TWI796980B - 半導體材料及包含其之半導體結構 - Google Patents

半導體材料及包含其之半導體結構 Download PDF

Info

Publication number
TWI796980B
TWI796980B TW111111570A TW111111570A TWI796980B TW I796980 B TWI796980 B TW I796980B TW 111111570 A TW111111570 A TW 111111570A TW 111111570 A TW111111570 A TW 111111570A TW I796980 B TWI796980 B TW I796980B
Authority
TW
Taiwan
Prior art keywords
metal
metal oxide
semiconductor
sensing
semiconductor material
Prior art date
Application number
TW111111570A
Other languages
English (en)
Other versions
TW202338343A (zh
Inventor
蔡明志
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW111111570A priority Critical patent/TWI796980B/zh
Priority to CN202210992574.6A priority patent/CN116858892A/zh
Application granted granted Critical
Publication of TWI796980B publication Critical patent/TWI796980B/zh
Publication of TW202338343A publication Critical patent/TW202338343A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Thin Film Transistor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Die Bonding (AREA)

Abstract

本發明實施例提供一種半導體材料,包括:金屬; 第一金屬氧化物,包覆金屬,其中第一金屬氧化物為金屬青銅類氧化物;第二金屬氧化物,包覆第一金屬氧化物;及另一第一金屬氧化物,包覆第二金屬氧化物。本發明實施例更提供一種包含上述半導體材料之半導體結構。

Description

半導體材料及包含其之半導體結構
本揭露係有關於一種半導體材料及包含前述半導體材料的半導體結構,且特別是有關於一種包含金屬青銅類氧化物的半導體材料及包含前述半導體材料的半導體結構。
隨著科技文明的發展,世界各國逐漸開始重視有機揮發性物質(Volatile Organic Compounds, VOCs)對人類的危害,尤其歐盟以及世界衛生組織已開始推動相關政策,因此,感測器普遍應用於電子裝置中,以對環境中的各種有機揮發性物質進行感測,例如殺菌液、乾洗手、油漆、塗料、內裝、裝潢、煙氣至工業活動所產生的有機揮發性物質等。
習知的技術普遍需使用高溫加熱的方法對感測器局部加溫(250-450
Figure 02_image001
)才可感測到氣體,然而,高溫可能使有機揮發性物質產生氣爆的風險,且高溫加熱方法所需使用的加熱器佔據了元件的功率,此外,採用高溫加熱方法的感測器需額外考量使用隔熱以及散熱元件,因此,需增加感測器大小,進一步提高成本或導致用途受限。
因此,雖然現有的感測器大致上已經符合需求,但並非在各方面皆令人滿意,仍需要進一步改良。
本發明實施例提供一種半導體材料及包含其之半導體結構,以解決現有的感測器普遍需使用高溫加熱的方法對感測器局部加溫,從而產生氣爆風險、佔據元件功率、提高成本或導致用途受限等問題。
本發明實施例提供一種半導體材料,包括:金屬;第一金屬氧化物,包覆金屬,其中第一金屬氧化物為金屬青銅類氧化物;第二金屬氧化物,包覆第一金屬氧化物;及另一第一金屬氧化物,包覆第二金屬氧化物。
在一些實施例中,第一金屬氧化物為如通式1所示的結構:AxMyOz(通式1),其中,A包括至少一陽離子,M包括過渡金屬離子、類金屬離子及碳離子的至少一者,x、y與z的值使通式1的電荷數達到平衡,x為介於1至12之正整數,y為介於1至6之正整數,z為介於1至30之正整數。在一些實施例中,第一金屬氧化物亦可包含過氧化物。
在一些實施例中,A包括氫離子、鹼金屬離子、鹼土金屬離子、稀土金屬離子和銨類離子中的至少一者,且M包括錫、鈦、鋯、鈰、鉿、鉬、鎢、釩、銅、鐵、鈷、鎳、錳、鈮、鉭、錸、釕、鉑、矽、硼、鍺、砷和碳中的至少一者。
在一些實施例中,第一金屬氧化物及第二金屬氧化物為半導體。
在一些實施例中,第一金屬氧化物及第二金屬氧化物各自為n型或p型。
在一些實施例中,金屬包括鐵、鈷、鎳、銀、鋁、銅、鋅、鈦、鋯、銦、錫、鉻、錳、鎢、鉬、前述之合金、或前述之組合。
在一些實施例中,金屬之任意一邊與其對邊相距之長度為軸長,金屬具有5nm至500nm的最短軸長。
在一些實施例中,第一金屬氧化物具有1nm至20nm之第一厚度。
在一些實施例中,第二金屬氧化物具有5nm至10nm之第二厚度。
在一些實施例中,第一金屬氧化物與金屬之間形成共價鍵或離子鍵,且第一金屬氧化物與第二金屬氧化物之間形成共價鍵或離子鍵。
本發明另一些實施例提供一種半導體結構,包括:基板;感測電極,設置於基板之上,且被區分為複數個感測區塊;及感測層,設置於該些感測區塊之間,其中感測層包括複數個上述半導體材料,且在剖面圖中複數個半導體材料的第一金屬氧化物、第二金屬氧化物與金屬相互交錯排列。
在另一些實施例中,半導體結構被設置以偵測目標氣體,包括還原性氣體。
在另一些實施例中,還原性氣體包括酒精及甲苯,半導體結構的靈敏度與酒精濃度呈正相關,半導體結構的靈敏度與甲苯濃度呈負相關,其中靈敏度定義如下:靈敏度=Rg/Ra,Rg=半 導體結構於目標氣體下的電阻值,Ra=半導體結構於乾空氣下的電阻值。
在另一些實施例中,半導體結構更包括:附著層,設置於感測層與感測電極之間,其中附著層為金屬青銅類氧化物。
在另一些實施例中,感測層的金屬之任意一邊與其對邊相距之長度為軸長且金屬具有最短軸長,感測區塊之間以一距離間隔開,且金屬的該最短軸長與距離的比例為1:300至1:30000。
承上所述,本發明使用金屬與金屬氧化物的核殼結構作為半導體材料應用於半導體結構的感測層中,由於此半導體材料對於還原性氣體的親和力較高,且反應的能障較低,因此可應用於常溫、常壓下對還原性氣體進行量測,而可避免加溫造成的氣爆風險、減少功率且降低成本。
為讓本揭露之特徵明顯易懂,下文特舉出實施例,並配合所附圖式,作詳細說明如下,其他注意事項,請參照技術領域。
10:基板
20:感測電極
20S:感測區塊
30:絕緣層
40:附著層
50:感測層
52:半導體材料
52a:金屬
52b:第一金屬氧化物
52c:第二金屬氧化物
100:半導體結構
200:半導體結構
d:直徑
H:高度
L:距離
s:邊長
t:厚度
T1:第一厚度
T2:第二厚度
A-A’:線
B-B’:線
以下將配合所附圖式詳述本揭露之各面向。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製。事實上,可任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。
第1A圖係根據本揭露的一些實施例,繪示一種半導體材料的剖面圖。
第1B圖係根據本揭露的一些實施例,繪示另一種半導體材料的剖面圖。
第1C圖係根據本揭露的一些實施例,繪示又另一種半導體材料的剖面圖。
第2圖係根據本揭露的一些實施例,繪示半導體結構的俯視圖。
第3A圖、第3B圖、第3C圖係根據本揭露的一實施例,繪示沿著第2圖的A-A’線段的部分剖面圖,用以說明半導體結構的各個中間製程。
第3D圖係根據本揭露的一實施例,繪示第3C圖的虛線部分的放大圖。
第4A圖、第4B圖、第4C圖、第4D圖係根據本揭露的另一實施例,繪示沿著第2圖的A-A’線段的部分剖面圖,用以說明半導體結構的各個中間製程。
第4E圖係根據本揭露的另一實施例,繪示沿著第4D圖的虛線部分的放大圖。
第5圖係根據本揭露的一些實施例,繪示沿著第3D圖或第4E圖的B-B’線段的半導體結構的部分剖面示意圖。
第6A圖係根據本揭露的一些實施例,繪示半導體結構對酒精的電阻與時間曲線圖。
第6B圖係根據本揭露的一些實施例,繪示半導體結構對酒精的靈敏度與濃度散佈圖。
第7A圖係根據本揭露的一些實施例,繪示半導體結構對甲苯的電阻與時間曲線圖。
第7B圖係根據本揭露的一些實施例,繪示半導體結構對甲苯的靈敏度與濃度散佈圖。
以下揭露提供了許多的實施例或範例,用於實施所提供的標的物之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元 件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在各種範例使用重複的元件符號。如此重複是為了簡明和清楚之目的,而非用以表示所討論的不同實施例及/或配置之間的關係。
再者,其中可能用到與空間相對用詞,例如「在......之下」、「下方」、「較低的」、「上方」、「較高的」等類似用詞,是為了便於描述圖式中一個(些)部件或特徵與另一個(些)部件或特徵之間的關係。空間相對用詞用以包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),其中所使用的空間相對形容詞也將依轉向後的方位來解釋。
應理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,部分的操作步驟可被取代或省略。
於文中,「約」、「大約」、「實質上」之用語通常表示在一給定值或範圍的5%內,較佳是3%內,更佳是1%內,或2%之內,或1%之內,或0.5%之內。在此給定的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「實質上」的情況下,仍可隱含「約」、「大約」、「實質上」之含義。
除非另外定義,在文中使用的全部用語(包含技術及科學用語)具有與本揭露所屬技術領域的技術人員通常理解的相同涵義。能理解的是,這些用語例如在通常使用的字典中定義用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思, 而不應以一理想化。
習知的技術普遍需使用高溫加熱的方法對感測器局部加溫(250-450℃)才可感測到氣體,然而,高溫加熱具有氣爆的風險、增加功率、提高成本的缺點。為解決上述問題,本發明提供了一種金屬-半導體金屬氧化物(metal-semiconducting metal oxide,metal-SMOX)作為半導體結構的感測層,使半導體結構可在室溫下運作,並且大幅地改善半導體結構對氣體的選擇性,解決了上述高溫加熱的氣爆風險以及氣體鑑別度的問題。
以下針對本案所提供之半導體材料、半導體作詳細說明。應了解的是,以下所述特定的元件及排列方式僅為簡單清楚描述本揭露一些實施例,而非用以限定本揭露之範圍。
[半導體材料]
第1A圖係根據本揭露的一些實施例,繪示一種半導體材料52的剖面圖,其中半導體材料52可為奈米顆粒(nanoparticles)、奈米管(nanotubes)或奈米線(nanowires)。第1B圖係根據本揭露的一些實施例,繪示另一種半導體材料52的剖面圖,其中半導體材料52可為奈米薄片(nanoflakes)或奈米片(nanosheets)。第1C圖係根據本揭露的一些實施例,繪示又另一種半導體材料52的剖面圖,其中半導體材料52可為奈米立方體(nanocubes)。參照第1A圖至第1C圖,半導體材料52包括金屬52a、第一金屬氧化物52b及第二金屬氧化物52c,其中第一金屬氧化物52b包覆金屬52a,第二金屬氧化物52c包覆第一金屬氧化物52b,且另一第一金屬氧化物52b包覆第二金屬氧化物52c,換言之,金屬52a包埋於第一金屬氧化物52b內,第一金屬氧化物 52b位於金屬52a與第二金屬氧化物52c之間,且第二金屬氧化物52c位於兩層第一金屬氧化物52b之間。
在一些實施例中,金屬52a具有催化效果,可降低半導體材料與目標氣體(如揮發性有機氣體)反應的能障,金屬52a可為鐵(Fe)、鈷(Co)、鎳(Ni)、銀(Ag)、鋁(Al)、銅(Cu)、鋅(Zn)、鈦(Ti)、鋯(Zr)、銦(In)、錫(Sn)、鉻(Cr)、錳(Mn)、鎢(W)、鉬(Mo)、類似的材料、前述之合金或前述之組合。
在一些實施例中,金屬52a可為奈米顆粒、奈米立方體、奈米管、奈米線、奈米薄片、奈米片。本文中將金屬52a之任意一邊與其對邊相距之長度定義為軸長(於第1A圖、第1B圖、第1C圖中分別以直徑d、厚度t、邊長s表示),其中金屬52a的最短軸長為5nm至500nm,優選為6nm至300nm。應注意的是,不同形狀的金屬52a可各自獨立地具有不同範圍的直徑d及厚度t。舉例而言,奈米顆粒之最短軸長為如第1A圖所示5nm至15nm之直徑d,奈米管之最短軸長為如第1A圖所示5nm至15nm之內徑直徑d,奈米線之最短軸長為如第1A圖所示40nm至60nm之內徑直徑d,奈米片之最短軸長為如第1B圖所示30nm至50nm之厚度t,奈米薄片(nanoflakes)之最短軸長為如第1B圖所示50nm至500nm之厚度t,奈米立方體之最短軸長為如第1C圖所示5nm至15nm之邊長s。
根據發明人的研究顯示:在一些實施例中,如果最短軸長小於5nm,可能會發生碎片化(fragmentation)的結果,難以進行後續製程。如果最短軸長大於500nm,可能會難以穩定均勻分散,不利於後續製程。在一些實施例中,如果奈米顆粒的直徑d 小於5nm,可能會發生碎片化的結果,難以進行後續製程。如果奈米顆粒的直徑d大於15nm,可能會導致吸附的氣體變少,使裝置對於氣體的感測變化率變小,靈敏度較差。
舉例而言,金屬52a可為銀奈米顆粒(Ag nanoparticles)、銅奈米顆粒(Cu nanoparticles)、鎳奈米顆粒(Ni nanoparticles)、銀奈米線(Ag nanowires)、銅奈米線(Cu nanowires)、鎳奈米線(Ni nanowires)。
第一金屬氧化物52b為具有高活性的金屬青銅類氧化物(metal oxide bronze,MOB),可提供金屬52a抗環境能力,例如,防止金屬52a受揮發性氣體及濕氣影響、防止金屬52a氧化、防止金屬52a受溫熔化等,進一步防止電阻上升。在一些實施例中,第一金屬氧化物52b為如通式1所示的結構:AxMyOz (通式1)
其中,A包括至少一陽離子;M包括過渡金屬離子、類金屬離子及碳離子的至少一者;其中A與M至少其一為金屬離子;x、y與z的值使通式1的電荷數達到平衡,x為介於1至12之正整數,y為介於1至6之正整數,z為介於1至30之正整數。
在一些優選實施例中,A包括氫離子、鹼金屬離子、鹼土金屬離子、稀土金屬離子和銨類離子中的至少一者,且M包括錫、鈦、鋯、鈰、鉿、鉬、鎢、釩、銅、鐵、鈷、鎳、錳、鈮、鉭、錸、釕、鉑、矽、硼、鍺、砷和碳中的至少一者。更優選地,AxMyOz包括至少一過氧基,以利於第一金屬氧化物52b藉由過氧基與金屬52a形成共價鍵或離子鍵。舉例而言,AxMyOz可為HTiO2、HTiO3、 HTi2O5、H2Ti2O3、H2Ti2O5、HMoO3、H2MoO3、HMoO4、H2MoO4、HMo2O5、H2Mo2O5、HMo2O6、HMo2O7、H2Mo2O7
在一些實施例中,第一金屬氧化物52b可為n型或p型半導體。舉例而言,M為鐵(Fe)、鈦(Ti)、鋯(Zr)、錫(Sn)、鎢(W)或鉬(Mo),則第一金屬氧化物52b為n型半導體,M為鈷(Co)、鎳(Ni)、銅(Cu)、錳(Mn),則第一金屬氧化物52b為p型半導體。
於本說明書中,使用”-“區隔不同層。
在一些實施例中,將第一金屬氧化物52b沉積於金屬52a上時,第一金屬氧化物52b可將金屬52a的表面氧化並形成金屬氧化物,此外,第一金屬氧化物52b可保護金屬52a內部不被氧化,以提供金屬52a抗環境能力,防止揮發性氣體影響金屬52a及防止金屬52a氧化。舉例而言,第一金屬氧化物52b的過氧基可與金屬52a反應,使金屬52a的表面形成如下所示之結構:Ax-mBMyOz-m
其中,A、M、x、y、z定義同前;B為金屬52a;m為第一金屬氧化物52b藉由其所包含之過氧基將金屬B氧化時所消耗的氧原子,其中x-m為不等於0的正整數且z-m為不等於0的正整數。
換言之,金屬52a表面與第一金屬氧化物52b之間形成共價鍵或離子鍵。本文中以AxMyOz-Ax-mBMyOz-m表示第一金屬氧化物52b與金屬52a的界面,其中AxMyOz為第一金屬氧化物52b,Ax-mBMyOz-m為被第一金屬氧化物52b氧化的金屬52a的表面。
在一些實施例中,內層第一金屬氧化物52b具有1nm至20nm之第一厚度T1,且外層第一金屬氧化物52b的厚度大於內層第一金屬氧化物52b的第一厚度T1。根據發明人的研究顯示:在一些實施例中,如果第一厚度T1小於1nm,可能會使感測性能發生改變,整體性能偏向第二金屬氧化物52c的感測性,對於還原性氣體的選擇性較差。如果第一厚度T1大於20nm,可能會使得感測層的電阻值過高(>500MOhm(>500百萬歐姆))致使操作時需同時進行高溫加熱,而無法在室溫下進行操作。
第二金屬氧化物52c係選用對還原性氣體具有較佳的活性的材料,因此可用來感測還原性氣體。在一些實施例中,第二金屬氧化物52c可為n型或p型半導體。優選地,第二金屬氧化物52c具有下列通式2所示之結構:M’iOj (通式2)
其中,M’為使第二金屬氧化物52c呈n型或p型的金屬;i、j的值使通式2的電荷數達到平衡,i為介於1至3之正整數,j為介於1至10之正整數。舉例而言,M’iOj可為氧化鐵奈米顆粒(Fe2O3 nanoparticles)、氧化鋅奈米顆粒(ZnO nanoparticles)、氧化鈦奈米顆粒(TiO2 nanoparticles)、氧化鋯奈米顆粒(ZrO2 nanoparticles)、氧化銦奈米顆粒(In2O3 nanoparticles)、氧化錫奈米顆粒(SnO2 nanoparticles)、氧化鎢奈米顆粒(WO3 nanoparticles)、氧化鉬奈米顆粒(MoO3 nanoparticles)。
詳細而言,M’為鐵(Fe)、鋅(Zn)、鈦(Ti)、鋯(Zr)、銦(In)、錫(Sn)、鎢(W)或鉬(Mo),則第二金屬氧化物52c為n型半導體。M’為鈷(Co)、鎳(Ni)、銀(Ag)、銅(Cu)、鉻(Cr)、錳(Mn), 則第二金屬氧化物52c為p型半導體。
在一些實施例中,舉例而言,第二金屬氧化物52c可與第一金屬氧化物52b進行如下所示之反應:
Figure 111111570-A0305-02-0014-2
其中,A、M、M’、i、j、x、y、z定義同前,在此不於贅述,k為AxMyOz藉由其所包含之過氧基於第二金屬氧化物52c表面脫水、聚合的量,x-k為不等於0的正整數且z-k為不等於0的正整數。本文中以Ax-kMyOz-k-M’iOj表示第一金屬氧化物52b與第二金屬氧化物52c的界面,其中Ax-kMyOz-k為第一金屬氧化物52b,M’iOj為第二金屬氧化物52c。換言之,第一金屬氧化物52b與第二金屬氧化物52c之間形成共價鍵或離子鍵,使得第一金屬氧化物52b與第二金屬氧化物52c形成一同質接面或異質接面,並且第一金屬氧化物52b或第二金屬氧化物52c具有被吸附的含氧物(adsorbed oxygen species),AxMyOz所包含之過氧基可提供給第一金屬氧化物52b或第二金屬氧化物52c比一般金屬氧化物更多的被吸附的含氧物,由於被吸附的含氧物的存在,將會對於還原性氣體中的極性化合物具有較高的親和力,因此對於還原性氣體中的極性化合物與非極性化合物具有鑑別性,舉例而言,對於酒精與甲苯具有不同的親和力而具有鑑別性,此外,相較於高溫下操作,於室溫下時,第一金屬氧化物52b或第二金屬氧化物52c具較多被吸附的含氧物,對還原性氣體的親和力提高而具有較佳的反應性,因此可在常溫下感測還原性氣體。
在一些實施例中,第二金屬氧化物52c具有5nm至 10nm之第二厚度T2。根據發明人的研究顯示:在一些實施例中,如果第二厚度T2小於5nm,可能會使感測性能發生改變,整體偏向第一金屬氧化物52b的感測性,對於還原性氣體於室溫下的感測性能較差。如果第二厚度T2大於10nm,可能會使感測性能發生改變,整體偏向第二金屬氧化物52c的感測性,對於還原性氣體於室溫下的感測性能較差。
在一些實施例中,可選地將第三金屬氧化物沉積於第二金屬氧化物52c上(未繪示),以調整半導體材料52至優化的電性。第三金屬氧化物的定義同第二金屬氧化物52c,在此不予贅述。第三金屬氧化物與第二金屬氧化物52c的材料可相同或不同。
在一些實施例中,半導體材料52的形成方法可包括下列步驟:在製備的第一步中,製作第一金屬氧化物52b與金屬52a的混合溶液。具體而言,將0.1wt%至10wt%之金屬B溶液(金屬52a)與0.01wt%至10wt%之金屬青銅類化合物AxMyOz溶液(第一金屬氧化物52b)混合,其中將0.1wt%至10wt%之金屬B(52a)溶液與0.01wt%至10wt%之第一金屬氧化物(52b)溶液混合為兩者重量百分比例是10:1-1000:1的第一混合溶液,例如將4wt%的金屬B(52a)溶液與0.2wt%的第一金屬氧化物(52b)溶液以1:1等重量混合,得到第一混合溶液。上述金屬B溶液優選為0.5wt%至5wt%,例如2wt%、4wt%,其中以4wt%金屬B溶液製成的半導體材料52相較於2wt%金屬B溶液製成的半導體材料52而言,電阻較小而電性較佳,反應時間亦較快。金屬青銅類化合物AxMyOz溶液優選為0.1wt%至2wt%,例如0.2wt%。此外,上述第一混合溶液包含第一金屬氧化物52b與金屬52a的核殼結構,本文以 AxMyOz-Ax-mBMyOz-m-B表示,其中B為中心層,AxMyOz為最外層,Ax-mBMyOz-m為介於中心層B與最外層AxMyOz之間的金屬的氧化層。其中,A、B、M、m、x、y、z定義同前,在此不予贅述。
在製備的第二步中,製作第一金屬氧化物52b與第二金屬氧化物52c的混合溶液。具體而言,將0.1wt%至20wt%之之第二金屬氧化物52c溶液與0.01wt%至10wt%之金屬青銅類化合物AxMyOz溶液(第一金屬氧化物52b)混合,其中將0.01wt%至10wt%之第一金屬氧化物(52b)溶液與0.1wt%至20wt%之第二金屬氧化物(52c)溶液混合為兩者重量百分比例是10:1-2000:1的第二混合溶液,例如將1wt%的第一金屬氧化物(52b)溶液與10wt%的第二金屬氧化物(52c)溶液以1:1等重量混合,得到第一金屬氧化物52b與第二金屬氧化物52c的第二混合溶液,本文以Ax-kMyOz-k-M’iOj表示。其中,M’iOj定義同前,在此不予贅述。上述第二金屬氧化物52c溶液優選為0.1wt%至10wt%,例如10wt%。金屬青銅類化合物AxMyOz溶液優選為0.1wt%至2wt%,例如1wt%。
在製備的第三步中,製作感測溶液。具體而言,將第一混合溶液與第二混合溶液以體積比1:1進行等比例混合,得到感測溶液。
以下將針對半導體結構作詳細說明: [半導體結構]
第2圖係根據本揭露的一些實施例,係半導體結構的俯視圖。第3A圖至第3C圖係根據本揭露的第一實施例,係沿著第2 圖的A-A’線段的部分剖面圖,用以說明半導體結構100的各個中間製程。
如第2圖及第3A圖所示,將一感測電極20形成於一基板10之上。舉例來說,基板10可為一高分子基板,高分子基板例如包含苯環丁烯(benzocyclobutene,BCB)、環氧樹脂(epoxy)、聚醯亞胺(polyimide,PI)、聚苯唑(polybenzoxazole)等或前述之組合。再者,基板10可包含元素半導體(例如,矽或鍺)、化合物半導體(例如,碳化矽、氮化鎵、砷化鎵、磷化鎵、磷化銦、砷化銦、銻化銦等)、合金半導體(例如,矽鍺(silicon germanium)、砷磷化鎵(gallium arsenide phosphide)、磷化鋁銦(aluminum indium phosphide)、砷化鋁鎵(aluminum gallium arsenide)、砷化鎵銦(gallium indium arsenide)、磷化鎵銦(gallium indium phosphide)、砷磷化鎵銦(gallium indium arsenide phosphide)等或前述之組合,但本揭露實施例並非以此為限。基板10可為絕緣層上半導體(semiconductor-on-insulator,SOI)基板。前述絕緣層上半導體基板可包含底板、設置於前述底板上的埋藏氧化層以及設置於前述埋藏氧化層上的半導體層。或者,基板10可為一半導體晶圓(例如,矽晶圓或其他適當之半導體晶圓)。
感測電極20可包含導電材料,例如金屬、金屬矽化物、類似的材料或前述之組合,但本揭露實施例並非以此為限。舉例來說,金屬可包含金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、類似的材料、前述之合金或前述之組合。此外,感測電極20可透過化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(physical vapor deposition,PVD)、原子層沉積(atomic layer deposition,ALD)、蒸鍍(evaporation)、濺鍍(sputtering)、電鍍(electroplating)、積層製造(additive manufacturing,即3D列印)、旋轉塗佈、網版印刷(screen printing)、其他適當的製程或前述之組合形成於基板10之上,但本揭露實施例並非以此為限。
繼續參照第2圖,在一些實施例中,感測電極20為一指叉電極(interdigital electrode),因此在第3A圖的剖面圖中,感測電極20被區分為複數個感測區塊20S。
繼續參照第3B圖,將絕緣層30形成於基板10之上。具體而言,絕緣層30可形成於基板10之上未被感測電極20所佔據的空間。亦即,絕緣層30可形成於感測區塊20S之間。絕緣層30可例如包含苯環丁烯、環氧樹脂、聚醯亞胺、氮化鋁、氮化矽或其他合適的材料,但本揭露實施例並非以此為限。此外,絕緣層30可透過旋轉塗佈、化學氣相沉積、熱氧化、熱氮化、積層製造、網版印刷等技術來沉積形成於基板10之上,但本揭露實施例並非以此為限。
如第3C圖所示,在一些實施例中,將前述之半導體材料52形成於感測區塊20S之間作為感測層50,以形成半導體結構100,其中絕緣層30將感測層50與基板10隔開。感測層50可透過滴塗、噴灑、噴墨印刷、微接觸印刷、點膠機、積層製造、網版印刷、或光學微影等技術來沉積。
第3D圖係根據本揭露的第一實施例,繪示第3C圖的虛線部分的放大圖。如第3D圖所示,感測層50位於感測區塊20S之間,並具有複數個半導體材料52,其中在剖面圖(第5圖)中第一金屬氧化物52b、第二金屬氧化物52c與金屬52a互相交錯排列,第二 金屬氧化物52c與第一金屬氧化物52b相鄰,且第二金屬氧化物52c不與金屬52a相接觸,為簡化圖式,圖中僅繪出部分的半導體材料52作為例示,但其數量與排列方式並非用以限定本發明。此外,感測層50具有100nm至500μm之高度H及10μm至1000μm之長度L,亦即感測區塊20S之間以一距離L間隔開,其中半導體材料52的最短軸長(第1A圖至第1C圖所示之直徑d、厚度t或邊長s)與距離L的比值為1:20至1:200000,優選為1:300至1:40000。
根據發明人的研究顯示:在一些實施例中,如果感測層50的高度H小於100nm,則半導體材料52無法沿著高度H的方向垂直地重疊,可能導致電性誤差較大。如果高度H大於500μm,可能會導致感測效果較差。在一些實施例中,如果長度L小於10μm,可能會導致變化率較小。如果長度L大於1000μm,可能會使電阻值過大,導致感測器較難以實施。在一些實施例中,如果最短軸長與距離L的比值小於1:20,可能會導致變化率較小。如果最短軸長與距離L的比值大於1:200000,可能會使電阻值過大,導致感測器較難以實施。
半導體結構100偵測的目標氣體可包括揮發性有機化合物(volatile organic compounds,VOCs)氣體,優選為還原性氣體,例如酒精、異丙醇、丙酮、甲苯。
本發明將金屬與金屬氧化物的核殼結構作為半導體材料52應用於半導體結構100的感測層50中,上述半導體材料52具有第一金屬氧化物52b包覆金屬,以保護金屬52a不受到揮發性有機氣體影響並防止金屬52a內部氧化。此外,第一金屬氧化物52b可與包覆其的第二金屬氧化物52c形成共價鍵或離子鍵,且由於第一金 屬氧化物52b與第二金屬氧化物52c,會形成一接面(junction),因此於接面對於還原性分子與氧化性分子具有折衷(trade off)效應,因此對於還原性氣體具有鑑別性。且第二金屬氧化物52c含有金屬青銅類化合物,比一般金屬氧化物具較多被吸附的含氧物(adsorbed oxygen species),使得第二金屬氧化物52c對不同的極性氣體具有不同的親和力,因此對於極性與非極性分子會有二次的折衷(trade off)效應,對於極性氣體具有較佳的親和力,故進一步提高了鑑別性,舉例而言,第二金屬氧化物52c對極性的酒精及非極性的甲苯具有不同的親和力,而對酒精及甲苯的靈敏度與濃度趨勢分別呈正相關及負相關,因此當目標氣體中同時含有酒精及甲苯時具有顯著的鑑別性。再者,由於本發明的感測層50選用前文所述之半導體材料52,而此半導體材料52比一般金屬氧化物具較多被吸附的含氧物(adsorbed oxygen species),於室溫下對於極性氣體的親和力較高,反之,非極性氣體的親和力則較差,因此本發明的半導體結構100可應用於常溫、常壓下對極性與非極性之還原性氣體進行辨識、量測。
第4A圖、第4B圖、第4C圖、第4D圖係根據本揭露的第二實施例,係沿著第2圖的A-A’線段的部分剖面圖,用以說明半導體結構200的各個中間製程。第4E圖係根據本揭露的第二實施例,繪示第4D圖的虛線部分的放大圖,用以說明半導體結構200的各個中間製程。第二實施例與第一實施例的主要差別在於,半導體結構200具有附著層40。
第4A圖至第4B圖的步驟與第一實施例的第3A圖至第3B圖的步驟相同,在此不予贅述。繼續參照第4C圖,在一些實 施例中,在形成感測層50之前,先將附著層40形成於絕緣層30之上,並使其位於感測區塊20S之間。如第4C圖所示,附著層40可形成於各感測區塊20S的側壁。由於附著層40為具有高活性的金屬青銅類化合物,因此附著層40可作為後續形成之感測層50(參照第4D圖)的吸附促進劑(adhesion promoter),有利於感測層50與感測區塊20S及絕緣層30之間的黏著。此外,附著層40可透過沉積製程順應性地形成於絕緣層30與感測區塊20S(的側壁)之上。沉積製程的範例如可透過化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(physical vapor deposition,PVD)、原子層沉積(atomic layer deposition,ALD)、蒸鍍(evaporation)、濺鍍(sputtering)、電鍍(electroplating)、積層製造(additive manufacturing,即3D列印)、網版印刷(screen printing)、其他適當的製程或前述之組合。
如第4D圖所示,將感測層50形成於附著層40之上。亦即,感測層50透過附著層40設置於感測區塊20S之間與基板10之上。
第4E圖係根據本揭露的一實施例,繪示第4D圖的虛線部分的放大圖。如第4E圖所示,感測層50位於感測區塊20S之間,並具有複數個半導體材料52,其中在剖面圖(第5圖)中第一金屬氧化物52b、第二金屬氧化物52c與金屬52a互相交錯排列。
第5圖係根據本揭露的一些實施例,繪示沿著第3D圖的B-B’線段之半導體結構100或沿著第4E圖中的B-B’線段之半導體結構200的部分剖面示意圖,應注意的是,為簡化圖式,圖中僅繪出部分的金屬52a、第一金屬氧化物52b及第二金屬氧化物52c作為例示,且為 清楚起見,將B-B’線段的剖面放大繪示,但其數量、比例與排列方式並非用以限定本發明。
如第5圖所示,在一些實施例中,感測層50的半導體材料52設置於感測區塊20S之間,半導體材料52中的第二金屬氧化物52c與第一金屬氧化物52b相鄰,且第二金屬氧化物52c不與金屬52a相接觸,其中第一金屬氧化物52b及第二金屬氧化物52c為半導體,且第一金屬氧化物52b及第二金屬氧化物52c可各自獨立地為n型或p型。因此,第一金屬氧化物52b及第二金屬氧化物52c可皆為n型或皆為p型。或者,第一金屬氧化物52b及第二金屬氧化物52c分別為n型及p型、或是分別為p型及n型,使得感測層50於B-B’剖面上具有n型p型交錯排列。優選地,第一金屬氧化物52b HTiO2、HTiO3、HTi2O5、H2Ti2O3、H2Ti2O5、HMoO3、H2MoO3、HMoO4、H2MoO4、HMo2O5、H2Mo2O5、HMo2O6、HMo2O7、H2Mo2O7,及第二金屬氧化物52c為氧化鐵奈米顆粒(Fe2O3 nanoparticles)、氧化鋅奈米顆粒(ZnO nanoparticles)、氧化鈦奈米顆粒(TiO2 nanoparticles)、氧化鋯奈米顆粒(ZrO2 nanoparticles)、氧化銦奈米顆粒(In2O3 nanoparticles)、氧化錫奈米顆粒(SnO2 nanoparticles)、氧化鎢奈米顆粒(WO3 nanoparticles)、氧化鉬奈米顆粒(MoO3 nanoparticles),有利於調控吸附的含氧物(adsorbed oxygen species)來調整極性/非極性氣體之親和力。
[量測電阻與時間曲線圖]
第6A圖為本發明實施例之半導體結構對酒精的電阻與時間曲線圖,其量測方式係依序將濃度不同的目標氣體-酒精通入本發明實施例之半導體結構,並量測上述半導體結構的電阻與時間曲 線圖,如第6A圖所示,具體而言,在間格2-6分鐘的乾空氣之區間時,分別通入1-5分鐘酒精濃度為50-5050ppm之目標環境氣體,所述酒精環境氣體如第6A圖中標示50ppm、220ppm、490ppm、1000ppm、3000ppm以及5050ppm的酒精氣體之虛線圖式區間所示,本發明實施例之半導體結構所測得的電阻值隨著酒精濃度上升而上升。
第7A圖為本發明實施例之半導體結構對甲苯的電阻與時間曲線圖,其量測方式係將濃度為50-5050ppm的目標氣體-甲苯通入本發明實施例之半導體結構,並量測上述半導體結構的電阻與時間曲線圖,如第7A圖所示,在間格2-6分鐘的乾空氣之區間時,分別通入1-5分鐘甲苯濃度為300-3000ppm之目標環境氣體,所述甲苯環境氣體如圖7A中標示300ppm、600ppm、2000ppm、2500ppm以及3000ppm的甲苯氣體之虛線圖式區間,本發明實施例之半導體結構所測得的電阻值隨著甲苯濃度上升而下降。
[量測靈敏度與濃度散佈圖]
第6B圖為本發明實施例之半導體結構的靈敏度與酒精濃度的關係圖。首先,量測半導體結構於乾空氣下的電阻值,並利用前文已測得之半導體結構於不同濃度的目標氣體下的電阻值代入式1,得到半導體結構對於目標氣體的靈敏度,最後得到靈敏度與目標氣體之濃度的關係圖:靈敏度=Rg/Ra (式1)
Rg=半導體結構於目標氣體下的電阻值。
Ra=半導體結構於乾空氣下的電阻值。
如第6B圖所示,本發明實施例之半導體結構的靈敏 度隨著酒精濃度上升而上升,故半導體結構的靈敏度與酒精濃度呈正相關。反之,本發明實施例之半導體結構的靈敏度與甲苯濃度的關係圖如第7B圖所示,半導體結構的靈敏度隨著甲苯濃度上升而下降,故半導體結構的靈敏度與甲苯濃度呈負相關。
表1為本發明實施例之半導體結構與比較例1-6對於目標氣體(酒精、甲苯)的靈敏度與濃度關係。
Figure 111111570-A0305-02-0024-1
表1中的比較例1-6為市售的感測器,比較例1-6的型號分別為使用線圈加熱的漢威電子公司製的型號MQ-2及漢威電子公司製的型號MQ-3、使用加熱器的費加羅技研株式會社製的型號TGS2620、使用微機電結構製成的加熱器的奧地利微電子公司製的型號CCS801、費加羅技研株式會社製的TGS8100、奧地利微電子公司製的型號CCS811及奧地利微電子公司製的型號ASMLVP2。
由表1的結果可看出,本發明使用如第1A圖所示之金屬與金屬氧化物的核殼結構作為半導體材料應用於半導體結構的感測層中,由於上述半導體材料具有第一金屬氧化物包覆金屬,可保 護金屬不受到揮發性有機氣體影響並防止金屬氧化,此外,第一金屬氧化物可與第二金屬氧化物形成共價鍵或離子鍵,提供了第一金屬氧化物與第二金屬氧化物的半導體接面,且由於第二金屬氧化物含有金屬青銅類化合物,比一般金屬氧化物具較多被吸附的含氧物(adsorbed oxygen species),故半導體材料的第二金屬氧化物對不同的極性氣體具有不同的親和力,使得第二金屬氧化物對於同為還原性氣體的酒精及甲苯具有不同的親和力,因此,靈敏度隨著酒精及甲苯的與濃度升高分別呈上升及下降的趨勢,因此具有鑑別性。相較之下,比較例1-6的靈敏度隨著酒精及甲苯的與濃度升高皆為上升或下降的趨勢,因此不具鑑別性。
此外,本發明使用如第1A圖所示的金屬與金屬氧化物的核殼結構作為半導體材料應用於半導體結構的感測層中,由於此半導體材料對於還原性氣體的親和力較高,且反應的能障較低,因此可應用於常溫、常壓下對還原性氣體進行量測,而可避免加溫造成的氣爆風險、減少功率且降低成本。相較之下,比較例1-6皆需使用高溫加熱的方法對半導體結構局部加溫(250-450℃)才可進行量測,具有氣爆的風險、增加功率且提高成本的缺點。
以上概述數個實施例之特徵,以使本發明所屬技術領域中具有通常知識者可以更加理解本發明實施例的觀點。本發明所屬技術領域中具有通常知識者應理解,可輕易地以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解,此類等效的結構並無悖離本發明的精神與範圍,且可在不違背本發明之精神和範圍下,做各式各樣的改變、取代和替換。因 此,本發明之保護範圍當視後附之申請專利範圍所界定為準。
52:半導體材料
52a:金屬
52b:第一金屬氧化物
52c:第二金屬氧化物
d:直徑
T1:第一厚度
T2:第二厚度

Claims (9)

  1. 一種半導體材料,包括:一金屬;一第一金屬氧化物,包覆該金屬,其中該第一金屬氧化物為金屬青銅類氧化物;一第二金屬氧化物,包覆該第一金屬氧化物;及一另一第一金屬氧化物,包覆該第二金屬氧化物;其中該第一金屬氧化物為如通式1所示的結構:AxMyOz (通式1)其中,A包括至少一陽離子;M包括過渡金屬離子、類金屬離子及碳離子的至少一者;x、y與z的值使通式1的電荷數達到平衡,x為介於1至12之正整數,y為介於1至6之正整數,z為介於1至30之正整數。
  2. 如請求項1之半導體材料,其中該第一金屬氧化物及該第二金屬氧化物為半導體。
  3. 如請求項1之半導體材料,其中該金屬包括鐵、鈷、鎳、銀、鋁、銅、鋅、鈦、鋯、銦、錫、鉻、錳、鎢、鉬、前述之合金、或前述之組合。
  4. 如請求項1之半導體材料,其中該金屬之任意一邊與其對邊相距之長度為軸長,該金屬具有5nm至500nm的一最短軸長。
  5. 如請求項1之半導體材料,其中該第一金屬氧化物具有1nm至20nm之第一厚度。
  6. 如請求項1之半導體材料,其中該第二金屬氧化物具有5nm至10nm之第二厚度。
  7. 一種半導體結構,包括:一基板;一感測電極,設置於該基板之上,且被區分為複數個感測區塊;及一感測層,設置於該些感測區塊之間,其中該感測層包括複數個如請求項1~6中任一項所述之半導體材料,且在剖面圖中所述複數個半導體材料的該些第一金屬氧化物、該些第二金屬氧化物與該些金屬相互交錯排列。
  8. 如請求項7之半導體結構,更包括:一附著層,設置於該感測層與該感測電極之間,其中該附著層為金屬青銅類氧化物。
  9. 如請求項7之半導體結構,其中該感測層的該金屬之任意一邊與其對邊相距之長度為軸長且該金屬具有一最短軸長,該些感測區塊之間以一距離間隔開,且該金屬的該最短軸長與該距離的比例為1:20至1:200000。
TW111111570A 2022-03-28 2022-03-28 半導體材料及包含其之半導體結構 TWI796980B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111111570A TWI796980B (zh) 2022-03-28 2022-03-28 半導體材料及包含其之半導體結構
CN202210992574.6A CN116858892A (zh) 2022-03-28 2022-08-18 半导体材料及包含其的半导体结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111111570A TWI796980B (zh) 2022-03-28 2022-03-28 半導體材料及包含其之半導體結構

Publications (2)

Publication Number Publication Date
TWI796980B true TWI796980B (zh) 2023-03-21
TW202338343A TW202338343A (zh) 2023-10-01

Family

ID=86692523

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111111570A TWI796980B (zh) 2022-03-28 2022-03-28 半導體材料及包含其之半導體結構

Country Status (2)

Country Link
CN (1) CN116858892A (zh)
TW (1) TWI796980B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473830A (zh) * 2009-07-10 2012-05-23 古河电气工业株式会社 光半导体装置用引线框架及其制造方法、及光半导体装置
TW201905161A (zh) * 2017-06-02 2019-02-01 法商奈科斯多特股份公司 經均勻包覆之奈米粒子及其用途
TWI751863B (zh) * 2020-12-28 2022-01-01 新唐科技股份有限公司 半導體結構

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473830A (zh) * 2009-07-10 2012-05-23 古河电气工业株式会社 光半导体装置用引线框架及其制造方法、及光半导体装置
TW201905161A (zh) * 2017-06-02 2019-02-01 法商奈科斯多特股份公司 經均勻包覆之奈米粒子及其用途
TWI751863B (zh) * 2020-12-28 2022-01-01 新唐科技股份有限公司 半導體結構

Also Published As

Publication number Publication date
CN116858892A (zh) 2023-10-10
TW202338343A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
US7816681B2 (en) Capacitive gas sensor and method of fabricating the same
US11702730B2 (en) Strain gauge
EP3705840B1 (en) Strain gauge
US20150021716A1 (en) Low power micro semiconductor gas sensor and method of manufacturing the same
JP5442844B2 (ja) コア−シェル構造の複合ナノ粒子をセンサ材料として用いた薄膜型高活性ガスセンサーおよびその製造方法
US8445885B2 (en) Nonvolatile memory element having a thin platinum containing electrode
US11770985B2 (en) Resistive random access memory and method of fabricating the same
TWI796980B (zh) 半導體材料及包含其之半導體結構
JP2007158129A5 (zh)
EP3496169A1 (en) Secondary battery
CN111919082B (zh) 应变片
JP2019100883A (ja) ひずみゲージ
EP3705841B1 (en) Strain gauge
EP3705842B1 (en) Strain gauge
US10648961B2 (en) Core-shell type catalyst and gas sensor including the catalyst
US20210116310A1 (en) High-sensitivity temperature sensor and method of manufacturing the same
JP4714825B2 (ja) 金属薄膜を用いた溶存水素センサ
TW202400506A (zh) 感測層及包含其之半導體結構
JP2005191555A5 (zh)
WO2023058201A1 (ja) 積層電極、電極付き歪抵抗膜および圧力センサ
KR102564893B1 (ko) 광촉매층을 포함하는 산화물 박막 트랜지스터 및 이를 제조하는 방법
WO2023190658A1 (ja) 積層体、放熱基板および積層体の製造方法
KR20160143299A (ko) 무가열 자기 활성 나노 와이어 가스 센서