TWI763567B - 半導體裝置及其形成方法 - Google Patents

半導體裝置及其形成方法 Download PDF

Info

Publication number
TWI763567B
TWI763567B TW110127370A TW110127370A TWI763567B TW I763567 B TWI763567 B TW I763567B TW 110127370 A TW110127370 A TW 110127370A TW 110127370 A TW110127370 A TW 110127370A TW I763567 B TWI763567 B TW I763567B
Authority
TW
Taiwan
Prior art keywords
layer
metal
trench
semiconductor device
forming
Prior art date
Application number
TW110127370A
Other languages
English (en)
Other versions
TW202306112A (zh
Inventor
李俊霖
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW110127370A priority Critical patent/TWI763567B/zh
Priority to US17/709,875 priority patent/US20230024465A1/en
Application granted granted Critical
Publication of TWI763567B publication Critical patent/TWI763567B/zh
Publication of TW202306112A publication Critical patent/TW202306112A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/36DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being a FinFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一種半導體裝置,包括:基板、一對源極/汲極區、含金屬層及閘極結構。基板具有溝槽。源極/汲極區設置於溝槽兩側的基板中。含金屬層設置於溝槽下方,含金屬層與溝槽的相對側壁上的基板共同構成半導體裝置的通道區。閘極結構設置於溝槽中。閘極結構包括:閘極介電層,設置溝槽的相對側壁上、緩衝層,設置於含金屬層上、以及閘極導電層,設置於緩衝層上且填入溝槽。

Description

半導體裝置及其形成方法
本發明實施例是關於半導體裝置,特別是關於一種具有部分的金屬通道區的半導體裝置及其形成方法。
動態隨機存取記憶體(DRAM)由多個記憶單元所構成,其中每一個記憶單元大致上是由電晶體及電容器所構成,且記憶單元通常藉由字元線與位元線彼此電性連接。為了提升動態隨機存取記憶體的性能及積集度,已發展出具有埋入式字元線(buried word line)的動態隨機存取記憶體,以實現電子產品的輕、薄、短、小及更好的性能。
然而,持續地提高半導體裝置的積集度可能導致難以提昇動態隨機存取記憶體的性能,或者使其性能變得難以維持,甚至是下降。雖然現有的動態隨機存取記憶體已大致合乎需求,但並非在所有方面都令人滿意。
本發明實施例提供一種半導體裝置,包括:基板、一對源極/汲極區、含金屬層、閘極結構、閘極介電層、緩衝層、及閘極導電層。基板具有溝槽。源極/汲極區設置於溝槽兩側的基板中。含金屬層設置於溝槽下方,含金屬層與溝槽的相對側壁上的基板共同構成半導體裝置的通道區。閘極結構設置於溝槽中。閘極結構包括:閘極介電層,設置溝槽的相對側壁上、緩衝層,設置於含金屬層上、以及閘極導電層,設置於緩衝層上且填入溝槽。
本發明實施例提供一種半導體裝置的形成方法,包括:形成摻雜區於基板上;蝕刻基板,以形成穿過摻雜區並延伸至基板中的溝槽;形成閘極介電層於溝槽的側壁上;形成含金屬層於溝槽下方;形成緩衝層於含金屬層上;以及形成閘極導電層於緩衝層上且填入溝槽。
以下揭露提供了許多的範例,用於實施標的物之不同元件。各元件和其配置的具體範例描述如下,以簡化說明,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接或間接接觸的實施例,間接接觸例如包含額外的元件形成在第一和第二元件之間。關於「連接」、「互連」等用語,可指兩個結構直接或非直接接觸。
文中的「約」、「大約」之用語通常表示在一給定值的±20%之內,較佳是±10%之內,且更佳是±5%或±1%之內。在沒有特定說明「約」、「大約」的情況下,給定的數值仍可隱含「約」、「大約」之含義。
半導體裝置中的電流(例如:導通電流(I ON)或驅動電流(drive current))可能會隨著半導體裝置的微縮化過程而降低。舉例而言,為了克服因半導體裝置的微縮化而導致的漏電現象,在製程裕度及裝置設計容許的情況下,可提高臨界電壓(threshold voltage)。然而,提高臨界電壓可能使半導體裝置的導通電流或驅動電流降低,進而影響半導體裝置性能。對動態隨機存取記憶體而言,較低的驅動電流可能對寫入恢復時間(write recovery time,tWR)及/或保留時間(retention time)造成不利的影響,導致動態隨機存取記憶體的性能降低。
本發明實施例提供半導體裝置及其形成方法,其中使用含金屬層作為半導體裝置之通道區的一部分,可提高驅動電流以改善半導體裝置的性能。
第1A圖繪示出包括埋入式閘極電晶體的半導體裝置10的剖面圖。半導體裝置10包括:基板100、一對源極/汲極區102、含金屬層110、以及閘極結構105。如第1A圖所示,基板100具有溝槽103。基板100可包括:元素半導體,包括矽或鍺;化合物半導體,包括氮化鎵(GaN)、砷化鎵(GaAs)、磷化鎵(GaP)、磷化銦(InP)、砷化銦(InAs)及/或銻化銦(InSb);合金半導體,包括矽鍺(SiGe)合金、磷砷鎵(GaAsP)合金、砷鋁銦(AlInAs)合金、砷鋁鎵(AlGaAs)合金、砷銦鎵(GaInAs)合金、磷銦鎵(GaInP)合金及/或磷砷銦鎵(GaInAsP)合金、或前述材料之組合。基板100也可以是絕緣體上覆半導體(semiconductor on insulator,SOI)。根據本發明的一些實施例,基板100可為未摻雜的矽基板或摻雜的矽基板,其中摻雜的矽基板可以是N型摻雜的矽基板或P型摻雜的矽基板。
參照第1A圖,源極/汲極區102設置於溝槽103頂部兩側的基板100中。在本發明的一些實施例中,源極/汲極區102可為N型摻雜,例如以磷、砷、或銻摻雜,且基板100可為P型摻雜,例如以硼或銦摻雜。在其他實施例中,源極/汲極區102可為P型摻雜且基板100可為N型摻雜。
含金屬層110設置於溝槽103下方且圍繞溝槽103的底部。在本發明的一些實施例中,含金屬層110與溝槽103的相對側壁上的基板100共同構成半導體裝置10的通道區,所述的溝槽103的相對側壁上的基板100是位於含金屬層110的頂部上。換言之,含金屬層110為半導體裝置10之通道區的一部分。含金屬層110可包括金屬矽化物層,金屬矽化物層可包括:二矽化鈷層、矽化鎳層、矽化鈦層、其他金屬矽化物層、或前述之組合。一些實施例中,含金屬層110橫向延伸超過該溝槽103的側壁。一些實施例中,含金屬層110的厚度大於或等於5 nm,舉例而言,含金屬層110的厚度範圍為約5 nm至約9 nm,例如可為約5 nm、約7 nm、約8 nm、或約9 nm。
如第1A圖所示,閘極結構105設置於溝槽103中。閘極結構105可由閘極介電層106、緩衝層112、及閘極導電層116構成。閘極介電層106設置於溝槽103的相對側壁上。在一些實施例中,閘極介電層106的底部連接含金屬層110的頂部。閘極介電層106的材料可包括:氧化矽、氮化矽、或氮氧化矽。一些實施例中,閘極介電層106的厚度小於含金屬層110的厚度。舉例而言,閘極介電層106的厚度可為約4 nm至約6 nm。一些實施例中,含金屬層110橫向延伸超過閘極介電層106。
緩衝層112設置於含金屬層110上。一些實施例中,緩衝層112順應性地沿著閘極介電層106的側壁及含金屬層110的上表面設置,形成具有U型剖面的緩衝層112。緩衝層112的材料可包括:氧化矽、氮化矽、氮氧化矽、或高介電常數(high-k)(介電常數大於3.9)介電材料。舉例而言,高介電常數介電材料可包括:HfO 2、LaO、AlO、ZrO、TiO、Ta 2O 5、Y 2O 3、SrTiO 3、BaTiO 3、BaZrO、HfZrO、HfLaO、HfTaO、HfSiO、HfSiON、HfTiO、LaSiO、AlSiO、Al 2O 3、或前述之組合。一些實施例中,緩衝層112為氧化矽構成的單層結構。其他實施例中,緩衝層112為包括氧化矽及高介電常數介電材料的多層結構。
閘極導電層116設置於緩衝層112上且填入溝槽103。一些實施例中,緩衝層112及閘極導電層116之頂表面彼此齊平。閘極導電層116可包括金屬層、金屬氮化物層、或前述之組合。金屬層的材料可包括:鋁、銅、鎢、鈦、鉭、金屬合金、其他合適的材料、或前述之組合。金屬氮化物層的材料可包括:氮化鈦(TiN)、氮化鉭(TaN)、氮化鎢(WN)、其他合適的材料、或前述之組合。在一些實施例中,閘極導電層116為多層結構,包括金屬氮化物層(例如氮化鈦)及設置於金屬氮化物層上的金屬層(例如鎢)。其他實施例中,閘極導電層116為單一金屬氮化物層構成的單層結構。在一些實施例中,含金屬層110為U型且圍繞部分的閘極導電層116,如第1A圖所示。一些實施例中,可設置阻障層114於緩衝層112與閘極導電層116之間。舉例而言,阻障層114的材料可包括:SiN、SiCN、SiOC、或SiOCN。
仍參照第1A圖,一些實施例中,半導體裝置10可包括隔離層120。隔離層120設置於緩衝層112及閘極導電層116上、以及源極/汲極區102之間。一些實施例中,隔離層120填入溝槽103頂部且可與基板100的表面齊平。隔離層120的材料可相同或類似於閘極介電層106的材料。舉例而言,隔離層120可包括氮化矽。
根據本發明的一些實施例,半導體裝置10的通道區由含金屬層110與溝槽103的相對側壁上的基板100共同構成,通道區中的含金屬層110可降低通道區的阻值,由此提昇電子的移動率(mobility),以提高導通電流(或驅動電流),進而改善裝置的性能。在本發明實施例中,含金屬層110是半導體裝置10之通道區的一部分,含金屬層110與源極/汲極區102被基板100隔開,亦即含金屬層110未直接接觸源極/汲極區102。因此,含金屬層110不會造成源極/汲極區102短路。
參照第1A圖,其中繪示的實心圓點示意性地表示在導通狀態(on state)下的電子,在導通狀態下,電子從源極/汲極區102的其中之一流經通道區(含金屬層110及溝槽103的相對側壁上的基板100)到達另一源極/汲極區102。當電子流經通道區時,含金屬層110可提昇電子的移動率。下文中將敘述,可透過形成含金屬層110的製程來調整含金屬層110的長度。在一些實施例中,參照第1A圖,含金屬層110的長度為在第一方向DR1上的長度L1及L3與在第二方向DR2上的長度L2的和(亦即含金屬層110的長度為L1 + L2 + L3)。在一些實施例中,第一方向DR1垂直第二方向DR2。根據一些實施例,長度L1及長度L3可各自為約5 nm至約10 nm。根據一些實施例,長度L2可為約20 nm至約30 nm。
參照第1B圖,其中示意性地繪示在關閉狀態(off state)下的電子(實心圓點)及電洞(空心圓圈),關閉狀態下的含金屬層110中的自由電子(若存在)可與關閉狀態下的電洞復合(recombination)。因此,在半導體裝置中採用含金屬層作為通道區的一部分不會導致漏電或短路。
參照第2圖,根據本發明的一些實施例,半導體裝置10可屬於動態隨機存取記憶體的應用,其中半導體裝置10的閘極結構105作為動態隨機存取記憶體的埋入式字元線,且動態隨機存取記憶體還包括:第一連接件122、第二連接件124、隔離結構130、位元線126、以及電容器128。應注意的是,為使圖式便於理解,其中的部件可能未依實際比例繪示。第一連接件122及第二連接件124分別設置於源極/汲極區102上。第一連接件122及第二連接件124的材料可包括:鋁、銅、鎢、其他合適的材料、或前述之組合。隔離結構130設置於第一連接件122與第二連接件124之間。一些實施例中,隔離結構130的材料可包括:氧化矽、氮化矽、或氮氧化矽。位元線126設置於第一連接件122上。在一些實施例中,位元線126的構成可相同或相似於作為埋入式字元線的閘極結構105。電容器128設置於第二連接件124上。一些實施例中,電容器128藉由第二連接件124電性連接源極/汲極區102的其中之一,位元線126藉由第一連接件122電性連接另一源極/汲極區102。在一些實施例中,含金屬層110為U型且圍繞作為埋入式字元線的閘極結構105的底部。
如前所述,較低的驅動電流可能對寫入恢復時間(tWR)及/或保留時間(retention time)造成不利的影響而降低動態隨機存取記憶體的性能。舉例而言,在導通狀態時,較低的驅動電流需要較長的寫入時間才能將所欲的電荷量充入電容,造成寫入恢復時間較長(亦即寫入速度較慢)而導致動態隨機存取記憶體的性能較差。另一方面,在相同的寫入時間下,較低的驅動電流能提供的電荷量較少,因此在關閉狀態時,留在電容的電荷量較少,導致保留時間較短而降低動態隨機存取記憶體的性能。
第2圖所示的實施例中,動態隨機存取記憶體的通道區由含金屬層110與溝槽103的相對側壁上的基板100共同構成,含金屬層110可提昇電子的移動率以提高驅動電流。因此,可降低寫入恢復時間以提昇動態隨機存取記憶體的性能。此外,在一些實施例中,由於提高了驅動電流,在相同的寫入時間下可將較多的電荷量充入電容,可增加保留時間以提升動態隨機存取記憶體的性能。
含金屬層110可具有其他的形狀或不同的長度。第3圖是根據本發明的其他實施例,繪示出具有較短的含金屬層110的半導體裝置20的剖面圖。舉例而言,含金屬層110的長度L4可為約20 nm至約30 nm。半導體裝置20的含金屬層110僅設置在溝槽103下方,未向上延伸至溝槽103的側壁,因此其長度L4可小於上述第1A圖的半導體裝置10的含金屬層110的長度(L1 + L2 + L3)。在此些實施例中,較短的含金屬層110可進一步提供製程及裝置設計的靈活性,且如以下將敘述的,可簡化製程並降低製程成本。在一些實施例中,半導體裝置20的含金屬層110橫向延伸超過溝槽103的側壁及/或閘極介電層106的側壁。
第4-13圖是根據本發明的一些實施例,繪示出形成半導體裝置10之製程的剖面圖。參照第4圖,毯覆地摻雜基板100,以形成摻雜區102於基板100上。可使用離子佈植執行摻雜,將摻雜劑佈植至基板100。一些實施例中,摻雜劑可包括N型摻雜劑,如磷、砷、銻、或其他N型摻雜劑。其他實施例中,摻雜劑可包括P型摻雜劑,如硼、銦、或其他P型摻雜劑。
接著如第5圖所繪示,執行圖案化製程,以形成穿過摻雜區102並延伸至該基板100中的第一溝槽104。一些實施例中,圖案化製程可包括:在摻雜區102上形成光阻層(未示出),將光阻層曝光至一圖案,執行曝光後烘烤製程,顯影前述光阻層以形成圖案化的遮罩層,然後將圖案化的遮罩層用於蝕刻摻雜區102及基板100,以形成第一溝槽104,接著移除圖案化的遮罩層。蝕刻製程可包括:乾蝕刻(例如:反應性離子蝕刻(RIE)或電漿蝕刻)、濕蝕刻、及/或其他合適的製程。在圖案化製程後,第一溝槽104兩側的摻雜區102可作為後續形成的半導體裝置的源極/汲極區。
參照第6圖,形成閘極介電層106於第一溝槽104的側壁上。一些實施例中,閘極介電層106的材料可包括:氧化矽、氮化矽、氮氧化矽、或其他介電材料,且可由任何適合的方法形成,例如:化學氣相沉積、電漿輔助化學氣相沉積、臨場蒸氣產生法(in situ steam generation,ISSG)、或類似方法。根據本發明的一些實施例,閘極介電層106的形成是由臨場蒸氣產生法(ISSG)形成氧化矽層於第一溝槽104的側壁上及基板100上,再經由適當的蝕刻製程移除不需要的氧化矽層(例如:在摻雜區102或基板100上的氧化矽層),由此形成閘極介電層106於第一溝槽104的側壁上。
第7-10圖繪示出形成含金屬層110於第一溝槽104下方的製程。雖然文中的一些實施例是以圖式的順序描述,但這些實施例中的步驟仍可以其他合乎邏輯的順序執行,或某些實施例中的步驟可被省略。首先參照第7圖,沿第一溝槽104蝕刻基板100,將第一溝槽104進一步向下延伸,由此形成如第7圖的虛線方框所示的延伸區101。延伸第一溝槽104的製程可相同或相似於上述關於第5圖所述的圖案化製程。
參照第8圖,形成金屬層108於閘極介電層106的側壁及延伸的第一溝槽104的底部及側壁上。金屬層108的材料可包括:鈷、鎳、鈦、或其他金屬,且可由物理氣相沉積(例如濺鍍)、原子層沉積、或其他製程來形成。接著參照第9圖,執行熱處理製程,使金屬層108與第一溝槽104及閘極介電層106下方的基板100進行矽化反應,以形成含金屬層110(在矽化反應後,也可稱為金屬矽化物層110)。熱處理製程可包括退火製程,例如:快速熱退火(Rapid Thermal Annealing,RTA)。一些實施例中,金屬矽化物層110的厚度可取決於退火製程的執行方式(例如:一段式或兩段式退火)及/或參數(例如退火溫度)。在一些實施例中,根據所選的金屬層108的材料選擇相應的退火溫度。舉例而言,可調整金屬矽化物層110的厚度,使其在橫向上延伸超過閘極介電層106的側壁。在一些實施例中,金屬矽化物層110的材料構成取決於金屬層108的材料。金屬矽化物層110包括:二矽化鈷層、矽化鎳層、矽化鈦層、或前述之組合。在一些實施例中,參照第7及9圖,含金屬層110形成於延伸區101下方及周圍,因此,透過延伸第一溝槽104的製程調整第一溝槽104的延伸深度,可以控制含金屬層110沿著延伸的第一溝槽104的底部的長度L6及/或沿著延伸的第一溝槽104的側壁的長度L5及L7。根據一些實施例,長度L5及長度L7可各自為約5 nm至約10 nm。根據一些實施例,長度L6可為約20 nm至約30 nm。如上所述,金屬層110可作為半導體裝置10之通道區的一部分以提升驅動電流。因此,可透過前述製程調整含金屬層110的長度,依據裝置的設計需求來達到所欲的驅動電流。接著,移除未反應的金屬層108,如第10圖所示。可透過蝕刻製程移除未反應的金屬層108。雖然以上敘述是關於以金屬矽化製程形成含金屬層110,但本揭露不以此為限。舉例而言,在其他實施例中,可使用其他方式形成含金屬層110,例如:物理氣相沉積、金屬有機化學氣相沉積、或其他適合的製程。
參照第11圖,順應性地形成緩衝層112於含金屬層110上。一些實施例中,緩衝層112也形成於閘極介電層106的側壁上。緩衝層112的材料可包括:氧化矽、氮化矽、氮氧化矽、或高介電常數介電材料。可使用化學氣相沉積、原子層沉積、電漿輔助化學氣相沉積、物理氣相沉積、旋轉塗佈、一或多種其他適當的製程、或前述之組合來形成緩衝層112。緩衝層112可為單層結構或由不同材料形成的多層結構。
參照第12圖,形成閘極導電層116於緩衝層112上且填入第一溝槽104。閘極導電層116可包括金屬層、金屬氮化物層、或前述之組合。可透過物理氣相沉積、原子層沉積、化學氣相沉積、電漿輔助化學氣相沉積、其他適合的製程、或前述之組合來形成閘極導電層116。一些實施例中,閘極導電層116可為多層結構,包括形成於緩衝層112的側壁及底表面上的金屬氮化物層以及形成於金屬氮化物層上且填入第一溝槽104的金屬層。在此些實施例中,金屬氮化物層可具有阻障的效果。在其他實施例中,例如為了進一步微縮化而具有較小溝槽寬度的半導體裝置中,由於其溝槽寬度較小,可採用單層的閘極導電層116,例如單層的金屬氮化物層。
一些實施例中,在形成閘極導電層116於緩衝層112上之前,沿著緩衝層112的側壁及/或底表面形成可選的(optional)阻障層114。阻障層114的材料可包括:SiN、SiCN、SiOC、或SiOCN,且可透過化學氣相沉積或電漿輔助化學氣相沉積來形成。
參照第13圖,凹蝕緩衝層112、阻障層114(若有形成)、及閘極導電層116,以形成露出閘極介電層106的第二溝槽118。一些實施例中,凹蝕為回蝕刻製程,可包括乾蝕刻(例如:反應性離子蝕刻)或其他蝕刻製程。在一些實施例中,在凹蝕後,緩衝層112、阻障層114(若有形成)、及閘極導電層116的頂表面彼此齊平。接著將隔離層120填充至第二溝槽118中,形成如第1A圖所示的半導體裝置10。在一些實施例中,可透過化學氣相沉積或電漿輔助化學氣相沉積將隔離材料層沉積至第二溝槽118中,然後使用平坦化製程(例如化學機械研磨或回蝕刻)移除多餘的隔離材料層,由此形成隔離層120。
根據本發明的一些實施例,在形成如第1A圖所示的半導體裝置10之後,可執行後續的製程,形成如第2圖所示的動態隨機存取記憶體。後續的製程包括(但不限於):形成第一連接件122及第二連接件124於源極/汲極區102上、形成隔離結構130於第一連接件122與該第二連接件124之間、形成位元線126於第一連接件122上、以及形成電容器128於第二連接件124上。
第14及15圖是根據本發明的其他實施例,繪示出形成半導體裝置20之製程的剖面圖。在形成如第6圖所示的第一溝槽104後,可省略第7圖所示的延伸溝槽的製程,將金屬層108形成於閘極介電層106的側壁及第一溝槽104的底部上,如第14圖所示。然後執行熱處理製程,使金屬層108與第一溝槽104及閘極介電層106下方的基板100進行矽化反應,以形成如第15圖所示的金屬矽化物層110。接著執行類似上述關於第10-13圖所述的製程以及填充隔離層120的製程,以形成如第3圖所示的半導體裝置20。在此些實施例中,如上所述,可提昇驅動電流以改善裝置性能,且由於省略了延伸溝槽的製程,可降低製程成本及時間。
本發明實施例提供的半導體裝置及其形成方法包括形成含金屬層作為半導體裝置之通道區的一部分,可提昇驅動電流以改善半導體裝置的性能。例如,可降低寫入恢復時間(tWR)。在一些實施例中,還可增加保留時間(retention time)。此外,本發明實施例提供的半導體裝置之形成方法還可調整含金屬層的長度,可依據需求達到所欲的驅動電流且增加製程裕度。
以上概述數個實施例之特點,以便在本發明所屬技術領域中具有通常知識者可更好地了解本發明的各個方面。在本發明所屬技術領域中具有通常知識者,應理解其可輕易地利用本發明實為基礎,設計或修改其他製程及結構,以達到和此中介紹的實施例之相同的目的及/或優點。在本發明所屬技術領域中具有通常知識者,也應理解此類等效的結構並無背離本發明的精神與範圍,且其可於此作各種的改變、取代、和替換而不背離本發明的精神與範圍。
10,20:半導體裝置 100:基板 102:源極/汲極區 103,104,118:溝槽 105:閘極結構 106:閘極介電層 108:金屬層 110:含金屬層 112:緩衝層 114:阻障層 116:閘極導電層 120:隔離層 122:第一連接件 124:第二連接件 126:位元線 128:電容器 130:隔離結構 DR1:第一方向 DR2:第二方向 L1,L2,L3,L4,L5,L6,L7:長度
第1A、1B、及2圖是根據本發明的一些實施例,繪示出半導體裝置的剖面圖。 第3圖是根據本發明的其他實施例,繪示出半導體裝置的剖面圖。 第4-13圖是根據本發明的一些實施例,繪示出形成半導體裝置之製程的剖面圖。 第14-15圖是根據本發明的其他實施例,繪示出形成半導體裝置之製程的剖面圖。
10:半導體裝置
100:基板
102:源極/汲極區
103:溝槽
105:閘極結構
106:閘極介電層
110:含金屬層
112:緩衝層
114:阻障層
116:閘極導電層
120:隔離層
DR1:第一方向
DR2:第二方向
L1,L2,L3:長度

Claims (9)

  1. 一種半導體裝置,包括:一基板,具有一溝槽;一對源極/汲極區,設置於該溝槽兩側的該基板中;一含金屬層,設置於該溝槽下方,其中該含金屬層包括一金屬矽化物層,該含金屬層與該溝槽的相對側壁上的該基板共同構成該半導體裝置的一通道區;以及一閘極結構,設置於該溝槽中,該閘極結構包括:一閘極介電層,設置於該溝槽的相對側壁上;一緩衝層,設置於該含金屬層上;及一閘極導電層,設置於該緩衝層上且填入該溝槽。
  2. 如請求項1之半導體裝置,其中該含金屬層橫向延伸超過該溝槽的側壁。
  3. 如請求項1之半導體裝置,其中該含金屬層為U型且圍繞部分的該閘極導電層。
  4. 如請求項1之半導體裝置,其中該金屬矽化物層包括:二矽化鈷層、矽化鎳層、矽化鈦層、或前述之組合。
  5. 如請求項1之半導體裝置,更包括:一第一連接件及一第二連接件,分別設置於該對源極/汲極區上;一隔離結構,設置於該第一連接件與該第二連接件之間;一位元線,設置於該第一連接件上;以及一電容器,設置於該第二連接件上。
  6. 一種半導體裝置的形成方法,包括:形成一摻雜區於一基板上;蝕刻該基板,以形成穿過該摻雜區並延伸至該基板中的一第一溝槽;形成一閘極介電層於該第一溝槽的側壁上;形成一含金屬層於該第一溝槽下方,其中該含金屬層包括一金屬矽化物層;形成一緩衝層於該含金屬層上;以及形成一閘極導電層於該緩衝層上且填入該第一溝槽。
  7. 如請求項6之半導體裝置的形成方法,其中在形成該含金屬層於該第一溝槽下方之前,更包括:沿該第一溝槽蝕刻該基板,以形成一延伸區,且該含金屬層係形成於該延伸區下方及周圍。
  8. 如請求項6之半導體裝置的形成方法,其中形成該含金屬層於該第一溝槽下方包括:形成一金屬層於該閘極介電層的側壁及該第一溝槽的底部上;執行一熱處理製程,使該金屬層與該第一溝槽及該閘極介電層下方的該基板進行矽化反應,以形成該金屬矽化物層;以及移除未反應的該金屬層。
  9. 如請求項8之半導體裝置的形成方法,其中該金屬矽化物層橫向延伸超過該閘極介電層的側壁。
TW110127370A 2021-07-26 2021-07-26 半導體裝置及其形成方法 TWI763567B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110127370A TWI763567B (zh) 2021-07-26 2021-07-26 半導體裝置及其形成方法
US17/709,875 US20230024465A1 (en) 2021-07-26 2022-03-31 Semiconductor device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110127370A TWI763567B (zh) 2021-07-26 2021-07-26 半導體裝置及其形成方法

Publications (2)

Publication Number Publication Date
TWI763567B true TWI763567B (zh) 2022-05-01
TW202306112A TW202306112A (zh) 2023-02-01

Family

ID=82594000

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127370A TWI763567B (zh) 2021-07-26 2021-07-26 半導體裝置及其形成方法

Country Status (2)

Country Link
US (1) US20230024465A1 (zh)
TW (1) TWI763567B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826229B (zh) * 2023-01-07 2023-12-11 南亞科技股份有限公司 半導體結構及其製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201834031A (zh) * 2016-12-16 2018-09-16 韓商愛思開海力士有限公司 具有埋藏閘結構的半導體裝置及其製造方法
US20210057578A1 (en) * 2019-08-21 2021-02-25 Nanya Technology Corporation Semiconductor structure having buried gate, buried source and drain contacts, and strained silicon and method of manufacturing the same
TW202119619A (zh) * 2019-10-31 2021-05-16 台灣積體電路製造股份有限公司 電晶體裝置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201834031A (zh) * 2016-12-16 2018-09-16 韓商愛思開海力士有限公司 具有埋藏閘結構的半導體裝置及其製造方法
US20210057578A1 (en) * 2019-08-21 2021-02-25 Nanya Technology Corporation Semiconductor structure having buried gate, buried source and drain contacts, and strained silicon and method of manufacturing the same
TW202119619A (zh) * 2019-10-31 2021-05-16 台灣積體電路製造股份有限公司 電晶體裝置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826229B (zh) * 2023-01-07 2023-12-11 南亞科技股份有限公司 半導體結構及其製造方法

Also Published As

Publication number Publication date
TW202306112A (zh) 2023-02-01
US20230024465A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
KR101637679B1 (ko) Fⅰnfet을 형성하기 위한 메커니즘들을 포함하는 반도체 디바이스및 그 형성 방법
TWI524397B (zh) 具有改善的閾値電壓表現的取代金屬閘極的積體電路及其製造方法
US20100133614A1 (en) Multiple gate transistor having homogenously silicided fin end portions
KR20150060578A (ko) 매립형 실리콘 게르마늄 산화물을 갖는 FinFET 소자를 위한 구조 및 방법
CN105428394B (zh) 鳍部件的结构及其制造方法
KR102272133B1 (ko) 상이한 문턱 전압들을 갖는 트랜지스터들
CN105097556A (zh) FinFET及其制造方法
US9711505B2 (en) Semiconductor devices having dummy gate structure for controlling channel stress
KR20210134215A (ko) 에어 갭을 가지는 후면 유전체 층을 갖는 집적 회로 구조체
TW202145535A (zh) 半導體記憶體結構及其形成方法
JP2022025047A (ja) ナノシート型デバイスの改良されたスペーサ構造
TW202131389A (zh) 半導體結構及其形成方法
US10811513B2 (en) Vertical tunneling field effect transistor device
TWI763567B (zh) 半導體裝置及其形成方法
KR20190064382A (ko) 핀 다이오드 구조물 및 그 방법
CN112802842A (zh) 半导体结构及其形成方法
CN111863933A (zh) 半导体结构及其形成方法
CN113363321B (zh) 半导体结构及其形成方法
CN112151605B (zh) 半导体结构及其形成方法
TW202217980A (zh) 半導體裝置及其製造方法
CN108573910B (zh) 半导体结构及其形成方法
CN112151381A (zh) 半导体结构及其形成方法
CN116133370A (zh) 半导体装置及其形成方法
US11695042B2 (en) Transistor contacts and methods of forming the same
CN113903805B (zh) 半导体结构及其形成方法