TW202400506A - 感測層及包含其之半導體結構 - Google Patents

感測層及包含其之半導體結構 Download PDF

Info

Publication number
TW202400506A
TW202400506A TW111123554A TW111123554A TW202400506A TW 202400506 A TW202400506 A TW 202400506A TW 111123554 A TW111123554 A TW 111123554A TW 111123554 A TW111123554 A TW 111123554A TW 202400506 A TW202400506 A TW 202400506A
Authority
TW
Taiwan
Prior art keywords
metal oxide
layer
general formula
sensing
metal
Prior art date
Application number
TW111123554A
Other languages
English (en)
Other versions
TWI800415B (zh
Inventor
蔡明志
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW111123554A priority Critical patent/TWI800415B/zh
Priority to CN202211088397.5A priority patent/CN117330605A/zh
Application granted granted Critical
Publication of TWI800415B publication Critical patent/TWI800415B/zh
Publication of TW202400506A publication Critical patent/TW202400506A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本發明實施例提供一種感測層,包括:第一金屬氧化物層,包括:第一金屬氧化物,其中第一金屬氧化物為金屬青銅類氧化物,並具有如通式1所示的結構: A xM yO z(通式1) 其中,A包括至少一陽離子, M包括過渡金屬離子、類金屬離子及碳離子的至少一者 ,A與M至少其一為金屬離子,x、y與z的值使通式1的電荷數達到平衡,其中x為介於1至9的正整數,y為介於1至5的正整數,z為介於1至21的正整數。

Description

感測層及包含其之半導體結構
本揭露係有關於一種感測層及包含前述感測層的半導體結構,且特別是有關於一種包含金屬青銅類氧化物的感測層及包含前述感測層的半導體結構。
隨著智慧裝置及穿戴式電子裝置的普及與發展,如何即時的取得周遭環境的各式資訊是我們不斷面臨的課題,尤其是與人體感受環境舒適度最為相關的環境濕度。
由於用來感測環境濕度的環境感測器必須與外界交流、接觸以便即時擷取環境資訊的變化,所以通常放置在電子裝置對外開孔的附近,因此環境感測器的抗環境因子能力如防塵、防水等功能非常重要,如何發展出具有易於整合、會吸水又不怕水的抗環境因子的濕度感測器將成為電子裝置必備的重要項目。
有鑑於此,現今的濕度感測器選擇使用例如聚醯亞胺(Polyimide, PI)、苯並環丁烯(Benzocyclobutene, BCB)等絕緣高分子來作用為濕度感測層,以達到吸水又不怕水的目標。然而,以高分子作為濕度感測層時,由於其絕緣的電氣特性,因此不適合使用量測電阻值的方式來得到濕度的變化,而需透過平行電容板結構量測電容值變化來得到濕度的變化。
因此,雖然現有的感測器大致上已經符合需求,但並非在各方面皆令人滿意,仍需要進一步改良。
本發明實施例提供一種感測層,包括:第一金屬氧化物層,包括:第一金屬氧化物,其中第一金屬氧化物為金屬青銅類氧化物,並具有如通式1所示的結構: A xM yO z(通式1) 其中,A包括至少一陽離子, M包括過渡金屬離子、類金屬離子及碳離子的至少一者 ,A與M至少其一為金屬離子,x、y與z的值使通式1的電荷數達到平衡,其中x為介於1至9的正整數,y為介於1至5的正整數,z為介於1至21的正整數。
在一些實施例中,感測層,更包括:第二金屬氧化物層,位於第一金屬氧化物層上方,包括:第二金屬氧化物,其中第二金屬氧化物為金屬青銅類氧化物,具有如通式2所示的結構: A pM qO r(通式2) 其中,p、q與r的值使通式2的電荷數達到平衡,其中p為介於1至9的正整數,q為介於1至5的正整數,r為介於1至21的正整數;及烷基化合物,與第二金屬氧化物之間形成共價鍵。
在一些實施例中,M包括兩種不同的過渡金屬離子或類金屬離子。
在一些實施例中,金屬青銅類氧化物具有羥基或氫過氧基。
在一些實施例中,第一金屬氧化物層具有第一厚度,第二金屬氧化物層具有第二厚度,且第一厚度大於第二厚度。
在一些實施例中,第一厚度與第二厚度的比例在10:1至10000:1。
在一些實施例中,第一金屬氧化物層更包括:烷基化合物,與第一金屬氧化物之間形成共價鍵。
在一些實施例中,烷基化合物具有通式3至通式5所示的結構的至少其一: CH 3(CH 2) mCH 2R(通式3) RCH 2(CH 2) nCH 2R(通式4) CH 3(CH 2) oCHRCH 2R(通式5) 其中每一R各自獨立地為硼的含氧酸基團、磷的含氧酸基團、或矽氧烷基團, m、n、o各自獨立地為1至30的正整數。
本發明另一些實施例提供一種半導體結構,包括: 基板;感測電極,設置於基板之上,且被區分為複數個感測區塊;及上述感測層,設置於感測區塊之間。
在另一些實施例中,半導體結構,更包括:絕緣層,設置於感測層與基板之間。
在另一些實施例中,半導體結構的靈敏度與相對濕度呈正相關,其中靈敏度定義如下: 靈敏度=(∆R/R0)×100% ∆R=半導體結構在一相對濕度下的電阻值與在相對濕度4%下的電阻值的差值, R0=半導體結構於相對濕度4%下的電阻值。
在另一些實施例中,半導體結構在相對濕度4%至96%下具有100歐姆至100百萬歐姆的電阻值。
以下揭露提供了許多的實施例或範例,用於實施所提供的標的物之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在各種範例使用重複的元件符號。如此重複是為了簡明和清楚之目的,而非用以表示所討論的不同實施例及∕或配置之間的關係。
再者,其中可能用到與空間相對用詞,例如「在……之下」、「下方」、「較低的」、「上方」、「較高的」等類似用詞,是為了便於描述圖式中一個(些)部件或特徵與另一個(些)部件或特徵之間的關係。空間相對用詞用以包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),其中所使用的空間相對形容詞也將依轉向後的方位來解釋。
應理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,部分的操作步驟可被取代或省略。
於文中,「約」、「大約」、「實質上」之用語通常表示在一給定值或範圍的5%內,較佳是3%內,更佳是1%內,或2%之內,或1%之內,或0.5%之內。在此給定的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「實質上」的情況下,仍可隱含「約」、「大約」、「實質上」之含義。
除非另外定義,在文中使用的全部用語(包含技術及科學用語)具有與本揭露所屬技術領域的技術人員通常理解的相同涵義。能理解的是,這些用語例如在通常使用的字典中定義用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化。
習知的技術普遍使用例如聚醯亞胺(Polyimide, PI)、苯並環丁烯(Benzocyclobutene, BCB)等絕緣高分子來作為濕度感測層,以達到吸水又不怕水的目標。然而,由於絕緣高分子絕緣的電氣特性,因此不適合直接使用量測電阻值的方式來獲得變化,而需透過平行電容板結構量測電容值變化。為解決上述問題,本發明提供一種金屬青銅類氧化物-烷基作為感測層材料,使得感測層可吸水又不怕水,並且可作為電阻值為數百歐姆至百萬歐姆等級的電阻式濕度感測器,其搭配分壓電路即可達到線性值>0.99的濕度感測,解決了絕緣特性的過高電阻值的問題,使得量測電阻值即可達到濕度感測,亦即濕度感測器可視為可變電阻,並且濕度大小變化即為輸出電壓的大小變化,使用在電路時非常簡易方便,可減少需使用的零件數量而可節省使用空間,進而減少裝置體積並節省成本。
以下針對本案所提供之感測層、半導體結構作詳細說明。應了解的是,以下所述特定的元件及排列方式僅為簡單清楚描述本揭露一些實施例,而非用以限定本揭露之範圍。
以下將針對半導體結構作詳細說明:
[半導體結構]
第1圖係根據本揭露的一些實施例,係半導體結構100的俯視圖。第2A圖至第2C圖係根據本揭露的第一實施例,係沿著第1圖的A-A’線段的部分剖面圖,用以說明半導體結構100的各個中間製程。
如第1圖及第2A圖所示,將一感測電極20形成於一基板10之上。舉例來說,基板10可為一高分子基板,高分子基板例如包含苯環丁烯(benzocyclobutene, BCB)、環氧樹脂(epoxy)、聚醯亞胺(polyimide, PI)、聚苯并噁唑(polybenzoxazole)、雙馬來醯亞胺(bismaleimide)樹脂、聚氨酯(polyurethane)樹脂、氰酸酯(cyanate ester)樹脂、矽樹脂(silicone)等或前述之組合。再者,基板10可包含元素半導體(例如,矽或鍺)、化合物半導體(例如,碳化矽、氮化鎵、砷化鎵、磷化鎵、磷化銦、砷化銦、銻化銦等)、合金半導體(例如,矽鍺(silicon germanium)、砷磷化鎵(gallium arsenide phosphide)、磷化鋁銦(aluminum indium phosphide)、砷化鋁鎵(aluminum gallium arsenide)、砷化鎵銦(gallium indium arsenide)、磷化鎵銦(gallium indium phosphide)、砷磷化鎵銦(gallium indium arsenide phosphide)等或前述之組合,但本揭露實施例並非以此為限。基板10可為絕緣層上半導體(semiconductor-on-insulator, SOI)基板。前述絕緣層上半導體基板可包含底板、設置於前述底板上的埋藏氧化層以及設置於前述埋藏氧化層上的半導體層。或者,基板10可為一半導體晶圓(例如,矽晶圓或其他適當之半導體晶圓)。
感測電極20可包含導電材料,例如金屬、金屬矽化物、類似的材料或前述之組合,但本揭露實施例並非以此為限。舉例來說,金屬可包含金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、類似的材料、前述之合金或前述之組合。此外,感測電極20可透過化學氣相沉積(chemical vapor deposition, CVD)、物理氣相沉積(physical vapor deposition, PVD)、原子層沉積(atomic layer deposition, ALD)、蒸鍍(evaporation)、濺鍍(sputtering)、電鍍(electroplating)、積層製造(additive manufacturing,即3D列印)、旋轉塗佈、網版印刷(screen printing)、其他適當的製程或前述之組合形成於基板10之上,但本揭露實施例並非以此為限。
繼續參照第1圖,在一些實施例中,感測電極20為一指叉電極(interdigital electrode),因此在第2A圖的剖面圖中,感測電極20被區分為複數個感測區塊20S。
如第2B圖所示,將絕緣層30形成於基板10之上。具體而言,絕緣層30可形成於基板10之上未被感測電極20所佔據的空間。亦即,絕緣層30可形成於感測區塊20S之間。絕緣層30可例如包含苯環丁烯、環氧樹脂、聚醯亞胺、氮化鋁、氮化矽或其他合適的材料,但本揭露實施例並非以此為限。此外,絕緣層30可透過旋轉塗佈、化學氣相沉積、熱氧化、熱氮化、積層製造、網版印刷等技術來沉積形成於基板10之上,但本揭露實施例並非以此為限。
如第2C圖所示,在一些實施例中,將感測層50形成於感測區塊20S之間,以形成半導體結構100,其中絕緣層30將感測層50與基板10隔開。感測層50具有100nm至500 m之厚度T及10 m至1000 m之長度L,亦即感測區塊20S之間以一距離L間隔開。感測層50可透過滴塗、噴灑、噴墨印刷、微接觸印刷、點膠機、積層製造、網版印刷、或光學微影等技術來沉積。感測層50的材料及製造方法將於後文詳細描述。
根據發明人的研究顯示:在一些實施例中,如果感測層50的厚度T小於100nm,可能會導致非線性的感測性能,致使原本應於線性區間的訊號強度過低、過高,不利於後續的元件整合。如果厚度T大於500 m,可能會導致訊號變化變小而失去感測效果。在一些實施例中,如果長度L小於10 m,可能會導致變化率較小。如果長度L大於1000 m,可能會使電阻值過大,導致感測器較難以實施。
以下將針對半導體結構100的感測層50作詳細說明:
[感測層]
第3A圖係根據本揭露的一實施例,繪示沿著第2C圖的虛線部分的放大圖。第3B圖係根據本揭露的另一實施例,繪示沿著第2C圖的虛線部分的放大圖。第3C圖係根據本揭露的又一實施例,繪示沿著第2C圖的虛線部分的放大圖。第3D圖係根據本揭露的再一實施例,繪示沿著第2C圖的虛線部分的放大圖。感測層50可為單層結構(如第3A圖及第3B圖所示)或雙層結構(如第3C圖及第3D圖所示)。如第3A圖及第3B圖所示,感測層50包括第一金屬氧化物層50A或50B,上述第一金屬氧化物層50A或50B包括第一金屬氧化物並具有第一厚度T1,其中第一厚度T1為20奈米至100微米。
根據發明人的研究顯示:在一些實施例中,如果第一厚度T1小於20奈米,可能會導致靈敏性不良,且沉積的薄膜結構易發生不連續,良率較差。如果第一厚度T1大於100微米,可能會導致較差的感測性能。
第一金屬氧化物為金屬青銅類氧化物(以第4A圖的50a表示),可提供吸濕以及濕度感測的功能,並具有如下列通式1所示的結構: A xM yO z(通式1) 其中,A包括至少一陽離子, M包括過渡金屬離子、類金屬離子及碳離子的至少一者 , A與M至少其一為金屬離子, x、y與z的值使通式1的電荷數達到平衡,其中x為介於1至9的正整數,y為介於1至5的正整數,z為介於1至21的正整數。由於金屬青銅類氧化物50a具有良好的電性及較大的感測範圍,因此為良好的感測材料。
在一些優選實施例中,A包括氫離子、鹼金屬離子、 鹼土金屬離子、稀土金屬離子和銨類離子中的至少一者,且M包括錫、鈦、鋯、鈰、鉿、鉬、鎢、釩、銅、鐵、鈷、鎳、錳、鈮、鉭、錸、釕、鉑、矽、硼、鍺、砷和碳中的至少一者。舉例而言,A xM yO z可為HTiO 2、HTiO 3、HTi 2O 5、H 2Ti 2O 3、H 2Ti 2O 5、HMoO 3、H 2MoO 3、HMoO 4、H 2MoO 4、HMo 2O 5、H 2Mo 2O 5、HMo 2O 6、HMo 2O 7、H 2Mo 2O 7、HWO 3、H 2WO 3、HWO 4、H 2WO 4、HW 2O 5、H 2W 2O 5、HW 2O 6、HW 2O 7、H 2W 2O 7、H 2VO 3、H 2VO 4、H 2V 2O 6、H 2V 2O 7
優選地,M可包括兩種不同的過渡金屬離子或類金屬離子,亦即第一金屬氧化物可為雙金屬的複合結構,於本文中可以A hM’ iO j- A kB lO m來表示,其中以“-”表示形成共價鍵結,A的定義同前在此不予贅述,B與M’的定義同M,但B為不同於M’的過渡金屬離子或類金屬離子,h為介於1至9的正整數,i為介於1至5的正整數,j為介於1至21的正整數,k為介於1至9的正整數,l為介於1至5的正整數,m為介於1至21的正整數。舉例而言,A hM’ iO j- A kB lO m可為HTiO 2-HMoO 3、HTiO 2-H 2MoO 3、HTiO 2-HMoO 4、HTiO 2-H 2MoO 4、HTiO 2-HMo 2O 5、HTiO 2-H 2Mo 2O 5、HTiO 2-HMo 2O 6、HTiO 2-HMo 2O 7、HTiO 2-H 2Mo 2O 7、HTiO3-HMoO 3、HTiO3-H 2MoO 3、HTiO3-HMoO 4、HTiO3-H 2MoO 4、HTiO3-HMo 2O 5、HTiO3-H 2Mo 2O 5、HTiO3-HMo 2O 6、HTiO3-HMo 2O 7、HTiO3-H 2Mo 2O 7、HTi2O5-HMoO 3、HTi2O5-H 2MoO 3、HTi2O5-HMoO 4、HTi2O5-H 2MoO 4、HTi2O5-HMo 2O 5、HTi2O5-H 2Mo 2O 5、HTi2O5-HMo 2O 6、HTi2O5-HMo 2O 7、HTi2O5-H 2Mo 2O 7、H2Ti2O3-HMoO 3、H2Ti2O3-H 2MoO 3、H2Ti2O3-HMoO 4、H2Ti2O3-H 2MoO 4、H2Ti2O3-HMo 2O 5、H2Ti2O3-H 2Mo 2O 5、H2Ti2O3-HMo 2O 6、H2Ti2O3-HMo 2O 7、H2Ti2O3-H 2Mo 2O 7、H2Ti2O5-HMoO 3、H2Ti2O5-H 2MoO 3、H2Ti2O5-HMoO 4、H2Ti2O5-H 2MoO 4、H2Ti2O5-HMo 2O 5、H2Ti2O5-H 2Mo 2O 5、H2Ti2O5-HMo 2O 6、H2Ti2O5-HMo 2O 7、H2Ti2O5-H 2Mo 2O 7、HTiO 2-HWO 3、HTiO 2-H 2WO 3、HTiO 2-HWO 4、HTiO 2-H 2WO 4、HTiO 2-HW 2O 5、HTiO 2-H 2W 2O 5、HTiO 2-HW 2O 6、HTiO 2-HW 2O 7、HTiO 2-H 2W 2O 7、HTiO3-HWO 3、HTiO3-H 2WO 3、HTiO3-HWO 4、HTiO3-H 2WO 4、HTiO3-HW 2O 5、HTiO3-H 2W 2O 5、HTiO3-HW 2O 6、HTiO3-HW 2O 7、HTiO3-H 2W 2O 7、HTi2O5-HWO 3、HTi2O5-H 2WO 3、HTi2O5-HWO 4、HTi2O5-H 2WO 4、HTi2O5-HW 2O 5、HTi2O5-H 2W 2O 5、HTi2O5-HW 2O 6、HTi2O5-HW 2O 7、HTi2O5-H 2W 2O 7、H2Ti2O3-HWO 3、H2Ti2O3-H 2WO 3、H2Ti2O3-HWO 4、H2Ti2O3-H 2WO 4、H2Ti2O3-HW 2O 5、H2Ti2O3-H 2W 2O 5、H2Ti2O3-HW 2O 6、H2Ti2O3-HW 2O 7、H2Ti2O3-H 2W 2O 7、H2Ti2O5-HWO 3、H2Ti2O5-H 2WO 3、H2Ti2O5-HWO 4、H2Ti2O5-H 2WO 4、H2Ti2O5-HW 2O 5、H2Ti2O5-H 2W 2O 5、H2Ti2O5-HW 2O 6、H2Ti2O5-HW 2O 7、H2Ti2O5-H 2W 2O 7、HTiO 2-H 2VO 3、HTiO 2-H 2VO 4、HTiO 2-H 2V 2O 6、HTiO 2-H 2V 2O 7、HTiO3-H 2VO 3、HTiO3-H 2VO 4、HTiO3-H 2V 2O 6、HTiO3-H 2V 2O 7、HTi2O5-H 2VO 3、HTi2O5-H 2VO 4、HTi2O5-H 2V 2O 6、HTi2O5-H 2V 2O 7、H2Ti2O3-H 2VO 3、H2Ti2O3-H 2VO 4、H2Ti2O3-H 2V 2O 6、H2Ti2O3-H 2V 2O 7、H2Ti2O5-H 2VO 3、H2Ti2O5-H 2VO 4、H2Ti2O5-H 2V 2O 6、H2Ti2O5-H 2V 2O 7。在雙金屬的複合結構的實施例中,M’與B的比例為1:20至20:1,優選為1:10至10:1或1:2至2:1,應注意的是,本案中的A hM’ iO j- A kB lO m表示複合結構而不是合金,A hM’ iO j以及A kB lO m兩者間可為任意組合,A hM’ iO j- A kB lO m並不能代表A hM’ iO j以及A kB lO m兩者的組成比例。A hM’ iO j與A kB lO m的組成比例(重量百分比)為1:8000至8000:1,優選為1:2000至2000:1或1:1000至1000:1。
第一金屬氧化物的金屬青銅類氧化物(以第4A圖的50a表示)可選地具有羥基(hydroxyl group)或氫過氧基(hydroperoxy group),以利於金屬青銅類氧化物50a與烷基化合物(以第4B圖的50c表示)形成鍵結。在一些實施例中,第一金屬氧化物層50A是由金屬青銅類氧化物50a(如第4A圖所示)所構成,且不具有烷基化合物,於本文中可以A xM yO z或A hM’ iO j- A kB lO m來表示。在另一些實施例中,第一金屬氧化物層50B是由金屬青銅類氧化物50a與烷基化合物50c形成共價鍵所產生的金屬青銅類氧化物-烷基(以第4C圖的50b表示)所構成,於本文中可以A xM yO z-烷基或A hM’ iO j- A kB lO m-烷基來表示。上述烷基化合物50c由於具有空間位阻效應 (steric effect)的效果, 因此可提供良好的斥水功能,以使金屬青銅類氧化物50a不會因為高濕度而於表面形成水膜造成漏電短路,可避免發生因漏電短路而導致電阻值/輸出電壓與濕度的關係從正比轉為反比。
在一些實施例中,烷基化合物50c的碳數為2至33,優選為4至24,更優選為6至18。在一些實施例中,烷基化合物50c具有通式3至通式5所示的結構的至少其一: CH 3(CH 2) mCH 2R(通式3) RCH 2(CH 2) nCH 2R(通式4) CH 3(CH 2) oCHRCH 2R(通式5) 其中每一R各自獨立地為硼的含氧酸基團、磷的含氧酸基團、或矽氧烷基團, m、n、o各自獨立地為1至30的正整數。優選地,每一R各自獨立地為H 2BO 3、H 2PO 3、Si(OMe) 3、Si(OEt) 3。舉例而言,金屬青銅類氧化物-烷基50b(如第4C圖所示)可為A xM yO z-CH 3(CH 2) mCH 2R、A xM yO z-RCH 2(CH 2) nCH 2R、或A xM yO z-CH 3(CH 2) oCHRCH 2R。
如第3C圖及第3D圖所示,感測層50可包括第一金屬氧化物層50A或50B、以及位於第一金屬氧化物層50A或50B上方的第二金屬氧化物層50C,其中第一金屬氧化物層50A或50B具有第一厚度T1,第二金屬氧化物層50C具有第二厚度T2,且第一厚度T1大於第二厚度T2。在一些實施例中,第一厚度T1與第二厚度T2的比例(T1/T2)在10:1至10000:1,更優選為50:1至1000:1第一厚度T1為20奈米至20微米,且第二厚度T2為2奈米至2微米。
根據發明人的研究顯示:在一些實施例中,如果第一厚度T1與第二厚度T2的比例小於10:1,可能會導致感測性能降低。如果第一厚度T1與第二厚度T2的比例大於10000:1,可能會導致斥水特性消失。
第一金屬氧化物層的定義同前,在此不與贅述。第二金屬氧化物層50C包括第二金屬氧化物,其中第二金屬氧化物為金屬青銅類氧化物(以第4A圖的50a表示),具有如下列通式2所示的結構: A pM qO r(通式2) 其中, A、M的定義同前,在此不予贅述,p、q與r的值使通式2的電荷數達到平衡,且其中p為介於1至9的正整數,q為介於1至5的正整數,r為介於1至21的正整數。舉例而言,A pM qO r可為HTiO 2、HTiO 3、HTi 2O 5、H 2Ti 2O 3、H 2Ti 2O 5、HMoO 3、H 2MoO 3、HMoO 4、H 2MoO 4、HMo 2O 5、H 2Mo 2O 5、HMo 2O 6、HMo 2O 7、H 2Mo 2O 7、HWO 3、H 2WO 3、HWO 4、H 2WO 4、HW 2O 5、H 2W 2O 5、HW 2O 6、HW 2O 7、H 2W 2O 7、H 2VO 3、H 2VO 4、H 2V 2O 6、H 2V 2O 7
此外, 第一金屬氧化物的M可與第二金屬氧化物的M相同或不同。優選地,當第一金屬氧化物為雙金屬的複合結構時,第二金屬氧化物的M優選與第一金屬氧化物至少一金屬相同,舉例而言,第一金屬氧化物為A hM’ iO j-A kB lO m或A hM’ iO j-A kB lO m-烷基,第二金屬氧化物為A pM’ qO r或A pB qO r,其中M’、B定義同前,在此不予贅述。
優選地,第二金屬氧化物為具有羥基(hydroxyl group)或氫過氧基(hydroperoxy group)的金屬青銅類氧化物50a,以利於金屬青銅類氧化物50a與烷基化合物50c形成鍵結。在一些實施例中,第二金屬氧化物層50C是由金屬青銅類氧化物50a與烷基化合物50c形成共價鍵所產生的金屬青銅類氧化物-烷基50b(如第4C圖所示)所構成,可進一步強化疏水,於本文中可以A pM qO r-烷基、A pM’ qO r-烷基或A pB qO r-烷基來表示。
在一些實施例中,舉例而言,如後文的實施例1,第一金屬氧化物層50A的形成方法可包括下列步驟: 首先,製作第一金屬氧化物溶液。舉例而言,將0.1wt%至10wt%之金屬青銅類化合物A hM’ iO j溶液與0.1wt%至10wt%之金屬青銅類化合物A kB lO m溶液混合,其中將0.1wt%至10wt%之金屬青銅類化合物A hM’ iO j溶液與0.1wt%至10wt%之金屬青銅類化合物A kB lO m溶液混合為兩者重量百分比例是10:1-1000:1的第一混合溶液,例如將1wt%的金屬青銅類化合物A hM’ iO j溶液與1wt%的金屬青銅類化合物A kB lO m溶液以1000:1的重量混合,得到A hM’ iO j-A kB lO m的第一混合溶液。接著,再將第一混合溶液透過旋轉塗佈(spin coating)、點膠(dispensing)、滴塗(drop coating)、噴墨印刷(ink-jet)、3D列印(3D printing)、氣凝膠噴塗(aerosol jet)等塗佈方式沉積在基板上,再進行50℃至150℃的退火製程15分鐘至1小時,形成第一金屬氧化物層50A。
在一些實施例中,舉例而言,如後文的實施例2,第一金屬氧化物層50B的形成方法可包括下列步驟: 首先,製作第一金屬氧化物-烷基溶液。舉例而言,將0.1wt%至10wt%之金屬青銅類化合物A kB lO m溶液與0.01wt%至10wt%之烷基化合物溶液混合,其中將0.1wt%至10wt%之金屬青銅類化合物A kB lO m溶液與0.01wt%至10wt%之烷基化合物溶液混合為兩者重量百分比例是10:1-1000:1的第二混合溶液,例如透過滴定,藉由至少一次的混合,將1wt%的金屬青銅類化合物A kB lO m溶液與0.02wt%的烷基化合物溶液以1000:1的重量混合,得到第二混合溶液。應注意的是,此混合溶液由於極性差異,會出現兩者不互溶的現象,下層為金屬青銅類化合物溶液,上層為烷基化合物溶液以及金屬青銅類化合物-烷基化合物溶液。接著,將第二混合溶液與0.1wt%至10wt%金屬青銅類化合物A hM’ iO j溶液混合,其中將第二混合溶液與0.1wt%至10wt%金屬青銅類化合物A hM’ iO j溶液混合為兩者重量百分比例是10:1-1000:1的A hM’ iO j-A kB lO m-烷基的第三混合溶液,並進行純化、乾燥成粉末,再配置為1%溶液。接著,再將上述溶液透過旋轉塗佈(spin coating)、點膠(dispensing)、滴塗(drop coating)、噴墨印刷(ink-jet)、3D列印(3D printing)、氣凝膠噴塗(aerosol jet)等塗佈方式沉積在基板上,再進行50℃至150℃的退火製程15分鐘至1小時,形成第一金屬氧化物層50B。
在一些實施例中,舉例而言,如後文的實施例3,可在形成第一金屬氧化物層50A之後形成第二金屬氧化物層50C於第一金屬氧化物層50A上方。在另一些實施例中,舉例而言,如後文的實施例4,可在形成第一金屬氧化物層50B之後形成第二金屬氧化物層50C於第一金屬氧化物層50B上方。第二金屬氧化物層50C的形成方法可包括下列步驟:首先,製作第二金屬氧化物-烷基溶液。舉例而言,將0.1wt%至10wt%之金屬青銅類化合物A pB qO r溶液與0.01wt%至10wt%之烷基化合物溶液混合,其中將0.1wt%至10wt%之金屬青銅類化合物A pB qO r溶液與0.01wt%至10wt%之烷基化合物溶液混合為兩者重量百分比例是10:1-1000:1的第四混合溶液,例如透過滴定,藉由至少一次的混合,將1wt%的金屬青銅類化合物A pB qO r溶液與0.02wt%的烷基化合物溶液以1000:1的重量混合,得到第四混合溶液。應注意的是,此混合溶液由於極性差異,會出現兩者不互溶的現象,下層為金屬青銅類化合物溶液,上層為烷基化合物溶液以及金屬青銅類化合物-烷基化合物溶液。接著,將第四混合溶液與0.1wt%至10wt%金屬青銅類化合物A pB qO r溶液混合,其中將第四混合溶液與0.1wt%至10wt%金屬青銅類化合物A pB qO r溶液混合為兩者重量百分比例是10:1-1000:1的第五混合溶液,例如,將0.5wt%第四混合溶液與1.5wt%金屬青銅類化合物A pB qO r溶液等重量混合,並進行純化、乾燥成粉末,配置為1%溶液。接著,再將上述溶液透過旋轉塗佈(spin coating)、點膠(dispensing)、滴塗(drop coating)、噴墨印刷(ink-jet)、3D列印(3D printing)、氣凝膠噴塗(aerosol jet)等塗佈方式沉積在第一金屬氧化物層50A或50B上方,再進行50℃至150℃的退火製程15分鐘至1小時,形成第二金屬氧化物層50C在第一金屬氧化物層50A上方(如後文的實施例3)或第一金屬氧化物層50B上方(如後文的實施例4)。
本發明的感測層50是由第一金屬氧化物層50A或50B所形成、或者是由第一金屬氧化物層50A或50B及第二金屬氧化物層50C所形成,第一金屬氧化物層包含性質活潑且易反應的金屬青銅類化合物50a,此外,第一金屬氧化物層更包含與金屬青銅類化合物50a形成共價鍵的烷基化合物50c,其中烷基化合物50c可提供空間位阻效應,因此,感測層50在高濕度下仍具有防水功能並可防止水膜形成,以維持感測層50對於濕度的靈敏度。且第二金屬氧化物層50C含有金屬青銅類化合物50a及與其形成共價鍵結的烷基化合物50c,可更加強化感測層50的疏水,以利於高濕度環境下感測濕度。再者,本發明的感測層50選用前文所述之第一金屬氧化物層50B及第二金屬氧化物層50C,而第一金屬氧化物層50B及第二金屬氧化物層50C由於具有烷基化合物50c而比一般金屬氧化物更防水,因此於高濕度下仍可反應,故本發明的半導體結構100可應用於高濕度環境進行量測。
表1為本發明實施例1至4之半導體結構與比較例1至2的特性。
[表1]
實施例1 實施例2 實施例3 實施例4 比較例1 比較例2
感測層(50) A hM’ iO j-A kB lO m複合結構 (50A) A hM’ iO j-A kB lO m-烷基複合結構 (50B) 第一層A hM’ iO j-A kB lO m複合結構/第二層A pB qO r-烷基複合結構 (50A/50C) 第一層A hM’ iO j-A kB lO m-烷基複合結構/第二層A pB qO r-烷基複合結構 (50B/50C) 烷基酸包覆SnO 2奈米粒子 烷基胺包覆SnO 2奈米粒子
是否含有烷基
是否對濕度具有靈敏度
薄膜附著力試驗之剝落程度(%) 大於等於65% 大於等於15%,小於35% 大於等於35%,小於65% 大於等於5%,小於15% 大於等於65% 大於等於65%
附著性 較好 較差 良好
沉水特性 溶於水, 剝落 不溶於水,  少部分剝落 溶於水, 剝落 不溶於水, 無剝落 溶於水, 剝落 溶於水, 剝落
是否不怕水
是否可於高濕度下使用
表1中的比較例1-2為市售的產品,比較例1為尚恩材料科技有限公司製的型號LVO-S01,比較例2為尚恩材料科技有限公司製的型號LMO-S01。
於表1中,以”/”區隔不同層。
[量測靈敏度與相對濕度散佈圖]
第5A圖及第5B圖分別為本發明實施例1及2之半導體結構的靈敏度與相對濕度的關係圖。首先,量測半導體結構在不同相對濕度下的電阻值與在相對濕度4%下的電阻值的差值並代入式1,得到半導體結構對於不同相對濕度的靈敏度,最後得到靈敏度與相對濕度的散佈圖: 靈敏度=( R/R 0) 100% (式1) R=半導體結構在一相對濕度下的電阻值與在相對濕度4%下的電阻值的差值, R 0=半導體結構於相對濕度4%下的電阻值。
如第5A圖及第5B圖所示,在小於相對濕度70%處,濕度上升時實施例1由於電子被拉離金屬青銅類氧化物50a而形成空乏區,導致電阻上升,因此靈敏度上升。在大於或等於相對濕度70%處,實施例1(如第5A圖所示)由於並未包括烷基化合物50c,因此達到高濕度(大於或等於相對濕度70%)時,隨著濕度上升,水分子之間的氫鍵增加,導致形成水膜在感測層50A表面,使得電子經由水層傳導而非經由原本的金屬青銅類氧化物50a,導致電阻隨著濕度上升而下降,因此靈敏度下降,在高濕度下呈現電性反轉。相較之下,實施例2(如第5B圖所示)在大於或等於相對濕度70%處由於包括提供斥水的烷基化合物50c,可避免水膜的形成,因此感測層50B於高濕度環境下仍可持續反應,並且電阻隨著濕度上升而上升,可提供與濕度成正比的線性輸出訊號。
半導體結構在相對濕度4%至96%下具有100歐姆至100百萬歐姆電阻值。在一些實施例中,半導體結構100在相對濕度4%下具有100歐姆至5百萬歐姆的電阻值,在一些實施例中,在相對溼度96%下具有250歐姆至100百萬歐姆的電阻值。
比較例1、2的電阻並未隨著濕度變化,因此不具有靈敏度。
[量測附著性]
附著性測試係指百格刀測試法,參考規範為ASTM D-3359,測試方法說明如下:
在預測試塗膜表面以百格專用刀劃出100格刮痕(1 x 1 cm 2),以3M 600型膠帶服貼於塗層表面後以大於90度之角度瞬間撕除膠帶後判斷塗膜表面之塗層是否有剝落。
[評價]
可依表2,透過塗膜表面剝落面積的比例,判斷感測層50塗膜的附著性。
[表2]
塗膜表面剝落面積的比例(%) 0% 小於5% 大於等於5%,小於15% 大於等於15%,小於35% 大於等於35%,小於65% 大於等於65%
評價 完美 優良 良好 較好 較差
[量測沉水特性]
將半導體結構100以矽烷封裝環包覆住,並露出感測層50,首先,量測其在相對濕度53%下的電阻,再將半導體結構浸入水中並量測其電阻值,接著,重複上述步驟將半導體結構100放置於相對濕度53%下的環境及浸入水中並量測其電阻值。
舉例而言,如第6圖所示,實施例4的半導體結構100在浸水過後仍可恢復其於相對濕度53%下的電阻,可知其不怕水且再現性佳,適合用於高濕度環境下感測環境濕度。
此外,觀察將半導體結構100浸入水中後感測層50是否會溶於水及剝落來判別是否不怕水。
由表1的結果可看出,實施例1-4藉由使用高活性的金屬青銅類化合物作為感測層的材料,使得感測層對於濕度具有反應性,亦即產生電阻值的變化。
相較之下,比較例1-2並未使用高活性的金屬青銅類化合物作為感測層的材料,而對濕度的改變並未產生電阻值變化,因此不適合用作濕度感測器的材料。
由表1的結果可看出,實施例2及4藉由使第一金屬氧化物層包括與金屬青銅類化合物形成共價鍵結的烷基化合物,使得感測層不易剝落具有較佳的附著性,且由於烷基化合物的疏水性質使得感測層不溶於水且於水中不易剝落,此外,於高濕度環境下可防止水膜的形成,使得感測層於高濕度下仍能反應並且具有快速恢復能力,因此,適合環境濕度感測。
相較之下,實施例1及3的第一金屬氧化物層並未包括烷基化合物,使得感測層易剝落並具有差的附著性,且在沉水特性測試下會溶於水中且剝落,無法於高濕度環境下進行濕度量測, 因此,不適合環境濕度感測。比較例1-2的感測層雖包括烷基化合物,但比較例1-2的材料需經過燒結才能具有較佳的附著性,不同於本發明實施例2及4不需經過燒結即可具有良好的附著性。
由表1的結果可看出,實施例4藉由使第一金屬氧化物層及第二金屬氧化物層皆包括與金屬青銅類化合物形成共價鍵結的烷基化合物,使得感測層剝落程度較低(5-15%)具有良好的附著性,且於沉水測試時感測層不溶於水且無剝落產生,因此可於高濕度環境下測試,適合環境濕度感測。
相較之下,實施例3的第二金屬氧化物層包括與金屬青銅類化合物形成共價鍵結的烷基化合物,但負責感測濕度的第一金屬氧化物層並未包括烷基化合物,使得於沉水測試時感測層會溶於水且剝落,而不適合環境濕度感測。
以上概述數個實施例之特徵,以使本發明所屬技術領域中具有通常知識者可以更加理解本發明實施例的觀點。本發明所屬技術領域中具有通常知識者應理解,可輕易地以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解,此類等效的結構並無悖離本發明的精神與範圍,且可在不違背本發明之精神和範圍下,做各式各樣的改變、取代和替換。因此,本發明之保護範圍當視後附之申請專利範圍所界定為準。
10:基板 20:感測電極 20S:感測區塊 30:絕緣層 50:感測層 50a:金屬青銅類氧化物 50A:第一金屬氧化物層 50b:金屬青銅類氧化物-烷基 50B:第一金屬氧化物層 50c:烷基化合物 50C:第二金屬氧化物層 T:厚度 T1:第一厚度 T2:第二厚度 L:長度 A-A’:線
以下將配合所附圖式詳述本揭露之各面向。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製。事實上,可任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。 第1圖係根據本揭露的一些實施例,繪示半導體結構的俯視圖。 第2A圖、第2B圖、第2C圖係根據本揭露的一些實施例,繪示沿著第1圖的A-A’線段的部分剖面圖,用以說明半導體結構的各個中間製程。 第3A圖係根據本揭露的一實施例,繪示沿著第2C圖的虛線部分的放大圖。 第3B圖係根據本揭露的另一實施例,繪示沿著第2C圖的虛線部分的放大圖。 第3C圖係根據本揭露的又一實施例,繪示沿著第2C圖的虛線部分的放大圖。 第3D圖係根據本揭露的再一實施例,繪示沿著第2C圖的虛線部分的放大圖。 第4A圖、第4B圖、第4C圖係根據本揭露的一些實施例,繪示感測層的材料。 第5A圖係根據本揭露的一些實施例,繪示半導體結構的靈敏度對濕度的散佈圖。 第5B圖係根據本揭露的另一些實施例,繪示半導體結構的靈敏度對濕度的散佈圖。 第6圖係根據本揭露的一些實施例,繪示半導體結構在沉水測試中電阻與時間的散佈圖。
10:基板
20S:感測區塊
30:絕緣層
50A:第一金屬氧化物層
T1:第一厚度

Claims (12)

  1. 一種感測層,包括: 一第一金屬氧化物層,包括: 一第一金屬氧化物,其中該第一金屬氧化物為金屬青銅類氧化物,並具有如通式1所示的結構: A xM yO z(通式1) 其中,A包括至少一陽離子; M包括過渡金屬離子、類金屬離子及碳離子的至少一者; A與M至少其一為金屬離子; x、y與z的值使通式1的電荷數達到平衡,其中x為介於1至9的正整數,y為介於1至5的正整數,z為介於1至21的正整數。
  2. 如請求項1之感測層,更包括: 一第二金屬氧化物層,位於該第一金屬氧化物層上方,包括: 一第二金屬氧化物,其中該第二金屬氧化物為金屬青銅類氧化物,具有如通式2所示的結構: A pM qO r(通式2) 其中,p、q與r的值使通式2的電荷數達到平衡,其中p為介於1至9的正整數,q為介於1至5的正整數,r為介於1至21的正整數;及 一烷基化合物,與該第二金屬氧化物之間形成共價鍵。
  3. 如請求項1之感測層,其中M包括兩種不同的過渡金屬離子或類金屬離子。
  4. 如請求項1至2中任一項之感測層,其中該金屬青銅類氧化物具有羥基或氫過氧基。
  5. 如請求項2之感測層,其中該第一金屬氧化物層具有一第一厚度,該第二金屬氧化物層具有一第二厚度,且該第一厚度大於該第二厚度。
  6. 如請求項5之感測層,其中該第一厚度與該第二厚度的比例在10:1至10000:1。
  7. 如請求項1之感測層,其中該第一金屬氧化物層更包括: 一烷基化合物,與該第一金屬氧化物之間形成共價鍵。
  8. 如請求項2、7中任一項之感測層,其中該烷基化合物具有通式3至通式5所示的結構的至少其一: CH 3(CH 2) mCH 2R(通式3) RCH 2(CH 2) nCH 2R(通式4) CH 3(CH 2) oCHRCH 2R(通式5) 其中每一R各自獨立地為硼的含氧酸基團、磷的含氧酸基團、或矽氧烷基團; m、n、o各自獨立地為1至30的正整數。
  9. 一種半導體結構,包括: 一基板; 一感測電極,設置於該基板之上,且被區分為複數個感測區塊;及 如請求項1至8中任一項所述之感測層,設置於該些感測區塊之間。
  10. 如請求項9之半導體結構,更包括: 一絕緣層,設置於該感測層與該基板之間。
  11. 如請求項9之半導體結構,其中該半導體結構的靈敏度與相對濕度呈正相關,其中靈敏度定義如下: 靈敏度=( R/R 0) 100% R=該半導體結構在一相對濕度下的電阻值與在相對濕度4%下的電阻值的差值; R 0=該半導體結構於相對濕度4%下的電阻值。
  12. 如請求項9之半導體結構,其中該半導體結構在相對濕度4%至96%下具有100歐姆至100百萬歐姆電阻值。
TW111123554A 2022-06-24 2022-06-24 感測層及包含其之半導體結構 TWI800415B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111123554A TWI800415B (zh) 2022-06-24 2022-06-24 感測層及包含其之半導體結構
CN202211088397.5A CN117330605A (zh) 2022-06-24 2022-09-07 感测层及包含其的半导体结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111123554A TWI800415B (zh) 2022-06-24 2022-06-24 感測層及包含其之半導體結構

Publications (2)

Publication Number Publication Date
TWI800415B TWI800415B (zh) 2023-04-21
TW202400506A true TW202400506A (zh) 2024-01-01

Family

ID=86949017

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111123554A TWI800415B (zh) 2022-06-24 2022-06-24 感測層及包含其之半導體結構

Country Status (2)

Country Link
CN (1) CN117330605A (zh)
TW (1) TWI800415B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815854B2 (en) * 2004-04-30 2010-10-19 Kimberly-Clark Worldwide, Inc. Electroluminescent illumination source for optical detection systems
US20100134286A1 (en) * 2008-12-01 2010-06-03 General Electric Company Radio frequency based sensors employing analyte recognition element
EP3008126A4 (en) * 2013-06-10 2016-12-07 Univ Portland State HYDROGEL COMPOSITIONS AND ELECTROCHEMICAL DETECTION METHODS
TWI725738B (zh) * 2020-02-18 2021-04-21 新唐科技股份有限公司 阻障層及包括該阻障層的氣體感測器
TWI751863B (zh) * 2020-12-28 2022-01-01 新唐科技股份有限公司 半導體結構

Also Published As

Publication number Publication date
TWI800415B (zh) 2023-04-21
CN117330605A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
US9029180B2 (en) Printed temperature sensor
Fang et al. High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition
Lai et al. pH sensitivity improvement on 8 nm thick hafnium oxide by post deposition annealing
CN106233481B (zh) 场效应传感器及相关联的方法
US9481926B2 (en) Vanadium oxide thermo-sensitive film material with high temperature coefficient of resistance and a preparing method thereof
CN109839411A (zh) 气体传感器
Moon et al. Low power consumption micro C2H5OH gas sensor based on micro-heater and screen printing technique
Thiwawong et al. Preparation of copper doped zinc oxide nanoparticles by precipitation process for humidity sensing device
RU2367062C1 (ru) Полупроводниковый резистор
TW202400506A (zh) 感測層及包含其之半導體結構
US20100202099A1 (en) Thin film capacitor
Pan et al. Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device
Li et al. SnTe/SnSe heterojunction based ammonia sensors with excellent withstand to ambient humidities
Pan et al. Yb2O3 thin films as a sensing membrane for pH-ISFET application
Tarwal et al. Spray deposition of the nanostructured ZnO thin films for non-volatile resistive switching memory applications
Miao et al. Capacitive humidity sensing behavior of ordered Ni/Si microchannel plate nanocomposites
US11788901B2 (en) High-sensitivity temperature sensor and method of manufacturing the same
Chouiref et al. Development and electrical characterization of screen-printed electrode based on ZnO nanoparticles
TW200539423A (en) Metal-insulator-metal (MIM) structure and method for forming the same
Amroun et al. AC conductivity and dielectric studies of Cd0. 8Sn0. 2S thin films
Turan et al. Investigation of temperature dependent electrical and impedance characteristics of bulk Zn0. 95Co0. 05O
TWI796980B (zh) 半導體材料及包含其之半導體結構
US11041822B2 (en) Sensing element
Lin et al. Resistive switching in a metal-insulator-metal device with γ-APTES as the insulator layer
Khanuja et al. Two approaches for enhancing the hydrogenation properties of palladium: Metal nanoparticle and thin film over layers