TWI779018B - 具有經取代之三芳胺骨架之高分子量化合物 - Google Patents

具有經取代之三芳胺骨架之高分子量化合物 Download PDF

Info

Publication number
TWI779018B
TWI779018B TW107108352A TW107108352A TWI779018B TW I779018 B TWI779018 B TW I779018B TW 107108352 A TW107108352 A TW 107108352A TW 107108352 A TW107108352 A TW 107108352A TW I779018 B TWI779018 B TW I779018B
Authority
TW
Taiwan
Prior art keywords
molecular weight
weight compound
high molecular
group
organic
Prior art date
Application number
TW107108352A
Other languages
English (en)
Other versions
TW201839029A (zh
Inventor
富樫和法
北原秀良
泉田淳一
金子麻里
Original Assignee
日商保土谷化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商保土谷化學工業股份有限公司 filed Critical 日商保土谷化學工業股份有限公司
Publication of TW201839029A publication Critical patent/TW201839029A/zh
Application granted granted Critical
Publication of TWI779018B publication Critical patent/TWI779018B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/121Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from organic halides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1646End groups comprising organic end groups comprising aromatic or heteroaromatic end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本發明之高分子量化合物含有下列通式(1)表示之經取代之三芳胺結構單元; [化1]
Figure 107108352-A0101-11-0001-1
式中, Ar1 及Ar2 為2價芳香族烴基或2價芳香族雜環基,R1 及R2 表示氫原子、氘原子、氟原子、氯原子、氰基、硝基、烷基、環烷基、烯基、烷氧基、或環烷氧基,X、Y及Z以該等中之至少一者為芳基或雜芳基為條件,為芳基、雜芳基、或和前述R1 及R2 所示之基同樣的基。

Description

具有經取代之三芳胺骨架之高分子量化合物
本發明係關於適合各種顯示裝置之為自發光元件之有機電致發光元件的理想高分子量化合物及該元件。
有機EL元件由於係自發光性元件,故比起液晶元件,較明亮且可見性優異,可為鮮明的顯示。所以已有人積極研究。
有機EL元件,具有將有機化合物之薄膜(有機層)夾持於陽極與陰極的結構。薄膜之形成方法可以大致分為真空蒸鍍法與塗佈法。真空蒸鍍法,係主要使用低分子量材料,在真空中於基板上形成薄膜之方法,是已實用化的技術。另一方面,塗佈法,係主要使用高分子量材料,以噴墨、印刷等使用溶液在基板上形成薄膜的方法,材料的使用效率高,適合大面積化、高精細化,是今後之大面積有機EL顯示器不可欠缺的技術。
使用了低分子量材料的真空蒸鍍法,材料的使用效率極低,若大型化,遮蔽罩的撓曲會變大,難以對於大型基板均勻地蒸鍍。又,尚有製造成本也增高的問題。
另一方面,高分子材料,藉由塗佈使其溶於有機溶劑而得的溶液,即使是大型基板也能形成均勻的膜,可利用其而使用噴墨法、印刷法為代表的塗佈法。所以,可以提高材料的使用效率,能大幅地減低元件製作耗費的製造成本。
迄今,針對使用了高分子材料的有機EL元件已有各種研究,但尚有發光效率、壽命等元件特性未必令人滿意的問題 (例如參照專利文獻1~專利文獻5)。
又,迄今,就使用在高分子有機EL元件的代表性的電洞輸送材料而言,已知有稱為TFB的茀聚合物(參照專利文獻6~專利文獻7)。但是,TFB的電洞輸送性不足且電子阻擋性不足,故會有電子的一部分直接穿過發光層,無法期待發光效率更好的問題。又,因為和鄰接層的膜密接性低,故有無法期待元件的壽命長的問題。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2005-272834號公報 [專利文獻2]日本特開2007-119763號公報 [專利文獻3]日本特開2007-162009號公報 [專利文獻4]日本特開2007-177225號公報 [專利文獻5]國際公開WO2005/049546 [專利文獻6]日本專利第4375820號公報 [專利文獻7]國際公開WO2005/059951
[發明欲解決之課題] 本發明之目的在於提供電洞之注入、輸送性能優異,具電子阻擋能力,且於薄膜狀態的安定性高的高分子材料。 本發明之另一目的為提供具有由上述高分子材料形成之有機層(薄膜),且發光效率高、壽命長的有機EL元件。 [解決課題之方式]
本案發明人等著眼在經取代之三芳胺結構有高電洞注入、輸送能力。合成了各種有經取代之三芳胺結構之高分子量化合物並探討,結果發現除了電洞注入、輸送能力更有耐熱性與薄膜安定性的新穎結構的高分子量化合物,乃完成本發明。
依照本發明,提供一種高分子量化合物,包括下列通式(1)表示之經取代之三芳胺結構單元。 【化1】
Figure 02_image006
式中, Ar1 及Ar2 各為2價芳香族烴基或2價芳香族雜環基, R1 及R2 各為氫原子、氘原子、氟原子、氯原子、氰基、硝基、碳數1~8之烷基、碳數5~10之環烷基、碳數2~6之烯基、碳數1~6之烷氧基、或碳數5~10之環烷氧基, X、Y及Z,以該等中之至少一者為芳基或雜芳基為條件,代表芳基、雜芳基、或和前述R1 及R2 所示之基同樣的基。
本發明之高分子量化合物中,宜為下列態樣。 (1)含有前述結構單元作為重複單元,且按聚苯乙烯換算,具有10,000以上且未達1,000,000之重量平均分子量。 (2)前述通式(1)中,X及Y為芳基或雜芳基,較佳為該等基不具取代基,更佳為該等基係苯基、聯苯基、聯三苯、萘基、菲基、茀基、萘基苯基或三亞苯基(triphenylenyl)。 (3)前述通式(1)中,R1 、R2 及Z為氫原子或氘原子。 (4)前述通式(1)中,X及Z為芳基或雜芳基,較佳為該等基不具取代基,又更佳為該等基係苯基、聯苯基、聯三苯、萘基、菲基、茀基、萘基苯基或三亞苯基。 (5)前述通式(1)中,R1 、R2 及Y為氫原子或氘原子。 (6)前述通式(1)中,X、Y及Z皆為芳基或雜芳基,較佳為該等基不具取代基,更佳為該等基係苯基、聯苯基、聯三苯、萘基、菲基、茀基、萘基苯基或三亞苯基。 (7)前述通式(1)中,R1 及R2 為氫原子或氘原子。 (8)與前述通式(1)表示之單元另外地,具有具至少1個芳香族烴環之基、或具三芳胺骨架之結構單元。
依照本發明,提供一種有機EL元件,具有一對電極及夾持於該電極間的至少一層有機層,其特徵為:該有機層含有上述高分子量化合物。
本發明之有機EL元件中,前述有機層宜為電洞輸送層、電子阻擋層、電洞注入層或發光層。 [發明之效果]
上述具通式(1)表示之經取代之三芳胺結構體單元(2價之基)之本發明之高分子量化合物,例如:係具有該結構單元作為重複單元之聚合物,宜為以GPC(凝膠滲透層析)測得之按聚苯乙烯換算之重量平均分子量落在10,000以上、未達1,000,000之範圍。 該高分子量化合物具有下列特性: (1)電洞之注入特性良好、 (2)電洞之移動度為大、 (3)電子阻擋能力優異、 (4)薄膜狀態安定、 (5)耐熱性優異。 在一對電極間形成了由如此的高分子量化合物形成的有機層,例如電洞輸送層、電子阻擋層、電洞注入層或發光層的有機EL元件,有下列優點: (1)發光效率及電力效率高、 (2)實用驅動電壓低、 (3)壽命長。
<經取代之三芳胺結構單元> 本發明之高分子量化合物擁有之經取代之三芳胺結構單元為2價基,以下列通式(1)表示。 【化2】
Figure 02_image008
前述通式(1)中,Ar1 及Ar2 各為2價芳香族烴基或2價芳香族雜環基,Ar1 與Ar2 可互為相同的基。 上述2價芳香族烴基擁有的芳香族環,可以為單環也可為縮合環。該芳香族環之例可列舉苯環、萘環、蒽環、菲環、茀環、茚環、芘環、苝環、螢光黃母體(Fluoran)環。又,該等芳香族環也可以有取代基。 又,2價芳香族雜環基擁有的雜環可以為單環也可為縮合環。如此的雜環之例可以列舉吡啶環、嘧啶環、三
Figure 107108352-A0304-12-0020-4
環、喹啉環、異喹啉環、苯并呋喃環、苯并噻吩環、吲哚環、咔唑環、苯并
Figure 107108352-A0304-12-0015-1
唑環、苯并噻唑環、二苯并呋喃環、喹
Figure 107108352-A0304-12-0015-1
啉環、苯并咪唑環、吡唑啉環、二苯并呋喃環、二苯并噻吩環、
Figure 107108352-A0304-12-0015-2
啶環、啡啉環、吖啶環、咔啉環等。又,該等芳香族雜環也可以有取代基。
上述芳香族環及芳香族雜環亦可具有之取代基除了可列舉氘原子、氰基、硝基等,尚可列舉下列之基。 鹵素原子,例如:氟原子、氯原子、溴原子、碘原子; 烷基,尤其碳數1~8者,例如:甲基、乙基、正丙基、異丙基、正丁基、異丁基、第三丁基、正戊基、異戊基、新戊基、正己基、異己基、新己基、正庚基、異庚基、辛庚基、正辛基、異辛基、新辛基; 烷氧基,尤其碳數1~8者,例如:甲氧基、乙氧基、丙氧基; 烯基,例如:乙烯基、烯丙基; 芳氧基,例如:苯氧基、甲苯氧基; 芳基,例如:苯基、聯苯基、聯三苯基、萘基、蒽基、菲基、茀基、茚基、芘基、苝基、丙二烯合茀基、三亞苯基; 雜芳基,例如:吡啶基、嘧啶基、三
Figure 107108352-A0304-12-0020-4
基、噻吩基、呋喃基、吡咯基、喹啉基、異喹啉基、苯并呋喃基、苯并噻吩基、吲哚基、咔唑基、苯并
Figure 107108352-A0304-12-0015-1
唑基、苯并噻唑基、喹
Figure 107108352-A0304-12-0015-1
啉基、苯并咪唑基、吡唑基、二苯并呋喃基、二苯并噻吩基、咔啉基; 芳基乙烯基,例如:苯乙烯基、萘基乙烯基; 醯基,例如:乙醯基、苯甲醯基;
又,該等取代基也可更具有上述例示之取代基。 再者,該等取代基宜各自獨立地存在較佳,但該等取代基彼此亦可介隔單鍵、也可以有取代基之亞甲基、氧原子或硫原子而互相鍵結而形成環。
本發明中,上述Ar1 及Ar2 宜為咔唑基、二苯并呋喃基、二苯并噻吩基、萘基、菲基、苯基、及具取代基之茀基較佳。 又,茀基擁有的取代基宜為甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基、正辛基、苯基。
前述通式(1)中,R1 、R2 分別可互為相同,表示氫原子、氘原子、氟原子、氯原子、氰基、硝基、碳數1~6之烷基或烷氧基、碳數5~10之環烷基或環烷氧基、碳數2~6之烯基、或芳氧基。
該R1 、R2 中,上述烷基、烷氧基、環烷基、環烷氧基、烯基、及芳氧基之例可列舉下列之基。 烷基(C1 ~C6 ),例如:甲基、乙基、正丙基、異丙基、正丁基、異丁基、第三丁基、正戊基、異戊基、新戊基、正己基等; 烷氧基(C1 ~C6 ),例如:甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、第三丁氧基、正戊氧基、正己氧基等; 環烷基(C5 ~C10 ),例如:環戊基、環己基、1-金剛烷基、2-金剛烷基等; 環烷氧基(C5 ~C10 ),例如:環戊氧基、環己氧基、環庚氧基、環辛氧基、1-金剛烷氧基、2-金剛烷氧基等; 烯基(C2 ~C6 ),例如:乙烯基、烯丙基、異丙烯基、2-丁烯基等; 芳氧基,例如:苯氧基、甲苯氧基等。
又,上述基R1 、R2 也可以有取代基。該等取代基與2價基Ar1 及Ar2 亦可具有之取代基為同樣的基,該等取代基可進一步有取代基之點,亦和Ar1 及Ar2 亦可具有之取代基同樣。 再者,上述R1 、R2 、及各種取代基,宜各自獨立地存在,但是和Ar1 及Ar2 亦可具有之取代基同樣,亦可互相鍵結而形成環。
本發明之高分子量化合物中,上述R1 、R2 宜為氫原子及氘原子,合成方面,氫原子最理想。
前述通式(1)中,X、Y、Z分別可互為相同,以X~Z至少其中之一者為芳基或雜芳基作為條件,為芳基、雜芳基、或和前述R1 及R2 所示者為同樣的基。
R1 及R2 所示之基之例,如上所述,但上述芳基及雜芳基之例可列舉以下所示之例。 芳基(1價芳香族烴基)之例; 苯基、萘基、蒽基、菲基、茀基、茚基、芘基、苝基、丙二烯合茀基等。 雜芳基(1價芳香族雜環基)之例; 吡啶基、嘧啶基、三
Figure 107108352-A0304-12-0020-4
基、呋喃基、吡咯基、噻吩基、喹啉基、異喹啉基、苯并呋喃基、苯并噻吩基、吲哚基、咔唑基、苯并
Figure 107108352-A0304-12-0015-1
唑基、苯并噻唑基、喹
Figure 107108352-A0304-12-0015-1
啉基、苯并咪唑基、吡唑基、二苯并呋喃基、二苯并噻吩基、
Figure 107108352-A0304-12-0015-2
啶基、啡啉基、吖啶基(acridinyl)基、咔啉基等。
又,上述芳基、雜芳基也可以有取代基。該等取代基和2價基Ar1 及Ar2 亦可具有之取代基為同樣的基,該等取代基可進一步也可以有取代基之點,亦與Ar1 及Ar2 亦可具有之取代基同樣。 例如:上述芳基、雜芳基亦可具有苯基作為取代基,此苯基也可進一步具有苯基作為取代基。亦即芳基為例的話,此芳基可以為聯苯基、聯三苯基、三亞苯基。
再者,上述芳基、雜芳基及各種取代基,宜各自獨立地存在,但與Ar1 及Ar2 亦可具有之取代基同樣亦可互相鍵結而形成環。
本發明中,X~Z所示之基之組合,有下列(a)~(c)之樣式。 樣式(a); X及Y為芳基或雜芳基且Z為其他基(和R1 ,R2 所示之基為同樣的基)之樣式。 樣式(b); X及Z為芳基或雜芳基且Y為其他基(和R1 ,R2 所示之基為同樣的基)之樣式。 樣式(c); X、Y及Z為芳基或雜芳基之樣式。
上述樣式中,芳基及雜芳基宜沒有取代基較佳,更佳為苯基、聯苯基、聯三苯、萘基、菲基、茀基、萘基苯基或三亞苯基。 又,前述樣式(a)及(b)中,成為芳基及雜芳基以外之基的Z或Y,宜為氫原子或氘原子。
本發明中,上述通式(1)表示之經取代之三芳胺結構單元之具體例在圖1~圖45中以結構單元1~135表示。 又,圖1~圖45所示之化學式中,破折線代表對於相鄰的結構單元之鍵結手,從環延伸出的前端為游離的實線,與通式(1)不同,係代表其游離的前端為甲基。
<高分子量化合物> 具上述通式(1)表示之結構單元之本發明之高分子量化合物,如前述,電洞之注入特性、電洞之移動度、電子阻擋能力、薄膜安定性、耐熱性等特性優良,但從使該等特性更高且確保成膜性的觀點,宜為具有上述結構單元作為重複單元之聚合物較佳,例如:依GPC測定之按聚苯乙烯換算之重量平均分子量為10,000以上未達1,000,000,更佳為10,000以上未達500,000,更佳為10,000以上未達200,000之範圍。
又,本發明之高分子量化合物,可為具上述結構單元之均聚物,例如為了要確保採用在利用塗覆形成有機EL元件中之有機層時之塗佈性、與其他層之密接性、耐久性,宜為與其他結構體單元之共聚物較佳。 如此的其他之結構單元,例如有為了提高對於有機溶劑之溶解性之結構單元、為了提高聚合物之熱交聯性之結構單元。
為了提高對於有機溶劑之溶解性之結構單元,具有至少1個芳香族烴環,其具體例示於圖46~圖50中的式(2a)~(2x)。
又上式(2a)~(2x)中,破折線代表對於鄰接之結構單元之鍵結手,從環延伸出的前端游離的實線,代表其前端為甲基。 又,上式中,a~d為以下之數。 a=0、1或2 b=0、1、2或3 c=0、1、2、3或4 d=0、1、2、3、4或5
又,式(2a)~(2x)中, R表示 氫原子、氘原子、氰基、硝基; 氟原子、氯原子、溴原子、碘原子等鹵素原子; 各為碳數40以下(尤其3~40)之烷基、環烷基、烷氧基或硫烷氧基。 再者,Ar5 ~Ar8 彼此可相同也可不同,表示1價或2價之芳香族烴基或芳香族雜環基。該1價之芳香族烴基或芳香族雜環基可列舉和就關於通式(1)之基X~Z例示作為芳基或雜芳基之基為同樣的基。又,2價之芳香族烴基及2價之芳香族雜環基,和在通式(1)中之基Ar1 及Ar2 例示者相同。當然,該等基皆亦可有取代基。
又,為了提高熱交聯性之結構單元,係和通式(1)表示之結構單元不同的具三芳胺骨架之結構單元,其具體例示於圖51~圖56的式(3a)~(3y)。 該等式中,破折線、R及a~d皆和前述式(2a)~(2x)中者為相同含意。
本發明之高分子量化合物中,當通式(1)表示之結構單元1以A表示、為了使對於有機溶劑之溶解性更好的結構單元以B表示、為了提高熱交聯性的結構單元以C表示時,結構單元A之含量為1莫耳%以上,尤其5莫耳%以上較佳,就以如此的量含有結構單元A作為條件,含有結構單元B之含量為1莫耳%以上、尤其30~90莫耳%之量,進而含有1莫耳%以上之結構單元C、尤其5~20莫耳%之量較佳,若為以符合如此的條件含有結構單元A、B及C之3元共聚物,最適合形成有機EL元件之有機層。
如此的本發明之高分子量化合物,可藉由鈴木聚合反應、HARTWIG-BUCHWALD聚合反應,分別形成C-C鍵或C-N鍵,以將各結構單元予以連鎖而合成。 亦即,準備具各結構單元之單元化合物,將此單元化合物予以適當地硼酸酯化或鹵化,並使用適當觸媒進行縮聚反應,可合成本發明之高分子量化合物。
例如:用以導入通式(1)之結構單元之化合物可使用下列通式(1a)表示之三芳胺衍生物。 【化3】
Figure 02_image010
上式中, Q為氫原子或鹵素原子(尤其Br), Ar1 、Ar2 、X、Y、Z、及R1 、R2 皆和通式(1)所示者為相同。
亦即上述通式(1a)中,Q為氫原子者係用以導入通式(1)之結構單元之單元化合物,Q為鹵素原子者係用以合成聚合物之鹵化物。
上述本發明之高分子量化合物藉由溶於苯、甲苯、二甲苯、苯甲醚等芳香族系有機溶劑並製備成塗佈液,將此塗佈液塗覆在預定之基材上並加熱乾燥,可以形成電洞注入性、電洞輸送性、電子阻擋性等特性優異之薄膜。該薄膜的耐熱性亦良好,進而與其他層之密接性亦良好。 例如:上述高分子量化合物可以作為有機EL元件之電洞注入層及/或電洞輸送層之構成材料使用。利用如此的高分子量化合物形成的電洞注入層或電洞輸送層,相較於以習知材料形成者,電洞之注入性較高、移動度較大、電子阻擋性高,可以幽禁於發光層內生成的激子,進而能使電洞與電子再結合的機率更高,可獲得高發光效率,而且能將驅動電壓降低,達成有機EL元件之耐久性提高的好處。 又,具如上述電特性之本發明之高分子量化合物,當然也適合使用電子阻擋層、發光層。
<有機EL元件> 具備使用上述本發明之高分子量化合物形成之有機層的有機EL元件,例如具有圖57所示之結構。 亦即在玻璃基板1(為透明樹脂基板等透明基板即可)之上,設置透明陽極2、電洞注入層3、電洞輸送層4、發光層5、電子輸送層6及陰極7。 當然適用了本發明之高分子量化合物的有機EL元件,不限定於上述層結構,可以在發光層5與電子輸送層6之間設置電洞阻擋層,又,也可以在電洞輸送層4與發光層5之間設置電子阻擋層等,進而也可以在陰極7與電子輸送層6之間設置電子注入層。再者,也可省略一些層。例如:可為在基板1上設置陽極2、電洞輸送層4、發光層5、電子輸送層6及陰極7的簡單層結構。又,也可為將有相同機能的層重疊的2層結構。
本發明之高分子量化合物,發揮其電洞注入性、電洞輸送性等特性,適合作為在上述陽極2與陰極7之間設置之有機層(例如:電洞注入層3、電洞輸送層4、發光層5或未圖示的電洞阻擋層)之形成材料。
上述有機EL元件中,透明陽極2可由其本身公知之電極材料形成,亦可在基板1(玻璃基板等透明基板)上蒸鍍如ITO、金之類之功函數大之電極材料以形成。
又,透明陽極2上設置的電洞注入層3,可以使用將本發明之高分子量化合物溶於例如甲苯、二甲苯、苯甲醚等芳香族系有機溶劑而得的塗佈液形成。亦即藉由將此塗佈液利用旋塗、噴墨等以塗覆在透明陽極2上,可以形成電洞注入層3。
又,亦可不使用本發明之高分子量化合物,而使用以往公知之材料,例如以下之材料形成。 銅酞花青為代表的卟啉化合物; 光芒型的三苯胺衍生物; 具有以單鍵或以不含雜原子之2價基連結之結構之芳胺(例如:三苯胺三聚物及4聚物); 如六氰基氮雜三亞苯之接受體性之雜環化合物; 塗佈型之高分子材料,例如聚(3,4-伸乙基二氧噻吩)(PEDOT)、聚(苯乙烯磺酸酯)(PSS)等。 使用如此的材料形成層(薄膜)時,可藉由利用蒸鍍法、旋塗法、噴墨法等所為之塗覆來成膜。這些方法針對其他層亦同,可因應膜形成材料之種類,利用蒸鍍法、塗覆法來進行成膜。
上述電洞注入層3之上設置之電洞輸送層4,也和電洞注入層3同樣,可利用使用本發明之高分子量化合物之以旋塗、噴墨等所為之塗覆來形成。
又,也可使用習知公知之電洞輸送材料來形成電洞輸送層4。如此的電洞輸送材料,代表者如下。 聯苯胺衍生物,例如: N,N’-二苯基-N,N’-二(m-甲苯基)聯苯胺(以下簡稱TPD)、 N,N’-二苯基-N,N’-二(α-萘基)聯苯胺(以下簡稱NPD)、 N,N,N’,N’-四聯苯基聯苯胺; 胺系衍生物,例如: 1,1-雙[4-(二-4-甲苯胺基)苯基]環己烷(以下簡稱TAPC); 各種三苯胺三聚物及四聚物; 也可作為電洞注入層用使用的塗佈型高分子材料。
上述電洞輸送層之化合物,含有本發明之高分子量化合物,可分別單獨成膜,也可將2種以上混合並成膜。又,可使用上述化合物之1種或多數種形成多數層,並將如此的層疊層成的多層膜製成電洞輸送層。
又,也可製成兼為電洞注入層3與電洞輸送層4的層,如此的電洞注入・輸送層可以利用使用PEDOT等高分子材料的塗覆來形成。
又電洞輸送層4(電洞注入層3亦同)中,可使用對該層通常使用的材料進一步將參溴苯胺六氯銻、軸烯衍生物(例如:WO2014/009310參照)予以P摻雜者。又,可使用具TPD基本骨架之高分子量化合物等來形成電洞輸送層4(或電洞注入層3)。
再者,未圖示之電子阻擋層(可設在電洞輸送層4與發光層5之間),亦可使用具電子阻擋作用之公知電子阻擋性化合物,例如:咔唑衍生物、具三苯基矽基且有三芳胺結構之化合物等形成。咔唑衍生物及具三芳胺結構之化合物之具體例如下。 咔唑衍生物之例 4,4’,4’’-三(N-咔唑基)三苯基胺(以下簡稱TCTA)、 9,9-雙[4-(咔唑-9-基)苯基]茀、1,3-雙(咔唑-9-基)苯(以下簡稱mCP)、 2,2-雙(4-咔唑-9-基苯基)金剛烷(以下簡稱Ad-Cz); 具三芳胺結構之化合物之例 9-[4-(咔唑-9-基)苯基]-9-[4-(三苯基矽基)苯基]-9H-茀;
電子阻擋層,可使用如上述公知之電子阻擋性材料單獨1種或2種以上形成,但是也可使用該等電子阻擋性材料之1種或多種形成多數層,並將如此的層疊層成的多層膜作為電子阻擋層。
有機EL元件之發光層5,除了可使用以Alq3 為主的喹啉酚衍生物之金屬錯合物以外,也可使用鋅、鈹、鋁等各種金屬的錯合物、蒽衍生物、雙苯乙烯基苯衍生物、芘衍生物、
Figure 107108352-A0304-12-0015-1
唑衍生物、聚對伸苯基伸乙烯衍生物等發光材料來形成。
又,發光層5也可以由主體材料與摻雜物材料構成。 此情形的主體材料除了可使用上述發光材料,可使用噻唑衍生物、苯并咪唑衍生物、聚二烷基茀衍生物等,再者,也可使用前述本發明之高分子量化合物。 摻雜物材料可使用喹吖啶酮、香豆素、紅螢烯、苝及它們的衍生物、苯并哌喃衍生物、若丹明衍生物、胺基苯乙烯基衍生物等。
如此的發光層5可為使用了各發光材料的1種或2種以上的單層結構,也可為將多數層疊層成的多層結構。
再者,就發光材料而言,可使用磷光發光材料來形成發光層5。 就磷光發光材料而言,可使用銥、鉑等金屬錯合物之磷光發光體。例如:Ir(ppy)3 等綠色之磷光發光體、FIrpic、FIr6 等藍色之磷光發光體、Btp2 Ir(acac)等紅色之磷光發光體等,該等磷光發光材料可摻雜在電洞注入・輸送性之主體材料、電子輸送性之主體材料後使用。
電洞注入、輸送性之主體材料可使用4,4’-二(N-咔唑基)聯苯(以後簡稱CBP)、TCTA、mCP等咔唑衍生物等,再者也可使用本發明之高分子量化合物。 又,電子輸送性之主體材料可使用對雙(三苯基矽基)苯(以後簡稱UGH2)、2,2’,2’’-(1,3,5-伸苯基)-參(1-苯基-1H-苯并咪唑)(以後簡稱TPBI)等。
磷光性發光材料對於主體材料的摻雜,為避免濃度消光,宜於對於發光層全體為1~30重量%之範圍,以共蒸鍍進行摻雜較佳。
又,發光材料也可使用PIC-TRZ、CC2TA、PXZ-TRZ、4CzIPN等CDCB衍生物等發射延遲螢光的材料(參照Appl.Phys.Let.,98,083302(2011))。
本發明之高分子量化合物藉由載持稱為摻雜物之螢光發光體、磷光發光體或發射延遲螢光的材料而形成發光層5,可降低驅動電壓達成發光效率有所改善的有機EL元件。
作為發光層5與電子輸送層6之間設置之電洞阻擋層(圖未顯示),可使用本身公知之具電洞阻擋作用之化合物來形成。 如此的具電洞阻擋作用之公知化合物,例如可列舉如下。 浴銅靈(Bathocuproin)(以後簡稱BCP)等啡啉衍生物; 雙(2-甲基-8-喹啉酚)-4-苯基酚酸鋁(III)(以後簡稱BAlq)等喹啉酚衍生物之金屬錯合物; 各種稀土類錯合物; 三唑衍生物; 三
Figure 107108352-A0304-12-0020-4
衍生物;
Figure 107108352-A0304-12-0015-1
二唑衍生物。 該等材料也可使用在以下所述之電子輸送層6之形成,進而可作為如此的電洞阻擋層與電子輸送層6使用。
如此的電洞阻擋層亦可為單層或多層的疊層結構,各層可使用具上述電洞阻擋作用之化合物及本發明之高分子量化合物之1種或2種以上成膜。
電子輸送層6,可使用本發明之萘并三唑衍生物,除此以外可使用本身公知之電子輸送性之化合物,例如:Alq3 、BAlq為主的喹啉酚衍生物之金屬錯合物,此外可使用各種金屬錯合物、三唑衍生物、三
Figure 107108352-A0304-12-0020-4
衍生物、
Figure 107108352-A0304-12-0015-1
二唑衍生物、噻二唑衍生物、碳二亞胺衍生物、喹
Figure 107108352-A0304-12-0015-1
啉衍生物、啡啉衍生物、矽羅衍生物等形成。 此電子輸送層6也可製成單層或多層的疊層結構。各層可使用上述電子輸送性化合物中之1種或2種以上成膜。
再者,視需要設置之電子注入層(圖未顯示),亦可使用本身公知者,例如:氟化鋰、氟化銫等鹼金屬鹽、氟化鎂等鹼土類金屬鹽、氧化鋁等金屬氧化物等形成。
有機EL元件之陰極7可使用如鋁之功函數低之電極材料、如鎂銀合金、鎂銦合金、鋁鎂合金之功函數更低的合金當作電極材料。
本發明中,藉由使用具前述通式(1)表示之經取代之三芳胺結構體之高分子量化合物來形成電洞注入層3、電洞輸送層4、發光層5、及未圖示之電子阻擋層中之至少任一層,可達成發光效率及電力效率高、實用驅動電壓低、發光開始電壓低、有極優良的耐久性的有機EL元件。尤其此有機EL元件具有高發光效率且驅動電壓降低,電流耐性有所改善,最大發光亮度提高。 [實施例]
以下依實驗例説明本發明。 又以下之説明中,本發明之高分子量化合物擁有的通式(1)表示之結構單元示為「結構單元A」、為了提高對於有機溶劑之溶解性而導入之結構單元示為「結構單元B」、為了提高熱交聯性而導入之結構單元示為「結構單元C」。 又,合成之化合物之精製,係依利用管柱層析所為之精製、利用溶劑所為之晶析法實施。化合物之鑑定係依NMR分析實施。
為了製造本發明之高分子量化合物,合成以下之中間體1~41。
<中間體1之合成> 【化4】
Figure 02_image012
(中間體1) 中間體1係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 1,1’:2’,1’’-聯三苯-4’-胺  5.0g 碘苯  9.2g 第三丁醇鈉  5.9g 二甲苯  25ml 其次加入碘化銅(I)0.4g、N,N’-二甲基乙二胺0.4g並加熱,於125℃攪拌8小時。 冷卻至室溫後添加甲苯100ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將粗製物利用管柱層析(甲苯/正己烷=1/10)精製,以獲得中間體1的淡黃色粉體6.6g(產率81%)。
<中間體2之合成> 【化5】
Figure 02_image014
(中間體2) 中間體2係為了將用以導入結構單元A之之單元化合物即中間體1予以聚合者,係中間體1經二溴化而成者。
將6.4g之先前合成的中間體1、及四氫呋喃120ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺5.7g,攪拌4小時。 其次加水180ml,利用過濾收集析出的固體。將獲得之固體以甲醇洗淨以獲得中間體2的白色粉體8.3g(產率93%)。
<中間體3之合成> 【化6】
Figure 02_image016
(中間體3) 中間體3係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將49.3g 之3-胺基聯苯、及N,N-二甲基甲醯胺300ml添加到經氮氣取代的反應容器,於室溫添加N-溴琥珀醯亞胺54.4g,攪拌5.5小時。 其次加入水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將粗製物利用管柱層析(甲苯/正己烷=1/1)精製以獲得中間體3之橙色油69.6g(產率96%)。
<中間體4之合成> 【化7】
Figure 02_image018
(中間體4) 中間體4係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 中間體3  3.6g 4-聯苯硼酸  3.2g 甲苯  36ml 乙醇  9ml 2M-碳酸鉀水溶液  11ml 其次添加肆三苯基膦鈀(0)0.50g並加熱,於75℃攪拌4小時。 冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將此有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將粗製物實施利用氯仿/甲醇所為之晶析精製,獲得中間體4之類白色粉體2.6g(產率55%)。
<中間體5之合成> 【化8】
Figure 02_image020
(中間體5) 中間體5係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 中間體4  2.5g 碘苯  3.5g 第三丁醇鈉  2.2g 二甲苯 15ml 其次加入碘化銅(I)0.2g、N,N’-二甲基乙二胺0.1g並加熱,於125℃攪拌12小時。 冷卻至室溫後添加甲苯150ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將粗製物利用管柱層析(甲苯/正己烷=1/10)精製以獲得中間體5的白色粉體2.4g(產率65%)。
<中間體6之合成> 【化9】
Figure 02_image022
(中間體6) 中間體6,係為了將用於導入結構單元A之單元化合物即中間體5予以聚合者,係將中間體5予以二溴化而成者。
將2.4g之先前合成的中間體5、及四氫呋喃50ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺1.8g,攪拌4小時。 其次加水100ml,利用過濾收集析出的固體。將獲得之固體以甲醇洗淨,獲得中間體6的白色粉體3.1g(產率97%)。
<中間體7之合成> 【化10】
Figure 02_image024
(中間體7) 中間體7係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 1-溴-4-(萘基-2-基)-苯  10g 雙(頻哪醇合)二硼  9.9g 乙酸鉀  5.2g 1,4-二
Figure 107108352-A0304-12-0015-1
烷  100ml 其次加入{1,1’-雙(二苯基膦基)二茂鐵}二氯化鈀(II)之二氯甲烷加成物0.87g,並加熱,於90℃攪拌11.5小時。 冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將此有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將粗製物利用正己烷進行再結晶,獲得中間體7的類白色粉體7.6g(產率66%)。
<中間體8之合成> 【化11】
Figure 02_image026
(中間體8) 中間體8係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 中間體7  7.3g 中間體3  5.0g 甲苯  48ml 乙醇  12ml 2M-碳酸鉀水溶液  16ml 其次加入肆三苯基膦鈀(0)0.70g並加熱,於75℃攪拌8小時。 冷卻至室溫後加入水與甲苯,利用分液操作以收集有機層。將此有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將粗製物利用甲醇進行再結晶,以獲得中間體8的類白色粉體4.1g(產率55%)。
<中間體9之合成> 【化12】
Figure 02_image028
(中間體9) 中間體9係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 中間體8  4.0g 碘苯  5.3g 第三丁醇鈉  3.1g 二甲苯  20ml 其次,添加碘化銅(I)0.2g、N,N’-二甲基乙二胺0.2g並加熱,於125℃攪拌10.5小時。 冷卻至室溫後添加甲苯150ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將粗製物以管柱層析(甲苯/正己烷=1/9)精製,獲得中間體9的白色粉體4.5g(產率79%)。
<中間體10之合成> 【化13】
Figure 02_image030
(中間體10) 中間體10,係為了將用以導入結構單元A之單元化合物即中間體9予以聚合者,係將中間體9予以二溴化而成者。
將4.4g之先前合成的中間體9、及四氫呋喃60ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺3.0g,攪拌6.5小時。 其次加水120ml,利用過濾收集析出的固體。將獲得之固體以甲醇洗淨以獲得中間體10的白色粉體5.7g(產率99%)。
<中間體11之合成> 【化14】
Figure 02_image032
(中間體11) 中間體11係本發明之高分子量化合物擁有之結構單元B之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 2-胺基-9,9-正二辛基茀  12.9g 碘苯  14.3g 第三丁醇鈉  9.2g 二甲苯  20ml 其次,添加碘化銅(I)0.61g、N,N’-二甲基乙二胺0.57g,並加熱,於125℃攪拌18小時。 冷卻至室溫後添加甲苯150ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將粗製物以管柱層析(正己烷)精製,獲得中間體11的黃色油14.5g(產率82%)。
<中間體12之合成> 【化15】
Figure 02_image034
(中間體12) 中間體12係本發明之高分子量化合物擁有之結構單元B之導入所使用的中間體化合物。
將13.2g之先前合成的中間體11、及四氫呋喃250ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺8.2g,攪拌3小時。 加入水500ml與甲苯500ml,利用分液操作以收集有機層。將此有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將粗製物以管柱層析(正己烷)精製,獲得中間體12的黃色油17.0g(產率94%)。
<中間體13之合成> 【化16】
Figure 02_image036
(中間體13) 中間體13係為了將用以導入結構單元B之單元化合物即中間體11予以聚合者,係中間體12予以二硼酸化成者。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 中間體12  16.7g 雙(頻哪醇合)二硼  11.9g 乙酸鉀  5.7g 1,4-二
Figure 107108352-A0304-12-0015-1
烷  170ml 其次加入{1,1’-雙(二苯基膦基)二茂鐵}二氯化鈀(II)之二氯甲烷加成物0.19g,並加熱,於100℃攪拌7小時。 冷卻至室溫後加入水與甲苯,利用分液操作以收集有機層。將此有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將粗製物以管柱層析(乙酸乙酯/正己烷=1/20)精製,獲得中間體13的白色粉體7.6g(產率40%)。
<中間體14之合成> 【化17】
Figure 02_image038
(中間體14) 中間體14係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 4-(萘基-1-基)-苯基硼酸  3.2g 中間體3  2.9g 甲苯  28ml 乙醇  7ml 2M-碳酸鉀水溶液  9ml 其次加入肆三苯基膦鈀(0)0.41g並加熱,於75℃攪拌6小時。 冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將此有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將粗製物以管柱層析(氯仿/正己烷=1/1)精製,以獲得中間體14的無色透明油3.3g(產率76%)。
<中間體15之合成> 【化18】
Figure 02_image040
(中間體15) 中間體15係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 中間體14  3.1g 碘苯  3.7g 第三丁醇鈉  2.4g 二甲苯  15ml 其次添加碘化銅(I)0.16g、N,N’-二甲基乙二胺0.15g並加熱,於125℃攪拌14.5小時。 冷卻至室溫後添加甲苯150ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將粗製物以管柱層析(甲苯/正己烷=1/9)精製,以獲得中間體15的白色粉體3.3g(產率76%)。
<中間體16之合成> 【化19】
Figure 02_image042
(中間體16) 中間體16係為了將用以導入結構單元A之單元化合物即中間體15予以聚合者,係中間體15予以二溴化而成者。
將3.2g之先前合成的中間體15、及四氫呋喃50ml添加到經氮氣取代的反應容器,於室溫添加N-溴琥珀醯亞胺2.2g,攪拌6小時。 其次加入水100ml、甲苯300ml,利用分液操作以收集有機層。將此有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將粗製物以乙酸乙酯/正己烷=1/10進行再結晶,以獲得中間體16的白色粉體3.6g(產率87%)。
<中間體17之合成> 【化20】
Figure 02_image044
(中間體17) 中間體17係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2-(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二甲基茀  5.7g 中間體3  4.0g 甲苯  40ml 乙醇  10ml 2M-碳酸鉀水溶液  12ml 其次添加肆三苯基膦鈀(0)0.56g並加熱,於75℃攪拌11小時。 冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將此有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將粗製物以管柱層析(氯仿/正己烷=1/1)精製,獲得中間體17的淡黃色粉體4.0g(產率69%)。
<中間體18之合成> 【化21】
Figure 02_image046
(中間體18) 中間體18係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 中間體17  3.9g 碘苯  4.8g 第三丁醇鈉  3.1g 二甲苯  20ml 其次加入碘化銅(I)0.21g、N,N’-二甲基乙二胺0.19g並加熱,於125℃攪拌16小時。 冷卻至室溫後加入甲苯120ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將粗製物以管柱層析(甲苯/正己烷=1/9)精製,獲得中間體18的白色粉體4.5g(產率81%)。
<中間體19之合成> 【化22】
Figure 02_image048
(中間體19) 中間體19,係用以將為了導入結構單元A之單元化合物即中間體18予以聚合者,係中間體18經二溴化而成者。
將4.4g之先前合成的中間體18、及四氫呋喃60ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺3.1g,攪拌5小時。 其次加水120ml,利用過濾收集析出的固體。將獲得之固體以甲醇洗淨,獲得中間體19的白色粉體5.6g(產率97%)。
<中間體20之合成> 【化23】
Figure 02_image050
(中間體20) 中間體20係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 3-聯苯硼酸  6.2g 中間體3  7.0g 甲苯  72ml 乙醇  18ml 2M-碳酸鉀水溶液  22ml 其次,加入肆三苯基膦鈀(0)1.0g,並加熱,於75℃攪拌5小時。 放冷至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後,於減壓下濃縮以獲得粗製物。獲得之粗製物以甲醇洗淨,以獲得中間體20的類白色固體6.5g(產率72%)。
<中間體21之合成> 【化24】
Figure 02_image052
(中間體21) 中間體21係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 中間體20  6.4g 碘苯  9.0g 第三丁醇鈉  5.7g 二甲苯  33ml 其次加入碘化銅(I)0.4g、N,N’-二甲基乙二胺0.4g,並加熱,於125℃攪拌15小時。 放冷至室溫後加入甲苯240ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將獲得之粗製物以管柱層析(甲苯/正己烷=1/9)精製,獲得中間體21的類白色固體8.3g(產率88%)。
<中間體22之合成> 【化25】
Figure 02_image054
(中間體22) 中間體22,係為了將用以導入結構單元A之單元化合物即中間體21予以聚合者,係中間體21經二溴化而成者。
將8.2g之先前合成的中間體21、及四氫呋喃125ml添加到經氮氣取代的反應容器,於室溫添加N-溴琥珀醯亞胺6.2g,攪拌4小時。 加入水250ml,利用過濾收集析出的固體。將獲得之固體以甲醇洗淨,以獲得中間體22的白色固體10.6g(產率97%)。
<中間體23之合成> 【化26】
Figure 02_image056
(中間體23) 中間體23係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 4-聯苯硼酸  19.0g 3-溴苯胺  15.0g 甲苯  144ml 乙醇  36ml 2M-碳酸鉀水溶液  67ml 其次,添加肆三苯基膦鈀(0)3.0g,並加熱,於75℃攪拌5小時。 放冷至室溫後以過濾收集析出的固體,以甲醇洗淨。獲得之粗製物以管柱層析(甲苯)精製,獲得中間體23的類白色固體13.1g(產率61%)。
<中間體24之合成> 【化27】
Figure 02_image058
(中間體24) 中間體24係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將11.0g之中間體23、及N,N-二甲基甲醯胺170ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺8.0g,攪拌2小時。 添加水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將獲得之粗製物以管柱層析(氯仿/正己烷=1/1)精製,獲得中間體24的類白色固體8.1g(產率59%)。
<中間體25之合成> 【化28】
Figure 02_image060
(中間體25) 中間體25係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 3-聯苯硼酸  2.2g 中間體24   3.3g 甲苯  34ml 乙醇  9ml 2M-碳酸鉀水溶液  8ml 其次,添加肆三苯基膦鈀(0)0.4g並加熱,於71℃攪拌10小時。 放冷至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。獲得之粗製物以管柱層析(甲苯)精製,獲得中間體12的淡黃色非晶質固體2.9g(產率71%)。
<中間體26之合成> 【化29】
Figure 02_image062
(中間體26) 中間體26係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 中間體25  2.8g 碘苯  3.2g 第三丁醇鈉  2.0g 二甲苯  14ml 其次添加碘化銅(I)0.1g、N,N’-二甲基乙二胺0.1g並加熱,於125℃攪拌14小時。 放冷至室溫後加入甲苯100ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將獲得之粗製物以管柱層析(甲苯/正己烷=1/9)精製,獲得中間體26的類白色固體3.1g(產率80%)。
<中間體27之合成> 【化30】
Figure 02_image064
(中間體27) 中間體27係為了將用以導入結構單元A之單元化合物即中間體26予以聚合者,係中間體26經二溴化而成者。
將3.0g之先前合成的中間體26、及四氫呋喃45ml添加到經氮氣取代的反應容器,於室溫添加N-溴琥珀醯亞胺2.0g,攪拌4小時。 加水90ml,利用過濾收集析出的固體。將獲得之固體以甲醇洗淨,獲得中間體27的白色固體3.6g(產率92%)。
<中間體28之合成> 【化31】
Figure 02_image066
(中間體28) 中間體28係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 9,9-二甲基茀-2-硼酸  38.1g 3-溴苯胺  25.0g 甲苯  240ml 乙醇  60ml 2M-碳酸鉀水溶液  111ml 其次加入肆三苯基膦鈀(0)5.0g,並加熱,於75℃攪拌7小時。 放冷至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。獲得之粗製物以甲醇洗淨,獲得中間體28的類白色固體22.4g(產率54%)。
<中間體29之合成> 【化32】
Figure 02_image068
(中間體29) 中間體29係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將22.3g之中間體28、及N,N-二甲基甲醯胺340ml添加到經氮氣取代的反應容器,於室溫添加N-溴琥珀醯亞胺13.9g,攪拌3小時。 加入水及氯仿,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。獲得之粗製物以管柱層析(甲苯)精製,獲得中間體29的類白色固體24.6g(產率87%)。
<中間體30之合成> 【化33】
Figure 02_image070
(中間體30) 中間體30係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 4-聯苯硼酸  4.8g 中間體29  8.0g 甲苯  84ml 乙醇  21ml 2M-碳酸鉀水溶液  17ml 其次加入肆三苯基膦鈀(0)0.5g並加熱,於73℃攪拌5小時。 放冷至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。獲得之粗製物以管柱層析(氯仿/正己烷=1/4)精製,獲得中間體30的褐色非晶質固體8.3g(產率77%)。
<中間體31之合成> 【化34】
Figure 02_image072
(中間體31) 中間體31係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 中間體30  8.2g 碘苯  8.4g 第三丁醇鈉  5.4g 二甲苯  40ml 其次加入碘化銅(I)0.4g、N,N’-二甲基乙二胺0.3g,並加熱,於125℃攪拌18小時。 放冷至室溫後加入甲苯250ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。獲得之粗製物以管柱層析(甲苯/正己烷=1/4)精製,獲得中間體31的白色非晶質固體4.6g(產率41%)。
<中間體32之合成> 【化35】
Figure 02_image074
(中間體32) 中間體32係為了將用以導入結構單元A之單元化合物即中間體31予以聚合者,係中間體31經二溴化而成者。
將4.4g之先前合成的中間體31、及四氫呋喃65ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺2.7g,攪拌5小時。 加水130ml,利用過濾收集析出的固體。將獲得之固體以甲醇洗淨,獲得中間體32的白色固體3.9g(產率70%)。
<中間體33之合成> 【化36】
Figure 02_image076
(中間體33) 中間體33係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 9,9-二甲基茀-2-硼酸  4.9g 中間體29  7.7g 甲苯  84ml 乙醇  21ml 2M-碳酸鉀水溶液  16ml 其次加入肆三苯基膦鈀(0)0.5g並加熱,於73℃攪拌6小時。 放冷至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。獲得之粗製物以管柱層析(乙酸乙酯/正己烷=1/4)精製,獲得中間體33的淡黃色固體7.7g(產率70%)。
<中間體34之合成> 【化37】
Figure 02_image078
(中間體34) 中間體34係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 中間體33  7.6g 碘苯  7.1g 第三丁醇鈉  4.6g 二甲苯 38ml 其次加入碘化銅(I)0.3g、N,N’-二甲基乙二胺0.3g並加熱,於125℃攪拌28小時。 放冷至室溫後加入甲苯250ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將獲得之粗製物以管柱層析(甲苯/正己烷=1/9)精製,獲得中間體34的類白色固體2.9g(產率29%)。
<中間體35之合成> 【化38】
Figure 02_image080
(中間體35) 中間體35係為了將用以導入結構單元A之單元化合物即中間體34予以聚合者,係中間體34經二溴化而成者。
將2.7g之先前合成的中間體34、及四氫呋喃60ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺1.6g,攪拌5小時。 添加水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。對於獲得之粗製物實施利用甲醇所為之分散洗淨,獲得中間體35的白色固體3.1g(產率99%)。
<中間體36之合成> 【化39】
Figure 02_image082
(中間體36) 中間體36係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 萘-2-硼酸  55.0g 3-溴苯胺  50.0g 甲苯  480ml 乙醇  120ml 2M-碳酸鉀水溶液  223ml 其次添加肆三苯基膦鈀(0)1.7g並加熱,於75℃攪拌7小時。 放冷至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。將獲得之粗製物以己烷洗淨,獲得中間體36的類白色固體55.5g(產率87%)。
<中間體37之合成> 【化40】
Figure 02_image084
(中間體37) 中間體37係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將55.4g之中間體36、及N,N-二甲基甲醯胺554ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺45.0g,攪拌4小時。 添加水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。獲得之粗製物以管柱層析(甲苯)精製,獲得中間體37的紅褐色油51.1g(產率66%)。
<中間體38之合成> 【化41】
Figure 02_image086
(中間體38) 中間體38係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 中間體37  6.4g 中間體7  7.6g 甲苯  55ml 乙醇  14ml 2M-碳酸鉀水溶液  16ml 其次加入肆三苯基膦鈀(0)0.2g並加熱,於73℃攪拌10小時。 放冷至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後,於減壓下濃縮,獲得中間體38的橙色固體6.0g(產率69%)。
<中間體39之合成> 【化42】
Figure 02_image088
(中間體39) 中間體39係本發明之高分子量化合物擁有之結構單元A之導入所使用的中間體化合物。
將下列成分添加到經氮氣取代的反應容器內。 中間體38  6.0g 碘苯  6.3g 第三丁醇鈉  4.1g 二甲苯  30ml 其次加入碘化銅(I)0.3g、N,N’-二甲基乙二胺0.3g並加熱,於125℃攪拌17小時。 放冷至室溫後加入甲苯190ml,攪拌1小時並過濾。將濾液於減壓下濃縮以獲得粗製物。將獲得之粗製物以管柱層析(甲苯/正己烷=1/9)精製,獲得中間體39的白色固體4.4g(產率54%)。
<中間體40之合成> 【化43】
Figure 02_image090
(中間體40) 中間體40係為了將用以導入結構單元A之單元化合物即中間體39予以聚合者,係中間體39經二溴化而成者。
將4.3g之先前合成的中間體39、及四氫呋喃100ml添加到經氮氣取代的反應容器,於室溫加入N-溴琥珀醯亞胺2.6g,攪拌8小時。 添加水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。獲得之粗製物以甲醇洗淨,獲得中間體40的白色固體4.8g(產率89%)。
<中間體41之合成> 【化44】
Figure 02_image092
(中間體41) 中間體41係用以導入結構單元B之中間體化合物。
將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 1,4-二溴-2,5-雙(正己基)苯  10.0g 雙(頻哪醇合)二硼  13.8g 乙酸鉀  7.3g 1,4-二
Figure 107108352-A0304-12-0015-1
烷  100ml 其次加入{1,1’-雙(二苯基膦基)二茂鐵}二氯化鈀(II)的二氯甲烷加成物0.4g並加熱,於90℃攪拌10小時。 冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將此有機層以無水硫酸鎂脱水後於減壓下濃縮以獲得粗製物。獲得之粗製物以甲醇洗淨,獲得中間體41的類白色固體10.7g(產率99%)。
<實施例1> 高分子量化合物A之合成; 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  2.9g 中間體2  2.0g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)-胺  0.4g 磷酸三鉀  4.0g 甲苯  9ml 水  5ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  27ml 其次加入3.3mg之乙酸鈀(II)、及三鄰甲苯基膦26.7mg並加熱,於86℃攪拌6.5小時。 之後加入52mg 之2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀,攪拌0.5小時,其次加入溴苯140mg,攪拌0.5小時。 添加甲苯80ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液80ml並加熱,於回流下攪拌2小時。 其次冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後,於減壓下濃縮,獲得粗聚合物。使粗聚合物溶於甲苯,加入矽膠並進行吸附精製,過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入四氫呋喃50ml並使其溶解,滴加在甲醇400ml中,濾取獲得之沉澱物。重複此操作2次並使其乾燥,獲得2.9g的高分子量化合物A(產率84%)。
針對獲得之高分子量化合物A實施NMR測定。1 H-NMR測定結果示於圖58。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下。 數量平均分子量Mn(聚苯乙烯換算):42,000 重量平均分子量Mw(聚苯乙烯換算):116,000 分散度(Mw/Mn):2.8 化學組成: 【化45】
Figure 02_image094
(高分子量化合物A)
由上述化學組成可理解,此高分子量化合物A含有43莫耳%之通式(1)表示之結構單元A,含有47莫耳%使對於有機溶劑之溶解性提高的結構單元B,並含有10莫耳%之量之用以使熱交聯性提高的結構單元C。
<實施例2> 高分子量化合物B之合成; 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  3.6g 中間體6  2.8g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)-胺  0.5g 磷酸三鉀  5.0g 甲苯  13ml 水  7ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  39ml 其次加入2.0mg之乙酸鈀(II)、及三鄰甲苯基膦16.7mg並加熱於85℃攪拌6小時。 之後加入65mg 之2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀,攪拌1小時,其次加入溴苯180mg,攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌2小時。 其次冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後、於減壓下濃縮獲得粗聚合物。使粗聚合物溶解於甲苯、加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,使四氫呋喃150ml加到乾固物並溶解,滴加在甲醇300ml中,濾取獲得之沉澱物。重複此操作2次、乾燥,以獲得4.5g之高分子量化合物B(產率96%)。
針對獲得之高分子量化合物B測定NMR測定。1 H-NMR測定結果示於圖59。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下。 數量平均分子量Mn(聚苯乙烯換算):70,000 重量平均分子量Mw(聚苯乙烯換算):427,000 分散度(Mw/Mn):6.1 化學組成: 【化46】
Figure 02_image096
(高分子量化合物B)
由上述化學組成可理解,此高分子量化合物A含有42莫耳%之通式(1)表示之結構單元A,含有48莫耳%之使對於有機溶劑之溶解性提高之結構單元B,並以再者,10莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例3> 高分子量化合物C之合成; 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  6.5g 中間體10  5.5g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)-胺  0.87g 磷酸三鉀  9.0g 甲苯  16ml 水  9ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  48ml 其次加入1.9mg之乙酸鈀(II)、及三鄰甲苯基膦15.0mg,並加熱,於88℃攪拌10小時。 之後加入22mg之苯基硼酸,攪拌1小時,其次加入溴苯0.32g,攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌2小時。 其次冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後,於減壓下濃縮,獲得粗聚合物。使粗聚合物溶解於甲苯,加入矽膠並進行吸附精製,過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入甲苯300ml使其溶解,滴加在正己烷600ml中,濾取獲得之沉澱物。重複此操作3次並使其乾燥,以獲得8.0g的高分子量化合物C(產率92%)。
針對獲得之高分子量化合物C實施NMR測定。1 H-NMR測定結果示於圖60。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下。 數量平均分子量Mn(聚苯乙烯換算):45,000 重量平均分子量Mw(聚苯乙烯換算):97,000 分散度(Mw/Mn):2.1 化學組成: 【化47】
Figure 02_image098
(高分子量化合物C)
由上述化學組成可理解,此高分子量化合物A含有41莫耳%之通式(1)表示之結構單元A,含有49莫耳%之使對於有機溶劑之溶解性提高之結構單元B,並以10莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例4> 高分子量化合物D之合成; 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 中間體13  3.7g 中間體10  2.5g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)-胺  0.4g 磷酸三鉀  4.1g 甲苯  9ml 水  5ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  27ml 其次加入1.7mg之乙酸鈀(II)、及三鄰甲苯基膦13.6mg並加熱於88℃攪拌10小時。 之後加入67mg之中間體13,攪拌1小時,其次加入溴苯0.14g,攪拌1小時。 加入甲苯50ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液50ml並加熱,於回流下攪拌2小時。 其次冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後,於減壓下濃縮,獲得粗聚合物。使粗聚合物溶解於甲苯,加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入甲苯150ml使其溶解,滴加在正己烷150ml中,濾取獲得之沉澱物。重複此操作3次、乾燥,以獲得3.9g之高分子量化合物D(產率87%)。
針對獲得之高分子量化合物D實施NMR測定。1 H-NMR測定結果示於圖61。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下。 數量平均分子量Mn(聚苯乙烯換算):51,000 重量平均分子量Mw(聚苯乙烯換算):127,000 分散度(Mw/Mn):2.5 化學組成: 【化48】
Figure 02_image100
(高分子量化合物D)
由上述化學組成可理解,此高分子量化合物D含有43莫耳%之通式(1)表示之結構單元A,含有49莫耳%之使對於有機溶劑之溶解性提高之結構單元B,再者,以8莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例5> 高分子量化合物E之合成; 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  4.1g 中間體16  3.5g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)-胺  0.55g 磷酸三鉀  5.7g 甲苯  16ml 水:9ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷:48ml 其次加入2.3mg之乙酸鈀(II)、及三鄰甲苯基膦19.0mg並加熱,於86℃攪拌8小時。 之後加入74mg 之2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀,攪拌1小時,其次加入溴苯0.2g並攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌2小時。 其次冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後,於減壓下濃縮,獲得粗聚合物。使粗聚合物溶解於甲苯,加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入四氫呋喃150ml使其溶解,滴加在甲醇300ml中,濾取獲得之沉澱物。重複此操作2次、乾燥,以獲得5.2g之高分子量化合物E(產率94%)。
針對獲得之高分子量化合物E實施NMR測定。1 H-NMR測定結果示於圖62。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下。 數量平均分子量Mn(聚苯乙烯換算):45,000 重量平均分子量Mw(聚苯乙烯換算):115,000 分散度(Mw/Mn):2.6 化學組成: 【化49】
Figure 02_image102
(高分子量化合物E)
由上述化學組成可理解,此高分子量化合物E含有41莫耳%之通式(1)表示之結構單元A,含有49莫耳%之使對於有機溶劑之溶解性提高之結構單元B,並以10莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例6> 高分子量化合物F之合成; 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  6.5g 中間體19  5.4g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)-胺  0.87g 磷酸三鉀  9.0g 甲苯  16ml 水  9ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  48ml 其次加入1.9mg之乙酸鈀(II)、及三鄰甲苯基膦115.0mg,並加熱,於86℃攪拌10小時。 之後加入0.12g 之2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀,攪拌1小時,其次加入溴苯0.32g,攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌2小時。 其次,冷卻至室溫後加入飽和食鹽水與甲苯,利用分液操作以收集有機層。將有機層以無水硫酸鎂脱水後、於減壓下濃縮獲得粗聚合物。使粗聚合物溶解於甲苯、加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入四氫呋喃200ml使其溶解,滴加在甲醇400ml中,濾取獲得之沉澱物。重複此操作2次、乾燥,以獲得8.4g之高分子量化合物F(產率96%)。
針對獲得之高分子量化合物F實施NMR測定。1 H-NMR測定結果示於圖63。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下。 數量平均分子量Mn(聚苯乙烯換算):75,000 重量平均分子量Mw(聚苯乙烯換算):382,000 分散度(Mw/Mn):5.1 化學組成: 【化50】
Figure 02_image104
(高分子量化合物F)
由上述化學組成可理解,此高分子量化合物F含有43莫耳%之通式(1)表示之結構單元A,含有48莫耳%之使對於有機溶劑之溶解性提高之結構單元B,再者,以9莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例7> 高分子量化合物G之合成: 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  6.5g 中間體22  5.1g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)―胺  0.9g 磷酸三鉀  9.0g 甲苯  16ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  48ml 水  9ml 其次加入2.0mg之乙酸鈀(II)、及三鄰甲苯基膦16.7mg並加熱,於85℃攪拌7.5小時。進一步加入2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀120mg,攪拌1小時,加入溴苯320mg,攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌1小時。 冷卻至室溫後進行分液操作以收集有機層,以飽和食鹽水洗淨2次。將有機層以無水硫酸鎂脱水後,於減壓下濃縮,獲得粗聚合物。使粗聚合物溶解於甲苯、加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入四氫呋喃200ml使其溶解,滴加在甲醇400ml中,濾取獲得之沉澱物。重複此操作2次、乾燥,獲得8.0g之高分子量化合物G(產率94%)。
針對獲得之高分子量化合物G實施NMR測定。1 H-NMR測定結果示於圖64。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下。 平均分子量Mn(聚苯乙烯換算):52,000 重量平均分子量Mw(聚苯乙烯換算):150,000 分散度(Mw/Mn):2.9 化學組成: 【化51】
Figure 02_image106
(高分子量化合物G)
由上述化學組成可理解,此高分子量化合物G含有47莫耳%之通式(1)表示之結構單元A,含有43莫耳%之使對於有機溶劑之溶解性提高之結構單元B,再者,以9莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例8> 高分子量化合物H之合成: 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  3.8g 中間體27  3.3g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)―胺  0.5g 磷酸三鉀  5.3g 甲苯  10ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  30ml 水  5ml 其次加入1.0mg之乙酸鈀(II)、及三鄰甲苯基膦8.8mg,並加熱,於85℃攪拌10小時。進而加入2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀70mg,攪拌1小時,加入溴苯180mg,攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌1小時。 冷卻至室溫後進行分液操作以收集有機層,以飽和食鹽水洗淨2次。將有機層以無水硫酸鎂脱水後,於減壓下濃縮獲得粗聚合物。使粗聚合物溶解於甲苯,加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入四氫呋喃150ml使其溶解,滴加在甲醇300ml中,濾取獲得之沉澱物。重複此操作2次、乾燥,以獲得1.0mg之高分子量化合物H(產率94%)。
針對獲得之高分子量化合物H實施NMR測定。1 H-NMR測定結果示於圖65。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下 平均分子量Mn(聚苯乙烯換算):39,000 重量平均分子量Mw(聚苯乙烯換算):85,000 分散度(Mw/Mn):2.2 化學組成: 【化52】
Figure 02_image108
(高分子量化合物H)
由上述化學組成可理解此高分子量化合物H,含有47莫耳%之通式(1)表示之結構單元A,含有44莫耳%之使對於有機溶劑之溶解性提高之結構單元B,再者,以9莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例9> 高分子量化合物I之合成: 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  3.5g 中間體32  3.3g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)―胺  0.5g 磷酸三鉀  4.9g 甲苯  14ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  42ml 水  8ml 其次加入4.0mg之乙酸鈀(II)、及三鄰甲苯基膦32.3mg並加熱,於85℃攪拌6小時。進而加入2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀63mg,攪拌1小時,加入溴苯171mg,攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌1小時。 冷卻至室溫後進行分液操作以收集有機層,以飽和食鹽水洗淨2次。將有機層以無水硫酸鎂脱水後,於減壓下濃縮獲得粗聚合物。使粗聚合物溶解於甲苯,加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入甲苯120ml使其溶解,滴加在己烷240ml中,濾取獲得之沉澱物。重複此操作2次、乾燥,獲得4.7g之高分子量化合物I(產率92%)。
針對獲得之高分子量化合物I實施NMR測定。1 H-NMR測定結果示於圖66。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下 平均分子量Mn(聚苯乙烯換算):63,000 重量平均分子量Mw(聚苯乙烯換算):479,000 分散度(Mw/Mn):7.7 化學組成: 【化53】
Figure 02_image110
(高分子量化合物I)
由上述化學組成可理解此高分子量化合物I,含有46莫耳%之通式(1)表示之結構單元A,含有46莫耳%之使對於有機溶劑之溶解性提高之結構單元B,再者,以8莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例10> 高分子量化合物J之合成: 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  3.1g 中間體35  3.0g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)-胺  0.4g 磷酸三鉀  4.3g 甲苯  16ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  48ml 水  9ml 其次加入3.5mg之乙酸鈀(II)、及三鄰甲苯基膦28.6mg並加熱,於85℃攪拌5小時。進而加入2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀56mg,攪拌1小時,加入溴苯150mg,攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌1小時。 冷卻至室溫後進行分液操作以收集有機層,以飽和食鹽水洗淨2次。將有機層以無水硫酸鎂脱水後,於減壓下濃縮獲得粗聚合物。使粗聚合物溶解於甲苯,加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入甲苯120ml使其溶解,滴加在己烷240ml中,濾取獲得之沉澱物。重複此操作2次、乾燥,以獲得4.2g之高分子量化合物J (產率90%)。
針對獲得之高分子量化合物J實施NMR測定。1 H-NMR測定結果示於圖67。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下 平均分子量Mn(聚苯乙烯換算):61,000 重量平均分子量Mw(聚苯乙烯換算):183,000 分散度(Mw/Mn):3.0 化學組成: 【化54】
Figure 02_image112
(高分子量化合物J)
由上述化學組成可理解此高分子量化合物J,含有46莫耳%之通式(1)表示之結構單元A,含有45莫耳%之使對於有機溶劑之溶解性提高之結構單元B,再者,以9莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例11> 高分子量化合物K之合成: 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀  4.5g 中間體40  4.1g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)-胺  0.6g 磷酸三鉀  6.2g 甲苯  18ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  54ml 水  10ml 其次加入乙酸鈀(II)5.1mg、及三鄰甲苯基膦41.6mg並加熱,於85℃攪拌5小時。進而加入2,7-雙(4,4,5,5-四甲基-1,3,2-二氧雜環戊硼烷-2-基)-9,9-二-正辛基茀80mg,攪拌1小時,加入溴苯220mg,攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌1小時。 冷卻至室溫後進行分液操作以收集有機層,以飽和食鹽水洗淨2次。將有機層以無水硫酸鎂脱水後,於減壓下濃縮獲得粗聚合物。使粗聚合物溶解於甲苯,加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入甲苯150ml使其溶解,滴加在己烷300ml中,濾取獲得之沉澱物。重複此操作2次、乾燥,以獲得6.1g之高分子量化合物K(產率94%)。
針對獲得之高分子量化合物K實施NMR測定。1 H-NMR測定結果示於圖68。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下 平均分子量Mn(聚苯乙烯換算):66,000 重量平均分子量Mw(聚苯乙烯換算):211,000 分散度(Mw/Mn):3.2 化學組成: 【化55】
Figure 02_image114
(高分子量化合物K)
由上述化學組成可理解此高分子量化合物K,含有40莫耳%之通式(1)表示之結構單元A,含有50莫耳%之使對於有機溶劑之溶解性提高之結構單元B,再者,以10莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例12> 高分子量化合物L之合成: 將下列成分添加到經氮氣取代的反應容器內,通入氮氣30分鐘。 中間體41  5.0g 中間體10  5.5g N,N-雙(4-溴苯基)-N-(苯并環丁烯-4-基)-胺  0.9g 磷酸三鉀  8.9g 甲苯  12ml 1,4-二
Figure 107108352-A0304-12-0015-1
烷  36ml 水  7ml 其次加入1.8mg之乙酸鈀(II)、及三鄰甲苯基膦14.9mg並加熱,於85℃攪拌9小時。進而加入90mg之中間體41並攪拌1小時,加入溴苯320mg,攪拌1小時。 加入甲苯100ml、5wt%N,N-二乙基二硫胺甲酸鈉水溶液100ml並加熱,於回流下攪拌1小時。 冷卻至室溫後進行分液操作以收集有機層,以飽和食鹽水洗淨2次。將有機層以無水硫酸鎂脱水後,於減壓下濃縮獲得粗聚合物。使粗聚合物溶解於甲苯,加入矽膠並進行吸附精製、過濾並去除矽膠。將獲得之濾液於減壓下濃縮,於乾固物加入甲苯130ml使其溶解,滴加在己烷260ml中,濾取獲得之沉澱物。重複此操作2次、乾燥,獲得6.6g之高分子量化合物L(產率90%)。
針對獲得之高分子量化合物L實施NMR測定。1 H-NMR測定結果示於圖69。 又,高分子量化合物之以GPC測定的平均分子量、分散度及化學組成如下 平均分子量Mn(聚苯乙烯換算):38,000 重量平均分子量Mw(聚苯乙烯換算):78,000 分散度(Mw/Mn):2.0 化學組成: 【化56】
Figure 02_image116
(高分子量化合物L)
由上述化學組成可理解此高分子量化合物L,含有40莫耳%之通式(1)表示之結構單元A,含有50莫耳%之使對於有機溶劑之溶解性提高之結構單元B,再者,以10莫耳%之量含有使熱交聯性提高之結構單元C。
<實施例13> 使用實施例1~12合成之高分子量化合物A~L,在ITO基板之上製作膜厚100nm之蒸鍍膜,以游離電位測定裝置(住友重機械工業(股)公司製、PYS-202型)測定功函數。其結果如下。 功函數 高分子量化合物A(聚合物)  5.65eV 高分子量化合物B(聚合物)  5.59eV 高分子量化合物C(聚合物)  5.59eV 高分子量化合物D(聚合物)  5.40eV 高分子量化合物E(聚合物)  5.59eV 高分子量化合物F(聚合物)  5.57eV 高分子量化合物G(聚合物)  5.59eV 高分子量化合物H(聚合物)  5.59eV 高分子量化合物I(聚合物)  5.58eV 高分子量化合物J(聚合物)  5.55eV 高分子量化合物K(聚合物)  5.58eV 高分子量化合物L(聚合物)  5.73eV
本發明之高分子量化合物A~L,相較於NPD、TPD等一般的電洞輸送材料帶有的功函數5.4eV,顯示較理想的能量準位,可知有良好的電洞輸送能力。
<實施例14> 有機EL元件之製作與評價; 依以下之方法製作圖57所示之層結構之有機EL元件。
具體而言,將已成膜膜厚50nm之ITO的玻璃基板1以有機溶劑洗淨後,以UV/臭氧處理將ITO表面洗淨。 以覆蓋此玻璃基板1所設置之透明陽極2(ITO)的方式,以旋塗法將下列結構式之化合物(Solvay製、AQ-1200)成膜厚55nm之厚度,於熱板上於170℃進行10分鐘乾燥,形成電洞注入層3。 【化57】
Figure 02_image118
(AQ1200)
使實施例1獲得之高分子量化合物A溶於甲苯成0.6重量%,製備成塗佈液。 將如上述已形成電洞注入層3之基板,移到以乾燥氮氣取代過的手套箱內,在電洞注入層3之上,使用上述塗佈液利用旋塗形成厚20nm之塗佈層,再於熱板上於200℃進行10分鐘乾燥,形成電洞輸送層4。
將如上述已形成電洞輸送層4之基板,安裝在真空蒸鍍機內,減壓到0.001Pa以下。 在電洞輸送層4之上利用SFC公司製SBD2460(EMD-1)與SFC公司製ABH401(EMH-1)之二元蒸鍍,形成膜厚40nm之發光層5。 又二元蒸鍍中,蒸鍍速度比設為EMD-1:EMH-1=7:93。
準備下列結構式之化合物(ETM-1)及(ETM-2)作為電子輸送材料。 【化58】
Figure 02_image120
(ETM-1) 【化59】
Figure 02_image122
(ETM-2)
在上述形成之發光層5之上,利用使用上述電子輸送材料(ETM-1)及(ETM-2)之二元蒸鍍,形成膜厚20nm之電子輸送材料6。 又二元蒸鍍中,蒸鍍速度比設為ETM-1:ETM-2=50:50。
最後,蒸鍍鋁使膜厚成100nm,形成陰極7。 以此方式,將已形成透明陽極2、電洞注入層3、電洞輸送層4、發光層5、電子輸送材料6及陰極7之玻璃基板移到經乾燥氮氣取代之手套箱內,使用UV硬化樹脂與密封用之其他玻璃基板貼合,製成有機EL元件。針對製作的有機EL元件,於大氣中常溫實施特性測定。 又,測定對於製作之有機EL元件施加直流電壓時之發光特性。 上述測定結果示於表1。
<實施例15> 使用將高分子量化合物A替換為實施例2之化合物(高分子量化合物B),溶於甲苯成0.6重量%而製備的塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例16> 使用將高分子量化合物A替換為實施例3之化合物(高分子量化合物C),溶於甲苯成0.6重量%而製備之塗佈液來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例17> 使用將高分子量化合物A替換為實施例4之化合物(高分子量化合物D),溶於甲苯成0.6重量%而製備之塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例18> 使用將高分子量化合物A替換為實施例5之化合物(高分子量化合物E),溶於甲苯成0.6重量%而製備之塗佈液來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例19> 使用將高分子量化合物A替換為實施例6之化合物(高分子量化合物F),溶於甲苯成0.6重量%而製備之塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例20> 使用將高分子量化合物A替換為實施例7之化合物(高分子量化合物G),溶於甲苯成0.6重量%而製備之塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例21> 使用將高分子量化合物A替換為實施例8之化合物(高分子量化合物H),溶於甲苯成0.6重量%而製備之塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例22> 使用將高分子量化合物A替換為實施例9之化合物(高分子量化合物I),溶於甲苯成0.6重量%而製備之塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例23> 使用將高分子量化合物A替換為實施例10之化合物(高分子量化合物J),溶於甲苯成0.6重量%而製備之塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例24> 使用將高分子量化合物A替換為實施例11之化合物(高分子量化合物K),溶於甲苯成0.6重量%而製備之塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<實施例25> 使用將高分子量化合物A替換為實施例12之化合物(高分子量化合物L),溶於甲苯成0.6重量%而製備之塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。針對製作之有機EL元件,於大氣中常溫實施特性測定。對於製作之有機EL元件施加直流電壓時之發光特性之測定結果彙整於表1。
<比較例1> 使用將高分子量化合物A替換為下列TFB(電洞輸送性聚合物),溶於甲苯成0.6重量%而製備之塗佈液,來形成電洞輸送層4,除此以外完全與實施例14同樣進行,製作有機EL元件。 【化60】
Figure 02_image124
(TFB) 聚[(9,9-二辛基茀基-2,7-二基)-co-(4,4’-(N-(4-第二丁基苯基))二苯胺](American Dye Source公司製、Hole Transport Polymer ADS259BE) 針對此有機EL元件,與實施例14同樣地評價各種特性,其結果示於表1。
又各種特性之評價中,元件壽命,係測定設發光開始時之發光亮度(初始亮度)為700cd/m2 而進行定電流驅動時,發光亮度衰減成為560cd/m2 (相當於初始亮度為100%時之80%:80%衰減)為止的時間。
【表1】
Figure 107108352-A0304-0001
如表1所示,針對流過電流密度10mA/cm2 之電流時之發光效率,比較例1之有機EL元件為6.7cd/A,反觀實施例14之有機EL元件為7.9cd/A,實施例15之有機EL元件為8.7cd/A、實施例16之有機EL元件為8.3cd/A、實施例17之有機EL元件為6.8cd/A、實施例18之有機EL元件為8.7cd/A、實施例19之有機EL元件為9.0cd/A、實施例20之有機EL元件為8.6cd/A、實施例21之有機EL元件為8.8cd/A、實施例22之有機EL元件為9.2cd/A、實施例23之有機EL元件為9.6cd/A、實施例24之有機EL元件為8.3cd/A、實施例25之有機EL元件為10.7cd/A,皆為高效率。 又,針對元件壽命(80%衰減),比較例1之有機EL元件為194小時,反觀實施例14之有機EL元件為205小時、實施例15之有機EL元件為531小時、實施例16之有機EL元件為276小時、實施例17之有機EL元件為231小時、實施例18之有機EL元件為251小時、實施例19之有機EL元件為478小時、實施例20之有機EL元件為312小時、實施例21之有機EL元件為264小時、實施例22之有機EL元件為380小時、實施例23之有機EL元件為260小時、實施例24之有機EL元件為210小時,為長壽命。
如上,可知具備使用本發明之高分子量化合物形成之有機層之有機EL元件,相較於習知之有機EL元件,可達成較高發光效率、長壽命之有機EL元件。
<實施例26> 殘膜率之測定與評價; 在玻璃基板上使用將實施例1合成之高分子量化合物A溶於甲苯成0.6重量%之溶液以旋塗法形成薄膜。 將獲得之膜移到經乾燥氮氣取代之手套箱內,在熱板上於200℃進行1小時之烘烤。 將烘烤的膜冷卻到室溫冷卻後,使用分光光度計(U-3000:日立製作所製)測定對於波長300~700nm之光之吸收強度。 又,針對已測定吸收強度之膜,使用旋塗機以2000rpm、15秒之條件實施甲苯淋洗。使用分光光度計(U-3000:日立製作所製)測定經淋洗之膜之吸收強度。 由如上述測定之淋洗前後之吸收強度,依下式算出殘膜率,其結果示於表2。 殘膜率(%)=(α/β)×100 式中, α為淋洗後之吸收強度(峰頂), β為淋洗前之吸收強度(峰頂)。
<實施例27> 高分子量化合物A改為實施例2合成之高分子量化合物B,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例28> 高分子量化合物A改為實施例3合成之高分子量化合物C,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例29> 高分子量化合物A改為實施例4合成之高分子量化合物D,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例30> 高分子量化合物A改為實施例5合成之高分子量化合物E,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例31> 高分子量化合物A改為實施例6合成之高分子量化合物F,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例32> 高分子量化合物A改為實施例7合成之高分子量化合物G,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例33> 高分子量化合物A改為實施例8合成之高分子量化合物H,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例34> 高分子量化合物A改為實施例9合成之高分子量化合物I,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例35> 高分子量化合物A改為實施例10合成之高分子量化合物J,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例36> 高分子量化合物A改為實施例11合成之高分子量化合物K,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<實施例37> 高分子量化合物A改為實施例12合成之高分子量化合物L,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
<比較例2> 高分子量化合物A改為比較例1使用之TFB,除此以外和實施例26同樣進行而算出殘膜率,其結果示於表2。
【表2】
Figure 107108352-A0304-0002
如表2所示,高分子量化合物A~L在200℃/60分之烘烤皆顯示90%以上之高殘膜率,可認為本發明之高分子量化合物有高硬化性(熱交聯性)。 [產業利用性]
本發明之高分子量化合物,電洞輸送能力高,電子阻擋能力優異、熱交聯性良好,因此,是優良的塗佈型有機EL元件用之化合物。藉由使用該化合物來製作塗佈型有機EL元件,能獲得高發光效率及電力效率,而且能使耐久性改善。例如能開展家庭電化製品、照明的用途。
1‧‧‧玻璃基板2‧‧‧透明陽極3‧‧‧電洞注入層4‧‧‧電洞輸送層5‧‧‧發光層6‧‧‧電子輸送層7‧‧‧陰極
圖1顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元1~3之化學結構之圖。 圖2顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元4~6之化學結構之圖。 圖3顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元7~9之化學結構之圖。 圖4顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元10~12之化學結構之圖。 圖5顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元13~15之化學結構之圖。 圖6顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元16~18之化學結構之圖。 圖7顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元19~21之化學結構之圖。 圖8顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元22~24之化學結構之圖。 圖9顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元25~27之化學結構之圖。 圖10顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元28~30之化學結構之圖。 圖11顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元31~33之化學結構之圖。 圖12顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元34~36之化學結構之圖。 圖13顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元37~39之化學結構之圖。 圖14顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元40~42之化學結構之圖。 圖15顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元43~45之化學結構之圖。 圖16顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元46~48之化學結構之圖。 圖17顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元49~51之化學結構之圖。 圖18顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元52~54之化學結構之圖。 圖19顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元55~57之化學結構之圖。 圖20顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元58~60之化學結構之圖。 圖21顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元61~63之化學結構之圖。 圖22顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元64~66之化學結構之圖。 圖23顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元67~69之化學結構之圖。 圖24顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元70~72之化學結構之圖。 圖25顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元73~75之化學結構之圖。 圖26顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元76~78之化學結構之圖。 圖27顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元79~81之化學結構之圖。 圖28顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元82~84之化學結構之圖。 圖29顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元85~87之化學結構之圖。 圖30顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元88~90之化學結構之圖。 圖31顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元91~93之化學結構之圖。 圖32顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元94~96之化學結構之圖。 圖33顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元97~99之化學結構之圖。 圖34顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元100~102之化學結構之圖。 圖35顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元103~105之化學結構之圖。 圖36顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元106~108之化學結構之圖。 圖37顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元109~111之化學結構之圖。 圖38顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元112~114之化學結構之圖。 圖39顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元115~117之化學結構之圖。 圖40顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元118~120之化學結構之圖。 圖41顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元121~123之化學結構之圖。 圖42顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元124~126之化學結構之圖。 圖43顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元127~129之化學結構之圖。 圖44顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元130~132之化學結構之圖。 圖45顯示作為本發明之高分子量化合物擁有之經取代之三芳胺結構單元之理想的結構單元133~135之化學結構之圖。 圖46顯示為了使對於有機溶劑之溶解性更好而導入的結構單元(2a)~(2f)之化學結構之圖。 圖47顯示為了使對於有機溶劑之溶解性更好而導入的結構單元(2g)~(2l)之化學結構之圖。 圖48顯示為了使對於有機溶劑之溶解性更好而導入的結構單元(2m)~(2q)之化學結構之圖。 圖49顯示為了使對於有機溶劑之溶解性更好而導入的結構單元(2r)~(2v)之化學結構之圖。 圖50顯示為了使對於有機溶劑之溶解性更好而導入的結構單元(2w)~(2x)之化學結構之圖。 圖51顯示為了使熱交聯性更好而導入之結構單元(3a)~(3e)之化學結構之圖。 圖52顯示為了使熱交聯性更好而導入之結構單元(3f)~(3j)之化學結構之圖。 圖53顯示為了使熱交聯性更好而導入之結構單元(3k)~(3n)之化學結構之圖。 圖54顯示為了使熱交聯性更好而導入之結構單元(3o)~(3r)之化學結構之圖。 圖55顯示為了使熱交聯性更好而導入之結構單元(3s)~(3v)之化學結構之圖。 圖56顯示為了使熱交聯性更好而導入之結構單元(3w)及(3y)之化學結構之圖。 圖57顯示本發明之有機元件擁有之層結構之一例之圖。 圖58顯示實施例1合成之本發明之高分子量化合物(化合物A)之1 H-NMR圖表。 圖59顯示實施例2合成之本發明之高分子量化合物(化合物B)之1 H-NMR圖表。 圖60顯示實施例3合成之本發明之高分子量化合物(化合物C)之1 H-NMR圖表。 圖61顯示實施例4合成之本發明之高分子量化合物(化合物D)之1 H-NMR圖表。 圖62顯示實施例5合成之本發明之高分子量化合物(化合物E)之1 H-NMR圖表。 圖63顯示實施例6合成之本發明之高分子量化合物(化合物F)之1 H-NMR圖表。 圖64顯示實施例7合成之本發明之高分子量化合物(化合物G)之1 H-NMR圖表。 圖65顯示實施例8合成之本發明之高分子量化合物(化合物H)之1 H-NMR圖表。 圖66顯示實施例9合成之本發明之高分子量化合物(化合物I)之1 H-NMR圖表。 圖67顯示實施例10合成之本發明之高分子量化合物(化合物J)之1 H-NMR圖表。 圖68顯示實施例11合成之本發明之高分子量化合物(化合物K)之1 H-NMR圖表。 圖69顯示實施例12合成之本發明之高分子量化合物(化合物L)之1 H-NMR圖表。
Figure 107108352-A0101-11-0001-1

Claims (18)

  1. 一種高分子量化合物,含有下列通式(1)表示之經取代之三芳胺結構單元;
    Figure 107108352-A0305-02-0106-1
    式中,Ar1及Ar2各為2價之咔唑基、二苯并呋喃基、二苯并噻吩基、萘基、菲基、苯基、或具取代基之茀基,R1及R2各為氫原子、氘原子、氟原子、氯原子、氰基、硝基、碳數1~8之烷基、碳數5~10之環烷基、碳數2~6之烯基、碳數1~6之烷氧基、或碳數5~10之環烷氧基,X及Y為芳基或雜芳基,Z為芳基、雜芳基、或和該R1及R2所示之基同樣的基,該芳基為苯基、聯苯基、聯三苯基、萘基、蒽基、菲基、茀基、萘基苯基、三亞苯基、茚基、芘基、苝基、或丙二烯合茀基,該雜芳基為吡啶基、嘧啶基、三
    Figure 107108352-A0305-02-0106-3
    基、呋喃基、吡咯基、噻吩基、喹啉基、異喹啉基、苯并呋喃基、苯并噻吩基、吲哚基、咔唑基、苯并
    Figure 107108352-A0305-02-0106-4
    唑基、苯并噻唑基、喹
    Figure 107108352-A0305-02-0106-6
    啉基、苯并咪唑基、吡唑基、二苯并呋喃基、二苯并噻吩基、
    Figure 107108352-A0305-02-0106-5
    啶基、啡啉基、吖啶基、或咔啉基。
  2. 如申請專利範圍第1項之高分子量化合物,其係含有該結構單元作為重複單元之聚合物,按聚苯乙烯換算,有10,000以上、未達1,000,000之重量平均分子量。
  3. 如申請專利範圍第1項之高分子量化合物,其中,該芳基及雜芳基沒有取代基。
  4. 如申請專利範圍第3項之高分子量化合物,其中,該通式(1)中,X及Y為苯基、聯苯基、聯三苯基、萘基、菲基、茀基、萘基苯基或三亞苯基。
  5. 如申請專利範圍第1項之高分子量化合物,其中,該通式(1)中,R1、R2及Z為氫原子或氘原子。
  6. 一種高分子量化合物,含有下列通式(1)表示之經取代之三芳胺結構單元;
    Figure 107108352-A0305-02-0107-2
    式中,Ar1及Ar2各為2價芳香族烴基或2價芳香族雜環基, R1及R2各為氫原子、氘原子、氟原子、氯原子、氰基、硝基、碳數1~8之烷基、碳數5~10之環烷基、碳數2~6之烯基、碳數1~6之烷氧基、或碳數5~10之環烷氧基,X及Z為芳基或雜芳基,Y為芳基、雜芳基、或和該R1及R2所示之基同樣的基,該芳基為苯基、聯苯基、聯三苯基、萘基、蒽基、菲基、茀基、萘基苯基、三亞苯基、茚基、芘基、苝基、或丙二烯合茀基,該雜芳基為吡啶基、嘧啶基、三
    Figure 107108352-A0305-02-0108-7
    基、呋喃基、吡咯基、噻吩基、喹啉基、異喹啉基、苯并呋喃基、苯并噻吩基、吲哚基、咔唑基、苯并
    Figure 107108352-A0305-02-0108-8
    唑基、苯并噻唑基、喹
    Figure 107108352-A0305-02-0108-9
    啉基、苯并咪唑基、吡唑基、二苯并呋喃基、二苯并噻吩基、
    Figure 107108352-A0305-02-0108-10
    啶基、啡啉基、吖啶基、或咔啉基,且該芳基及雜芳基沒有取代基。
  7. 如申請專利範圍第6項之高分子量化合物,其中,該通式(1)中,X及Z為苯基、聯苯基、聯三苯基、萘基、菲基、茀基、萘基苯基或三亞苯基。
  8. 如申請專利範圍第6項之高分子量化合物,其中,該通式(1)中,R1、R2及Y為氫原子或氘原子。
  9. 如申請專利範圍第1項之高分子量化合物,其中,該通式(1)中,X、Y及Z皆為芳基或雜芳基。
  10. 如申請專利範圍第9項之高分子量化合物,其中,該芳基或雜芳基沒有取代基。
  11. 如申請專利範圍第10項之高分子量化合物,其中,該通式(1)中,X、Y及Z皆為苯基、聯苯基、聯三苯、萘基、菲基、茀基、萘基苯基或三亞苯基。
  12. 如申請專利範圍第1項之高分子量化合物,其中,該通式(1)中,R1及R2為氫原子或氘原子。
  13. 如申請專利範圍第1項之高分子量化合物,其具有和該通式(1)表示之單元分別地,具至少1個芳香族烴環之基、或具三芳胺骨架之結構單元。
  14. 一種有機電致發光元件,具有一對電極及夾持於該電極間之至少一層有機層,其特徵為:該有機層含有如申請專利範圍第1項之高分子量化合物。
  15. 如申請專利範圍第14項之有機電致發光元件,其中,該有機層為電洞輸送層。
  16. 如申請專利範圍第14項之有機電致發光元件,其中,該有機層為電子阻擋層。
  17. 如申請專利範圍第14項之有機電致發光元件,其中,該有機層為電洞注入層。
  18. 如申請專利範圍第14項之有機電致發光元件,其中,該有機層為發光層。
TW107108352A 2017-03-15 2018-03-13 具有經取代之三芳胺骨架之高分子量化合物 TWI779018B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017049629 2017-03-15
JP2017-049629 2017-03-15

Publications (2)

Publication Number Publication Date
TW201839029A TW201839029A (zh) 2018-11-01
TWI779018B true TWI779018B (zh) 2022-10-01

Family

ID=63523282

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107108352A TWI779018B (zh) 2017-03-15 2018-03-13 具有經取代之三芳胺骨架之高分子量化合物

Country Status (7)

Country Link
US (1) US11196004B2 (zh)
EP (1) EP3597689A4 (zh)
JP (1) JP7017558B2 (zh)
KR (1) KR102500364B1 (zh)
CN (1) CN110382590B (zh)
TW (1) TWI779018B (zh)
WO (1) WO2018168667A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318233B2 (ja) * 2019-03-04 2023-08-01 株式会社レゾナック 有機エレクトロニクス材料及びその利用
JPWO2020246404A1 (zh) 2019-06-05 2020-12-10
CN114375510B (zh) * 2019-10-09 2024-05-21 保土谷化学工业株式会社 具有包含高分子量化合物的有机层的有机电致发光元件
JP2021063210A (ja) * 2019-10-15 2021-04-22 住友化学株式会社 組成物及びそれを含有する発光素子
CN113929585A (zh) * 2020-07-14 2022-01-14 北京鼎材科技有限公司 有机化合物及有机电致发光器件
JPWO2022065238A1 (zh) 2020-09-23 2022-03-31
JP2022073583A (ja) * 2020-11-02 2022-05-17 キヤノン株式会社 光学素子、光学機器、撮像装置および化合物
CN112920758B (zh) * 2021-01-20 2022-06-14 华南理工大学 一种通过苯胺基交联的双组分半导体型胶粘剂及其制备方法与应用
JPWO2022191141A1 (zh) * 2021-03-12 2022-09-15
WO2022244822A1 (ja) * 2021-05-21 2022-11-24 保土谷化学工業株式会社 トリアリールアミン高分子量化合物およびこれらの高分子量化合物を含む有機エレクトロルミネッセンス素子
WO2023167253A1 (ja) * 2022-03-04 2023-09-07 保土谷化学工業株式会社 トリアリールアミン高分子量化合物および有機エレクトロルミネッセンス素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050070710A1 (en) * 2001-10-25 2005-03-31 O'dell Richard Triarylamine containing monomers for optoelectronic devices
US20090146164A1 (en) * 2004-12-29 2009-06-11 Cambridge Display Technology Limited Blue-Shifted Triarylamine Polymer
JP2012126813A (ja) * 2010-12-15 2012-07-05 Tosoh Corp 新規アリールアミンデンドリマー状化合物、その製造方法およびその用途

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013282B2 (ja) * 1997-05-09 2007-11-28 コニカミノルタホールディングス株式会社 電界発光素子
US6309763B1 (en) 1997-05-21 2001-10-30 The Dow Chemical Company Fluorene-containing polymers and electroluminescent devices therefrom
GB0006367D0 (en) * 2000-03-16 2000-05-03 Avecia Ltd Charge transport material
JP4182245B2 (ja) * 2001-11-09 2008-11-19 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
TWI249542B (en) 2001-11-09 2006-02-21 Sumitomo Chemical Co Polymer compound and polymer light-emitting device using the same
JP4256102B2 (ja) * 2002-02-08 2009-04-22 三井化学株式会社 アミン化合物
US7651746B2 (en) 2003-11-14 2010-01-26 Sumitomo Chemical Company, Limited Halogenated bisdiarylaminopolycyclic aromatic compounds and polymers thereof
GB0329364D0 (en) * 2003-12-19 2004-01-21 Cambridge Display Tech Ltd Optical device
JP4736471B2 (ja) 2004-02-26 2011-07-27 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
JP4956898B2 (ja) * 2004-03-03 2012-06-20 東ソー株式会社 トリアリールアミンポリマー及びその製造方法
US20060091359A1 (en) 2004-10-29 2006-05-04 Jun-Liang Lai Organic light emitting compounds for a blue-light electroluminescent device
JP2007119763A (ja) 2005-09-29 2007-05-17 Sumitomo Chemical Co Ltd 高分子材料及び高分子発光素子
JP5217153B2 (ja) 2005-11-18 2013-06-19 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
JP5018043B2 (ja) 2005-12-01 2012-09-05 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
US7425723B2 (en) 2005-12-21 2008-09-16 Xerox Corporation Organic thin-film transistors
JP5125213B2 (ja) 2007-05-08 2013-01-23 東ソー株式会社 新規なトリアリールアミンポリマー、その製造方法及び用途
WO2009102027A1 (ja) 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation 共役ポリマー、不溶化ポリマー、有機電界発光素子材料、有機電界発光素子用組成物、ポリマーの製造方法、有機電界発光素子、有機elディスプレイ、及び有機el照明
JP5587172B2 (ja) 2008-03-05 2014-09-10 出光興産株式会社 高分子化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2010074440A2 (ko) * 2008-12-24 2010-07-01 제일모직 주식회사 고분자 중합체, 이를 포함하는 유기 광전 소자, 및 이를 포함하는 표시장치
JP5568976B2 (ja) * 2009-12-16 2014-08-13 東ソー株式会社 多置換ホスフィン化合物及び該ホスフィン化合物を含む触媒
JP5505123B2 (ja) * 2010-06-22 2014-05-28 東ソー株式会社 新規トリアリールアミンポリマー、その製造方法およびその用途
CN102372670B (zh) * 2010-08-20 2014-02-26 清华大学 一种含芳基吡啶基团的芳胺类化合物及其应用
TWI421279B (zh) 2011-02-01 2014-01-01 Eternal Chemical Co Ltd 可固化材料及其應用
GB201108865D0 (en) 2011-05-26 2011-07-06 Ct For Process Innovation The Ltd Semiconductor compounds
EP2684932B8 (en) 2012-07-09 2016-12-21 Hodogaya Chemical Co., Ltd. Diarylamino matrix material doped with a mesomeric radialene compound
WO2015089027A1 (en) * 2013-12-12 2015-06-18 E. I. Du Pont De Nemours And Company Solvent-resistant hole transport layers
JP2017022194A (ja) 2015-07-08 2017-01-26 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050070710A1 (en) * 2001-10-25 2005-03-31 O'dell Richard Triarylamine containing monomers for optoelectronic devices
US20090146164A1 (en) * 2004-12-29 2009-06-11 Cambridge Display Technology Limited Blue-Shifted Triarylamine Polymer
JP2012126813A (ja) * 2010-12-15 2012-07-05 Tosoh Corp 新規アリールアミンデンドリマー状化合物、その製造方法およびその用途

Also Published As

Publication number Publication date
US11196004B2 (en) 2021-12-07
JP7017558B2 (ja) 2022-02-08
TW201839029A (zh) 2018-11-01
EP3597689A4 (en) 2021-01-13
EP3597689A1 (en) 2020-01-22
WO2018168667A1 (ja) 2018-09-20
CN110382590B (zh) 2022-03-08
KR102500364B1 (ko) 2023-02-16
KR20190126059A (ko) 2019-11-08
CN110382590A (zh) 2019-10-25
US20190378989A1 (en) 2019-12-12
JPWO2018168667A1 (ja) 2020-02-13

Similar Documents

Publication Publication Date Title
TWI779018B (zh) 具有經取代之三芳胺骨架之高分子量化合物
KR100994083B1 (ko) 화합물, 전하 수송 재료 및 유기 전계 발광 소자
JP7421476B2 (ja) 分子主鎖にターフェニル構造を含むトリアリールアミン高分子量化合物およびこれらの高分子量化合物を含む有機エレクトロルミネッセンス素子
TWI741087B (zh) 含有經取代之三芳胺結構單元的高分子量化合物
WO2015159541A1 (ja) テトラアザトリフェニレン環構造を有する化合物、発光材料および有機エレクトロルミネッセンス素子
TWI721990B (zh) 芳胺化合物及有機電致發光元件
TW201434828A (zh) 具有二氮雜聯三伸苯環結構之化合物及有機電致發光元件
WO2020246404A1 (ja) 置換トリアリールアミン構造単位を含む高分子量化合物および有機エレクトロルミネッセンス素子
WO2021070878A1 (ja) 高分子量化合物からなる有機層を有する有機エレクトロルミネッセンス素子
TWI637038B (zh) 二咔唑衍生物及有機電致發光元件
WO2022244822A1 (ja) トリアリールアミン高分子量化合物およびこれらの高分子量化合物を含む有機エレクトロルミネッセンス素子
WO2022191141A1 (ja) インデノジベンゾヘテロール構造を部分構造として有する高分子量化合物、およびこれらの高分子量化合物を含む有機エレクトロルミネッセンス素子
WO2023167253A1 (ja) トリアリールアミン高分子量化合物および有機エレクトロルミネッセンス素子
WO2023182377A1 (ja) トリアリールアミン高分子量化合物および有機エレクトロルミネッセンス素子
TWI844740B (zh) 具有包含高分子量化合物之有機層之有機電致發光元件
TW202222897A (zh) 含熱交聯性低分子化合物之發光二極體用組成物
JP2024052606A (ja) 高分子量化合物およびこれらを用いた有機エレクトロルミネッセンス素子
JP2024008856A (ja) 高分子量化合物およびこれらを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent