TWI806205B - 燃料電池發電系統 - Google Patents

燃料電池發電系統 Download PDF

Info

Publication number
TWI806205B
TWI806205B TW110140060A TW110140060A TWI806205B TW I806205 B TWI806205 B TW I806205B TW 110140060 A TW110140060 A TW 110140060A TW 110140060 A TW110140060 A TW 110140060A TW I806205 B TWI806205 B TW I806205B
Authority
TW
Taiwan
Prior art keywords
fuel cell
cell module
fuel
power generation
fuel gas
Prior art date
Application number
TW110140060A
Other languages
English (en)
Other versions
TW202236726A (zh
Inventor
久留長生
岩田光由
町田考洋
Original Assignee
日商三菱動力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱動力股份有限公司 filed Critical 日商三菱動力股份有限公司
Publication of TW202236726A publication Critical patent/TW202236726A/zh
Application granted granted Critical
Publication of TWI806205B publication Critical patent/TWI806205B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04932Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池發電模組,係具備:第1燃料電池模組;以及第2燃料電池模組,係能夠使用從第1燃料電池模組排出的第1排放燃料氣體發電。並構成為:第1再循環線係從流動有從第2燃料電池模組排出的第2排放燃料氣體之第2排放燃料氣體線再循環,而將第2排放燃料氣體供給至第2燃料電池模組的燃料側電極。

Description

燃料電池發電系統
本揭示,係關於燃料電池發電系統。 本案係根據2020年10月30日於日本國特許廳所申請之日本特願2020-183269號主張優先權,並將其內容援用於此。
藉由使燃料氣體與氧化性氣體進行化學反應而藉此發電的燃料電池,係具有優異的發電效率及環境友善等之特性。其中,固體氧化物形燃料電池(Solid Oxide Fuel Cell:SOFC),係使用氧化鋯陶瓷等之陶瓷作為電解質,並供給氫、都市煤氣、天然氣、石油、甲醇、及將含碳原料藉由氣體化設備製造的氣體化氣體等之氣體等作為燃料氣體,在大約700℃~1000℃的高溫環境下反應而進行發電。
作為使用該種之燃料電池的發電系統之一例,係有專利文獻1。於專利文獻1,係藉由對於燃料氣體的流路串接連接複數個燃料電池模組,藉此改善各燃料電池模組之供給燃料的使用率,而能夠使系統效率提升。 [先前技術文獻]
[專利文獻1]日本特許第3924243號公報
[發明所欲解決之問題]
如前述專利文獻1般將複數個燃料電池模組串接連接之燃料電池發電系統,係將從前段之燃料電池模組排出之排放燃料氣體在後段之燃料電池模組進行使用。因此,與供給至前段之燃料電池模組的燃料氣體相比,供給至後段之燃料電池模組的排放燃料氣體的燃料成分濃度減少。因此,與前段之燃料電池模組相比,輸出於後段之燃料電池模組受到抑制而伴隨於發電的發熱量較小,故會有難以將燃料電池模組維持在能夠恰當運用的溫度之情形。如此狀況,係特別是在部分負荷運轉時或在系統要求負荷發生變化之過渡運轉時容易產生,而有損害系統穩定性之虞。
並且,各燃料電池模組,係使用水蒸氣將燃料氣體所包含之甲烷分量改質並使用於發電反應,然而對於後段之燃料電池模組係供給來自前段之燃料電池模組的排放燃料氣體,故視前段之燃料電池模組的發電狀態,會有無法充分獲得改質所必要之水蒸氣之虞。於前述專利文獻1,雖係根據來自前段之燃料電池模組的排放燃料氣體所包含之水蒸氣,決定對於後段之燃料電池模組進行追加供給的燃料氣體量,藉此控制排放燃料氣體的S/C(水蒸氣/燃料成分的比率),然而視前段之燃料電池模組的發電狀態(負荷率或燃料使用率等),排放燃料氣體所包含的水分量有所不同,故特別是在系統要求負荷變化之過渡時難以維持適當的S/C。
本揭示之至少一實施形態係有鑑於前述情事而完成者,目的在於提供一種燃料電池發電系統,其係在具備對於燃料氣體的流動串聯(串接)連接的複數個燃料電池模組的燃料電池發電系統,能夠具有穩定的動作狀態,藉此能夠達成良好的系統效率。 [解決問題之技術手段]
為解決前述課題,本揭示之至少一形態,係具備: 第1燃料電池模組,係能夠使用燃料氣體發電; 第1排放燃料氣體線,係流動有從前述第1燃料電池模組排出之第1排放燃料氣體。 第2燃料電池模組,係能夠使用前述第1排放燃料氣體發電; 第2排放燃料氣體線,係流動有從前述第2燃料電池模組排出之第2排放燃料氣體;以及 第1再循環線,係為了將前述第2排放燃料氣體供給至前述第2燃料電池模組的燃料側電極,從前述第2排放燃料氣體線進行再循環。 [發明之效果]
依據本揭示之至少一實施形態,能夠提供一種燃料電池發電系統,其係在具備對於燃料氣體的流動串聯(串接)連接的複數個燃料電池模組的燃料電池發電系統,能夠具有穩定的動作狀態,且能夠達成良好的系統效率。
以下,參照所附圖式針對本發明之數個實施形態進行說明。然而,作為實施形態受到記載或是圖式所示之構成零件的尺寸、材質、形狀、其相對性配置等,係並非將本發明的範圍限定於斯,而僅止於說明例。
以下,為方便說明,在使用以紙面為基準之「上」及「下」的表現說明之各構成元件的位置關係,係分別表示垂直上方側、垂直下方側者。並且,於本實施形態中,在上下方向及水平方向能夠獲得相同的效果者,於紙面中之上下方向並不限於垂直上下方向,例如亦可對應於正交於垂直方向的水平方向。
以下,雖針對採用固體氧化物形燃料電池(Solid Oxide Fuel Cell, SOFC)作為構成燃料電池發電系統的燃料電池的實施形態進行說明,然而於其他實施形態,亦可採用SOFC以外的類型的燃料電池(例如熔融碳酸鹽型燃料電池(Molten-carbonate fuel cells, MCFC)等)作為構成燃料電池發電系統的燃料電池。
(燃料電池模組的構成) 首先,參照圖1至圖3,針對構成數個實施形態之燃料電池發電系統的燃料電池模組進行說明。圖1,係一實施形態之SOFC模組(燃料電池模組)的示意圖。圖2,係構成一實施形態之SOFC模組(燃料電池模組)的SOFC匣(燃料電池匣)的示意性剖面圖。圖3,係構成一實施形態之SOFC模組(燃料電池模組)的電池堆的示意性剖面圖。
SOFC模組(燃料電池模組)210係如圖1所示,例如具備複數個SOFC匣(燃料電池匣)203,以及收納該等多個SOFC匣203的壓力容器205。又,於圖1雖例示圓筒形的SOFC的電池堆101,然而不限於此,例如為平板形的電池堆亦可。並且,燃料電池模組210,係具備燃料氣體供給管207、複數個燃料氣體供給支管207a、燃料氣體排出管209、複數個燃料氣體排出支管209a。並且,燃料電池模組210,係具備氧化性氣體供給管(未圖示)與氧化性氣體供給支管(未圖示)及氧化性氣體排出管(未圖示)與複數個氧化性氣體排出支管(未圖示)。
燃料氣體供給管207係設於壓力容器205的外部,連接至對應於燃料電池模組210的發電量供應預定氣體組成及預定流量的燃料氣體之燃料氣體供給部(未圖示),並且連接至複數個燃料氣體供給支管207a。該燃料氣體供給管207,係將從前述之燃料氣體供給部所供給之預定流量的燃料氣體,再循環引導至複數個燃料氣體供給支管207a。並且,燃料氣體供給支管207a,係連接至燃料氣體供給管207,並且連接至複數個SOFC匣203。該燃料氣體供給支管207a,係將從燃料氣體供給管207所供給的燃料氣體以大致均等的流量引導至多個SOFC匣203,而使複數個SOFC匣203的發電性能大致均勻化。
燃料氣體排出支管209a,係連接至多個SOFC匣203,並且連接至燃料氣體排出管209。該燃料氣體排出支管209a,係將從SOFC匣203排出的排放燃料氣體引導至燃料氣體排出管209。並且,燃料氣體排出管209,係連接至複數個燃料氣體排出支管209a,並且一部分配置於壓力容器205的外部。該燃料氣體排出管209,係將從燃料氣體排出支管209a以大致均等的流量導出之排放燃料氣體引導至壓力容器205的外部。
壓力容器205,係在內部的壓力為0.1MPa~約3MPa、內部的溫度為大氣溫度~約550℃下運用,故係使用具有耐力性及對於氧化性氣體中所含有的氧等之氧化劑具有耐蝕性的材質。例如,適合使用SUS304等之不鏽鋼系材料。
在此,於本實施形態中,雖針對將複數個SOFC匣203集合化並收納於壓力容器205的形態進行說明,然而不限於此,例如,亦能夠為不將SOFC匣203集合化而收納於壓力容器205內的形態。
SOFC匣203,係如圖2所示,具備複數個電池堆101、發電室215、燃料氣體供給管集217、燃料氣體排出管集219、氧化性氣體(空氣)供給管集221、氧化性氣體排出管集223。並且,SOFC匣203,係具備上部管板225a、下部管板225b、上部隔熱體227a、下部隔熱體227b。
又,於本實施形態中,SOFC匣203,係將燃料氣體供給管集217、燃料氣體排出管集219、氧化性氣體供給管集221、氧化性氣體排出管集223如圖2般配置,藉此成為使燃料氣體與氧化性氣體於電池堆101的內側及外側對向流動的構造,然而不限於此,例如,於電池堆101的內側及外側平行流動,或是使氧化性氣體往與電池堆101的長度方向正交的方向流動亦可。
發電室215,係形成於上部隔熱體227a與下部隔熱體227b之間的區域。該發電室215,係配置有電池堆101的燃料電池胞105的區域,且係使燃料氣體與氧化性氣體產生電化學反應而進行發電的區域。並且,該發電室215的電池堆101長度方向的中央部附近的溫度,係藉由溫度計測部(例如熱電偶等的溫度感測器)監測,在燃料電池模組210的穩定運轉時,會成為大約700℃~1000℃的高溫環境。
燃料氣體供給管集217,係被SOFC匣203的上部殼體229a及上部管板225a所包圍的區域,藉由設於上部殼體229a的上部之燃料氣體供給孔231a,與燃料氣體供給支管207a連通。並且,複數個電池堆101,係藉由密封構件237a與上部管板225a接合,燃料氣體供給管集217係將從燃料氣體供給支管207a經由燃料氣體供給孔231a供給的燃料氣體,以大致均一的流量引導至複數個電池堆101的基體管103的內部,而使複數個電池堆101的發電性能大致均一化。
燃料氣體排出管集219,係被SOFC匣203的下部殼體229b及下部管板225b所包圍的區域,藉由下部殼體229b所具備之燃料氣體排出孔231b,與未圖示之燃料氣體排出支管209a連通。並且,複數個電池堆101,係藉由密封構件237b與下部管板225b接合,燃料氣體排出管集219,係將通過複數個電池堆101的基體管103的內部而供給至燃料氣體排出管集219的排放燃料氣體匯集,並經由燃料氣體排出孔231b引導至燃料氣體排出支管209a。
使對應於燃料電池模組210的發電量之預定氣體組成及預定流量的氧化性氣體再循環至氧化性氣體供給支管,而供應至複數個SOFC匣203。氧化性氣體供給管集221,係被SOFC匣203的下部殼體229b、下部管板225b、下部隔熱體(支承體)227b所包圍的區域,藉由設於下部殼體229b的側面之氧化性氣體供給孔233a,與未圖示之氧化性氣體供給支管連通。該氧化性氣體供給管集221,係將從未圖示之氧化性氣體供給支管經由氧化性氣體供給孔233a供給之預定流量的氧化性氣體,經由後述之氧化性氣體供給間隙235a引導至發電室215。
氧化性氣體排出管集223,係被SOFC匣203的上部殼體229a、上部管板225a、上部隔熱體(支承體)227a所包圍的區域,藉由設於上部殼體229a的側面之氧化性氣體排出孔233b,與未圖示之氧化性氣體排出支管連通。該氧化性氣體排出管集223,係將從發電室215經由後述之氧化性氣體排出間隙235b供給至氧化性氣體排出管集223的排放氧化性氣體,經由氧化性氣體排出孔233b引導至未圖示的氧化性氣體排出支管。
上部管板225a,係在上部殼體229a的頂板與上部隔熱體227a之間,以使上部管板225a、上部殼體229a的頂板、上部隔熱體227a大致平行的方式,固定於上部殼體229a的側板。並且,上部管板225a,係具有對應於SOFC匣203所具備之電池堆101的數目之複數個孔,對於該孔係分別插入有電池堆101。該上部管板225a,係將複數個電池堆101之其中一方的端部透過密封構件237a及接著構件之其中任一方或雙方以氣密的方式支承,並且將燃料氣體供給管集217與氧化性氣體排出管集223隔離。
上部隔熱體227a,係在上部殼體229a的下端部,以使上部隔熱體227a、上部殼體229a的頂板、上部管板225a大致平行的方式配置,並固定於上部殼體229a的側板。並且,上部隔熱體227a,係設有對應於SOFC匣203所具備之電池堆101的數目之複數個孔。該孔的直徑係設定為比電池堆101的外徑更大。上部隔熱體227a,係具備:氧化性氣體排出間隙235b,係形成於該孔的內面與插通於上部隔熱體227a的電池堆101的外面之間。
該上部隔熱體227a,係分隔發電室215與氧化性氣體排出管集223,能夠抑制上部管板225a的周圍的環境氣體高溫化而強度低落,或是因氧化性氣體中所含的氧化劑導致腐蝕增加之情事。上部管板225a等係英高鎳合金等之具有高溫耐久性的金屬材料構成,以防止上部管板225a等暴露於發電室215內的高溫導致上部管板225a等內的溫度差增大而熱變形之情事。並且,上部隔熱體227a,係使通過發電室215並暴露於高溫的排放氧化性氣體通過氧化性氣體排出間隙235b,並將該排放氧化性氣體引導至氧化性氣體排出管集223。
依據本實施形態,藉由前述之SOFC匣203的構造,使燃料氣體及氧化性氣體於電池堆101的內側及外側對向流動。藉此,排放氧化性氣體,係與通過基體管103的內部供給至發電室215的燃料氣體之間進行熱交換,而冷卻至不致使金屬材料構成之上部管板225a等產生挫曲等之變形的溫度,並供給至氧化性氣體排出管集223。並且,燃料氣體,係藉由與從發電室215排出的排放氧化性氣體之熱交換升溫,並供給至發電室215。因此,不須使用加熱器等,便能夠將預熱升溫至適合發電的溫度之燃料氣體供給至發電室215。
下部管板225b,係在下部殼體229b的底板與下部隔熱體227b之間,以使下部管板225b、下部殼體229b的底板、下部隔熱體227b大致平行的方式,固定於下部殼體229b的側板。並且,下部管板225b,係具有對應於SOFC匣203所具備之電池堆101的數目之複數個孔,對於該孔係分別插入有電池堆101。該下部管板225b,係將複數個電池堆101之另一方的端部透過密封構件237b及接著構件之其中任一方或雙方以氣密的方式支承,並且將燃料氣體排出管集219與氧化性氣體供給管集221隔離。
下部隔熱體227b,係在下部殼體229b的上端部,以使下部隔熱體227b、下部殼體229b的底板、下部管板225b大致平行的方式配置,並固定於下部殼體229b的側板。並且,下部隔熱體227b,係設有對應於SOFC匣203所具備之電池堆101的數目之複數個孔。該孔的直徑係設定為比電池堆101的外徑更大。下部隔熱體227b,係具備:氧化性氣體供給間隙235a,係形成於該孔的內面與插通於下部隔熱體227b的電池堆101的外面之間。
該下部隔熱體227b,係分隔發電室215與氧化性氣體供給管集221,能夠抑制下部管板225b的周圍的環境氣體高溫化而強度低落,或是因氧化性氣體中所含的氧化劑導致腐蝕增加之情事。下部管板225b等係英高鎳合金等之具有高溫耐久性的金屬材料構成,以防止下部管板225b等暴露於高溫導致下部管板225b等內的溫度差增大而熱變形之情事。並且,下部隔熱體227b,係使供給至氧化性氣體供給管集221的氧化性氣體通過氧化性氣體供給間隙235a,並將該氧化性氣體引導至發電室215。
依據本實施形態,藉由前述之SOFC匣203的構造,使燃料氣體及氧化性氣體於電池堆101的內側及外側對向流動。藉此,通過基體管103的內部並通過發電室215的排放燃料氣體,係與供給至發電室215的氧化性氣體之間進行熱交換,而冷卻至不致使金屬材料構成之下部管板225b等產生挫曲等之變形的溫度,並供給至燃料氣體排出管集219。並且,氧化性氣體係藉由與排放燃料氣體之熱交換升溫,並供給至發電室215。因此,不須使用加熱器等,便能夠將升溫至發電所必要的溫度之氧化性氣體供給至發電室215。
在發電室215發電的直流電力,係藉由設於複數個燃料電池胞105的Ni/YSZ等構成之導線膜115導出至電池堆101的端部附近之後,SOFC匣203的集電棒(未圖示)經由集電板(未圖示)集電,並取出至各SOFC匣203的外部。藉由前述集電棒導出至SOFC匣203的外部之直流電力,係將各SOFC匣203的發電電力相互連接為預定的串聯數及並聯數,並導出至燃料電池模組210的外部,未圖示的電力調節器等之電力轉換裝置(變頻器等)轉換為預定的交流電力,而供給至電力供給目標(例如負載設備或電力系統)。
如圖3所示,電池堆101,作為一例,係具備:圓筒形的基體管103、於基體管103的外周面形成有複數個之燃料電池胞105、形成於相鄰的燃料電池胞105之間的端子連接器107。燃料電池胞105,係藉由燃料側電極109、固體電解質膜(電解質)111、氧側電極113層疊而形成。並且,電池堆101,係具備在形成於基體管103的外周面之複數個燃料電池胞105當中,對於在基體管103的軸方向形成於最靠端部的一端之燃料電池胞105的氧側電極113,經由端子連接器107電性連接的導線膜115,並具備電性連接至形成於最靠端部的另一端之燃料電池胞105的燃料側電極109的導線膜115。
基體管103,係以多孔質材料構成,例如,以CaO穩定化ZrO 2(CSZ)、CSZ與氧化鎳(NiO)的混合物(CSZniO),或是Y 2O 3穩定化ZrO 2(YSZ),或是MgAl 2O 4等作為主成分。該基體管103,係支承燃料電池胞105、端子連接器107、導線膜115,並且使供給至基體管103的內周面支燃料氣體經由基體管103的細孔擴散至形成於基體管103的外周面的燃料側電極109。
燃料側電極109,係以Ni與氧化鋯系電解質材料的複合材料之氧化物構成,例如使用Ni/YSZ。燃料側電極109的厚度係50μm~250μm,燃料側電極109係將漿液進行網版印刷而形成亦可。在此情形,燃料側電極109,作為燃料側電極109的成分之Ni係對於燃料氣體具備觸媒作用。該觸媒作用,係使經由基體管103供給的燃料氣體例如甲烷(CH 4)與水蒸氣的混合氣體反應,而改質為氫(H 2)及一氧化碳(CO)者。並且,燃料側電極109,係使藉由改質所獲得的氫(H 2)及一氧化碳(CO)和經由固體電解質膜111供給的氧離子(O 2-),在與固體電解質膜111的界面附近進行電化學反應而生成水(H 2O)及二氧化碳(CO 2)。又,燃料電池胞105,此時,係藉由從氧離子釋出的電子進行發電。
作為能夠供給至固體氧化物形燃料電池的燃料側電極109之燃料氣體,除了氫(H 2)及一氧化碳(CO)、甲烷(CH 4)等之烴系氣體、都市煤氣、天然氣以外,石油、甲醇及煤炭等之含碳原料藉由氣體化設備製造之氣體化氣體等。
固體電解質膜111,係主要使用具備氣體不易通過的氣密性,以及在高溫下具有高氧離子導電性的YSZ。該固體電解質膜111,係使在氧側電極生成的氧離子(O 2-)移動至燃料側電極。位於燃料側電極109的表面上之固體電解質膜111的膜厚係10μm~100μm,固體電解質膜111係將漿液進行網版印刷而形成亦可。
氧側電極113,係例如以LaSrMnO 3系氧化物或LaCoO 3系氧化物構成,氧側電極113係將漿液進行網版印刷或是使用分配器進行塗布。並且,該氧側電極113,係在與固體電解質膜111的界面附近,使被供給的空氣等之氧化性氣體中的氧解離而生成氧離子(O 2-)。
氧側電極113,係2層構成。在該情形,固體電解質膜111側的氧側電極層(氧側電極中間層)係以展現高離子導電性且觸媒活性優異的材料構成。氧側電極中間層上的氧側電極層(氧側電極導電層),係藉由以Sr及Ca摻雜LaMnO 3表示的鈣鈦礦型氧化物構成亦可。藉此,能夠使發電性能更為提升。
所謂氧化性氣體,係包含大致15%~30%的氧的氣體,代表性者係以空氣為適合,然而除了空氣以外,亦能夠使用燃燒排氣與空氣的混合氣體,或是氧與空氣的混合氣體等。
端子連接器107,係藉由以SrTiO 3系等之 M 1-xL xTiO 3(M係鹼土族金屬元素,L係鑭系元素)表示之導電性鈣鈦礦型氧化物構成,並將漿液進行網版印刷。端子連接器107,係使燃料氣體與氧化性氣體不致混合之緻密的膜。並且,端子連接器107,係具備在氧化環境及還原環境之兩環境下之穩定的耐久性及導電性。該端子連接器107,係於相鄰之燃料電池胞105中,其中一方的燃料電池胞105的氧側電極113與另一方的燃料電池胞105的燃料側電極109電性連接,並將相鄰之燃料電池胞105彼此串聯。
導線膜115,因必須具備電子傳導性,且必須與構成電池堆101的其他材料之熱膨脹係數相近,故係以Ni/YSZ等之Ni與氧化鋯系電解質材料之複合材料或SrTiO 3系等之M 1-xL xTiO 3(M係鹼土族金屬元素,L係鑭系元素)構成。該導線膜115,係將藉由端子連接器107串聯連接的複數個燃料電池胞105所發電的直流電力導出至電池堆101的端部附近。
於數個實施形態中,前述般之燃料側電極或氧側電極並非與基體管分別設置,而將燃料側電極或氧側電極形成為較厚以兼用為基體管亦可。並且,本實施形態之基體管雖針對使用圓筒形者進行說明,然而基體管為筒狀即可,剖面並非必需為圓形,例如為橢圓形亦可。為將圓筒的周側面壓扁為垂直的扁平圓筒(Flat tubular)等之電池堆亦可。
(燃料電池發電系統的構成) 接著,針對使用具有前述構成之燃料電池模組210的燃料電池發電系統1進行說明。圖4,係一實施形態之燃料電池發電系統1的概略構成圖。
如圖4所示,燃料電池發電系統1,係具備:燃料電池部10,係包含第1燃料電池模組210A及第2燃料電池模組210B;燃料氣體供給線20,係對於燃料電池部10供給燃料氣體Gf;第1排放燃料氣體線22A,係流動有從第1燃料電池模組210A排出的第1排放燃料氣體Gef1;第2排放燃料氣體線22B,係流動有從第2燃料電池模組210B排出的第2排放燃料氣體Gef2;氧化性氣體供給線40,係用以對於燃料電池部10供給氧化性氣體Go;第1排放氧化性氣體線42A,係流動有從第1燃料電池模組210A排出的第1排放氧化性氣體Geo1;以及第2排放氧化性氣體線42B,係流動有從第2燃料電池模組210B排出的第2排放氧化性氣體Geo2。
又,於氧化性氣體供給線40,設有用以將供給至燃料電池部10的氧化性氣體Go升壓的升壓機(未圖示)。升壓機,係例如壓縮機或再循環鼓風機。
第1燃料電池模組210A及第2燃料電池模組210B,係如前述般具備1個以上的燃料電池匣203,燃料電池匣203,係藉由分別含有複數個燃料電池胞105的複數個電池堆101構成(參照圖1及圖2)。各個燃料電池胞105,係包含燃料側電極109、固體電解質膜111及氧側電極113(參照圖3)。
於圖4中,燃料電池部10,係構成為對於燃料氣體供給線20串聯(串接)連接有第1燃料電池模組210A及第2燃料電池模組210B,藉此,從前段的第1燃料電池模組210A排出的第1排放燃料氣體Gef1,經由第1排放燃料氣體線22A供給至後段的第2燃料電池模組210B。並且,於第1排放燃料氣體線22A流動之第1排放燃料氣體Gef1的一部分,係藉由第1再循環氣體再循環鼓風機28A經由第2再循環線24A供給至第1燃料電池模組210A的燃料氣體入口。來自後段的第2燃料電池模組210B的第2排放燃料氣體Gef2,係經由第2排放燃料氣體線22B排出至外部。並且,於第2排放燃料氣體線22B流動之第2排放燃料氣體Gef2的一部分,係藉由第2再循環氣體再循環鼓風機28B經由第1再循環線24B供給至第2燃料電池模組210B的燃料氣體入口。
又,於本實施形態中,雖例示了對於燃料氣體供給線20串聯(串接)連接有2個燃料電池模組的情形,然而串聯(串接)連接的燃料電池模組的數量為任意(3以上)亦可。
並且,於圖4中,係例示第1燃料電池模組210A及第2燃料電池模組210B對於氧化性氣體供給線40並聯(並列)連接的情形。亦即,係構成為對於前段的第1燃料電池模組210A及後段的第2燃料電池模組210B,從於上游側分歧的氧化劑氣體供給線42A、42B個別供給空氣。來自前段的第1燃料電池模組210A的第1排放氧化性氣體Geo1係經由第1排放氧化性氣體線42C,來自後段的第2燃料電池模組210B的第2排放氧化性氣體Geo2係經由第2排放氧化性氣體線42D排出至外部。
就其他實施形態而言,氧化性氣體供給線40,係串聯(串接)連接至構成燃料電池部10的第1燃料電池模組210A及第2燃料電池模組210B亦可。亦即,來自第1燃料電池模組210A之第1排放氧化性氣體Geo1的一部分或全部係供給至第2燃料電池模組210B亦可。
又,燃料氣體供給線20係對應於圖1所示之燃料氣體供給管207,第1排放燃料氣體線22A係連接至圖1所示之燃料氣體排出管209。並且,第2排放燃料氣體線22B,係連接至圖1所示之第2燃料電池模組的燃料氣體排出管209。
又,氧化性氣體供給線42A、42B,係對應於圖1未圖示之氧化性氣體供給管,第1排放氧化性氣體線42C係連接至圖1未圖示之氧化性氣體排出管。並且,第2排放氧化性氣體線42D係對應於圖1未圖示之氧化性氣體排出管。
燃料電池發電系統1,係具備從第2排放燃料氣體線22B再循環的第1再循環線24B。第1再循環線24B,係連接至第1排放燃料氣體線22A,並構成為能夠將來自第2燃料電池模組210B的第2排放燃料氣體Gef2供給至第2燃料電池模組210B之上游側(亦即,第1再循環線24B,係構成為能夠將第2排放燃料氣體Gef2循環供給至第2燃料電池模組210B)。
藉此,無論前段的第1燃料電池模組210A的動作狀態,藉由調整經由第1再循環線24B之來自第2排放燃料氣體Gef2的回收供給量,能夠妥善地確保供給至第2燃料電池模組210B之燃料氣體的改質所必要的水蒸氣。藉此,無論第1燃料電池模組210A的動作狀態,即便在系統要求負荷Ls發生變化的情形,亦能夠使第2燃料電池模組210B的動作狀態穩定化。
又,於第1再循環線24B,設有用以調整於第1再循環線24B流動的第2排放燃料氣體Gef2的流量之閥亦可。在此情形,該閥的開度係能夠藉由後述之控制裝置380控制。
並且,燃料電池發電系統1,係具備從第1排放燃料氣體線22A再循環的第2再循環線24A。第2再循環線24A,係連接至燃料氣體供給線20,並構成為能夠將來自第1燃料電池模組210A的第1排放燃料氣體Gef1供給至第1燃料電池模組210A之上游側(亦即,第2再循環線24A,係構成為能夠將第1排放燃料氣體Gef1循環供給至第1燃料電池模組210A)。藉此,藉由調整經由第2再循環線24A之第1排放燃料氣體Gef1的供給量,能夠妥善地確保於第1燃料電池模組210A之燃料氣體的改質所必要的水分。
又,於第2再循環線24A,設有用以調整於第2再循環線24A流動的第1排放燃料氣體Gef1的流量之閥亦可。在此情形,該閥的開度係能夠藉由後述之控制裝置380控制。
與第1再循環線24B之第1匯流部26A,係於第1排放燃料氣體線22A當中,設於比第2再循環線24A的第2分歧部26B更上游。藉此,即便第1燃料電池模組210A為非發電(熱待命)狀態,亦能夠將藉由第2燃料電池模組210B的發電所產生的水蒸氣供給至第1燃料電池模組210A。
圖5,係其他實施形態之燃料電池發電系統1的概略構成圖。又,於圖5中,若未特別記載,對應於圖4之構成係附加共通的符號,並適度省略重複的說明。
如圖5所示,其他實施形態,係於第1排放燃料氣體線22A當中與第1再循環線24B之第1匯流部26A及與第2再循環線24A之第2分歧部26B之間設有再循環鼓風機28亦可。再循環鼓風機28,係設於比第2分歧部26B更靠上游側,藉此經由第2再循環線24A對於第1燃料電池模組210A進行第1排放燃料氣體Gef1之循環供給。並且,再循環鼓風機28,係設於比第1匯流部26A更靠下游側,藉此對於第1再循環線24B施加負壓,而經由第1再循環線24B進行第2排放燃料氣體Gef2對於第2燃料電池模組210B之循環供給。藉由如此般設於第1排放燃料氣體線22A的1台再循環鼓風機28,係能夠經由前述之第1再循環線24B及第2再循環線24A實現於第2燃料電池模組210B及第1燃料電池模組210A之燃料氣體的循環供給(亦即,於在第1再循環線24B及第2再循環線24A分別配置再循環鼓風機的情形相比,能夠削減再循環鼓風機的台數而使系統構成簡略化)。
並且,燃料電池發電系統1,係具備:第2排放燃料氣體供給線24C,係以能夠將第2排放燃料氣體Gef2供給至第1燃料電池模組210A的氧化性氣體供給線42A的方式,連接第2排放燃料氣體線22B與氧化性氣體供給線42A。燃料電池胞的氧側電極113,係具有發揮作為燃料成分與氧之觸媒燃燒反應中之觸媒之作用的功能。依據前述之實施形態,因將來自第2燃料電池模組210B之第2排放燃料氣體Gef2供給至第1燃料電池模組210A之氧側電極113,故能夠利用氧側電極113的觸媒作用使排放燃料氣體所包含之未使用燃料成分妥善地燃燒,而即便在第1燃料電池模組為非發電(熱待命)狀態下亦能夠維持預定的溫度。
針對前述事項進一步詳細說明。就固體氧化物形燃料電池而言,運用當中的發電室215的溫度係600~1000℃左右的高溫,該高溫狀態係藉由伴隨發電之發熱而自發性地受到維持,然而例如當系統要求負荷Ls減少而成為非發電(熱待命)狀態,則溫度會伴隨於發電反應的停止而降低。因此,於系統要求負荷Ls再度增加而再次開始發電的情形,必須使發電室215升溫至可發電溫度,而難以迅速地追隨系統要求負荷Ls的變化。
對於如此般之課題,就本實施形態而言,係即便在第1燃料電池模組210A為非發電(熱待命)狀態的情形,亦能夠經由第2排放燃料氣體供給線24C,將來自第2燃料電池模組210B的第2排放燃料氣體Gef2供給至第1燃料電池模組210A的氧側電極113並燃燒,藉此將第1燃料電池模組210A的發電室215維持在發電所必要的溫度。藉此,能夠使處於非發電(熱待命)狀態之第1燃料電池模組210A迅速地切換至發電狀態,而能夠獲得良好的負荷響應性能。並且,如此般之非發電(熱待命)狀態之溫度維持,不須對於第1燃料電池模組210A從外部追加多餘的燃料氣體便能夠進行,故能夠抑制能量消耗,且在系統要求負荷降低的情形能夠有效提升系統發電效率。 又,非發電(熱待命)狀態之發電室215的溫度,係例如600~900℃左右。
又,第2排放燃料氣體Gef2經由第2排放燃料氣體供給線24C對於第1燃料電池模組210A之供給,除了前述般使第1燃料電池模組210A維持在非發電(熱待命)狀態的情形以外,在為了不將第2排放燃料氣體Gef2所包含之未使用燃料分量(氫、CO、甲烷等)排出至外部而於第1燃料電池模組210A燃燒消耗的情形進行亦可。在此情形,係有利於使用以處理第2排放燃料氣體Gef2所包含之未使用燃料成分的排氣處理裝置簡略化。
並且,於第3再循環線24C,設有用以調整於第3再循環線24C流動的第2排放燃料氣體Gef2的流量之閥亦可。在此情形,該閥的開度係能夠藉由後述之控制裝置380控制。
並且,燃料電池發電系統1,係進一步具備:第2排放燃料氣體供給線24D,係以能夠將第2排放燃料氣體Gef2供給至第2燃料電池模組210B的氧化性氣體供給線42B的方式,連接第2排放燃料氣體線22B與氧化性氣體供給線42B。燃料電池胞的氧側電極113,係具有發揮作為燃料成分與氧之觸媒燃燒反應中之觸媒之作用的構造。依據前述之實施形態,因將來自第2燃料電池模組210B之第2排放燃料氣體Gef2供給至第2燃料電池模組210B之氧側電極113,故能夠利用氧側電極113的觸媒作用使排放燃料氣體所包含之未使用燃料成分妥善地燃燒,而即便在第2燃料電池模組為非發電(熱待命)或最低負荷運轉狀態下亦能夠維持預定的溫度。
對於如此般之課題,就本實施形態而言,係即便在第2燃料電池模組210B為非發電(熱待命)或最低負荷運轉狀態的情形,亦能夠經由第2排放燃料氣體供給線24D,將來自第2燃料電池模組210B的第2排放燃料氣體Gef2供給至第2燃料電池模組210B的氧側電極113並燃燒,藉此將第2燃料電池模組210B的發電室215維持在發電所必要的溫度。藉此,能夠使處於非發電(熱待命)狀態之第2燃料電池模組210B迅速地切換至發電狀態,而能夠獲得良好的負荷響應性能。並且,如此般之非發電(熱待命)或最低負荷狀態之溫度維持,不須對於第2燃料電池模組210B從外部追加多餘的燃料氣體便能夠進行,故能夠抑制燃料消耗,且在系統要求負荷降低的情形能夠有效提升系統發電效率。
並且,於第2排放燃料氣體供給線24D,設有用以調整於第2排放燃料氣體供給線24D流動的第2排放燃料氣體Gef2的流量之閥亦可。在此情形,該閥的開度係能夠藉由後述之控制裝置380控制。
並且,燃料電池發電系統1,係具備用以控制燃料電池發電系統1的各構成之控制裝置380。控制裝置380,係例如以CPU(Central Processing Unit)、RAM (Random Access Memory)、ROM(Read Only Memory)及電腦能夠讀取的記憶媒體等構成。並且,為了實現各種功能的一連串的處理,作為一例,係以程式的形式記憶於記憶媒體等,該程式藉由CPU讀取至RAM等,並執行資訊的加工、運算處理,藉此實現各種功能。又,該程式,係亦可運用預先安裝至ROM或其他記憶媒體的形態、在記憶於電腦能夠讀取的記憶媒體的狀態下提供的形態、透過有線或無線的通訊手段進行發佈的形態等。所謂電腦能夠讀取的記憶媒體,磁碟、光磁碟、CD-ROM、DVD-ROM、半導體記憶體等。
在此,參照圖6至圖8,針對控制裝置380所進行之燃料電池發電系統1的控制內容進行說明。又,本控制內容係表示實施例之一,而並非限定控制方法。
圖6係表示對於圖4所示之燃料電池發電系統1之系統要求負荷Ls與發電輸出值的關係的圖。圖7係表示系統要求負荷Ls為100%的情形之圖4之燃料電池發電系統1的動作狀態的圖。圖8係表示系統要求負荷Ls為20%的情形之圖4之燃料電池發電系統1的動作狀態的圖。
於圖6中,係表示燃料電池發電系統1之系統全體的發電輸出值P、第1燃料電池模組210A的發電輸出值PA,以及第2燃料電池模組的發電輸出值PB,對於系統全體的額定輸出之各自的比例。
控制裝置380,係根據系統要求負荷Ls,分別控制第1燃料電池模組210A及第2燃料電池模組210B。系統要求負荷Ls,係接受來自燃料電池發電系統1的外部的命令,並根據對於燃料電池發電系統1之電力需求產生變動的參數。例如,對應於連接至作為燃料電池發電系統1之電力供給目標的電力系統之其他發電系統(再生能源發電系統)的發電狀況,或對於電力系統的電力需求,系統要求負荷Ls會發生變化。控制裝置380,係根據如此般之系統要求負荷Ls,分別控制第1燃料電池模組210A及第2燃料電池模組210B的動作狀態,藉此以對應於系統要求負荷Ls的方式調整系統全體的發電輸出值P。
在此,於一般性的燃料電池的串接發電系統,對應於系統要求負荷Ls的燃料被供給至第1燃料電池模組210A,於第2燃料電池模組210B係進行對應於從第1燃料電池模組210A排出之第1排放燃料氣體Gef1所包含之未使用燃料進行發電。因此,第1燃料電池模組210A及第2燃料電池模組210B所進行之發電輸出的比例無論系統要求負荷Ls多寡而幾乎為一定。例如,在第1燃料電池模組210A及第2燃料電池模組210B的額定輸出值之比率為8:2的情形,系統要求負荷Ls之80%分配至第1燃料電池模組210A,剩餘之20%分配至第2燃料電池模組210B。
對此,於本實施形態,控制裝置380係如圖6所示,對應於系統要求負荷Ls進行第1燃料電池模組210A的輸出PA之可變控制,然而第2燃料電池模組210B的輸出PB係被控制為預先設定之幾乎一定的輸出。亦即,後段之第2燃料電池模組210B之發電輸出值PB,係無論系統要求負荷Ls皆控制為大致一定的目標值,對於系統要求負荷Ls的變化,係藉由控制前段之第1燃料電池模組210A的動作狀態進行對應。如此,將第2燃料電池模組210B之發電輸出值PB無論系統要求負荷Ls皆控制為大致一定,藉此即便在系統要求負荷Ls發生變化的情形,額定輸出相對於第1燃料電池模組較小的後段之第2燃料電池模組210B係以幾乎為一定的輸出發電並維持發電室溫度,藉此將系統要求負荷Ls的影響降到最低限度,而能夠改善系統的負荷響應性能。
第2燃料電池模組210B之發電輸出值PB的一定目標值,係例如設定為第2燃料電池模組210B之額定輸出值。藉此,於第2燃料電池模組210B,無論系統要求負荷Ls多寡皆進行額定運轉,故能夠進行效率良好的發電。藉此,即便在系統要求負荷Ls發生變化的情形,亦能夠使後段之第2燃料電池模組210B的動作狀態穩定化,並且能夠實現良好的系統效率。
於本實施形態,第2燃料電池模組210B之額定輸出值,係比第1燃料電池模組210A之額定輸出值更小。因此,第2燃料電池模組210B伴隨發電的發熱量比第1燃料電池模組210A更少,或熱容量比第1燃料電池模組210A更小,故難以對應於系統要求負荷Ls將發電室溫度持續維持在恰當溫度,然而如前述般,藉由將第2燃料電池模組210B的發電輸出值PB以成為一定目標值的方式進行控制,藉此能夠輕易地維持在恰當溫度,而即便在系統要求負荷Ls發生變化或部分負荷運轉時,亦能夠進行穩定的系統運轉。
於圖7及圖8中,作為一例係表示燃料電池發電系統1的全體額定輸出值為100kW,第1燃料電池模組210A的額定輸出值為80kW,第2燃料電池模組210B的額定輸出值為20kW的情形。如圖7所示,在系統要求負荷Ls為100%(亦即100kW)的情形,若將於燃料氣體供給線20流動的燃料氣體Gf設為100,於前段之第1燃料電池模組210A係燃料使用率Uf=80%,消耗燃料氣體Gf的80%,剩餘的20%作為第1排放燃料氣體Gef1被排出。第1排放燃料氣體Gef1,係供給至後段之第2燃料電池模組210B。於第2燃料電池模組210B係燃料使用率Uf=50%,消耗第1排放燃料氣體Gef1的50%,剩餘的10%係作為第2排放燃料氣體Gef2排出,系統全體的燃料使用率為90%。
又,該10%之第2排放燃料氣體Gef2,雖直接排出至外部亦可,然而於圖7中,係經由第2排放燃料氣體供給線24C供給至第1燃料電池模組210A之氧化性氣體供給線42A,藉此使第2排放燃料氣體Gef2所包含之未使用燃料成分燃燒之後排出外部。
並且,控制裝置380,在系統要求負荷Ls為第2燃料電池模組210B的額定輸出值以下的情形(例如,在連接至作為燃料電池發電系統1之電力供給目標的電力系統之再生能源發電系統產生剩餘電力時,或是電力需求降低的夜間時等),能夠使第1燃料電池模組210A的輸出降低至抑制投入燃料所造成之碳析出所必要的最低負荷運轉。在此情形,第1燃料電池模組210A之溫度維持,係如前述般,對於第1燃料電池模組210A的氧側電極113,經由第2排放燃料氣體供給線24C供給第2排放燃料氣體Gef2進行燃燒而藉此實現。於第1燃料電池模組210A之最低負荷運轉狀態,將改質用蒸氣以額定負荷進行運轉的第2燃料電池模組210B的排放燃料氣體中所包含的水蒸氣藉由再循環鼓風機28供給至第1燃料電池模組210A的燃料供給線20,藉此能夠以更低負荷或無負荷進行運轉。在該情形,因將第1燃料電池模組210A維持在燃料電池的動作所必要的溫度或是接近其之溫度,故於將來系統要求負荷Ls增加之際,能夠一邊使第1燃料電池模組210A進行之發電再度開始,並避免第1燃料電池模組210A的啟動停止造成之能量消耗,一邊獲得良好的負荷追隨性。
於圖8中,作為部分負荷運轉之一例,係表示使系統要求負荷Ls為20%,第1燃料電池模組210A為無負荷運轉(熱待命)狀態及第2燃料電池模組210B的額定輸出值為20kW的情形之燃料電池發電系統1的動作狀態。在此情形,若設於燃料氣體供給線20流動的燃料氣體Gf為20,則前段之第1燃料電池模組210A係控制為無負荷運轉(熱待命)狀態,用以防止碳析出所必要之水蒸氣係從第2燃料電池模組210B經由第2排放燃料氣體Gef2供給至第1再循環氣體線24B及第2再循環氣體線24B。於第2燃料電池模組210B係燃料使用率Uf=80%,消耗供給至第1燃料電池之燃料氣體Gf的80%,在將系統要求負荷Ls之額定時設為100的情形,有相當於4%的燃料作為第2排放燃料氣體Gef2被排出。該4%之第2排放燃料氣體Gef2,係經由第2排放燃料氣體供給線24C供給至第1燃料電池模組210A之氧側電極113,藉此使用於維持第1燃料電池模組210A之無負荷運轉(熱待命)狀態的溫度。
並且,控制裝置380,在系統要求負荷Ls降低至第2燃料電池模組210B的未滿額定輸出值的情形(例如,在連接至作為燃料電池發電系統1之電力供給目標的電力系統之再生能源發電系統產生剩餘電力時,或是電力需求降低的夜間時等),除了第1燃料電池模組210A以外,進一步將第2燃料電池模組210B控制為低負荷運轉狀態亦可。此時,第1燃料電池模組210A係控制為無負荷運轉(熱待命)狀態,第2燃料電池模組210B係控制為低負荷運轉狀態。第1燃料電池模組210A之無負荷運轉(熱待命)狀態,係如前述般,對於第1燃料電池模組210A的氧側電極113,經由第2排放燃料氣體供給線24C供給第2排放燃料氣體Gef2進行燃燒而藉此實現。並且,第2燃料電池模組210B之低負荷運轉狀態,係如前述般,對於第2燃料電池模組210B的氧側電極113,經由第4再循環線24D供給第2排放燃料氣體Gef2進行燃燒而藉此實現。
於低負荷運轉狀態,供給為了防止於第2燃料電池模組210B之發電所造成的碳析出所必要的水蒸氣,並將燃料電池模組維持在燃料電池的動作所必要的溫度或是接近其之溫度,且燃料供給系統及燃料再循環系統會持續運轉,故於將來系統要求負荷增加之際,能夠一邊在短時間內使各燃料電池模組進行之發電再度開始,並避免燃料電池模組的啟動停止造成之能量消耗,一邊獲得良好的負荷追隨性。
在如此般第1燃料電池模組210A控制為無負荷運轉(熱待命)狀態,第2燃料電池模組210B控制為低負荷運轉狀態的情形,控制裝置380,係控制第2燃料電池模組210B產生用以令燃料電池發電系統1維持無負荷運轉(熱待命)狀態的內部電力亦可。在此情形,第2燃料電池模組210B係以產生使燃料電池發電系統1維持無負荷運轉(熱待命)狀態或本身之最低負荷運轉狀態所必要的內部電力的方式,進行最低限度的發電。藉此,於將來系統要求負荷Ls增加之際,能夠一邊使各燃料電池模組迅速地再度開始發電,並避免燃料電池模組的啟動停止造成之能量消耗,一邊獲得良好的負荷追隨性。 並且,不須接受來自外部(系統)的電力供給,便能夠以最低限度的燃料將系統全體隨時保持在能夠發電的狀態,使作為獨立電源的運用性獲得改善。
依據以上說明般之前述各實施形態,能夠提供一種燃料電池發電系統1,其係在具備對於燃料氣體的流動串聯(串接)連接的複數個燃料電池模組的燃料電池發電系統1,具有穩定的動作狀態,且能夠達成良好的負荷追隨性及系統效率。
前述各實施形態所記載之內容,係例如以下般彙整。
(1)一形態之燃料電池發電系統,係具備: 第1燃料電池模組(例如前述實施形態之第1燃料電池模組210A),係能夠使用燃料氣體(例如前述實施形態之燃料氣體Gf1)發電; 第1排放燃料氣體線(例如前述實施形態之第1排放燃料氣體線22A),係流動有從前述第1燃料電池模組排出之第1排放燃料氣體(例如前述實施形態之第1排放燃料氣體Gef1); 第2燃料電池模組(例如前述實施形態之第2燃料電池模組210B),係能夠使用前述第1排放燃料氣體發電; 第2排放燃料氣體線(例如前述實施形態之第2排放燃料氣體線22B),係流動有從前述第2燃料電池模組排出之第2排放燃料氣體(例如前述實施形態之第2排放燃料氣體Gef2);以及 第1再循環線(例如前述實施形態之第1再循環線24B),係為了將前述第2排放燃料氣體供給至前述第2燃料電池模組的燃料側電極,從前述第2排放燃料氣體線進行再循環。
依據前述(1)之形態,第1燃料電池模組及第2燃料電池模組,係構成為在對於燃料氣體的流動串聯(串接)連接的燃料電池發電系統中,從第2燃料電池模組排出之第2排放燃料氣體能夠經由第1再循環線供給至第2燃料電池模組的燃料側電極。藉此,無論第1燃料電池模組的動作狀態,藉由調整經由第1再循環線之第2排放燃料氣體的供給量,能夠妥善地確保於第2燃料電池模組之燃料氣體的改質所必要的水分。藉此,無論第1燃料電池模組的動作狀態,即便在系統要求負荷發生變化的情形,亦能夠使第2燃料電池模組的動作狀態穩定化。
(2)其他形態,係於前述(1)之形態中, 進一步具備:第2再循環線,係為了將前述第1排放燃料氣體供給至前述第1燃料電池模組的燃料側電極,從前述第1排放燃料氣體線進行再循環, 前述第1再循環線,係對於前述第1排放燃料氣體線以在比前述第2再循環線的分歧部更上游處匯流的方式連接。
依據前述(2)之形態,即便第1燃料電池模組為非發電(熱待命)狀態,亦能夠將藉由第2燃料電池模組的發電所產生的水蒸氣供給至第1燃料電池模組。
(3)其他形態,係於前述(2)之形態中, 於前述第1再循環線及前述第2再循環線,係分別設有再循環鼓風機。
前述(3)之狀態,能夠獨立地控制第1再循環線及前述第2再循環線之循環量。
(4)其他形態,係於前述(2)之形態中, 於前述第1排放燃料氣體線當中,在與前述第1再循環線之第1匯流部(例如前述實施形態之第1匯流部26A)和與前述第2再循環線之第2分歧部(例如前述實施形態之第2分歧部26B)之間,設有用以壓送前述第1排放燃料氣體之再循環鼓風機(例如前述實施形態之再循環鼓風機28)。
依據前述(4)之形態,藉由於第1排放燃料氣體線之前述位置設置再循環鼓風機,藉此能夠經由第2再循環線對於第1燃料電池模組之燃料側電極供給第2排放燃料氣體,並能夠經由第1再循環線對於第2燃料電池模組的燃料側電極供給第2排放燃料氣體。
(5)其他形態,係於前述(1)至(4)之任一形態中, 係具備:控制裝置(例如前述實施形態之控制裝置380),係根據系統要求負荷(例如前述實施形態之系統要求負荷Ls),分別控制前述第1燃料電池模組及前述第2燃料電池模組, 前述控制裝置,係將前述第1燃料電池模組的輸出對應於前述系統要求負荷進行可變控制,並且將前述第2燃料電池模組的輸出無論前述系統要求負荷皆控制為預先設定的一定目標值。
依據前述(5)之形態,在系統要求負荷發生變化的情形,將第2燃料電池模組的輸出維持在一定目標值,並且將第1燃料電池模組的輸出進行可變控制,藉此追隨系統要求負荷。如此,藉由將第2燃料電池模組之輸出無論系統要求負荷皆控制為一定目標值,即便在系統要求負荷發生變化的情形,亦能夠維持第2燃料電池模組穩定的動作狀態,並且能夠改善系統的負荷響應性能。
(6)其他形態,係於前述(5)之形態中, 前述一定目標值,係前述第2燃料電池模組之幾乎額定輸出值。
依據前述(6)之形態,無論系統要求負荷,第2燃料電池發電模數的輸出係維持在幾乎額定輸出值。藉此,即便在系統要求負荷發生變化的情形,第2燃料電池模組之動作狀態受到穩定化,並且能夠獲得良好的發電效率。
(7)其他形態,係於前述(5)或(6)之形態中, 前述第2燃料電池模組之額定輸出值,係比前述第1燃料電池模組之額定輸出值更小。
依據前述(7)之形態,第2燃料電池模組之額定輸出值係比第1燃料電池模組之額定輸出值更小,故伴隨發電之發熱量較少。於如此般之系統中,第2燃料電池模組之發熱量與第1燃料電池模組相比,至少燃料電池模組的熱容量較小,故在負荷變化時或部分負荷時難以維持在恰當溫度,然而如前述般,藉由將第2燃料電池模組的輸出控制為一定目標值,能夠輕易地維持在恰當溫度,於系統要求負荷發生變化或於部分負荷運轉時亦能夠進行穩定的系統運轉。
(8)其他形態,係於前述(5)至(7)之任一形態中, 前述控制裝置,係在前述系統要求負荷為前述第2燃料電池模組的額定輸出值以下的情形,以使前述第1燃料電池模組成為無負荷運轉(熱待命)狀態的方式進行控制。
依據前述(8)之形態,在系統要求負荷係第2燃料電池模組之額定輸出值以下的情形,根據系統要求負荷使輸出受到可變控制之第1燃料電池模組成為無負荷運轉(熱待命)狀態的方式進行控制。於無負荷運轉(熱待命)狀態,雖未進行發電,然而因將燃料電池模組維持在燃料電池的動作所必要的溫度或是接近其之溫度,故於將來系統要求負荷增加之際,能夠一邊迅速地使第1燃料電池模組進行之發電再度開始,並避免燃料電池模組的啟動停止造成之能量消耗,一邊獲得良好的負載追隨性。
(9)其他形態,係於前述(5)至(8)之任一形態中, 前述控制裝置,係控制為:以能夠使前述第2燃料電池模組的前述第2排放燃料氣體再循環而供給作為維持前述第1燃料電池模組的無負荷運轉(熱待命)狀態所必要的改質用蒸氣的方式,使前述第2燃料電池模組發電。
依據前述(9)之形態,藉由使第2排放燃料氣體再循環而供給至第1燃料電池模組,不須自外部供給水蒸氣,便能夠使用第2排放燃料氣體所包含的水蒸氣,以良好的效率維持第1燃料電池模組的無負荷運轉(熱待命)狀態。
(10)其他形態,係於前述(5)至(9)之任一形態中, 前述控制裝置,係以能夠供給用以將前述第1燃料電池模組維持在無負荷運轉(熱待命)狀態所必要的改質用蒸氣的方式,控制前述第2燃料電池模組。
依據前述(10)之形態,在將燃料電池發電系統所具備的第1燃料電池模組維持於無負荷運轉(熱待命)狀態之際,用以供給為了防止於第1燃料電池模組210A發生碳析出之改質蒸氣,並且能夠將燃料電池發電系統1維持在無負荷運轉(熱待命)狀態的內部電力,係藉由第2燃料電池模組產生。藉此,於將來系統要求負荷增加之際,能夠一邊使各燃料電池模組迅速地再度開始發電,並避免燃料電池模組的啟動停止造成之能量消耗,一邊獲得良好的負荷追隨性。
(11)其他形態,係於前述(1)至(10)之任一形態中, 係進一步具備:第2排放燃料氣體供給線(例如前述實施形態之24C),係以能夠將第2排放燃料氣體Gef2供給至第1燃料電池模組210A的氧化性氣體供給線42A的方式,連接第2排放燃料氣體線22B與氧化性氣體供給線42A。
依據前述(11)之形態,對於第1燃料電池模組之氧側電極,能夠經由第2排放燃料氣體供給線供給第2排放燃料氣體。藉此,第2排放燃料氣體係在第1燃料電池模組之氧側電極燃燒,而能夠將第1燃料電池模組控制為無負荷運轉(熱待命)狀態。如此,不須從外部追加燃料氣體,藉由有效利用來自第2燃料電池模組的排放燃料氣體,能夠抑制能量消耗並有效率地實現第1燃料電池模組的無負荷運轉(熱待命)狀態。
(12)其他形態,係於前述(1)至(11)之任一形態中, 係進一步具備:第2排放燃料氣體供給線(例如前述實施形態之24D),係以能夠將前述第2排放燃料氣體Gef2供給至第2燃料電池模組210B的氧化性氣體供給線42B的方式,連接第2排放燃料氣體線22B與氧化性氣體供給線42B。
依據前述(12)之形態,對於第2燃料電池模組之氧側電極,能夠經由第2排放燃料氣體供給線供給第2排放燃料氣體。藉此,第2排放燃料氣體係在第2燃料電池模組之氧側電極燃燒,而能夠將第2燃料電池模組控制為必要最低限度的低負荷運轉狀態。如此,僅需從外部供給最低限度的燃料氣體,藉由有效利用來自第2燃料電池模組的排放燃料氣體,能夠抑制能量消耗並有效率地實現第2燃料電池模組的低負荷運轉狀態。
1:燃料電池發電系統 10:燃料電池部 20:燃料氣體供給線 22A:第1排放燃料氣體線 22B:第2排放燃料氣體線 24A:第2再循環線 24B:第1再循環線 24C:第2排燃料供給線(第1燃料電池模組用) 24D:第2排燃料供給線(第2燃料電池模組用) 26A:第1匯流部 26B:第2分歧部 28:再循環鼓風機 28A:第1再循環鼓風機 28B:第2再循環鼓風機 40:氧化性氣體供給線 42A:第1氧化性氣體供給線 42B:第2氧化性氣體供給線 42C:第1排放氧化性氣體線 42D:第2排放氧化性氣體線 101:電池堆 103:基體管 105:燃料電池胞 107:端子連接器 109:燃料側電極 111:固體電解質膜 113:氧側電極 115:導線膜 210:燃料電池模組(SOFC模組) 210A:第1燃料電池模組 210B:第2燃料電池模組 203:燃料電池匣(SOFC匣) 205:壓力容器 207:燃料氣體供給管 207a:燃料氣體供給支管 209:燃料氣體排出管 209a:燃料氣體排出支管 215:發電室 217:燃料氣體供給管集 219:燃料氣體排出管集 221:氧化性氣體供給管集 223:氧化性氣體排出管集 225a:上部管板 225b:下部管板 227a:上部隔熱體 227b:下部隔熱體 229a:上部殼體 229b:下部殼體 231a:燃料氣體供給孔 231b:燃料氣體排出孔 233a:氧化性氣體供給孔 233b:氧化性氣體排出孔 235a:氧化性氣體供給間隙 235b:氧化性氣體排出間隙 237a,237b:密封構件 380:控制裝置 Gef1:第1排放燃料氣體 Gef2:第2排放燃料氣體 Geo1:第1排放氧化性氣體 Geo2:第2排放氧化性氣體 Gf:燃料氣體 Go:氧化性氣體
[圖1]係一實施形態之SOFC模組的示意圖。 [圖2]係構成一實施形態之SOFC模組的SOFC匣的示意性剖面圖。 [圖3]係構成一實施形態之SOFC模組的電池堆的示意性剖面圖。 [圖4]係一實施形態之燃料電池發電系統的概略構成圖。 [圖5]係其他實施形態之燃料電池發電系統的概略構成圖。 [圖6]係表示對於圖4所示之燃料電池發電系統之系統要求負荷與發電輸出值的關係的圖。 [圖7]係表示系統要求負荷為額定負荷(100%)的情形之圖4之燃料電池發電系統的動作狀態的圖。 [圖8]係表示系統要求負荷為最低負荷(例如20%的情形)的情形之圖4之燃料電池發電系統的動作狀態的圖。
1:燃料電池發電系統
10:燃料電池部
20:燃料氣體供給線
22A:第1排放燃料氣體線
22B:第2排放燃料氣體線
24A:第2再循環線
24B:第1再循環線
24C:第2排燃料供給線(第1燃料電池模組用)
24D:第2排燃料供給線(第2燃料電池模組用)
26A:第1匯流部
26B:第2分歧部
28A:第1再循環鼓風機
28B:第2再循環鼓風機
40:氧化性氣體供給線
42A:第1氧化性氣體供給線
42B:第2氧化性氣體供給線
42C:第1排放氧化性氣體線
42D:第2排放氧化性氣體線
109:燃料側電極
111:固體電解質膜
113:氧側電極
210A:第1燃料電池模組
210B:第2燃料電池模組
380:控制裝置
Gef1:第1排放燃料氣體
Gef2:第2排放燃料氣體
Geo1:第1排放氧化性氣體
Geo2:第2排放氧化性氣體
Gf:燃料氣體
Go:氧化性氣體

Claims (11)

  1. 一種燃料電池發電系統,係具備:第1燃料電池模組,係能夠使用燃料氣體發電;第1排放燃料氣體線,係流動有從前述第1燃料電池模組排出之第1排放燃料氣體;第2燃料電池模組,係能夠使用前述第1排放燃料氣體發電;第2排放燃料氣體線,係流動有從前述第2燃料電池模組排出之第2排放燃料氣體;第1再循環線,係為了將前述第2排放燃料氣體供給至前述第2燃料電池模組的燃料側電極,從前述第2排放燃料氣體線進行再循環;以及第2再循環線,係為了將前述第1排放燃料氣體供給至前述第1燃料電池模組的燃料側電極,從前述第1排放燃料氣體線進行再循環,前述第1再循環線,係對於前述第1排放燃料氣體線以在比前述第2再循環線的分歧部更上游處匯流的方式連接。
  2. 如請求項1所述之燃料電池發電系統,其中,於前述第1再循環線及前述第2再循環線,係分別設有再循環鼓風機。
  3. 如請求項1所述之燃料電池發電系統,其中, 於前述第1排放燃料氣體線當中,在與前述第1再循環線之第1匯流部和與前述第2再循環線之第2分歧部之間,設有用以壓送前述第1排放燃料氣體之再循環鼓風機。
  4. 如請求項1至3中任一項所述之燃料電池發電系統,其中,係具備:控制裝置,係根據系統要求負荷,分別控制前述第1燃料電池模組及前述第2燃料電池模組,前述控制裝置,係將前述第1燃料電池模組的輸出對應於前述系統要求負荷進行可變控制,並且,將前述第2燃料電池模組的輸出無論系統要求負荷皆控制在預先設定的一定目標值。
  5. 如請求項4所述之燃料電池發電系統,其中,前述一定目標值,係前述第2燃料電池模組之額定輸出值。
  6. 如請求項4所述之燃料電池發電系統,其中,前述第2燃料電池模組之額定輸出值,係比前述第1燃料電池模組之額定輸出值更小。
  7. 如請求項4所述之燃料電池發電系統,其中,前述控制裝置,係在前述系統要求負荷為前述第2燃料電池模組的額定輸出值以下的情形,以使前述第1燃料電池模組成為無負荷運轉狀態的方式進行控制。
  8. 如請求項4所述之燃料電池發電系統,其中,前述控制裝置,係控制為:以能夠使前述第2燃料電池模組的前述第2排放燃料氣體再循環而供給作為維持前述第1燃料電池模組的無負荷運轉狀態所必要的改質用蒸氣的方式,使前述第2燃料電池模組發電。
  9. 如請求項4所述之燃料電池發電系統,其中,前述控制裝置,係以能夠產生用以將前述燃料電池發電系統維持在無負荷運轉狀態所必要的最低限度的電力的方式,控制前述第2燃料電池模組。
  10. 如請求項1至3中任一項所述之燃料電池發電系統,其中,係進一步具備:第2排放燃料氣體供給線,係以能夠將前述第2排放燃料氣體供給至前述第1燃料電池模組的氧化性氣體供給線的方式,連接前述第2排放燃料氣體線與前述氧化性氣體供給線。
  11. 如請求項1至3中任一項所述之燃料電池發電系統,其中,係進一步具備:第2排放燃料氣體供給線,係以能夠將前述第2排放燃料氣體供給至前述第2燃料電池模組的氧化性氣體供給線的方式,連接前述第2排放燃料氣體線與前述氧化性氣體供給線。
TW110140060A 2020-10-30 2021-10-28 燃料電池發電系統 TWI806205B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-183269 2020-10-30
JP2020183269A JP6993489B1 (ja) 2020-10-30 2020-10-30 燃料電池発電システム

Publications (2)

Publication Number Publication Date
TW202236726A TW202236726A (zh) 2022-09-16
TWI806205B true TWI806205B (zh) 2023-06-21

Family

ID=80815856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110140060A TWI806205B (zh) 2020-10-30 2021-10-28 燃料電池發電系統

Country Status (7)

Country Link
US (1) US20230411648A1 (zh)
JP (1) JP6993489B1 (zh)
KR (1) KR20230074213A (zh)
CN (1) CN116349040A (zh)
DE (1) DE112021004486T5 (zh)
TW (1) TWI806205B (zh)
WO (1) WO2022092054A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12087979B2 (en) * 2021-05-21 2024-09-10 China Energy Investment Corporation Limited System and method for producing power and/or chemicals from coal
WO2024155816A1 (en) * 2023-01-19 2024-07-25 Versa Power Systems Ltd Hybrid recycle fuel cell/electrolysis system for high efficiency

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141421A1 (en) * 2015-11-17 2017-05-18 Exxonmobil Research And Engineering Company Hybrid high-temperature swing adsorption and fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924243B2 (ja) 2002-12-18 2007-06-06 三菱重工業株式会社 燃料電池複合発電システム
JP2006049135A (ja) * 2004-08-05 2006-02-16 Nissan Motor Co Ltd 燃料電池システム
JP4908851B2 (ja) * 2006-01-17 2012-04-04 三菱重工業株式会社 燃料電池及びその運転方法
JP5483162B2 (ja) * 2009-06-24 2014-05-07 日産自動車株式会社 燃料電池システム及びその運転方法
US10854899B2 (en) * 2016-11-04 2020-12-01 Cummins Enterprise Llc Power generation system using cascaded fuel cells and associated methods thereof
JP6438929B2 (ja) * 2016-11-14 2018-12-19 東京瓦斯株式会社 燃料電池システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141421A1 (en) * 2015-11-17 2017-05-18 Exxonmobil Research And Engineering Company Hybrid high-temperature swing adsorption and fuel cell

Also Published As

Publication number Publication date
DE112021004486T5 (de) 2023-06-15
CN116349040A (zh) 2023-06-27
JP2022073338A (ja) 2022-05-17
TW202236726A (zh) 2022-09-16
KR20230074213A (ko) 2023-05-26
US20230411648A1 (en) 2023-12-21
JP6993489B1 (ja) 2022-02-04
WO2022092054A1 (ja) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6616054B1 (ja) 燃料電池システム及び複合発電システム並びに燃料電池システムの制御方法
US9666888B2 (en) Combined power generation system and unit, method, and program for controlling the same
KR102132314B1 (ko) 연료 전지의 온도 분포 제어 시스템, 연료 전지 및 온도 분포 제어 방법
TWI806205B (zh) 燃料電池發電系統
WO2021153627A1 (ja) 燃料電池発電システム
WO2021171882A1 (ja) 燃料電池システム及びその制御方法
JP7043288B2 (ja) 複合発電システム、複合発電システムの運転切替方法及び複合発電システムの運転切替プログラム
JP6486649B2 (ja) 複合発電システム及び複合発電システムの制御方法
CN115428201A (zh) 燃料电池发电系统
TWI797800B (zh) 燃料電池發電系統,以及燃料電池發電系統的控制方法
JP6982586B2 (ja) 燃料電池カートリッジ、燃料電池モジュール及び複合発電システム
JP6993488B1 (ja) 燃料電池発電システム、及び、燃料電池発電システムの制御方法
WO2021171884A1 (ja) 燃料電池システム及びその制御方法
JP2016091816A (ja) 複合発電システムの制御装置及び方法並びにプログラム、それを備えた複合発電システム
JP2016213085A (ja) 固体酸化物型燃料電池システム