TWI768638B - 磁性記憶裝置 - Google Patents

磁性記憶裝置 Download PDF

Info

Publication number
TWI768638B
TWI768638B TW110100231A TW110100231A TWI768638B TW I768638 B TWI768638 B TW I768638B TW 110100231 A TW110100231 A TW 110100231A TW 110100231 A TW110100231 A TW 110100231A TW I768638 B TWI768638 B TW I768638B
Authority
TW
Taiwan
Prior art keywords
layer
magnetic layer
magnetic
memory device
magnetization direction
Prior art date
Application number
TW110100231A
Other languages
English (en)
Other versions
TW202213353A (zh
Inventor
都甲大
杉山英行
及川壮一
中山昌彦
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202213353A publication Critical patent/TW202213353A/zh
Application granted granted Critical
Publication of TWI768638B publication Critical patent/TWI768638B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Liquid Crystal (AREA)
  • Semiconductor Memories (AREA)
  • Memory System Of A Hierarchy Structure (AREA)

Abstract

實施方式提供一種可穩定地記憶資料之磁性記憶裝置。 實施方式之磁性記憶裝置具備磁阻效應元件,上述磁阻效應元件具備具有可變磁化方向之第1磁性層、具有可變磁化方向之第2磁性層、具有固定磁化方向之第3磁性層、及非磁性層,上述第1磁性層設置於上述第2磁性層與上述第3磁性層之間,上述非磁性層設置於上述第1磁性層與上述第3磁性層之間,且,上述第2磁性層具有將以第1元素形成之第1元素層與以第2元素形成之第2元素層交替地積層而成之超晶格構造,上述第1元素為鈷(Co),上述第2元素選自鉑(Pt)、鎳(Ni)及鈀(Pd),上述第2磁性層含有鉻(Cr)作為第3元素。

Description

磁性記憶裝置
本發明之實施方式係關於一種磁性記憶裝置。
提出有於半導體基板上將磁阻效應元件作為記憶元件積體化而成之非揮發性之磁性記憶裝置。
本發明所欲解決之問題在於提供一種可穩定地記憶資料之磁性記憶裝置。
實施方式之磁性記憶裝置具備磁阻效應元件,上述磁阻效應元件具備具有可變磁化方向之第1磁性層、具有可變磁化方向之第2磁性層、具有固定磁化方向之第3磁性層、及非磁性層,上述第1磁性層設置於上述第2磁性層與上述第3磁性層之間,上述非磁性層設置於上述第1磁性層與上述第3磁性層之間,且,上述第2磁性層具有將以第1元素形成之第1元素層與以第2元素形成之第2元素層交替地積層而成之超晶格構造,上述第1元素為鈷(Co),上述第2元素選自鉑(Pt)、鎳(Ni)及鈀(Pd),上述第2磁性層含有鉻(Cr)作為第3元素。
以下,參照圖式對實施方式進行說明。
圖1係模式性地表示實施方式之磁性記憶裝置(非揮發性之磁性記憶裝置)之構成之剖視圖。具體而言,係模式性地表示實施方式之磁阻效應元件之構成之剖視圖。本實施方式中,以應用MTJ(magnetic tunnel junction,磁性穿隧接面)元件作為磁阻效應元件之情形進行說明。實際將複數個磁阻效應元件於半導體基板上積體化。
圖1所示之磁阻效應元件100設置於半導體基板(未圖示)之上方,具有包含第1磁性層10、第2磁性層20、第3磁性層30、第4磁性層40、隧道位障層(非磁性層(nonmagnetic layer))50、中間層60、中間層70、頂蓋層80及下部導電層90之積層構造(stacked structure)。
具體而言,磁阻效應元件100於第2磁性層20與第4磁性層40之間設置有第1磁性層10及第3磁性層30,於第2磁性層20與第3磁性層30之間設置有第1磁性層10,於第1磁性層10與第3磁性層30之間設置有隧道位障層(非磁性層)50。又,於第1磁性層10與第2磁性層20之間設置有中間層60,於第3磁性層30與第4磁性層40之間設置有中間層70。該等層10~70位於頂蓋層80與下部導電層90之間。
第1磁性層10由具有可變磁化方向(variable magnetization direction)之鐵磁性體層(ferromagnetic layer)形成,作為磁阻效應元件100之記憶層(storage layer(儲存層))之一部分發揮功能。所謂可變磁化方向,係指磁化方向相對於特定之寫入電流發生改變。第1磁性層10含有鈷(Co)及鐵(Fe)中之至少一種。具體而言,第1磁性層10由含有鈷(Co)、鐵(Fe)及硼(B)之CoFeB形成。
第2磁性層20亦由具有可變磁化方向之鐵磁性體形成,作為磁阻效應元件100之記憶層之一部分發揮功能。第2磁性層20之磁化方向朝與第1磁性層10之磁化方向相同之方向變化。
圖2係模式性地表示第2磁性層20之構成之剖視圖。
第2磁性層20具有第1元素形成之第1元素層21與第2元素形成之第2元素層22交替地積層而成之超晶格(superlattice)構造。第1元素為鈷(Co),第2元素為鉑(Pt)、鎳(Ni)或鈀(Pd)。又,第2磁性層20含有鉻(Cr)作為第3元素。第2磁性層20之最下層(與中間層60相接之層)可為第1元素層21及第2元素層22之任一個。第2磁性層20之最上層(與頂蓋層80相接之層)同樣可為第1元素層21及第2元素層22之任一個。
再者,於之後之說明中,對如下情形進行說明,即,將第1元素設為鈷(Co),將第2元素設為鉑(Pt),第2磁性層20具有Co層與Pt層交替地積層而成之超晶格構造,且於該超晶格構造中含有Cr。
第3磁性層30由具有固定磁化方向(fixed magnetization direction)之鐵磁性體形成,作為磁阻效應元件100之參考層(reference layer)之一部分發揮功能。所謂固定磁化方向,係指磁化方向不相對於特定之寫入電流發生改變。第3磁性層30含有鈷(Co)及鐵(Fe)中之至少一種。具體而言,第3磁性層30由含有鈷(Co)、鐵(Fe)及硼(B)之CoFeB形成。
第4磁性層40亦由具有固定磁化方向之鐵磁性體形成,具有反鐵磁性耦合(anti-ferromagnetic coupling)。即,第4磁性層40具有SAF耦合(synthetic anti-ferromagnetic coupling,合成反鐵磁性耦合),作為磁阻效應元件100之參考層之一部分發揮功能。例如,第4磁性層40包含由Co層或Co/Pt超晶格層形成之第1層部分41、由Co/Pt超晶格層形成之第2層部分42、及由釕(Ru)層或銥(Ir)層形成之第3層部分43,且第1層部分41與第2層部分42經由第3層部分43產生反鐵磁性耦合。
隧道位障層50係設置於第1磁性層10與第3磁性層30之間之非磁性層,由絕緣材料形成。隧道位障層50含有鎂(Mg)及氧(O)。具體而言,隧道位障層50由MgO形成。
中間層60係設置於第1磁性層10與第2磁性層20之間之非磁性層,由特定之金屬材料形成。如下所述,該中間層60亦可作為含有鉻(Cr)作為第3元素之第3元素含有層發揮功能。
中間層70係設置於第3磁性層30與第4磁性層40之間之非磁性層,由特定之金屬材料(例如鉬(Mo)、鉭(Ta)或鎢(W)等)形成。
頂蓋層80係設置於第2磁性層20上之非磁性層。該頂蓋層80除了具有作為頂蓋層之功能以外,亦具有作為含有鉻(Cr)作為第3元素之第3元素含有層之功能。關於該頂蓋層80,將於下文詳細地進行說明。
下部導電層90係設置於第4磁性層40下之非磁性層,由鉭(Ta)層等形成。
上述磁阻效應元件100係具有垂直磁化(perpendicular magnetization)之STT(spin transfer torque,自旋轉移力矩)型之磁阻效應元件。即,第1磁性層10、第2磁性層20、第3磁性層30及第4磁性層40均具有相對於其膜面垂直之磁化方向。
又,上述磁阻效應元件100於第1磁性層10之磁化方向相對於第3磁性層30之磁化方向平行(parallel)之情形時為電阻相對較低之狀態,於第1磁性層10之磁化方向相對於第3磁性層30之磁化方向反平行(antiparallel)之情形時為電阻相對較高之狀態。因此,磁阻效應元件100可根據電阻狀態(低電阻狀態或高電阻狀態)而記憶二進制資料。又,對於磁阻效應元件100,可根據朝磁阻效應元件100流動之電流之方向而設定電阻狀態(低電阻狀態或高電阻狀態)。
根據本實施方式,可獲得飽和磁化(saturation magnetization)Mst較低且垂直磁各向異性(perpendicular magnetic anisotropy)較高之磁阻效應元件。因此,可獲得一種即便在積體電路之微細化及高積體化進展下亦能夠穩定地記憶資料之磁阻效應元件。以下,詳細地進行說明。
為了於磁阻效應元件中穩定地記憶資料,重要的是獲得較高之熱穩定性(thermal stability)ΔE。然而,若積體電路之微細化及高積體化有所進展,則鄰接之磁阻效應元件間之雜散磁場(stray magnetic field)之影響變大。因此,必須降低飽和磁化Mst並確保較高之熱穩定性ΔE,而變得難以獲得具有較高之熱穩定性ΔE之磁阻效應元件。
本實施方式中,於具有第1元素層(例如Co層)21及第2元素層(例如Pt層)22之超晶格構造之第2磁性層20中,含有Cr作為第3元素。如此,藉由使用含有Cr之第2磁性層20,可提高第2磁性層20之垂直磁各向異性,即便飽和磁化Mst較低,亦可確保較高之熱穩定性ΔE。
圖3係表示本實施方式之磁性層(含有Cr之Co/Pt超晶格層)之磁氣特性(外部磁場Hex與磁化Mt之關係)之圖,圖4係表示比較例之磁性層(不含Cr之Co/Pt超晶格層)之磁氣特性之圖。根據圖3及圖4可知,本實施方式(圖3)與比較例(圖4)相比,飽和磁化變低。
圖5係表示飽和磁化Mst與熱穩定性ΔE之關係之圖。於將本實施方式之磁性層(含有Cr之Co/Pt超晶格層)用作第2磁性層20之情形(a)時,與將比較例之磁性層(不含Cr之Co/Pt超晶格層)用作第2磁性層20之情形(b)相比,熱穩定性ΔE大幅度提高。即,於本實施方式之情形時,即便飽和磁化Mst較低,亦可獲得較高之熱穩定性ΔE。
根據圖3、圖4及圖5可知,於本實施方式中,藉由使用含有Cr之第2磁性層20,可獲得即便飽和磁化Mst較低、仍具有較高之熱穩定性ΔE之磁阻效應元件。
含有Cr之第2磁性層20可藉由利用熱處理使Cr自作為含Cr層之頂蓋層80擴散至第2磁性層20中而形成。如此,藉由使Cr自頂蓋層80擴散至第2磁性層20中,可於維持第2磁性層(Co/Pt超晶格層)20之超晶格構造之狀態下使第2磁性層20中含有Cr。
一般而言,於第2磁性層(Co/Pt超晶格層)20設置於隧道位障層50之上層側之情形時,難以形成具有較高之垂直磁各向異性之Co/Pt超晶格層。如本實施方式般,藉由使Cr自頂蓋層80擴散至第2磁性層(Co/Pt超晶格層)20中,可容易地使第2磁性層20中含有Cr,從而可形成具有較高之垂直磁各向異性之第2磁性層20。
以下,對頂蓋層(含Cr層)80之例進行說明。
第1例中,使用實際僅含有Cr(第3元素)之Cr層作為頂蓋層(含Cr層)80。
第2例中,頂蓋層(含Cr層)80含有Cr(第3元素)與Co(第1元素)及Pt(第2元素)中之至少一種元素。具體而言,第2例中,作為頂蓋層(含Cr層)80,使用CrCo合金層、CrPt合金層或CrCoPt合金層。
再者,於第1例及第2例中,第2磁性層20之最上層(與頂蓋層80相接之層)均可為Co層及Pt層之任一個。
再者,本實施方式中,為了將頂蓋層80中含有之Cr導入至第2磁性層20中,而頂蓋層(含Cr層)80中含有之Cr之濃度高於第2磁性層(Co/Pt超晶格層)20中含有之Cr之濃度。
又,亦可對頂蓋層80使用如上所述之含Cr層,並且進而對中間層60亦使用如上所述之含Cr層。即,作為中間層(含Cr層)60,可使用實際僅含有Cr(第3元素)之Cr層,亦可使用含有Cr(第3元素)與Co(第1元素)及Pt(第2元素)中之至少一種元素之合金層。
如此,藉由對中間層60亦使用含Cr層,可使Cr自頂蓋層80及中間層60、即第2磁性層20之上表面側及下表面側擴散,因此,可更有效率地將Cr導入至第2磁性層20中。於該情形時,頂蓋層(含Cr層)80中含有之Cr之濃度及中間層(含Cr層)60中含有之Cr之濃度均高於第2磁性層(Co/Pt超晶格層)20中含有之Cr之濃度。
再者,於上述例中,對使用Co/Pt超晶格層作為第2磁性層20之情形、即使用鈷(Co)作為構成超晶格層之第1元素且使用鉑(Pt)作為第2元素之情形進行了說明,但代替鉑(Pt)而使用鎳(Ni)或鈀(Pd)作為第2元素之情形亦與上述情形同樣。
接下來,對本實施方式之變化例進行說明。再者,基本事項與上述實施方式同樣,省略上述實施方式中已敍述之事項之說明。
圖6係模式性地表示本變化例之非揮發性之磁性記憶裝置(磁阻效應元件)之構成之剖視圖。
於上述實施方式中,對記憶層位於上層側且參考層位於下層側之磁阻效應元件(頂部自由型之磁阻效應元件)進行了說明,但於本變化例中,使用記憶層位於下層側且參考層位於上層側之磁阻效應元件(底部自由型之磁阻效應元件)。
本變化例中,亦對頂蓋層80使用如上述實施方式中敍述之含Cr層,對中間層60亦使用如上述實施方式中敍述之含Cr層。
本變化例中,藉由使頂蓋層80中含有之Cr朝第4磁性層40擴散,可使第4磁性層40之垂直磁各向異性提高,藉由使中間層60中含有之Cr朝第2磁性層20擴散,可使第2磁性層20之垂直磁各向異性提高。因此,本變化例中,亦與上述實施方式同樣地,可確保較高之熱穩定性ΔE。
圖7係模式性地表示使用上述實施方式及變化例中所說明之磁阻效應元件100之磁性記憶裝置之構成之一例的立體圖。
圖7所示之磁性記憶裝置包含:複數條第1配線410,其等於X方向上延伸;複數條第2配線420,其等於Y方向上延伸;及記憶胞300,其連接於第1配線410與第2配線420之間。第1配線410及第2配線420中之一者對應於字元線,另一者對應於位元線。各記憶胞300包括磁阻效應元件100、及對磁阻效應元件100串聯連接之選擇器(開關元件)200。
磁阻效應元件100可使用上述實施方式及變化例中所說明之磁阻效應元件。
選擇器200例如可使用兩端子型之開關元件。施加至兩端子間之電壓未達閾值時,其開關元件為“高電阻狀態”,例如為非電性導通狀態。施加至兩端子間之電壓為閾值以上時,開關元件為“低電阻狀態”,例如成為電性導通狀態。
藉由向連接於期望之記憶胞300之第1配線410與第2配線420之間施加特定電壓,從而期望之記憶胞300中包含之選擇器200成為接通狀態(導通狀態),對期望之記憶胞300中包含之磁阻效應元件100進行寫入或讀出。
圖8係模式性地表示使用上述實施方式及變化例中所說明之磁阻效應元件100之磁性記憶裝置之構成之另一例的立體圖。
於圖7所示之例中,磁阻效應元件100位於下層側且選擇器200位於上層側,但於圖8所示之例中,磁阻效應元件100位於上層側且選擇器200位於下層側。其他基本構成與圖7所示之例相同。
藉由將本實施方式之磁阻效應元件100用於如圖7及圖8所示之磁性記憶裝置,可獲得能夠穩定地記憶資料之磁性記憶裝置。
對本發明之若干實施方式進行了說明,但該等實施方式係作為示例而提出,並不意圖限定發明之範圍。該等新穎之實施方式能夠以其他多種形態實施,可於不脫離發明主旨之範圍內進行各種省略、置換、變更。該等實施方式或其變化包含於發明之範圍或主旨中,並且包含於申請專利範圍所記載之發明及其均等之範圍內。 [相關申請]
本申請享有以日本專利申請2020-155729號(申請日:2020年9月16日)為基礎申請之優先權。本申請藉由參照該基礎申請而包含基礎申請之全部內容。
10:第1磁性層  20:第2磁性層  21:第1元素層  22:第2元素層  30:第3磁性層  40:第4磁性層  41:第1層部分  42:第2層部分  43:第3層部分  50:隧道位障層(非磁性層)  60:中間層(第3元素含有層)  70:中間層  80:頂蓋層(第3元素含有層)  90:下部導電層  100:磁阻效應元件  200:選擇器(開關元件)  300:記憶胞  410:第1配線  420:第2配線 Hex:外部磁場 Mst:飽和磁化 Mt:磁化 ΔE:熱穩定性
圖1係模式性地表示實施方式之磁阻效應元件之構成之剖視圖。 圖2係模式性地表示實施方式之磁阻效應元件之第2磁性層之構成之剖視圖。 圖3係表示實施方式之磁阻效應元件之磁性層之磁氣特性之圖。 圖4係表示比較例之磁阻效應元件之磁性層之磁氣特性之圖。 圖5係表示實施方式之磁阻效應元件及比較例之磁阻效應元件之飽和磁化Mst與熱穩定性ΔE之關係的圖。 圖6係模式性地表示實施方式之磁阻效應元件之變化例之構成之剖視圖。 圖7係模式性地表示使用實施方式之磁阻效應元件之磁性記憶裝置之構成之一例的立體圖。 圖8係模式性地表示使用實施方式之磁阻效應元件之磁性記憶裝置之構成之另一例的立體圖。
10:第1磁性層  20:第2磁性層  30:第3磁性層  40:第4磁性層  41:第1層部分  42:第2層部分  43:第3層部分  50:隧道位障層(非磁性層)  60:中間層(第3元素含有層)  70:中間層  80:頂蓋層(第3元素含有層)  90:下部導電層  100:磁阻效應元件

Claims (13)

  1. 一種磁性記憶裝置,其特徵在於:具備磁阻效應元件,上述磁阻效應元件具備:具有可變磁化方向之第1磁性層、具有可變磁化方向且含有第3元素之第2磁性層、具有固定磁化方向之第3磁性層、非磁性層、及含有上述第3元素之第3元素含有層,上述第1磁性層設置於上述第2磁性層與上述第3磁性層之間,上述第2磁性層設置於上述第1磁性層與上述第3元素含有層之間,上述非磁性層設置於上述第1磁性層與上述第3磁性層之間;且上述第2磁性層具有將以第1元素形成之第1元素層與以第2元素形成之第2元素層交替地積層而成之超晶格構造,上述第1元素為鈷(Co),上述第2元素選自鉑(Pt)、鎳(Ni)及鈀(Pd),上述第3元素為鉻(Cr),上述第3元素含有層中含有之上述第3元素之濃度高於上述第2磁性層中含有之上述第3元素之濃度。
  2. 如請求項1之磁性記憶裝置,其中上述第3元素含有層進而含有上述第1元素及上述第2元素之至少一種。
  3. 一種磁性記憶裝置,其特徵在於:具備磁阻效應元件,上述磁阻效應元件具備:具有可變磁化方向之第1磁性層、具有可變磁化方向且含有第3元素之第2磁性層、具有固定磁化方向之第3磁性層、非磁性層、及含有上述第3元素之第3元素含有層, 上述第1磁性層設置於上述第2磁性層與上述第3磁性層之間,上述非磁性層設置於上述第1磁性層與上述第3磁性層之間,上述第3元素含有層設置於上述第1磁性層與上述第2磁性層之間;且上述第2磁性層具有將以第1元素形成之第1元素層與以第2元素形成之第2元素層交替地積層而成之超晶格構造,上述第1元素為鈷(Co),上述第2元素選自鉑(Pt)、鎳(Ni)及鈀(Pd),上述第3元素為鉻(Cr),上述第3元素含有層中含有之上述第3元素之濃度高於上述第2磁性層中含有之上述第3元素之濃度。
  4. 如請求項3之磁性記憶裝置,其中上述第3元素含有層進而含有上述第1元素及上述第2元素之至少一種。
  5. 如請求項1或3之磁性記憶裝置,其中上述第2磁性層之磁化方向沿著與上述第1磁性層之磁化方向相同之方向變化。
  6. 如請求項1或3之磁性記憶裝置,其中上述磁阻效應元件具有垂直磁化。
  7. 如請求項1或3之磁性記憶裝置,其中上述第1磁性層含有鈷(Co)及鐵(Fe)之至少一種。
  8. 如請求項1或3之磁性記憶裝置,其中上述第3磁性層含有鈷(Co)及鐵(Fe)之至少一種。
  9. 如請求項1或3之磁性記憶裝置,其中上述非磁性層含有鎂(Mg)及氧(O)。
  10. 如請求項1或3之磁性記憶裝置,其中上述磁阻效應元件進而具備第4磁性層,該第4磁性層具有固定磁化方向且具有反鐵磁性耦合,且上述第1磁性層及上述第3磁性層設置於上述第2磁性層與上述第4磁性層之間。
  11. 如請求項1或3之磁性記憶裝置,其進而具備對上述磁阻效應元件串聯連接之開關元件,且由上述磁阻效應元件及上述開關元件構成記憶胞。
  12. 如請求項11之磁性記憶裝置,其中上述開關元件係兩端子型之開關元件,當施加至兩端子間之電壓未達閾值時呈高電阻狀態,當施加至兩端子間之電壓為閾值以上時呈低電阻狀態。
  13. 如請求項11之磁性記憶裝置,其進而具備第1配線與第2配線,且上述記憶胞連接於上述第1配線與上述第2配線之間。
TW110100231A 2020-09-16 2021-01-05 磁性記憶裝置 TWI768638B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020155729A JP2022049499A (ja) 2020-09-16 2020-09-16 磁気記憶装置
JP2020-155729 2020-09-16

Publications (2)

Publication Number Publication Date
TW202213353A TW202213353A (zh) 2022-04-01
TWI768638B true TWI768638B (zh) 2022-06-21

Family

ID=80627147

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110100231A TWI768638B (zh) 2020-09-16 2021-01-05 磁性記憶裝置

Country Status (4)

Country Link
US (1) US11980104B2 (zh)
JP (1) JP2022049499A (zh)
CN (1) CN114267784A (zh)
TW (1) TWI768638B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120008381A1 (en) * 2005-10-19 2012-01-12 Toshihiko Nagase Magnetoresistive element
US9755140B2 (en) * 2014-10-02 2017-09-05 SK Hynix Inc. Multilayered magnetic thin film stack and nonvolatile memory device having the same
CN107342359A (zh) * 2016-04-29 2017-11-10 上海磁宇信息科技有限公司 一种适用于在高温下工作的磁电阻元件
US20200105324A1 (en) * 2018-09-27 2020-04-02 Intel Corporation Multi-magnet stabilized spin orbit torque mram

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930164A (en) * 1998-02-26 1999-07-27 Motorola, Inc. Magnetic memory unit having four states and operating method thereof
US6743503B1 (en) * 1999-10-05 2004-06-01 Seagate Technology Llc Ultra-thin seed layer for multilayer superlattice magnetic recording media
EP1134743A3 (en) * 2000-03-13 2002-04-10 Matsushita Electric Industrial Co., Ltd. Magneto-resistive device and magneto-resistive effect type storage device
US6641935B1 (en) * 2000-11-20 2003-11-04 Seagate Technology Llc Perpendicular recording media with soft magnetic superlattice underlayer
US8546896B2 (en) * 2010-07-16 2013-10-01 Grandis, Inc. Magnetic tunneling junction elements having magnetic substructures(s) with a perpendicular anisotropy and memories using such magnetic elements
US8988934B2 (en) * 2010-07-27 2015-03-24 Alexander Mikhailovich Shukh Multibit cell of magnetic random access memory with perpendicular magnetization
US9082951B2 (en) * 2011-02-16 2015-07-14 Avalanche Technology, Inc. Magnetic random access memory with perpendicular enhancement layer
JP5214691B2 (ja) * 2010-09-17 2013-06-19 株式会社東芝 磁気メモリ及びその製造方法
JP5148673B2 (ja) * 2010-09-17 2013-02-20 株式会社東芝 磁気抵抗効果素子及び磁気メモリ
US9478730B2 (en) * 2010-12-31 2016-10-25 Samsung Electronics Co., Ltd. Method and system for providing magnetic layers having insertion layers for use in spin transfer torque memories
US8704319B2 (en) * 2010-12-31 2014-04-22 Samsung Electronics Co., Ltd. Method and system for providing magnetic layers having insertion layers for use in spin transfer torque memories
US8836061B2 (en) * 2012-06-06 2014-09-16 Avalanche Technology, Inc. Magnetic tunnel junction with non-metallic layer adjacent to free layer
US8836056B2 (en) * 2012-09-26 2014-09-16 Intel Corporation Perpendicular MTJ stacks with magnetic anisotropy enhancing layer and crystallization barrier layer
US8796797B2 (en) * 2012-12-21 2014-08-05 Intel Corporation Perpendicular spin transfer torque memory (STTM) device with enhanced stability and method to form same
US9184374B2 (en) 2013-03-22 2015-11-10 Kazuya Sawada Magnetoresistive element
US9147833B2 (en) * 2013-07-05 2015-09-29 Headway Technologies, Inc. Hybridized oxide capping layer for perpendicular magnetic anisotropy
US9178134B2 (en) 2013-08-30 2015-11-03 Masahiko Nakayama Magnetoresistive element and method of manufacturing the same
US20150069554A1 (en) 2013-09-06 2015-03-12 Masahiko Nakayama Magnetic memory and method of manufacturing the same
US20150069548A1 (en) 2013-09-09 2015-03-12 Masahiko Nakayama Magnetoresistive element
US9385304B2 (en) 2013-09-10 2016-07-05 Kabushiki Kaisha Toshiba Magnetic memory and method of manufacturing the same
US9379314B2 (en) * 2013-12-17 2016-06-28 Qualcomm Incorporated Hybrid synthetic antiferromagnetic layer for perpendicular magnetic tunnel junction (MTJ)
WO2015136723A1 (en) 2014-03-11 2015-09-17 Yasuyuki Sonoda Magnetic memory and method of manufacturing magnetic memory
JP6135018B2 (ja) * 2014-03-13 2017-05-31 株式会社東芝 磁気抵抗素子および磁気メモリ
US9871190B2 (en) * 2014-04-28 2018-01-16 Avalanche Technology, Inc. Magnetic random access memory with ultrathin reference layer
US20150333254A1 (en) * 2014-05-15 2015-11-19 Headway Technologies, Inc. Reduction of Barrier Resistance X Area (RA) Product and Protection of Perpendicular Magnetic Anisotropy (PMA) for Magnetic Device Applications
US10008663B1 (en) * 2017-04-19 2018-06-26 Avalanche Technology, Inc. Perpendicular magnetic fixed layer with high anisotropy
KR102335104B1 (ko) * 2014-05-23 2021-12-03 삼성전자 주식회사 자기 소자
US9305576B2 (en) 2014-09-09 2016-04-05 Kabushiki Kaisha Toshiba Magnetoresistive element
KR20160073859A (ko) 2014-12-17 2016-06-27 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US9647034B2 (en) 2015-09-09 2017-05-09 Kabushiki Kaisha Toshiba Magnetoresistive memory device and manufacturing method of the same
KR102482372B1 (ko) * 2015-10-15 2022-12-29 삼성전자주식회사 자기 저항 메모리 소자 및 그 제조 방법
US10541014B2 (en) * 2015-12-24 2020-01-21 Intel Corporation Memory cells with enhanced tunneling magnetoresistance ratio, memory devices and systems including the same
US10833253B2 (en) * 2016-02-05 2020-11-10 International Business Machines Corporation Low magnetic moment materials for spin transfer torque magnetoresistive random access memory devices
US9893273B2 (en) * 2016-04-08 2018-02-13 International Business Machines Corporation Light element doped low magnetic moment material spin torque transfer MRAM
KR102512988B1 (ko) * 2016-05-11 2023-03-22 삼성전자주식회사 비아 플러그를 포함하는 반도체 소자
JP6679455B2 (ja) * 2016-09-20 2020-04-15 キオクシア株式会社 磁気抵抗素子及び磁気メモリ
JP6968398B2 (ja) 2017-02-14 2021-11-17 国立研究開発法人産業技術総合研究所 磁気抵抗素子
JP2018163921A (ja) * 2017-03-24 2018-10-18 東芝メモリ株式会社 磁気記憶装置
EP3460811B1 (en) 2017-09-20 2020-06-17 IMEC vzw Magnetic layer structure for magnetic tunnel junction device
JP6434103B1 (ja) * 2017-09-20 2018-12-05 株式会社東芝 磁気メモリ
US20190304521A1 (en) * 2018-03-28 2019-10-03 Globalfoundries Singapore Pte. Ltd. Magnetic random access memory structures, integrated circuits, and methods for fabricating the same
US20190305213A1 (en) * 2018-03-30 2019-10-03 Everspin Technologies, Inc. Magnetoresistive stacks and methods therefor
US10692927B1 (en) * 2019-02-15 2020-06-23 International Business Machines Corporation Double MTJ stack with synthetic anti-ferromagnetic free layer and AlN bottom barrier layer
US11177431B2 (en) * 2019-12-02 2021-11-16 HeFeChip Corporation Limited Magnetic memory device and method for manufacturing the same
US11081154B1 (en) * 2020-01-27 2021-08-03 Rongfu Xiao Synthetic magnetic pinning element having strong antiferromagnetic coupling
US11302372B2 (en) * 2020-02-07 2022-04-12 International Business Machines Corporation MTJ stack containing a top magnetic pinned layer having strong perpendicular magnetic anisotropy
US11088200B1 (en) * 2020-02-10 2021-08-10 Rongfu Xiao Lattice matched seed layer to improve PMA for perpendicular magnetic pinning
US11251367B2 (en) * 2020-03-02 2022-02-15 Yimin Guo Composite multi-stack seed layer to improve PMA for perpendicular magnetic pinning
US11450466B2 (en) * 2020-08-19 2022-09-20 Yimin Guo Composite seed structure to improve PMA for perpendicular magnetic pinning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120008381A1 (en) * 2005-10-19 2012-01-12 Toshihiko Nagase Magnetoresistive element
US9755140B2 (en) * 2014-10-02 2017-09-05 SK Hynix Inc. Multilayered magnetic thin film stack and nonvolatile memory device having the same
CN107342359A (zh) * 2016-04-29 2017-11-10 上海磁宇信息科技有限公司 一种适用于在高温下工作的磁电阻元件
US20200105324A1 (en) * 2018-09-27 2020-04-02 Intel Corporation Multi-magnet stabilized spin orbit torque mram

Also Published As

Publication number Publication date
US20220085276A1 (en) 2022-03-17
TW202213353A (zh) 2022-04-01
JP2022049499A (ja) 2022-03-29
CN114267784A (zh) 2022-04-01
US11980104B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
US8917543B2 (en) Multi-state spin-torque transfer magnetic random access memory
JP5451977B2 (ja) 磁気トンネル接合素子およびその形成方法、磁気ランダムアクセスメモリ
US10483459B2 (en) Magnetic memory
US10490736B2 (en) Magnetic memory
CN108630805B (zh) 磁存储装置
EP2887410A1 (en) Magnetic multilayer stack
JP6237162B2 (ja) 磁気抵抗メモリ素子および磁気抵抗メモリ
JP6203312B2 (ja) 磁気メモリ
JP2006295001A (ja) 記憶素子及びメモリ
TWI768638B (zh) 磁性記憶裝置
US20220302205A1 (en) Magnetic memory device
TWI827097B (zh) 磁性記憶裝置
TWI787991B (zh) 磁性記憶裝置
US20230114539A1 (en) Variable resistance memory device
US20170263678A1 (en) Magnetic memory device
US20180083185A1 (en) Magnetic memory device
TW202213762A (zh) 磁性記憶裝置
CN114203898A (zh) 磁性存储装置
CN114730829A (zh) 压控层间交换耦合磁阻存储器设备及其操作方法