TWI787280B - 光學濾光器系統 - Google Patents

光學濾光器系統 Download PDF

Info

Publication number
TWI787280B
TWI787280B TW107120311A TW107120311A TWI787280B TW I787280 B TWI787280 B TW I787280B TW 107120311 A TW107120311 A TW 107120311A TW 107120311 A TW107120311 A TW 107120311A TW I787280 B TWI787280 B TW I787280B
Authority
TW
Taiwan
Prior art keywords
electrode
voltage
capacitor
charge
mirror
Prior art date
Application number
TW107120311A
Other languages
English (en)
Other versions
TW201903441A (zh
Inventor
海慕特 特基曼
安德烈亞斯 杜蘭狄
彼得 賽茲
笠原隆
柴山勝己
Original Assignee
日商濱松赫德尼古斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商濱松赫德尼古斯股份有限公司 filed Critical 日商濱松赫德尼古斯股份有限公司
Publication of TW201903441A publication Critical patent/TW201903441A/zh
Application granted granted Critical
Publication of TWI787280B publication Critical patent/TWI787280B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Communication System (AREA)
  • Gyroscopes (AREA)

Abstract

本發明之光學濾光器系統具備法布里-伯羅干涉濾光器、及控制法布里-伯羅干涉濾光器之控制器。法布里-伯羅干涉濾光器具備第1鏡部、第2鏡部、設置於第1鏡部之第1驅動電極及第1監視電極、以及設置於第2鏡部之第2驅動電極及第2監視電極。控制器具備控制部,該控制部基於在將交流電流施加至第1監視電極與第2監視電極之間時產生於第1監視電極與第2監視電極之間的交流電壓算出第1鏡部與第2鏡部之間之靜電電容。

Description

光學濾光器系統
本發明係關於一種具備法布里-伯羅(Fabry-Perot)干涉濾光器之光學濾光器系統。
先前,已知有一種法布里-伯羅干涉濾光器,其具備以介隔空隙而相互相向之方式配置且相互之間之距離藉由靜電力而調整之一對鏡部(例如參照專利文獻1)。
先前技術文獻 專利文獻
專利文獻1:日本專利特開2015-004886號公報
於如上所述之法布里-伯羅干涉濾光器中,一般而言,藉由施加電壓之控制而調整一對鏡部之間之距離。然而,於該情形時,有產生「引入(Pull-in)」現象之虞。於引入現象中,有由於鏡部相互帶來引力,鏡部彼此機械地穩固接觸而使法布里-伯羅干涉濾光器產生不良情況之虞。相對於此,考慮採用基於蓄積於鏡部間之電荷量之控制來避免引入現象,但自可靠性之觀點而言要求進一步之改善。
本發明之一態樣之目的在於提供一種可靠性較高之光學濾光器系統。
本發明之一態樣之光學濾光器系統具備:法布里-伯羅干涉濾光器;及控制器,其控制法布里-伯羅干涉濾光器;法布里-伯羅干涉濾光器具備:第1鏡部;第2鏡部,其係以介隔空隙而與第1鏡部相向之方式配置,且光透過區域中之與第1鏡部之間之距離藉由靜電力而調整;第1驅動電極,其係以於自第1鏡部與第2鏡部相互相向之方向觀察之情形時包圍光透過區域之方式設置於第1鏡部;第2驅動電極,其以與第1驅動電極相向之方式設置於第2鏡部;第1監視電極,其係以於自上述方向觀察之情形時至少一部分與光透過區域重疊之方式設置於第1鏡部,且與第1驅動電極電性絕緣;及第2監視電極,其以與第1監視電極相向之方式設置於第2鏡部,且與第2驅動電極電性絕緣;控制器具備:第1電流源,其藉由將驅動電流施加至第1驅動電極與第2驅動電極之間而產生靜電力;第2電流源,其將具有較第1鏡部及第2鏡部之共振頻率高之頻率之交流電流施加至第1監視電極與第2監視電極之間;檢測部,其檢測於交流電流之施加中產生於第1監視電極與第2監視電極之間之交流電壓;及控制部,其基於蓄積於第1鏡部與第2鏡部之間之電荷量控制第1電流源,並且基於檢測部之檢測結果算出第1鏡部與第2鏡部之間之靜電電容。
於該光學濾光器系統中,法布里-伯羅干涉濾光器除了具備第1驅動電極及第2驅動電極以外,還具備第1監視電極及第2監視電極。而且,基於將具有較第1鏡部及第2鏡部之共振頻率高之頻率之交流電流施加至第1監視電極與第2監視電極之間時產生於第1監視電極與第2監視電極之間的交流電壓,算出第1鏡部與第2鏡部之間之靜電電容。藉此,可基於該靜電電容算出鏡部間之距離,可於法布里-伯羅干涉濾光器之動作中 監視鏡部間之實際之距離。進而,第1監視電極係以於自第1鏡部與第2鏡部相互相向之方向觀察之情形時至少一部分與光透過區域重疊之方式設置於第1鏡部,且與第1驅動電極電性絕緣,第2監視電極係以與第1監視電極相向之方式設置於第2鏡部,且與第2驅動電極電性絕緣。藉此,可使第1監視電極及第2監視電極獨立於第1驅動電極及第2驅動電極。其結果,可更佳地算出鏡部間之靜電電容,甚至可更佳地監視鏡部間之距離。因此,根據該光學濾光器系統,能夠提高可靠性。
於本發明之一態樣之光學濾光器系統中,第1驅動電極亦可露出於空隙。於該情形時,可使第1驅動電極接近第2驅動電極,可使鏡部間較佳地產生靜電力。
於本發明之一態樣之光學濾光器系統中,第2驅動電極亦可配置於第2鏡部之與空隙相反側之表面。於該情形時,可使第2驅動電極之形成製程容易化。
於本發明之一態樣之光學濾光器系統中,第2驅動電極亦可露出於空隙。於該情形時,可使第2驅動電極接近第1驅動電極,可使鏡部間更進一步較佳地產生靜電力。
於本發明之一態樣之光學濾光器系統中,第1監視電極亦可露出於空隙。於該情形時,可使第1監視電極接近第2監視電極,可更進一步較佳地監視鏡部間之距離。
於本發明之一態樣之光學濾光器系統中,第2監視電極亦可露出於空隙。於該情形時,可使第2監視電極接近第1監視電極,可更進一步較佳地監視鏡部間之距離。
於本發明之一態樣之光學濾光器系統中,第2監視電極亦 可配置於第2鏡部之與空隙相反側之表面。於該情形時,可使第2監視電極之形成製程容易化。
於本發明之一態樣之光學濾光器系統中,第2驅動電極與第2監視電極亦可於上述方向相互分離。於該情形時,可提高第2驅動電極與第2監視電極之間之電性絕緣性。
根據本發明之一態樣,可提供一種可靠性較高之光學濾光器系統。
1:法布里-伯羅干涉濾光器
1A:法布里-伯羅干涉濾光器
1B:法布里-伯羅干涉濾光器
1C:法布里-伯羅干涉濾光器
1D:法布里-伯羅干涉濾光器
1E:法布里-伯羅干涉濾光器
1a:光透過區域
11:基板
11a:第1表面
11b:第2表面
11c:外緣部
12:第1驅動電極
12a:配線
13:第1監視電極
13a:配線
14:第2驅動電極
14a:配線
15:第2監視電極
16:端子
17:端子
18:端子
19:端子
21:抗反射層
21a:抗反射層之側面
22:第1積層體
22a:第1積層體之側面
22b:第1積層體之表面
23:中間層
23a:表面
23b:側面
24:第2積層體
24a:表面
25:多晶矽層
25a:多晶矽層
25b:多晶矽層
25c:多晶矽層
26:氮化矽層
26a:氮化矽層
26b:氮化矽層
27:多晶矽層
27a:多晶矽層
27b:多晶矽層
27c:多晶矽層
28:氮化矽層
28a:氮化矽層
28b:氮化矽層
31:第1鏡部
31a:表面
32:第2鏡部
32a:表面
32b:表面
33:被覆部
34:周緣部
34a:非薄化部
34b:薄化部
40a:開口
41:抗反射層
42:第3積層體
43:中間層
44:第4積層體
45:遮光層
46:保護層
50:光學濾光器系統
51:控制器
52:第1電流源
53:第2電流源
54:檢測部
55:控制部
101:機械性固定件
102:彈簧
103:極板
104:自由度
105:極板
106:電極線
110:電容器「A」
111:電容器「B」
112:開關「S1」
113:開關「S2」
114:電壓VB
201:枝部
202:枝部
203:最大值
204:動作點
205:控制電壓
206:所產生之電壓
210:靜電電容
211:電流源
212:開關
213:電壓計
214:開關
215:重設開關
216:小信號AC電流注入源
217:開關
220:靜電致動器靜電電容
221:運算放大器
222:輸入部
225:靜電致動器靜電電容
226:運算放大器
227:輸入部
228:電阻
230:靜電致動器
231:數位控制器系統
232:電流源
233:控制信號
234:開關
235:電壓計
236:類比輸出
237:類比-數位轉換器
238:開關
239:重設開關
310:電容
311:電流源
312:開關
313:電壓測定系統
314:開關
315:開關
316:AC調變電流源
317:開關
318:追加開關
320:分離電阻Rleak
321:等效串聯電阻ESR
322:等效串聯電感ESL
323:節點
350:精密電阻器
351:關聯開關
360:靜電致動器控制器
370:致動器單元
R1:電阻
R2:電阻
R3:電阻
R4:電阻
R5:電阻
R6:電阻
S:空隙(氣隙)
T1:溝槽
T2:溝槽
T3:溝槽
T4:溝槽
T5:溝槽
圖1係一實施形態之光學濾光器系統所具備之法布里-伯羅干涉濾光器之俯視圖。
圖2係沿著圖1之II-II線之法布里-伯羅干涉濾光器之剖視圖。
圖3係沿著圖1之III-III線之法布里-伯羅干涉濾光器之剖視圖。
圖4係模式性地表示形成有第1驅動電極及第1監視電極之多晶矽層之俯視圖。
圖5係光學濾光器系統之構成圖。
圖6(a)及圖6(b)係第1變化例之法布里-伯羅干涉濾光器之剖視圖。
圖7(a)及圖7(b)係第2變化例之法布里-伯羅干涉濾光器之剖視圖。
圖8(a)及圖8(b)係第3變化例之法布里-伯羅干涉濾光器之剖視圖。
圖9(a)及圖9(b)係第4變化例之法布里-伯羅干涉濾光器之剖視圖。
圖10(a)及圖10(b)係第5變化例之法布里-伯羅干涉濾光器之剖視圖。
圖11係微機械加工MEMS(Micro-Electro-Mechanical System,微機 電系統)/MOEMS(Micro-Opto-Electro-Mechanical System,微光機電系統)平行極板電容器之簡略圖。
圖12係與圖11相同之系統之略圖。
圖13係控制電壓V與所產生之間隔d之間之典型曲線之例之圖表。
圖14係使用與圖13相同之參數之例之圖表。
圖15係表示相對於「所產生之電壓」之間隔d之圖表。
圖16係表示相對於對具有電容性構造體及至少1個帶彈簧之可動電極之MEMS/MOEMS系統之電容器作為控制參數而施加之電荷量Q而言所產生之電壓V的圖表。
圖17係表示將圖14與圖16組合而成之使用電壓控制之標準性動作之圖表。
圖18係表示將圖14與圖16組合而成之使用致動器之電壓控制時產生「引入」現象之狀況之圖表。
圖19係表示將圖14與圖16組合而成之與重設致動器電容器相關聯之狀況之圖表。
圖20係表示將圖14與圖16組合而成之與重設致動器電容器相關聯之狀況之圖。
圖21係表示雖簡單但能夠實施之「電荷控制」電路之圖。
圖22係第2發明之靜電致動器控制系統之概略圖。
圖23係表示平行極板靜電致動器之典型行為之圖表,將致動器兩端間之電壓表示為堆積於致動器電極之總電荷之函數。
圖24係表示平行極板靜電致動器之有效靜電電容之典型行為,且表示作為總電荷Q之函數之電壓V之1次導函數dQ/dV之圖表。
圖25係表示可藉由控制電壓V而設定流通於靜電致動器之雙向電流I之流動之雙極電流源之一例的圖。
圖26係表示可藉由控制電壓V而設定流通於靜電致動器之雙向電流I之流動之雙極電流源之另一例的圖。
圖27係表示包括圖22所示之藉由數位控制器系統(μC)而操作之靜電致動器控制器之靜電致動器用之完全控制系統的圖。
圖28係表示開關之數量減少之第2發明之靜電致動器控制系統之概略圖。
圖29係表示包含用於HF靜電電容測定之小信號AC電流注入源之第2發明之靜電致動器控制系統之概略圖。
圖30係表示作為具備至少1個帶可動彈簧之電極之MEMS/MOEMS電容性構造體之簡單模型的平行極板電容器被簡化之情形時之狀況的圖表。
圖31表示第2發明之靜電致動器控制系統之概略圖。
圖32係表示將實際之電容器之等效電路納入考慮時之圖31之靜電致動器控制系統之圖。
圖33係表示假設無法忽略分離電阻Rleak320,可忽略等效串聯電阻ESR321及等效串聯電感ESL322時之圖32之靜電致動器控制系統的圖。
圖34係表示將至少1個精密電阻器350與屬於該電阻器之關聯開關351一起導入之圖33之靜電致動器控制系統的圖。
圖35係表示導入可將致動器單元370之電容器310與該分離電阻Rleak320一起自靜電致動器控制器360連接或切斷之1個追加開關318之圖34之靜電致動器控制系統的圖。
圖36係表示導入可藉由開關317而連接或切斷之AC調變電流源316之 圖35之靜電致動器控制系統的圖。
[第1發明]
以下,一面參照圖式,一面對本發明之一實施形態詳細地進行說明。再者,於以下之說明中,對於相同或相當要素使用相同符號,並省略重複之說明。
[法布里-伯羅干涉濾光器之構成]
如圖1~圖3所示,法布里-伯羅干涉濾光器1具備基板11。基板11具有第1表面11a及與第1表面11a相反側之第2表面11b。於第1表面11a上,依序積層有抗反射層21、第1積層體22、中間層23及第2積層體24。於第1積層體22與第2積層體24之間,藉由框狀之中間層23而劃定有空隙(氣隙)S。
自垂直於第1表面11a之方向觀察之情形時(俯視)之各部之形狀及位置關係如以下所述。基板11之外緣例如為1邊之長度為數百μm~數mm左右之矩形狀。基板11之外緣及第2積層體24之外緣相互一致。抗反射層21之外緣、第1積層體22之外緣及中間層23之外緣相互一致。基板11具有位於較中間層23之外緣相對於空隙S之中心更外側之外緣部11c。外緣部11c例如為框狀,於自垂直於第1表面11a之方向觀察之情形時包圍中間層23。空隙S例如為圓形狀。
法布里-伯羅干涉濾光器1係於在其中央部劃定之光透過區域1a使具有特定之波長之光透過。光透過區域1a例如為圓柱狀之區域。基板11例如包含矽、石英或玻璃等。於基板11包含矽之情形時,抗反射層21及中間層23例如包含氧化矽。中間層23之厚度例如為數十nm~數十 μm。
第1積層體22中與光透過區域1a對應之部分(俯視時與空隙S重疊之部分)作為第1鏡部31發揮功能。第1鏡部31為固定鏡。第1鏡部31係介隔抗反射層21而配置於第1表面11a上。第1積層體22係藉由將複數個多晶矽層25與複數個氮化矽層26逐層交替地積層而構成。於法布里-伯羅干涉濾光器1中,多晶矽層25a、氮化矽層26a、多晶矽層25b、氮化矽層26b及多晶矽層25c依序積層於抗反射層21上。構成第1鏡部31之多晶矽層25及氮化矽層26各自之光學厚度較佳為中心透過波長之1/4之整數倍。再者,第1鏡部31亦可不介隔抗反射層21而直接配置於第1表面11a上。
第2積層體24中與光透過區域1a對應之部分(俯視時與空隙S重疊之部分)作為第2鏡部32發揮功能。第2鏡部32為可動鏡。第2鏡部32係在相對於第1鏡部31與基板11相反之側介隔空隙S而與第1鏡部31相向。第1鏡部31與第2鏡部32相互相向之方向與垂直於第1表面11a之方向平行。第2積層體24係介隔抗反射層21、第1積層體22及中間層23而配置於第1表面11a上。第2積層體24係藉由將複數個多晶矽層27與複數個氮化矽層28逐層交替地積層而構成。於法布里-伯羅干涉濾光器1中,多晶矽層27a、氮化矽層28a、多晶矽層27b、氮化矽層28b及多晶矽層27c依序積層於中間層23上。構成第2鏡部32之多晶矽層27及氮化矽層28各自之光學厚度較佳為中心透過波長之1/4之整數倍。
再者,於第1積層體22及第2積層體24中,亦可代替氮化矽層而使用氧化矽層。作為構成第1積層體22及第2積層體24之各層之材料,亦可使用氧化鈦、氧化鉭、氧化鋯、氟化鎂、氧化鋁、氟化鈣、矽、鍺、硫化鋅等。
於第2積層體24中與空隙S對應之部分(俯視時與空隙S重疊之部分),形成有複數個貫通孔(省略圖示)。該等貫通孔自第2積層體24之與中間層23相反側之表面24a到達至空隙S。該等貫通孔形成為實質上不對第2鏡部32之功能帶來影響之程度。該等貫通孔亦可用於藉由蝕刻將中間層23之一部分去除而形成空隙S。
第2積層體24除了第2鏡部32以外,進而具有被覆部33及周緣部34。第2鏡部32、被覆部33及周緣部34以具有相互相同之積層構造之一部分且相互連續之方式一體地形成。被覆部33於俯視時包圍第2鏡部32。被覆部33將中間層23之與基板11相反側之表面23a及側面23b、以及第1積層體22之側面22a及抗反射層21之側面21a被覆,到達至第1表面11a。
周緣部34於俯視時包圍被覆部33。周緣部34位於外緣部11c中之第1表面11a上。周緣部34之外緣於俯視時與基板11之外緣一致。周緣部34沿著外緣部11c之外緣而薄化。即,周緣部34中沿著外緣部11c之外緣之部分與周緣部34中除沿著外緣之部分以外之其他部分相比變薄。於法布里-伯羅干涉濾光器1中,周緣部34係藉由將構成第2積層體24之多晶矽層27及氮化矽層28之一部分去除而薄化。周緣部34具有與被覆部33連續之非薄化部34a、及包圍非薄化部34a之薄化部34b。於薄化部34b,直接設置於第1表面11a上之多晶矽層27a以外之多晶矽層27及氮化矽層28被去除。
如圖2~圖4所示,於第1鏡部31設置有第1驅動電極12及第1監視電極13。第1驅動電極12於俯視時,例如呈圓環狀,包圍光透過區域1a。第1驅動電極12配置於第1鏡部31之空隙S側之表面31a,露出於空 隙S。第1驅動電極12例如係藉由摻入雜質使多晶矽層25c低電阻化而形成。
第1監視電極13於俯視時與光透過區域1a重疊。於本實施形態中,第1監視電極13於俯視時與光透過區域1a完全重疊(換言之,第1監視電極13及光透過區域1a呈相同之形狀),但只要第1監視電極13之至少一部分於俯視時與光透過區域1a重疊即可。例如,第1監視電極13可形成為較光透過區域1a大,亦可形成為較光透過區域1a小。第1監視電極13配置於第1鏡部31之表面31a,露出於空隙S。第1監視電極13例如係藉由摻入雜質使多晶矽層25c低電阻化而形成。
於第2鏡部32,設置有第2驅動電極14及第2監視電極15。第2驅動電極14係以與第1驅動電極12相向之方式配置,且於俯視時包圍光透過區域1a。第2驅動電極14例如於俯視時呈與第1驅動電極12相同之形狀。第2驅動電極14配置於第2鏡部32之與空隙S相反側之表面32a。第2驅動電極14例如係藉由摻入雜質使多晶矽層27c低電阻化而形成。第2驅動電極14係介隔多晶矽層27a、27b及氮化矽層28a、28b、以及空隙S而與第1驅動電極12相向。
第2監視電極15係以與第1監視電極13相向之方式配置,且於俯視時與光透過區域1a重疊。第2監視電極15例如於俯視時呈與第1監視電極13相同之形狀。第2監視電極15配置於第2鏡部32之空隙S側之表面32b,露出於空隙S。第2監視電極15例如係藉由摻入雜質使多晶矽層27a低電阻化而形成。第2監視電極15係介隔空隙S而與第1監視電極13相向。
如此,第2監視電極15形成於與形成有第2驅動電極14之多晶矽層27不同之多晶矽層27。其結果,第2監視電極15於第1鏡部31與第2 鏡部32相互相向之方向自第2驅動電極14分離。更具體而言,於該方向上,於第2監視電極15與第2驅動電極14之間,配置有多晶矽層27b及氮化矽層28a、28b。再者,俯視時之第1驅動電極12、第1監視電極13、第2驅動電極14及第2監視電極15之形狀及配置並不限定於圖4所示之例。
法布里-伯羅干涉濾光器1進而具備端子16、17、18、19。各端子16~19係設置於俯視時較光透過區域1a更靠外側。各端子16~19例如由鋁或其合金等之金屬膜而形成。端子16與端子17隔著光透過區域1a而相向,端子18與端子19隔著光透過區域1a而相向。端子16、17相互相向之方向係與端子18、19相互相向之方向正交(參照圖1)。
端子16配置於自第2積層體24之表面24a到達至第1積層體22之貫通孔內。端子16係經由配線12a而與第1驅動電極12電性連接。端子17配置於自第2積層體24之表面24a到達至中間層23之貫通孔內。端子17係經由配線13a而與第1監視電極13電性連接。
端子18配置於第2積層體24之表面24a上。端子18係經由配線14a而電性連接於第2驅動電極14。端子19配置於自第2積層體24之表面24a到達至多晶矽層27a之貫通孔內。端子19係經由配線15a而與第2監視電極15電性連接。
於第1積層體22之表面22b,設置有溝槽T1及溝槽T2。溝槽T1係以包圍配線13a中之與端子17之連接部分之方式環狀地延伸。溝槽T1將第1驅動電極12與配線13a電性絕緣。溝槽T2沿著第1驅動電極12與第1監視電極13之間之交界環狀地延伸。溝槽T2將第1驅動電極12與第1驅動電極12之內側之區域(即第1監視電極13)電性絕緣。藉由溝槽T1、T2,第1驅動電極12與第1監視電極13電性絕緣。各溝槽T1、T2內之區域既可為 絕緣材料,亦可為空隙。於圖4中,省略了溝槽T1、T2。
於第2積層體24之表面24a,設置有一對溝槽T3、溝槽T4及溝槽T5。一對溝槽T3分別以包圍端子16、17之方式環狀地延伸。各溝槽T3將端子16、17與第2驅動電極14及第2監視電極15電性絕緣。溝槽T4係以包圍端子19之方式環狀地延伸。溝槽T4將端子19與第2驅動電極14電性絕緣。溝槽T5係沿著第2驅動電極14之內緣環狀地延伸。溝槽T5將第2驅動電極14與第2驅動電極14之內側之區域電性絕緣。藉由溝槽T3~T5,第2驅動電極14與第2監視電極15電性絕緣。各溝槽T3~T5內之區域既可為絕緣材料,亦可為空隙。
於基板11之第2表面11b上,依序積層有抗反射層41、第3積層體42、中間層43及第4積層體44。抗反射層41及中間層43分別具有與抗反射層21及中間層23相同之構成。第3積層體42及第4積層體44分別具有以基板11為基準而與第1積層體22及第2積層體24對稱之積層構造。抗反射層41、第3積層體42、中間層43及第4積層體44具有抑制基板11之翹曲之功能。
第3積層體42、中間層43及第4積層體44沿著外緣部11c之外緣而薄化。即,第3積層體42、中間層43及第4積層體44中沿著外緣部11c之外緣之部分與第3積層體42、中間層43及第4積層體44中除沿著外緣之部分以外之其他部分相比變薄。於法布里-伯羅干涉濾光器1中,第3積層體42、中間層43及第4積層體44係藉由於俯視時與薄化部34b重疊之部分將第3積層體42、中間層43及第4積層體44之全部去除而薄化。
於第3積層體42、中間層43及第4積層體44,以於俯視時與光透過區域1a重疊之方式設置有開口40a。開口40a具有與光透過區域1a之 大小大致相同之直徑。開口40a係於光出射側開口。開口40a之底面到達至抗反射層41。
於第4積層體44之光出射側之表面形成有遮光層45。遮光層45例如包含鋁或其合金等之金屬膜。於遮光層45之表面及開口40a之內表面形成有保護層46。保護層46將第3積層體42、中間層43、第4積層體44及遮光層45之外緣被覆,並且將外緣部11c上之抗反射層41被覆。保護層46例如包含氧化鋁。再者,藉由使保護層46之厚度為1~100nm(較佳為30nm左右),可忽略由保護層46所致之光學性的影響。
[光學濾光器系統之構成]
如圖5所示,光學濾光器系統50具備上述法布里-伯羅干涉濾光器1、及控制法布里-伯羅干涉濾光器1之控制器51。控制器51具備第1電流源52、第2電流源53、檢測部54、及控制部55。
第1電流源52係藉由經由端子16、18對第1驅動電極12與第2驅動電極14之間施加驅動電流,而使第1驅動電極12與第2驅動電極14之間產生與驅動電流對應之靜電力。藉由該靜電力,第2鏡部32被吸引至固定於基板11之第1鏡部31側,而調整第1鏡部31與第2鏡部32之間之距離。如此,於法布里-伯羅干涉濾光器1中,第1鏡部31與第2鏡部32之間之距離藉由靜電力而變化。
透過法布里-伯羅干涉濾光器1之光之波長依存於光透過區域1a中之第1鏡部31與第2鏡部32之間之距離。因此,藉由調整施加至第1驅動電極12與第2驅動電極14之間之驅動電流,可適當選擇透過之光之波長。
於光學濾光器系統50中,例如,藉由一面使施加至法布里 -伯羅干涉濾光器1之驅動電流變化(即,一面使第1鏡部31與第2鏡部32之間之距離變化),一面利用光檢測器來檢測透過法布里-伯羅干涉濾光器1之光透過區域1a之光,可獲得波長光譜。
第2電流源53係將具有較第1鏡部31及第2鏡部32之共振頻率更高之頻率之交流電流經由端子17、19而施加至第1監視電極13與第2監視電極15之間。該交流電流之頻率例如設定為較共振頻率之10倍更高。於由第2電流源53進行之該交流電流之施加中,於第1監視電極13與第2監視電極15之間產生交流電壓。檢測部54例如為電壓計,檢測該交流電壓。
控制部55例如由包含處理器及記憶體等之電腦構成。控制部55基於蓄積於第1鏡部31及第2鏡部32之間之電荷量控制第1電流源52。控制部55例如以電荷量成為目標量之方式控制第1電流源52。該目標量係根據第1鏡部31與第2鏡部32之間之距離之目標值而設定。藉此,將第1鏡部31與第2鏡部32之間之距離調整為所期望之距離。
進而,控制部55基於檢測部54之檢測結果,即藉由檢測部54而檢測出之交流電壓,算出第1鏡部31與第2鏡部32之間之靜電電容。該靜電電容可基於施加至第1監視電極13與第2監視電極15之間之交流電流、產生於第1監視電極13與第2監視電極15之間之交流電壓、以及交流電流及交流電壓之頻率算出。更具體而言,使用交流電流I(t)、交流電壓V(t),作為角頻率ω之函數之複阻抗Z(ω)藉由Z(ω)=V(ω)/I(ω)而獲得,靜電電容C藉由C=(ω×|Z(ω)|)-1而獲得。控制部55基於所獲得之靜電電容算出第1鏡部31與第2鏡部32之間之距離。藉此,於法布里-伯羅干涉濾光器1之動作中,可精度良好地監視第1鏡部31與第2鏡部32之間之實際之 距離。
[作用效果]
如以上所說明般,於光學濾光器系統50中,法布里-伯羅干涉濾光器1除了第1驅動電極12及第2驅動電極14以外,還具備第1監視電極13及第2監視電極15。而且,基於在將具有較第1鏡部31及第2鏡部32之共振頻率更高之頻率之交流電流施加至第1監視電極13與第2監視電極15之間時產生於第1監視電極13與第2監視電極15之間的交流電壓,算出第1鏡部31與第2鏡部32之間之靜電電容。藉此,可基於該靜電電容算出鏡部31、32間之距離,可於法布里-伯羅干涉濾光器1之動作中監視鏡部31、32間之實際之距離。進而,第1監視電極13係以於俯視時與光透過區域1a重疊之方式設置於第1鏡部31,且與第1驅動電極12電性絕緣,第2監視電極15係以與第1監視電極13相向之方式設置於第2鏡部32,且與第2驅動電極14電性絕緣。藉此,可使第1監視電極13及第2監視電極15獨立於第1驅動電極12及第2驅動電極14。其結果,可更佳地算出鏡部31、32間之靜電電容,甚至更佳地監視鏡部31、32間之距離。因此,根據光學濾光器系統50,可提高可靠性。
又,於光學濾光器系統50中,第1驅動電極12露出於空隙S。藉此,可使第1驅動電極12接近第2驅動電極14,可使鏡部31、32間較佳地產生靜電力。
又,於光學濾光器系統50中,第2驅動電極14配置於第2鏡部32之與空隙S相反側之表面32a。藉此,無須於形成第2驅動電極14及配線14a時於第2鏡部32形成接觸孔,故而可使第2驅動電極14之形成製程容易化。
又,於光學濾光器系統50中,第1監視電極13露出於空隙S。藉此,可使第1監視電極13接近第2監視電極15,可更進一步較佳地監視鏡部31、32間之距離。
又,於光學濾光器系統50中,第2監視電極15亦可露出於空隙S。藉此,可使第2監視電極15接近第1監視電極13,可更進一步較佳地監視鏡部31、32間之距離。
又,於光學濾光器系統50中,第2驅動電極14與第2監視電極15係於鏡部31、32相互相向之方向相互分離。藉此,可提高第2驅動電極14與第2監視電極15之間之電性的絕緣性。
[變化例]
本發明並不限定於上述實施形態。例如,亦可如圖6(a)及圖6(b)所示之第1變化例之法布里-伯羅干涉濾光器1A般構成法布里-伯羅干涉濾光器1。於第1變化例中,第2驅動電極14形成於多晶矽層27a,且露出於空隙S。即,第2驅動電極14與第2監視電極15形成於相互相同之多晶矽層27。因此,配線15a具有自端子19沿著第2鏡部32之表面32a延伸之部分、及沿著鏡部31、32相互相向之方向延伸且連接於第2監視電極15之緣部之部分。
藉由此種第1變化例,亦與上述實施形態同樣地,可提高可靠性。又,由於第2驅動電極14露出於空隙S,故而可使第2驅動電極14接近第1驅動電極12,可使鏡部31、32間更進一步較佳地產生靜電力。
亦可如圖7(a)及圖7(b)所示之第2變化例之法布里-伯羅干涉濾光器1B般構成法布里-伯羅干涉濾光器1。於第2變化例中,第2驅動電極14形成於多晶矽層27a,且露出於空隙S。第2監視電極15形成於多晶 矽層27c,且配置於第2鏡部32之表面32a。
藉由此種第2變化例,亦與上述實施形態同樣地,可提高可靠性。又,由於第2驅動電極14露出於空隙S,故而可使第2驅動電極14接近第1驅動電極12,可使鏡部31、32間更進一步較佳地產生靜電力。又,第2監視電極15配置於第2鏡部32之表面32a,藉此,無須於形成第2監視電極15及配線15a時於第2鏡部32形成接觸孔,故而可使第2監視電極15之形成製程容易化。
亦可如圖8(a)及圖8(b)所示之第3變化例之法布里-伯羅干涉濾光器1C般構成法布里-伯羅干涉濾光器1。於第3變化例中,第2驅動電極14形成於多晶矽層27a,且露出於空隙S。即,第2驅動電極14與第2監視電極15形成於相互相同之多晶矽層27。因此,配線15a具有自端子19沿著多晶矽層27b延伸之部分、及沿著鏡部31、32相互相向之方向延伸且連接於第2監視電極15之緣部之部分。
藉由此種第3變化例,亦與上述實施形態同樣地,可提高可靠性。又,由於第2驅動電極14露出於空隙S,故而可使第2驅動電極14接近第1驅動電極12,可使鏡部31、32間更進一步較佳地產生靜電力。
亦可如圖9(a)及圖9(b)所示之第4變化例之法布里-伯羅干涉濾光器1D般構成法布里-伯羅干涉濾光器1。於第4變化例中,第2驅動電極14形成於多晶矽層27a,且露出於空隙S。第2監視電極15形成於多晶矽層27b,且配置於鏡部31、32相互相向之方向上之第2鏡部32之中間。
藉由此種第4變化例,亦與上述實施形態同樣地,可提高可靠性。又,由於第2驅動電極14露出於空隙S,故而可使第2驅動電極14接近第1驅動電極12,可使鏡部31、32間更進一步較佳地產生靜電力。
亦可如圖10(a)及圖10(b)所示之第5變化例之法布里-伯羅干涉濾光器1E般構成法布里-伯羅干涉濾光器1。於第5變化例中,第2驅動電極14形成於多晶矽層27b,且配置於鏡部31、32相互相向之方向上之第2鏡部32之中間。藉由此種第5變化例,亦與上述實施形態同樣地,可提高可靠性。
於上述實施形態及各變化例中,各構成之材料及形狀並不限定於上述材料及形狀,可採用各種材料及形狀。例如,端子16、17、18、19之配置並不限定於上述例,可為任意配置。
[第2發明]
第2發明係關於使用相互對向之2個電極實施之用於包含電容性構造體之MEMS/MOEMS(微機電系統/微光機電系統)或其他微機械加工致動器裝置之作動控制特有之方法。電極中之至少一者安裝有彈簧,且可動。通常,此種構造體係藉由將控制電壓施加至電容器極板產生機械性位移而被靜電性地控制。作為一應用例,此種裝置使用於以MEMS為基礎之法布里-伯羅干涉儀,其電極間之間隔非常小,例如為數μm以下,又,電極間之間隔必須以非常高之精度,例如以較10nm更佳之精度為人所知。其原因在於,基於該電極間之間隔算出裝置之透過光譜及反射光譜。因此,該等裝置需要適當之電氣機械性校準(calibration)。
控制靜電致動器之所提出之新的電子電路及方法係基於代替施加控制電壓V而供給準確之量之電荷Q。藉此,由於2個電極非常接近,故而難以將其等再次分離,進而避免或許不可能但有損及裝置或該裝置特有之校準之虞的「引入(Pull-in)」現象。另外,基於電荷之控制將裝置所能存取之調整範圍大幅擴展。進而,藉由該控制,關於所產生之間隔 d能夠實施2種獨立之測定方法。第1方法係使用電荷控制之準靜性靜電電容測定,能夠藉由基於上述電荷之控制而實現。第2方法係高頻靜電電容測定之特別之實施,仍然基於電荷控制。藉由兩方法之至少一者,諸多之校準或再校準步驟無庸進行,且所產生之電極間隔之完全控制在溫度變化之狀況、或者機械性之漂移或遲滯之影響下仍可獲得。另外,新穎之致動器控制系統可無因「引入」現象導致損傷致動器之危險地用於使用電性參數對靜電致動器賦予特徵。
第2發明之方法無須修正致動器裝置本身,可使用於由下述特徵1賦予特徵之任意類型之靜電致動器。
第2發明之靜電致動器控制器之較佳之實施形態包括將電子電路之所有需要之構成要素安裝於單一晶片之ASIC(Application Specific Integrated Circuit,特殊應用積體電路)。
於第2發明之另一較佳之實施形態中,開發出基於電荷控制之動作形成裝置設計規則之必需部分、且帶靜電控制之新的微機械加工MEMS/MOEMS致動器,該致動器藉由使用基於電荷之新穎之控制器及採用該控制器之間隔測定系統,而得到相當擴展、進而提供新穎之功能。
[背景]
於MEMS及MOEMS構造體之領域,有共振裝置及非共振裝置。通常,此種構造體關於機械性運動具有1個或複數個自由度,有電磁、壓電、靜電等許多不同類型之致動器方法。於該等方法之全部中,產生施加至可動構造體之力,誘發此種構造體之動態振動或共振振動、或靜態偏向。另外,於MOEMS構造體中,多數情況下將間隔或角度等機械自由度之資訊轉換為光功能性,例如使光共振器之空腔長度之變動轉換為偏 向角度,或作為另一例將線性運動轉換為干涉儀臂之相變異。該等應用例全部共通的是其設定於尤其攜帶型之應用例中必須非常穩固、及必須精密地控制該等自由度之實際之SET位置或SET角度。大部分之此種系統受到如較大之溫度依存性或機械性遲滯般之不良影響。因此,獲知該等自由度之實際之位置或對該位置帶來影響變得更進一步重要。
例如,於靜電共振MEMS鏡中,作動係藉由控制可動電極與固定電極(例如,致動器梳齒)之間之電壓而實現,實際之動態鏡位置之準確之掌握可藉由組裝至同一裝置之矽之壓電間隔編碼器而保證。若將作動控制與利用測定進行之自由度之狀態之檢測分離,則能夠製作出針對每個試樣僅需要「一點、一次」之校準之裝置,該裝置無漂移及遲滯,又,溫度之影響完全得到補償。
第2發明係關於特定類型之MEMS/MOEMS構造體,該構造體係由以下之特徵而最佳地說明。
‧構造體包括接近且形成電容器之2個電極,於至少一電極安裝有彈簧,該電極能夠朝向相反側之電極移動。
‧電極間之間隔d係於施加力F時變化。基於說明之目的,假設彈簧依據虎克定律F=D×Δx。實際上可能會有系統之非線性,該非線性不會改變此處所述之基本行為。
‧基於說明之目的,2個電極形成電容器之極板,於該等極板形成有用以自外部向該電容器電性地存取之配線。
‧電容器係由空氣、保護氣體填充,或配置於真空中。
於包含致動器之若干個光裝置中,使用此種裝置。尤其感興趣之裝置為所謂法布里-伯羅標準具或法布里-伯羅干涉儀(以下簡寫為 「FPI」)。藉由對矽進行微機械加工而製作之FPI中,平行極板可能會成為間隔為數μm以下之範圍之較小者。此種FPI構造體進而於兩電容器極板包含高反射鏡,藉此形成光學空腔。此種空腔基於直角入射(即,相對於表面之垂線而言入射角AOI=0°),主要傳送滿足式1之波長λ之光。
2×n×d=M×λ (式1)
其中,
d:極板間之間隔
M:被稱為法布里-伯羅干涉儀之次數之整數
n:空腔內部之折射率
因此,藉由被選擇之間隔d,而選擇裝置之傳送波長λ直至高次數之曖昧度為止。低次數由於無高次數之曖昧度、所謂自由光譜範圍FSR地使更大之調整範圍成為可能,故而較佳。作為一例,若低次數M=2,則傳送波長等於極板間之間隔d(n=1.0及AOI=0°之情形)。若矽為超過1.1μm之波長範圍,則為透過性,故而此種FPI裝置通常用作近紅外或紅外光譜分析器。若次數M=2,則間隔亦又成為未達數μm之範圍。
為了實現經校準之裝置,必須準確地獲知於藉由作為SET位置適合之控制參數而施加各個力F時系統所假設之實際之間隔d。
所需之間隔精度係藉由裝置之目標之波長精度而決定。於FPI裝置之目標之波長精度應為0.1nm之情形時,例如,於d與λ相等之M=2之上述例中,間隔精度亦又必須為0.1nm,此係非常嚴格之要求。
目前,此種裝置藉由將電壓施加至電容器電極而控制。其控制電壓就結果而言帶來產生極板間之引力之電場,因此,藉由改變施加電壓能夠使極板間之間隔靜態地變化。
於實際之應用例中,如上述FPI裝置般之MEMS/MOEMS構造體有若干個重大缺點。
(1)各裝置需要其本身之各個波長校準,此花費費用。對各裝置進行波長校準測定,針對較多不同控制電壓位準測定最大傳送波長。該測定通常以1個溫度T0進行。
(2)為了獲得長期穩定之解決方法必須調查校準之穩定性。根據應用例,有時會需要再校準。
(3)彈簧常數係隨溫度一起變化。於裝置由矽製造之情形時,矽微小構造體之彈性與已知具有溫度依存性之楊氏模數建立關聯。不同溫度下之該裝置之使用方法有以下2個選項。
‧以各不相同之溫度校準各裝置。該順序極端需要勞力並且花費費用,於數量較多之應用例中其等可能會變得顯著。
‧以一般溫度模型動作,根據溫度T0時之測定波長校準預測溫度T1時之校準。於該情形時,能夠達成之精度強烈依存於一系列之製造之再現性及溫度變動模型之特性。於汽車領域等較多之應用例中,需要-40℃~105℃之非常大之動作溫度範圍,此外,甚至可能存在如下情況:裝置於例如需要包含光譜測定裝置之感測器之殺菌之情形時,會處於較大之溫度循環。
(4)間隔各式各樣之微機械加工MEMS/MOEMS平行極板電容器表示被稱為「引入」現象之現象。若控制電壓超過特定之位準而增加,則系統突然變得不穩定,可動極板朝向固定極板加速,極板間之間隔急速地減少,極板相互碰撞。根據裝置,該類型之所謂「引入」事故可能會帶來裝置壽命之終結或性能劣化、或至少裝置之各個校準特性之損失。確實地避 免該失控現象非常重要。
(5)若超過該電壓則產生「引入」現象之控制電壓與波長校準本身同樣地依存於溫度。該情況意味著,施加控制電壓之容許動作範圍具有溫度依存性。於實際之應用例中,該情況意味著,於掌握哪個範圍之控制電壓可安全地施加之前,必須首先進行溫度測定。
(6)針對每個樣品,「引入」電壓係按製造系列稍微不同。因此,各個別之裝置需要關於參照溫度T0時之容許控制電壓之該裝置本身之最大值、以及將該等最大值轉換為其他溫度之規則。即,除了波長校準(波長多項式之係數)以外,還有針對個別之每個FPI裝置需要進行處理之追加參數。
(7)於製造中,於初次執行各個FPI樣品之特徵賦予時,並不預先知曉各個「引入」點。百分之幾之裝置會僅因「引入」現象成為缺陷品,因此製造良率會降低。另外,可容許之安全控制電壓動作範圍為每個裝置之良/不良之選擇參數。因此,引入現象藉由製造選擇過程亦會使製造良率降低。
若進行概括,則如將微機械加工MEMS/MOEMS帶彈簧之極板電容器裝置用作法布里-伯羅干涉儀(FPI)之情形時,具有較大之應用潛在性,關於製造及應用表現出重大之缺陷。該狀況可藉由第2發明之電子電路及靜電致動器控制方法而克服。
[發明之概要]
本說明書中提出之第2發明包括具有電容性構造體及至少1個帶彈簧之可動電極之微機械加工MEMS/MOEMS系統之不同類型之電氣控制裝置。如以下所說明般,可完全避免「引入」現象,可將可使用調整範圍大幅擴展,藉由不同類型之電氣控制裝置,能夠利用測定及算出間隔 d之2個新方法,藉此,解決校準及溫度相關之較多問題。於最佳之情形時,裝置成為利用單一點校準而進行之完全自校準。另外,可使用新的電氣控制裝置將MEMS/MOEMS系統之共振模式於所期望之共振頻率以任意之間隔d並無產生「引入」現象之危險、或產生系統狀態之多義性之危險地激發。
第2發明之靜電致動器控制器系統可將此種裝置之製品設計尤其藉由並無任何「引入」現象以及藉由經相當擴展之調整範圍而以功能範圍可大幅擴展之方式進行修正。
目前,具有電容性構造體及至少1個帶彈簧之可動電極的正在研究之MEMS/MOEMS系統之電氣控制係藉由如下方法而實現:將控制電壓施加至電容器電極,藉此使兩電極以相反之電荷極性充電,使電極間產生引力。如詳細之說明所示般,該順序關於間隔d就結果而言會產生系統狀態之意料之外之多義性,會潛在地導致「引入」現象。
第2發明之步驟包括以下3個本質性要素。
‧電性地控制靜電致動器,就結果而言獲得新穎之控制器電子電路之新方法
‧一者為準靜性且另一者基於高頻測定之2個新的獨立之間隔測定方法
‧為了其他不同動作之方法而將控制器擴展,例如導入重設,以及為了穩定之共振激發而利用反饋
更詳細而言,第2發明之步驟如下所述。
(1)藉由控制電荷而非電壓(包含DC電流及時間之控制),而實現致動器系統之電氣控制。關於可能之實施態樣,利用以下之其他項進行說明。 於電荷控制使用DC電流進行之情形時,第2發明之1個要點為能夠切換電氣控制連接,能夠將電荷源或電流源自MEMS/MOEMS靜電電容於能夠準確地控制之時間內連接或切斷。藉此,能夠將準確地規定之電荷量以適當地規定之方法附加至MEMS/MOEMS電容器,又,可將產生於電容器之電荷量藉由利用開關將電氣控制連接僅切斷而保持為固定(「凍結」,最大直至洩漏電流)。最後,有以不同應用例要求為對象之複數個電荷供給電路,故而該等電流源單元較佳為可藉由電性地切換而選擇。
(2)測定產生於電容器之電極間之電壓。該電壓早已不用作電氣控制信號,故而能夠作為從屬測定量而利用,藉此,基於藉由(1)而規定之施加電荷量而賦予電容器之電壓。(為了使說明容易理解,以下將該電壓稱為「所產生之電壓」)實際上,該方法係藉由設定電荷Q並測定所產生之電壓V而進行之靜態靜電電容測定。靜電電容強烈依存於電容器電極間之間隔d,故而能夠藉由獲知規定之電荷Q及所產生之電壓V決定電極間之間隔。
於平行極板電容器致動器等之簡單之電容器幾何形狀中,若已知有效電容器面積A,則間隔d可利用簡單之式來計算。於任意之電容器幾何形狀中,必須記載電極之間隔與靜電電容值之間之關係。此種關係可藉由利用相同類型之一系列裝置而進行之整體性之校準來確立。於該情形時,該校準對該類型之電容器設計有效。如此一來,能夠根據關於更少之簡單之電容器構造體之測定靜電電容值算出電極間之實際之間隔。
(3)導入高頻靜電電容測定之新方法。通常,高頻靜電電容測定係藉由調變電壓,其次測定所產生之電流而進行。由於理解於將電壓用作控制參數之情形時系統狀態變得不穩定,故而用以進行高頻靜電電容 測定之新方法係將該測定藉由於較MEMS/MOEMS振動系統之機械共振頻率高得多之頻率之較小的信號區域中調變實際之電容器電荷,一面測定所產生之AC電壓一面進行。
如(2)所述,能夠藉由獲知所規定之電荷Q及所產生之電壓V決定電極間之間隔d。該追加之測定方法(3)由於有在靜態靜電電容測定中無法獲得準確之間隔之動作點,故而需要。該等動作點為與於利用某控制電壓驅動系統之情形時產生「引入」現象之點相同之點。
(4)藉由將致動器例如以相對於致動器之機械性平衡位置之零伏特連接於所提供之(重設)電壓源而實施重設功能。
(5)具有電容性構造體及至少1個帶彈簧之可動電極之微機械加工MEMS/MOEMS振動系統之共振激發亦使用AC電荷控制。該使用係利用由(1)規定之任意之電荷量,即,利用基於電荷之控制而於能夠存取之特定之間隔d進行。雖然已經敍述,但能夠切換即能夠電性連接及能夠切斷不同之可動作驅動裝置單元。於該共振激發之情形時,控制器包含能夠以為了激發強制振盪而使用之AC電流之相位為基準而檢測AC調變振幅及相位延遲之AC電壓測定電路。
為了理解該等第2發明之步驟之意思,需要說明所謂「引入」現象之性質之若干個詳細之考察。極為重要的是要理解,「引入」現象並非微小機械缺陷,倒不如說是純粹為機械部分與電氣機械力相互作用之理所當然之結果。
[發明之詳細的說明] <關於狀況之簡略說明>
圖11表示微機械加工MEMS/MOEMS平行極板電容器及電 氣配線106之概略。為了使說明簡單,一極板103在垂直於極板之方向活動(自由度104),藉此改變極板103、105之間之間隔d。可動極板103利用由彈簧常數D賦予特徵之彈簧102而保持於適當位置。彈簧102與第2電容器極板105同樣地,安裝於機械性固定件101。若未對極板間施加任何外力,則極板間之間隔等於機械零力間隔dM(此處忽略重力之影響)。電容器電極具有有效電容器面積A。於力F作用於一極板之情形時,僅容許1個自由度104。藉此,一極板103僅垂直於極板而移動,電容器極板103、105之間之間隔d變化。電氣配線106及電路係以電容器極板103、105與電壓之極性無關地以相反之極性帶電之方式設置。若無任何外力(假設可忽略重力),則極板103、105之間之間隔以間隔dM平衡。此處下標M表示「機械性」。若引力F增加,則極板103、105之間之間隔進而縮小至2個極板接觸為止(相當於間隔零)。
伸展Δx與力之間之關係係藉由虎克定律而賦予。
F=D×Δx (式2)
其中,D為彈簧常數,Δx為自零力之點起之彈簧102之伸展。
2個平行電容器極板103、105之間之力可作為電容器之電荷Q之函數記載。
|F|=(2ε0A)-1×Q2 (式3)
其中,
ε0:介電常數
A:電容器之有效面積
Q:電容器之電荷
|F|:力F之絕對值
兩電容器電極只要以相反極性之電荷帶電,則力F互相吸引而欲使極板間之間隔d減少。引力F所伴隨之狀態示於圖12。為了改變間隔d,於現狀技術中,將控制電壓V施加至電容器之電極線106,使極板間之間隔藉由彈簧102之伸長而變化。圖11及圖12表示由下述式6及式7記載之狀況。
電容器之靜電電容僅利用下式給出。
C=ε0A/d (式4)
重要的是注意靜電電容依存於實際之間隔d。
若使用C=Q/V及式4,則力F可如下式般重寫。
|F|=0.5ε0A×V2/D2 (式5)
其中,V為控制電壓。
若使用控制電壓V,則可將間隔d如下式般作為控制電壓之函數容易地記載。
d=dM-D-10A/2)×V2/d2 (式6)
其中,D為彈簧常數。
式6中,d之指數為3次,能夠使用Cardano之公式來解。於任何情形時,d(V)與V之間之關係均成為較強之非線性。該非線性為通常提供使用7以上等非常高次之多項式之作為V之函數適合於間隔d之校準式之理由。
此種曲線之典型結果示於圖13。計算係使用以下之參數,即面積A=3.85×10-7m2、及彈簧常數D=2.35×103N/m來進行。於較低之電壓下,間隔逐漸減少。於較大之電壓下,間隔逐漸迅速地變化,直至 因下述式10給出之間隔而產生「引入」現象為止(關於說明請參照下文及下圖)。被選擇之參數與2017年5月由浜松光子發行之文獻「Technical note:MEMS-FPI spectrum sensors C13272-01/02」所示之實際之資料相關聯。若控制電壓增加,則間隔最初於小電壓時僅緩慢減少。然而,若控制電壓上升,則梯度
Figure 107120311-A0305-02-0033-2
d/
Figure 107120311-A0305-02-0033-3
V以控制電壓之微小之增量引起電容器極板之相互相向之非常大的位移之方式增加,其導致「引入」現象。請注意能夠控制之間隔之有效之範圍因該「引入」現象而受到強烈限制,以及該「引入」現象之開始點具有溫度依存性。
為了克服現狀技術中之該限制,重要的是再次理解電容器極板間之力之物理性起源。即,引力係於電容器之一側之電荷受到藉由第2電容器之側之電荷而產生之電場時產生(反之亦然)。對電荷Q之該雙重依存性為引力與電荷Q之平方成比例之理由。另外,已知有作為電荷Q之函數(分別為其平方之Q2)被賦予之平行電容器極板間之力不依存於電容器極板間之間隔d。
因此,所產生之間隔d之式亦可(藉由不使用控制電壓V作為變數),如下式般書寫。
d=dM-D-1(2ε0A)-1×Q2 (式7)
式7敍述了間隔d關於Q2為線性。若電荷Q增加,則間隔d根據簡單之式7而單調減少。式7又亦表示該間隔可藉由適當之電荷量而準確地減少至零。該直線性且線性之作為Q2之函數之系統之行為、及廣泛之動作範圍看似與藉由變化之控制電壓而掃描間隔時觀察到之「引入」現象矛盾。於以下項中,對該反論之理由進行說明。
於靜電致動器系統藉由控制電壓而控制時,增加中之控制 電壓使電容器極板間之間隔最初減少。然而,每當間隔d減少時,靜電電容藉由函數1/d而增加,故而靜電電容依存於d本身。較控制電壓可上升更早地存在1/d開始增加之點。換言之,系統之有效靜電電容為了藉由控制電壓使系統之控制成為可能而變得太快、太大。以下進行該現象之更為定量性之說明。
此處,第2發明之步驟之1個部分為自控制電壓向包括可動MEMS/MOEMS電容器構成之作動系統之電荷控制變化。系統行為之變更及其結果可如以下般,以若干個追加之簡單之式進行說明。
若假設電荷Q配置於電容器,則產生以下3個情況。即,
(1)最初,間隔與藉由電荷Q與因其產生之引力而決定之新的間隔d一致。因此,可將所需之控制電荷作為間隔d之函數容易地表示。
Q(d)=(2ε0AD)1/2×(dM-d)1/2 (式8)
該狀態示於圖14。
系統之行為及對系統之影響係當將藉由電壓而進行之控制置換為藉由電荷量而進行之控制便急遽地變化。於系統之控制藉由電荷量而進行之情形時,可無任何「引入」現象地應對更為廣泛之間隔範圍。於圖11及圖12中概略性地表示之系統中,間隔d相對於所蓄積之電荷之平方即Q2線性地變化。圖14表示於由圖11及圖12賦予特徵之系統中何種電荷量Q帶來何種間隔d。該關係d(Q)無任何多義性,因此該函數係可以由下述式8進行之方式,容易地轉換以賦予Q(d)。
式8之Q(d)係相對於所有間隔d<dM而適當地定義。
(2)靜電電容C變化為式4之新的值。
(3)以該所給出之間隔產生於電容器之兩端間之電壓V利用下式獲 得。
V(d)=Q/C(d)=[2D/(ε0A)]1/2×(dM-d)1/2×d (式9)
請注意V(d)作為d包含2個貢獻。即,1個項與d之平方根一起減少,第2項與d一起直線性地增加。該情況導致藉由電荷Q(d)而產生之以厚度d之函數表示之所產生之電壓V(d)如圖15所示,相對於d具有最大值之意料之外之結果。圖表必須如下般理解。即,MEMS/MOEMS電容器極板於受到由電荷Q(d)產生之力而移動至新的平衡間隔d為止之後,該電荷Q(d)產生下述式9賦予之電壓V(d)。讀懂以下內容將會很有意義。
1.電壓V(d)作為間隔d之函數表示最大值Vmax;2.只要電壓保持為未達最大電壓Vmax,則相對於1個所給出之電壓V有間隔d之複數個穩定解。於電壓V超過Vmax之情形時,早已無d之穩定解。該狀況係起因於,作為電壓之函數記載d之條件之下述式6為3次式,根據參數V,有0個、1個、2個、或3個解。至少該圖與圖14之電荷量不同,表示電壓並非用於該系統之十分適合之控制參數。其理由在於,相對於1個電壓V<Vmax有複數個穩定之間隔d,梯度
Figure 107120311-A0305-02-0035-4
d/
Figure 107120311-A0305-02-0035-5
V朝向Vmax(於下述式10所賦予之間隔各者時)而無限大地發散,又,若較Vmax更高,則穩定之間隔值突然已經消失,藉此,若控制電壓超過Vmax,則系統變得不穩定。
根據式9,可容易地算出與最大電壓Vmax相關之厚度d。關於間隔d各者而V之1次導函數成為0之條件,即V(d)之極值之條件簡單地利用下式給出。
d(V=Vmax)=2/3×dM (式10)
根據該考察,明確地表示以下情況。
(1)雖然無單一之解,但只要電壓未達特定之最大電壓值Vmax,則相 對於1個所給出之值之間隔d,有更穩定之解(圖15)。該發現係與式6關於d為3次且相對於3個解會成為零之情況對應。數學上而言,所獲得之從屬d(V)並非函數,而為關係。作為間隔d之函數之電壓具有梯度
Figure 107120311-A0305-02-0036-6
(d)/
Figure 107120311-A0305-02-0036-7
V無限大地發散之最大值。於具有相同值之V之式6之2個解(指2個可能之d之值)相互接近之情形時,系統變得不穩定,系統可能會於兩狀態之間任意地振動。於控制電壓最終超過Vmax之情形時,該系統無穩定解,作為結果產生「引入」現象(關於詳細情況請參照圖17~圖20之圖之描寫)。由於該等理由,電壓V作為致動器系統之控制參數明顯不合適。其結果,電壓控制非常受限制而成為僅針對局部性範圍201之間隔d適當之控制參數(與目前之現狀技術對應)。
圖17中,於控制電壓205以「所產生之電壓V(Q)」到達較低之動作點204之方式施加之情形時,該電壓差帶來電流,該電流使所產生之電壓增加,直至控制電壓205與所產生之電壓206相等為止。僅相對於Q之曲線V之枝部201之動作點能夠如此存取。
圖18中,於控制電壓位準205超過最大之所產生之電壓Vmax203之情形時,該電壓差帶來使電荷量Q增加之電流。與所增加之電荷Q同樣地,所產生之電壓藉由致動器之靜電電容之急速增加而下降,電流亦又增加,所產生之電壓V(Q)進而下降。該情況導致間隔成為零之失控現象。
圖19中,致動器係藉由電荷控制之方法而向曲線V(Q)之枝部202上之動作點204移動,藉此,充電至電荷量Q,繼而,電極106自電流源切離。為了將致動器重設為特定之電壓位準,而施加較於動作點204所產生之電壓V(Q)更低之控制電壓205。藉由該電壓差,所產生之電流使致動器電容器中之電荷Q減少。動作點自相對於點203之204移動至控制重設電壓 Vo與致動器電容器所產生之電壓V(Q)相等之最終點206。請注意,於該過程中,系統自動作點204移動至203時,電壓差增加。該重設中,電壓差之符號保持相同。重設點206必須在曲線V(Q)之枝部201上。作為結論,重設電壓205只要較於應重設之動作點所產生之電壓V(Q)更小,則能夠藉由電壓控制重設而重設動作點204。
圖20中,於重設電壓位準205較於應重設之曲線Q(V)之枝部202上之動作點204所產生之電壓V(Q)更大之情形時,按照該電壓差之符號,而產生使電荷Q增加之電流之流動。繼而,所產生之電壓減少,失控「引入」現象開始。作為結論,於枝部202上之動作點,較致動器電容器實際所產生之電壓V(Q)更高之任何控制電壓均會產生「引入」現象。重設過程僅能夠基於重設前之條件Vreset<V(Q)。
(2)若使用電壓作為系統控制變數,則「引入」現象於式10給出之間隔d(V=Vmax)時藉由發散之梯度
Figure 107120311-A0305-02-0037-8
d/
Figure 107120311-A0305-02-0037-9
V及其符號之變化而引起。簡單而言,「引入」現象為於使間隔d減少時藉由相對於1/d之靜電電容依存性(式4)而產生之純粹之「電性」現象。
(3)於藉由控制電壓而掃描時,有效之範圍由於「引入」現象將該有效之範圍自dM限制為d=2/3×dM(參照式10)(圖16之曲線V(Q)之枝部201),故而被大幅限制。請注意所產生之電壓具有值為Vmax之最大值203。第2發明係關於具有相對於Q所產生之V之至少此種1個最大值之所有MEMS/MOEMS致動器電容器系統。曲線之枝部201中之動作可藉由電壓控制而適當地控制。枝部202中之動作點由於在下圖之說明中所述之理由,無法藉由電壓控制而應對。然而,枝部202中之動作點可藉由使用電荷量作為合適之控制而設定。因此,調整範圍被限制為於使用電壓控制 時作為整體能夠利用之位移範圍dM之33%為止。
於以絕對數廣泛之調整範圍應藉由電壓控制而實現之情形時,唯一之設計選項由於上述dM之33%之調整範圍限制,而選擇較大之dM之值。
第2發明之基於電荷之靜電致動器控制裝置及方法克服該限制。
(4)請注意「引入」現象與初始間隔dM無關,於此種線性系統全部中,以d=2/3×dM(參照式10)產生。其意味著,若零力間隔dM較大之系統亦又藉由電壓控制而掃描至超過Vmax之值為止,則表示此種「引入」現象。無須接近間隔d為μm之較小之值或次μm之間隔。
為了簡單地進行,而假設上文考察之系統包括理想之平行極板電極,且嚴格地根據虎克定律之式2。請注意,於系統藉由非線性而並未完全根據虎克定律之情形時,或於電極具有不同之形狀(例如,環形片形狀)之情形時,藉由電荷Q(d)而產生之電壓V依然將最大電壓Vmax視情形以與式10給出者稍微不同之間隔表示。
作為結論,存在具有電容性構造體及至少1個帶可動彈簧之電極之靜電致動器系統,於該系統中,藉由電荷Q而產生之電壓V(Q)有相對於電荷量Q之最大值。於此種靜電致動器系統中,較佳為並非藉由控制電壓來控制致動器系統而是藉由電荷Q之量來控制致動器系統。其理由在於,所產生之電壓V之最大值Vmax相對於電荷量Q存在之此種系統不保有相對於電壓V>Vmax之穩定解,若控制電壓V超過Vmax則「引入」現象立即產生。
考慮該考察,第2發明之步驟之要點1為自無法不存在多義 性地應對間隔d之全範圍的基於電壓之控制轉變為基於參數「電荷Q之量」之控制區域。若使用電荷控制,則控制參數Q如圖14所示般關於d而成為單調。因此,無任何多義性,又無任何「引入」現象,而能夠應對自d=dM至d=0為止完全之間隔範圍(圖16之201及202)。因此,能夠實現之位移範圍並非由使用作為先前技術之電壓控制時之電氣控制之方法來限制,而是僅由彈簧102之彈性範圍之機械性極限來限制。
為了指示該方法之原理及基本實現性,又為了說明能夠實現之擴展,圖21表示簡單之電路。左側之電容器「A」110係極板103、105間之間隔d可變之MEMS/MOEMS致動器電容器。只要開關「S1」112切斷,則一直具有較小之靜電電容CB之第2電容器「B」111藉由將開關「S2」113關閉而能夠以較圖15之最大電壓更高之電壓VB114充電。於該時間中(將「開關「S1」112關閉之前」),測定電容器「A」之電壓115。其次,將電容器「B」111自電壓源VB114藉由開關「S2」113而切離,將電容器「A」110與電容器「B」111藉由開關「S1」112而連接。測定電容器「A」110及電容器「B」111(或,於將開關「S1」112再次切斷之後僅電容器「A」)所產生之電壓V(於將「開關「S1」112打開之後」)。總電荷量(分別遷移之電荷量)可根據已知之靜電電容CB、電壓VB、將電容器「B」連接之前之電容器兩端間電壓V來計算。因此,若已知總電荷Q及所產生之電壓V,則能夠算出MEMS/MOEMS致動器之實際之靜電電容C,以及(藉由已知有效面積A)亦能夠算出極板間之間隔d。即,藉由控制總Q,測定所產生之V,能夠藉由「靜態」電容測定而算出實際之間隔d。其概念為,將較MEMS/MOEMS電容器A110而言靜電電容CB小、或非常小之追加之電容器B111於電容器A切離之期間利用超過圖16所示之最大電 壓Vmax203之負載電壓位準VB114充電。於該時間中(於將圖21之S1切換之前),測定電容器A中之電壓115。若具有已知之電容CB之電容器B之充電完成,則向電壓源之電性連接切離,電容器A與B連接。
自電容器B向電容器A之電荷遷移進行至兩電容器之電壓相等為止。遷移之電荷量可根據負載電壓VB、電容CB、及連接前之電容器A之電壓V來計算。
電荷之量為積分時間之間之電流之時間積分。藉由串聯連接於電荷供給電路之高速開關,可於準確地規定之任意時間內將充電源自MEMS/MOEMS電容器連接或切斷。因此,可將任意之所期望之電荷量準確地附加於MEMS/MOEMS電容器。如此一來,電容器可利用任意之所期望之電荷量充電,該電荷量規定靜電致動器之靜電電容之間隔d之動作點。
於上述法布里-伯羅干涉儀FPI等實際之應用例中,光譜測定可於所規定之間隔d之動作點進行。於以2次動作之FPI之例中,峰值傳送波長等於MEMS/MOEMS電容器之極板間之間隔。
若考察圖21,則發現第2發明之步驟之以下要點。
若代替電壓V而利用電荷Q控制系統,則電壓具有藉由MEMS/MOEMS致動器之電容性構造體之電荷量Q而產生之電壓V(Q)之含義。因此,所產生之電壓可作為賦予追加之資訊之追加之測定量而起作用。於具有電容性構造體之MEMS/MOEMS系統中,一面測定MEMS/MOEMS平行極板電容器之所產生之電壓、一面定量地控制電荷量Q之情況為基於已知之式C=Q/V之靜態靜電電容測定之單純之新方法,上式應在此處更佳地如下式般書寫,
C=Q/V(Q) (式11)
且表示:Q為動態地設定之控制值,及V(Q)為藉由為了將電極之間隔設定為目標值d所需要之電荷Q(d)而產生之依存值。
於MEMS/MOEMS平行極板電容器中,極板間之間隔d於有效電容器面積A已知之情形時,可根據式4直接計算。值得關注的是,該基本式C=Q/V與相對於d所產生之電壓V於特定之間隔d=d(V=Vmax)表示最大值之情況無關,而保持有效。上述靜態靜電電容測定之間隔d之決定亦於圖15中電壓V取最大值Vmax之點、及梯度
Figure 107120311-A0305-02-0041-10
d/
Figure 107120311-A0305-02-0041-11
V發散之點上發揮功能。
關於具有電容性構造體及至少1個帶彈簧之可動電極之另一MEMS/MOEMS致動器系統,需要關於電極之間隔與靜電電容值之間之關係之說明。若關於致動器之電容器之設計而測定及確立特徵性之此種關係,則能夠根據測定靜電電容值算出電極間之實際之間隔。該順序之優點明顯。即,於MEMS/MOEMS致動器系統參數「間隔」之校準中,並不參照可具有溫度依存性或遲滯之SET點值,而是參照反映溫度變化或機械性遲滯之影響之瞬時之靜電電容之測定值。
於若干個應用例中,對間隔測定中之長期之精度之必要條件非常嚴格。如背景之項所述般,間隔d於較多之應用例中,例如於紅外光放射之峰值傳送以與間隔d相等之波長產生之2次之FPI中(於AOI=0°之情形時),必須非常精密地掌握。
因此,第2間隔測定方式被發明以專用於下述微機械加工MEMS/MOEMS靜電致動器之使用。
廣為人知之靜電電容之測定之方法使用高頻(HF)靜電電容測定。於典型之HF靜電電容測定中,施加較高之頻率之較小之振動電壓信號,測定所產生之AC電流。若轉為現狀技術之MEMS/MOEMS致動器控制系統,則AC電壓調變必須施加至DC控制電壓。然而,若於DC電壓控制區域中動作,上文詳細地敍述之因多價之關係V(d)而產生之所有問題會恢復如初。此處,於第2發明之步驟中,將HF靜電電容測定對照電荷控制方法按照以下之順序進行。
‧以使靜電致動器位移至所期望之間隔d之方式設定電荷量Q(d)。
‧藉由開關將電荷供給電路自電容器切離。
‧連接於小信號AC電流源I(t)之供給源。
‧測定作為施加AC電流位準之函數之所產生之AC電壓調變V(t)。
‧作為角頻率ω之函數之複阻抗Z(ω)藉由Z(ω)=V(ω)/I(ω)而獲得,所求出之靜電電容C藉由C=(ω×|Z(ω)|)-1而獲得。
為了使進一步之說明變得容易,可將該方法稱為「電流注入HF靜電電容測定」。請注意MEMS/MOEMS靜電致動器具有機械共振頻率。共振振動可於藉由電荷量Q而規定之任意之動作點d(Q)之周圍產生。
為了第2發明之目的,非常重要的是,根據所需之精度以足夠高於共振頻率之例如高至少10倍之頻率進行該「高頻」測定。藉此,MEMS/MOEMS電容器電極之活動無法追隨該等激發頻率,故而避免由AC電流所致之機械共振之激發,間隔d不依存於AC電流信號。最後,根據式4,於有效電容器面積A已知之情形時,能夠算出電容器之極板間之間隔d。
根據藉由準靜性靜電電容測定方式、或藉由電流注入HF靜 電電容測定方法而定量地算出實際之間隔d之可能性,關於此種微機械加工MEMS/MOEMS靜電致動器裝置之應用之若干個問題一次解決。
‧若已知所使用之MEMS/MOEMS靜電致動器之電容相對於間隔d之大概之依存性,則可根據瞬時之電荷控制值Q、及所產生之電壓V(Q)計算所有瞬時之間隔值d。
‧於已知相對於間隔d之依存性之MEMS/MOEMS平行極板電容器(式4)中,最佳情況非個別完全波長校準多項式必須針對每個裝置測定並計算。將1個間隔d於1個已知之電荷量及1個溫度下測定之情況主要對有效電容器面積A之精密掌握而言充分。其他所有從屬要素可於動作中,藉由利用提出之方法算出間隔,即藉由並非將電壓用作控制參數而能夠將電壓用作測定量,從而進行測定。
‧使實際之間隔d變化之溫度變動於再次測定實際之間隔d時變得顯著。
‧長期之漂移或遲滯之影響係藉由例如於裝置之掃描控制之期間執行實際之間隔d之新的測定而去除。
帶彈簧之微機械加工MEMS/MOEMS致動器系統具有機械共振頻率。共振振動有於任意之準靜動作點產生之可能性,該動作點係藉由利用(靜態)電荷量Q(d)規定之平均間隔d而賦予特徵。於若干個應用例中,裝置係以機械共振或接近機械共振之狀態動作。為了激發共振模式,系統通常藉由能夠調整振幅及頻率之電壓調變而驅動。如「電流注入HF靜電電容測定」之項中所敍述般,該調變必須施加至DC控制電壓(又,由於上文所敍述之其缺點故而不期望之區域)。為了使第2發明之控制器之動作於共振振動之驅動之情形時亦擴展,必須以如下方式向下推進。
‧為了將致動器靜電電容調整為所期望之間隔d而設定電荷量Q(d)。
‧藉由測定所產生之電壓(即,靜態靜電電容測定),及/或藉由電荷注入HF靜電電容測定而決定實際之間隔d。
‧藉由開關將電荷供給電路自電容器切離,或者,使電流源電路之振幅降低至零。
‧連接振幅及頻率能夠調整之小信號AC電流源。
‧測定作為所施加之AC電流之函數之所產生之AC電壓調變之振幅及相位延遲。
與關於電流注入HF靜電電容測定之上的討論之差異為於電荷Q之動作點連接於電容器之AC電流調變使振動性機械系統之所謂強制振動產生。於激發力與機械振動之間有相位延遲,該相位延遲於非常低之頻率為0度,在等於共振頻率之頻率達到90度,於較共振頻率高得多之頻率則接近180度。自0度向180度之上升於振動性系統之內部阻尼較小之情形時,即,所謂「Q值」較高之情形時,可於共振附近變得非常快。作為結論,間隔d亦又成為時間之函數,具有AC電流之頻率,但伴有特徵性之振幅及相位延遲,(於特定之遷移時間之後)週期性地振動。藉由自電壓控制向由第2發明教導之電荷/電流控制變更,而與現狀技術相比獲得以下之優點。
‧可應對自d=0至零力狀態d=dM為止之所有間隔值。激發力及頻率可任意地選擇。
‧關於振動性MEMS/MOEMS靜電致動器系統,可決定所產生之振幅及相位延遲,藉此,可實現活動狀態之完全之控制。
該檢測方法之較小之缺點為,於該方法中,於DC電壓達 到梯度
Figure 107120311-A0305-02-0045-12
V/
Figure 107120311-A0305-02-0045-13
d成為零之最大Vmax之動作點Q之附近,感度可能會變低。
於上述振動運動控制器及其關聯測定系統(基於控制電荷量之新穎之致動器控制系統之第2發明)中,與現狀技術之電壓控制相比有下述若干個基本優點。
‧提出之方法可應對所有間隔d而利用,完全無不穩定性,又完全無「引入」現象之危險。
‧系統之驅動力關於Q2為線性(式3)。其提示以下情況。即,藉由電荷Q之正弦波變動而產生之驅動力與實際之間隔d無關,又與受該力之影響之系統之實際之活動無關。於代替使用電壓控制之情形時,施加正弦波控制調變電壓,意味著力F與V2/d2有關係(式5)。激發力本身依存於振動中之實際之間隔d,該間隔d繼而以能夠再現之方式受到該力之影響。該循環依存性會帶來無法預測且不希望之影響。
‧第2發明之方法提供振動頻率、振幅及相位延遲之檢測系統,該檢測系統直接檢測參數d之機械性活動。所產生之電壓V(包含AC調變)係藉由式C=Q/V與式4而獲得,該式4代入了可根據電壓V直接計算間隔d之V=Q/C=(Q/εoA)×d(式12)。
有效電容器面積A係可藉由利用簡單之單一點校準,例如針對各個靜電致動器關於已知之電荷量測定間隔d而算出。
[較佳實施形態之詳細說明]
第2發明之主要目的在於將具有至少1個可動靜電電容電極及1個帶彈簧之靜電電容電極之靜電致動器之設定點(動作點)並非藉由如現狀技術中之控制電壓而控制,而是藉由配置於電極之電荷量而控制。為此,可使用能夠自圖22之靜電電容210藉由各開關而連接或切斷的不同之 電荷供給電路。藉由較佳之電荷供給電路之連接之高速及高精度之時序控制、以及其特性,能夠將準確獲知之電荷量附加至電容器。
鑒於上述目的,第2發明係使用圖22所示之系統而實現。靜電致動器靜電電容210相對於電流源211、電壓計213及重設開關215而並聯地電性連接。電流源211可使用開關212而切換為打開或關閉。電壓計213可使用開關214而切換為打開或關閉。
電流源211產生定電流I。於開關212關閉,電流I流通時間t之期間時,電荷Q=I×t附加至靜電致動器靜電電容210之電極。於致動器靜電電容210之電極間測定電壓V(Q)。於平行極板靜電致動器之情形時,由於上述理由而觀測圖23所示之典型之電壓對電荷曲線V(Q)。曲線V(Q)具有最大值,該最大值帶來該點之發散有效靜電電容。有效靜電電容Ceff如圖24所示,藉由Q(V)之1次導函數,Ceff=dQ/dV=(dV/dQ)-1而獲得。
關於靜電致動器之電極之一者連接於地面或致動器之盒體之情形,適當之精密電流源之較佳實施形態示於圖25。使用運算放大器221之該電路作為Howland電流泵為人所知。為了獲得接近理想之行為,必須滿足以下之電阻之條件,即R1=R2,R3=R4,R5=R6。基於該等狀況,電流I將靜電致動器靜電電容220藉由隨時間線性地增加之電荷量Q,Q=I×t而充電。電流I為輸入部222中之程式電壓V之線性函數,I=V/R6×(R3+R5)/R1。
關於靜電致動器靜電電容之兩電極浮動之情形,適當之精密電流源之較佳實施形態示於圖26。使用運算放大器226之該電路作為互導放大器為人所知。電流I將靜電致動器靜電電容225充電。電流I為輸入部227中之程式電壓V之線性函數,I=V/R,R為電阻228之值。
於較理想為將較小之增量之電荷附加至靜電致動器靜電電容之電極之情形時,較佳為開關電容器原理之電流源211。此種電路例如記載於W.A.Clark之美國專利第5,969,513號,「Switched Capacitor Current Source for Use in Switching Regulators」。開關電容器電流源如記載於例如B.R.Gregoire及U-K.Moon之IEE Trans.Circ.Sys.II:Express Briefs,Vol.54,No.3 March 2007("A Sub 1-v Constant Gm-C Switched-Capacitor Current Source")般,可使用標準性之半導體技術,作為積體電路而非常有效率地安裝。
開關電容器電流源之優點為其純粹之數位動作。即,完全相同之電荷封包在數位開關之控制下供給,控制電壓之準確之類比選擇無任何必要。
大多數開關電容器電流源為單極性,即,可僅供給一方向之電流之流動。於此種情形時,為了製出第2發明中需要之雙極性電流源,必須將向相反方向供給電流之流動之2個開關電容器電流源並聯地連接。
第2發明之完全之靜電致動器控制系統之較佳實施形態示於圖27。該控制系統包括對圖22所示之靜電致動器控制器之所有要素進行控制之數位控制器系統231。數位控制器系統231執行用以控制靜電致動器230之機械性位移之一系列指令之所有步驟。
於第1步驟中,將開關234、238及239打開。於第2步驟中,將重設開關239關閉。藉此,靜電致動器靜電電容230完全放電,致動器返回至其機械性零力位置。於第3步驟中,將重設開關239打開,將電壓計開關238關閉。藉此,靜電致動器230之電極間之殘留電壓(「重設 電壓」)之測定成為可能。測定係藉由電壓計235而進行,電壓計之類比輸出236係藉由類比-數位轉換器237而轉換為數位值。所獲得之重設電壓之數位值記憶於控制器231之記憶體。此處,系統成為用以控制靜電致動器230之位移之重複步驟序列之準備完成之狀態。
各重複步驟序列係自將電流源開關234關閉開始。於特定之時間t之期間,電流源232將靜電致動器230以電流I進行充電,將電荷封包ΔQ=I×t附加至致動器靜電電容230。I之值或電荷封包ΔQ之尺寸係藉由數位控制器231經由控制信號233而決定(掌握)。若將所供給之所有電荷封包ΔQ進行合計,則成為堆積於致動器230之電極之總電荷Q。電壓計235繼續測定致動器230之電極間之電壓V(Q)。
藉由V(Q)為已知,算出有效靜電電容Ceff(Q)藉由計算1次導函數Ceff(Q)=dQ/dV=(dV(Q)/dQ)-1而成為可能。如圖24所示,Ceff(Q)為電荷Q關於隨之產生的靜電致動器230之位移之一對一之尺度。尤其,Ceff(Q)之符號明示靜電致動器230之狀態。於Ceff(Q)為正之情形時,若致動器處於其零力位置之附近,重設開關239關閉,則致動器返回至其零力位置為止。於Ceff(Q)為負之情形時,若致動器通過所謂「引入」點,重設開關239關閉,則致動器被強迫移動至其極限位置d=0,因此電極接觸,可能會產生致動器之不可逆之損傷。於Ceff(Q)為負之情形時,儘管如此,藉由實施對0<Vreset<Vmax之正重設電壓Vreset之重設,亦能夠使致動器移動至0與2/3×dM之間之任意之間隔。然而,僅藉由電壓控制而返回至零力平衡位置之情況於Ceff(Q)為負之情形時不可能。
於致動器位移步驟之完全之一循環結束之後,必須計算Ceff(Q)。於Ceff(Q)為正之情形時,將開關234及238打開且將重設開關239 關閉較為安全。藉此,致動器230安全地移動至其零力位置。然而,於Ceff(Q)為負之情形時,必須以致動器230上之總電荷Q可藉由經反轉之電流之流動而減少至未達引入點之方式,將電流源232之極性藉由控制信號233而改變。於總電荷充分減少至特異點及未達Ceff(Q)之符號變化之後,將開關234及238打開且將重設開關239關閉較為安全。藉此,致動器230安全地移動至其零力位置。
於圖22中,對電流源211賦予開關212,對電壓計213賦予開關214。若安裝電流源211及電壓計213之電子電路為具充分之特性者,則亦無須對電子電路賦予開關212及214。
於電壓計213為如附加至靜電致動器靜電電容210之電荷Q不經由電壓計213而顯著放電此等程度之高阻抗之情形時,又,於電壓計213所具有之靜電電容與致動器210之靜電電容相比微小之情形時,開關214多餘。
於電壓計213利用如無須為了將測定用之充分之時間賦予至電壓計213而將電流源211藉由開關212切換為關閉此等程度之高時間解析度進行測定之情形時,開關212多餘。或者,於能夠將電流源211之電流以高速改變,且能夠將電流改變至零為止之情形時,開關212仍然多餘。
於該等情形時,圖22所示之第2發明之靜電電容致動器控制系統可簡化為圖28所示之系統。依然需要之唯一之開關為重設開關215。
可使用上述電荷注入HF測定方法測定致動器靜電電容210之第2發明之靜電致動器控制系統示於圖29。小信號AC電流注入源216相 對於電流源211、電壓計213及重設開關215並聯地連接。若需要,則AC電流注入源216可使用開關217自系統之其他要素切離。如上述般,AC電流注入源216將致動器靜電電容210以高速充電及放電,但靜電電容210之電壓係藉由電壓計213而觀測,該電壓計必須有足以追隨AC源216之振動之時間解析度之能力。如上述般,若已知AC電流I(t)、電壓V(t)及振動角頻率ω,則可算出靜電電容210。又,藉由獲知I(t)及V(t),亦能夠決定I(t)與V(t)之間之相位角,獲得關於靜電致動器210之狀態之追加資訊。
電壓計213可作為2個不同之並聯之電路而實現。即,1個為用以測定致動器靜電電容210之絕對電壓之低速但高精度之滿刻度電壓計,1個為用以測定對致動器靜電電容210帶來之小信號AC電流注入源之影響之高速但小信號之電壓計。「高速」及「低速」之用語與AC電流注入源216之調變頻率有關。「低速」係指測定頻率較AC源216之激發頻率低,「高速」係指測定頻率較AC激發頻率高。
第2發明之特徵可如下般記載。
[特徵1]
一種電氣致動器控制器,其係具備電容性構造體及至少1個帶彈簧之可動電極,藉此,能夠藉由利用電氣機構施加至電容器之力而改變上述電極間之機械性間隔d之微小機械加工MEMS/MOEMS靜電致動器系統用之電氣致動器控制器,且上述電氣致動器控制器具備具有至少1個可動電極之電容器系統,該電容器系統之特徵在於藉由電荷Q而產生於上述電容器之電壓V作為電荷量Q之函數表示至少1個最大值,上述電氣致動器控制器之特徵在於, 作為靜電電容電極間之牽引之機械力之供給源之直接控制,藉由上述電荷量Q而直接驅動上述系統,上述電氣致動器控制器係藉由如下器件而實現:(1)1個或複數個電荷供給電路,其將原理上能夠重複切換之外部負載電容器等之已知之電荷量準確地供給,或較佳為並不僅限定於電荷供給電路;及(2)電子開關,其將上述電荷供給電路以非常高速、且於任意之時間、且於任意選擇中重複,使自上述致動器之電容器分別連接或切斷成為可能,藉此,能夠將上述致動器之電容器之總電荷量與上述1個或複數個所使用之電荷供給電路之特性一起規定為定量位準,並且能夠將特定之電荷量例如(並不僅限定於此)為了執行基於可動電極電容器系統實施之測定之目的而長期保持為固定。
[特徵2]
一種測定系統,其特徵在於,其係使用特徵1中所記載的直接控制上述電荷量Q之上述電氣致動器控制器之情形時之藉由特徵1中所記載之上述微機械加工MEMS/MOEMS靜電致動器系統之上述電極間之間隔d而形成的上述電容性構造體之瞬時之靜電電容之測定系統,本特徵之上述瞬時之靜電電容之上述測定系統係控制器系統控制對上述致動器之靜電電容之施加電荷量,以及該電荷量為已知或可藉由上述電荷供給電路之特性及上述開關之時序而決定,以及,上述電氣致動器控制器包含用以測定產生於上述電容器之兩端間之 電壓之電路,藉此,藉由獲知電荷量Q及所產生之電壓V,可決定藉由上述靜電致動器系統之上述電極間之瞬時之間隔d而形成之上述電容性構造體之電容。
[特徵3]
一種測定系統,其特徵在於,其係使用特徵1中所記載之直接控制上述電荷量Q之上述電氣致動器控制器之情形時之藉由特徵1中所記載之上述微機械加工MEMS/MOEMS靜電致動器系統之上述電極間之間隔d而形成的上述電容性構造體之瞬時之靜電電容之測定系統,本特徵之上述瞬時之靜電電容之上述測定系統首先,上述控制器將固定之電荷量附加至上述靜電電容,其結果,以上述極板間之上述間隔接近所期望之間隔之方式調整,其次,將上述電荷供給電路自可動極板電容器切離,其次,經由追加之開關,而將較振動平行極板電容器之共振頻率高得多之頻率之AC電流注入至該電容器,上述電氣致動器控制器包含用以測定自上述電容器所產生之AC電壓調變之電路,藉此,藉由獲知電荷量調變ΔQ及所產生之被測定調變電壓ΔV,而決定藉由上述靜電致動器系統之上述電極間之瞬時之間隔d而形成之上述電容性構造體之高頻靜電電容。
[特徵4]
一種系統,其特徵在於,其係使用特徵4中所記載之直接控制上述電荷量Q之上述電氣致動器控制器之情形時之特徵1中所記載之具備電容性構造體及至少1個帶彈簧之可動電極之上述微機械加工MEMS/MOEMS靜電致動器系統用之用以將強制振動激發而測定振動狀態用之系統, 本特徵之靜電致動器用之用以將強制振動激發而測定振動狀態之上述系統首先,上述控制器將固定之電荷量附加至上述電容器,其結果,以上述電容器之電極間之間隔接近所期望之間隔之方式調整,其次,將上述電荷供給電路自上述電容器切離,其次,經由追加之開關,而將能夠調整之振幅、及具有低於、或等於、或高於振動致動器電容器之共振頻率之頻率之AC電流連接於該電容器,上述AC電流驅動上述振動致動器電容器之強制機械振動,上述電氣致動器控制器包含用以測定自上述電容器所產生之AC電壓調變之可檢測調變電壓振幅與相對於施加AC電流之相位之該相位延遲之電路,藉此,於至少過渡振動相位之後,可完全決定上述靜電致動器之上述強制振動之振動狀態。
[特徵5]
一種電氣作動控制器,其特徵在於,其係特徵1~4之電氣作動控制器,上述電氣作動控制器之較佳實施形態係藉由較佳地配置於具備至少1個帶彈簧之可動極板之上述微機械加工靜電致動器之附近之用於特定用途之集體電路(ASIC)而實現。
[特徵6]
一種靜電致動器控制系統,其用以利用包括並聯地連接之3個電氣構成要素、即能夠切換之雙極電流源、能夠切換之高阻抗電壓計、及重設開關之靜電致動器之全部之機械性位移範圍。重設開關係為了將靜電致動器放電,且為了使致動器移動至其機械性零位置而使用。雙極電流源係為了 使已知之電荷封包連續地堆積於靜電致動器之電極而使用,會帶來作為總堆積電荷Q之單調函數之機械性位移。電壓計係為了決定靜電致動器之電極間之實際之電壓V(Q)而使用。使用該資訊,計算作為致動器之有效靜電電容之1次導函數dQ/dV=(dV/dQ)-1,而可使用該有效靜電電容決定致動器之機械性位置。於一動作週期結束之後,主動地使用雙極電流源將靜電致動器放電。該動作序列係在數位控制器系統之控制下執行。
[第3發明]
第3發明係關於為了將具備電容性構造體與至少1個帶彈簧之可動電極之微機械加工MEMS/MOEMS系統藉由電荷量而非電壓來控制而使用的靜電致動器控制器之操作及校準特有之方法,尤其關注可表示此種電容性構造體相當之或至少無法忽略之洩漏電流而記載。
相關技術為第2發明,第2發明包含存在無法忽略之洩漏電流之電容性構造體用之靜電致動器控制器之使用。
[背景]
具有可動部分之MEMS及MOEMS構造體必須作動。已知作動之多種方式。1個可能之選項為適當之致動器構造體之靜電作動。存在具備電容性構造體與可藉由控制電壓而作動之至少1個帶彈簧之可動電極之特別的微機械加工MEMS/MOEMS系統。作為一例,存在基於利用此種致動器構造體使近紅外光譜範圍之光譜分析成為可能之MEMS的法布里-伯羅干涉儀。
此種系統之重要之特徵係電容性構造體之電容依存於電極間之間隔d,若d減少,則電容單調地增加。
作為此種構造體之一例,平行極板電容器之電容由下式給 出。
C=εoA/d (式13)
此處,
εo:介電常數
A:電容器之有效面積
d:電極間之間隔
第2發明教導,關於將此種電容性構造體與至少1個帶彈簧之可動電極一起具備之此種微機械加工MEMS/MOEMS系統,電壓V作為配置於電極之電荷量Q之函數可表示最大值。電壓最大值可如下般進行說明(比較圖30)。
‧於零電荷時,電容器之電壓亦又為零。
‧若電極之電荷量增加,則電極間產生引力。作為結果,電極間之間隔d縮小,電容性構造體之電容增加。最初,於d較大時,電容隨d一起逐漸變化。因此,電容器之電壓亦增加。
‧若堆積電荷量進而增加,則電極間之間隔減少,電容之增加逐漸變快,電極相互接近(例如,如式13中所見)。其結果,電壓V(Q)會具有最大值Vmax。於更大之電荷量時,與電荷量Q之增加無關,電容器之電壓再次減少。
若欲藉由電壓控制而控制此種系統,則較Vmax稍大之控制電壓Vcontrol導致較快之失控現象,所謂「引入」現象。該現象係兩電極相互結束碰撞,於該碰撞中通常致動器裝置損傷。
第2發明教導以下內容。
‧若將電壓控制置換為電荷量之控制區域,則安全且無「引入」之 動作成為可能。
‧若使用電荷控制,則變得可存取由於V(Q)存在最大值及所產生之「引入」現象故而藉由電壓控制無法存取之電極間之間隔之調整範圍。
‧若將1個或複數個電流源與開關組合,則可將任何任意之電荷量Qc亦附加至致動器之電容性構造體之電極。
‧另外,進行由具有被準確地控制之電荷量Q之電容器所產生之電壓V(Q)之測定係用以算出致動器之電容性系統之實際之靜電電容之準靜性方法。電極間之實際之間隔d於靜電電容與電極間之間隔之間之關係例如藉由校準測定而獲知之情形時,可根據此種實際之靜電電容值算出。
‧注入具有較具備電容性構造體及至少1個帶彈簧之可動電極之振動MEMS/MOEMS系統之共振頻率高之頻率之AC電流且進而測定電容器之電壓之AC振幅係HF靜電電容測定,該測定有與靜電致動器控制器之電荷/電流控制之適合性。
與第2發明相關之所有考察可忽略洩漏電流而進行。然而,現實之MEMS/MOEMS構造體可能會有相當之洩漏電流。洩漏電流限制上述「靜電致動器控制器」之重要之優點之應用性。第3發明係藉由提供用於存在無法忽略之洩漏電流之靜電致動器系統之確實之控制的控制器系統及動作模式,而克服該缺點。
[發明之概要]
以下提出之第3發明克服第2發明之因致動器之電容性構造體存在無法忽略之洩漏電流所致之應用性限制。
第3發明之步驟包括5個本質性要素。第2發明之所有概念於任意時間之電容器之電壓、洩漏電流源、及分離電阻Rleak以充分之精度 已知之情形時,能夠應用。
第3發明之第1步驟係導入如下構成:利用至少1個追加之能夠切換之參照電阻器與使用該追加之參照電阻器之專用之測定方法,可準確地算出分離電阻Rleak。該校準測定可基於任意之實際之動作條件於任意之時間重複。於該方法中,若存在相對於電容器之電壓V或控制電荷Qc之分離電阻Rleak之依存性,則甚至能夠測定該依存性。
於電荷控制區域,首先將規定電荷量附加至電容器。於以下步驟中,將所有電流源自電容器切離。存在無法忽略之洩漏電流係藉由電容器之電荷量Q隨著時間之經過減少,而使所選擇之設定點變化。
因此,第3發明之第2步驟係導入可保持藉由控制電荷量Qc而規定之動作點之控制電流之反饋迴路。藉由關係V(Q)有最大值,而其導函數dV/dQ使符號變化,因此,藉由電容器之電荷量Qc而產生之電壓不適合作為控制閉迴路之偵測值。取而代之的是,控制閉迴路係以將靜電電容用作偵測值動作之方式製作。靜電電容值係使用「電流注入」HF靜電電容測定系統來測定。
第3發明之第3步驟係將第3發明之第2步驟之構成用作藉由電容器之控制電荷量Qc而規定之不同動作點之分離電阻Rleak之追加之測定方法。
第3發明之第4步驟係導入追加開關,該追加開關讓使用靜電致動器控制器之1個或複數個本精密電阻器及內部電壓測定系統之系統內之所有電流源之再校準成為可能。追加開關之導入由於有時應控制之電流非常小,故而本質上為必需。
第3發明之第5步驟係導入如下動作方式:不使用主動反饋 控制而極度簡化,但靜電致動器控制器之僅局部動作範圍無產生引入現象等任何失控現象之危險地發揮功能。
[發明之詳細說明]
第2發明教導,於具備電容性構造體及至少1個帶彈簧之可動電極之微機械加工MEMS/MOEMS系統之電荷控制中,與電壓之控制相比,有若干個優點。
為了活用該等優點,第2發明提出有圖31所示之電路。能夠藉由開關312而切換之電流源311連接於具備至少1個可動電極之致動器之電容310。所產生之電壓可利用能夠藉由開關314而連接或切斷之電壓測定系統313來測定。藉由開關315,能夠將電容器310之電荷重設為零位準。電流源311將電流I經由開關312而供給至致動器之電容性構造體310。藉由經由開關314而將電壓測定電路313連接於電容器310,可測定藉由電容器310之電荷量Q而產生之電壓V。藉由重設開關315,可將電容器之電壓重設為零。
目標之控制電荷量Qc係藉由供給已知之電流I之精密電流源311與連接/切斷切換312之準確之時序之組合,而附加至電容器。
圖32表示將實際之電容器之等效電路納入考慮時之圖31之靜電致動器控制系統。示出了分離電阻Rleak320、等效串聯電阻RESR321及等效串聯電感L322。
串聯電阻RESR通常較分離電阻Rleak低得多,因此假設RESR可忽略。電感L322亦又假設可忽略。以下僅考察Rleak之影響(圖33)。
靜電致動器控制器藉由將規定電荷量附加至電容310而控制致動器。然而,藉由電流源311而供給之電流於節點323分流。洩漏電 流Ileak依存於電容器C之電壓、及分離電阻Rleak。任意之時間t1之電容器之電荷Qc(t)由下式(式14)給出。
Figure 107120311-A0305-02-0059-1
此處,I係作為開關312關閉期間之時間之函數之電流源311之電流,V(Qc(t))係使用電壓計313測定的電荷Qc之電容器在開關314關閉時之整段時間內之被測定「所產生之電壓」,to係開始時間,t1係實際之電荷量Qc(t)應被考慮或控制之實際之時間。
於藉由電流源311而供給之控制電流已知,所產生之電壓V(Qc(t))藉由電壓測定系統313而測定之情形時,式14表示,若Rleak已知,則可於任意之時間t準確地控制電容器之電荷量Qc(t)。因此,第2發明中所記載之靜電致動器控制器之方法中,若分離電阻Rleak以充分之精度已知,則可於無法忽略之洩漏電流之存在下使用。
通常,具有固定電容之電容器C之分離電阻Rleak可藉由如下方法算出:將電荷Q附加至電容器,其次,將任何電流源或控制電壓均切離,其次,於電容器藉由洩漏電流而放電之期間,將由電容器所產生之電壓作為時間之函數測定。該方法於上述致動器中,該電容器因至少1個帶彈簧之可動電極而不具有固定電容,故而不起作用。如圖30之例所示,電極間之間隔藉由電荷量Qc之減少而增加。致動器係藉由根據第2發明控制電荷量而驅動。若控制電荷量增加,則所產生之電壓V(Q)藉由致動器之電容朝向電極間之更小之間隔d急速地增加,而表示最大值203。與之 相應地,電容減少。電壓V(Q)如固定電容電容器之情形般就指數函數而言不衰減。於上述致動器中,根據動作點,電壓V甚至可能於電容器之電荷量藉由洩漏電流而減少時上升。其係圖30所示之關係V(Q)中之最大值之結果。作為結論,用以算出具有非固定電容之電容器C之分離電阻Rleak之既有之方法無法應用。
因此,第3發明之第1步驟係將圖34所示之具備具有已知之電阻Rref之參照電阻350與開關351之至少1個組合之靜電致動器控制器擴展、以及導入準確地算出分離電阻Rleak之以下之方法。於藉由該關聯開關351而連接之情形時,電阻器350與電容器310及該分離電阻Rleak320並聯地電性連接。
‧電容器自零電荷(即,藉由重設開關315而進行之電容器之重設後)開始,使用藉由電流源311而施加之相同之定電流I,以定電流I>Vmax×(Rleak -1+Rref -1)之條件,充電2次。
‧充電循環中,電壓V作為時間之函數被測定。
‧一充電循環(藉由時間t1而賦予特徵)係於參照電阻350之任一者藉由關聯開關351而切離之期間執行。
‧另一充電循環(藉由時間t2而賦予特徵)係於至少1個參照電阻350藉由將至少1個開關351關閉而連接之期間執行。
根據在跨及2個充電循環中之時間而產生之電壓之函數之差異,分離電阻Rleak可於與參照電阻350之已知之電阻Rref之關聯中算出。
以下表示用以自該測定方法提取所期望之資訊之1個可能的方法。充電循環之簡潔之分析表示,藉由電荷量Qc而規定之系統動作之各系統狀態相等。其意味著,若達到電容器之相同之控制電荷Qc,則至少 關於圖30之電壓最大值Vmax203出現前之枝部201及出現後之枝部202各自之電壓位準,仍然會觀測到相同之所產生之電壓V(Qc)。
於連接參照電阻器350之充電循環中,相對於放電之總電阻藉由電容器C310及與該分離電阻Rleak並聯地電性連接之追加電阻器350而減少,藉此,達到相同之充電狀態Q需花費更長之時間。因此,於相同之電壓位準V(t1)=V(t2)=V(Q),作為時間之各者之梯度的開關351打開之時間t1之s1(t1)=dV/dt與開關351關閉之時間t2之s2(t2)=dV/dt不同。於該情形時,分離電阻之倒數Rleak -1可藉由簡單之下式算出。
Rleak -1=I/V(Q)-s1/(s1-s2)×Rref -1 (式15)
此處,I係固定負載電流,V(Q)係兩個充電序列之被測定等電壓位準,即,V(t1)=V(t2)=V(Q),Rref係參照精密電阻器350。
請注意,當使用該方法時,只要存在相對於控制電荷Q各者之電壓V(Q)的Rleak之任何依存性,則甚至能夠實現定量地檢測。
第3發明之第2步驟應對藉由電荷量Qc而規定之動作點因存在致動器之電容器之無法忽略之洩漏電流而表現出漂移之問題。
於可忽略洩漏電流之情形時,能夠將規定電荷量附加至電容器,其次,藉由開關312而將電流源311切離。於洩漏電流之存在下,藉由電荷量Q而規定之動作點並非不變,電容器因洩漏電流而放電。為了使動作點穩定,必須將以讓電荷量Q保持為固定之方式控制電流之反饋迴路導入至系統。如圖30所示,由於函數V(Q)具有最大值203,故而此種反 饋迴路無法使用標準性PID控制器來製作。PID控制係於被控制之系統在偵測值與控制值之間具有單調之特性,即,其1次函數之符號不變之情形時,適當地發揮功能。因此,能夠實施圖30之枝部201或圖30之枝部202之任一個使用PID控制器,由於藉由存在V(Q)之最大值203而讓dV/dQ之梯度具有不同之符號,故而無法使用同一控制器於兩個枝部實施。
靜電電容係電極間之間隔之良好之指標。圖30表示具有至少1個帶彈簧之電極之平行極板電容器之該特別之構成之狀況。如第2發明中所指出般,施加AC調變電壓並檢測所產生之電流之HF靜電電容測定由於為了讓該方法可施加AC調變電壓而需要系統之DC電壓控制,故而無法執行。然而,靜電致動器之圖30所示之V(Q)具有最大值之電壓控制區域可僅存取於枝部201上之動作點,無法存取於枝部202上之任何動作點。另外,已知電壓控制係於控制電壓超過最大值203之電壓Vmax若干之情形時招致「引入」現象。因此,該方法並無與靜電致動器控制器之電荷控制區域之適合性。於第2發明中,藉由注入AC調變電流且測定所產生之AC調變電壓相對於AC電流信號之振幅及相位延遲之「基於電流注入之HF靜電電容測定」之發明而解決該問題。追加之AC電流係於時間分解之電壓測定系統313可測定振幅及相位之期間,藉由利用開關317可連接或切斷之專用源316而供給。
重要的是該「高頻」測定係於各動作點以較致動器系統之共振頻率充分高之、例如根據需要之精度至少10倍以上之較高之頻率進行。因此,致動器之移動不追隨來自AC電流源316之注入AC電流之調變。於該條件下,致動器電容性構造體對於電流及電壓之HF調變信號,如利用電容藉由電容器之電荷量Qc而算出之動作點規定之固定電容電容器 般起作用。
「基於電流注入之HF靜電電容測定」又能夠於無法忽略之洩漏電流之存在下進行。如第2發明中所記載般,測定複阻抗。根據阻抗之實數部可計算分離電阻Rleak,根據虛數部可計算實際之靜電電容。
若進行概括,則第3發明之第2步驟係利用與靜電致動器控制器之電荷控制區域有適合性且使用靜電電容值作為用以控制電流I之閉反饋迴路之輸入之靜電電容測定方法來解決因無法忽略之洩漏電流所致之動作點之漂移的問題,藉此,能夠保持藉由電容器之電荷量Qc而規定之動作點使之不變。
第3發明之追加之第3步驟係使用上述閉反饋迴路作為分離電阻Rleak之精密測定系統。閉反饋迴路之作用為保持Qc固定之條件。若觀察式14,則時間t之Qc=固定之條件係於式14之被積分函數為零時獲得。該情況意味著,在閉反饋迴路控制之下,控制電流I至少按時間平均值等於洩漏電流Ileak=V(Q)/Rleak。因此,藉由電荷量Qc而規定之所給出之動作點之洩漏電流之值可藉由在閉反饋迴路為主動且(於若干過渡性時間之後)處於穩定狀態之期間之整段時間內之控制值「電流I」之平均而容易地算出。
於用以算出分離電阻Rleak之上述方法中,必須非常準確地獲知電流I。
因此,第3發明之第4步驟係為了將藉由DC電流源311或AC調變電流源316等任意電流源而產生之電流以不自相矛盾之方式藉由電壓計313測定,而使用電阻器Rref350(或者,於實施參照電阻器與關聯開關之若干個組合之情形時,將具有不同電阻值之若干個電阻器分別使 用),藉此,能夠隨時進行電流位準之再校準。為此,導入可將致動器370之電容C310自靜電致動器控制器360之電路切離以進行該再校準測定之追加開關318(參照圖35、36)。
圖35中,例如,若將開關318打開,將開關351、312及314關閉,則可藉由電壓測定系統313而測定及校準來自電流源311之電流之電壓下降。
圖36中,調變電流之頻率較藉由控制電荷Qc而規定之動作點之致動器之振動頻率高得多。可檢測所產生之AC調變電壓之振幅及相位之HFAC調變電流源及電壓測定系統313形成尤其可算出致動器單元310之靜電電容之阻抗測定單元380。單元380送出將藉由控制電荷Qc而規定之動作點保持為固定之閉反饋迴路之輸入即偵測值。
根據需要,較佳為可將參照電阻器350之電阻(或者,於安裝若干個參照電阻器之情形時為若干個電阻)於ASIC構造體內例如藉由電阻值之雷射修整而製作。亦又值得關注的是,參照電阻器Rref350(分別為個別之參照電阻器值Rref,N)能夠自外部存取。於靜電致動器控制器360自具備帶彈簧之可動電極370之MEMS/MOEMS電容性構造體切離之情形時,參照電阻器(可為複數個)之電阻值(可為複數個)可根據需要藉由外部電阻測定系統而測定。
實際上,對於靜電致動器控制器360之任意之主動或被動構成要素之外部存取能夠個別地藉由開關312、314、317及351而進行。DC電流源311、AC調變電流源316、電壓計313及精密電阻器350等可根據需要藉由來自外部之外部存取而校準。
第3發明之第5步驟係導入不使用主動反饋控制之極度簡化 之動作方式。電壓控制單純,若控制電壓超過電壓Vmax203,則立即招致被稱為「引入」現象之即時之失控現象。「引入」現象損傷致動器裝置、或至少其校準特性。例如,由於控制電壓之安全範圍具有溫度依存性,故而使此種失控現象開始之風險相當高。該第3發明之步驟係於此處考慮存在無法忽略之洩漏電流之致動器,使用用以使藉由電荷量Qc而規定之動作點穩定之簡單的定電流源。該方法係如下般發揮功能。即,
‧首先,目標動作點係藉由利用電流源311及開關312將其電荷量附加至電容器而設定。
‧所產生之電壓V(Qc)於開關314保持關閉之期間,藉由電壓計313而測定。
‧設定值V(Qc)/Rleak之控制電流。
若電荷Q超過設定點Qc,則所產生之電壓增加,洩漏電流增加,藉此,藉由電荷量Qc而規定之動作點變得穩定。同樣地,若電荷較少,則洩漏電流變少,藉此動作點仍然變得穩定。
遺憾的是,該方法僅對一部分之動作範圍,即靜電致動器控制器之枝部201發揮功能。實際上,該方法關於能夠存取之動作範圍有與先前之電壓控制模式中者相同之限制。儘管如此,本方法仍然藉由將目前之MEMS/MOEMS致動器之大部分對於可利用電壓控制而實際控制之電極間之間隔d之調整範圍進行設計,而在實用上較為重要。
上述存在無法忽略之洩漏電流之致動器之電流控制之簡化方法有由於以下之若干個理由而無由「引入」現象所致之裝置之破壞之危險的較大優點。即,
‧裝置一旦進入電壓控制之動作之不穩定範圍之中,失控極快地加 速。該過程無法控制。另外,無用以檢測失控現象之開始之監視值。
‧對照而言,於上述電流控制方法中,將電容器緩慢地充電,又有監視值,即藉由電壓計313而持續地測定所產生之電壓V/(Qc)。
‧因此,引入現象之開始能夠以所產生之電壓V/(Qc)於控制電流固定之期間單調地下降為基準進行檢測。若檢測該條件,則可使充電過程停止,而不會產生「引入」現象。
若使用第3發明之5個步驟,則能夠執行如下處理:將關於具備電容性構造體及至少1個帶彈簧之可動電極之微機械加工MEMS/MOEMS系統之第2發明中所教導之電荷控制或電流控制之概念亦應用於表現出無法忽略之洩漏電流之此種構造體中。
第3發明之特徵可如下般記載。
[特徵1]
一種靜電致動器控制器之擴展部及方法,其係用以算出存在無法忽略之洩漏電流、且具備具有至少1個帶彈簧之可動電極之電容性構造體、且能夠藉由利用電氣機構施加至電容器之力而改變上述電極間之機械性間隔d之微機械加工MEMS/MOEMS靜電致動器系統用之電氣致動器控制器之上述電容器之分離電阻的(第2發明之特徵1中所記載之)靜電致動器控制器之擴展部及方法,且存在無法忽略之洩漏電流、且具備至少1個可動電極之電容器系統之特徵在於,藉由電荷Q而產生於上述電容器之電壓V作為電荷量Q之函數表示至少1個最大值,上述電氣致動器控制器之特徵在於,作為靜電電容電極間中之牽引之機械力之供給源之直接控制,藉由 上述電荷量Q而直接驅動上述系統,上述靜電致動器控制器之上述擴展部之特徵在於,將至少1個追加之精密電阻器、及各電阻器之至少1個關聯開關以上述精密電阻器之任一個與該分離電阻Rleak一起並聯地電性連接於上述致動器系統之上述電容器之方式導入,以及可將各電阻器藉由其本身之開關而自上述電容器連接或切斷,算出上述致動器系統中之上述電容器之上述分離電阻Rleak之絕對值之方法之特徵在於,上述方法係藉由將上述電容器自電荷零以已知之固定電流,使與各個精密電阻器關聯之開關中之至少1個不關閉,進而關閉進行充電,及藉由測定及記錄該等充電過程中之上述所產生之電壓之時間展開而實施,以及,根據該等時間展開之比較,尤其並不僅限定於此,而根據相同位準之電壓V之不同梯度dV/dt,可算出上述分離電阻之上述絕對值,藉此,能夠於該電容器之無法忽略之洩漏電流之存在下算出致動器之電容器Qc中之絕對電荷量。
[特徵2]
一種靜電致動器控制器之擴展部,其係存在無法忽略之洩漏電流、且具備具有至少1個帶彈簧之可動電極之電容性構造體、且能夠藉由利用電氣機構施加至電容器之力而改變上述電極間之機械性間隔d之微機械加工MEMS/MOEMS靜電致動器系統用之閉反饋迴路之具備(第2發明之特徵1及2中所記載之)有適合性之一體化HF靜電電容測定系統的靜電致動器控制器之擴展部, 存在無法忽略之洩漏電流、且具備至少1個可動電極之上述電容器系統之特徵在於,藉由電荷Q而產生於上述電容器之電壓V作為上述電荷量Q之函數表示至少1個最大值,電氣致動器控制器之特徵在於,作為上述靜電電容電極間之牽引之機械力之供給源之直接控制,藉由上述電荷量Q而直接驅動上述系統,上述有適合性之一體化HF靜電電容測定系統之特徵在於,首先,上述控制器將固定之電荷量附加至上述靜電電容,其結果,極板間之間隔以接近所期望之間隔之方式調整,其次,將電荷供給電路自可動極板電容器切離,其次,經由追加之開關,而將較振動平行極板電容器之共振頻率高得多之頻率之AC電流注入至上述電容器,上述電氣致動器控制器包含用以測定自上述電容器所產生之AC電壓調變之電路,藉此,藉由獲知電荷量調變ΔQ及所產生之被測定調變電壓ΔV,可算出藉由上述靜電致動器系統之上述電極間之瞬時之間隔d而形成之上述電容性構造體之高頻靜電電容,上述擴展部之特徵在於,被導入上述致動器為被控制系統、來自上述供給源之電流為控制值、且藉由上述「基於電流注入之HF靜電電容測定」而測定之靜電電容為應保持為固定之偵測值之閉迴路控制,藉此,能夠於藉由上述電容器之電荷量Qc而控制之任意之規定動作點,與該電容器存在無法忽略之洩漏電流無關地,穩定地保持上述致動器。
[特徵3]
一種追加之方法,其特徵在於,其係於使用特徵2中所記載之靜電致動器控制器之擴展部時之用以算出上述電容器之上述分離電阻之追加之方法,上述追加之方法於上述閉反饋迴路為了將上述致動器之靜電電容之控制電荷量Qc保持為固定而被設為主動之後之過渡時間後,此處算出尤其在閉迴路動作之下藉由上述電流源而供給之控制電流I即控制值之在某時間內之平均值,並且亦又算出藉由上述電容器之電荷量Qc而產生且被測定之所產生之電壓V之在相同時間內之平均值,以及藉由兩個值之比,即將所產生之電壓之平均值除以閉迴路控制下之電流之平均值所得者計算上述電容器之分離電阻Rleak由於閉迴路動作下之上述電流之平均值與藉由控制電荷Qc及上述所產生之電壓V(Qc)而賦予特徵之動作點之洩漏電流相等,故而能夠進行。
[特徵4]
一種靜電致動器控制器之擴展部、及用於自校準之關聯方法,其係特徵1及2中所記載之靜電致動器控制器之擴展部、及用於自校準之關聯方法,上述擴展部之特徵在於,被導入可將上述致動器之靜電電容自上述靜電致動器控制器電路連接或切斷之追加開關,上述關聯方法之特徵在於, 藉由上述致動器之靜電電容切離、且與精密電阻器關聯之上述開關,而將上述精密電阻器中之至少1個藉由將上述電阻器用之上述關聯開關關閉而連接於上述各種電流源、及電壓測定系統以代替上述電容器,藉此,可測定藉由安裝於上述靜電致動器控制器之任意之電流源之DC或AC之電流而產生之上述電阻器之電壓下降,可基於內部電壓測定系統再校準電流輸出。
[特徵5]
一種靜電致動器控制器之簡化動作模式,其係存在無法忽略之洩漏電流、且具備具有至少1個帶彈簧之可動電極之電容性構造體、且能夠藉由利用電氣機構施加至電容器之力而改變上述電極間之機械性間隔d之微機械加工MEMS/MOEMS靜電致動器系統用之(第2發明之特徵1中所記載之)靜電致動器控制器之簡化動作模式,存在無法忽略之洩漏電流、且具備至少1個可動電極之電容器系統之特徵在於,藉由電荷Q而產生於上述電容器之電壓V作為上述電荷量Q之函數表示至少1個最大值,電氣致動器控制器之特徵在於,作為靜電電容電極間之牽引之機械力之供給源之直接控制,藉由上述電荷量Q而直接驅動上述系統,上述簡化動作模式用之方法之特徵在於,能夠僅應用於零與Qc之間之控制電荷量,Qc較上述電容器之電壓V(QVmax)表示第1最大值Vmax之電荷量QVmax少,以及所期望之動作點藉由在上述電容器之無法忽略之洩漏電流之存在下 將上述電容器充電至可根據上述電容器之實際之測定電壓與例如並不僅限定於此但按照上文之特徵1或2算出之該分離電阻Rleak計算之電荷量Qc之對應值為止而設定,其次,使上述控制電流減少至與該動作點中之洩漏電流V/Rleak相等之值,藉此,將上述致動器保持為上述動作點,繼續監視上述測定電壓,若上述電荷Qc因某些理由超過上述電容器之電壓表示上述第1最大值Vmax之值QVmax,則立即地,上述控制電流即刻被開關關閉,避免因上述電極相互接觸所致之上述電容器之破壞,將上述控制電流開關關閉之條件並不僅限定於此,但於上述控制電流固定之期間藉由電壓單調地降低而較佳地檢測。
[特徵6]
將基於第2發明之電荷控制之具備具有至少1個帶可動彈簧之電極之電容性構造體之致動器用之靜電致動器控制系統之擴展針對致動器之電容器表現出無法忽略之洩漏電流的情形揭示。該擴展包括:(1)將電容器之分離電阻Rleak定量化之關聯方法,其係使根據精密電阻器與在某時間內之注入電流、及所產生之電壓在某時間內之測定值計算電容器之電荷量Qc成為可能;(2)閉反饋迴路,其使用HF靜電電容測定系統之電流注入版本作為偵測值、及使用電流作為控制值;(3)追加測定系統,其用以使用項目(2)之閉反饋迴路將洩漏電流定量化;(4)自校準系統及方法,其等可使用一體化電壓測定系統校準所有AC 及DC電流源;及(5)電流之簡化控制裝置,其具備如下機構,即,不具備反饋,容易實施,但僅應對即便使用電壓控制亦可存取之動作範圍,然而,具備電極朝向間隔零加速且電極相互碰撞之前停止監視「引入」現象。
[產業上之可利用性]
根據本發明之一態樣,可提供可靠性較高之光學濾光器系統。
1:法布里-伯羅干涉濾光器
1a:光透過區域
11:基板
11a:第1表面
11b:第2表面
11c:外緣部
12:第1驅動電極
12a:配線
13:第1監視電極
14:第2驅動電極
14a:配線
15:第2監視電極
16:端子
18:端子
21:抗反射層
21a:抗反射層之側面
22:第1積層體
22a:第1積層體之側面
22b:第1積層體之表面
23:中間層
23a:表面
23b:側面
24:第2積層體
24a:表面
25:多晶矽層
25a:多晶矽層
25b:多晶矽層
25c:多晶矽層
26:氮化矽層
26a:氮化矽層
26b:氮化矽層
27:多晶矽層
27a:多晶矽層
27b:多晶矽層
27c:多晶矽層
28:氮化矽層
28a:氮化矽層
28b:氮化矽層
31:第1鏡部
31a:表面
32:第2鏡部
32a:表面
32b:表面
33:被覆部
34:周緣部
34a:非薄化部
34b:薄化部
40a:開口
41:抗反射層
42:第3積層體
43:中間層
44:第4積層體
45:遮光層
46:保護層
S:空隙(氣隙)
T1:溝槽
T2:溝槽
T3:溝槽
T5:溝槽

Claims (13)

  1. 一種光學濾光器系統,其具備:法布里-伯羅干涉濾光器;及控制器,其控制上述法布里-伯羅干涉濾光器;上述法布里-伯羅干涉濾光器具備:第1鏡部;第2鏡部,其係以介隔空隙而與上述第1鏡部相向之方式配置,且光透過區域中之與上述第1鏡部之間之距離藉由靜電力而調整;第1驅動電極,其係以於自上述第1鏡部與上述第2鏡部相互相向之方向觀察之情形時包圍上述光透過區域之方式設置於上述第1鏡部;第2驅動電極,其以與上述第1驅動電極相向之方式設置於上述第2鏡部;第1監視電極,其係以於自上述方向觀察之情形時至少一部分與上述光透過區域重疊之方式設置於上述第1鏡部,且與上述第1驅動電極電性絕緣;第2監視電極,其以與上述第1監視電極相向之方式設置於上述第2鏡部,且與上述第2驅動電極電性絕緣;基板,其具有第1表面;第1積層體,其具有配置於上述第1表面之上述第1鏡部;第2積層體,其具有上述第2鏡部,且上述第2鏡部係在相對於上述第1鏡部與上述基板相反之側介隔上述空隙而與上述第1鏡部相向;及中間層,其於上述第1積層體與上述第2積層體之間劃定上述空隙;且 上述第1驅動電極形成於上述第1積層體所包含之層;上述第2驅動電極形成於上述第2積層體所包含之層;上述控制器具備:第1電流源,其藉由將驅動電流施加至上述第1驅動電極與上述第2驅動電極之間而產生上述靜電力;第2電流源,其將具有較上述第1鏡部及上述第2鏡部之共振頻率高之頻率之交流電流施加至上述第1監視電極與上述第2監視電極之間;檢測部,其檢測於上述交流電流之施加中產生於上述第1監視電極與上述第2監視電極之間之交流電壓;及控制部,其基於蓄積於上述第1鏡部與上述第2鏡部之間之電荷量控制上述第1電流源,並且基於上述檢測部之檢測結果算出上述第1鏡部與上述第2鏡部之間之靜電電容。
  2. 如請求項1之光學濾光器系統,其中上述第1驅動電極露出於上述空隙。
  3. 如請求項1之光學濾光器系統,其中上述第2驅動電極配置於上述第2鏡部之與上述空隙相反側之表面。
  4. 如請求項2之光學濾光器系統,其中上述第2驅動電極配置於上述第2鏡部之與上述空隙相反側之表面。
  5. 如請求項1之光學濾光器系統,其中上述第2驅動電極露出於上述空隙。
  6. 如請求項2之光學濾光器系統,其中上述第2驅動電極露出於上述空隙。
  7. 如請求項1至6中任一項之光學濾光器系統,其中上述第1監視電極露出於上述空隙。
  8. 如請求項1至6中任一項之光學濾光器系統,其中上述第2監視電極露出於上述空隙。
  9. 如請求項7之光學濾光器系統,其中上述第2監視電極露出於上述空隙。
  10. 如請求項1至6中任一項之光學濾光器系統,其中上述第2監視電極配置於上述第2鏡部之與上述空隙相反側之表面。
  11. 如請求項7之光學濾光器系統,其中上述第2監視電極配置於上述第2鏡部之與上述空隙相反側之表面。
  12. 如請求項1至6中任一項之光學濾光器系統,其中上述第2驅動電極與上述第2監視電極於上述方向相互隔開。
  13. 如請求項7之光學濾光器系統,其中上述第2驅動電極與上述第2監視電極於上述方向相互隔開。
TW107120311A 2017-06-13 2018-06-13 光學濾光器系統 TWI787280B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH00761/17 2017-06-13
CH7612017 2017-06-13
CH7992017 2017-06-20
CH00799/17 2017-06-20

Publications (2)

Publication Number Publication Date
TW201903441A TW201903441A (zh) 2019-01-16
TWI787280B true TWI787280B (zh) 2022-12-21

Family

ID=64660171

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107120311A TWI787280B (zh) 2017-06-13 2018-06-13 光學濾光器系統

Country Status (7)

Country Link
US (1) US11480783B2 (zh)
EP (1) EP3640703A4 (zh)
JP (1) JP7221200B2 (zh)
KR (1) KR102669193B1 (zh)
CN (1) CN110741304B (zh)
TW (1) TWI787280B (zh)
WO (1) WO2018230567A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037463A1 (ja) * 2016-08-22 2018-03-01 パイオニア株式会社 静電容量検出装置及び光波長選択フィルタ装置
DE102020131378A1 (de) 2020-11-26 2022-06-02 Bundesdruckerei Gmbh Verfahren und Vorrichtung zum Bedrucken eines Endlosmaterials von einer Materialrolle
US20220342202A1 (en) * 2021-04-26 2022-10-27 Texas Instruments Incorporated Circuits and methods to calibrate mirror displacement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015810A1 (en) * 2000-02-18 2001-08-23 Hitosh Hara Fabry-perot filter, wavelength-selective infrared detector and infrared gas analyzer using the filter and detector
US20080039696A1 (en) * 2006-08-08 2008-02-14 Olympus Corporation Endoscope system
TW201142884A (en) * 2009-12-18 2011-12-01 Qualcomm Mems Technologies Inc Two-terminal variable capacitance MEMS device
US20140218586A1 (en) * 2013-02-05 2014-08-07 Seiko Epson Corporation Optical module, electronic apparatus, and spectroscopic camera
US20150092272A1 (en) * 2013-09-27 2015-04-02 Seiko Epson Corporation Interference filter, optical filter device, optical module, and electronic apparatus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969513A (en) 1998-03-24 1999-10-19 Volterra Semiconductor Corporation Switched capacitor current source for use in switching regulators
JP4457455B2 (ja) 2000-02-18 2010-04-28 横河電機株式会社 ファブリペローフィルタ及び赤外線ガス分析計
JP3835525B2 (ja) 2001-03-19 2006-10-18 ホーチキ株式会社 波長可変フィルタ制御装置
JP2003014641A (ja) * 2001-07-04 2003-01-15 Yokogawa Electric Corp 赤外分析装置
AUPS098002A0 (en) 2002-03-08 2002-03-28 University Of Western Australia, The Tunable cavity resonator, and method of fabricating same
KR20060052774A (ko) 2003-07-01 2006-05-19 티악스 엘엘씨 용량성 위치 센서 및 감지 방법
JP2005165067A (ja) 2003-12-03 2005-06-23 Seiko Epson Corp 波長可変フィルタおよび波長可変フィルタの製造方法
JP2012141347A (ja) 2010-12-28 2012-07-26 Seiko Epson Corp 波長可変干渉フィルター、光モジュール、及び光分析装置
JP5888080B2 (ja) 2012-04-11 2016-03-16 セイコーエプソン株式会社 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、電子機器、及び波長可変干渉フィルターの駆動方法
JP2013238755A (ja) 2012-05-16 2013-11-28 Seiko Epson Corp 光学モジュール、電子機器、食物分析装置、分光カメラ、及び波長可変干渉フィルターの駆動方法
JP6070435B2 (ja) 2013-06-21 2017-02-01 株式会社デンソー ファブリペローフィルタ、それを備えたファブリペロー干渉計、および、ファブリペローフィルタの製造方法
JP6211315B2 (ja) * 2013-07-02 2017-10-11 浜松ホトニクス株式会社 ファブリペロー干渉フィルタ
JP6211833B2 (ja) 2013-07-02 2017-10-11 浜松ホトニクス株式会社 ファブリペロー干渉フィルタ
JP2015143741A (ja) 2014-01-31 2015-08-06 セイコーエプソン株式会社 干渉フィルター、光学フィルターデバイス、光学モジュール、電子機器、及び干渉フィルターの製造方法
JP6356427B2 (ja) * 2014-02-13 2018-07-11 浜松ホトニクス株式会社 ファブリペロー干渉フィルタ
WO2017057372A1 (ja) * 2015-10-02 2017-04-06 浜松ホトニクス株式会社 光検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015810A1 (en) * 2000-02-18 2001-08-23 Hitosh Hara Fabry-perot filter, wavelength-selective infrared detector and infrared gas analyzer using the filter and detector
US20080039696A1 (en) * 2006-08-08 2008-02-14 Olympus Corporation Endoscope system
TW201142884A (en) * 2009-12-18 2011-12-01 Qualcomm Mems Technologies Inc Two-terminal variable capacitance MEMS device
US20140218586A1 (en) * 2013-02-05 2014-08-07 Seiko Epson Corporation Optical module, electronic apparatus, and spectroscopic camera
US20150092272A1 (en) * 2013-09-27 2015-04-02 Seiko Epson Corporation Interference filter, optical filter device, optical module, and electronic apparatus

Also Published As

Publication number Publication date
TW201903441A (zh) 2019-01-16
WO2018230567A1 (ja) 2018-12-20
CN110741304A (zh) 2020-01-31
KR102669193B1 (ko) 2024-05-28
EP3640703A1 (en) 2020-04-22
US20200116992A1 (en) 2020-04-16
KR20200015754A (ko) 2020-02-12
EP3640703A4 (en) 2021-03-31
CN110741304B (zh) 2022-11-11
JP7221200B2 (ja) 2023-02-13
JPWO2018230567A1 (ja) 2020-04-16
US11480783B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
TWI787280B (zh) 光學濾光器系統
US9000833B2 (en) Compensation of changes in MEMS capacitive transduction
Hoffmann et al. Fabrication, characterization and modelling of electrostatic micro-generators
US10101222B2 (en) Piezoelectric position sensor for piezoelectrically driven resonant micromirrors
EP3054580B1 (en) Optical module
US20120090393A1 (en) Unstable electrostatic spring accelerometer
US20130107262A1 (en) Spectrophotometer
Hopcroft et al. Active temperature compensation for micromachined resonators
Zhu et al. A resonant micromachined electrostatic charge sensor
Zotov et al. Investigation of energy dissipation in low frequency vibratory MEMS demonstrating a resonator with 25 minutes time constant
Pierron et al. Methodology for low-and high-cycle fatigue characterization with kHz-frequency resonators
Maiwald et al. Experimental fractal-like instability bands in a resonant silicon-silicon contact pull-in vibration detector
Portelli et al. Resonant micro-mirror electrical characterisation towards tunable digital drive circuit design
Kyynarainen et al. Stability of microelectromechanical devices for electrical metrology
Schroedter et al. Capacitive charge-based self-sensing for resonant electrostatic MEMS mirrors
Bounouh et al. Resonant frequency characterization of MEMS based energy harvesters by harmonic sampling analysis method
Alves Auto-calibrated, thermal-compensated MEMS for smart inclinometers
JP5193541B2 (ja) 角速度検出装置
Li et al. Traceable laser power measurement using a micro-machined force sensor with sub-piconewton resolution
Bounouh et al. Development of electromechanical architectures for ac voltage metrology
Oldham et al. Nonlinear Dynamics of Large-Angle Circular Scanning With an Aluminum Nitride Micro-Mirror
KR101273303B1 (ko) 열 효과를 이용한 마이크로 역학 진동자 기반의 압력센서 및 이를 이용한 압력 측정 방법
Kaliciński et al. Determination of electrical and mechanical parameters in capacitive MEMS accelerometers using electrical measurements
Drabe et al. Accelerometer by means of a resonant microactuator
Sandner et al. Large stroke MOEMS actuators for optical path length modulation in miniaturized FTIR spectrometers