TWI766477B - 共振器、離子注入機的共振器 - Google Patents

共振器、離子注入機的共振器 Download PDF

Info

Publication number
TWI766477B
TWI766477B TW109144149A TW109144149A TWI766477B TW I766477 B TWI766477 B TW I766477B TW 109144149 A TW109144149 A TW 109144149A TW 109144149 A TW109144149 A TW 109144149A TW I766477 B TWI766477 B TW I766477B
Authority
TW
Taiwan
Prior art keywords
coil
resonator
rings
electrode
axial end
Prior art date
Application number
TW109144149A
Other languages
English (en)
Other versions
TW202127496A (zh
Inventor
科斯特爾 拜洛
麥克 河南
羅伯特 B 寶佩特
大衛 伯拉尼克
查理斯 T 卡爾森
法蘭克 辛克萊
保羅 墨菲
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202127496A publication Critical patent/TW202127496A/zh
Application granted granted Critical
Publication of TWI766477B publication Critical patent/TWI766477B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/005Helical resonators; Spiral resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0473Changing particle velocity accelerating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof
    • H01J23/213Simultaneous tuning of more than one resonator, e.g. resonant cavities of a magnetron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
    • H01J25/52Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode
    • H01J25/58Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode having a number of resonators; having a composite resonator, e.g. a helix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Particle Accelerators (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Radiation-Therapy Devices (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本文中的實施例涉及一種離子注入機的共振器。在一些 實施例中,共振器可包含:外殼;以及第一線圈和第二線圈,部分地設置在外殼內。第一線圈和第二線圈中的每一個可包含:第一端,包含用於接收離子束的開口;以及中心區段,圍繞中心軸螺旋狀延伸,其中中心軸平行於離子束的光束線,且其中中心區段的內側具有平坦化表面。

Description

共振器、離子注入機的共振器
本發明大體上涉及高能離子注入機,且更確切地說,涉及一種具有非對稱輪廓的螺旋形共振器線圈。
用於例如汽車應用、高解析度光感測器以及其它複雜的3D半導體結構的電力電子裝置的製造需要對半導體材料進行深度摻雜。此需求轉化成待注入物質的極高能量。舉例來說,為了以5微米深度摻雜到矽中,B、P以及As的能量可分別為4.2百萬電子伏特、10.5百萬電子伏特以及14百萬電子伏特。即使使用多電荷離子種類,但由於真空擊穿限制,這些能量在常規直流電壓加速器中是不可實現的。
獲得此高離子能量的一個方法是射頻(radio frequency,RF)加速。舉例來說,直線加速器使用一系列RF共振腔,RF共振腔將離子能量從數千電子伏特增大到數百萬電子伏特。在共振RF腔中,RF能量從RF產生器轉移到由線圈和空腔構成的RLC電路。由於空腔的品質因數(Q)升高,可獲得的加速電壓也隨 之升高。然而,品質因數受系統的電阻(主要受線圈的電阻)限制。
在一些情況下,可通過增大限定RF腔的腔室的大小來減小RF共振腔的電阻。然而,增大腔室大小也將增大空腔容量且更改共振頻率。此外,接面的漸減接地電阻和間隙電阻通常難以修改。
因此需要一種解決方案來減小系統電阻且增大品質因數。
在一個方法中,共振器可包含外殼以及設置在外殼內的至少一個線圈。所述至少一個線圈可包含:耦接到電極的第一端,所述電極可操作以使離子加速;以及連接到第一端的中心區段,所述中心區段圍繞中心軸螺旋狀延伸。中心區段的內側可具有平坦化表面,且中心區段的外側可具有彎曲輪廓。所述至少一個線圈可更包含連接到中心區段的第二端,所述第二端耦接到外殼。
在另一方法中,離子注入機的共振器可包含:界定內腔的外殼;以及部分地設置在內腔內的第一線圈。第一線圈可包含:耦接到第一電極的第一端,所述第一電極包含用於接收離子束的第一開口;以及與第一端連接的第一中心區段,其中第一中心區段包含圍繞中心軸螺旋狀延伸的第一多個環,且其中第一多 個環中的每一個具有第一平坦化表面。共振器可更包含與第一線圈相鄰的第二線圈,第二線圈包含耦接到第二電極的第二端,第二電極包含用於接收來自第一電極的離子束的第二開口。第二線圈可更包含與第二端連接的第二中心區段,其中第二中心區段包含圍繞中心軸螺旋狀延伸的第二多個環,且其中第二多個環中的每一個具有第二平坦化表面。
在又一方法中,離子注入機的共振器可包含界定內腔的外殼以及部分地設置在內腔內的第一中空線圈。第一中空線圈可包含在外殼外部延伸且耦接到第一電極的第一端,第一電極包含用於接收離子束的第一開口。第一線圈可更包含與第一端連接的第一中心區段,其中第一中心區段包含圍繞中心軸螺旋狀延伸的第一多個環,且其中第一多個環中的每一個具有第一平坦化表面。共振器可更包含內腔內與第一線圈相鄰的第二中空線圈,第二中空線圈包含在外殼外部延伸且耦接到第二電極的第二端,第二電極包含用於接收來自第一電極的離子束的第二開口。第二線圈可更包含與第二端連接的第二中心區段,其中第二中心區段包含圍繞中心軸螺旋狀延伸的第二多個環,且其中第二多個環中的每一個具有第二平坦化表面。
10、100:共振器
12、102:外殼
13、112、114:電極
14、104:內腔
15、105、106:線圈
16、116、118:開口
17、117:離子束
18、108:第一端
21、121、125:中心區段
23、123、127:環
25、115:線圈組合件
30、120:中心軸
32、110、133、135:第二端
122:板
123A、123B、123C:第一多個環
124:勵磁線圈
126:第一軸向端
127A、127B、127C:第二多個環
128:能量源
129:第二軸向端
130:RF產生器
132:阻抗
134、234:第一內側
137:第三軸向端
138:電極組合件
139:第四軸向端
140:磁通量
141:內部
144:等高線
147:接面
148、248:表層
150:第一平面
151:第二平面
152:第三平面
154:第一間隙
155:第二間隙
156:第一接地電極
158:第三間隙
160:第二接地電極
161、240:內部通道
162、242:內部表面
164:圓形輪廓
166、236:第二外側
168、238:彎曲表面
170:集總元件電路
171A、171B、171C:第一平坦化表面
173A、173B、173C:第二平坦化表面
174:第四平面
175:第五平面
176:第六平面
185、235:平坦化表面
205:替代線圈
210:平面組件
260:第一主表面
262:第二主表面
d:距離
x、y、z:方向
φ、β、ρ、α:非零角度
圖1A描繪根據本發明實施例的共振器的透視圖。
圖1B描繪根據本發明實施例的共振器的透視圖。
圖2A描繪根據本發明實施例的圖1B的共振器的線圈組合件的透視圖。
圖2B描繪根據本發明實施例的圖1B的共振器的電極組合件的透視圖。
圖3描繪根據本發明實施例的圖1B的共振器的電路圖。
圖4描繪根據本發明實施例的集總元件電路。
圖5描繪根據本發明實施例的圖1B的共振器的線圈的端部橫截面圖。
圖6描繪根據本發明實施例的圖1B的共振器的線圈組合件的側面橫截面圖。
圖7描繪根據本發明實施例的線圈的端部橫截面圖。
圖式並不一定按比例繪製。圖式僅為表示圖,並不意圖描繪本發明的具體參數。圖式意圖描繪本發明的示例性實施例,且因此不應被視為在範圍上受到限制。在圖式中,相似標號表示相似元件。
此外,為了說明清楚,可省略或不按比例示出一些圖式中的某些元件。為了說明清楚,橫截面圖可呈“切片”或“近視的”橫截面圖的形式,從而省略在“真實”橫截面圖中另外可見的某些背景線條。此外,為了清晰起見,可在某些圖式中省略一些參考標號。
現將在下文中參考繪示方法實施例的附圖更全面地描述根據本發明的離子注入機和共振器。離子注入機和共振器可以許多不同形式體現且不應解釋為受限於本文中闡述的實施例。替代地,提供這些實施例是為了使得本發明透徹且完整,且將向本領域的技術人員充分傳達系統和方法的範圍。
本文中的實施例描述適用於能夠以預定頻率共振的直線加速器共振器的緊密、非對稱線圈設計。共振器可包含彼此相鄰設置且圍繞同一中心軸螺旋狀設置的第一線圈和第二線圈。第一線圈和第二線圈中的每一個可為中空的,沿其內部側面具有平坦化表面。本實施例的線圈設計減小線圈電阻且因此增大共振腔的品質因數。
現在轉向圖1A,將描述根據本發明的實施例的離子注入機的共振器10。如所繪示,共振器10可包含界定內腔14的外殼12。外殼12可為圍繞射頻(RF)共振內腔的電接地導電外殼(例如,鋁)。外殼12內為包含線圈15的線圈組合件25。第一端18可耦接到電極13,所述電極具有穿過其而形成的縫隙或開口16。在使用期間,離子束17可穿過開口16。可選擇例如沿著電極13的x方向的長度,使得離子束17在進入電極13時加速橫跨第一間隙,且接著在離開電極13時再次加速。在離子束17橫穿開口16的中心部分期間,RF電壓從負變為正。此佈置有時被稱為雙間隙加速器(double gap accelerator)。
如進一步繪示,線圈15的第一端18可連接到中心區段21,其中中心區段21包含圍繞中心軸30螺旋狀延伸的第一多個區段或環23。在此實施例中,中心軸30可大體上垂直於離子束17的行進方向延伸。線圈15的第二端32可連接到處於接地電位的外殼12。如將在下文中更詳細地描述,線圈15由具有近似圓形橫截面的中空管制成,所述中空管包含具有平坦化表面(圖中未示)的中心區段21的內側。
現在轉向圖1B,將描述根據本發明實施例的離子注入機的共振器100。如所繪示,共振器100可包含界定內腔104的外殼102。外殼102內為包含第一線圈105和第二線圈106的線圈組合件115。第一端108可耦接到第一電極112,而第二端110可耦接到第二電極114。第一電極112可包含第一縫隙或開口116,且第二電極114可包含第二縫隙或開口118。在使用期間,離子束117可穿過第一開口116和第二開口118。
如進一步繪示,第一線圈105的第一端108可連接到第一中心區段121,其中第一中心區段121包含圍繞中心軸120螺旋狀延伸的第一多個區段或環123。在此實施例中,中心軸120可大體上平行於離子束117的行進方向延伸。第二線圈106的第二端110可連接到第二中心區段125,其中第二中心區段125包含圍繞中心軸120螺旋狀延伸的第二多個區段或環127。如所繪示,第一多個環123通常可與第二多個環127端對端佈置。
第一線圈105和第二線圈106可相對於外殼102的壁且 相對於彼此對稱地佈置。如所繪示,第一線圈105和第二線圈106為以相同方向纏繞且共用中心軸120的螺旋。第一線圈105和第二線圈106的相應第二端133、135可通過耦接到外殼102的板122連接,所述外殼可為接地的。在其它實施例中,第一端133和第二端135可直接耦接到外殼102。
如將在本文中進一步詳細地描述,第一線圈105和第二線圈106可進一步共用沿著中心軸120直線穿過的同一/單個磁場。在此佈置中,離子束117可加速三次,即,首先是離子束117進入第一電極112時,接著是離子束117從第一電極112傳輸到第二電極114時,最後是離子束117離開第二電極114時。這是通過RF電壓在第一間隙加速期間從第一電極112上的負值以及第二電極114上的正值改變,且接著在離子束117進入第一電極112和第二電極114之間時反轉極性來實現的。接著,離子束117可在離開第二電極114時再次反轉極性。此佈置有時被稱為三間隙加速器(triple gap accelerator)。
在一些實施例中,第一線圈105和第二線圈106為具有內部通道以容許冷卻流體流動穿過的銅管。舉例來說,第一線圈105和第二線圈106內的內部流動水可有助於消散由沿著第一線圈105和第二線圈106的導電材料行進的電流產生的熱量。如將在下文中更詳細地描述,第一多個環123和第二多個環127中的每一個具有面向中心軸120的平坦化內表面。
圖2A中描繪了共振器100的工作原理。在此實施例 中,RF能量可從能量源(例如,RF產生器)穿過勵磁線圈(圖中未示)轉移進入線圈組合件115內。以如下得出的磁能的形式將能量存儲在線圈組合件115中:
Figure 109144149-A0305-02-0010-1
其中B表示磁通量140,且μ 0表示內腔104內的真空磁導率。
由於內腔104形成RLC電路,所述內腔將以某一頻率f 0振動,所述頻率在共振時如下得出:
Figure 109144149-A0305-02-0010-2
其中L為線圈組合件115的電感,且C為共振器100的電容。在共振條件下,能量將週期性地從磁能(其顯示為線圈組合件115中的磁通量140)轉換成靜電能。
圖2B展現根據本發明實施例的可與線圈組合件115一起操作的電極組合件138。在此實施例中,電極組合件138的靜電能可顯示為第一電極112與第二電極114的激勵開口之間的靜電電位差(展現為等高線144)。在一些實施例中,靜電電位差W elec 通過下式得出:
Figure 109144149-A0305-02-0010-3
其中E表示電場強度,且ε 0表示內腔104內的真空介電常數。
更確切地說,假設離子在圖2B中從左到右行進,且振動靜電電位的振幅為Vmax,線圈組合件115的三間隙加速如下起作用。當第一接地電極156的出口處的離子具有合適相位時,離子將具有電位降[0-(-Vmax)]且將加速橫跨第一間隙154且朝向 激勵的第一電極112。離子可獲得的最大能量等於離子輸送的電荷(q)乘以電壓Vmax。如果合併第一電極112的出口處的電極長度計算第一間隙154與第二間隙155(其設置在第一電極112與第二電極114之間)的距離,那麼離子將具有2Vmax電位降[Vmax-(-Vmax)=2Vmax]。因此,離子橫跨第二間隙155將獲得的能量將為橫跨第一間隙154所獲得的能量的兩倍。最後,對於位於第二電極114與第二接地電極160之間的第三間隙158,離子具有的電位降將為Vmax,且離子將獲得額外qVmax能量,因此在第二接地電極160的入口處產生4qVmax總能量。
對於理想情況(即,無損耗),磁能將全部轉換成靜電能,從而引起從線圈組合件115(磁能)到加速離子(動能)的1:1能量轉換。然而,在真實系統中,存在限制此能量轉換的損耗。在此情況下,能量轉移可由共振器100的品質因數Q量化,所述品質因數通過下式得出:
Figure 109144149-A0305-02-0011-4
存儲在共振器100中的總能量將等於存儲在線圈組合件中的總能量,所述總能量通過下式得出:
Figure 109144149-A0305-02-0011-5
其中I表示流動穿過線圈組合件115的電流的rms值。另一方面,共振器100中所消耗的電力通過下式得出:P diss =R equiv I 2 (6)其中R equiv 表示共振器電路的等效電阻。在共振條件下,這使得
Figure 109144149-A0305-02-0012-6
其中X Lcoil 為線圈組合件115的感抗。
方程式(7)表明:為了增大品質因數Q,可增大X Lcoil 和減小R equiv 。然而,共振腔配置成以給定共振頻率操作。因此,改變線圈電感將改變共振頻率。
用於減小根據本發明實施例的R equiv 的一個方法通過圖3的共振RF腔來展現。如所繪示,共振器100還可在內腔104內包含勵磁線圈124。勵磁線圈124可定位成極為接近線圈組合件115以轉移來自能量源128的能量(例如,RF能量)。在一些實施例中,能量源128包含RF產生器130,其中阻抗(Z0)132為RF產生器130的阻抗,所述阻抗可等於50歐姆。
在一個實例中,為了尋找Q的解析式,內腔104可模型化為圖4中所繪示的集總元件電路170。在此實例中,R coil 為線圈組合件115的電阻,R junc 為線圈組合件115與外殼102之間的接面147的電阻,R can 為外殼102的電阻,且R gap 為第二間隙155的電阻。基於電路分析,可繪示等效電阻可寫成
Figure 109144149-A0305-02-0012-10
其中λ為0與1之間的數值。
可通過增大外殼102的大小(較小的感應鏡像電流)來減小RF共振腔的電阻,但這將增大電容Ccan且更改共振頻率。接面的接地電阻和間隙電阻難以修改。因此,增大品質因數的有效方式是減小線圈電阻,所述線圈電阻通過下式得出:
Figure 109144149-A0305-02-0013-7
其中ρ為線圈材料的電阻率,l為線圈管的長度,且A為電流流動穿過線圈組合件115所通過的橫截面面積。因此,總線圈長度將不會被影響,但電流將具有更寬的橫截面且線圈電阻將因此減小。
現在轉向圖5的端部橫截面圖,將更詳細地描述根據本發明實施例的第一線圈105和第二線圈106。如所繪示,第一線圈105和第二線圈106可具有非對稱輪廓,其中第一內側134具有平坦化表面185且第二外側166具有彎曲表面168。在此實施例中,內部通道161由第一線圈105和第二線圈106的內部表面162界定。雖然展示為具有圓形輪廓,但應瞭解,內部通道161可以採用任何種類的形狀。
如所描繪,第一線圈105和第二線圈106可沿著徑向方向而從圓形輪廓164(如由虛線所繪示)平坦化或減小距離‘d’。不同於直流電流,RF電流不流動穿過第一線圈105和第二線圈106的整個徑向橫截面,而是穿過內側134的較小表層148。表層148的厚度可通過下式定義:
Figure 109144149-A0305-02-0013-8
其中f為RF頻率,且其中μ 0 =4π×10-7亨利/公尺,且μ r 為第一線圈105和第二線圈106的真空磁導率和材料的相對磁導率。如果將銅材料用於第一線圈105和第二線圈106,那麼在22兆赫茲 下,表層148的厚度/深度為近似15微米。
此外,電流流動穿過的橫截面積(陰影區域)可通過下式定義:
Figure 109144149-A0305-02-0014-9
與圓形輪廓164相比,將第一線圈105和第二線圈106平坦化例如大約1毫米的距離可使表層148的橫截面積增大16倍。這將引起第一線圈105和第二線圈106的等效電阻減小。同時,使外側166具有彎曲表面或彎曲輪廓可減小電應力量(例如矩形形狀的電極由於小曲率半徑而存在電應力),所述電應力增大次級電子倍增以及介電擊穿風險。
現在轉向圖6的側面橫截面圖,將更詳細地描述根據本發明實施例的包含第一線圈105和第二線圈106的線圈組合件115的簡要描繪。如所繪示,第一線圈105包含第一多個環123A至第一多個環123C,且第二線圈106包含第二多個環127A至第二多個環127C。為便於說明,雖然僅為第一線圈105和第二線圈106中的每一個繪示三(3)個環,但應瞭解,更少或更多的環數是可能的。
第一多個環123A至第一多個環123C以及第二多個環127A至第二多個環127C可圍繞中心軸120以相同方向纏繞。如所繪示,第一多個環123A至第一多個環123C以及第二多個環127A至第二多個環127C通常可具有相同或類似半徑。第一多個環123A至第一多個環123C可包含與第二軸向端129相對的第一 軸向端126,且第二多個環127A至第二多個環127C可包含與第四軸向端139相對的第三軸向端137。第一軸向端126和第三軸向端137對應於整個線圈組合件115的相對端,而第二軸向端129和第四軸向端139沿著由第一線圈105和第二線圈106界定的內部141彼此直接相鄰地定位。在一些實施例中,第一多個環123A至第一多個環123C以及第二多個環127A至第二多個環127C中的每一個可例如沿著中心軸120彼此等距間隔開。
如所繪示,第一多個環123A至第一多個環123C中的每一個具有對應的第一平坦化表面171A至第一平坦化表面171C,而第二多個環127A至第二多個環127C中的每一個具有對應的第二平坦化表面173A至第二平坦化表面173C。第一平坦化表面171A至第一平坦化表面171C以及第二平坦化表面173A至第二平坦化表面173C中的每一個界定對應的平面。舉例來說,第一平坦化表面171A可界定相對於中心軸120以非零角度φ設置的第一平面150。第一平坦化表面171B可界定相對於中心軸120以非零角度β設置的第二平面151。在一些實施例中,φ>β。同時,第一平坦化表面171C可界定大體上平行於中心軸120的第三平面152。
類似地,第二平坦化表面173A可界定相對於中心軸120以非零角度ρ設置的第四平面174。在一些實施例中,第一平面150的非零角度φ可與第四平面174的非零角度ρ相同。第二平坦化表面173B可界定相對於中心軸120以非零角度α設置 的第五平面175。在一些實施例中,第二平面151的非零角度β可與第五平面175的非零角度α相同。在一些實施例中,ρ>α。同時,第二平坦化表面173C可界定大體上平行於中心軸120且平行於第三平面152的第六平面176。在一些實施例中,第一多個環123A至第一多個環123C以及第二多個環127A至第二多個環127C可具有大體上D形輪廓。
如所展示,第一平坦化表面171A和第二平坦化表面173C分別在第一軸向端126和第三軸向端137處向外張開。因此,載送電流的線圈表面的面積大大增加,從而顯著地減小RLC電路的電阻且增大Q
現在轉向圖7的端部橫截面圖,將描述根據本發明實施例的替代線圈205。如所繪示,線圈205可具有非對稱輪廓,其中第一內側234具有平坦化表面235且第二外側236具有彎曲表面238。在此實施例中,內部通道240由內部表面242界定。雖然繪示為具有圓形輪廓,但應瞭解,內部通道240可以採用任何種類的形狀。
如所繪示,線圈205可包含沿著其長度軸向地延伸的平面組件210。可提供平面元件210以進一步增加表層248可用來載送電流的面積且因此進一步減小線圈205的等效電阻。雖然並非限制,但平面元件210可包含與第二主表面262相對的第一主表面260。表層248可沿著第一主表面260延伸。
鑒於前述內容,通過本文中公開的實施例實現至少以下 優點。第一優點包含通過減小線圈組合件的電阻來提升品質因數。第二優點包含由於較高品質因數而使可用加速電壓增大。
出於說明和描述的目的,已呈現先前述論述且不意圖將本發明限於本文中所公開的一或多種形式。舉例來說,出於簡化本發明的目的,本發明的各種特徵可一起集合在一或多個方面、實施例或配置中。然而,應理解,本發明的某些方面、實施例或配置的各種特徵可組合在替代性方面、實施例或配置中。
如本文中所使用,以單數形式敘述並以詞語“一(a/an)”為首字的元件或步驟應理解為不排除複數個元件或步驟,除非明確地敘述此排除。此外,對本發明的“一個實施例”的參考並不意圖解釋為排除同樣併入所敘述特徵的額外實施例的存在。
本文中使用“包含”、“包括”或“具有”以及其變化形式意在涵蓋其後列出的項目和其等效物以及額外項目。因此,術語“包含”、“包括”或“具有”以及其變化形式為開放式表述且可在本文中可互換地使用。
如本文中所使用,短語“至少一個”、“一或多個”以及“和/或”是在操作中具有連線性和分離性的開放式表述。舉例來說,表達“A、B以及C中的至少一個”、“A、B或C中的至少一個”、“A、B以及C中的一或多個”、“A、B或C中的一或多個”以及“A、B和/或C”意指僅A、僅B、僅C、A與B一起、A與C一起、B與C一起,或A、B與C一起。
所有方向性參考(例如近端、遠端、上部、下部、向上、向下、左側、右側、橫向、縱向、正面、背面、頂部、底部、上方、下方、垂直、水平、徑向、軸向、順時針以及逆時針)僅用於辨識目的以輔助讀者對本發明的理解,且並不造成尤其本發明的位置、定向或使用的局限性。除非另有指示,否則連接參考(例如,附接、耦接、連接以及接合)應廣泛地解釋,且可包含一系列元件之間的中間構件以及元件之間的相對移動。因而,連接參考不一定推斷兩個元件直接連接且彼此成固定關係。此外,辨識參考(例如初級、次級、第一、第二、第三、第四等等)並不意圖暗示重要性或優先順序,而是用於區分一個特徵與另一特徵。
此外,術語“實質上”或“基本上”以及術語“大約”或“大致地”可在一些實施例中可互換地使用,且可使用由本領域的一般技術人員可接受的任何相對度量標準來描述。舉例來說,這些術語可充當與參考參數的比較,以表明能夠提供期望函數的偏差。雖然並非限制,但參考參數的偏差可為例如小於1%、小於3%、小於5%、小於10%、小於15%、小於20%等等的量。
再者,雖然上文將說明性方法描述為一系列動作或事件,但除非確切陳述,否則本發明不限於此類動作或事件的所示次序。舉例來說,根據本發明,除本文中所示出和/或描述的那些次序之外,一些動作可以不同的次序和/或與其它動作或事件同時地進行。舉例來說,本文中所描述的執行注入制程的制程順序、 應力膜的形成、退火以及應力膜的去除可重複多次以形成多個應力記憶層或區域。
另外,實施根據本發明的方法可能並不需要所有所示動作或事件。此外,可以結合在本文中示出且描述的結構的形成和/或處理以及結合並未示出的其它結構來實施方法。
本發明的範圍不受本文所描述的具體實施例的限制。實際上,本領域的一般技術人員根據前述描述和附圖將明白(除本文所描述的那些實施例和修改之外)本發明的其它各種實施例和對本發明的修改。因此,此類其它實施例和修改意圖屬於本發明的範圍。此外,已在用於特定用途的特定環境中的特定實施的上下文中描述本發明。本領域的一般技術人員將認識到,有用性不限於此,且本發明可有利地實施於用於多種用途的多種環境中。因此,上文闡述的權利要求書應鑒於如本文中所描述的本發明的完全廣度和精神來解釋。
10:共振器
12:外殼
13:電極
14:內腔
15:線圈
16:開口
17:離子束
18:第一端
21:中心區段
23:環
25:線圈組合件
30:中心軸
32:第二端
x、y、z:方向

Claims (20)

  1. 一種共振器,包括:外殼;以及至少一個線圈,設置在所述外殼內,所述至少一個線圈包括:第一端,耦接到電極,所述電極可操作以使離子加速;中心區段,連接到所述第一端,所述中心區段圍繞中心軸螺旋狀延伸,其中所述中心區段的內側具有平坦化表面,且其中所述中心區段的外側具有彎曲輪廓;以及第二端,連接到所述中心區段,所述第二端耦接到所述外殼。
  2. 如請求項1所述的共振器,其中所述至少一個線圈具有D形輪廓。
  3. 如請求項1所述的共振器,其中所述至少一個線圈的所述第二端通過板耦接到所述外殼。
  4. 如請求項1所述的共振器,所述中心區段包括:第一軸向端和第二軸向端;以及多個環,在所述第一軸向端與所述第二軸向端之間延伸,其中所述多個環中的第一環包含界定第一平面的第一平坦化表面,其中所述多個環中的第二環包含界定第二平面的第二平坦化表面,且其中所述第一平面相對於所述中心軸的第一角度與所述第二平面的第二角度不同。
  5. 如請求項4所述的共振器,其中所述第一角度大於所述第二角度。
  6. 如請求項4所述的共振器,其中所述第一環定位在所述第一軸向端處,且其中所述第二環定位在所述第二軸向端處。
  7. 如請求項1所述的共振器,所述至少一個線圈包括第一線圈和第二線圈,其中所述第一線圈的第一端耦接到第一電極,其中所述第二線圈的第一端耦接到第二電極,且其中離子束可操作以穿過所述第一電極和所述第二電極。
  8. 如請求項7所述的共振器,更包括:勵磁線圈,處於所述外殼內;以及能量源,與所述勵磁線圈連接以便為所述第一線圈和所述第二線圈提供射頻(RF)能量。
  9. 如請求項7所述的共振器,其中所述第一線圈和所述第二線圈包括沿著其長度軸向延伸的平面組件。
  10. 一種離子注入機的共振器,所述共振器包括:外殼,界定內腔;第一線圈,部分地設置在所述內腔內,所述第一線圈包括:第一端,耦接到第一電極,所述第一電極包含用於接收離子束的第一開口;以及第一中心區段,與所述第一端連接,其中所述第一中心區段包含圍繞中心軸螺旋狀延伸的第一多個環,且其中所述第一多個環中的每一個具有第一平坦化表面,其中所述第一多個環的外側具有彎曲輪廓;以及第二線圈,與所述第一線圈相鄰,所述第二線圈包括:第二端,耦接到第二電極,所述第二電極包含用於接收來自所述第一電極的所述離子束的第二開口;以及 第二中心區段,與所述第二端連接,其中所述第二中心區段包含圍繞所述中心軸螺旋狀延伸的第二多個環,且其中所述第二多個環中的每一個具有第二平坦化表面。
  11. 如請求項10所述的離子注入機的共振器,其中所述第二多個環的外側具有彎曲輪廓。
  12. 如請求項10所述的離子注入機的共振器,其中所述第一線圈和所述第二線圈通過板耦接在一起,且其中所述板是接地的。
  13. 如請求項10所述的離子注入機的共振器,其中所述第一多個環包含與第二軸向端相對的第一軸向端,且其中所述第二多個環包含與第四軸向端相對的第三軸向端。
  14. 如請求項13所述的離子注入機的共振器,其中所述第一多個環的所述第一平坦化表面中的一個界定第一平面,其中所述第一多個環的所述第一平坦化表面中的另一個界定第二平面,且其中所述第一平面相對於所述中心軸的第一角度與所述第二平面相對於所述中心軸的第二角度不同。
  15. 如請求項14所述的離子注入機的共振器,其中所述第一角度大於所述第二角度。
  16. 一種離子注入機的共振器,所述共振器包括:外殼,界定內腔;第一中空線圈,部分地設置在所述內腔內,所述第一中空線圈包括:第一端,在所述外殼的外部延伸且耦接到第一電極,所述第一電極包含用於接收離子束的第一開口;以及 第一中心區段,與所述第一端連接,其中所述第一中心區段包含圍繞中心軸螺旋狀延伸的第一多個環,且其中所述第一多個環中的每一個具有第一平坦化表面,其中所述第一多個環的外側具有彎曲輪廓;以及第二中空線圈,與所述第一中空線圈相鄰且處於所述內腔內,所述第二中空線圈包括:第二端,在所述外殼的外部延伸且耦接到第二電極,所述第二電極包含用於接收來自所述第一電極的所述離子束的第二開口;以及第二中心區段,與所述第二端連接,其中所述第二中心區段包含圍繞所述中心軸螺旋狀延伸的第二多個環,且其中所述第二多個環中的每一個具有第二平坦化表面。
  17. 如請求項16所述的離子注入機的共振器,其中所述第二多個環的外側具有彎曲輪廓。
  18. 如請求項16所述的離子注入機的共振器,其中所述第一多個環包含與第二軸向端相對的第一軸向端,其中所述第二多個環包含與第四軸向端相對的第三軸向端,其中所述第一多個環的所述第一平坦化表面中的一個界定第一平面,其中所述第一多個環的所述第一平坦化表面中的另一個界定第二平面,且其中所述第一平面相對於所述中心軸的第一角度與所述第二平面相對於所述中心軸的第二角度不同。
  19. 如請求項18所述的離子注入機的共振器,其中所述第一多個環和所述第二多個環端對端佈置,使得所述第一多個環 的所述第二軸向端與所述第二多個環的所述第三軸向端直接相鄰。
  20. 如請求項16所述的離子注入機的共振器,其中所述第一中空線圈和所述第二中空線圈以相同方向纏繞。
TW109144149A 2020-01-06 2020-12-15 共振器、離子注入機的共振器 TWI766477B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/734,746 2020-01-06
US16/734,746 US11094504B2 (en) 2020-01-06 2020-01-06 Resonator coil having an asymmetrical profile

Publications (2)

Publication Number Publication Date
TW202127496A TW202127496A (zh) 2021-07-16
TWI766477B true TWI766477B (zh) 2022-06-01

Family

ID=76655441

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109144149A TWI766477B (zh) 2020-01-06 2020-12-15 共振器、離子注入機的共振器
TW111115913A TWI827022B (zh) 2020-01-06 2020-12-15 共振器、離子注入機的共振器

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111115913A TWI827022B (zh) 2020-01-06 2020-12-15 共振器、離子注入機的共振器

Country Status (6)

Country Link
US (2) US11094504B2 (zh)
JP (1) JP7405994B2 (zh)
KR (1) KR20220121864A (zh)
CN (1) CN114902815A (zh)
TW (2) TWI766477B (zh)
WO (1) WO2021141711A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11985756B2 (en) * 2021-10-20 2024-05-14 Applied Materials, Inc. Linear accelerator coil including multiple fluid channels
US11812539B2 (en) * 2021-10-20 2023-11-07 Applied Materials, Inc. Resonator, linear accelerator configuration and ion implantation system having rotating exciter
CN115000660B (zh) * 2022-06-06 2024-02-09 国开启科量子技术(北京)有限公司 基于hfss的双螺旋谐振器及设计方法、电压放大装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712042A (en) * 1986-02-03 1987-12-08 Accsys Technology, Inc. Variable frequency RFQ linear accelerator
TW441226B (en) * 1998-12-23 2001-06-16 Axcelis Tech Inc Compact helical resonator coil for ion implanter linear accelerator
WO2003032694A1 (en) * 2001-10-05 2003-04-17 Applied Materials, Inc. Radio frequency linear accelerator
TW584881B (en) * 2001-08-23 2004-04-21 Axcelis Tech Inc Method and apparatus for improved ion bunching in an ion implantation system
US20190088443A1 (en) * 2017-09-15 2019-03-21 Axcelis Technologies, Inc. Rf resonator for ion beam acceleration

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700158A (en) * 1986-09-30 1987-10-13 Rca Corporation Helical resonator
FI91116C (fi) * 1992-04-21 1994-05-10 Lk Products Oy Helix-resonaattori
US5504341A (en) * 1995-02-17 1996-04-02 Zimec Consulting, Inc. Producing RF electric fields suitable for accelerating atomic and molecular ions in an ion implantation system
JP3317183B2 (ja) * 1997-03-27 2002-08-26 日新電機株式会社 4ロッドrfq加速器のrfq電極
US6653803B1 (en) * 2000-05-30 2003-11-25 Axcelis Technologies, Inc. Integrated resonator and amplifier system
GB2395354B (en) * 2002-11-11 2005-09-28 Applied Materials Inc Ion implanter and a method of implanting ions
CN107251171A (zh) 2015-07-09 2017-10-13 株式会社村田制作所 线圈式电感器
CN107644801A (zh) * 2016-07-22 2018-01-30 北京中科信电子装备有限公司 一种电磁波谐振装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712042A (en) * 1986-02-03 1987-12-08 Accsys Technology, Inc. Variable frequency RFQ linear accelerator
TW441226B (en) * 1998-12-23 2001-06-16 Axcelis Tech Inc Compact helical resonator coil for ion implanter linear accelerator
TW584881B (en) * 2001-08-23 2004-04-21 Axcelis Tech Inc Method and apparatus for improved ion bunching in an ion implantation system
WO2003032694A1 (en) * 2001-10-05 2003-04-17 Applied Materials, Inc. Radio frequency linear accelerator
US20190088443A1 (en) * 2017-09-15 2019-03-21 Axcelis Technologies, Inc. Rf resonator for ion beam acceleration

Also Published As

Publication number Publication date
JP2023509170A (ja) 2023-03-07
TW202127496A (zh) 2021-07-16
US20210343500A1 (en) 2021-11-04
WO2021141711A1 (en) 2021-07-15
US20210210307A1 (en) 2021-07-08
CN114902815A (zh) 2022-08-12
US11094504B2 (en) 2021-08-17
US11710617B2 (en) 2023-07-25
JP7405994B2 (ja) 2023-12-26
KR20220121864A (ko) 2022-09-01
TWI827022B (zh) 2023-12-21
TW202232563A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
TWI766477B (zh) 共振器、離子注入機的共振器
JP5165821B2 (ja) 誘導結合型プラズマ発生システム用の複数コイル・アンテナ
JP3967433B2 (ja) プラズマ処理装置
Xiao et al. Field analysis of a dielectric-loaded rectangular waveguide accelerating structure
US9818580B2 (en) Transmission line RF applicator for plasma chamber
TWI471889B (zh) 用於提取帶離子束的電感耦合電漿源
US20070084405A1 (en) Adaptive plasma source for generating uniform plasma
TW201833975A (zh) 電感性線圈結構和電感耦合電漿產生系統
TW200908816A (en) Inductive coupled coil and inductive coupled plasma device using the same
US20220174810A1 (en) Resonator, linear accelerator configuration and ion implantation system having toroidal resonator
JP2002534795A (ja) プラズマエッチング装置
TWI844927B (zh) 諧振器線圈及離子植入系統
EP0514585A2 (en) Charged particle accelerator
JP4874488B2 (ja) 高周波整合ネットワーク
JP2004200169A (ja) 電磁気誘導加速器
JP2006156394A (ja) コイル巻線数の調節による電磁気誘導加速装置
JP4038883B2 (ja) 高周波型加速管
CN110416054B (zh) 感应线圈组及反应腔室
US11626268B2 (en) Induction coil assembly and reaction chamber
JP2007234344A (ja) マイクロ波管
JPH0810638B2 (ja) 荷電粒子加速器