TWI765232B - 加速度感測結構及加速度感測器 - Google Patents
加速度感測結構及加速度感測器 Download PDFInfo
- Publication number
- TWI765232B TWI765232B TW109105750A TW109105750A TWI765232B TW I765232 B TWI765232 B TW I765232B TW 109105750 A TW109105750 A TW 109105750A TW 109105750 A TW109105750 A TW 109105750A TW I765232 B TWI765232 B TW I765232B
- Authority
- TW
- Taiwan
- Prior art keywords
- elastic arms
- thickness
- gimbal
- outer elastic
- sensing structure
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 84
- 239000000758 substrate Substances 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000004088 simulation Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/09—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pressure Sensors (AREA)
Abstract
本發明提供一種加速度感測結構,其包含一基架、一質量塊、一平衡環及至少二外彈性臂。質量塊懸掛於基架,質量塊具有一第一厚度,平衡環環繞且連接質量塊,平衡環具有一第二厚度;各外彈性臂分別連接於平衡環與基架之間,前述至少二外彈性臂對稱排列。其中,第二厚度大於等於0.5倍的第一厚度且小於等於第一厚度,且質量塊運動時,連動至少二外彈性臂變形。藉此,可提升加速度感測結構的性能。
Description
本發明是有關於一種感測結構及感測器,且尤其是有關一種加速度感測結構及加速度感測器。
壓電加速度感測器因其具有寬廣的動態範圍、低輸出雜訊、低溫度相依性、高穩定性及高靈敏度而廣受歡迎。在現今的技術趨勢中,偵測極弱之振動訊號非常重要,因此有需要發展高性能之加速度感測器以作為智慧製造(Smart Manufacturing)的振動監測元件使用。
習知的壓電加速度感測器所使用之加速度感測結構具有單質量塊及單懸臂,其雖具有高靈敏度之優點,但容易產生共振而造成結構破壞。因此有業者發展出多質量塊及多懸臂之加速度感測結構,其可以抵抗較大頻率的衝擊,但卻具有靈敏度低之缺點。
有鑑於此,如何有效地改善加速度感測結構的結構配置,使之具有良好的性能及良好的結構穩定性,遂成相關業者努力的目標。
本發明提供一種加速度感測結構及加速度感測器,透過結構的配置可以提升加速度感測結構的性能。
依據本發明之一態樣之一實施方式提供一種加速度感測結構,其包含一基架、一質量塊、一平衡環及至少二外彈性臂。質量塊懸掛於基架,質量塊具有一第一厚度,平衡環環繞且連接質量塊,平衡環具有一第二厚度;各外彈性臂分別連接於平衡環與基架之間,前述至少二外彈性臂對稱排列。其中,第二厚度大於等於0.5倍的第一厚度且小於等於第一厚度,且質量塊運動時,連動前述至少二外彈性臂變形。
藉此,透過平衡環的設置及其與質量塊間之第一厚度與第二厚度關係,能提升加速度感測結構的性能,且同時具有結構上的穩定性。
依據前述之加速度感測結構的複數實施例,其中,各外彈性臂可包含一基底、一第一底電極、一第一壓電層、一第一上電極、一第二底電極、一第二壓電層及一第二上電極。第一底電極設置在基底上且鄰近平衡環,第一壓電層設置在第一底電極上,第一上電極設置在第一壓電層上;第二底電極與第一底電極間隔設置在基底上且鄰近基架,第二壓電層設置在第二底電極上,第二上電極設置在第二壓電層上。
依據前述之加速度感測結構的複數實施例,其中,各外彈性臂包含一第一壓阻層及一第二壓阻層,第一壓阻
層鄰近平衡環,第二壓阻層與第一壓阻層間隔設置且鄰近基架。
依據前述之加速度感測結構的複數實施例,其中,前述至少二外彈性臂的數量可為四,四外彈性臂對稱排列。
依據前述之加速度感測結構的複數實施例,更包含四內彈性臂,各內彈性臂連接於質量塊與平衡環之間,四內彈性臂對應四外彈性臂,其中,質量塊運動時,連動四內彈性臂變形。
依據前述之加速度感測結構的複數實施例,其中,各內彈性臂具有一第三厚度,各外彈性臂具有一第四厚度,各第三厚度小於第二厚度,且各第四厚度小於第二厚度。
依據本發明之一態樣之另一實施方式提供一種加速度感測結構,其包含一基架、一質量塊、一平衡環、至少二內彈性臂及至少二外彈性臂。質量塊懸掛於基架,質量塊具有一第一厚度及一質量塊頂面,平衡環環繞質量塊,平衡環具有一第二厚度及一平衡環頂面,各內彈性臂連接於質量塊與平衡環之間且具有一內彈性臂頂面,前述至少二內彈性臂對稱排列;各外彈性臂連接於平衡環與基架之間且具有一外彈性臂頂面,前述至少二外彈性臂對稱排列。其中,質量塊頂面、平衡環頂面、各內彈性臂頂面及各外彈性臂頂面彼此切齊,第二厚度大於等於0.5倍的第一厚度且小於等於第一厚度,且質量塊運動時,連動前述至少二內彈性臂及前述至少二外彈性臂變形。
依據前述之加速度感測結構的複數實施例,其中,各外彈性臂包含一第一壓電層及一第二壓電層,第一壓電層鄰近平衡環,第二壓電層與第一壓電層間隔設置且鄰近基架。
依據前述之加速度感測結構的複數實施例,其中,各外彈性臂包含一第一壓阻層及一第二壓阻層,第一壓阻層鄰近平衡環,第二壓阻層與第一壓阻層間隔設置且鄰近基架。
依據本發明之一態樣之又一實施方式提供一種加速度感測器,其包含一下蓋、一前述之加速度感測結構及一上蓋,加速度感測結構設置於下蓋上,上蓋位於加速度感測結構之上。
100:加速度感測結構
110:基架
120:質量塊
130:平衡環
140:內彈性臂
150:外彈性臂
151:基底
152:第二底電極
153:第二壓電層
154:第二上電極
155:第一底電極
156:第一壓電層
157:第一上電極
200:加速度感測結構
210:基架
230:平衡環
250:外彈性臂
258:第一壓阻層
259:第二壓阻層
400:加速度感測器
410:加速度感測結構
420:上蓋
430:下蓋
D1:第一厚度
D2:第二厚度
D3:第三厚度
D4:第四厚度
W1,W2:走線
X,Y,Z:軸
第1圖繪示依照本發明第1實施例之一種加速度感測結構的立體示意圖;
第2圖繪示第1圖第1實施例之加速度感測結構沿割面線2-2的一剖視示意圖;
第3圖繪示第1圖第1實施例之加速度感測結構的Z軸位移模擬圖;
第4圖繪示第3圖第1實施例之加速度感測結構沿割面線4-4的Z軸位移模擬圖;
第5圖繪示第1圖第1實施例之加速度感測結構的體積應
變模擬圖;
第6圖繪示第1圖第1實施例之加速度感測結構的頻率響應圖;
第7圖繪示依照本發明第2實施例之一種加速度感測結構的一剖視示意圖;以及
第8圖繪示依照本發明第3實施例之一種加速度感測器的一剖視示意圖。
以下將參照圖式說明本發明之實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,閱讀者應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示;並且重複之元件將可能使用相同的編號或類似的編號表示。
此外,本文中當某一元件(或機構或模組等)「連接」、「設置」或「耦合」於另一元件,可指所述元件是直接連接、直接設置或直接耦合於另一元件,亦可指某一元件是間接連接、間接設置或間接耦合於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接連接」、「直接設置」或「直接耦合」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。而第一、第二、第三等用語只是用來描述不同元件或
成分,而對元件/成分本身並無限制,因此,第一元件/成分亦可改稱為第二元件/成分。且本文中之元件/成分/機構/模組之組合非此領域中之一般周知、常規或習知之組合,不能以元件/成分/機構/模組本身是否為習知,來判定其組合關係是否容易被技術領域中之通常知識者輕易完成。
請參閱第1圖及第2圖,其中第1圖繪示依照本發明第1實施例之一種加速度感測結構100的立體示意圖,第2圖繪示第1圖第1實施例之加速度感測結構100沿割面線2-2的一剖視示意圖。在此要特別說明的是,為了使圖面簡潔,第1圖省略了基架110,第2圖省略了走線W1、W2及部分層數,然不以此限制本發明。加速度感測結構100包含一基架110、一質量塊120、一平衡環130及至少二外彈性臂150。
質量塊120懸掛於基架110,質量塊120具有一第一厚度D1,平衡環130環繞且連接質量塊120,平衡環130具有一第二厚度D2,各外彈性臂150分別連接於平衡環130與基架110之間,前述至少二外彈性臂150對稱排列。其中,第二厚度D2大於等於0.5倍的第一厚度D1且小於等於第一厚度D1,且質量塊120運動時,連動前述至少二外彈性臂150變形。
藉此,透過平衡環130的設置及其與質量塊120間之第一厚度D1與第二厚度D2關係,能提升加速度感測結構100的性能,且同時具有結構上的穩定性。後面將更詳細地說明第1實施例之加速度感測結構100的細節。
於第1實施例中,加速度感測結構100可更包含至少二內彈性臂140,各內彈性臂140連接於質量塊120與平衡環130之間,且前述至少二內彈性臂140對稱排列,質量塊120運動時,連動各內彈性臂140變形。而如第1圖所示,前述至少二外彈性臂150的數量可為四,四外彈性臂150對稱排列,前述至少二內彈性臂140的數量亦可為四,四內彈性臂140分別對應四外彈性臂150。
質量塊120的第一厚度D1可等於平衡環130的第二厚度D2,質量塊120呈矩柱結構而具有四邊及四外角,平衡環130可具有一矩框形狀且具有四邊及四內角,四個內彈性臂140分別連接質量塊120四個邊的中點及平衡環130四個邊的中點(前述中點是指各邊的邊長的中點);四個外彈性臂150分別連接基架110的四個邊的中點及平衡環130四個邊的中點。其中二內彈性臂140與其中二外彈性臂150沿X軸排列,且另外二內彈性臂140與另外二外彈性臂150沿Y軸排列。此外,質量塊120可具有一質量塊頂面(未標示於圖),平衡環130可具有一平衡環頂面(未標示於圖),各內彈性臂140具有一內彈性臂頂面(未標示於圖),各外彈性臂150具有一外彈性臂頂面(未標示於圖),質量塊頂面、平衡環頂面、各內彈性臂頂面及各外彈性臂頂面彼此切齊。
第1實施例之加速度感測結構100為壓電式,因此,各外彈性臂150可包含一第一壓電層156及一第二壓電層153,第一壓電層156鄰近平衡環130,第二壓電層
153與第一壓電層156間隔設置且鄰近基架110。如第2圖所示,各外彈性臂150可更包含一基底151、一第一底電極155、一第一上電極157、一第二底電極152及一第二上電極154。第一底電極155設置在基底151上且鄰近平衡環130,第一壓電層156設置在第一底電極155上,第一上電極157設置在第一壓電層156上;第二底電極152與第一底電極155間隔設置在基底151上且鄰近基架110,第二壓電層153設置在第二底電極152上,第二上電極154設置在第二壓電層153上。
藉此,當質量塊120感受到加速度而產生位移時,會帶動各內彈性臂140及各外彈性臂150變形,而第一壓電層156及第二壓電層153因變形而產生電壓,並可透過第一上電極157及第二上電極154被讀取,再藉由分析第一上電極157及第二上電極154的電壓而能判定質量塊120所偵測之加速度大小。在第1實施例中,各內彈性臂140可具有一第三厚度D3,各外彈性臂150具有一第四厚度D4,各第三厚度D3小於第二厚度D2,且各第四厚度D4小於第二厚度D2,在此結構下,當質量塊120感受到加速度而運動時,內彈性臂140及外彈性臂150因剛性較低可以跟隨變形,並使第一壓電層156及第二壓電層153因變形而產生電壓。
在製作加速度感測結構100時,可以是利用一SIO晶圓(Silicon On Insulator wafer)經成膜、曝光及蝕刻製成,因此基底151、質量塊120的基底、平衡
環130的基底及內彈性臂140的基底均為單晶矽且一體連接。
此外,加速度感測結構100可更包含二走線W1、W2,走線W1位於質量塊120上且電性連接走線W2,走線W2位於各內彈性臂140上且電性連接各第一上電極157,且走線W2可再延伸至基架110上,藉此可方便之後的配線,此配線可依製造需求改變,不以此為限。於一實施例中,走線、第一上電極及第二上電極可是在製程時以同一金屬層依電路圖案曝光、蝕刻而成。
請參閱第3圖、第4圖及第5圖,其中第3圖繪示第1圖第1實施例之加速度感測結構100的Z軸位移模擬圖,第4圖繪示第3圖第1實施例之加速度感測結構100沿割面線4-4的Z軸位移模擬圖,第5圖繪示第1圖第1實施例之加速度感測結構100的體積應變模擬圖。當加速度感測結構100感受到Z軸向下的加速度時,質量塊120會沿Z軸運動,而帶動內彈性臂140及外彈性臂150變形,而由於平衡環130具有一定厚度,其具有剛性且不會產生變形。
請參閱第6圖及表1,其中第6圖繪示第1圖第1實施例之加速度感測結構100的頻率響應圖,表1為第1實施例、第1比較例及第2比較例的靈敏度、頻率及品質因子(Figure of Merit;FOM)。第1比較例具有質量塊及四彈性臂,而不具有平衡環;第2比較例具有質量塊、四內彈性臂及四外彈性臂,而第2比較例與第1實施例不
同處在於,第2比較例的平衡環厚度薄,且平衡環的第二厚度小於0.5倍的第一厚度,故其感受到加速度時會跟隨變形。由表1可知,加速度感測結構100的品質因子為10.875,高於第1比較例及第2比較例,可證明當加速度感測結構100具有平衡環130,且滿足第二厚度D2大於等於0.5倍的第一厚度D1且小於等於第一厚度D1之關係時,加速度感測結構100具有良好的性能。
請參閱第7圖,其中第7圖繪示依照本發明第2實施例之一種加速度感測結構200的一剖視示意圖。第2實施例之加速度感測結構200和第1實施例之加速度感測結構100類似,差別在於,加速度感測結構200為壓阻式。其中,各外彈性臂250包含間隔設置的一第一壓阻層258及一第二壓阻層259,第一壓阻層258鄰近平衡環230,第二壓阻層259與第一壓阻層258間隔設置且鄰近基架210。且第一壓阻層258及第二壓阻層259是以摻雜方式製成,此製程為習知且非本發明之重點,在此不再贅述。
請參閱第8圖,其中第8圖繪示依照本發明第3實施例之一種加速度感測器400的一剖視示意圖。加速度感測器400包含一下蓋430、一加速度感測結構410及一
上蓋420,加速度感測結構410設置於下蓋430上,且上蓋420位於加速度感測結構410之上。藉此,上蓋420及下蓋430可保護加速度感測結構410,而加速度感測結構410可以與上述加速度感測結構100、200中的任一者相同,細節處不再描述。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100:加速度感測結構
120:質量塊
130:撓性平衡環
140:內彈性臂
150:外彈性臂
154:第二上電極
157:第一上電極
W1,W2:走線
X,Y,Z:軸
Claims (9)
- 一種加速度感測結構,包含:一基架;一質量塊,懸掛於該基架,該質量塊具有一第一厚度;一平衡環,環繞且連接該質量塊,該平衡環具有一第二厚度;至少二內彈性臂,各該內彈性臂連接於該質量塊與該平衡環之間,且該至少二內彈性臂對稱排列;以及至少二外彈性臂,各該外彈性臂連接於該平衡環與該基架之間,各該外彈性臂與各該內彈性臂對稱排列;其中,各該外彈性臂設置有一第一壓阻層或一第一壓電層,且該第一壓阻層或該第一壓電層未設置於各該內彈性臂,各該外彈性臂的一長度等於各該內彈性臂的一長度,各該外彈性臂的一寬度等於各該內彈性臂的一寬度,該第二厚度之範圍大於等於0.5倍的該第一厚度且小於等於該第一厚度,且該質量塊運動時,連動該至少二外彈性臂變形。
- 如請求項1所述之加速度感測結構,其中,各該外彈性臂設置有該第一壓電層及一第二壓電層,且各該外彈性臂包含:一基底;一第一底電極,設置在該基底上且鄰近該平衡環,該第一壓電層設置在該第一底電極上; 一第一上電極,設置在該第一壓電層上;一第二底電極,與該第一底電極間隔設置在該基底上且鄰近該基架,該第二壓電層設置在該第二底電極上;以及一第二上電極,設置在該第二壓電層上。
- 如請求項1所述之加速度感測結構,其中,各該外彈性臂設置有該第一壓阻層及一第二壓阻層,該第一壓阻層鄰近該平衡環,該第二壓阻層與該第一壓阻層間隔設置且鄰近該基架。
- 如請求項1所述之加速度感測結構,其中,該至少二外彈性臂的數量為四,該至少二內彈性臂的數量為四,四該外彈性臂對稱排列。
- 如請求項1所述之加速度感測結構,其中,各該內彈性臂具有一第三厚度,各該外彈性臂具有一第四厚度,各該第三厚度小於該第二厚度,且各該第四厚度小於該第二厚度。
- 一種加速度感測結構,包含:一基架;一質量塊,懸掛於該基架,該質量塊具有一第一厚度及一質量塊頂面;一平衡環,環繞該質量塊,該平衡環具有一第二厚度及 一平衡環頂面;至少二內彈性臂,各該內彈性臂連接於該質量塊與該平衡環之間且具有一內彈性臂頂面,該至少二內彈性臂對稱排列;以及至少二外彈性臂,各該外彈性臂連接於該平衡環與該基架之間且具有一外彈性臂頂面,各該外彈性臂與各該內彈性臂對稱排列;其中,各該外彈性臂設置有一第一壓阻層或一第一壓電層,且該第一壓阻層或該第一壓電層未設置於各該內彈性臂,各該外彈性臂的一長度等於各該內彈性臂的一長度,各該外彈性臂的一寬度等於各該內彈性臂的一寬度,該質量塊頂面、該平衡環頂面、各該內彈性臂頂面及各該外彈性臂頂面彼此切齊,該第二厚度之範圍大於等於0.5倍的該第一厚度且小於等於該第一厚度,且該質量塊運動時,連動該至少二內彈性臂及該至少二外彈性臂變形。
- 如請求項6所述之加速度感測結構,其中,各該外彈性臂設置有該第一壓電層及一第二壓電層,該第一壓電層鄰近該平衡環,該第二壓電層與該第一壓電層間隔設置且鄰近該基架。
- 如請求項6所述之加速度感測結構,其中,各該外彈性臂設置有該第一壓阻層及一第二壓阻層,該第一壓阻層鄰近該平衡環,該第二壓阻層與該第一壓阻層間 隔設置且鄰近該基架。
- 一種加速度感測器,包含:一下蓋;一如請求項6至8任一項所述的加速度感測結構,設置於該下蓋;以及一上蓋,位於該加速度感測結構之上。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109105750A TWI765232B (zh) | 2020-02-21 | 2020-02-21 | 加速度感測結構及加速度感測器 |
US16/920,383 US11287440B2 (en) | 2020-02-21 | 2020-07-02 | Acceleration sensing structure and accelerometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109105750A TWI765232B (zh) | 2020-02-21 | 2020-02-21 | 加速度感測結構及加速度感測器 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202141043A TW202141043A (zh) | 2021-11-01 |
TWI765232B true TWI765232B (zh) | 2022-05-21 |
Family
ID=77365984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109105750A TWI765232B (zh) | 2020-02-21 | 2020-02-21 | 加速度感測結構及加速度感測器 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11287440B2 (zh) |
TW (1) | TWI765232B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6282956B1 (en) * | 1994-12-29 | 2001-09-04 | Kazuhiro Okada | Multi-axial angular velocity sensor |
TW200724923A (en) * | 2005-12-23 | 2007-07-01 | Delta Electronics Inc | Accelerometer |
TW200907345A (en) * | 2007-01-24 | 2009-02-16 | Yamaha Corp | Motion sensor, accelerometer, inclination sensor, pressure sensor, and tactile controller |
TW200914832A (en) * | 2007-07-27 | 2009-04-01 | Hitachi Metals Ltd | Acceleration sensor |
US20100300205A1 (en) * | 2009-05-29 | 2010-12-02 | Torex Semiconductor Ltd. | Acceleration sensor element and acceleration sensor having same |
CN108872634A (zh) * | 2018-06-21 | 2018-11-23 | 京东方科技集团股份有限公司 | 一种加速度传感器 |
CN109160484A (zh) * | 2018-09-03 | 2019-01-08 | 合肥工业大学 | 一种压电式mems加速度传感器及其制备方法 |
-
2020
- 2020-02-21 TW TW109105750A patent/TWI765232B/zh active
- 2020-07-02 US US16/920,383 patent/US11287440B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6282956B1 (en) * | 1994-12-29 | 2001-09-04 | Kazuhiro Okada | Multi-axial angular velocity sensor |
TW200724923A (en) * | 2005-12-23 | 2007-07-01 | Delta Electronics Inc | Accelerometer |
TW200907345A (en) * | 2007-01-24 | 2009-02-16 | Yamaha Corp | Motion sensor, accelerometer, inclination sensor, pressure sensor, and tactile controller |
TW200914832A (en) * | 2007-07-27 | 2009-04-01 | Hitachi Metals Ltd | Acceleration sensor |
US20100300205A1 (en) * | 2009-05-29 | 2010-12-02 | Torex Semiconductor Ltd. | Acceleration sensor element and acceleration sensor having same |
CN108872634A (zh) * | 2018-06-21 | 2018-11-23 | 京东方科技集团股份有限公司 | 一种加速度传感器 |
CN109160484A (zh) * | 2018-09-03 | 2019-01-08 | 合肥工业大学 | 一种压电式mems加速度传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US11287440B2 (en) | 2022-03-29 |
US20210263067A1 (en) | 2021-08-26 |
TW202141043A (zh) | 2021-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4719272B2 (ja) | 三軸加速度計 | |
KR100600685B1 (ko) | 물리량 센서 | |
US7051595B2 (en) | Monolithic multi-functional integrated sensor and method for fabricating the same | |
WO2017000501A1 (zh) | 一种mems压力传感元件 | |
CN106597016A (zh) | 一种电容式mems双轴加速度计 | |
JP5799929B2 (ja) | 加速度センサ | |
CN103837705A (zh) | 加速度传感器 | |
JPWO2003044539A1 (ja) | 加速度センサ | |
KR100499970B1 (ko) | 가속도 센서 | |
CN110780088B (zh) | 多桥路隧道磁阻双轴加速度计 | |
JP4335545B2 (ja) | 圧力と加速度との双方を検出するセンサおよびその製造方法 | |
US20030057447A1 (en) | Acceleration sensor | |
JP4589605B2 (ja) | 半導体多軸加速度センサ | |
JP6070113B2 (ja) | 加速度センサ | |
TWI765232B (zh) | 加速度感測結構及加速度感測器 | |
JP2003092413A (ja) | 半導体加速度センサー | |
JP2010169575A (ja) | 慣性センサ | |
KR20060049908A (ko) | 가속도 센서 | |
US8353213B2 (en) | Sensor element for sensing accelerations in three spatial directions | |
JP5799942B2 (ja) | 加速度センサ | |
JPH05346356A (ja) | 静電容量の変化を利用した物理量の検出装置 | |
US9963339B2 (en) | Sensor device | |
JP4466344B2 (ja) | 加速度センサ | |
JP5401820B2 (ja) | センサ | |
US20240061010A1 (en) | Acceleration sensor |