TWI761627B - 具有不同燒結點之不同材料之節點及纖維的經燒結多孔材料、相關製備方法和用途、及金屬材料之摻混物 - Google Patents

具有不同燒結點之不同材料之節點及纖維的經燒結多孔材料、相關製備方法和用途、及金屬材料之摻混物 Download PDF

Info

Publication number
TWI761627B
TWI761627B TW107139671A TW107139671A TWI761627B TW I761627 B TWI761627 B TW I761627B TW 107139671 A TW107139671 A TW 107139671A TW 107139671 A TW107139671 A TW 107139671A TW I761627 B TWI761627 B TW I761627B
Authority
TW
Taiwan
Prior art keywords
metal
particles
sintering
porous sintered
metallic
Prior art date
Application number
TW107139671A
Other languages
English (en)
Other versions
TW201929981A (zh
Inventor
羅伯特 S 柴勒
Original Assignee
美商恩特葛瑞斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商恩特葛瑞斯股份有限公司 filed Critical 美商恩特葛瑞斯股份有限公司
Publication of TW201929981A publication Critical patent/TW201929981A/zh
Application granted granted Critical
Publication of TWI761627B publication Critical patent/TWI761627B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1112Making porous workpieces or articles with particular physical characteristics comprising hollow spheres or hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2041Metallic material the material being filamentary or fibrous
    • B01D39/2044Metallic material the material being filamentary or fibrous sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1225Fibre length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/18Means for absorbing or adsorbing gas, e.g. by gettering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Filtering Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本發明描述多孔經燒結金屬體,製備及使用該等多孔經燒結金屬體之方法,以及將該等多孔經燒結金屬體用於包括過濾流體之商業應用,包括用於需要高效(高LRV)過濾的應用中的方法。

Description

具有不同燒結點之不同材料之節點及纖維的經燒結多孔材料、相關製備方法和用途、及金屬材料之摻混物
所描述之本發明係關於多孔經燒結金屬體領域中的技術、製備及使用多孔經燒結金屬體之方法,及將多孔經燒結金屬體用於包括過濾流體之商業應用,包括用於需要高效(高LRV)過濾的應用中的方法。
多孔經燒結金屬體可用於多種應用中,包括過濾用於電子件及半導體製造工業,以及需要高純材料以供處理之其他工業中之材料。舉例而言,在半導體及微電子工業中,線內過濾器通常用於自流體移除顆粒物質以防止將顆粒物質引入至製造製程中。該流體可呈氣體或液體形式。
多孔經燒結體之一些實例已被描述用於過濾器應用中。藉由使用模具來製備此等經燒結體之某些實例以形成包括金屬粒子及有機黏合劑之成形物品。將成形物品自模具移除、處理成形物品以移除有機黏合劑,繼而加熱(亦即,燒結)成形物品。參見例如美國專利第6,964,817及7,195,735號。藉由燒結金屬纖維材料來製備之多孔經燒結體之另一實例 描述於美國專利8,673,065(讓渡至Mott公司)中。
儘管已開發出多孔經燒結體之各種實例以用於過濾工業流體(包括氣態流體)流,但對工業處理之不斷變化的需求繼續提高此等類型之過濾器及過濾方法之效能要求。繼續將半導體及微電子裝置開發成較小且較快產品。此等裝置之每一次更新換代可提高對原材料之較高純度水平及較低污染物含量之需求。
認為多孔經燒結體之各種特徵影響多孔體作為過濾器之有效性。在用於半導體處理中之過濾氣態材料中,可以約大氣壓(例如,在2個大氣壓下)或低於大氣壓(例如真空條件)之壓力供應氣態流體。使用氣態流體之製程可能需要如藉由過濾步驟之「對數下降值」(log reduction value,LRV)所量測的微米尺度粒子之極高移除率,例如,至少為3、4、5、7或9。亦可以相對低流動速率進行過濾此等氣態材料之製程,例如,低於10標準公升/分鐘、5標準公升/分鐘或2標準公升/分鐘(slpm)。一般而言,對於此等及類似用途,相對於孔隙度較低或較厚本體,具高孔隙度且具有減小厚度之過濾器(具有可比移除效率)可為較佳的。由於與具有較大厚度之類似過濾器之壓降相比,將在過濾期間貫穿本體出現之相對較低壓降,亦具有較低總表面積(如藉由BET所量測)之相對較薄過濾器體可為較佳的。壓降與過濾器體之厚度成正比。相對較薄過濾器體,以及經燒結體中不存在有機材料亦導致除氣之可能性降低,若有機材料存在於過濾器中,則可能出現除氣,例如,由於使用有機黏合劑。較大(亦即較厚)過濾器體一般可能需要增加本體之複雜度及成本,且通常具有較高質量。優於較低孔隙度過濾器體,較高孔隙度過濾器體為較佳的(給定可比移除效 率),亦係因為壓降與孔隙度按指數律成比例。
根據本發明描述,新穎及本發明多孔經燒結體已經識別且產生,且已經發現適用作氣體過濾介質(亦即,多孔過濾器體)。本發明多孔經燒結體可有效地過濾具有低壓降之氣態流體流,同時保持亞微米過濾能力。多孔過濾器體可適用於以各種相對低的氣體速度達成至少3、5、7或9之高LRV值。
在一個態樣中,本發明係關於一種包括互連金屬基質之多孔經燒結金屬體,該互連金屬基質包含連接於連接性金屬節點處之金屬纖維。該基質包括:連接性金屬節點,該等節點包含具有第一燒結點之第一金屬材料;及第二金屬材料之狹長金屬纖維,該第二金屬材料具有大於第一燒結點之第二燒結點。連接性金屬節點熔合至狹長金屬纖維以形成互連金屬基質,該金屬基質包含藉由連接性金屬節點連接且在連接性金屬節點之間延伸之狹長金屬纖維。
在另一態樣中,本發明係關於將如所描述之多孔經燒結金屬體用作過濾器之方法。
在又一態樣中,本發明係關於一種形成如所描述之金屬基質之方法。該方法包括:提供包括以下項之金屬材料的摻混物:具有第一燒結點之第一金屬材料的粉末狀金屬粒子;及具有第二燒結點之第二金屬材料的狹長金屬纖維粒子,該第二燒結點高於(above/higher than)該第一燒結點。該方法亦包括將摻混物於高於第一燒結點之溫度下燒結以形成金屬基質,該金屬基質包含連接於由燒結粉末狀金屬材料形成之連接性金屬節點處之狹長金屬纖維。
在另一態樣中,本發明係關於一種包括以下之金屬材料之 摻混物:具有第一燒結點之粉末狀金屬粒子,及具有第二燒結點之第二金屬材料的狹長金屬纖維粒子。第二燒結點高於第一燒結點,且摻混物具有小於0.6公克/立方公分之表觀密度。
10:基質
20:金屬連接性節點
22:狹長金屬纖維
圖1為在低壓力差動下流動通過如所描述之過濾薄膜之速率的曲線圖。
圖2為如所描述之過濾薄膜之過濾效能(就LRV而言)相對於流速的曲線圖。
圖3A、圖3B及圖3C為如所描述之基質之顯微照片。
相關申請案之交叉參考
本申請案主張2017年11月8日申請之美國臨時申請案第62/583,137號之權益及優先權,該美國臨時申請案之全部內容出於所有目的以引用之方式併入本文中。
當前描述對用作用於過濾各種流體流之過濾器體有效的新穎多孔經燒結體。多孔經燒結體包括由由連接性金屬節點連接且在連接性金屬節點之間延伸之狹長金屬纖維製得的多孔金屬基質。連接性金屬節點形成於基質內部且藉由燒結而附著至狹長金屬纖維,使得連接性金屬節點可有效地將金屬纖維及連接性金屬節點共同保持呈纖維基質形式。亦描述用於製備多孔經燒結體之新穎及本發明方法,及將多孔經燒結體用於包括將如所描述之多孔經燒結體用於過濾流體流之應用中的新穎及本發明方法。
如所描述之多孔經燒結體包括金屬基質(或簡言之「基 質」),該基質包括(例如,包含、由以下組成或基本上由以下組成)藉由經燒結金屬材料之連接性金屬節點連接在一起(例如,「互連」)之狹長金屬纖維。連接性金屬節點藉由包括燒結金屬材料之摻混物之方法熔合或結合至狹長纖維,金屬材料之摻混物包括狹長金屬纖維粒子及金屬粉末粒子。摻混物經燒結以形成基質,該基質在燒結之後包括在由燒結含有兩種不同類型之粒子的摻混物,以引起金屬粉末粒子熔合至狹長金屬纖維粒子而形成之連接性金屬節點之間延伸的狹長金屬纖維。
如本文中所使用之術語「燒結」具有與此術語在用於多孔經燒結金屬結構(諸如可用作金屬過濾薄膜之類型的多孔經燒結金屬薄膜)之技術中時所給出之意義一致的意義。與其一致地,術語「燒結」可用於指以下製程:藉由向粒子施加熱及視情況選用之壓力來將一或多種不同類型(大小、組成、形狀等)之金屬材料的小粒子之集合結合(例如,「焊接」或「熔合」)在一起,以使得粒子達至引起一或多種金屬材料中之至少一者達至足夠高以引起經加熱粒子藉由金屬結合而熔合在一起(亦即,焊接在一起),但不引起該等粒子中之任一者熔融(亦即,該等金屬材料中無一者達至其熔融溫度)之溫度的溫度。該製程允許藉由加熱金屬材料而不將金屬熔融至液化點來形成金屬材料之多孔塊狀物。經燒結之金屬經加熱至金屬可與其他金屬粒子熔合而不熔融之溫度,以在移除熱時形成經熔合金屬粒子之固體片件。如本文所使用,金屬材料之「燒結點」為金屬材料能夠經燒結之溫度,亦即金屬材料之粒子開始黏著至金屬材料之其他粒子且可與相同金屬材料或不同金屬材料的另一粒子熔合之溫度,例如,在特定壓力下,諸如在大氣壓下;金屬材料之燒結點通常低於意謂金屬變為液體之溫度的金屬之熔融溫度。
根據本發明描述,連接性金屬節點由具有「第一燒結點」之第一金屬材料製得,且狹長金屬纖維由具有「第二燒結點」之第二金屬材料製得。第二燒結點為高於第一燒結點之溫度。申請人已發現,藉由在第一及第二金屬材料之燒結點具有差值之情況下使用如所描述之第一和第二金屬材料,可藉由本文亦所描述之新穎及本發明方法製備所描述之多孔經燒結體。
根據藉由燒結來製備基質之實例方法,可由兩種或多於兩種不同金屬材料之金屬粒子的摻混物來製備基質,該摻混物包括:具有第一燒結點之第一金屬材料之粉末狀金屬粒子,其在加熱至燒結溫度後將形成基質之連接性金屬節點;及具有第二燒結點之第二金屬材料的狹長金屬纖維粒子,其將形成基質之狹長金屬纖維。首先,在燒結之前,視情況且較佳在無任何有機材料(諸如有機黏合劑)存在下模製包括第一金屬材料及第二金屬材料之金屬粒子之摻混物。金屬粒子之摻混物(當仍在模具中時)可經加熱至至少與第一燒結點一樣高,但可低於第二燒結點之燒結溫度。
加熱金屬粒子之摻混物引起摻混物中之至少一種類型的粒子的燒結,以產生經燒結金屬基質。具體而言,摻混物經加熱至低於第一金屬材料及第二金屬材料兩者之熔融溫度之燒結溫度,使得摻混物中之兩種金屬材料在加熱步驟期間皆不熔融,亦即液化。代替熔融,經加熱至大於第一金屬材料之燒結點之溫度的第一金屬材料之粉末之金屬粒子達至允許或引起金屬粉末粒子黏著至(亦即,結合至或熔合至)包括狹長金屬纖維粒子的摻混物之其他粒子之溫度。視情況且較佳地,狹長金屬纖維粒子之溫度仍低於第二燒結點。
藉由燒結金屬粒子之摻混物來形成金屬基質的重要因素為 第一金屬材料之燒結點與第二金屬材料之燒結點之間的差值。彼差值應足夠大以允許兩種不同金屬材料之摻混物經加熱至一燒結溫度,在該燒結溫度下,第一金屬材料之金屬粉末的粒子將經燒結且結合(或熔合)至狹長金屬粒子,而不需要或引起狹長金屬纖維粒子達至其燒結點(亦即,第二金屬材料之燒結點)。
根據如所描述之金屬粒子之某些實例摻混物,第二燒結點可比第一燒結點高至少50℃、100℃或200℃,例如,第一燒結點與第二燒結點之間的差值可在250℃至350℃之範圍內。
基質之連接性金屬節點之第一金屬材料的非限制性實例包括不鏽鋼、其他鋼鐵合金、鎳及鎳合金、鈦及鈦合金。如本文中所描述,連接性金屬節點之金屬材料的燒結點可為低於狹長金屬纖維之燒結點之任何燒結點。金屬材料(諸如不鏽鋼、其他鋼合金、鎳、鎳合金)之燒結點之實例可在530℃至900℃,例如,530℃至630℃的範圍內。
適用於基質之狹長金屬纖維之第二金屬材料的實例包括不鏽鋼、其他鋼鐵合金、鎳及鎳合金、鈦及鈦合金。如本文中所描述,狹長金屬纖維之金屬材料的燒結點可為高於第一金屬材料之燒結點之任何燒結點。用作狹長金屬纖維之金屬材料(諸如不鏽鋼、其他鋼合金)之燒結點的實例可在850℃至950℃之範圍內,例如,在850℃至1200℃之範圍內,諸如在900℃至1100℃之範圍內。
與第二金屬材料之量相比,基質中之第一金屬材料的相對量可為將有效產生如所描述之多孔經燒結體,較佳展現如本文中所描述之物理特性及過濾效能特性(例如孔隙度、表面積(BET)、粒子保留)的任何相對量。基質中第一金屬材料之適用相對量比第二金屬材料之適用相對量 (以重量計)之實例可為約30:70至約70:30。在一些實例基質中,較佳量可在約60:40至約40:60或約45:55至約55:45之範圍內。在此等及其他實施例中,基質不需要且可具體言之排除其他金屬材料及任何多於非實質量之非金屬材料,諸如有機黏合劑。實例基質可由金屬材料組成或基本上由金屬材料組成,例如,第一金屬材料及第二金屬材料,以排除非金屬有機材料。據稱基本上由金屬材料(例如,第一金屬材料及第二金屬材料)組成之基質係指含有金屬材料及以基質之總重量計不超過1重量%的任何非金屬(例如,有機)材料,諸如以基質之總重量計不超過0.5重量%、0.1重量%或0.01重量%非金屬材料的基質。
針對用作過濾薄膜(亦稱為「過濾器體」),尤其用於以低流動速率、低壓降且約大氣壓或在次大氣壓下過濾氣態流體流以達成高LRV移除效率,多孔經燒結體可具有各種適用或較佳物理形式及特性,包括厚度、孔隙度、密度、表面積(BET)及迎風面積。
用作過濾薄膜之較佳多孔經燒結體可相對薄,例如,具有量值相對小之厚度。經減小之厚度可能在使用期間產生過濾薄膜之某些所需特性,包括貫穿過濾器之減小質量及減小壓降。另外,當用於真空中,例如,在次大氣壓條件下時,過濾薄膜之減小厚度(及因此,質量)可降低過濾薄膜的任何材料除氣至穿過用於過濾之過濾薄膜之氣態流體流中的可能性。因此,經調適用作過濾薄膜之適用或較佳多孔經燒結體可具有低於3毫米,例如,低於2毫米或低於1毫米,諸如在約0.2毫米至約1.5毫米或1.7毫米範圍內之厚度。相比而言,用於過濾氣態流體之各種當前商業多孔經燒結體通常具有實質上較大的厚度,例如,至少為3、4、5或6毫米之厚度。過濾器體之較大厚度可允許以相對較高流動速率(例如,大於50 標準公升/分鐘)使用,同時仍達成高LRV,但將具有較高壓降及較高質量之缺點。
如所描述之多孔經燒結體可具有將允許多孔經燒結體對期望用途(例如,用作過濾薄膜)有效之孔隙度。針對用作過濾薄膜,尤其用於以低流動速率、在低或極低壓降之情況下且在約大氣壓或次大氣壓下過濾氣態流體流,多孔經燒結體可較佳具有相對高孔隙度,例如至少70%之孔隙度,例如,在75%至90%範圍內,諸如在78%至85%範圍內之孔隙度。如本文所使用,且在多孔經燒結體之技術中,多孔經燒結體之「孔隙度」(有時亦被稱作空隙分數)為作為本體總體積之百分比的本體中空隙(亦即「空的」)空間之度量,且被計算為本體之空隙體積在本體總體積內之分數。具有0%孔隙度之本體係完全固體的。
如所描述之多孔經燒結體之表面積可為將允許經燒結體對期望用途(例如,用作過濾薄膜)有效的任一者。針對用作過濾薄膜,尤其用於以低流動速率、在低壓降之情況下且在約大氣壓或次大氣壓下過濾氣態流體流,當以將為相對低但仍在商業上可接受之流動速率且在貫穿過濾器之極低壓降的情況下過濾穿過多孔經燒結體之氣態流體時,多孔經燒結體可較佳具有將產生以0.060微米之最大穿透粒度(most penetration particle size,MPPS)量測之期望移除效率(例如,至少3、4、7或9之LRV)的表面積(BET)。用於判定過濾器之MPPS之方法及技術描述於K.W.Lee及B.Y.H.Liu,「On the Minimum Efficiency and the Most Penetrating Particle Size for Fibrous Filters」,空氣污染控制協會期刊(Journal of the Air Pollution Control Association),第30卷,Iss.4,1980中。在本發明描述之實例多孔經燒結體之情況下,適用MPPS之實例 可為約0.060微米。
如在多孔體技術中所知,表面積(BET)係指使用由Brunauer、Emmett及Teller定義之理論而計算之每本體質量的多孔體的表面積,該理論涉及固體表面上之氣體分子之物理吸附。在不限制當前所描述之多孔體之情況下,如所描述之多孔經燒結體之當前較佳表面積(BET)可在0.25平方公尺/公克至0.60平方公尺/公克,例如0.3平方公尺/公克至0.5平方公尺/公克的範圍內。取決於特定多孔經燒結體之其他結構特徵;經過濾中之氣態流之特徵;及期望粒子移除效率(如藉由LRV所量測),與此等範圍不同之表面積(BET)值亦適用。
由如所描述之多孔經燒結體製得之過濾薄膜可包括適用迎風面積,其可較佳地足夠高以允許如所描述之其他效能特徵,包括如所描述之低壓降、流體通過過濾器之低流動速率(每區域),及期望移除效率(如藉由LRV所量測)。可將例示性多孔經燒結體構造成呈扁平片材形式之過濾薄膜,或者構造為諸如呈杯形、錐形、管或封端管(亦稱為「封閉圓筒」,意謂試管或圓筒具有一個封閉端及一個開口端)形式之三維形狀。(任何形狀之)如所描述之過濾薄膜的迎風面積係指流體在使用期間通過之過濾薄膜之面積。過濾器體之特定實例可為具有在3吋至10吋範圍內之長度、在0.75吋至2吋範圍內之直徑及在0.3毫米至2毫米範圍內之厚度的封閉圓筒過濾器體。
視情況且有利地,具有由第一金屬材料製得之連接性金屬節點及由第二金屬材料製得之狹長金屬纖維的如所描述之多孔經燒結體可具有相對高的熱傳遞能力。由於自藉由燒結來製備多孔金屬體之較佳方法產生之整體補給,金屬體之基質極高度互連,從而提供相對良好的將熱傳 遞遍及整個多孔體的能力。相對高的熱傳遞特性可適用或有利於多孔經燒結體作為過濾薄膜之應用,其中過濾薄膜在使用期間經加熱以改良過濾器之效能。
如所描述之多孔經燒結體可用作過濾薄膜以移除來自經導引經過過濾薄膜之流體流的粒子或污染。流體可為氣體或液體,其中過濾器體之當前較佳實例適用於過濾氣態流體。氣態流體可為需要過濾之任何氣態流體,包括含有工業化學物質,諸如將用於處理或製造半導體產品或微電子產品之氣態化學物質之氣態流體。多孔經燒結體可藉由篩分或非篩分過濾機構有效地移除來自流體流之粒子。當流體為氣態流體時,過濾可主要藉由非篩分過濾機構進行。
視需要,在使用如所描述之過濾薄膜來過濾流體之步驟期間的氣態流體的壓力可通常在約大氣壓或低於大氣壓之範圍內。適用壓力(且被認為約為大氣壓)之實例可低於30磅/平方吋(絕對)(psia),例如,低於20psia。針對為半導體或微電子裝置加工系統供應材料之諸多過濾應用,在約大氣壓或次大氣壓下供應氣態流體。舉例而言,用於過濾氣態流體之本發明之方法可包括過濾具有不超過約16psia,例如,在0.01至15.5psia範圍內的壓力之氣態流體流。
在過濾薄膜之使用期間,貫穿如所描述之過濾薄膜之厚度的壓力差動(或「壓降」)(在過濾器之上游側與過濾器之下游側之間)可為在(例如,流體之給定流動速率之)過濾步驟期間實現期望有效性(例如,粒子保留)且亦在商業上可實行的任何壓力差動。在使用氣態流體之相對低的流動速率以及具有低厚度之高度多孔過濾薄膜之情況下,本發明描述之較佳方法可能產生相對低的壓力差動。針對用於處理半導體或微電子裝 置之過濾化學物質之各種應用,貫穿過濾薄膜之壓力差動可低於約5磅/平方吋差動(psid),較佳低於約2磅/平方吋差動(psid)、1磅/平方吋差動(psid)、0.5磅/平方吋差動(psid)或低於0.3磅/平方吋差動(psid)、0.1磅/平方吋差動(psid)或0.05磅/平方吋差動(psid),同時仍允許流體通過過濾器之有效流動。圖1展示藉由使用如本文中所描述之例示性過濾薄膜在低壓力差動下的每單位面積的實例流動速率。
在過濾步驟期間流動通過過濾薄膜之氣態流體之量可為在過濾步驟期間實現期望有效性(例如,粒子保留)且亦在商業上可實行的量。針對用於處理半導體或微電子裝置之過濾化學物質之各種應用,通過過濾薄膜之流體流(如以每時刻、過濾器之每個迎風面積之流量表示)可低於約5標準公升/分鐘(slpm)每平方公分,例如,低於2、1、0.5、0.3、0.2、或0.1slpm/平方公分。作為適用或較佳過濾器組態之實例,具有低於1毫米之厚度(例如,約0.7毫米之厚度)及低於90%(例如,81.5%)之孔隙度的過濾薄膜可容許至少10標準公升/分鐘每平方公分的流體(例如,作為測試流體之空氣,在20℃下)之流動速率。相對於過濾薄膜特性,此流動速率可為如相對於薄膜特性或相對於其他可比過濾薄膜(具有類似或替代物理特性)所描述之多孔膜之流動特性的參考;在使用期間通過過濾薄膜之流動速率可實質上較低。
通過如所描述之過濾薄膜之流體流之溫度可為容許商業有效過濾之任何溫度。針對用於處理半導體或微電子裝置之過濾化學物質之各種應用,溫度可為約室溫(例如,30℃)或高於室溫,例如至少100℃、150℃或200℃之溫度。
在過濾步驟期間,可以與本發明描述一致之任何流動速率 及任何壓力提供氣態流體且其將適合於與過濾薄膜一起使用以達成包括移除效率之期望過濾效能。針對當前適用或較佳過濾方法,可使氣態流體以相對低的流動速率且在低壓,諸如約1個大氣壓或低於一個大氣壓範圍內之壓力下流動通過過濾薄膜。移除效率可較佳地相對高,使得針對0.060微米(MPPS)之粒子產生至少3、4、5、7或9之對數下降值。圖2之曲線圖展示粒子移除效能對比流速(針對0.060微米粒子)。
在本發明經燒結金屬體用作過濾薄膜之情況下,且基於氣態流體通過過濾薄膜之經選擇(相對低)流動速率,本發明之實例方法可達成如對數下降值(「LRV」)所量測之至少3、4、5、7或9的過濾效率(「移除效率」)。對數下降值(LRV)經定義為兩個數之比率之對數且可用以表徵多孔膜的粒子保留特性。在本發明之情況下,該比率為過濾期間於過濾器之上游側上衝擊過濾薄膜之粒子數目與於過濾器下游偵測得之粒子數目的比率。因此,7之LRV值係指107個粒子之攻擊及在下游偵測到1個粒子,此比率之對數為7。藉由生產含有尺寸分佈以約0.060微米為中心之數百萬粒子之氣溶膠、使此氣溶膠通過由呈本發明之型式之多孔經燒結體製成的過濾器且使用凝結核計數器(condensation nucleus counter,CNC)計數通過之粒子數目來實施該測試。過濾薄膜之LRV值將視氣態流體流通過過濾薄膜之速率而定。可以較低流動速率達成較高LRV值。在多孔經燒結體之型式中,當作為氣溶膠之具有以約0.060微米為中心之尺寸分佈的數百萬粒子被用於攻擊多孔經燒結體時,LRV大於3、4或5。在一些其他型式中,當作為氣溶膠之具有以約0.060微米為中心之尺寸分佈的數百萬粒子被用於攻擊多孔經燒結體時,多孔經燒結體之LRV在6與9之間。在多孔經燒結體之又其他型式中,當作為氣溶膠之具有以約0.060微米為中心之尺 寸分佈的數百萬粒子被用於攻擊多孔經燒結體時,多孔經燒結體之LRV在7與9之間。圖2為展示如所描述之過濾薄膜之過濾器效能對比速度的非限制性實例之曲線圖。
可藉由如所描述之過濾薄膜有效過濾之流體類型可為經理想過濾以自流體移除高比例的任何粒子或其他類型之污染物或不合需要的材料的任何類型流體,例如將流體(通常氣態流體)用於製造包括裝置前驅體之半導體裝置或微電子裝置之製程中。流體通常以低壓提供,諸如約大氣壓或次大氣壓之壓力,且可以如本文中所描述之低流動速率提供及使用。說明性實例包括以下非限制性氣體:矽烷;甲基矽烷;三甲基矽烷;氫氣;甲烷;氮氣;一氧化碳;二硼烷;BP3;胂;膦;光氣;氯氣;BCl3;BF3;B2H6;B2D6;六氟化鎢;氟化氫;氯化氫;碘化氫;溴化氫;鍺烷;氨;銻化氫;硫化氫;氰化氫;硒化氫;碲化氫;氘化氫;三甲基銻化氫;三氟化磷;五氟化砷、;正矽酸四乙酯;鹵化物(氯、溴、碘及氟);諸如NF3、ClF3、GeF4、SiF4、AsF5之氣態化合物;有機化合物;有機金屬化合物;烴及有機金屬V族化合物,諸如(CH3)3Sb。對於此等化合物中之每一者,涵蓋全部同位素。通常,與運載氣體(諸如惰性氣體)組合處理此等氣體種類中之一或多者。
根據製備含有如所描述之金屬基質之如所描述的經燒結金屬體之實例方法,可藉由模製及燒結兩種不同類型之金屬粒子之摻混物來製備經燒結金屬體。第一類型之金屬粒子為具有第一燒結點之第一金屬材料的粉末狀金屬粒子之集合。第二類型之金屬粒子為具有高於第一燒結點之第二燒結點的第二金屬材料之狹長金屬纖維粒子之集合。一般而言,將兩種類型之粒子摻混以形成粒子之均勻摻混混合物。金屬粒子之摻混物可 接著經模製以形成所需形狀,接著經加熱至大於第一燒結點且(較佳地)低於第二燒結點之燒結溫度。加熱金屬粒子之摻混物引起具有粉末狀形式之第一類型的金屬粒子之燒結。第一金屬材料之金屬粒子達至高於第一燒結點之溫度,該溫度允許或引起粉末狀粒子黏著至(亦即,結合或與熔合至)包括狹長金屬纖維粒子之摻混物的其他粒子。黏著或熔合至金屬纖維粒子表面之粉末之金屬粒子變為如本文中所描述的經燒結金屬基質之連接性金屬節點,從而藉由節點處之第一金屬材料之金屬連接將金屬纖維粒子牢固地結合在一起。參考圖3A及圖3B,基質10之顯微照片,可以看出金屬連接性節點20連接狹長金屬纖維22。
可選擇第一金屬粒子(亦即,「粉末粒子」或「金屬粉末粒子」)以展現大小及形狀特性及期望燒結點,該燒結點將允許金屬粉末粒子適用於製備如所描述之經燒結金屬體,其中金屬粉末粒子在燒結步驟期間經燒結以熔合至摻混物(包括狹長金屬粒子)之其他粒子以形成經燒結基質之連接性金屬節點。第一金屬粒子可由展現期望燒結點(亦即,「第一燒結點」)之第一金屬材料製得,其中金屬材料選自鐵、鉻、鎳,及此等之合金或組合。較佳第一金屬材料可為鎳合金。
第一金屬粒子呈粉末形式,這係指第一金屬材料之小(微米或亞微米尺度)粒子之集合。粉末之金屬粒子可具有允許其用於如所描述之摻混物中且用於如所描述的方法中的形狀,該等形狀將有效地使粒子在燒結之後形成基質之連接性金屬節點。金屬粉末之第一金屬粒子之形狀可實質上為圓形,例如,球形或不規則及略分支,同時個別粒子之縱橫比不超過例如約5:1。該等粒子可具有適用粒度(平均粒度),例如在低於20微米或10微米之範圍內,例如,在約1微米至3微米範圍內之平均粒度。
第一金屬粒子之粉末可具有任何適用表觀密度(apparent density,AD)。具有相對低AD之粉末可通常適用或較佳用於藉由模製及燒結第一金屬粒子及第二金屬粒子之摻混物來生產如所描述的經燒結基質,該基質將展現高孔隙度。舉例而言,用於如所描述之摻混物中之第一金屬粒子的粉末可具有低於1公克/立方公分(g/cc),例如,低於0.90g/cc、0.80g/cc或低於0.70g/cc之表觀密度。如吾人所知,粉末或顆粒之表觀(容積)密度係指給定體積之粉末或顆粒集合之質量,其中該體積包括中間及中空空間。量測表觀(容積)密度之方法為吾人所熟知,且包括ASTM B703-17「使用Arnold計量錶之金屬粉末及相關化合物之表觀密度的標準測試方法(Standard Test Method for Apparent Density of Metal Powders and Related Compounds Using the Arnold Meter)」。
可選擇狹長之第二金屬粒子以展現大小及形狀特性及期望燒結點,該燒結點將使得第二金屬粒子適用於製備如所描述之經燒結金屬體。不需要在有效引起第一金屬粒子燒結以形成經燒結金屬基質之連接性金屬節點之燒結步驟期間燒結第二金屬粒子;第二金屬粒子可視情況經歷一定程度的燒結,但不需要燒結第二金屬粒子。第二金屬粒子可由展現期望燒結點(亦即,「第二燒結點」)之第二金屬材料製得,其中金屬材料選自鐵、鉻、鎳,及此等之合金或組合。較佳第二金屬材料可為鐵合金,諸如一種類型之不鏽鋼。
第二金屬粒子呈小(微米或亞微米尺度)粒子之集合形式,其中粒子經塑形以包括狹長軸;可認為粒子具有「纖維」(亦稱為「股」、「柱」、「長絲」或其類似物)之形式。第二金屬粒子可具有允許其用於如所描述之摻混物中且用於如所描述之方法中的形狀,該等形狀將有效形成 由基質之連接性金屬節點連接在一起之經燒結金屬基質的金屬纖維。第二金屬粒子係狹長的,可具有至少10:1,例如,至少20:1,例如在25:1至125:1範圍內之縱橫比(長度與寬度之比率)。粒子可具有適用粒度(平均粒度),例如低於10微米或20微米,例如,在約1微米至3微米範圍內之平均粒徑。
第二金屬粒子之集合可具有任何適用表觀密度(AD),且可較佳具有相對低之表觀密度以有助於生產如所描述且展現高孔隙度之經燒結基質。舉例而言,用於如所描述之摻混物中之第二金屬粒子的集合可具有低於約0.5g/cc,例如,低於0.40、0.30g/cc或低於0.20g/cc之表觀密度。
為了由第一及第二金屬粒子生產經燒結金屬基質,將第一金屬粒子及第二金屬粒子摻混在一起以形成以實質上均勻方式分散之粒子的混合物。摻混物可以有效產生如所描述之經燒結體之任何相對量包括(例如,包含、由以下組成或基本上由以下組成)第一金屬粒子及第二金屬粒子。摻混物中第一金屬粒子之適用相對量比第二金屬粒子之適用相對量(以重量計)之實例可為約30:70至約70:30。在一些實例基質中,較佳量可在約60:40至約40:60或約45:55至約55:45之範圍內。基本上由金屬材料(例如,第二金屬材料及第一金屬材料)組成之金屬粒子之摻混物係指不含有超過非實質量的任何其他材料之金屬材料之摻混物,其他材料諸如非金屬(有機)材料,例如有機黏合劑,例如,以摻混物(如所模製及燒結)之總重量計不超過1重量%之有機材料,或以摻混物(如所模製及燒結)之總重量計不超過0.5重量%、0.1重量%或0.01重量%之有機材料。
第一及第二金屬粒子經組合以產生包括兩種不同類型之金 屬粒子之集合(「粉末」),且摻混物可接著經模製及燒結。當兩種類型之金屬粒子最初經組合時,摻混物將具有為第一金屬粒子及第二金屬粒子之表觀密度之中間值的表觀密度(AD)。AD可例如在約0.2公克/立方公分至0.7公克/立方公分,例如,在0.3公克/立方公分與0.6公克/立方公分之間的範圍內(例如,使用ASTM B703-17)。
可將摻混物置放於模具中且壓縮至期望程度。在模具中,摻混物之密度(亦即,「模具密度」)可在約0.3公克/立方公分至0.8公克/立方公分,例如,0.4公克/立方公分至0.7公克/立方公分之範圍內。模具密度之此等範圍可與摻混物之「敲緊密度」類似,該敲緊密度為金屬粉末技術中已知之密度度量。用於量測敲緊密度之方法為吾人所熟知,且包括ASTM B527-15「用於金屬粉末及化合物之敲緊密度之標準測試方法(Standard Test Method for Tap Density of Metal Powders and Compounds)」。
用於模製摻混物之模具可為任何模具形式,且可具有在於模具之支撐結構內燒結摻混物後將不會在經燒結摻混物與模具之支撐結構之間產生大量黏著的材料。有利地,相對於形成多孔經燒結體之其他方法,如所描述之摻混物可形成、模製且燒結於模具內,而無需在摻混物中包括諸如有機黏合劑之有機材料。此外,有利地,摻混物可在模具中形成為模製(未經燒結)本體且燒結於同一模具中,而無需將未經燒結模製本體自模具移除至用於燒結之不同位置。根據形成多孔經燒結體之先前方法,經常或通常使用有機黏合劑,此係因為該方法包括以下步驟:在模具中形成本體,且接著自模具移除未經燒結體,且將未經燒結體置放於可接著燒結經模製體之不同位置,諸如支撐物(例如,心軸或桿)處。
相比而言,用於形成本發明描述之經燒結金屬體(例如,過濾薄膜,諸如但未必呈封閉圓筒形式)之實例方法可包括提供如所本文中通常所描述之摻混物,例如,包括呈鎳合金之金屬粉末形式之第一金屬粒子,及呈狹長不鏽鋼粒子形式之第二金屬粒子。第一及第二粒子可經摻混且接著使用管狀(封閉圓筒)模具來形成為薄壁、高孔隙度、低表觀密度之模製形式。經模製之形式於模具之支撐結構中經熱處理,使得第一金屬材料(例如,鎳合金)充分經燒結,而第二金屬材料(例如,不鏽鋼合金)很大程度上保持不變。第一金屬材料熔合至第二金屬材料以產生在第二金屬材料之不鏽鋼狹長纖維之間形成金屬結合之第一材料的連接性金屬節點,以形成自支撐經燒結金屬基質體。
10:基質
20:金屬連接性節點
22:狹長金屬纖維

Claims (17)

  1. 一種多孔經燒結金屬體,其包含包括連接於連接性金屬節點處之狹長金屬纖維之金屬基質,該基質包含:包含具有第一燒結點之第一金屬材料之連接性金屬節點;具有大於該第一燒結點至少200℃之第二燒結點之第二金屬材料的狹長金屬纖維;其中該第一金屬材料與該第二金屬材料不同,且其中該等連接性金屬節點熔合至該等狹長金屬纖維,而該等狹長金屬纖維並未互相熔合,以形成包含該等狹長金屬纖維之互連金屬基質,該等狹長金屬纖維藉由該等連接性金屬節點連接且在該等連接性金屬節點之間延伸。
  2. 如請求項1之多孔經燒結金屬體,其包含:30重量%至70重量%之該第一金屬材料,及70重量%至30重量%之該第二金屬材料。
  3. 如請求項1或2之多孔經燒結金屬體,其包含小於1重量%之非金屬材料。
  4. 如請求項1或2之多孔經燒結金屬體,其中該第一燒結點在530℃至630℃之範圍內。
  5. 如請求項1或2之多孔經燒結金屬體,其中該第一金屬材料為鎳或鎳 合金。
  6. 如請求項1或2之多孔經燒結金屬體,其中該第二金屬材料為不鏽鋼。
  7. 如請求項1或2之多孔經燒結金屬體,其具有在70%至90%範圍內之孔隙度。
  8. 如請求項1或2之多孔經燒結金屬體,其具有至少0.30平方公尺/公克之表面積(BET)。
  9. 如請求項1或2之多孔經燒結金屬體,其中該多孔經燒結金屬體具有小於1毫米之厚度。
  10. 如請求項1或2之多孔經燒結金屬體,其係呈封閉圓筒形式。
  11. 如請求項10之多孔經燒結金屬體,其中該封閉圓筒具有在3吋至10吋範圍內之長度、在0.75吋至2吋範圍內之直徑、及在1毫米至2毫米範圍內之厚度。
  12. 一種形成包括連接於連接性金屬節點處之狹長金屬纖維之金屬基質的方法,該方法包含:提供包括具有第一燒結點之第一金屬材料的粉末狀金屬粒子、具有 第二燒結點之第二金屬材料的狹長金屬纖維粒子之金屬粒子之摻混物,且其中該第二燒結點至少比該第一燒結點高200℃,其中該第一金屬材料與該第二金屬材料不同;及將該摻混物於高於該第一燒結點且低於該第二燒結點之溫度下燒結,以燒結該粉末狀金屬材料且形成金屬基質,該粉末狀金屬材料係燒結至該等狹長金屬纖維粒子但不使該等狹長金屬纖維粒子彼此燒結,該金屬基質包含連接於經由燒結該等粉末狀金屬粒子而形成之連接性金屬節點處之該等狹長金屬纖維。
  13. 如請求項12之方法,其包含:將該摻混物置放於模具中;於該模具中壓製該摻混物,以及於該模具中燒結該摻混物。
  14. 如請求項13之方法,其中該金屬材料之摻混物在被置放於該模具中之前具有小於0.5公克/立方公分的表觀密度。
  15. 一種金屬材料之摻混物,其包含:具有第一燒結點之粉末狀金屬粒子;及具有第二燒結點之第二金屬材料之狹長金屬纖維粒子,其中該第二燒結點至少比該第一燒結點高200℃,該摻混物具有小於0.6公克/立方公分之表觀密度。
  16. 如請求項15之摻混物,其中該等狹長金屬纖維具有1微米至3微米範 圍內之直徑及至少25:1之縱橫比(長度:寬度)。
  17. 如請求項15或16之摻混物,其中該金屬粉末包含具有1微米至3微米範圍內之直徑之金屬粒子。
TW107139671A 2017-11-08 2018-11-08 具有不同燒結點之不同材料之節點及纖維的經燒結多孔材料、相關製備方法和用途、及金屬材料之摻混物 TWI761627B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762583137P 2017-11-08 2017-11-08
US62/583,137 2017-11-08

Publications (2)

Publication Number Publication Date
TW201929981A TW201929981A (zh) 2019-08-01
TWI761627B true TWI761627B (zh) 2022-04-21

Family

ID=66438602

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107139671A TWI761627B (zh) 2017-11-08 2018-11-08 具有不同燒結點之不同材料之節點及纖維的經燒結多孔材料、相關製備方法和用途、及金屬材料之摻混物

Country Status (7)

Country Link
US (1) US11273492B2 (zh)
EP (1) EP3706948A4 (zh)
JP (1) JP7145946B2 (zh)
KR (1) KR102531986B1 (zh)
CN (1) CN111542407B (zh)
TW (1) TWI761627B (zh)
WO (1) WO2019094300A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022542020A (ja) * 2019-07-19 2022-09-29 インテグリス・インコーポレーテッド 多孔質焼結膜及び多孔質焼結膜を調製する方法
EP4090484A1 (en) * 2020-01-16 2022-11-23 Entegris, Inc. Porous sintered metal bodies and methods of preparing porous sintered metal bodies
FR3118429B1 (fr) * 2020-12-30 2023-11-24 Commissariat Energie Atomique Procédé de fabrication pour pièce fonctionnelle métallique délimitant un média de filtration poreux, utilisant une méthode de fabrication additive, et pièce fonctionnelle obtenue
CN115261747B (zh) * 2021-04-29 2023-08-22 苏州铜宝锐新材料有限公司 粉末冶金复合功能材料、其制作方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201235080A (en) * 2011-02-04 2012-09-01 Entegris Inc Porous metal membrane of sintered powders and metal fibers
CN104759629A (zh) * 2015-04-01 2015-07-08 成都易态科技有限公司 柔性多孔金属箔及柔性多孔金属箔的制备方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127668A (en) * 1955-03-03 1964-04-07 Iit Res Inst High strength-variable porosity sintered metal fiber articles and method of making the same
GB1028762A (en) * 1962-02-22 1966-05-11 Ferodo Ltd Sintered friction materials
JPS5884905A (ja) 1981-11-13 1983-05-21 N D C Kk ステンレス鋼粉の多孔質焼結体の製造方法
JPS59147612A (ja) * 1983-02-10 1984-08-24 N D C Kk 多孔質アルミニウム複合フイルタ−
JPS6184351A (ja) * 1984-10-01 1986-04-28 Toyota Motor Corp 多孔質材料
CN1048892A (zh) * 1989-05-24 1991-01-30 奥本大学 混合纤维复合材料结构及其制法和用途
JPH04176804A (ja) * 1990-11-09 1992-06-24 Nibetsukusu Kk 通気性部材
US5679041A (en) * 1994-09-29 1997-10-21 General Motors Corporation Metal matrix composite and preform therefor
JPH08325660A (ja) * 1995-05-31 1996-12-10 Ndc Co Ltd 多孔質アルミニウム焼結材
AU6568698A (en) * 1997-03-31 1998-10-22 Fibermark, Inc. Metal fiber/metal powder sheet and process for making same
JP2003097253A (ja) * 2001-09-19 2003-04-03 Hitachi Metals Ltd 多孔質金属複合体、該多孔質金属複合体を用いたdpf、及び該dpfを装備するディーゼル排気ガス浄化装置
EP1382408B1 (en) * 2002-07-15 2010-06-23 Hitachi Metals, Ltd. Method for producing porous sintered metals for filters
WO2009055452A2 (en) * 2007-10-24 2009-04-30 Mott Corporation Sintered fiber filter
JP5428546B2 (ja) 2009-06-04 2014-02-26 三菱マテリアル株式会社 アルミニウム多孔質焼結体を有するアルミニウム複合体の製造方法
CN102179105B (zh) 2011-04-08 2013-11-27 王东伟 金属粉末涂层纳米级过滤精度不锈钢纤维毡的生产方法
WO2013179467A1 (ja) 2012-05-31 2013-12-05 富士通株式会社 光送受信装置および光出力値制御方法
US20140044951A1 (en) * 2012-08-09 2014-02-13 United Technologies Corporation High strength-to-density nanocellular foam
JP5633658B2 (ja) * 2013-03-01 2014-12-03 三菱マテリアル株式会社 多孔質アルミニウム焼結体
WO2014152838A1 (en) * 2013-03-14 2014-09-25 Massachusetts Institute Of Technology Sintered nanocrystalline alloys
JP6184351B2 (ja) 2014-03-13 2017-08-23 株式会社神戸製鋼所 条鋼線材の搬送方法
CN104259460B (zh) * 2014-09-23 2016-10-05 华南理工大学 一种梯度孔隙结构金属纤维烧结板及制造方法
JP6011593B2 (ja) * 2014-10-22 2016-10-19 三菱マテリアル株式会社 銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法
JP6439550B2 (ja) 2015-03-31 2018-12-19 三菱マテリアル株式会社 多孔質アルミニウム焼結体、多孔質アルミニウム複合部材、多孔質アルミニウム焼結体の製造方法、多孔質アルミニウム複合部材の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201235080A (en) * 2011-02-04 2012-09-01 Entegris Inc Porous metal membrane of sintered powders and metal fibers
CN104759629A (zh) * 2015-04-01 2015-07-08 成都易态科技有限公司 柔性多孔金属箔及柔性多孔金属箔的制备方法

Also Published As

Publication number Publication date
CN111542407A (zh) 2020-08-14
EP3706948A4 (en) 2021-05-19
EP3706948A1 (en) 2020-09-16
US20210069792A1 (en) 2021-03-11
US11273492B2 (en) 2022-03-15
KR102531986B1 (ko) 2023-05-12
WO2019094300A1 (en) 2019-05-16
JP2021502483A (ja) 2021-01-28
JP7145946B2 (ja) 2022-10-03
CN111542407B (zh) 2023-05-23
TW201929981A (zh) 2019-08-01
KR20200070408A (ko) 2020-06-17

Similar Documents

Publication Publication Date Title
TWI761627B (zh) 具有不同燒結點之不同材料之節點及纖維的經燒結多孔材料、相關製備方法和用途、及金屬材料之摻混物
JP3668283B2 (ja) 多孔質複層プラスチックフィルタ及びその製造方法
JP3177096B2 (ja) 高効率金属膜フィルタ要素、及びその製造方法
TWI521149B (zh) 具有單塊碳吸附劑之氣體儲存及配送系統
KR101645735B1 (ko) 소결 섬유 필터
JP3336344B2 (ja) 高効率金属膜ゲッター素子及びその製造方法
WO1993006912A1 (en) Laminated filter medium, method of making said medium, and filter using said medium
JPH04317710A (ja) 超高効率多孔性金属フィルタ
JP7360463B2 (ja) 複合ナノ多孔質金属膜
JP2014510836A (ja) 焼結された粉末および金属繊維の多孔質金属膜
KR101947414B1 (ko) 미세기공을 갖는 다공성 금속 멤브레인의 제조방법
US20240157309A1 (en) Sintered porous body with multiple layers
EP3823742B1 (en) High flow liquid filtration device including a porous polyparaxylylene membrane or a porous polyparaxylylene/polytetrafluoroethylene composite membrane
US20220410079A1 (en) Sintered porous body with multiple layers
TWI840851B (zh) 多孔膜、具有多孔膜之過濾器總成、處理超臨界二氧化碳之方法、及形成一多層多孔膜之方法
US20230347300A1 (en) Sintered porous body with multiple layers
JPH05277312A (ja) ガス用のフィルター部材