WO2023190587A1 - 熱伝導性シート及び熱伝導性シートの製造方法 - Google Patents

熱伝導性シート及び熱伝導性シートの製造方法 Download PDF

Info

Publication number
WO2023190587A1
WO2023190587A1 PCT/JP2023/012651 JP2023012651W WO2023190587A1 WO 2023190587 A1 WO2023190587 A1 WO 2023190587A1 JP 2023012651 W JP2023012651 W JP 2023012651W WO 2023190587 A1 WO2023190587 A1 WO 2023190587A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive sheet
filler
fibrous filler
less
Prior art date
Application number
PCT/JP2023/012651
Other languages
English (en)
French (fr)
Inventor
弘通 岩▲崎▼
健太 黒尾
大希 工藤
Original Assignee
積水ポリマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水ポリマテック株式会社 filed Critical 積水ポリマテック株式会社
Publication of WO2023190587A1 publication Critical patent/WO2023190587A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a thermally conductive sheet and a method for manufacturing a thermally conductive sheet.
  • heat radiators such as heat sinks are generally used to radiate heat generated from heat generating elements such as semiconductor elements and mechanical parts. It is known that a thermally conductive sheet is placed between a heat generating element and a heat radiating element for the purpose of increasing the efficiency of heat transfer to the heat radiating element.
  • thermally conductive sheets contain thermally conductive fillers such as fillers as a method for increasing heat transfer efficiency.
  • Patent Document 1 discloses a thermally conductive sheet containing an anisotropic thermally conductive filler.
  • carbon fibers with an average major axis length (average fiber length) of 100 ⁇ m or more are used as an anisotropic thermally conductive filler, and when the fiber length is less than 100 ⁇ m, sufficient thermal conductivity cannot be obtained. It is stated that this cannot be done.
  • Patent Document 2 discloses an insulating high thermal conductive sheet containing insulating high thermal conductive fibers. Patent Document 2 describes that the higher the proportion of thermally conductive fibers penetrating the insulating highly thermally conductive sheet, the higher the thermal conductivity will be. Further, Patent Document 3 discloses a thermally conductive sheet containing carbon fibers. Patent Document 3 describes that when the average fiber length of carbon fibers is longer than 600 ⁇ m, the carbon fibers become bulky and the viscosity of the composition used as a raw material for a thermally conductive sheet increases.
  • Patent No. 6082777 Japanese Patent Application Publication No. 2017-135137 Patent No. 6684408
  • thermally conductive sheets have lower thermal resistance values and higher heat transfer efficiency. It is known that the thermal resistance value of a thermally conductive sheet is generally influenced by the surface resistance and the thickness. It is known that the former problem can be solved by reducing the surface roughness by polishing, but since the thickness has a large contribution, so far the problem has been largely improved by making the thermally conductive sheet thinner.
  • an object of the present invention is to provide a thermally conductive sheet that has low thermal resistance even when the thickness of the thermally conductive sheet is extremely thin.
  • the present inventors found that in a thermally conductive sheet with a thickness of less than 200 ⁇ m, the ratio of the average fiber length of the fibrous filler contained in the thermally conductive sheet to the thickness of the thermally conductive sheet is The inventors have discovered that the above problem can be solved by setting the value to less than 0.58, and have completed the present invention. That is, the present invention provides the following [1] to [11].
  • the thermally conductive sheet is oriented in the thickness direction of the thermally conductive sheet, and the ratio (D50/T) of the average fiber length D50 of the fibrous filler to the thickness (T) of the thermally conductive sheet is less than 0.58.
  • conductive sheet [2] The thermally conductive sheet according to [1], wherein the fibrous filler has an average fiber length D50 of less than 85 ⁇ m.
  • thermally conductive sheet according to any one of [1] to [5], wherein the matrix is silicone rubber.
  • thermally conductive sheet [8] The thermally conductive sheet according to any one of [1] to [7], further comprising a non-anisotropic filler.
  • the method for manufacturing a thermally conductive sheet according to [10] comprising a step of polishing the surface of the thermally conductive sheet.
  • a thermally conductive sheet with low thermal resistance can be provided even when the thickness of the thermally conductive sheet is extremely thin.
  • thermally conductive sheet of the present invention will be described in detail by showing the thermally conductive sheets of the first and second embodiments.
  • the thermally conductive sheet according to the first embodiment of the present invention includes a matrix made of an organic polymer and a fibrous filler oriented in the thickness direction of the thermally conductive sheet.
  • the thickness of the thermally conductive sheet is less than 200 ⁇ m.
  • the thickness of the thermally conductive sheet exceeds 200 ⁇ m, the thermal resistance value of the thermally conductive sheet becomes high and the thermal conductivity cannot be sufficiently exhibited.
  • the thickness of the thermally conductive sheet is preferably less than 180 ⁇ m, more preferably less than 170 ⁇ m.
  • the lower limit of the thickness of the thermally conductive sheet is not particularly limited, but practically, it is, for example, 40 ⁇ m or more, preferably 70 ⁇ m or more.
  • the thickness of the thermally conductive sheet is preferably 40 ⁇ m or more and less than 200 ⁇ m, more preferably 40 ⁇ m or more and less than 180 ⁇ m, and still more preferably 70 ⁇ m or more and less than 170 ⁇ m. Note that the thickness of the thermally conductive sheet is the initial thickness measured without applying any load in the thickness direction.
  • the fibrous filler is oriented in the thickness direction in the thermally conductive sheet.
  • the state in which the fibrous filler is oriented in the thickness direction of the thermally conductive sheet means that the long axis direction of the fibrous filler is within 20 degrees from the thickness direction of the thermally conductive sheet. If such fibrous fillers are the majority of the thermally conductive sheet (for example, more than 60%, preferably more than 80% of the total number of fibrous fillers) , shall be oriented in the thickness direction. The state of such orientation can be confirmed by observing a cross section along the thickness direction of the thermally conductive sheet using an electron microscope.
  • the thermally conductive sheet according to the first embodiment of the present invention has a ratio (hereinafter also referred to as "D50/T") of the average fiber length D50 of the fibrous filler to the thickness (T) of the thermally conductive sheet. It is less than 0.58.
  • D50/T ratio of the average fiber length D50 of the fibrous filler to the thickness (T) of the thermally conductive sheet. It is estimated that the proportion of the fibrous filler that falls off during the manufacturing stage (for example, cutting and polishing steps) increases, which is a factor in deteriorating the contact thermal resistance.
  • D50/T is preferably 0.57 or less, more preferably 0.55 or less.
  • the upper limit of D50/T is not particularly limited, but from the viewpoint of increasing the fiber length of the fibrous filler and improving thermal conductivity, for example, 0.20 or more, preferably 0.30 or more, More preferably it is 0.40 or more. From the above viewpoint, D50/T is preferably 0.20 or more and less than 0.58, more preferably 0.30 or more and 0.57 or less, and still more preferably 0.40 or more and 0.55 or less.
  • the fibrous filler contained in the thermally conductive sheet of the present invention has an average fiber length D50 of less than 116 ⁇ m, preferably less than 85 ⁇ m, more preferably 84 ⁇ m or less, and preferably 73 ⁇ m or less. More preferred.
  • the average fiber length D50 is equal to or less than the above upper limit value, falling off of the fibrous filler is suppressed, and it becomes easier to lower the thermal resistance value of the thermally conductive sheet.
  • the lower limit of the average fiber length D50 of the fibrous filler is not particularly limited, but the average fiber length D50 is preferably 5 ⁇ m or more, more preferably 25 ⁇ m or more, and even more preferably 35 ⁇ m or more. preferable.
  • the average fiber length D50 of the fibrous filler is preferably 5 ⁇ m or more and less than 116 ⁇ m, more preferably 5 ⁇ m or more and less than 85 ⁇ m, even more preferably 25 ⁇ m or more and 84 ⁇ m or less, even more preferably 35 ⁇ m or more and less than 73 ⁇ m. It is as follows.
  • the average fiber length D90 of the fibrous filler is preferably less than 150 ⁇ m, for example, preferably less than 135 ⁇ m, more preferably 132 ⁇ m or less, and even more preferably 125 ⁇ m or less.
  • the average fiber length D90 is equal to or less than the above upper limit value, it is possible to prevent an unnecessarily long fibrous filler from being contained, and to further lower the thermal resistance value.
  • the average fiber length D90 of the fibrous filler is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, and even more preferably 70 ⁇ m or more. When the average fiber length D90 is greater than or equal to the above lower limit, it becomes easier to improve the thermal conductivity of the thermally conductive sheet.
  • the average fiber length D90 of the fibrous filler is preferably 50 ⁇ m or more and less than 150 ⁇ m, more preferably 50 ⁇ m or more and less than 135 ⁇ m, even more preferably 70 ⁇ m or more and 132 ⁇ m or less, even more preferably 70 ⁇ m or more and less than 125 ⁇ m. It is as follows.
  • the average fiber length D10 of the fibrous filler is preferably less than 85 ⁇ m, for example, preferably 55 ⁇ m or less, and more preferably 45 ⁇ m or less.
  • the average fiber length D10 is equal to or less than the above upper limit value, it becomes easier to suppress the fibrous filler from falling off, and it becomes easier to lower the thermal resistance value of the thermally conductive sheet.
  • the average fiber length D10 of the fibrous filler is preferably 3 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the average fiber length D10 of the fibrous filler is preferably 3 ⁇ m or more and less than 85 ⁇ m, more preferably 15 ⁇ m or more and 55 ⁇ m or less, and even more preferably 20 ⁇ m or more and 45 ⁇ m or less.
  • D10, D50, and D90 of the above-described fibrous filler mean a fiber length corresponding to a cumulative frequency of 10%, a fiber length corresponding to a cumulative frequency of 50%, and a fiber length corresponding to a cumulative frequency of 90%, respectively.
  • it can be determined from a fiber length distribution curve using a fibrous filler as a sample, with the horizontal axis representing the fiber length and the vertical axis representing the integration frequency.
  • the fiber length distribution curve is a number-based fiber length distribution curve obtained by sequentially integrating the fibrous filler having a small fiber length. Note that the fiber length distribution curve can be created by, for example, measuring the fiber lengths of 500 or more fibrous fillers constituting the fibrous filler using an electron microscope or an optical microscope.
  • the fibrous fillers used in the present invention include carbon fibers, metal materials such as metal fibers, metal oxides, boron nitride, metal nitrides, silicon carbide, metal carbides, metal hydroxides, polyparaphenylene benzene, etc. Examples include oxazole fibers, and these fibrous fillers may be used alone or in combination of two or more.
  • carbon fibers are preferred from the viewpoint of effectively increasing thermal conductivity, and graphitized carbon fibers are more preferred.
  • Graphitized carbon fiber has graphite crystal planes that are continuous in the fiber axis direction, and has high thermal conductivity in the fiber axis direction.
  • the fibrous filler has a high aspect ratio, specifically, an aspect ratio of more than 2, and preferably an aspect ratio of 5 or more.
  • an aspect ratio of more than 2 By making the aspect ratio larger than 2, it becomes easier to orient the fibrous filler in the thickness direction, and it becomes easier to increase the thermal conductivity of the thermally conductive sheet.
  • the upper limit of the aspect ratio is not particularly limited, but is practically 100. Note that the aspect ratio of the fibrous filler means fiber length/fiber diameter.
  • the fibrous filler in the thermally conductive sheet is preferably 30 to 500 parts by mass, more preferably 50 to 300 parts by mass, and 100 to 250 parts by mass based on 100 parts by mass of the matrix. is even more preferable.
  • the content of the fibrous filler is preferably 30 to 500 parts by mass, more preferably 50 to 300 parts by mass, and 100 to 250 parts by mass based on 100 parts by mass of the matrix. is even more preferable.
  • the fibrous filler may contain only one type of fibrous filler having a certain average fiber length, or may contain two or more types of fibrous filler having different average fiber lengths.
  • the above-mentioned D10, D50, and D90 are D10, D50, and D90 of a mixture of two or more types of fibrous fillers.
  • the thermal conductivity along the anisotropic direction is generally 60 W/m ⁇ K or more, preferably 400 W/m ⁇ K. That's all.
  • the upper limit of the thermal conductivity of the fibrous filler is not particularly limited, but is, for example, 2000 W/m ⁇ K or less. Thermal conductivity can be measured by a laser flash method or a method based on ASTM D5470.
  • the thermally conductive sheet may contain fillers other than the above-described fibrous fillers, and for example, preferably further contains a scale-like filler. By including the scale-like filler, the effect of lowering the thermal resistance value by polishing the thermally conductive sheet can be further enhanced.
  • scaly fillers include carbon materials, metal oxides, boron nitride, metal nitrides, silicon carbide, metal carbides, metal hydroxides, etc. More specifically, scaly carbon powder, scaly carbonized Examples include silicon powder, flaky aluminum nitride powder, flaky boron nitride powder, and flaky aluminum oxide powder. Among these, from the viewpoint of thermal conductivity, at least one selected from flaky graphite powder and flaky boron nitride powder is preferred, and flaky graphite powder is more preferred.
  • its average particle diameter (D50) is preferably 3 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, and even more preferably 10 to 50 ⁇ m.
  • D50 average particle diameter
  • the fillers in the thermally conductive sheet are likely to come into contact with each other, a heat transfer path is secured, and the thermal conductivity of the thermally conductive sheet is improved.
  • the average particle size is 100 ⁇ m or less, the bulk of the thermally conductive sheet becomes low, and it becomes possible to highly fill the matrix component with the filler.
  • the average particle size of the scaly filler can be calculated by observing the scaly filler with a microscope and using the major axis as the diameter. More specifically, D50 may be determined by measuring the long axis of 500 or more arbitrary scale-like fillers using, for example, an electron microscope or an optical microscope, and using the same method as for fibrous fillers.
  • the scale-like filler has an aspect ratio of more than 2, and preferably has an aspect ratio of 5 or more. By making the aspect ratio larger than 2, it becomes easier to orient the scale-like filler in the thickness direction, and it becomes easier to increase the thermal conductivity of the thermally conductive sheet. Further, the upper limit of the aspect ratio is not particularly limited, but is practically 100.
  • the aspect ratio of the scaly filler means the length/thickness of the scaly filler in the longitudinal direction.
  • flaky carbon powder flaky graphite powder is preferred. In the flaky graphite powder, the graphite crystal planes are continuous in the in-plane direction of the scale surface, and the flaky graphite powder has high thermal conductivity in the in-plane direction. Therefore, by aligning one side of the scales in a predetermined direction, the thermal conductivity in a specific direction can be increased.
  • the content of the scale-like filler in the thermally conductive sheet is preferably 1 to 100 parts by mass, more preferably 5 to 50 parts by mass, and 10 to 40 parts by mass, based on 100 parts by mass of the matrix. It is more preferable that When the content of the scaly filler is above these lower limits, the effect of reducing the thermal resistance value by polishing the thermally conductive sheet can be further enhanced, and when it is below these upper limits, the content of the mixed composition described below can be improved. The viscosity tends to be appropriate, and the orientation of the scaly filler becomes good.
  • the following raw materials can be graphitized.
  • the following raw materials can be graphitized.
  • Examples include fused polycyclic hydrocarbon compounds such as naphthalene, PAN (polyacrylonitrile), fused heterocyclic compounds such as pitch, etc., but in particular graphitized mesophase pitch with a high degree of graphitization, polyimide, and polybenzazole should be used. is preferred.
  • mesophase pitch the pitch is oriented in the fiber axis direction due to its anisotropy in the spinning process described below, and graphitized carbon fibers having excellent thermal conductivity in the fiber axis direction can be obtained.
  • Graphitized carbon fibers are produced by sequentially spinning, infusible, and carbonizing the raw material, and graphitizing after pulverizing or cutting to a predetermined particle size, or graphitizing after carbonizing, pulverizing, or cutting. can be used.
  • pulverizing or cutting before graphitization the condensation reaction and cyclization reaction proceed more easily during the graphitization process on the surface newly exposed by the pulverization, so the degree of graphitization is increased and heat conduction is further improved.
  • Graphitized carbon fibers with improved properties can be obtained.
  • the thermally conductive sheet of the present invention further contains a non-anisotropic filler as a filler.
  • a non-anisotropic filler is a thermally conductive filler that is contained in a thermally conductive sheet separately from anisotropic fillers such as a fibrous filler or a fibrous filler and a scale-like filler. It is a material that provides thermal conductivity to a thermally conductive sheet together with an oriented filler. By containing a non-anisotropic filler, the thermally conductive sheet suppresses an increase in viscosity and improves dispersibility before curing into a sheet.
  • a thermally conductive sheet that can form a thermal path and has high thermal conductivity can be obtained.
  • a non-anisotropic filler is a filler that has substantially no anisotropy in shape, and under an environment in which the fibrous filler is oriented in a predetermined direction, such as under the generation of magnetic lines of force or under the action of shearing force, which will be described later. is also a filler that is not oriented in its given direction.
  • the aspect ratio of the non-anisotropic filler is 2 or less, preferably 1.5 or less.
  • the filler having thermal conductivity is appropriately interposed in the gaps between the fibrous fillers, and a thermally conductive sheet with high thermal conductivity can be obtained.
  • the aspect ratio of the anisotropic filler can be determined from the length/breadth axis of the non-anisotropic filler.
  • non-anisotropic filler examples include metals, metal oxides, metal nitrides, metal hydroxides, carbon materials, oxides other than metals, nitrides, and carbides. Further, the shape of the non-anisotropic filler includes polyhedral, spherical, irregularly shaped powder, and the like.
  • examples of metals include aluminum, copper, nickel, etc.
  • examples of metal oxides include aluminum oxide, magnesium oxide, zinc oxide, etc.
  • metal nitrides examples include aluminum nitride.
  • metal hydroxides examples include aluminum hydroxide.
  • carbon material examples include spherical graphite.
  • the non-anisotropic filler is preferably selected from aluminum oxide, aluminum, zinc oxide, boron nitride, and aluminum nitride, with aluminum oxide being particularly preferred from the viewpoint of filling properties and thermal conductivity, and alumina is more preferable.
  • the non-anisotropic filler one type of the above-mentioned fillers may be used alone, or two or more types may be used in combination.
  • the average particle diameter (D50) of the non-anisotropic filler is preferably 0.1 to 50 ⁇ m, more preferably 0.3 to 35 ⁇ m, and even more preferably 1 to 15 ⁇ m.
  • D50 average particle diameter
  • non-anisotropic fillers having at least two mutually different average particle sizes may be used.
  • the average particle size of the non-anisotropic filler can be measured by observing with an electron microscope or the like. More specifically, the particle size of 500 or more arbitrary non-anisotropic fillers may be measured using, for example, an electron microscope or an optical microscope, and D50 may be determined in the same manner as for the fibrous filler.
  • the content of the non-anisotropic filler is preferably in the range of 100 to 800 parts by mass, more preferably in the range of 150 to 600 parts by mass, and more preferably in the range of 180 to 400 parts by mass, based on 100 parts by mass of the matrix. Part is more preferable.
  • the amount of the non-anisotropic filler is 100 parts by mass or more, the amount of the non-anisotropic filler interposed in the gaps between the fibrous fillers becomes sufficient, and the thermal conductivity becomes good.
  • by setting the content to 800 parts by mass or less it is possible to obtain the effect of increasing thermal conductivity depending on the content.
  • the thermally conductive sheet includes a matrix made of organic polymer.
  • the matrix is an organic polymer such as an elastomer or rubber, preferably formed by curing a liquid polymer composition (curable polymer composition) consisting of a mixed system such as a base agent and a curing agent. It's good to do that.
  • the curable polymer composition may be, for example, composed of an uncrosslinked rubber and a crosslinking agent, or may be composed of a monomer, a prepolymer, etc., and a curing agent.
  • the above-mentioned curing reaction may be room temperature curing or heat curing.
  • an example of the matrix formed from the curable polymer composition is silicone rubber.
  • silicone rubber addition reaction curable silicone is preferably used as the matrix (curable polymer composition). More specifically, a curable polymer composition containing an alkenyl group-containing organopolysiloxane and a hydrogen organopolysiloxane may be used.
  • the rubber examples include acrylic rubber, nitrile rubber, isoprene rubber, urethane rubber, ethylene propylene rubber, styrene-butadiene rubber, butadiene rubber, and fluorine rubber. Examples include rubber and butyl rubber.
  • the synthetic rubber may be crosslinked or may remain uncrosslinked (that is, uncured) in the thermally conductive sheet. Uncrosslinked rubber is primarily used in flow orientation.
  • the matrix is formed by curing a curable polymer composition consisting of an uncrosslinked rubber made of these synthetic rubbers and a crosslinking agent.
  • thermoplastic elastomers such as polyester-based thermoplastic elastomers and polyurethane-based thermoplastic elastomers, and thermosetting elastomers formed by curing a mixed liquid polymer composition consisting of a base agent and a curing agent are also used.
  • a polyurethane elastomer formed by curing a polymer composition containing a polymer having a hydroxyl group and an isocyanate can be exemplified.
  • silicone rubber for example, has a particularly flexible matrix after curing and has good filling properties with fibrous fillers, scale-like fillers, and non-anisotropic fillers that are blended as necessary.
  • it is preferable to use addition reaction-curing silicone it is preferable to use addition reaction-curing silicone.
  • the polymer composition for forming the matrix may be composed of a single polymer compound, or may be composed of a polymer compound and a plasticizer.
  • the plasticizer is preferably used when synthetic rubber is used, and by including the plasticizer, it is possible to increase the flexibility of the uncrosslinked polymer matrix.
  • the content of the matrix is preferably 20 to 50% by volume, more preferably 25 to 45% by volume, based on the total amount of the thermally conductive sheet, expressed as a volume-based filling rate (volume filling rate). Further, the content of the matrix is preferably 10 to 40% by mass, more preferably 15 to 35% by mass, based on the total amount of the thermally conductive sheet.
  • a coupling agent may be used as an additive.
  • the coupling agent is preferably blended into the mixed composition described below, but the blended coupling agent is preferably volatilized during production of the thermally conductive sheet. A portion of the coupling agent may volatilize, and in that case, the remaining coupling agent may be contained in the thermally conductive sheet, but all of the coupling agent may volatilize.
  • Examples of the coupling agent include silane coupling agents.
  • Examples of the silane coupling agent include various alkoxysilane compounds such as alkyl alkoxysilane.
  • the amount of the coupling agent in the mixed composition described below is, for example, 1 to 50 parts by weight, preferably 5 to 40 parts by weight, based on 100 parts by weight of the polymer composition.
  • the matrix may further contain various additives within the range that does not impair its function as a thermally conductive sheet.
  • the additive include at least one selected from dispersants, adhesives, flame retardants, antioxidants, colorants, antisettling agents, and the like.
  • a crosslinking accelerator, curing accelerator, etc. that promote crosslinking and curing may be added as additives.
  • the thermally conductive sheet of the present invention preferably has a thermal resistance value of 0.25°C ⁇ cm 2 /W or less, more preferably 0.2°C ⁇ cm 2 /W or less, and 0.16°C - It is more preferable that it is below cm2 /W.
  • the thermal resistance value is below the above upper limit value, the efficiency of heat transfer from the heating element to the heat radiating element through the thermally conductive sheet improves, and excellent thermal conductivity can be obtained.
  • the lower the thermal resistance value the better, and it is sufficient if it is 0°C.cm 2 /W or more, but practically, it is, for example, 0.01°C.cm 2 /W or more, preferably 0.05°C. ⁇ More than cm 2 /W.
  • the thermal resistance value can be obtained by the measuring method described in Examples.
  • the thermally conductive sheet of the present invention preferably has a type E hardness (hereinafter also referred to as "E hardness") defined by JIS K6253 of 10 to 80, more preferably 20 to 70, and 30 to 65. It is more preferable that When the E hardness is equal to or higher than the above lower limit, the thermally conductive sheet can be easily polished in step (B) described later, and a certain elasticity is imparted even when the thermally conductive sheet is extremely thin. Moreover, when the E hardness is below the above upper limit value, a certain degree of flexibility is imparted to the thermally conductive sheet.
  • At least one surface of the thermally conductive sheet is a sliced surface. Since at least one surface is a sliced surface, the thermal resistance value can be effectively lowered.
  • the thermally conductive sheet may have a sliced surface on one side, or may have sliced surfaces on both sides. Note that the sliced surface is a surface formed by cutting with a shearing blade, a laser, or the like, as described later.
  • At least one surface of the thermally conductive sheet is a polished surface. Since at least one surface of the thermally conductive sheet is a polished surface, the thermal resistance value can be lowered more effectively.
  • the thermally conductive sheet may have a polished surface on one side, or may have a polished surface on both sides. Note that the polished surface is a surface polished with abrasive paper or the like, as described later.
  • at least one surface of the thermally conductive sheet is a sliced surface and a polished surface, and more preferably both surfaces are sliced and polished surfaces.
  • the thermally conductive sheet of the present invention can be manufactured, for example, by a method comprising the following steps (A) and (B).
  • the present manufacturing method preferably includes the following step (C).
  • step (A) for example, a polymer composition serving as a raw material for the matrix, a fibrous filler, and a filler other than the fibrous filler (for example, a scaly filler and a
  • An oriented molded body is molded from a mixed composition containing other additives such as an oriented filler) and other additives such as a coupling agent.
  • the mixed composition is preferably one that is cured to become an oriented molded article.
  • the oriented molded body is a thermally conductive sheet in which fibrous filler is oriented along one direction, which is the thickness direction. More specifically, the oriented molded body can be obtained by a magnetic field orientation manufacturing method or a fluid orientation manufacturing method, and among these, the magnetic field orientation manufacturing method is preferable.
  • the details of the fibrous filler, scaly filler, and non-anisotropic filler used as raw materials in this manufacturing method are as described above, including D10, D50, D90, aspect ratio, average particle size, etc. It may be as described above. However, since the fibrous filler may be cut and shortened during the manufacturing process, it is preferable to design the filler to be longer than the above-mentioned D10, D50, and D90.
  • the D50 of the fibrous filler used as a raw material is less than 140 ⁇ m, preferably less than 100 ⁇ m, more preferably 99.5 ⁇ m or less, even more preferably 90 ⁇ m or less, and preferably 5 ⁇ m or more, more preferably 40 ⁇ m.
  • the thickness is more preferably 55 ⁇ m or more.
  • a fibrous filler having a ratio of average fiber length D50 to thickness (T) of the resulting thermally conductive sheet (D50/T) of less than 0.58 is used as a raw material. However, for example, it may be less than 0.70, and preferably 0.67 or less. Further, the lower limit of D50/T is not particularly limited, but may be, for example, 0.20 or more, preferably 0.40 or more.
  • Magnetic field orientation manufacturing method In the magnetic field orientation manufacturing method, a mixed composition containing a liquid polymer composition that becomes a matrix after curing, a fibrous filler, and other fillers and additives that are mixed as necessary is placed in a casting container or the like. After injecting it inside and placing it in a magnetic field to orient the fibrous filler and the scale-like filler blended as necessary along the magnetic field, the polymer composition is cured to obtain an oriented molded body. .
  • the oriented molded body is preferably in the form of a block.
  • the polymer composition may contain a plasticizer.
  • a release film may be placed inside the mold at a portion that comes into contact with the mixed composition.
  • the release film for example, a resin film with good releasability or a resin film whose one side has been subjected to release treatment with a release agent or the like is used.
  • a release film By using a release film, the oriented molded product can be easily released from the mold.
  • the viscosity of the mixed composition used in the magnetic field orientation manufacturing method is preferably 10 to 300 Pa ⁇ s in order to achieve magnetic field orientation.
  • each filler becomes difficult to settle.
  • the pressure is set to 300 Pa ⁇ s or less, the fluidity becomes good, and the fibrous filler and the scale-like filler blended as necessary are properly oriented in the magnetic field, which causes problems such as taking too much time for orientation. will not occur.
  • the viscosity is the viscosity measured using a rotational viscometer (Brookfield Viscometer DV-E, spindle SC4-14) at 25° C. and a rotational speed of 10 rpm.
  • the viscosity of the mixed composition may be less than 10 Pa ⁇ s.
  • examples of the magnetic field line generation source for applying magnetic lines of force include superconducting magnets, permanent magnets, electromagnets, etc., but superconducting magnets are preferred because they can generate a magnetic field with high magnetic flux density.
  • the magnetic flux density of the magnetic field generated from these magnetic field line sources is preferably 1 to 30 Tesla. When the magnetic flux density is 1 Tesla or more, it becomes possible to easily orient the fibrous filler. Further, by setting the value to 30 Tesla or less, it becomes possible to manufacture it practically.
  • Curing of the polymer composition is preferably carried out by heating, for example at a temperature of about 50 to 150°C. Further, the heating time is, for example, about 10 minutes to 3 hours.
  • Fluid orientation manufacturing method In the flow orientation manufacturing method, a shearing force is applied to the mixed composition to produce a preliminary sheet in which the fibrous filler and the scale-like filler blended as necessary are oriented in the plane direction, and multiple sheets of this are laminated. It is preferable to manufacture a laminated block by doing so, and use the laminated block as an oriented molded body. More specifically, in the fluidized orientation manufacturing method, first, a fibrous filler, a scale-like filler, a non-anisotropic filler, and various additives are mixed into a polymer composition. and stir to prepare a mixed composition in which the mixed solids are homogeneously dispersed.
  • the polymer compound used in the polymer composition may include a polymer compound that is liquid at room temperature (23°C) or a polymer compound that is solid at room temperature. Good too.
  • the polymer composition may contain a plasticizer.
  • the mixed composition has a relatively high viscosity so that shearing force is applied when it is stretched into a sheet, and the viscosity of the mixed composition is preferably 3 to 500 Pa ⁇ s.
  • a solvent is preferably added to the mixed composition in order to obtain the above-mentioned viscosity.
  • the mixed composition is flattened and stretched while applying a shearing force to form a sheet (preliminary sheet).
  • a shearing force By applying a shearing force, the fibrous filler and the scale-like filler blended as necessary can be oriented in the shearing direction.
  • the mixed composition is coated on the base film using a coating applicator such as a bar coater or a doctor blade, or by extrusion molding or discharge from a nozzle, and then the mixed composition is coated as necessary. It is preferable to dry or semi-cure the mixed composition.
  • the thickness of the preliminary sheet is preferably about 50 to 5000 ⁇ m.
  • the fibrous filler and the scale-like filler blended as necessary are oriented in one direction along the surface direction of the sheet.
  • the mixed composition is cured as necessary by heating, ultraviolet irradiation, etc., and the preliminary sheets are bonded to each other by heat pressing or the like. It is preferable that a laminated block is formed by adhering, and the laminated block is used as an oriented molded body.
  • step (B) the oriented molded product obtained in step (A) is cut by slicing or the like perpendicular to the direction in which the fibrous filler is oriented to obtain a sheet-like molded product.
  • the slicing may be performed using, for example, a shearing blade or a laser.
  • a sheet-like molded body is cut by slicing or the like, a portion of the fibrous filler may be exposed from the matrix on each cut surface. Most of the exposed fibrous filler does not fall down and is oriented in the thickness direction.
  • step (B) when the oriented molded body is cut by slicing or the like, the fibrous filler contained in the oriented molded body may be cut to the extent that the effects of the present invention are not impaired.
  • the sheet-like molded product obtained by slicing in step (B) may be further heated, the sheet-like molded product may be secondarily cured by heating, or a coupling agent may be added to the mixed composition.
  • a coupling agent may be added to the mixed composition.
  • part or all of the coupling agent may be volatilized by heating the sheet-like molded product.
  • the sheet-shaped molded body is preferably heated at, for example, 100 to 200°C, preferably 120 to 180°C, for example, for 30 minutes to 24 hours, preferably 1 to 6 hours.
  • the sheet-like molded product obtained through the above step (B) may be used as a thermally conductive sheet as it is, but it is preferable to polish it in the step (C) described below to form a thermally conductive sheet. By polishing, the surface condition of the sheet-like molded body becomes better, and the thermal resistance value becomes easier to lower.
  • Step (C) is a step of polishing the surface of the sheet-like molded body.
  • the sheet surface can be made smooth while leaving a certain amount of anisotropic filler such as fibrous filler exposed on the surface.
  • the fibrous filler can also be placed in a collapsed state. Therefore, it is easy to bring the surface of the thermally conductive sheet into close contact with other members, and it is also easy to cover a certain area or more of the sheet surface with the fibrous filler, making it easier to reduce the thermal resistance value.
  • step (C) at least one surface of the sheet-like molded product obtained in step (B) may be polished, but it is preferable to polish both surfaces of the sheet-like molded product.
  • the surface may be polished using, for example, an abrasive paper, an abrasive film, an abrasive cloth, an abrasive belt, or the like.
  • the average particle diameter (D50) of the abrasive grains contained is preferably 0.1 to 100 ⁇ m, more preferably 1 to 60 ⁇ m.
  • the particle size of the abrasive grains of the abrasive paper is preferably #120 to 20,000, preferably #300 to 15,000, and more preferably #320 to 4,000.
  • Polishing methods include, for example, polishing the surface of a sheet-shaped molded body by continuously contacting the surface with abrasive paper in the same straight direction, polishing by reciprocating a certain distance, or polishing by rotating in the same direction. It is possible to use a method such as polishing by abutting in various directions. The degree of polishing may be determined by observing the surface condition, for example, but in the case of reciprocating polishing, 1 to 300 reciprocations are preferred, 2 to 200 times are more preferred, and 3 to 50 times are further preferred. preferable.
  • the surface of the sheet-like molded body may be polished in two polishing steps. For example, if after the first polishing using abrasive paper with a large average grain size, a second polishing is performed using abrasive paper with a smaller average grain size than the first polishing. good.
  • the thermally conductive sheet according to the second embodiment is a thermally conductive sheet containing a matrix made of an organic polymer and a fibrous filler, the thickness of the thermally conductive sheet is less than 200 ⁇ m, and the thermally conductive sheet contains fibers.
  • the fibrous filler is oriented in the thickness direction of the thermally conductive sheet, and the average fiber length D50 of the fibrous filler contained in the sheet is 5 ⁇ m or more and less than 85 ⁇ m.
  • the present invention can improve the thermal conductivity of a thin thermally conductive sheet by setting the average fiber length D50 to 5 ⁇ m or more. Furthermore, by setting the average fiber length D50 to less than 85 ⁇ m, it is possible to suppress the fibrous filler from falling off and to lower the thermal resistance value of the thermally conductive sheet. From these viewpoints, the average fiber length D50 in the second embodiment is preferably 25 ⁇ m or more and 84 ⁇ m or less, more preferably 35 ⁇ m or more and 73 ⁇ m or less.
  • the upper limit of the average fiber length D50 is preferably less than 85 ⁇ m, and when it is less than 150 ⁇ m and 125 ⁇ m or more, the upper limit of the average fiber length D50 is 75 ⁇ m.
  • the upper limit of the average fiber length D50 is preferably 60 ⁇ m or less, and the thickness of the thermally conductive sheet is less than 100 ⁇ m.
  • the upper limit of the average fiber length D50 is preferably 50 ⁇ m or less, and when the thickness of the thermally conductive sheet is less than 75 ⁇ m and 50 ⁇ m or more, the upper limit of the average fiber length D50 is 40 ⁇ m or less. is preferred.
  • the ratio (D50/T) of the average fiber length D50 of the fibrous filler to the thickness (T) of the thermally conductive sheet may be less than 0.58, as in the first embodiment. , does not necessarily have to be less than 0.58.
  • the preferred range of the ratio (D50/T) is the same as above.
  • Thermal conductive sheets are used inside electronic devices and the like. Specifically, the thermally conductive sheet is interposed between the heat generating element and the heat radiating element, conducts heat generated by the heat generating element to the heat radiating element, and radiates the heat from the heat radiating element.
  • the heating element include various electronic components such as a CPU, a power amplifier, and a power source such as a battery used inside an electronic device.
  • the heat sink include a heat sink, a heat pipe, a heat pump, and a metal casing of an electronic device.
  • the thermally conductive sheet is used with both surfaces in close contact with a heating element and a heat radiating element, respectively, and compressed.
  • the measurement method and evaluation method in this example are as follows.
  • the average fiber lengths D10, D50, and D90 of the fibrous filler in the thermally conductive sheet were measured as follows. First, the thermally conductive sheet was immersed in a silicone dissolving agent (KSR-1 manufactured by Kanto Kagaku Co., Ltd.) to dissolve it. The solution was then centrifuged to separate solids and liquids. The obtained solid content is further immersed in the silicone dissolving agent and centrifuged twice, and the solid content obtained is further washed by immersion in solvent naphtha and centrifuged twice, and then washed with a solvent naphtha. Powdered solids were isolated by drying the naphtha.
  • a silicone dissolving agent KSR-1 manufactured by Kanto Kagaku Co., Ltd.
  • the solid content includes fibrous filler and non-fibrous filler.
  • an observation image (image) of the isolated substance using an optical microscope (“VHX-S15” manufactured by Keyence Corporation) approximately 500 individual The fiber length of the fibrous filler was measured.
  • WinROOF only fibrous fillers with an aspect ratio of 2 or more were measured by needle separation measurement.
  • a fiber length distribution curve was obtained, with the horizontal axis representing the fiber length and the vertical axis representing the integration frequency (number standard). The average fiber lengths D10, D50, and D90 of the fibrous filler were determined from the obtained fiber length distribution curve.
  • the D50 of the fibrous filler used as a raw material was determined by observing approximately 500 individual fibers of the fibrous filler before being incorporated into the mixed composition using an optical microscope in the same manner as above. It was determined by measuring the fiber length of the shaped filler.
  • the D50 and aspect ratio of the scaly filler and non-anisotropic filler were similarly determined by observing approximately 500 particles using an optical microscope. In addition, in Examples, the aspect ratio indicates an average value.
  • E hardness The type E hardness of the thermally conductive sheet was measured based on the Japanese Industrial Standard JIS K 6253. Specifically, the oriented molded bodies produced in each example were measured using a type E durometer.
  • the thermal resistance value was measured by the method shown below using a thermal resistance measuring device as shown in FIG. Specifically, for each sample, a test piece S having a size of 30 mm x 30 mm was prepared for this test. Then, each test piece S was pasted on a copper block 22 with a measuring surface of 25.4 mm x 25.4 mm and whose side surfaces were covered with a heat insulating material 21, sandwiched between upper copper blocks 23, and a load of 40 psi was applied by a load cell 26. I applied it.
  • the lower copper block 22 is in contact with the heater 24.
  • the upper copper block 23 is covered with a heat insulating material 21 and connected to a heat sink 25 with a fan.
  • the heater 24 is made to generate heat to 80° C., and after 10 minutes when the temperature reaches a substantially steady state, the temperature of the upper copper block 23 ( ⁇ j0 ), the temperature of the lower copper block 22 ( ⁇ j1 ), and The calorific value (Q) of the heater was measured, and the thermal resistance value of each sample was determined from the following equation (1).
  • the thickness of the thermally conductive sheet at the time of measuring the thermal resistance value was also measured.
  • Thermal resistance ( ⁇ j1 - ⁇ j0 )/Q... Formula (1)
  • ⁇ j1 is the temperature of the lower copper block 22
  • ⁇ j0 is the temperature of the upper copper block 23
  • Q is the amount of heat generated.
  • Graphitized carbon fiber (1)...Average fiber length (D50) 55.1 ⁇ m, (D10) 32.4 ⁇ m, (D90) 105.9 ⁇ m, thermal conductivity 1200 W/m ⁇ K Graphitized carbon fiber (2)... Average fiber length (D50) 76.7 ⁇ m, (D10) 40.2 ⁇ m, (D90) 127.1 ⁇ m, thermal conductivity 1200 W/m ⁇ K Graphitized carbon fiber (3)... Average fiber length (D50) 82.2 ⁇ m, (D10) 46.3 ⁇ m, (D90) 142.8 ⁇ m, thermal conductivity 1200 W/m ⁇ K Graphitized carbon fiber (4)...
  • Coupling agent n-decyltrimethoxysilane Scale-like graphite powder: Scale-like, average particle size (D50) 15 ⁇ m, aspect ratio 10, thermal conductivity 550 W/m ⁇ K
  • Aluminum powder irregular shape, average particle size (D50) 3 ⁇ m, aspect ratio 1-1.5
  • the polymer composition includes alkenyl group-containing organopolysiloxane and hydrogen organopolysiloxane (total of 100 parts by mass), 15 parts by mass of coupling agent, 160 parts by mass of graphitized carbon fiber (3), and 20 parts by mass of flaky graphite powder. 243 parts by mass of aluminum powder, and 30 parts by mass of aluminum oxide (1) were mixed at 25° C. for 50 minutes using a planetary mixer to obtain a mixed composition. Next, the above mixed composition was injected into a mold whose thickness was set to be sufficiently larger than that of the thermally conductive sheet, and an 8T magnetic field was applied in the thickness direction to orient the carbon fibers in the thickness direction. The matrix was cured by heating at 80° C.
  • the block-shaped oriented molded body was sliced into a sheet shape having a thickness of about 150 ⁇ m using a shearing blade, thereby obtaining a sheet-shaped molded body in which the carbon fibers were exposed. Thereafter, the sheet-like molded body was heated at 150° C. for 2 hours. Subsequently, the sheet-like molded body was reciprocated 25 times with coarse abrasive paper A (grain size #800) having an average particle size (D50) of 20 ⁇ m, and then further polished with an average particle size (D50) of 20 ⁇ m. ) was polished 10 times using coarse abrasive paper B (grain size #4000).
  • Examples 2 to 8 Comparative Examples 1 to 32
  • a thermally conductive sheet was prepared in the same manner as in Example 1, except that the composition of the mixed composition was changed as shown in Tables 1 to 8, and the thickness of the resulting thermally conductive sheet was adjusted as shown in Tables 1 to 8. was created.
  • Example 9 Comparative Examples 33 to 41
  • the composition of the mixed composition was changed as shown in Tables 9 and 10, the thickness of the obtained thermally conductive sheet was adjusted as shown in Tables 9 and 10, and the obtained sheet-shaped molded product was changed as shown in Tables 9 and 10.
  • a thermally conductive sheet was produced in the same manner as in Example 1, except that heating was not performed.
  • the thermally conductive sheet manufactured in the example has a low thermal resistance value and can express good thermal conductivity
  • the thermally conductive sheet manufactured in the comparative example It is clear that the thermally conductive sheet obtained by this method has a high thermal resistance value and cannot exhibit good thermal conductivity. More specifically, the thermally conductive sheet of Example 1 has a D50/T of less than 0.58, so that although the thickness is thinner than that of Example 1, the comparative example has a D50/T of 0.58 or more. The thermal resistance value was lower than that of 4.
  • the thermally conductive sheet of Example 1 had a lower thermal resistance value than Comparative Examples 1 to 3, which had a D50/T of less than 0.58 but a thickness of 200 ⁇ m or more. This tendency was the same in Examples 2 to 9 and Comparative Examples 5 to 27 and 33 to 36. Furthermore, Comparative Examples 28 to 32 and 37 to 41 are examples in which a relatively long fiber length was used as the fibrous filler, but the thickness of the thermally conductive sheet was 200 ⁇ m or more, or D50/T was 0.58 or more, so even if D50/T was adjusted, the thermal resistance value could not be made sufficiently low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

有機高分子からなるマトリクスと、繊維状充填材とを含む熱伝導性シートであって、前記熱伝導性シートの厚さが200μm未満であり、前記繊維状充填材が、前記熱伝導性シートの厚さ方向に配向しており、前記繊維状充填材の平均繊維長D50の前記熱伝導性シートの厚さ(T)に対する比(D50/T)が0.58未満である、熱伝導性シート。

Description

熱伝導性シート及び熱伝導性シートの製造方法
 本発明は、熱伝導性シート及び熱伝導性シートの製造方法に関する。
 コンピュータ、自動車部品、携帯電話等の電子機器では、半導体素子や機械部品等の発熱体から生じる熱を放熱するためにヒートシンクなどの放熱体が一般的に用いられる。放熱体への熱の伝熱効率を高める目的で、発熱体と放熱体の間には、熱伝導性シートが配置されることが知られている。
 このような熱伝導性シートについては、伝熱効率を高めるための手法として、フィラーなどの熱伝導性充填材を含有することが知られている。例えば、特許文献1には、異方性熱伝導性フィラーを含有する熱伝導性シートが開示されている。特許文献1では、異方性熱伝導性フィラーとして平均長軸長さ(平均繊維長)が100μm以上の炭素繊維が使用されており、繊維長が100μm未満となると、熱伝導性が十分に得られないことが記載されている。
 また、特許文献2には、絶縁高熱伝導性繊維を含有する絶縁高熱伝導シートが開示されている。特許文献2では、絶縁高熱伝導シートを貫通する熱伝導性繊維の割合が大きいと熱伝導性に優れることが記載されている。
 さらに、特許文献3には、炭素繊維を含んだ熱伝導性シートが開示されている。特許文献3では、炭素繊維の平均繊維長が600μmよりも長いと、炭素繊維が嵩高くなり、熱伝導性シートの原料となる組成物の粘度が高くなることが記載されている。
特許第6082777号 特開2017-135137号公報 特許第6684408号
 ところで、近年、熱伝導性シートは、電子機器、半導体装置の小型化などに伴い、熱抵抗値を更に低くして、伝熱効率を高くすることが望まれている。熱伝導性シートの熱抵抗値は、一般的に表面抵抗の寄与と厚みの寄与があることが知られている。前者については、研磨によって表面粗さを小さくすることで解決できることが知られているが、厚みの寄与が大きいため、これまでは熱伝導性シートの薄膜化によって大きく改善してきた。
 しかしながら、従来の熱伝導性シートは、一定の厚さまで薄くした場合には、厚さが薄くなるにしたがって熱抵抗を低くできるものの、一定以上薄くすると意外なことに熱抵抗が悪化することが本発明者の検討により判明した。
 そこで本発明は、熱伝導性シートの厚さを極めて薄くした場合でも、熱抵抗が低い熱伝導性シートを提供することを課題とする。
 本発明者らは、鋭意検討の結果、厚さが200μm未満の熱伝導性シートにおいて、熱伝導性シートに含まれる繊維状充填材の平均繊維長と、熱伝導性シートの厚さとの比率が0.58未満とすることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[11]を提供する。
[1]有機高分子からなるマトリクスと、繊維状充填材とを含む熱伝導性シートであって、前記熱伝導性シートの厚さが200μm未満であり、前記繊維状充填材が、前記熱伝導性シートの厚さ方向に配向しており、前記繊維状充填材の平均繊維長D50の前記熱伝導性シートの厚さ(T)に対する比(D50/T)が0.58未満である、熱伝導性シート。
[2]前記繊維状充填材の平均繊維長D50が85μm未満である、[1]に記載の熱伝導性シート。
[3]有機高分子からなるマトリクスと、繊維状充填材とを含む熱伝導性シートであって、前記熱伝導性シートの厚さが200μm未満であり、前記繊維状充填材が、前記熱伝導性シートの厚さ方向に配向しており、前記繊維状充填材の平均繊維長D50が5μm以上85μm未満である、熱伝導性シート。
[4]前記繊維状充填材の平均繊維長D90が135μm未満である、[1]~[3]のいずれか1項に記載の熱伝導性シート。
[5]前記熱伝導性シートの少なくとも一方の面が研磨面である、[1]~[4]のいずれか1項に記載の熱伝導性シート。
[6]前記マトリクスがシリコーンゴムである、[1]~[5]のいずれか1項に記載の熱伝導性シート。
[7]前記マトリクスが20~50体積%であり、前記マトリクス100質量部に対して、前記繊維状充填材を30~500質量部含む、[1]~[6]のいずれか1項に記載の熱伝導性シート。
[8]さらに非異方性充填材を含む、[1]~[7]のいずれか1項に記載の熱伝導性シート。
[9]さらに鱗片状充填材を含む、[1]~[8]のいずれか1項に記載の熱伝導性シート。
[10][1]~[9]のいずれか1項に記載の熱伝導性シートの製造方法であって、高分子組成物と、繊維状充填材とを含む混合組成物から、一方向に沿って前記繊維状充填材が配向された配向成形体を得る工程と、前記配向成形体を切断してシート状にして、シート状成形体を得る工程とを備える、熱伝導性シートの製造方法。
[11]前記熱伝導性シートの表面を研磨する工程を備える、[10]に記載の熱伝導性シートの製造方法。
 本発明によれば、熱伝導性シートの厚さを極めて薄くした場合でも、熱抵抗が低い熱伝導性シートを提供することができる。
熱抵抗測定機の概略図である。
[熱伝導性シート]
 以下、本発明の熱伝導性シートについて、第1及び第2の実施形態の熱伝導性シートを示して詳細に説明する。
<第1の実施形態>
 本発明の第1の実施形態に係る熱伝導性シートは、有機高分子からなるマトリクスと、熱伝導性シートの厚さ方向に配向する繊維状充填材とを含む。
 本発明において、熱伝導性シートの厚さは、200μm未満である。熱伝導性シートの厚さが200μmを超えると、熱伝導性シートの熱抵抗値が高くなり、熱伝導性を十分に発揮することができない。こうした観点を踏まえると、熱伝導性シートの厚さは、180μm未満であることが好ましく、170μm未満であることがより好ましい。他方、熱伝導性シートの厚さの下限は、特に限定されないが、実用的には、例えば40μm以上、好ましくは70μm以上である。
 また、上記観点から熱伝導性シートの厚さは、好ましくは40μm以上200μm未満であり、より好ましくは40μm以上180μm未満であり、さらに好ましくは70μm以上170μm未満である。
 なお、熱伝導性シートの厚さとは、厚み方向への荷重を作用させない状態で測定する初期厚さである。
(繊維状充填材)
 繊維状充填材は、熱伝導性シートにおいて厚さ方向に配向している。ここで、繊維状充填材が熱伝導性シートの厚さ方向に配向している状態とは、繊維状充填材の長軸方向が、熱伝導性シートの厚さ方向から20°以内の範囲に向いている状態をいい、そのような繊維状充填材が、熱伝導性シートにおいて、大部分であれば(例えば、全繊維状充填材の数に対して60%超、好ましくは80%超)、厚さ方向に配向するものとする。こうした配向の状態は熱伝導性シートの厚さ方向に沿った断面を電子顕微鏡によって観察することで確認することができる。
 本発明の第1の実施形態に係る熱伝導性シートは、繊維状充填材の平均繊維長D50の熱伝導性シートの厚さ(T)に対する比(以下、「D50/T」ともいう)が0.58未満である。本発明のように厚さが極めて薄い熱伝導性シートにおいては、熱伝導性シート中に含まれる繊維状充填材の平均繊維長D50がシートの厚さに対して長くなると、熱伝導性シートの製造段階(例えば、切断や研磨工程)において脱落する繊維状充填材の割合が高くなり、接触熱抵抗が悪化する要因となると推定される。そして、厚みが薄い熱伝導性シートの熱抵抗値は、接触熱抵抗の寄与が大きいので、接触熱抵抗が悪化することで、熱伝導性シート全体の熱抵抗値も低下すると推定される。
 また、上記現象はゴムのような柔軟なマトリクスを用いた際に顕著になるが、マトリクスの種類や量によらず、シートの厚さが薄くなると一定の確率で生じるものと思われる。
 こうした観点を踏まえると、D50/Tは、0.57以下であることが好ましく、0.55以下であることがより好ましい。また、D50/Tの上限に関しては、特に限定されないが、繊維状充填材の繊維長を長くして、熱伝導性を良好にする観点から、例えば0.20以上、好ましくは0.30以上、より好ましくは0.40以上である。
 上記観点からD50/Tは、好ましくは0.20以上0.58未満であり、より好ましくは0.30以上0.57以下であり、さらに好ましくは0.40以上0.55以下である。
 本発明の熱伝導性シートに含まれる繊維状充填材は、平均繊維長D50が116μm未満となるが、85μm未満であることが好ましく、84μm以下であることがより好ましく、73μm以下であることがさらに好ましい。平均繊維長D50が上記上限値以下であることにより、繊維状充填材の脱落を抑制し、熱伝導性シートの熱抵抗値を低くしやすくなる。
 また、繊維状充填材の平均繊維長D50の下限は、特に限定されないが、平均繊維長D50は、5μm以上であることが好ましく、25μm以上であることがより好ましく、35μm以上であることがさらに好ましい。平均繊維長D50が上記下限値以上であることにより、熱伝導性シートの熱伝導性を良好にしやすくなる。
 上記観点から繊維状充填材の平均繊維長D50は、好ましくは5μm以上116μm未満であり、より好ましくは5μm以上85μm未満であり、さらに好ましくは25μm以上84μm以下であり、よりさらに好ましくは35μm以上73μm以下である。
 繊維状充填材の平均繊維長D90は、例えば150μm未満であるとよいが、135μm未満であることが好ましく、132μm以下であることがより好ましく、125μm以下であることがさらに好ましい。平均繊維長D90が上記上限値以下であることにより、必要以上に長い繊維状充填材が含有されることを防止し、より一層熱抵抗値を低くすることができる。
 また、繊維状充填材の平均繊維長D90は10μm以上であることが好ましく、50μm以上であることがより好ましく、70μm以上であることがさらに好ましい。平均繊維長D90が上記下限値以上であることにより、熱伝導性シートの熱伝導性を良好にしやすくなる。
 上記観点から繊維状充填材の平均繊維長D90は、好ましくは50μm以上150μm未満であり、より好ましくは50μm以上135μm未満であり、さらに好ましくは70μm以上132μm以下であり、よりさらに好ましくは70μm以上125μm以下である。
 繊維状充填材の平均繊維長D10は例えば85μm未満であるとよいが、55μm以下であることが好ましく、45μm以下であることがさらに好ましい。平均繊維長D10が上記上限値以下であることにより、繊維状充填材の脱落を抑制しやすくなり、熱伝導性シートの熱抵抗値を低くしやすくなる。
 また、繊維状充填材の平均繊維長D10は3μm以上であることが好ましく、15μm以上であることがより好ましく、20μm以上であることがさらに好ましい。平均繊維長D10が上記下限値以上であることにより、必要以上に短い繊維状充填材が含有されることを防止し、熱伝導性シートの熱伝導性を良好にしやすくなる。
 上記観点から繊維状充填材の平均繊維長D10は、好ましく3μm以上85μm未満であり、より好ましくは15μm以上55μm以下であり、さらに好ましくは20μm以上45μm以下である。
 上記した繊維状充填材のD10、D50、D90は、それぞれ、積算頻度10%に相当する繊維長、積算頻度50%に相当する繊維長、積算頻度90%に相当する繊維長を意味する。具体的には、繊維状充填材を試料として、横軸を繊維長、縦軸を積算頻度とした繊維長分布曲線から求めることができる。該繊維長分布曲線は、繊維長の小さい繊維状充填材から順次積算して得られる数基準の繊維長分布曲線である。なお、繊維長分布曲線は、例えば、繊維状充填材を構成する500個以上の繊維状充填材について、繊維長を電子顕微鏡や光学顕微鏡を用いて測定して、作成できる。
 本発明で使用する繊維状充填材としては、炭素繊維、金属繊維で代表される金属材料や金属酸化物、窒化ホウ素や金属窒化物、炭化ケイ素や金属炭化物、金属水酸化物、ポリパラフェニレンベンゾオキサゾール繊維等が挙げられ、これらの繊維状充填材は、1種を単独で使用してもよいし、2種以上を併用して使用してもよい。繊維状充填材として上記したものの中では、熱伝導性を効果的に高める観点から炭素繊維が好ましく、黒鉛化炭素繊維がより好ましい。黒鉛化炭素繊維は、グラファイトの結晶面が繊維軸方向に連なっており、その繊維軸方向に高い熱伝導率を備える。
 繊維状充填材は、アスペクト比が高いものであり、具体的にはアスペクト比が2を越えるものであり、アスペクト比は5以上であることが好ましい。アスペクト比を2より大きくすることで、繊維状充填材を厚さ方向に配向させやすくなり、熱伝導性シートの熱伝導性を高めやすい。
 また、アスペクト比の上限は、特に限定されないが、実用的には100である。
 なお、繊維状充填材のアスペクト比とは、繊維長/繊維の直径を意味する。
 熱伝導性シートにおける繊維状充填材は、マトリクス100質量部に対して、30~500質量部であることが好ましく、50~300質量部であることがより好ましく、100~250質量部であることがさらに好ましい。繊維状充填材の含有量をこれら下限値以上とすることにより、熱伝導性を高めやすくなり、上限値以下とすることにより、マトリクス中に繊維状充填材を適切に分散させやすくなる。また、後述する混合組成物の粘度が適切になりやすい。
 なお、本明細書において、「~」で示す範囲は、「~」の前後に記載されている下限の数値以上から上限の数値以下までの範囲を意味する。
 繊維状充填材としては、一定の平均繊維長を有する繊維状充填材を1種のみ含有してもよいし、平均繊維長の異なる2種以上の繊維状充填材を含有してもよい。なお、平均繊維長の異なる2種以上の繊維状充填材を含有する場合、上記したD10、D50、D90は、2種以上の繊維状充填材の混合物のD10、D50、D90である。
 繊維状充填材は、特に限定されないが、異方性を有する方向(すなわち、長軸方向)に沿う熱伝導率が、一般的に60W/m・K以上であり、好ましくは400W/m・K以上である。繊維状充填材の熱伝導率は、その上限は特に限定されないが、例えば2000W/m・K以下である。熱伝導率は、レーザーフラッシュ法や、ASTM D5470に準拠した方法で測定することができる。
 熱伝導性シートは、上記した繊維状充填材以外の充填材を含有してもよく、例えば、鱗片状充填材をさらに含むことが好ましい。鱗片状充填材を含むことにより、熱伝導性シートの研磨による熱抵抗値の低下効果をより高めることができる。鱗片状充填材としては、炭素材料、金属酸化物、窒化ホウ素や金属窒化物、炭化ケイ素や金属炭化物、金属水酸化物などが挙げられ、より具体的には、鱗片状炭素粉末、鱗片状炭化ケイ素粉末、鱗片状窒化アルミニウム粉末、鱗片状窒化ホウ素粉末、鱗片状酸化アルミニウム粉末等が挙げられる。なかでも、熱伝導性の観点から、鱗片状黒鉛粉末及び鱗片状窒化ホウ素粉末から選択される少なくとも1種が好ましく、鱗片状黒鉛粉末がより好ましい。
 鱗片状充填材を含有する場合、その平均粒径(D50)は、3~100μmが好ましく、5~80μmがより好ましく、10~50μmがさらに好ましい。平均粒径を3μm以上とすることで、熱伝導性シートにおいて充填材同士が接触しやすくなり、熱の伝達経路が確保され、熱伝導性シートの熱伝導性が良好になる。一方、平均粒径を100μm以下とすると、熱伝導性シートの嵩が低くなり、マトリクス成分中に充填材を高充填することが可能になる。
 なお、鱗片状充填材の平均粒径は、鱗片状充填材を顕微鏡で観察して長径を直径として算出することができる。より具体的には、例えば電子顕微鏡や光学顕微鏡を用いて、任意の鱗片状充填材500個以上の長径を測定して、繊維状充填材と同様の方法でD50を求めるとよい。
 鱗片状充填材のアスペクト比は2を越えるものであり、アスペクト比は5以上であることが好ましい。アスペクト比を2より大きくすることで、鱗片状充填材を厚さ方向に配向させやすくなり、熱伝導性シートの熱伝導性を高めやすい。また、アスペクト比の上限は、特に限定されないが、実用的には100である。鱗片状充填材のアスペクト比は、鱗片状充填材の長軸方向の長さ/厚さを意味する。
 鱗片状炭素粉末としては、鱗片状黒鉛粉末が好ましい。鱗片状黒鉛粉末は、グラファイトの結晶面が鱗片面の面内方向に連なっており、その面内方向に高い熱伝導率を備える。そのため、その鱗片面を所定の方向に揃えることで、特定方向の熱伝導率を高めることができる。
 熱伝導性シートにおける鱗片状充填材の含有量は、マトリクス100質量部に対して、1~100質量部であることが好ましく、5~50質量部であることがより好ましく、10~40質量部であることがより好ましい。鱗片状充填材の含有量がこれら下限値以上であると、熱伝導性シートの研磨による熱抵抗値の低下効果をより高めることができ、これら上限値以下であると、後述する混合組成物の粘度が適切になりやすく、鱗片状充填材の配向性が良好になる。
 上記した黒鉛化炭素繊維、鱗片状黒鉛粉末などの黒鉛化炭素材料としては、以下の原料を黒鉛化したものを用いることができる。例えば、ナフタレン等の縮合多環炭化水素化合物、PAN(ポリアクリロニトリル)、ピッチ等の縮合複素環化合物等が挙げられるが、特に黒鉛化度の高い黒鉛化メソフェーズピッチやポリイミド、ポリベンザゾールを用いることが好ましい。例えばメソフェーズピッチを用いることにより、後述する紡糸工程において、ピッチがその異方性により繊維軸方向に配向され、その繊維軸方向へ優れた熱伝導性を有する黒鉛化炭素繊維を得ることができる。
 また、黒鉛化炭素繊維は、原料に対して紡糸、不融化及び炭化の各処理を順次行い、所定の粒径に粉砕又は切断した後に黒鉛化したものや、炭化後に粉砕又は切断した後に黒鉛化したものを用いることができる。黒鉛化前に粉砕又は切断する場合には、粉砕で新たに表面に露出した表面において黒鉛化処理時に縮重合反応、環化反応が進みやすくなるため、黒鉛化度を高めて、より一層熱伝導性を向上させた黒鉛化炭素繊維を得ることができる。一方、紡糸した炭素繊維を黒鉛化した後に粉砕する場合は、黒鉛化後の炭素繊維が剛いため粉砕し易く、短時間の粉砕で比較的繊維長分布の狭い炭素繊維粉末を得ることができる。
(非異方性充填材)
 本発明の熱伝導性シートは、充填材としてさらに非異方性充填材を含有することが好ましい。非異方性充填材は、繊維状充填材、又は繊維状充填材及び鱗片状充填材などの異方性充填材とは別に熱伝導性シートに含有される熱伝導性充填材であり、異方性充填材とともに熱伝導性シートに熱伝導性を付与する材料である。熱伝導性シートは、非異方性充填材を含有することで、シートへ硬化する前段階において、粘度上昇が抑えられ、分散性が良好となる。また、繊維状充填材などの異方性充填材同士では、例えば繊維長が比較的大きくなると充填材同士の接触面積を高くしにくいが、その間を非異方性充填材で埋めることで、伝熱パスを形成でき、熱伝導率の高い熱伝導性シートが得られる。
 非異方性充填材は、形状に異方性を実質的に有しない充填材であり、後述する磁力線発生下又は剪断力作用下など、繊維状充填材が所定の方向に配向する環境下においても、その所定の方向に配向しない充填材である。
 非異方性充填材は、そのアスペクト比が2以下であり、1.5以下であることが好ましい。アスペクト比が低い非異方性充填材が含有されることで、繊維状充填材の隙間に熱伝導性を有する充填材が適切に介在され、熱伝導率の高い熱伝導性シートが得られる。また、アスペクト比を2以下とすることで、後述する混合組成物の粘度が上昇するのを防止して、高充填にすることが可能になる。異方性充填材のアスペクト比は、非異方性充填材の長径/短径により求めることができる。
 非異方性充填材の具体例は、例えば、金属、金属酸化物、金属窒化物、金属水酸化物、炭素材料、金属以外の酸化物、窒化物、炭化物などが挙げられる。また、非異方性充填材の形状は、多面体、球状、不定形の粉末などが挙げられる。
 非異方性充填材において、金属としては、アルミニウム、銅、ニッケルなど、金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛など、金属窒化物としては窒化アルミニウムなどを例示することができる。金属水酸化物としては、水酸化アルミニウムが挙げられる。さらに、炭素材料としては球状黒鉛などが挙げられる。金属以外の酸化物、窒化物、炭化物としては、石英、窒化ホウ素、炭化ケイ素などが挙げられる。
 非異方性充填材は、上記した中でも、酸化アルミニウム、アルミニウム、酸化亜鉛、窒化ホウ素、及び窒化アルミニウムから選択されることが好ましく、特に充填性や熱伝導率の観点から酸化アルミニウムが好ましく、アルミナがより好ましい。
 非異方性充填材は、上記したものを1種単独で使用してもよいし、2種以上を併用してもよい。
 非異方性充填材の平均粒径(D50)は0.1~50μmであることが好ましく、0.3~35μmであることがより好ましく、1~15μmであることがさらに好ましい。平均粒径を50μm以下とすることで、繊維状充填材の配向を乱すなどの不具合が生じにくくなる。また、平均粒径を0.1μm以上とすることで、非異方性充填材の比表面積が必要以上に大きくならず、多量に配合しても混合組成物の粘度は上昇しにくく、非異方性充填材を高充填しやすくなる。
 非異方性充填材は、例えば、非異方性充填材として、少なくとも2つの互いに異なる平均粒径を有する非異方性充填材を使用してもよい。
 なお、非異方性充填材の平均粒径は、電子顕微鏡等で観察して測定できる。より具体的には、例えば電子顕微鏡や光学顕微鏡を用いて、任意の非異方性充填材500個以上の粒径を測定して、繊維状充填材と同様の方法でD50を求めるとよい。
 非異方性充填材の含有量は、マトリクス100質量部に対して、100~800質量部の範囲であることが好ましく、150~600質量部の範囲であることがより好ましく、180~400質量部がさらに好ましい。
 非異方性充填材は、100質量部以上とすることで、繊維状充填材同士の隙間に介在する非異方性充填材の量が十分となり、熱伝導性が良好になる。一方、800質量部以下とすることで、含有量に応じた熱伝導性を高める効果を得ることができる。
(マトリクス)
 熱伝導性シートは有機高分子からなるマトリクスを含む。マトリクスは、エラストマーやゴム等の有機高分子であり、好ましくは主剤と硬化剤のような混合系からなる液状の高分子組成物(硬化性高分子組成物)を硬化して形成したものを使用するとよい。硬化性高分子組成物は、例えば、未架橋ゴムと架橋剤からなるものであってもよいし、モノマー、プレポリマーなどと硬化剤などを含むものであってもよい。また、上記硬化反応は常温硬化であっても、熱硬化であっても良い。
 硬化性高分子組成物から形成されるマトリクスは、シリコーンゴムが例示される。シリコーンゴムの場合、マトリクス(硬化性高分子組成物)としては、好ましくは、付加反応硬化型シリコーンを使用する。また、より具体的には、硬化性高分子組成物として、アルケニル基含有オルガノポリシロキサンとハイドロジェンオルガノポリシロキサンとを含むものを使用すればよい。
 ゴムとしては、上記以外にも各種の合成ゴムを使用可能であり、具体例には、例えば、アクリルゴム、ニトリルゴム、イソプレンゴム、ウレタンゴム、エチレンプロピレンゴム、スチレン・ブタジエンゴム、ブタジエンゴム、フッ素ゴム、ブチルゴム等が挙げられる。これらゴムを使用する場合、合成ゴムは、熱伝導性シートにおいて、架橋されてもよいし、未架橋(すなわち、未硬化)のままでもよい。未架橋のゴムは、主に流動配向にて使用される。
 また、架橋(すなわち、硬化)される場合には、上記で説明したとおり、マトリクスは、これら合成ゴムからなる未架橋ゴムと、架橋剤とからなる硬化性高分子組成物を硬化したものとすればよい。
 また、エラストマーとしては、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなど熱可塑性エラストマーや、主剤と硬化剤からなる混合系の液状の高分子組成物を硬化して形成する熱硬化型エラストマーも使用可能である。例えば、水酸基を有する高分子とイソシアネートとを含む高分子組成物を硬化して形成するポリウレタン系エラストマーを例示できる。
 上記した中では、例えば硬化後のマトリクスが特に柔軟であり、繊維状充填材や必要に応じて配合される鱗片状充填材、非異方性充填材の充填性が良い点から、シリコーンゴム、特に付加反応硬化型シリコーンを用いることが好ましい。
 また、マトリクスを形成するための高分子組成物は、高分子化合物単体からなるものでもよいが、高分子化合物と可塑剤とからなるものでもよい。可塑剤は、合成ゴムを使用する場合に好適に使用され、可塑剤を含むことで、未架橋時の高分子マトリクスの柔軟性を高めることが可能である。
 マトリクスの含有量は、体積基準の充填率(体積充填率)で表すと、熱伝導性シート全量に対して、好ましくは20~50体積%、より好ましくは25~45体積%である。
 また、マトリクスの含有量は、熱伝導性シート全量に対して、好ましくは10~40質量%、より好ましくは15~35質量%である。
(添加剤)
 本発明では、添加剤としてカップリング剤を使用してもよい。カップリング剤は、後述する混合組成物に配合されるとよいが、配合されたカップリング剤は、熱伝導性シートの製造時に揮発するとよい。カップリング剤は、一部が揮発してもよく、その場合には残ったカップリング剤が熱伝導性シートに含有されるとよいが、全てのカップリング剤が揮発してもよい。後述する混合組成物にカップリング剤を配合することで、繊維状充填材などの充填材の有機高分子に対する分散性を向上させ、また、混合組成物の粘度を低下させることができ、熱伝導性シートの熱抵抗値を低くしやすくなる。
 カップリング剤としては、シランカップリング剤が挙げられる。シランカップリング剤は、アルキルアルコシキシランなどの各種のアルコキシシラン化合物が挙げられる。
 カップリング剤の後述する混合組成物における配合量は、高分子組成物100質量部に対して、例えば1~50質量部、好ましくは5~40質量部である。
 熱伝導性シートにおいて、マトリクスには、さらに熱伝導性シートとしての機能を損なわない範囲で種々の添加剤を配合させてもよい。添加剤としては、例えば、分散剤、粘着剤、難燃剤、酸化防止剤、着色剤、沈降防止剤などから選択される少なくとも1種以上が挙げられる。また、上記したように硬化性高分子組成物を架橋、硬化などさせる場合には、添加剤として、架橋、硬化を促進させる架橋促進剤、硬化促進剤などが配合されてもよい。
(熱抵抗値)
 本発明の熱伝導性シートは、熱抵抗値が0.25℃・cm/W以下であることが好ましく、0.2℃・cm/W以下であることがより好ましく、0.16℃・cm/W以下であることがさらに好ましい。熱抵抗値が上記上限値以下であると、熱伝導性シートを介した発熱体から放熱体への熱移動の効率が向上し、優れた熱伝導性を得ることができる。本発明では、熱抵抗値は低ければ低い程よく、0℃・cm/W以上であればよいが、実用的には、例えば0.01℃・cm/W以上、好ましくは0.05℃・cm/W以上である。
 なお、熱抵抗値は、実施例に記載の測定方法により得ることができる。
(E硬度)
 本発明の熱伝導性シートは、JIS K6253で規定するタイプE硬度(以下、「E硬度」ともいう)が10~80であることが好ましく、20~70であることがより好ましく、30~65であることがさらに好ましい。E硬度が上記下限値以上であると、後述する工程(B)において、熱伝導性シートの研磨がしやすくなり、また、熱伝導性シートが極めて薄い場合でも一定の弾力が付与される。また、E硬度が上記上限値以下であると、熱伝導性シートに一定の柔軟性が付与される。
 熱伝導性シートは、少なくとも一方の表面がスライス面であることが好ましい。少なくとも一方の表面がスライス面であることで、熱抵抗値を効果的に低くすることができる。熱伝導性シートは、一方の面がスライス面であってもよいが、両面がスライス面であってもよい。なお、スライス面とは、後述する通り、せん断刃やレーザーなどにより切断して形成された面である。
 また、熱伝導性シートは、少なくとも一方の表面が研磨面であることも好ましい。熱伝導性シートの少なくとも一方の表面が研磨面であることで、熱抵抗値をより効果的に低くすることができる。熱伝導性シートは、一方の面が研磨面であってもよいが、両面が研磨面であってもよい。なお、研磨面とは、後述する通り、研磨紙などにより研磨された面である。
 熱伝導性シートは、少なくとも一方の表面がスライス面かつ研磨面であることが好ましく、両面がスライス面かつ研磨面であることがより好ましい。
[熱伝導性シートの製造方法]
 本発明の熱伝導性シートは、例えば、以下の工程(A)、及び(B)を備える方法により製造できる。
 工程(A):一方向に沿って、繊維状充填材が配向された配向成形体を得る工程
 工程(B):配向成形体を切断してシート状にして、シート状成形体を得る工程
 また、本製造方法は、以下の工程(C)を備えることが好ましい。
 工程(C):シート状成形体の表面を研磨する工程
 以下、各工程について、より詳細に説明する。
<工程(A)>
 工程(A)では、例えば、マトリクスの原料となる高分子組成物と、繊維状充填材と、必要に応じて配合される繊維状充填材以外の充填材(例えば、鱗片状充填材及び非異方性充填材)やカップリング剤などのその他の添加剤を含む混合組成物から配向成形体を成形する。混合組成物は、好ましくは硬化して配向成形体となるものである。配向成形体は、熱伝導性シートにおいて厚さ方向となる一方向に沿って、繊維状充填材が配向されたものである。配向成形体は、より具体的には磁場配向製法、流動配向製法により得ることができるが、これらの中では、磁場配向製法が好ましい。
 本製造方法で原料として使用される、繊維状充填材、鱗片状充填材、非異方性充填材の詳細は、上記の通りであり、D10,D50、D90、アスペクト比、平均粒径なども上記の通りであってもよい。
 ただし、繊維状充填材は、その製造工程中で切断されて短くなることがあるので、上記したD10、D50、D90よりも長くなるように設計するとよい。例えば、原料として使用される繊維状充填材のD50は例えば140μm未満、好ましくは100μm未満、より好ましくは99.5μm以下、更に好ましくは90μm以下であり、また、好ましくは5μm以上、より好ましくは40μm以上、さらに好ましくは55μm以上である。
 さらに、繊維状充填材としては、得られる熱伝導性シートの厚さ(T)に対する平均繊維長D50の比(D50/T)が0.58未満となる繊維状充填材を原料として使用してもよいが、例えば0.70未満程であるとよく、0.67以下であることが好ましい。また、D50/Tの下限は、特に限定されないが、例えば0.20以上であるとよく、好ましく0.40以上である。
(磁場配向製法)
 磁場配向製法では、硬化後にマトリクスとなる液状の高分子組成物と、繊維状充填材と、必要に応じて配合されるその他の充填材、添加剤などを含む混合組成物を注型容器などの内部に注入したうえで磁場に置き、繊維状充填材及び必要に応じて配合される鱗片状充填材を磁場に沿って配向させた後、高分子組成物を硬化させることで配向成形体を得る。配向成形体としてはブロック状のものとすることが好ましい。また、高分子組成物は、可塑剤を含有していてもよい。
 また、金型内部において、混合組成物に接触する部分には、剥離フィルムを配置してもよい。剥離フィルムは、例えば、剥離性の良い樹脂フィルムや、片面が剥離剤などで剥離処理された樹脂フィルムが使用される。剥離フィルムを使用することで、配向成形体が金型から離型しやすくなる。
 磁場配向製法において使用する混合組成物の粘度は、磁場配向させるために、10~300Pa・sであることが好ましい。10Pa・s以上とすることで、各充填材が沈降しにくくなる。また、300Pa・s以下とすることで流動性が良好になり、磁場で繊維状充填材及び必要に応じて配合される鱗片状充填材が適切に配向され、配向に時間がかかりすぎたりする不具合も生じない。なお、粘度とは、回転粘度計(ブルックフィールド粘度計DV-E、スピンドルSC4-14)を用いて25℃において、回転速度10rpmで測定された粘度である。
 ただし、沈降し難い充填材を用いたり、沈降防止剤等の添加剤を組合せたりする場合には、混合組成物の粘度は、10Pa・s未満としてもよい。
 磁場配向製法において、磁力線を印加するための磁力線発生源としては、超電導磁石、永久磁石、電磁石等が挙げられるが、高い磁束密度の磁場を発生することができる点で超電導磁石が好ましい。これらの磁力線発生源から発生する磁場の磁束密度は、好ましくは1~30テスラである。磁束密度を1テスラ以上とすると、繊維状充填材を容易に配向させることが可能になる。また、30テスラ以下にすることで、実用的に製造することが可能になる。
 高分子組成物の硬化は、加熱により行うとよいが、例えば、50~150℃程度の温度で行うとよい。また、加熱時間は、例えば10分~3時間程度である。
(流動配向製法)
 流動配向製法では、混合組成物に剪断力をかけて、面方向に繊維状充填材及び必要に応じて配合される鱗片状充填材が配向された予備的シートを製造し、これを複数枚積層して積層ブロックを製造して、その積層ブロックを配向成形体とするとよい。
 より具体的には、流動配向製法では、まず、高分子組成物に繊維状充填材、及び必要に応じて配合される鱗片状充填材、非異方性充填材、並びに種々の添加剤を混入し攪拌し、混入させた固形物が均質に分散した混合組成物を調製する。ここで、高分子組成物に使用する高分子化合物は、常温(23℃)で液状の高分子化合物を含むものであってもよいし、常温で固体状の高分子化合物を含むものであってもよい。また、高分子組成物は、可塑剤を含有していてもよい。
 混合組成物は、シート状に伸長させるときに剪断力がかかるように比較的高粘度であり、混合組成物の粘度は、具体的には3~500Pa・sであることが好ましい。混合組成物は、上記粘度を得るために、溶剤が配合されることが好ましい。
 次に、混合組成物に対して剪断力を付与しながら平たく伸長させてシート状(予備的シート)に成形する。剪断力をかけることで、繊維状充填材及び必要に応じて配合される鱗片状充填材を剪断方向に配向させることができる。シートの成形手段として、例えば、バーコータやドクターブレード等の塗布用アプリケータ、もしくは、押出成形やノズルからの吐出等により、基材フィルム上に混合組成物を塗工し、その後、必要に応じて乾燥したり、混合組成物を半硬化させたりするとよい。予備的シートの厚さは、50~5000μm程度とすることが好ましい。予備的シートにおいて、繊維状充填材及び必要に応じて配合される鱗片状充填材はシートの面方向に沿う一方向に配向している。
 次いで、予備的シートを、配向方向が同じになるように複数枚重ねて積層した後、加熱、紫外線照射などにより混合組成物を必要に応じて硬化させつつ、熱プレス等により予備的シートを互いに接着させることで積層ブロックを形成し、その積層ブロックを配向成形体とするとよい。
<工程(B)>
 工程(B)では、工程(A)にて得られた配向成形体を、繊維状充填材が配向する方向に対して垂直に、スライスなどにより切断して、シート状成形体を得る。スライスは、例えばせん断刃やレーザーなどで行うとよい。シート状成形体は、スライスなどの切断により、切断面である各表面においてマトリクスから繊維状充填材の一部が露出する場合がある。露出する繊維状充填材は、ほとんどが倒れずに厚さ方向に配向したものとなる。
 なお、工程(B)では、スライスなどにより配向成形体を切断することに伴い、配向成形体中に含まれる繊維状充填材は、本発明の効果を損なわない範囲で切断されてもよい。
 工程(B)により、スライスして得たシート状成形体は、さらに加熱してもよく、加熱することによりシート状成形体を二次硬化してもよく、また、混合組成物にカップリング剤が配合される場合には、シート状成形体を加熱することで、カップリング剤の一部又は全部を揮発させてもよい。シート状成形体の加熱は、後述する工程(C)の前に行うことが好ましいが、工程(C)の後で行ってもよい。
 シート状成形体の加熱は、例えば100~200℃、好ましくは120~180℃で、例えば30分~24時間、好ましくは1~6時間で行うとよい。
 上記工程(B)を経て得たシート状成形体は、そのまま熱伝導性シートとしてもよいが、後述する工程(C)により研磨することで、熱伝導性シートとすることが好ましい。研磨することで、シート状成形体の表面状態がより良好となり、熱抵抗値をより一層低下させやすくなる。
<工程(C)>
 工程(C)は、シート状成形体の表面を研磨する工程である。シート状成形体は、研磨することで、繊維状充填材などの異方性充填材を一定量表面に露出させたままシート表面を平滑とすることができる。また、繊維状充填材を倒れた状態などにもすることもできる。そのため、熱伝導性シートの表面を他の部材に密着させやすく、また、シート表面が一定面積以上で繊維状充填材に覆われた状態にしやすくなり、熱抵抗値を低下させやすくなる。
 工程(C)では、工程(B)で得られたシート状成形体の少なくとも一方の表面を研磨するとよいが、シート状成形体の両面を研磨することが好ましい。表面の研磨は、例えば、研磨紙や研磨フィルム、研磨布、研磨ベルト等を使用して行うとよい。
 研磨紙の性状としては、含有する砥粒の平均粒径(D50)が0.1~100μmのものが好ましく、1~60μmのものがより好ましい。また、研磨紙の砥粒の粒度としては、♯120~20000であることが好ましく、♯300~15000であることが好ましく、♯320~4000であることがより好ましい。
 研磨方法は、シート状成形体の表面に対して、例えば研磨紙を同一直線方向に連続して当接し研磨するほか、一定距離を往復して研磨したり、同一方向に回転して研磨をしたり、様々な方向に当接して研磨したり、といった方法を用いることができる。
 また、研磨の程度は、例えば、表面状態を観察しながら行えばよいが、例えば往復研磨の場合は、1~300回の往復が好ましく、2~200回がより好ましく、3~50回がさらに好ましい。
 シート状成形体の表面の研磨は、2回の研磨工程に分けて行ってもよい。例えば、砥粒の平均粒径が大きい研磨紙を用いて行う1回目の研磨の後、1回目の研磨よりも砥粒の平均粒径が小さい研磨紙を用いて行う2回目の研磨を行うとよい。
<第2の実施形態>
 次に、本発明の第2の実施形態に係る熱伝導性シートについて説明する。以下、第2の実施形態に係る熱伝導性シートについて、第1の実施形態に係る熱伝導性シートとの相違点を説明する。
 第2の実施形態に係る熱伝導性シートは、有機高分子からなるマトリクスと、繊維状充填材とを含む熱伝導性シートであって、熱伝導性シートの厚さが200μm未満であり、繊維状充填材が、熱伝導性シートの厚さ方向に配向しており、該シート中に含まれる繊維状充填材の平均繊維長D50が5μm以上85μm未満である。
 本発明は、以上のように、薄い熱伝導性シートにおいて、平均繊維長D50を5μm以上とすることにより、熱伝導性シートの熱伝導性を良好にすることができる。また、平均繊維長D50を85μm未満とすることにより、繊維状充填材の脱落を抑制し、熱伝導性シートの熱抵抗値を低くすることができる。これら観点から、第2の実施形態における平均繊維長D50は、25μm以上84μm以下であることが好ましく、35μm以上73μm以下であることがより好ましい。
 また、前記熱伝導性シートの厚さが200μm未満150μm以上のとき、前記平均繊維長D50の上限は85μm未満であることが好ましく、150μm未満125μm以上のとき、前記平均繊維長D50の上限は75μm以下であることが好ましく、前記熱伝導性シートの厚さが125μm未満100μm以上のとき、前記平均繊維長D50の上限は60μm以下であることが好ましく、前記熱伝導性シートの厚さが100μm未満75μm以上のとき、前記平均繊維長D50の上限は50μm以下であることが好ましく、前記熱伝導性シートの厚さが75μm未満50μm以上のとき、前記平均繊維長D50の上限は40μm以下であることが好ましい。
 なお、繊維状充填材の平均繊維長D50の熱伝導性シートの厚さ(T)に対する比(D50/T)は、第1の実施形態と同様に、0.58未満であってもよいが、必ずしも0.58未満でなくてもよい。比(D50/T)の好適な範囲は上記と同様である。
 また、繊維状充填材に関するその他の詳細な説明、並びに繊維状充填材以外の充填材、マトリクス、添加剤、熱抵抗値、E硬度、シート表面の態様、及び熱伝導性シートの製造方法などに関する詳細な説明は、上記第1の実施形態で説明したとおりであるので省略する。
[熱伝導性シートの用途]
 熱伝導性シートは、電子機器内部などにおいて使用される。具体的には、熱伝導性シートは、発熱体と放熱体との間に介在させられ、発熱体で発した熱を熱伝導して放熱体に移動させ、放熱体から放熱させる。ここで、発熱体としては、電子機器内部で使用されるCPU、パワーアンプ、バッテリー等の電源などの各種の電子部品が挙げられる。また、放熱体は、ヒートシンク、ヒートパイプ、ヒートポンプ、電子機器の金属筐体などが挙げられる。熱伝導性シートは、両表面それぞれが、発熱体及び放熱体それぞれに密着し、かつ圧縮して使用される。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 本実施例における測定方法及び評価方法は、以下の通りである。
[平均繊維長D10、D50、D90]
 熱伝導性シートにおける繊維状充填材の平均繊維長D10、D50、D90は、以下の通り測定した。まず、熱伝導性シートをシリコーン溶解剤(関東化学株式会社製KSR-1)に浸漬して溶解した。次いでその溶解液について遠心分離を行い固形分と液体に分離した。得られた固形分について、さらに前記シリコーン溶解剤への浸漬と遠心分離とを2回行って得られた固形分をさらにソルベントナフサへの浸漬と遠心分離とを2回行って洗浄した後に、ソルベントナフサを乾燥させることで粉末状の固形分を単離した。ここで固形分には繊維状充填材と繊維状ではない充填材とが含まれている。そして、該単離物を、光学顕微鏡(キーエンス株式会社製「VHX-S15」)を用いて観察像(画像)を得てから、画像解析ソフトウェアWinROOF(三谷商事製)により、約500個の個々の繊維状充填材の繊維長を計測した。このときWinROOFでは針状分離計測によりアスペクト比が2以上の繊維状充填材のみを計測した。続いて、横軸を繊維長、縦軸を積算頻度(数基準)とした繊維長分布曲線を得た。得られた繊維長分布曲線により、繊維状充填材の平均繊維長D10、D50、D90を求めた。
 また、原料として使用した繊維状充填材のD50は、混合組成物に配合される前の繊維状充填材を、上記と同様の方法で、光学顕微鏡で観察した得た約500個の個々の繊維状充填材の繊維長を計測することで求めた。鱗片状充填材及び非異方性充填材のD50及びアスペクト比も、同様に光学顕微鏡で約500個の各粒子を観察して求めた。なお、実施例において、アスペクト比は、平均値を示す。
[初期厚さ]
 熱抵抗値を測定する前の熱伝導性シートの厚さ(初期厚さ)を、シックネスゲージにより測定した。
[E硬度]
 日本工業規格であるJIS K 6253に基づき、熱伝導性シートのタイプE硬度を測定した。具体的には、各例で作製した配向成形体について、タイプEデュロメータを用いて測定した。
[熱抵抗値]
 熱抵抗値は、図1に示すような熱抵抗測定機を用い、以下に示す方法で測定した。
 具体的には、各試料について、本試験用に大きさが30mm×30mmの試験片Sを作製した。そして各試験片Sを、測定面が25.4mm×25.4mmで側面が断熱材21で覆われた銅製ブロック22の上に貼付し、上方の銅製ブロック23で挟み、ロードセル26によって40psiの荷重をかけた。ここで、下方の銅製ブロック22はヒーター24と接している。また、上方の銅製ブロック23は、断熱材21によって覆われ、かつファン付きのヒートシンク25に接続されている。次いで、ヒーター24が80℃になるように発熱させ、温度が略定常状態となる10分後に、上方の銅製ブロック23の温度(θj0)、下方の銅製ブロック22の温度(θj1)、及びヒーターの発熱量(Q)を測定し、以下の式(1)から各試料の熱抵抗値を求めた。なお、熱抵抗値の測定と同時に、熱抵抗値測定時の熱伝導性シートの厚さも測定した。
   熱抵抗=(θj1-θj0)/Q     ・・・ 式(1)
 式(1)において、θj1は下方の銅製ブロック22の温度、θj0は上方の銅製ブロック23の温度、Qは発熱量である。
[使用成分]
 熱伝導性シートの原料としては、以下の各成分を使用した。
(高分子組成物)
 主剤(シリコーンA剤)としてアルケニル基含有オルガノポリシロキサン、硬化剤(シリコーンB剤)としてハイドロジェンオルガノポリシロキサンを含む付加反応型オルガノポリシロキサン
(繊維状充填材)
 繊維状充填材として、以下のものを使用した。
 黒鉛化炭素繊維(1)・・・平均繊維長(D50)55.1μm、(D10)32.4μm、(D90)105.9μm、熱伝導率1200W/m・K
 黒鉛化炭素繊維(2)・・・平均繊維長(D50)76.7μm、(D10)40.2μm、(D90)127.1μm、熱伝導率1200W/m・K
 黒鉛化炭素繊維(3)・・・平均繊維長(D50)82.2μm、(D10)46.3μm、(D90)142.8μm、熱伝導率1200W/m・K
 黒鉛化炭素繊維(4)・・・平均繊維長(D50)87.0μm、(D10)44.0μm、(D90)166.7μm、熱伝導率1200W/m・K
 黒鉛化炭素繊維(5)・・・平均繊維長(D50)94.9μm、(D10)49.2μm、(D90)176.0μm、熱伝導率1200W/m・K
 黒鉛化炭素繊維(6)・・・平均繊維長(D50)99.2μm、(D10)51.4μm、(D90)183.2μm、熱伝導率1200W/m・K
 黒鉛化炭素繊維(7)・・・平均繊維長(D50)100.8μm、(D10)55.3μm、(D90)190.3μm、熱伝導率1200W/m・K
 黒鉛化炭素繊維(8)・・・平均繊維長(D50)126.2μm、(D10)71.0μm、(D90)253.8μm、熱伝導率1200W/m・K
 黒鉛化炭素繊維(1)~(8)は、直径約10μmの黒鉛化炭素繊維を、粉砕条件を調整して粉砕して、上記平均繊維長となるようにした。
 なお、シート成形した後のシート内における、黒鉛化炭素繊維の平均繊維長は、表1~10の特性値の欄にそれぞれ記載する通りである。
 カップリング剤・・n-デシルトリメトキシシラン
 鱗片状黒鉛粉末・・鱗片状、平均粒径(D50)15μm、アスペクト比10、熱伝導率550W/m・K
 アルミニウム粉末・・不定形、平均粒径(D50)3μm、アスペクト比1~1.5
 酸化アルミニウム(1)・・多面体、平均粒径(D50)0.5μm、アスペクト比1.0
 酸化アルミニウム(2)・・球状、平均粒径(D50)3μm、アスペクト比1.0
[実施例1]
 高分子組成物として、アルケニル基含有オルガノポリシロキサン及びハイドロジェンオルガノポリシロキサン(合計で100質量部)、カップリング剤15質量部、黒鉛化炭素繊維(3)160質量部、鱗片状黒鉛粉末20質量部、アルミニウム粉末243質量部、並びに酸化アルミニウム(1)30質量部を、プラネタリーミキサーを用いて25℃で50分間混合して混合組成物を得た。
 続いて、熱伝導性シートよりも充分に大きな厚さに設定された金型に上記混合組成物を注入し、8Tの磁場を厚さ方向に印加して炭素繊維を厚さ方向に配向した後に、80℃で60分間加熱することでマトリクスを硬化して、ブロック状の配向成形体を得た。
 次に、せん断刃を用いて、ブロック状の配向成形体を厚さ約150μmのシート状にスライスすることにより、炭素繊維が露出しているシート状成形体を得た。その後、シート状成形体は、150℃で2時間加熱した。
 続いて、シート状成形体を、砥粒の平均粒径(D50)が20μmである粗目の研磨紙A(粒度#800)により25回往復研磨し、その後さらに、砥粒の平均粒径(D50)が3μmである粗目の研磨紙B(粒度#4000)により10回往復研磨した。
[実施例2~8、比較例1~32]
 混合組成物の組成を表1~8のとおりに変更した点、得られる熱伝導性シートの厚さを表1~8となるように調整した以外は実施例1と同様にして熱伝導性シートを作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
[実施例9、比較例33~41]
 混合組成物の組成を表9及び10のとおりに変更した点、得られる熱伝導性シートの厚さを表9及び10のとおりとなるように調整した点、並びに得られたシート状成形体を加熱しなかったこと以外は、実施例1と同様にして熱伝導性シートを作製した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 以上の結果から、同じ配合からなる熱伝導性シートで見た場合、実施例で作製した熱伝導性シートは熱抵抗値が低く、良好な熱伝導性を発現できるのに対し、比較例で作製した熱伝導性シートは熱抵抗値が高く、良好な熱伝導性を発現できないことが明らかである。
 より具体的には、実施例1の熱伝導性シートは、D50/Tを0.58未満とすることで、厚さが実施例1よりも薄いもののD50/Tが0.58以上の比較例4よりも熱抵抗値が低くなった。また、実施例1の熱伝導性シートは、D50/Tが0.58未満であるものの厚さが200μm以上である比較例1~3よりも熱抵抗値が低くなった。このような傾向は、実施例2~9と、比較例5~27、33~36との対比でも同様であった。
 さらに、比較例28~32、37~41は、繊維状充填材に比較的長い繊維長のものを使用した例であるが、熱伝導性シートの厚さが200μm以上となり、又は、D50/Tが0.58以上となったので、D50/Tを調整しても熱抵抗値を十分に低くすることができなかった。

 

Claims (11)

  1.  有機高分子からなるマトリクスと、繊維状充填材とを含む熱伝導性シートであって、
     前記熱伝導性シートの厚さが200μm未満であり、
     前記繊維状充填材が、前記熱伝導性シートの厚さ方向に配向しており、
     前記繊維状充填材の平均繊維長D50の前記熱伝導性シートの厚さ(T)に対する比(D50/T)が0.58未満である、熱伝導性シート。
  2.  前記繊維状充填材の平均繊維長D50が85μm未満である、請求項1に記載の熱伝導性シート。
  3.  有機高分子からなるマトリクスと、繊維状充填材とを含む熱伝導性シートであって、
     前記熱伝導性シートの厚さが200μm未満であり、
     前記繊維状充填材が、前記熱伝導性シートの厚さ方向に配向しており、
     前記繊維状充填材の平均繊維長D50が5μm以上85μm未満である、熱伝導性シート。
  4.  前記繊維状充填材の平均繊維長D90が135μm未満である、請求項1~3のいずれか1項に記載の熱伝導性シート。
  5.  前記熱伝導性シートの少なくとも一方の面が研磨面である、請求項1~4のいずれか1項に記載の熱伝導性シート。
  6.  前記マトリクスがシリコーンゴムである請求項1~5のいずれか1項に記載の熱伝導性シート。
  7.  前記マトリクスが20~50体積%であり、
     前記マトリクス100質量部に対して、前記繊維状充填材を30~500質量部含む請求項1~6のいずれか1項に記載の熱伝導性シート。
  8.  さらに非異方性充填材を含む請求項1~7のいずれか1項に記載の熱伝導性シート。
  9.  さらに鱗片状充填材を含む請求項1~8のいずれか1項に記載の熱伝導性シート。
  10.  請求項1~9のいずれか1項に記載の熱伝導性シートの製造方法であって、
     高分子組成物と、繊維状充填材とを含む混合組成物から、一方向に沿って繊維状充填材が配向された配向成形体を得る工程と、
     前記配向成形体を切断してシート状にして、シート状成形体を得る工程と
     を備える、熱伝導性シートの製造方法。
  11.  前記熱伝導性シートの表面を研磨する工程を備える、請求項10に記載の熱伝導性シートの製造方法。

     
PCT/JP2023/012651 2022-03-29 2023-03-28 熱伝導性シート及び熱伝導性シートの製造方法 WO2023190587A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-054428 2022-03-29
JP2022054428 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190587A1 true WO2023190587A1 (ja) 2023-10-05

Family

ID=88201885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012651 WO2023190587A1 (ja) 2022-03-29 2023-03-28 熱伝導性シート及び熱伝導性シートの製造方法

Country Status (2)

Country Link
TW (1) TW202346529A (ja)
WO (1) WO2023190587A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179318A1 (ja) * 2016-04-11 2017-10-19 ポリマテック・ジャパン株式会社 熱伝導性シート
JP2018046073A (ja) * 2016-09-12 2018-03-22 デクセリアルズ株式会社 熱伝導シート、及び半導体装置
WO2022070680A1 (ja) * 2020-09-30 2022-04-07 積水ポリマテック株式会社 熱伝導性シート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179318A1 (ja) * 2016-04-11 2017-10-19 ポリマテック・ジャパン株式会社 熱伝導性シート
JP2018046073A (ja) * 2016-09-12 2018-03-22 デクセリアルズ株式会社 熱伝導シート、及び半導体装置
WO2022070680A1 (ja) * 2020-09-30 2022-04-07 積水ポリマテック株式会社 熱伝導性シート

Also Published As

Publication number Publication date
TW202346529A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6532047B2 (ja) 熱伝導性シート
JP6650176B1 (ja) 熱伝導性シート
CN111699090B (zh) 导热性片
US11987687B2 (en) Heat conductive sheet
TWI825168B (zh) 導熱性片
JP6650175B1 (ja) 熱伝導性シート
JP7076871B1 (ja) 熱伝導性シート
WO2023190587A1 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
WO2022210419A1 (ja) 熱伝導性シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780596

Country of ref document: EP

Kind code of ref document: A1