。即,於第2實施形態之熱傳導性片中,例如可僅使用碳纖維作為填充材。 由於第2實施形態之熱傳導性片20之其他構成除不含有非各向異性填充材之方面以外,其餘皆與上述第1實施形態之熱傳導性片10相同,因此省略其說明。
於本實施形態中,亦與第1實施形態同樣地,藉由在熱傳導性片20之表面20A、20B中之至少一者中,露出各向異性填充材13,且露出之各向異性填充材13以特定之比率配置成傾倒,從而可提高厚度方向之熱傳導性。 實施例
以下,利用實施例對本發明進一步詳細地進行說明,但本發明不受該等之例的任何限定。
於本實施例中,藉由以下方法對熱傳導性片之物性進行評價。 [熱傳導率] 熱傳導性片之厚度方向之熱傳導率係藉由依據ASTM D5470-06之方法進行測定。
[配置成傾倒之各向異性填充材的比率] 使用掃描式電子顯微鏡(商品名「SU3500」,日立全球先端科技股份有限公司製造),將熱傳導性片之一表面於倍率100倍之條件下進行觀察,獲得觀察圖像。於觀察圖像中,在相當於熱傳導性片之0.8 mm×1.2 mm之測定區域中,藉由說明書所記載之方法,利用目視對露出之各向異性填充材之總數(A),及露出且於表面配置成傾倒之各向異性填充材之數量(B)進行計數,算出B/A×100。該操作於熱傳導性片之一表面中,以分別成為其他測定區域之方式重複進行100次,求出其平均值,作為配置成傾倒之各向異性填充材之比率。
[熱阻值] 熱阻值使用如圖3所示之熱阻測定機,藉由以下所示之方法進行測定。具體而言,關於各試樣,製作大小為30 mm×30 mm之試片S用於本試驗。然後,將各試片S貼附於測定面為25.4 mm×25.4 mm且側面由隔熱材21覆蓋之銅製塊體22上,由上方之銅製塊體23夾住,藉由負載單元26施加負載,以厚度成為原本厚度之90%之方式進行設定。此處,下方之銅製塊體22與加熱器24相接。又,上方之銅製塊體23由隔熱材21覆蓋,且與附帶風扇之散熱器25連接。繼而,使加熱器24以發熱量25 W進行發熱,於溫度成為大致穩定狀態之10分鐘後,測定上方之銅製塊體23之溫度(θj0 )、下方之銅製塊體22之溫度(θj1 )及加熱器之發熱量(Q),根據以下之式(1)求出各試樣之熱阻值。 熱阻=(θj1 -θj0 )/Q …式(1) 式(1)中,θj1 為下方之銅製塊體22之溫度,θj0 為上方之銅製塊體23之溫度,Q為發熱量。
[表面粗糙度Ra] 對於熱傳導性片之兩面,求出JIS B0601所規定之算術平均高度Ra。
[實施例1] 將作為高分子基質(高分子組成物)之含烯基有機聚矽氧烷及氫化有機聚矽氧烷(合計100質量份,體積填充率30體積%)、作為各向異性填充材之石墨化碳纖維(平均纖維長度100 μm,縱橫比10,熱傳導率500 W/m・K)130質量份(體積填充率18體積%)、作為非各向異性填充材之氧化鋁粉末(球狀,平均粒徑10 μm,縱橫比1.0)250質量份(體積填充率20體積%)及氫氧化鋁粉末(無定形,平均粒徑8 μm)250質量份(體積填充率32體積%)進行混合,獲得混合組成物。 繼而,將上述混合組成物注入至設定為厚度充分大於熱傳導性片之模具中,於厚度方向上施加8 T磁場而使石墨化碳纖維配向於厚度方向後,於80℃加熱60分鐘,藉此使基質硬化,獲得塊體狀之配向成形體。 其次,使用剪切刀,將塊體狀之配向成形體切片為厚度2 mm之片狀,藉此獲得露出碳纖維之片狀成形體。
繼而,利用研磨粒之平均粒徑(D50)9 μm之粗齒研磨紙,對片狀成形體之兩表面進行研磨直至自表面露出之碳纖維傾倒一定量,獲得熱傳導性片。熱傳導性片之兩表面皆為非黏著面。 將利用掃描式電子顯微鏡觀察實施例1中獲得之熱傳導性片表面而得之圖像示於圖4。如圖4所示,露出至熱傳導性片表面之碳纖維大多為配向於厚度方向且實質上僅可看到纖維端面之碳纖維33A,但碳纖維之一部分為以沿著表面平臥之方式配置的碳纖維33X,又,或者為相對於表面傾斜的碳纖維33Y,且配置成傾倒。
[實施例2~5] 實施例2~5除將片狀成形體之研磨中所使用之研磨紙、研磨粒之平均粒徑(D50)變更為表1中所記載者,研磨至碳纖維傾倒一定量之方面以外,其餘皆以與實施例1相同之方式實施。熱傳導性片之兩表面皆為非黏著面。 若利用掃描式電子顯微鏡觀察實施例2~5中分別獲得之熱傳導性片之表面,則與實施例1同樣地,露出至熱傳導性片表面之碳纖維大多為配向於厚度方向且實質上僅可看到纖維端面之碳纖維,但碳纖維之一部分為以沿著表面平臥之方式配置的碳纖維,又,或者為相對於表面傾斜之碳纖維,且配置成傾倒。
[比較例1] 除未研磨片狀成形體之方面以外,其餘皆以與實施例1相同之方式實施。 若利用掃描式電子顯微鏡觀察比較例1中獲得之熱傳導性片之表面,則露出至熱傳導性片表面之碳纖維幾乎為配向於厚度方向且實質上僅可看到纖維端面者,配置成傾倒之碳纖維與上述各實施例相比較少。
[比較例2] 將研磨片狀成形體時之研磨紙變更為研磨粒之平均粒徑(D50)1 μm之研磨紙,以與實施例1相同之研磨次數進行研磨,除該方面以外,以與實施例1相同之方式實施。 利用掃描式電子顯微鏡觀察比較例2中獲得之熱傳導性片表面,露出至熱傳導性片表面之碳纖維幾乎為配向於厚度方向且實質上僅可看到纖維端面者,配置成傾倒之碳纖維與上述各實施例相比較少。
[表1] ※關於表面粗糙度Ra,兩表面皆為同一值。
自以上實施例之結果清楚可知,於熱傳導性片中,藉由露出至表面之各向異性填充材以特定之比率配置成傾倒,可獲得期望之熱阻值及熱傳導率,可提高厚度方向之熱傳導性。另一方面,如比較例所示,若露出至表面之各向異性填充材未以特定之比率傾倒,則無法獲得期望之熱阻值及熱傳導率,無法充分提高厚度方向之熱傳導性。
10、20‧‧‧熱傳導性片 10A、10B、20A、20B‧‧‧表面 12‧‧‧高分子基質 13A‧‧‧端面 13B‧‧‧外周面 13、13X、13Y‧‧‧各向異性填充材 14‧‧‧非各向異性填充材 21‧‧‧隔熱材 22‧‧‧下方之銅製塊體 23‧‧‧上方之銅製塊體 24‧‧‧加熱器 25‧‧‧散熱器 26‧‧‧負載單元 S‧‧‧試片 θj0‧‧‧上方之銅製塊體之溫度 θj1‧‧‧下方之銅製塊體之溫度
圖1係表示第1實施形態之熱傳導性片的示意性剖視圖。 圖2係表示第2實施形態之熱傳導性片的示意性剖視圖。 圖3係熱阻測定機之概略圖。 圖4係示意性地表示利用掃描式電子顯微鏡對實施例1之熱傳導性片的表面進行觀察而得之觀察圖像之圖。
10‧‧‧熱傳導性片
10A、10B‧‧‧表面
12‧‧‧高分子基質
13A‧‧‧端面
13B‧‧‧外周面
13、13X、13Y‧‧‧各向異性填充材
14‧‧‧非各向異性填充材

Claims (21)

  1. 一種熱傳導性片,其含有高分子基質及各向異性填充材,該各向異性填充材配向於厚度方向,於該熱傳導性片之表面露出該各向異性填充材,且所露出之該各向異性填充材以3.5~45%之數量之比率配置成傾倒。
  2. 如請求項1所述之熱傳導性片,其中,該各向異性填充材為纖維材料。
  3. 如請求項2所述之熱傳導性片,其中,該纖維材料為碳纖維。
  4. 如請求項2或3所述之熱傳導性片,其中,該纖維材料之平均纖維長度為50~500μm。
  5. 如請求項1所述之熱傳導性片,其中,該各向異性填充材為選自纖維材料及鱗片狀材料之至少1種。
  6. 如請求項1至3中任一項所述之熱傳導性片,其中,該各向異性填充材之含量,相對於該熱傳導性片總量,為5~35體積%。
  7. 如請求項1所述之熱傳導性片,其中,該各向異性填充材係選自由碳系材料、金屬材料、金屬氧化物、氮化硼、金屬氮化物、金屬碳化物及金屬氫氧化物組成之群中的至少1種。
  8. 如請求項1所述之熱傳導性片,其中,該各向異性填充材僅為碳纖維。
  9. 如請求項1至3中任一項所述之熱傳導性片,其進而含有非各向異性填充材。
  10. 如請求項9所述之熱傳導性片,其中,該非各向異性填充材係選自由氧化鋁、鋁、氧化鋅、氮化硼及氮化鋁組成之群中的至少1種。
  11. 如請求項9所述之熱傳導性片,其中,該非各向異性填充材之 體積填充率相對於該各向異性填充材之體積填充率的比為2~5。
  12. 如請求項9所述之熱傳導性片,其中,該非各向異性填充材之平均粒徑為0.1~50μm。
  13. 如請求項9所述之熱傳導性片,其中,該非各向異性填充材之含量,相對於該熱傳導性片總量,為30~60體積%。
  14. 如請求項1至3中任一項所述之熱傳導性片,其中,於該表面中配置成傾倒之各向異性填充材的至少一部分係配置成相對於該表面傾斜。
  15. 如請求項1至3中任一項所述之熱傳導性片,其中,該高分子基質為彈性體或橡膠。
  16. 如請求項15所述之熱傳導性片,其中,該橡膠為聚矽氧橡膠。
  17. 如請求項1至3中任一項所述之熱傳導性片,其中,熱傳導性片之厚度為0.1~5mm。
  18. 如請求項1至3中任一項所述之熱傳導性片,其中,該熱傳導性片之厚度方向的熱傳導率為10w/m‧K以上。
  19. 如請求項1至3中任一項所述之熱傳導性片,其中,該熱傳導性片之兩表面中之至少一者的表面粗糙度Ra為23μm以下。
  20. 如請求項1至3中任一項所述之熱傳導性片,其於電子機器內部中使用。
  21. 如請求項1至3中任一項所述之熱傳導性片,其中,該所露出之該各向異性填充材以8.2~45%之數量之比率配置成傾倒。
TW108121500A 2018-06-22 2019-06-20 熱傳導性片 TWI807053B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018119378 2018-06-22
JPJP2018-119378 2018-06-22

Publications (2)

Publication Number Publication Date
TW202006027A TW202006027A (zh) 2020-02-01
TWI807053B true TWI807053B (zh) 2023-07-01

Family

ID=68982987

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108121500A TWI807053B (zh) 2018-06-22 2019-06-20 熱傳導性片

Country Status (8)

Country Link
US (1) US20210130570A1 (zh)
EP (1) EP3813104B1 (zh)
JP (2) JP6650175B1 (zh)
KR (1) KR102646809B1 (zh)
CN (1) CN112368826A (zh)
ES (1) ES2956260T3 (zh)
TW (1) TWI807053B (zh)
WO (1) WO2019244890A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067141A1 (ja) * 2018-09-26 2020-04-02 積水ポリマテック株式会社 熱伝導性シート
CN116622238B (zh) * 2023-04-04 2024-03-26 厦门斯研新材料技术有限公司 一种导热复合材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179318A1 (ja) * 2016-04-11 2017-10-19 ポリマテック・ジャパン株式会社 熱伝導性シート

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814550B2 (ja) * 2005-06-03 2011-11-16 ポリマテック株式会社 熱伝導性成形体の製造方法
JP4897360B2 (ja) * 2006-06-08 2012-03-14 ポリマテック株式会社 熱伝導性成形体及びその製造方法
JP5254870B2 (ja) * 2009-04-22 2013-08-07 ポリマテック株式会社 熱伝導性シート及びその製造方法
JP5953160B2 (ja) * 2012-07-27 2016-07-20 ポリマテック・ジャパン株式会社 熱伝導性成形体の製造方法
JP2015073067A (ja) * 2013-09-06 2015-04-16 バンドー化学株式会社 熱伝導性樹脂成形品
JP6397229B2 (ja) * 2014-06-12 2018-09-26 国立研究開発法人産業技術総合研究所 厚み方向に高い熱伝導率を有する熱伝導性部材及び積層体
JP6524831B2 (ja) * 2015-07-16 2019-06-05 富士ゼロックス株式会社 情報処理装置及びプログラム
JP2017135137A (ja) * 2016-01-25 2017-08-03 東洋紡株式会社 絶縁高熱伝導性シート、およびその製法、および積層体
JP2018056315A (ja) 2016-09-28 2018-04-05 デクセリアルズ株式会社 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179318A1 (ja) * 2016-04-11 2017-10-19 ポリマテック・ジャパン株式会社 熱伝導性シート

Also Published As

Publication number Publication date
WO2019244890A1 (ja) 2019-12-26
US20210130570A1 (en) 2021-05-06
JP6650175B1 (ja) 2020-02-19
CN112368826A (zh) 2021-02-12
KR102646809B1 (ko) 2024-03-13
EP3813104B1 (en) 2023-08-16
KR20210023863A (ko) 2021-03-04
TW202006027A (zh) 2020-02-01
EP3813104A1 (en) 2021-04-28
ES2956260T3 (es) 2023-12-18
EP3813104A4 (en) 2022-03-23
JPWO2019244890A1 (ja) 2020-06-25
JP2020074431A (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
TWI821318B (zh) 熱傳導性片
TWI801501B (zh) 導熱性片
TWI825168B (zh) 導熱性片
TW202036816A (zh) 導熱性片
TWI807053B (zh) 熱傳導性片
JP7076871B1 (ja) 熱伝導性シート
TW202231765A (zh) 導熱性片、其裝配方法及製造方法
WO2022210419A1 (ja) 熱伝導性シートの製造方法
WO2023190587A1 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
TW202348729A (zh) 導熱性片、其組裝方法及製造方法
TW202216881A (zh) 導熱性片、其安裝方法及製造方法
JP2022121447A (ja) 熱伝導性シート、その装着方法及び製造方法