TWI794193B - 形成含錫材料膜的方法 - Google Patents

形成含錫材料膜的方法 Download PDF

Info

Publication number
TWI794193B
TWI794193B TW106141587A TW106141587A TWI794193B TW I794193 B TWI794193 B TW I794193B TW 106141587 A TW106141587 A TW 106141587A TW 106141587 A TW106141587 A TW 106141587A TW I794193 B TWI794193 B TW I794193B
Authority
TW
Taiwan
Prior art keywords
tin
film
containing material
forming
compound
Prior art date
Application number
TW106141587A
Other languages
English (en)
Other versions
TW201829435A (zh
Inventor
柳承旻
金潤洙
林載順
曺侖廷
金銘雲
李相益
全相勇
李剛鏞
Original Assignee
南韓商三星電子股份有限公司
南韓商Dnf有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司, 南韓商Dnf有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201829435A publication Critical patent/TW201829435A/zh
Application granted granted Critical
Publication of TWI794193B publication Critical patent/TWI794193B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2284Compounds with one or more Sn-N linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

本發明提供一種錫化合物、用於原子層沉積(ALD)的錫前驅化合物及用於沉積含錫材料膜的錫前驅化合物,所述錫化合物是由化學式(I)表示:
Figure 106141587-A0305-02-0001-1
其中R1、R2、Q1、Q2、Q3、及Q4分別獨立地為C1至C4直鏈烷基或支鏈烷基,且所述錫化合物可具有良好的熱穩定性。

Description

形成含錫材料膜的方法
本發明實施例有關於一種錫化合物、一種合成錫化合物的方法、一種用於原子層沉積(atomic layer deposition,ALD)的錫前驅化合物以及一種形成含錫材料膜的方法。
相關申請的交叉參考
在2016年12月2日在韓國智慧財產局提出申請且名稱為:“錫化合物、合成錫化合物的方法、用於原子層沉積的錫前驅化合物及形成含錫材料膜的方法(Tin Compound,Method of Synthesizing the Same,Tin Precursor Compound for ALD,and Method of Forming Tin-Containing Material Film)”的韓國專利申請第10-2016-0163900號全文併入本案供參考。
由於電子技術的發展,近年來半導體裝置的尺寸按比例縮小正迅速地執行。因此,構成電子裝置的圖案的結構可能更加複雜化且更精細。因此,原料化合物可能够藉由在形成含錫薄膜時確保熱穩定性而在複雜化且精細的三維結構上將含錫薄膜形成 為均勻的厚度。
本發明實施例涉及一種錫化合物、一種合成錫化合物的方法、一種用於原子層沉積(ALD)的錫前驅化合物以及一種形成含錫材料膜的方法。
可藉由提供由化學式(I)表示的錫化合物來實現所述實施例:
Figure 106141587-A0305-02-0004-3
其中R1、R2、Q1、Q2、Q3、及Q4分別獨立地為C1至C4直鏈烷基或支鏈烷基。
可藉由提供用於原子層沉積(ALD)的錫前驅化合物來實現所述實施例,所述錫前驅化合物具有由化學式(I)表示的結構:<化學式(I)>
Figure 106141587-A0305-02-0005-4
其中R1、R2、Q1、Q2、Q3、及Q4分別獨立地為C1至C4直鏈烷基或支鏈烷基。
可藉由提供用於沉積含錫材料膜的錫前驅化合物來實現所述實施例,所述錫前驅化合物具有由化學式(I)表示的結構:
Figure 106141587-A0305-02-0005-5
其中R1、R2、Q1、Q2、Q3、及Q4分別獨立地為C1至C4直鏈烷基或支鏈烷基。
可藉由提供形成含錫材料膜的方法來實現所述實施例,所述方法包括:在反應空間中的基底上形成錫前驅化合物的單層,所述錫前驅化合物具有由化學式(I)表示的結構;藉由向所述單層上供應反應物來形成含錫材料膜;以及藉由對未反應的反應物進行清洗(purge)而從所述含錫材料膜的表面附近移除所述未反應的反應物,<化學式(I)>
Figure 106141587-A0305-02-0006-6
其中R1、R2、Q1、Q2、Q3、及Q4分別獨立地為C1至C4直鏈烷基或支鏈烷基。
可藉由提供合成錫化合物的方法來實現所述實施例,所述方法包括:藉由使SnX4與SnR4根據反應式(I)發生反應來獲得SnX2R2;以及藉由使SnX2R2與LiNQ2根據反應式(II)發生反應來獲得Sn(NQ2)2R2,<反應式(I)>SnX4+SnR4→2SnX2R2
<反應式(II)>SnX2R2+2LiNQ2→Sn(NQ2)2R2+2LiX
其中X包括氟、氯、溴、或碘,且R與Q分別獨立地為C1至C4直鏈烷基或支鏈烷基。
可藉由提供形成含錫材料膜的方法來實現所述實施例,所述方法包括:在反應器中提供基底;向所述基底供應錫前驅物 以形成所述錫前驅物的單層,所述錫前驅物是由化學式(I)表示;向所述單層上供應反應物以形成所述含錫材料膜;以及對所述反應器進行清洗,
Figure 106141587-A0305-02-0007-7
其中,在化學式(I)中,R1、R2、Q1、Q2、Q3、及Q4分別獨立地為C1至C4直鏈烷基或支鏈烷基。
可藉由提供半導體裝置來實現所述實施例,所述半導體裝置包括藉由根據實施例的方法而製備的所述含錫材料膜。
藉由參考附圖詳細闡述各示例性實施例,各特徵將對所屬領域中具有通常知識者顯而易見。
101、210、510:基底
110:含錫材料膜
110a:單層
200、500:積體電路裝置
222:蝕刻終止絕緣膜
226:絕緣層
230:通道孔
232:電荷儲存膜
234:穿隧介電膜
236:阻擋絕緣膜
240:通道區
242、578:絕緣膜
250:導電圖案
260:開口
264:閘極電極
268:共用源極區
272、572:絕緣間隔壁
274:導電插塞
282:第一接觸窗
284:第一導電層
292:第二接觸窗
294:位元線
512:第一裝置隔離膜
514:第二裝置隔離膜
522A:第一界面膜
522B:第二界面膜
524A:第一高介電常數介電膜
524B:第二高介電常數介電膜
526A:第一蝕刻終止層
526B:第二蝕刻終止層
528:第一功函數調整層
529:第二功函數調整層
530A:第一間隙填充閘極膜
530B:第二間隙填充閘極膜
562:第一源極/汲極區
564:第二源極/汲極區
B1-B1'、B2-B2'、C1-C1'、C2-C2':線
CH1:第一通道區
CH2:第二通道區
F1:第一鰭型主動區
F2:第二鰭型主動區
GA:第一閘極結構
GB:第二閘極結構
GS:閘極空間
I:第一區
II:第二區
P224:犧牲層
S110、S120、S130、S140:步驟
TR51:第一電晶體
TR52:第二電晶體
X、Y、Z:方向
圖1說明根據實施例的一種形成含錫材料膜的方法的流程圖。
圖2說明形成含錫材料膜的方法的時序圖。
圖3A及圖3B說明根據實施例的在基底上形成含錫材料膜的方法中的各階段的剖視圖。
圖4A至圖4H說明根據實施例的製作積體電路裝置的方法中的各階段的剖視圖。
圖5A至圖5C說明根據實施例的積體電路裝置的圖。
圖6說明繪示在實例1中獲得的化合物的氫譜核磁共振(1H nuclear magnetic resonance,1H NMR)分析結果的圖表。
圖7說明繪示在實例1中獲得的化合物Sn[N(iPr)2]2Me2的熱重量分析(thermal gravimetric analysis,TGA)結果的圖表。
圖8說明繪示當使用在實例1中合成的化合物Sn[N(iPr)2]2Me2來執行沉積時,每循環的沉積厚度隨著沉積溫度而變化的測量結果的圖表。
圖9說明在實例2中形成的氧化錫薄膜的穿透式電子顯微鏡(transmission electron microscope,TEM)圖像。
圖10說明繪示藉由對在實例2中形成的氧化錫薄膜執行X射線繞射(X-ray diffraction,XRD)分析而獲得的結果的圖表。
圖11說明繪示在實例3中獲得的化合物的1H NMR分析結果的圖表。
圖12說明繪示當使用在實例3中合成的Sn[N(Me)2]2Me2來執行沉積時,每循環的沉積厚度隨著沉積溫度而變化的測量結果的圖表。
圖13說明繪示當使用在比較例1中合成的Sn[N(Me)2]4來執行沉積時,每循環的沉積厚度隨著沉積溫度而變化的測量結果的圖表。
圖14說明繪示當使用Sn(Me)4來執行沉積時,每循環的沉積厚度隨著沉積溫度而變化的測量結果的圖表。
錫化合物
根據實施例的錫化合物可由化學式(I)表示。
Figure 106141587-A0305-02-0009-8
在式(I)中,R1、R2、Q1、Q2、Q3、及Q4可分別獨立地為例如C1至C4直鏈烷基或支鏈烷基,例如,甲基、乙基、正丙基、或異丙基。
在一實施方式中,由化學式(I)表示的錫化合物中的R1與R2可彼此相同或不同。在一實施方式中,由化學式(I)表示的錫化合物中的Q1、Q2、Q3、及Q4可彼此相同或不同。
在一實施方式中,R1與R2可為相同的,且Q1、Q2、Q3、及Q4可為相同的。以下化合物為其中R1與R2為相同的且Q1、Q2、Q3、及Q4為相同的實例。
Figure 106141587-A0305-02-0010-10
在一實施方式中,R1與R2可為不同的,且Q1、Q2、Q3、及Q4可為相同的。以下化合物為其中R1與R2為不同的且Q1、Q2、Q3、及Q4為相同的實例。
Figure 106141587-A0305-02-0011-12
在一實施方式中,R1與R2可為相同的,且並非所有Q1、Q2、Q3、及Q4可為相同的。以下化合物為其中R1與R2為相同的 且並非所有Q1、Q2、Q3、及Q4為相同的實例。
Figure 106141587-A0305-02-0012-13
在一實施方式中,R1與R2可為不同的,且並非所有Q1、Q2、Q3、及Q4可為相同的。以下化合物為其中R1與R2為不同的且並非所有Q1、Q2、Q3、及Q4為相同的實例。
Figure 106141587-A0305-02-0013-14
在一實施方式中,R1與R2可為甲基,且所有Q1、Q2、Q3、及Q4可為異丙基。在一實施方式中,R1與R2可為甲基,且所有Q1、Q2、Q3、及Q4也可為甲基。在一實施方式中,R1與R2可為乙基,且所有Q1、Q2、Q3、及Q4可為異丙基。
根據實施例的錫化合物當應用於原子層沉積製程時,可在約250℃至約350℃的溫度下表現出實質上恆定的沉積速率。在一實施方式中,錫化合物可由於其在室溫下的高穩定性而表現出優異的長期可儲存性。
根據實施例的錫化合物在室溫下可以液態存在,且可有利於錫化合物的儲存及處理。根據實施例的錫化合物可具有良好的熱穩定性及高反應性,且錫化合物當應用於原子層沉積時可形成具有優異的階梯覆蓋率的含錫材料膜。錫化合物可不包含鹵素元素,且所生成的含錫材料膜可不包含鹵素雜質。
合成錫化合物的方法
以下,闡述一種合成由化學式(I)表示的錫化合物的方法。
首先,可製備錫鹵化物及錫的烷基化合物來作為起始材料,且使所述錫鹵化物與錫的烷基化合物根據反應式(I)與彼此反應。
<反應式(I)>SnX4+SnR4→2SnX2R2
在反應式(I)中,X可包括例如氟(F)、氯(Cl)、溴(Br)、或碘(I)。鍵結至一個Sn原子的四個X可為相同的或不同的。R可為例如C1至C4直鏈烷基或支鏈烷基。鍵結至一個Sn原子的四個R可為相同的或不同的。
反應式(I)的反應可例如在室溫或低於室溫下執行。在一實施方式中,反應式(I)的反應可在約0℃至約15℃的溫度下執行。
可將作為藉由反應式(I)的反應而生成的中間產物的SnX2R2分離出,然後藉由根據反應式(II)發生反應而獲得由化學式(I)表示的錫化合物。
<反應式(II)>SnX2R2+2LiNQ2→Sn(NQ2)2R2+2LiX
Q可為例如C1至C4直鏈烷基或支鏈烷基。鍵結至一個氮(N)原子的兩個Q可為相同的或不同的。
舉例來說,可使中間產物SnX2R2與經C1至C4直鏈烷基或支鏈烷基取代的鋰胺化合物進行接觸,藉此生成最終產物Sn(NQ2)2R2
舉例來說,當預期合成錫化合物Sn[N(iPr)2]2Me2時,可藉由使SnCl4(SnCl4被視為起始材料)與Sn(CH3)4發生反應來獲得中間產物Sn(CH3)2Cl2,然後使所述中間產物與二異丙基氨基鋰(LiN(iPr)2)發生反應,藉此獲得所期望的錫化合物。
舉例來說,當預期合成錫化合物Sn[N(Me)2]2Me2時,可藉由使SnCl4(SnCl4被視為起始材料)與Sn(CH3)4發生反應來獲得中間產物Sn(CH3)2Cl2,然後使所述中間產物與二甲基氨基鋰(LiN(Me)2)發生反應,藉此獲得所期望的錫化合物。
本文所用的縮寫“Me”是指甲基,且縮寫“iPr”是指異丙基。另外,本文所用的用語“室溫”及“環境溫度(ambient temperature)”是指介於約20℃至約28℃範圍內的溫度,且可隨著季節而變化。
在一實施方式中,反應式(II)的反應可在例如約10℃至約50℃的溫度下執行。
含錫材料膜的形成
可使用上述錫化合物作為用於形成含錫材料膜(例如,錫金屬膜、氧化錫膜、氮化錫膜、氮氧化錫膜、或碳氮氧化錫膜(tin oxycarbonitride film))的錫前驅化合物。以下,將主要闡述一種藉由原子層沉積(ALD)來形成氧化錫膜的方法。具有通常知識者應理解,可藉由類似的方法來形成錫金屬膜、氮化錫膜、氮氧化錫膜、或碳氮氧化錫膜。
圖1說明根據實施例的一種形成含錫材料膜的方法的流程圖。圖2說明形成含錫材料膜的方法的時序圖。圖3A及圖3B說明根據實施例的在基底上形成含錫材料膜的方法中的各階段的剖視圖。
參考圖1、圖2、及圖3A,可向反應空間中提供基底101,且可向基底101上供應由化學式(I)表示的錫前驅化合物,藉此形成錫前驅化合物的單層110a(S110)。
基底101可包含半導體元素(例如,矽(Si)或鍺(Ge))或化合物半導體(例如,碳化矽(SiC)、砷化鎵(GaAs)、砷化銦(InAs)、或磷化銦(InP))。在一實施方式中,基底101可包括半導體基底及形成於所述半導體基底上的包括至少一個絕緣膜或 至少一個導電區的結構。所述至少一個導電區可包括例如雜質摻雜井區或雜質摻雜結構。
在將基底101維持在約150℃至約600℃、例如約250℃至約350℃的溫度下的同時,可執行藉由向基底101上供應由化學式(I)表示的錫前驅化合物來形成單層110a。如果將基底101的溫度維持的太低,在基底101上可能無法充分地進行原子層沉積反應。如果將基底101的溫度維持的太高,由於錫前驅化合物進行熱分解,可能無法充分地進行原子層沉積反應。
可向基底101上供應由化學式(I)表示的錫前驅化合物達約1秒至約100秒。如果將錫前驅化合物的供應時間維持的太短,可能無法在化學吸附所需的濃度下提供錫前驅化合物。如果將錫前驅化合物的供應時間維持的太長,可能會過量地供應錫前驅化合物,從而造成經濟上的損失。
由化學式(I)表示的錫前驅化合物儘管在室溫下為液體,但可在相對低的溫度(例如,約120℃至約180℃的溫度)下氣化。可將經氣化的由化學式(I)表示的錫前驅化合物化學吸附至基底101的表面上,藉此形成錫前驅化合物的單層。在一實施方式中,可能另外存在物理吸附至單層上的錫前驅化合物且可在後續清洗製程中將所述錫前驅化合物移除。
接下來,可向基底101的表面上供應清洗氣體,藉此從反應空間移除未吸附的或被物理吸附的由化學式(I)表示的錫前驅化合物(S120)。清洗氣體可包括例如惰性氣體(例如氬氣(Ar)、 氦氣(He)或氖氣(Ne))、N2氣體等。
在一實施方式中,如圖2所示,可在終止供應錫前驅化合物時的時刻供應清洗氣體。在一實施方式中,可使用清洗氣體作為錫前驅化合物的載氣,且可在僅終止供應錫前驅化合物的同時繼續供應清洗氣體,藉此實現對反應空間的清洗。
參考圖1、圖2、及圖3B,可向基底101的表面上供應反應物,藉此使所述反應物與由化學式(I)表示的錫前驅化合物(形成單層的錫前驅化合物)反應(S130)。可以氣相來供應反應物,且可藉由考慮到欲在基底101上形成的含錫材料膜110的種類來選擇所述反應物。
舉例來說,當利用等離子體增强型原子層沉積(plasma-enhanced atomic layer deposition,PEALD)時,可藉由對反應物施加射頻(RF)功率來產生等離子體。可對反應物施加射頻功率,其流動達反應物的脉衝時間周期、連續流過反應空間、並且/或者流過遠程等離子體產生器。因此,在一些實施例中,可在原位(in situ)產生等離子體,且在一些其他實施例中,可遠程地產生等離子體。在一實施方式中,施加至反應物的射頻功率可介於約10W至約2,000W、例如約100W至約1,000W或約200W至約500W的範圍。在一實施方式中,如果能够不對基底101造成損害,則射頻功率可大於2,000W。
在一實施方式中,當欲將氧化錫膜形成為含錫材料膜110時,反應物可包括例如O2、O3、等離子體O2、H2O、NO2、NO、 N2O(一氧化二氮)、CO2、H2O2、HCOOH、CH3COOH、(CH3CO)2O、或其混合物。在一實施方式中,當欲將氮化錫膜形成為含錫材料膜110時,反應物可包括例如NH3、單烷基胺、二烷基胺、三烷基胺、有機胺化合物、肼化合物、或其混合物。在一實施方式中,反應物可為還原氣體,例如,H2
當含錫材料膜110包含碳時,能够用作碳前驅物(所述碳前驅物為碳源)的材料可包括例如甲烷(CH4)、甲醇(CH3OH)、一氧化碳(CO)、乙烷(C2H6)、乙烯(C2H4)、乙醇(C2H5OH)、乙炔(C2H2)、丙酮(CH3COCH3)、丙烷(CH3CH2CH3)、丙烯(C3H6)、丁烷(C4H10)、戊烷(CH3(CH2)3CH3)、戊烯(C5H10)、環戊二烯(C5H6)、己烷(C6H14)、環己烷(C6H12)、苯(C6H6)、甲苯(C7H8)、或二甲苯(C6H4(CH3)2)。
接下來,可向基底101的表面上供應清洗氣體,藉此從反應空間移除未反應的反應物(S140)。此處,還可同時移除藉由反應物與形成單層的錫前驅化合物之間的反應而獲得的副產物等。清洗氣體可包括例如惰性氣體(例如氬氣(Ar)、氦氣(He)或氖氣(Ne)、N2氣體等)。
上述操作可構成一個循環,且可進行重複,以獲得具有所期望厚度的含錫材料膜110。
為了將由化學式(I)表示的錫前驅化合物應用於原子層沉積,反應器中的條件應使得存在允許進行原子層沉積的溫度範圍。每循環含錫材料膜的厚度的增長率在允許進行原子層沉積的 溫度範圍內可為恆定的。如此一來,允許進行原子層沉積的溫度範圍是指原子層沉積裕度(ALD window),且原子層沉積裕度可視錫前驅化合物而定。假如原子層沉積裕度太窄,則可能由於原子層沉積製程的製程裕度窄而難以執行原子層沉積。另外,一些錫化合物(例如,並非由化學式(I)表示的錫化合物)可能不具有其中每循環含錫材料膜的厚度的增長率為恆定的溫度範圍,例如可能不具有原子層沉積裕度。
在處於原子層沉積裕度以外的沉積溫度下,每循環含錫材料膜的厚度的增長率可視沉積溫度而略有變化,而無論是否使用由化學式(I)表示的錫前驅化合物。舉例來說,在含錫材料膜的沉積中,可局部地進行除了原子層沉積以外的沉積機制。舉例來說,每循環含錫材料膜的厚度的增長率的此種溫度相依變化可由化學氣相沉積機制的局部干預或壓倒性干預造成。
藉由化學氣相沉積來形成含錫材料膜
儘管以上已闡述了其中藉由原子層沉積來形成含錫材料膜的實例,但也可使用由化學式(I)表示的錫前驅化合物作為用於化學氣相沉積(chemical vapor deposition,CVD)的前驅物材料。
舉例來說,可使用由化學式(I)表示的錫前驅化合物在基底上形成含錫材料膜。由化學式(I)表示的錫前驅化合物在室溫下可為液相且為穩定的,並且在約120℃至約180℃的溫度下可被氣化,且因此即使在相對低的溫度下仍可進行化學氣相沉積。
用於形成含錫材料膜的薄膜形成原料可視預期形成的薄 膜而變化。在一些實施例中,當製作僅包含錫(Sn)的薄膜時,薄膜形成原料除了包含根據實施例的錫前驅化合物以外可不包含金屬化合物及半金屬化合物。在一實施方式中,當製作包含兩種或更多種金屬及/或半金屬的薄膜時,薄膜形成原料除了包含根據實施例的錫前驅化合物以外還可包含含有所期望金屬或半金屬的化合物(以下被稱為用語“另一前驅物”)。在一實施方式中,薄膜形成原料除了包含根據實施例的錫前驅化合物以外還可包含有機溶劑或親核試劑。
當薄膜形成原料是用於化學氣相沉積製程中的原料時,可視化學氣相沉積製程的具體方法、原料輸送方法等來適當地選擇薄膜形成原料的組成。
原料輸送方法可包括氣體輸送方法及液體輸送方法。在氣體輸送方法中,可藉由以下方式而使用於化學氣相沉積的原料處於氣態:藉由在其中儲存有原料的容器(以下,所述容器可被稱為用語“原料容器”)中進行加熱或分解而將所述原料氣化,且可同時向其中放置有基底的腔室(以下,所述腔室可被稱為用語“沉積反應器”)供應氣態原料及視需要使用的例如氬氣、氮氣、氦氣等載氣達約1秒至約600秒。在液體輸送方法中,可以液態或溶液狀態將用於化學氣相沉積的原料輸送至氣化器,且藉由在所述氣化器中進行加熱及/或分解而將原料氣化以使所述原料成為蒸氣,然後將所述蒸氣引入至腔室中。在氣體輸送方法中,可使用由化學式(I)表示的錫前驅化合物自身作為化學氣相沉積原 料。化學氣相沉積原料可進一步包含另一前驅物、親核試劑等。在一實施方式中,可將腔室內的溫度維持為約100℃至約1,000℃。在一實施方式中,可將腔室內的壓力維持為約10Pa至約1個大氣壓(atm)。
在一實施方式中,在形成含錫材料膜的方法中,可使用多組分化學氣相沉積製程來形成含錫材料膜。在多組分化學氣相沉積製程中,可利用以下方法:對於每一組分獨立地供應將用於化學氣相沉積製程的原料化合物的方法(以下,所述方法可被稱為用語“單一來源方法”)、或藉由將其中以所期望組成比混合有多種組分的原料混合物氣化而供應多組分原料的方法(以下,所述方法可被稱為“混合來源方法(cocktail source method)”)。當利用混合來源方法時,可使用以下物質作為化學氣相沉積製程中的薄膜形成原料化合物:包含根據實施例的錫前驅化合物的第一混合物、其中所述第一混合物溶解在有機溶劑中的第一混合溶液、包含根據實施例的錫前驅化合物及另一前驅物的第二混合物、或其中所述第二混合物溶解在有機溶劑中的第二混合溶液。第一混合物及第二混合物以及第一混合溶液及第二混合溶液中的每一者可進一步包含親核試劑。
用於獲得第一混合溶液或第二混合溶液的有機溶劑可包括例如乙酸酯,例如乙酸乙酯及乙酸甲氧基乙酯;醚,例如四氫呋喃、四氫吡喃、乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、二丁醚及二噁烷;酮,例如甲基丁基酮、甲基異丁基酮、 乙基丁基酮、二丙酮、二異丁基酮、甲基戊基酮、環己酮、及甲基環己酮;烴,例如己烷、環己烷、甲基環己烷、二甲基環己烷、乙基環己烷、庚烷、辛烷、甲苯及二甲苯;含氰基的烴,例如1-氰基丙烷、1-氰基丁烷、1-氰基己烷、氰基環己烷、氰基苯、1,3-二氰基丙烷、1,4-二氰基丁烷、1,6-二氰基己烷、1,4-二氰基環己烷及1,4-二氰基苯;吡啶;二甲基吡啶等。以上作為實例所述的有機溶劑可考慮到溶質的溶解度、其使用溫度及其熔點、其閃點(flash point)等而單獨使用或以組合形式使用。在有機溶劑中可存在總濃度為約0.01mol/L至約2.0mol/L、例如約0.05mol/L至約1.0mol/L的根據實施例的錫前驅化合物及所述另一前驅物。此處,錫前驅化合物及所述另一前驅物的總濃度是指當薄膜形成原料除包含錫前驅化合物外不包含金屬化合物及半金屬化合物時錫前驅化合物的量,且是指當薄膜形成原料除了包含錫前驅化合物以外進一步包含含有除錫以外的其他金屬的化合物或含有半金屬的化合物時錫前驅化合物的量與所述另一前驅物的量的和。
在一實施方式中,在形成薄膜的方法中的所述另一前驅物的實例可包括選自具有以下者作為配位體的化合物中的至少一種Si化合物或金屬化合物:氫化物、氫氧化物、鹵化物、疊氮化物、烷基、烯基、環烷基、烯丙基、炔基、氨基、二烷基氨基烷基、單烷基氨基、二烷基氨基、二氨基、二(甲矽烷基-烷基)氨基、二(烷基-甲矽烷基)氨基、二甲矽烷基氨基、烷氧基、烷氧基烷基、醯肼基、磷化物、腈基、二烷基氨基烷氧基、烷氧基烷基二烷基 氨基、矽氧基(siloxy)、二酮酸根(diketonate)、環戊二烯基、甲矽烷基(silyl)、吡唑根(pyrazolate)、胍根(guanidinate)、膦胍根(phosphoguanidinate)、脒根(amidinate)、酮亞胺根(ketoiminate)、二酮亞胺根(diketoiminate)、羰基、及膦脒根(phosphoamidinate)。
在一實施方式中,所述另一前驅物中所包含的金屬可包括例如鎂(Mg)、鈣(Ca)、鍶(Sr)、鋇(Ba)、鐳(Ra)、鈧(Sc)、釔(Y)、鈦(Ti)、鋯(Zr)、鉿(Hf)、釩(V)、鈮(Nb)、鉻(Cr)、鉬(Mo)、鎢(W)、錳(Mn)、鐵(Fe)、鋨(Os)、鈷(Co)、銠(Rh)、銥(Ir)、鎳(Ni)、鈀(Pd)、鉑(Pt)、銅(Cu)、銀(Ag)、金(Au)、鋅(Zn)、鎘(Cd)、鋁(Al)、鎵(Ga)、銦(In)、鍺(Ge)、鉭(Ta)、鉛(Pb)、銻(Sb)、鉍(Bi)、鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、鉕(Pm)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)等。
在一實施方式中,當使用醇化合物作為有機配位體時,可藉由使上述金屬的無機鹽或其水合物與醇化合物的鹼金屬烷氧化物發生反應來製備所述另一前驅物。在一實施方式中,金屬的無機鹽或其水合物的實例可包括金屬的鹵化物、硝酸鹽等,且鹼金屬烷氧化物的實例可包括烷氧化鈉(sodium alkoxide)、烷氧化鋰、烷氧化鉀等。
在單一來源方法中,作為所述另一前驅物,可使用表現出與根據實施例的錫前驅化合物的熱分解行為及/或氧化分解行為 類似的熱分解行為及/或氧化分解行為的化合物。另外,在混合來源方法中,作為所述另一前驅物,適合使用表現出與錫前驅化合物的熱分解行為及/或氧化分解行為類似的熱分解行為及/或氧化分解行為且在其混合時不因化學反應等而改變的化合物。
含錫材料膜的應用
藉由形成薄膜的方法而製作的含錫材料膜可用於各種用途。舉例來說,含錫材料膜可用於電晶體的閘極、金屬線(例如銅線)中所包括的導電阻障膜、三維電荷捕獲快閃記憶體(charge trap flash,CTF)單元中所包括的閘極介電膜的穿隧阻障膜(tunnel barrier film)、液晶的阻障金屬膜、薄膜太陽電池的構件、半導體設備的構件、奈米結構等。
圖4A至圖4H說明根據實施例的製作積體電路裝置的方法中的各階段的剖視圖。將參考圖4A至圖4H來闡述一種製作構成垂直非揮發性記憶體裝置的積體電路裝置200(參見圖4H)的記憶胞陣列(memory cell)的方法。
參考圖4A,可在基底210上形成蝕刻終止絕緣膜222,且可將多個犧牲層P224及多個絕緣層226逐層交替地堆疊在蝕刻終止絕緣膜222上。最上絕緣層226的厚度可大於另一絕緣層226的厚度。
基底210可相同於上述基底101,且可省略其重複說明。
蝕刻終止絕緣膜222及所述多個絕緣層226可包含絕緣材料,例如,氧化矽。所述多個犧牲層P224可包含蝕刻選擇性不 同於蝕刻終止絕緣膜222的蝕刻選擇性及所述多個絕緣層226的蝕刻選擇性的材料。舉例來說,所述多個犧牲層P224可包括氮化矽膜、氮氧化矽膜、多晶矽膜、或多晶矽鍺膜。
參考圖4B,可形成穿過所述多個絕緣層226、所述多個犧牲層P224、及蝕刻終止絕緣膜222的多個通道孔230,且所述多個通道孔230可暴露出基底210。
參考圖4C,可按照此陳述次序來形成電荷儲存膜232及穿隧介電膜234,且電荷儲存膜232及穿隧介電膜234覆蓋所述多個通道孔230中的每一者的內壁,並且可形成通道區240,且通道區240覆蓋穿隧介電膜234。
舉例來說,可在所述多個通道孔230中形成電荷儲存膜232及穿隧介電膜234。接下來,可在所述多個通道孔230中的穿隧介電膜234上形成通道區形成半導體膜,然後對所述半導體膜進行各向異性蝕刻,藉此在所述多個通道孔230中的每一者中暴露出基底210。可將剩餘的所述半導體膜作為間隔壁形的通道區240,間隔壁形的通道區240覆蓋所述多個通道孔230中每一者中的穿隧介電膜234的側壁。在一實施方式中,電荷儲存膜232可包括氮化矽膜。穿隧介電膜234可包括氧化矽膜。
通道區240可不完全填充每一通道孔230的內部。絕緣膜242可填充每一通道孔230中通道區240上方所剩餘的空間。
接下來,可部分地移除所述多個通道孔230中的電荷儲存膜232、穿隧介電膜234、通道區240、及絕緣膜242,從而可 在所述多個通道孔230中的每一者中形成上部空間,且導電圖案250可填充所述上部空間。導電圖案250可包含摻雜多晶矽或金屬。可使用導電圖案250作為汲極區。
參考圖4D,可形成穿過所述多個絕緣層226、所述多個犧牲層P224、及蝕刻終止絕緣膜222的多個開口260,且所述多個開口260可暴露出基底210。所述多個開口260中的每一者可為字元線切割區。
參考圖4E,可從所述多個開口260移除所述多個犧牲層P224,藉此形成多個閘極空間GS,所述多個閘極空間GS中的每一者位於所述多個絕緣層226中的兩個絕緣層226之間。可藉由所述多個閘極空間GS來暴露出電荷儲存膜232。
參考圖4F,可形成阻擋絕緣膜236,且阻擋絕緣膜236可覆蓋所述多個閘極空間GS的內壁。
阻擋絕緣膜236可包括氧化錫膜。為了形成阻擋絕緣膜236,可利用形成薄膜的方法,所述方法已參考圖1至圖3B做出闡述。在一實施方式中,為了形成阻擋絕緣膜236,可利用原子層沉積製程。作為Sn源,可經由所述多個開口260來供應根據實施例的錫前驅化合物(例如,由化學式(I)表示的錫前驅化合物)。原子層沉積製程可在選自約250℃至約350℃範圍的第一溫度下執行。在形成氧化錫膜之後,可藉由在比第一溫度高的第二溫度下對氧化錫膜進行退火而使氧化錫膜緻密化。第二溫度可選自約400℃至約1,150℃的範圍。
參考圖4G,可形成用於閘極電極的導電層,且導電層可填充被阻擋絕緣膜236環繞且所述多個閘極空間GS中所剩餘的空間,然後部分地移除阻擋絕緣膜236及用於閘極電極的導電層,以暴露出所述多個開口260中的所述多個絕緣層226中的每一者的側壁,從而使阻擋絕緣膜236及閘極電極264存留在所述多個開口260中。
在一實施方式中,閘極電極264可包括接觸阻擋絕緣膜236的第一導電阻障膜以及位於所述第一導電阻障膜上的第一導電膜。第一導電阻障膜可包含導電金屬氮化物,例如,TiN或TaN。第一導電膜可包含導電多晶矽、金屬、金屬矽化物、或其組合。
阻擋絕緣膜236可包括不含所不期望的異物(例如鹵素材料或碳殘餘物)的氧化錫膜。如參考圖4F所述,可對氧化錫膜進行退火且因此氧化錫膜得以緻密化,藉此防止例如對填充閘極空間GS的閘極電極264的構成材料造成損害,所述損害起因於如下所述:當在圖4G所示製程中部分地移除阻擋絕緣膜236及用於閘極電極的導電層以使得可暴露出所述多個絕緣層226中每一者的側壁時,蝕刻溶液會消耗過多的阻擋絕緣膜236或者所述多個閘極空間GS的入口側處的阻擋絕緣膜236會藉由蝕刻溶液經受所不期望的移除。
如上所述,在所述多個閘極空間GS中形成阻擋絕緣膜236及閘極電極264之後,可藉由所述多個開口260暴露出基底210。可藉由將雜質植入被所述多個開口260暴露出的基底210中 而在基底210中形成多個共用源極區268。
參考圖4H,可在所述多個開口260中的每一者的內側壁上形成絕緣間隔壁272,且導電插塞274可填充所述多個開口260中的每一者的內部空間。
在一實施方式中,絕緣間隔壁272可包括氧化矽膜、氮化矽膜、或其組合。導電插塞274可包括接觸絕緣間隔壁272的第二導電阻障膜及填充所述多個開口260中的每一者中被所述第二導電阻障膜環繞的空間的第二導電膜。第二導電阻障膜可包含導電金屬氮化物,例如,TiN或TaN。第二導電膜可包含金屬,例如鎢。
可在多個導電插塞274上分別形成多個第一接觸窗(contact)282,且可在所述多個第一接觸窗282上分別形成多個第一導電層284。所述多個第一接觸窗282及所述多個第一導電層284中的每一者可包含金屬、金屬氮化物、或其組合。
可在多個導電圖案250上形成多個第二接觸窗292及多個位元線294。所述多個第二接觸窗292及所述多個位元線294中的每一者可包含金屬、金屬氮化物、或其組合。
根據已參考圖4A至圖4H做出闡述的製作積體電路裝置200的方法,可在用於形成包含氧化錫的阻擋絕緣膜236的原子層沉積製程中使用根據實施例的錫前驅化合物,藉此確保在進行原子層沉積製程時作為原料化合物所需要的性質,例如,高熱穩定性、低熔點、高蒸氣壓力、在液態下的可運輸性、易於氣化等。 因此,可使用根據實施例的錫前驅化合物來容易地形成阻擋絕緣膜236。另外,可獲得沿著縱橫比(aspect ratio)相對高的孔的深度而具有均勻的階梯覆蓋率(step coverage)的阻擋絕緣膜236。
圖5A至圖5C說明根據實施例的積體電路裝置。圖5A說明包括具有鰭式場效電晶體結構的第一電晶體TR51及第二電晶體TR52的積體電路裝置500的主要組件的透視圖,圖5B說明分別沿圖5A所示線B1-B1'及B2-B2'截取的剖視圖,且圖5C說明分別沿圖5A所示線C1-C1'及C2-C2'截取的剖視圖。
積體電路裝置500可包括第一鰭型主動區F1及第二鰭型主動區F2,第一鰭型主動區F1及第二鰭型主動區F2在與基底510的主表面垂直的方向(Z方向)上分別從基底510的第一區I及第二區II突起。
第一區I及第二區II是指基底510的不同的區,且可為在基底510上執行不同功能的區。可在第一區I及第二區II中分別形成需要不同閾值電壓的第一電晶體TR51及第二電晶體TR52。在一實施方式中,第一區I可為P型金屬氧化物半導體電晶體區,且第二區II可為N型金屬氧化物半導體電晶體區。
第一鰭型主動區F1及第二鰭型主動區F2可沿一個方向(圖5A至圖5C中的Y方向)延伸。在第一區I及第二區II中,可在基底510上形成第一裝置隔離膜512及第二裝置隔離膜514,且第一裝置隔離膜512及第二裝置隔離膜514可分別覆蓋第一鰭型主動區F1的下側壁及第二鰭型主動區F2的下側壁。第一鰭型 主動區F1可從第一裝置隔離膜512向上突起成鰭形,且第二鰭型主動區F2可從第二裝置隔離膜514向上突起成鰭型。
第一鰭型主動區F1及第二鰭型主動區F2可分別具有位於其上部部分上的第一通道區CH1及第二通道區CH2。可在第一通道區CH1中形成P型通道,且可在第二通道區CH2中形成N型通道。
在一實施方式中,第一鰭型主動區F1及第二鰭型主動區F2中的每一者可包含單一材料。舉例來說,分別包括第一通道區CH1及第二通道區CH2的第一鰭型主動區F1及第二鰭型主動區F2可在其所有區中包含Si。在一實施方式中,第一鰭型主動區F1及第二鰭型主動區F2可分別包括包含Ge的區及包含Si的區。
第一裝置隔離膜512及第二裝置隔離膜514中的每一者可包含含矽絕緣膜(例如,氧化矽膜、氮化矽膜、氮氧化矽膜、碳氮化矽膜等)、多晶矽、或其組合。
在第一區I中,第一閘極結構GA可在與第一鰭型主動區F1的延伸方向相交的方向(圖5A至圖5C中的X方向)上在第一鰭型主動區F1上延伸,第一閘極結構GA包括按照此陳述次序堆疊的第一界面膜522A、第一高介電常數介電膜524A、第一蝕刻終止層526A、第一功函數調整層528、第二功函數調整層529、及第一間隙填充閘極膜530A。可在第一鰭型主動區F1與第一閘極結構GA相交的點處形成第一電晶體TR51。
在第二區II中,第二閘極結構GB在與第二鰭型主動區 F2的延伸方向相交的方向(圖5A至圖5C中的X方向)上在第二鰭型主動區F2上延伸,第二閘極結構GB包括按照此陳述次序堆疊的第二界面膜522B、第二高介電常數介電膜524B、第二蝕刻終止層526B、第二功函數調整層529、及第二間隙填充閘極膜530B。可在第二鰭型主動區F2與第二閘極結構GB相交的點處形成第二電晶體TR52。
第一界面膜522A及第二界面膜522B可包括藉由分別將第一鰭型主動區F1的表面及第二鰭型主動區F2的表面氧化而獲得的膜。在一實施方式中,第一界面膜522A及第二界面膜522B中的每一者可包括介電常數為約9或小於9的低介電常數介電材料層,例如,氧化矽膜、氮氧化矽膜、或其組合。在一實施方式中,第一界面膜522A及第二界面膜522B中的每一者可具有例如約5Å至約20Å的厚度。在一實施方式中,可將第一界面膜522A及第二界面膜522B省略。
第一高介電常數介電膜524A及第二高介電常數介電膜524B中的每一者可包含介電常數較氧化矽膜高的金屬氧化物。舉例來說,第一高介電常數介電膜524A及第二高介電常數介電膜524B中的每一者可具有約10至約25的介電常數。在一實施方式中,第一高介電常數介電膜524A及第二高介電常數介電膜524B中的每一者可包含例如氧化鉿、氮氧化鉿、氧化鉿矽、氧化鑭、氧化鑭鋁、氧化鋯、氧化鋯矽、氧化錫、氮氧化錫、碳氮氧化錫、氧化鉭、氧化鈦、氧化鋇鍶鈦、氧化鋇鈦、氧化鍶鈦、氧化釔、 氧化鋁、氧化鉛鈧鉭、鈮酸鉛鋅、或其組合。
可藉由原子層沉積製程或化學氣相沉積製程來形成第一高介電常數介電膜524A及第二高介電常數介電膜524B。在一實施方式中,第一高介電常數介電膜524A及第二高介電常數介電膜524B中的每一者可具有例如約10Å至約40Å的厚度。
當第一高介電常數介電膜524A及第二高介電常數介電膜524B中的每一者包括含Sn膜時,可使用包含如上所述由化學式(I)表示的錫前驅化合物的薄膜形成原料來形成第一高介電常數介電膜524A及第二高介電常數介電膜524B。
第一蝕刻終止層526A及第二蝕刻終止層526B中的每一者可包括SnN膜。可使用包含如上所述由化學式(I)表示的錫前驅化合物的薄膜形成原料且使用含氮原子的反應氣體(例如,NH3氣體),藉由化學氣相沉積製程或原子層沉積製程來形成第一蝕刻終止層526A及第二蝕刻終止層526B。
第一功函數調整層528可用於對P型電晶體的功函數進行調整,且可包含例如TiN。
第二功函數調整層529可用於對N型電晶體的功函數進行調整,且可包含例如TiAl、TiAlC、TiAlN、TaC、TiC、HfSi、或其組合。
第一間隙填充閘極膜530A及第二間隙填充閘極膜530B中的每一者可包含例如鎢(W)。
在一實施方式中,可在第二功函數調整層529與第一間 隙填充閘極膜530A之間及/或在第二功函數調整層529與第二間隙填充閘極膜530B之間插入導電阻障膜。在一實施方式中,導電阻障膜可包含金屬氮化物,例如,TiN、TaN、SnN、或其組合。
可在第一鰭型主動區F1中在第一閘極結構GA的兩側處形成一對第一源極/汲極區562。可在第二鰭型主動區F2中在第二閘極結構GB的兩側處形成一對第二源極/汲極區564。
所述一對第一源極/汲極區562及一對第二源極/汲極區564可分別包括磊晶成長在第一鰭型主動區F1及第二鰭型主動區F2上的半導體層。所述一對第一源極/汲極區562及一對第二源極/汲極區564中的每一者可包括嵌入式SiGe結構,所述嵌入式SiGe結構包括多個磊晶成長SiGe層、磊晶成長Si層、或磊晶成長SiC層。
在一實施方式中,如圖5A及圖5C所示,所述一對第一源極/汲極區562及一對第二源極/汲極區564可具有特定形狀。在一實施方式中,所述一對第一源極/汲極區562及一對第二源極/汲極區564可具有各種橫截面形狀。
第一電晶體TR51及第二電晶體TR52中的每一者可包括其中在第一鰭型主動區F1及第二鰭型主動區F2中的每一者的上表面及兩個側表面上形成有通道的三維結構化金屬氧化物半導體電晶體。金屬氧化物半導體電晶體可構成N型金屬氧化物半導體電晶體或P型金屬氧化物半導體電晶體。
在第一區I及第二區II中,可在第一閘極結構GA及第 二閘極結構GB中的每一者的兩側上形成絕緣間隔壁572。如圖5C所示,可在第一閘極結構GA及第二閘極結構GB中的每一者的相對的側處形成覆蓋絕緣間隔壁572的絕緣膜578,其中絕緣間隔壁572位於第一閘極結構GA及第二閘極結構GB中的每一者與絕緣膜578之間。在一實施方式中,絕緣間隔壁572可包括氮化矽膜,且絕緣膜578可包括氧化矽膜。
提供以下實例及比較例是為了突出一個或多個實施例的特性,但應理解,所述實例及比較例不應被理解為限制所述實施例的範圍,所述比較例也不應被理解為處於所述實施例的範圍以外。此外,應理解,所述實施例並非僅限於所述實例及比較例中所述的特定細節。
<實例1>
化合物Sn[N(iPr)2]2Me2的合成
向1,000ml燒瓶中引入了100g(0.35mol))SnCl4及300ml正己烷,且進行了混合。在冰浴中向所述燒瓶中緩慢添加了81.4g(0.455mol)Sn(Me)4。將所述組分攪拌了約2小時,藉此完成SnMe2Cl2的合成。
接下來,用乙醚對204g(1.91mol)二異丙基氨基鋰(lithium diisopropylamide,LDA)進行了稀釋,並接著緩慢添加至所述燒瓶中。藉由將所述組分攪拌5小時而完成了反應,然後在減壓下移除溶劑及副產物。
接下來,在80℃的溫度及0.6Torr的壓力下對所得物進 行了純化,藉此獲得120g化合物Sn[N(iPr)2]2Me2(產率:77%)。
對所獲得的化合物進行了1H NMR分析。結果示於圖6中。
(分析)
1H NMR(C6D6):δ 3.42(st,4H,),1.12(d,24H),0.38(s,6H)
<評估實例1>
化合物Sn[N(iPr)2]2Me2的性質的評估
圖7說明繪示在實例1中獲得的化合物Sn[N(iPr)2]2Me2的熱重量分析(TGA)結果的圖表。在氬氣氣氛下在10℃/min的加熱速率下對10mg化合物Sn[N(iPr)2]2Me2進行了分析。
圖7示出隨著溫度而變化的重量損失率(weight loss percentage)。如在圖7中可以看到,Sn[N(iPr)2]2Me2表現出迅速氣化且在約190℃下被氣化至99%或大於99%的程度且無由於熱分解而產生的殘餘物。
<實例2>
藉由原子層沉積(ALD)而在矽基底上製作了氧化錫薄膜。
將矽基底裝載至反應室中,且將矽基底維持在200℃的溫度下。在實例1中合成的化合物Sn[N(iPr)2]2Me2填充了不銹鋼起泡器容器,且將所述化合物維持在74℃的溫度下。接下來,在起泡器容器中將錫前驅化合物氣化並使用氬氣(25sccm)作為載氣將所述錫前驅化合物供應至矽基底的表面上,藉此將化合物 Sn[N(iPr)2]2Me2化學吸附至矽基底上。接下來,用氬氣(4,000sccm)將未吸附的Sn[N(iPr)2]2Me2清洗了15秒且藉此從反應室移除了所述未吸附的Sn[N(iPr)2]2Me2
接著,以300sccm的流速向反應室中供應濃度為220g/m3的臭氧氣體達7秒,藉此形成氧化錫薄膜。最終,用氬氣(4,000sccm)將副產物及未反應的材料清洗了10秒且藉此從反應室移除了所述副產物及未反應的材料。
當將以上所述的過程定義為1個循環時,藉由重複100個循環形成了氧化錫薄膜且對所述氧化錫薄膜進行了厚度測量。
另外,在改變反應室內部的溫度的同時在每一溫度下執行了沉積達100個循環,且對每一溫度下每循環的沉積厚度進行了測量。結果示於圖8中。
如圖8所示,可以看到,每循環的沉積厚度隨著沉積溫度從200℃變化至270℃而發生了改變。因此,可以看到,除原子層沉積以外的沉積機制可促使在200℃至270℃下形成薄膜。同樣地,可以看到,每循環的沉積厚度隨著沉積溫度從350℃變化至380℃而發生了改變。因此,可以看到,除原子層沉積以外的沉積機制(例如,化學氣相沉積)可能已促使在350℃至380℃下形成薄膜。
可以看到,即使在沉積溫度在270℃至350℃的範圍內變化時每循環的沉積厚度仍為恆定的。舉例來說,在270℃至350℃的溫度範圍內,藉由原子層沉積機制形成了氧化錫薄膜。
為了分析如上所形成的氧化錫薄膜的晶體結構,對氧化錫薄膜執行了穿透式電子顯微鏡(TEM)分析及X射線繞射(XRD)分析,且藉由分析所獲得的圖像及分析結果的圖表分別示於圖9及圖10中。
參考圖9,可以看到,在矽基底上形成了氧化錫(SnO2)薄膜,且在氧化錫薄膜上形成了用於穿透式電子顯微鏡分析的膠層。如圖9所示,可以看到,氧化錫薄膜在矽基底上被形成為相對均勻的厚度。
藉由X射線光電子光譜(X-ray photoelectron spectroscopy,XPS)對氧化錫薄膜的組成進行了分析,且分析的結果示於表1中。參考表1,可以看到,所沉積薄膜基於300℃的矽基底溫度包含了約33.3原子%的錫及約66.7原子%的氧,且錫對氧的化學計量比為約1:2。因此,所述薄膜具有組合物SnO2。另外,未檢測到為雜質的氮元素、碳元素、及鹵素元素,且可以看到,形成了不含雜質的純氧化錫薄膜。
Figure 106141587-A0305-02-0038-15
參考圖10,可以看到,在存在峰的26度(°)的2-塞塔(theta(θ))值處,表示金紅石(rutile)相的峰的强度隨著沉積溫度升高而增大。舉例來說,在300℃下對金紅石相的結晶度進行了觀察,且可以看到,結晶度隨著溫度升高而增大。另外,結晶度還可藉由圖9所示的穿透式電子顯微鏡圖像來進行確認。
<實例3>
化合物Sn[N(Me)2]2Me2的合成
向1,000ml燒瓶中引入了117g(0.45mol)SnCl4及300ml正己烷,且進行了混合。在冰浴中向所述燒瓶中緩慢添加了81.4g(0.455mol)Sn(Me)4。將所述組分攪拌了約2小時,藉此完成SnMe2Cl2的合成。
接下來,用乙醚對101g(1.98mol)二甲基氨基鋰(lithium dimethylamide,Li-DMA)進行了稀釋,並接著緩慢添加至所述燒瓶中。藉由將所述組分攪拌5小時而完成了反應,然後在減壓下移除溶劑及副產物。
接下來,在80℃的溫度及0.6Torr的壓力下對所得物進行了純化,藉此獲得120g化合物Sn[N(Me)2]2Me2(產率:56%)。
對所獲得的化合物進行了1H NMR分析。結果示於圖11中。
(分析)
1H NMR(C6D6):δ 2.76(s,12H),0.09(s,6H)
<實例4>
除了使用化合物Sn[N(Me)2]2Me2替代了化合物Sn[N(iPr)2]2Me2以外,以與實例2相同的方式形成了氧化錫薄膜,且在每一沉積溫度下對每循環氧化錫的沉積厚度進行了測量。結果示於圖12中。
如圖12所示,可以看到,每循環的沉積厚度隨著沉積溫度從200℃變化至270℃而發生了改變。因此,可以看到,除原子層沉積以外的沉積機制可能已促使在200℃至270℃下形成薄膜。同樣地,可以看到,每循環的沉積厚度隨著沉積溫度從320℃變化至400℃而發生了改變。因此,可以看到,除原子層沉積以外的沉積機制(例如,化學氣相沉積)可能已促使在320℃至400℃下形成薄膜。
可以看到,即使在沉積溫度在270℃至320℃的範圍內變化時每循環的沉積厚度仍為恆定的。舉例來說,在270℃至320℃的溫度範圍內,藉由原子層沉積機制形成了氧化錫薄膜。
<比較例1>
化合物Sn[N(Me)2]4的合成
向1,000ml燒瓶中引入了100g(0.35mol)SnCl4及300ml正己烷,且進行了混合。用乙醚對80g(1.57mol)二甲基氨基鋰(Li-DMA)進行了稀釋並接著在冰浴中緩慢添加至所述燒瓶中,然後在環境溫度下將所述組分攪拌了8小時,藉此完成反應。在反應完成之後,藉由對產物進行過濾而移除了LiCl鹽,藉此獲得溶液。接下來,在減壓下從所獲得的溶液移除了溶劑及副產物。 在移除溶劑之後,對溶液進行了純化,藉此獲得63g化合物Sn[N(Me)2]4(產率:70%)。
(分析)
1H NMR(C6D6):δ 2.79(s,24H)
氧化錫薄膜的形成
除了使用化合物Sn[N(Me)2]4替代了化合物Sn[N(iPr)2]2Me2以外,以與實例2相同的方式形成了氧化錫薄膜,且在每一沉積溫度下對每循環氧化錫的沉積厚度進行了測量。結果示於圖13中。
如圖13所示,每循環的沉積厚度隨著沉積溫度從100℃變化至150℃而減小,且每循環的沉積厚度隨著沉積溫度從150℃升高至400℃而增大。舉例來說,未觀察到其中每循環的沉積厚度為恆定的溫度範圍。此意指當使用化合物Sn[N(Me)2]4時,在整個溫度範圍中不存在使得能够主要藉由原子層沉積機制進行沉積的範圍。因此,化合物Sn[N(Me)2]4可能不適合作為原子層沉積前驅物。
當使用化合物Sn[N(Me)2]4時,可能不存在使得能够主要藉由原子層沉積機制進行沉積的溫度範圍,且可推定大部分沉積是藉由化學氣相沉積機制來執行。因此,可能難以在具有高縱橫比的結構的表面上形成具有優異的階梯覆蓋率的薄膜。
<比較例2>
除了使用Sn(Me)4替代了Sn[N(iPr)4]2Me2以外,以與實 例2相同的方式形成了氧化錫薄膜,且在每一沉積溫度下對每循環氧化錫的沉積厚度進行了測量。結果示於圖14中。Sn(Me)4為具有95%品級(grade)的市售產品(西格瑪-奧德理奇有限公司(Sigma-Aldrich Co.,Ltd.))。
如圖14所示,每循環的沉積厚度隨著沉積溫度從250℃變化至350℃而增大。舉例來說,未觀察到其中每循環的沉積厚度為恆定的溫度範圍。此意指在整個溫度範圍中不存在使得能够主要藉由原子層沉積機制進行沉積的範圍。因此,Sn(Me)4可能不適合作為原子層沉積前驅物。
當使用Sn(Me)4時,不存在使得能够主要藉由原子層沉積機制進行沉積的溫度範圍,且推定大部分沉積是藉由化學氣相沉積機制來執行。因此,可能難以在具有高縱橫比的結構的表面上形成具有優異的階梯覆蓋率的薄膜。
按照所屬領域中的傳統,在功能區塊、功能單元、及/或功能模組方面對各實施例進行了闡述,且在圖式中進行了說明。所屬領域中具有通常知識者應理解,這些區塊、單元、及/或模組在實體上由可利用基於半導體的製作技術或其他製造技術而形成的電子(或光學)電路(例如邏輯電路)、分立的組件、微處理器、硬連線電路(hard-wired circuit)、記憶體元件、佈線連接(wiring connection)等實作。在由微處理器或類似元件實作的區塊、單元、及/或模組的情形中,可利用軟體(例如,微碼(microcode))對這些區塊、單元及/或模組進行程式化,以執行 本文所述的各種功能,且可視需要藉由韌體(firmware)及/或軟體來驅動。作為另外一種選擇,每一區塊、單元、及/或模組可藉由專用硬體來實作,或被實作為執行一些功能的專用硬體與執行其他功能的處理器(例如,一個或多個經程式化微處理器及相關聯的電路系統)的組合。此外,在不背離本文的範圍的條件下,所述實施例的每一區塊、單元、及/或模組可實體地分離成兩個或更多個交互且分立的區塊、單元、及/或模組。此外,在不背離本文的範圍的條件下,所述實施例的區塊、單元、及/或模組可實體地組合成更複雜的區塊、單元、及/或模組。
已在本文中公開了各示例性實施例,且儘管使用具體用語,但所述用語僅用於且僅被解釋為通常意義及闡述性意義,而並非用於限制目的。在一些情况下,除非另外明確地指明,否則如在本申請提出申請時所屬領域中具有通常知識者所理解般,結合特定實施例所述的特徵、特性、及/或元件可單獨使用或與結合其他實施例所述的特徵、特性、及/或元件組合使用。因此,所屬領域中具有通常知識者應理解,在不背離由以下申請專利範圍所述的本發明的精神及範圍的條件下,可作出各種形式及細節上的變化。
S110、S120、S130、S140:步驟

Claims (12)

  1. 一種形成含錫材料膜的方法,其中所述方法包括:在反應空間中的基底上形成錫前驅化合物的單層,所述錫前驅化合物具有由化學式(I)表示的結構;藉由向所述單層上供應反應物來形成含錫材料膜;以及藉由對未反應的反應物進行清洗而從所述含錫材料膜的表面附近移除所述未反應的反應物,
    Figure 106141587-A0305-02-0047-16
    其中R1、R2、Q1、Q2、Q3、及Q4分別獨立地為C1至C4直鏈烷基或支鏈烷基,且其中所述反應物包括NH3、單烷基胺、二烷基胺、三烷基胺、有機胺化合物、肼化合物、或其混合物,且所述含錫材料膜是氮化錫膜。
  2. 如請求項1所述的形成含錫材料膜的方法,其中,所述錫前驅化合物在約270℃至約350℃的溫度範圍內具有恆定的原子層沉積速率。
  3. 如請求項1所述的形成含錫材料膜的方法,其中,所 述錫前驅化合物在約270℃至約320℃的溫度範圍內具有恆定的原子層沉積速率。
  4. 如請求項1所述的形成含錫材料膜的方法,其中,所述含錫材料膜不包含鹵素元素。
  5. 如請求項1所述的形成含錫材料膜的方法,其中,在所述反應空間中的所述基底上形成具有所述由化學式(I)表示的結構的所述錫前驅化合物的所述單層包括:向所述基底上供應具有所述由化學式(I)表示的結構的所述錫前驅化合物達約1秒至約100秒。
  6. 如請求項1所述的形成含錫材料膜的方法,其中,所述含錫材料膜是導電阻障膜、閘極介電膜的穿隧阻障膜、液晶的阻障金屬膜、薄膜太陽電池的構件、半導體設備的構件、或奈米結構。
  7. 一種形成含錫材料膜的方法,所述方法包括:在反應器中提供基底;向所述基底供應錫前驅物以形成所述錫前驅物的單層,所述錫前驅物是由化學式(I)表示;向所述單層上供應反應物以形成含錫材料膜;以及對所述反應器進行清洗,<化學式(I)>
    Figure 106141587-A0305-02-0049-17
    其中,在化學式(I)中,R1、R2、Q1、Q2、Q3、及Q4分別獨立地為C1至C4直鏈烷基或支鏈烷基,且其中所述反應物包括NH3、單烷基胺、二烷基胺、三烷基胺、有機胺化合物、肼化合物、或其混合物,且所述含錫材料膜是氮化錫膜。
  8. 如請求項7所述的形成含錫材料膜的方法,其中,所述含錫材料膜不包含鹵素元素。
  9. 如請求項7所述的形成含錫材料膜的方法,其中,向所述基底供應所述錫前驅物達約1秒至約100秒。
  10. 如請求項7所述的形成含錫材料膜的方法,其中,Q1、Q2、Q3、及Q4為相同的,且分別為甲基、乙基、正丙基、或異丙基。
  11. 如請求項10所述的形成含錫材料膜的方法,其中,R1與R2為相同的,且分別為甲基、乙基、正丙基、或異丙基。
  12. 一種形成含錫材料膜的方法,其中所述方法包括依序執行多個沉積循環,且每個所述沉積循環包括:在反應空間中的基底上形成錫前驅化合物的單層,所述錫前驅化合物具有由化學式(I)表示的結構; 藉由向所述單層上供應反應物來形成含錫材料膜;以及藉由對未反應的反應物進行清洗而從所述含錫材料膜的表面附近移除所述未反應的反應物,
    Figure 106141587-A0305-02-0050-18
    其中R1、R2、Q1、Q2、Q3、及Q4分別獨立地為C1至C4直鏈烷基或支鏈烷基,且其中所述反應物包括NH3、單烷基胺、二烷基胺、三烷基胺、有機胺化合物、肼化合物、或其混合物,且所述含錫材料膜是氮化錫膜。
TW106141587A 2016-12-02 2017-11-29 形成含錫材料膜的方法 TWI794193B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0163900 2016-12-02
KR1020160163900A KR20180063754A (ko) 2016-12-02 2016-12-02 주석 화합물, 그의 합성 방법, ald용 주석 전구체 화합물 및 함주석 물질막의 형성 방법
??10-2016-0163900 2016-12-02

Publications (2)

Publication Number Publication Date
TW201829435A TW201829435A (zh) 2018-08-16
TWI794193B true TWI794193B (zh) 2023-03-01

Family

ID=62240350

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141587A TWI794193B (zh) 2016-12-02 2017-11-29 形成含錫材料膜的方法

Country Status (5)

Country Link
US (2) US20180155372A1 (zh)
JP (1) JP7185394B2 (zh)
KR (1) KR20180063754A (zh)
CN (1) CN108149222A (zh)
TW (1) TWI794193B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346372B1 (ko) * 2015-10-13 2021-12-31 인프리아 코포레이션 유기주석 옥사이드 하이드록사이드 패터닝 조성물, 전구체 및 패터닝
US10858379B2 (en) * 2015-11-11 2020-12-08 Korea Research Institute Of Chemical Technology Metal precursor for making metal oxide
CA2975104A1 (en) 2017-08-02 2019-02-02 Seastar Chemicals Inc. Organometallic compounds and methods for the deposition of high purity tin oxide
EP3821057A1 (en) * 2018-07-12 2021-05-19 Basf Se Process for the generation of metal- or semimetal-containing films
KR102526810B1 (ko) * 2018-11-22 2023-04-27 미쓰이 가가쿠 가부시키가이샤 반도체 소자 중간체, 및 반도체 소자 중간체의 제조 방법
CN110128373B (zh) * 2019-06-12 2023-03-24 鸿翌科技有限公司 哌嗪基锡配合物及其制备方法、薄膜、太阳能电池
WO2021029215A1 (ja) 2019-08-09 2021-02-18 株式会社高純度化学研究所 ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法
US20230002423A1 (en) * 2019-10-17 2023-01-05 Adeka Corporation Novel tin compound, thin-film forming raw material containing said compound, thin film formed from said thin-film forming raw material, method of producing said thin film using said compound as precursor, and method of producing said thin film
KR102095710B1 (ko) * 2019-11-05 2020-04-01 주식회사 유진테크 머티리얼즈 표면 보호 물질을 이용한 박막 형성 방법
KR102385042B1 (ko) * 2020-03-20 2022-04-11 한양대학교 산학협력단 봉지막 및 그 제조방법
US11358975B2 (en) * 2020-07-03 2022-06-14 Entegris, Inc. Process for preparing organotin compounds
KR102625156B1 (ko) 2021-06-17 2024-01-15 주식회사 이지티엠 박막 증착을 위한 유기 주석 화합물 및 이를 이용한 주석 함유 박막의 형성 방법
CN116410222B (zh) * 2023-06-09 2023-08-08 研峰科技(北京)有限公司 一种叔丁基三(二甲氨基)锡烷的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200916599A (en) * 2007-08-03 2009-04-16 Samsung Electronics Co Ltd Organometallic precursor, thin film having the same, metal wiring including the thin film, method of forming a thin film and method of manufacturing a metal wiring using the same
CN104276601A (zh) * 2013-07-08 2015-01-14 三星显示有限公司 用于锡氧化物半导体的组合物以及形成锡氧化物半导体薄膜的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5535945B2 (ja) * 2008-02-27 2014-07-02 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 原子層蒸着(ald)法を用いる基板上にチタン含有層を形成する方法
KR100954541B1 (ko) 2008-03-20 2010-04-23 한국화학연구원 신규의 주석 아미노알콕사이드 화합물 및 그 제조 방법
US8796483B2 (en) 2010-04-01 2014-08-05 President And Fellows Of Harvard College Cyclic metal amides and vapor deposition using them
KR101255099B1 (ko) 2011-03-09 2013-04-16 한국화학연구원 플루오르를 포함하는 리간드를 갖는 새로운 주석 화합물 및 그 제조 방법
CN103930431B (zh) 2011-03-15 2016-07-06 株式会社Mecharonics 新型第4b族金属有机化合物及其制备
KR20120125102A (ko) 2011-05-06 2012-11-14 한국화학연구원 원자층 증착법을 이용한 주석산화물 박막의 제조방법
KR101540032B1 (ko) 2012-02-27 2015-07-29 중앙대학교 산학협력단 황화주석 박막 형성용 전구체 및 그의 제조 방법
KR101331971B1 (ko) 2012-05-07 2013-11-25 한국화학연구원 아미노싸이올레이트를 이용한 주석 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
KR101610623B1 (ko) 2014-07-08 2016-04-08 한국화학연구원 p형 주석 산화물 박막 제조 및 제어 방법과 이를 이용한 트랜지스터 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200916599A (en) * 2007-08-03 2009-04-16 Samsung Electronics Co Ltd Organometallic precursor, thin film having the same, metal wiring including the thin film, method of forming a thin film and method of manufacturing a metal wiring using the same
CN104276601A (zh) * 2013-07-08 2015-01-14 三星显示有限公司 用于锡氧化物半导体的组合物以及形成锡氧化物半导体薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 K. JONES and M. F. LAPPERT 352. Amino-derivatives of metals and metalloids. Part I. Preparation of aminostannanes, stannylamines, and stannazanes Journal of the Chemical Society 01 January 1965 P1944~1951 *

Also Published As

Publication number Publication date
US20180155372A1 (en) 2018-06-07
KR20180063754A (ko) 2018-06-12
TW201829435A (zh) 2018-08-16
CN108149222A (zh) 2018-06-12
JP7185394B2 (ja) 2022-12-07
JP2018090586A (ja) 2018-06-14
US10882873B2 (en) 2021-01-05
US20190144472A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
TWI794193B (zh) 形成含錫材料膜的方法
US10651031B2 (en) Tantalum compound
TWI809054B (zh) 鑭化合物、形成薄膜的方法及製造積體電路裝置的方法
US10329312B2 (en) Lanthanum compound, method of synthesizing lanthanum compound, lanthanum precursor composition, method of forming thin film, and method of manufacturing integrated circuit device
US9391089B2 (en) Method of manufacturing semiconductor device including nickel-containing film
US8404878B2 (en) Titanium-containing precursors for vapor deposition
US20060270223A1 (en) Systems and methods for forming metal-containing layers using vapor deposition processes
KR102442621B1 (ko) 니오븀 화합물을 이용한 박막 형성 방법 및 집적회로 소자의 제조 방법
JP2013530304A (ja) Cvd及びald用のルテニウム含有前駆体
US11466043B2 (en) Niobium compound and method of forming thin film
US9790246B2 (en) Nickel compound and method of forming thin film using the nickel compound
US20110045183A1 (en) Methods of forming a layer, methods of forming a gate structure and methods of forming a capacitor
TW202402771A (zh) 鈮、釩、鉭成膜組成物及利用其沉積含第v(五)族之膜