TWI756562B - 多電子束裝置 - Google Patents

多電子束裝置 Download PDF

Info

Publication number
TWI756562B
TWI756562B TW108132426A TW108132426A TWI756562B TW I756562 B TWI756562 B TW I756562B TW 108132426 A TW108132426 A TW 108132426A TW 108132426 A TW108132426 A TW 108132426A TW I756562 B TWI756562 B TW I756562B
Authority
TW
Taiwan
Prior art keywords
light
electron beam
electron
film
array
Prior art date
Application number
TW108132426A
Other languages
English (en)
Other versions
TW202101518A (zh
Inventor
古山英人
Original Assignee
日商東芝股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東芝股份有限公司 filed Critical 日商東芝股份有限公司
Publication of TW202101518A publication Critical patent/TW202101518A/zh
Application granted granted Critical
Publication of TWI756562B publication Critical patent/TWI756562B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70016Production of exposure light, i.e. light sources by discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/061Electron guns using electron multiplication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/083Beam forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31777Lithography by projection
    • H01J2237/31779Lithography by projection from patterned photocathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Electron Beam Exposure (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

多電子束裝置至少具有:發光元件陣列;驅動電路,其將前述發光元件陣列控制為所期望之發光圖案;光電膜,其藉由前述發光元件發出之光而放出電子;微通道板,其將令前述電子倍增之微通道排列於與前述發光元件陣列之各發光元件對應之位置;及開孔陣列,其將較限制自前述微通道板放出之電子束大小之前述微通道之輸出開口更窄之開口排列於與前述微通道對應之位置;且至少前述光電膜、前述微通道板、及前述開孔陣列配置於真空鏡筒中。

Description

多電子束裝置
本發明之實施形態係關於一種多電子束裝置。
利用電子束之描繪裝置或加工裝置被用於產業用,除了利用單一電子束之裝置以外,為了高產能化亦開發利用多電子束之描繪裝置等。
在電子束描繪裝置等中,提議有若干個實現多電子束裝置之方式,但僅下述方式被實用化,即:將經加速之電子束分割成複數束而形成多電子束,對各分割電子束進行各個偏轉控制而產生描繪圖案。然而,對多電子束進行各個偏轉控制而產生描繪圖案之方式存在下述大的課題,即:對分割電子束進行各個偏轉控制之消隱器暴露於在加速電子之分割時產生之螢光X射線或加速電子本身之散射成分而劣化。另一方面,作為無需對多電子束進行各個偏轉控制而可產生描繪圖案之裝置,有利用多電子源之裝置,但因多電子束間之束干擾或多電子源之穩定性等之課題而未達成實用化。
本發明之實施形態之目的在於提供一種多電子束裝置,其係無須對多電子束進行各個偏轉控制而可產生描繪圖案之裝置,且能夠克 服多電子束間之束干擾或多電子源之穩定性等之課題。
1:驅動電路
2:發光元件
3:光、放出光
4:基板、透明基板
5:光電膜
6:電子
7:微通道板(MCP)支持體
8:MCP輸入電極
9:MCP輸入電極
10:微通道
11:偏壓電源、MCP偏壓電源
12:電子、倍增電子、多電子束
13:成形開孔陣列(SAA)
14:電子束、多電子束
15:推出電極
16:光電膜偏壓電源、電子引出電源
17:引出電極
18:引出偏壓電源
19:開關
20:開關
21:遮斷電源
22:抑制板
23:抑制電極
24:抑制電源
25:內部電極
26:電子透過膜
27:支撐基板
28:電子透過電源
29:電子透過電極
30:加速電極
31:加速電源
32:投影透鏡
33:物鏡
34:副偏轉器
35:主偏轉器
36:可動載台
37:電子加速通道
38:真空鏡筒
100:多電子束圖案決定部(激發光源部)
200:多電子束產生部
300:多電子束倍增部
301:MCP
302:MCP
400:多電子束整形部
401:微透鏡
402:SiO2
500:多電子束加速精製部
600:多電子束裝置
圖1係第1實施形態之多電子束裝置之概略構成圖。
圖2係第1實施形態之多電子束裝置之概略構成圖。
圖3係第1實施形態之多電子束裝置之概略構成圖。
圖4係第2實施形態之多電子束裝置之概略構成圖。
圖5(a)~圖5(d)係第2實施形態之多電子束裝置之概略構成圖。
圖6係第2實施形態之多電子束裝置之概略構成圖。
圖7係第2實施形態之多電子束裝置之概略構成圖。
圖8係第3實施形態之多電子束裝置之概略構成圖。
圖9係第4實施形態之多電子束裝置之概略構成圖。
圖10係第5實施形態之多電子束裝置之概略構成圖。
圖11係第5實施形態之多電子束裝置之概略構成圖。
圖12係第5實施形態之多電子束裝置之概略構成圖。
圖13係第5實施形態之多電子束裝置之概略構成圖。
圖14係第5實施形態之多電子束裝置之概略構成圖。
根據實施形態,提供一種多電子束裝置,其至少具有:發光元件陣列;驅動電路,其將前述發光元件陣列控制為所期望之發光圖案;光電膜,其藉由前述發光元件發出之光而放出電子;微通道板,其將令前述電子倍增之微通道排列於與前述發光元件陣列之各發光元件對應之位置;及開孔陣列,其將較限制自前述微通道板放出之電子束大小之前述 微通道之輸出開口更窄之開口排列於與前述微通道對應之位置;且至少前述光電膜、前述微通道板、及前述開孔陣列配置於真空鏡筒中。
以下,適當參照圖式進行實施形態之說明。為了便於說明,各圖式之比例尺不一定正確,而存在以相對之位置關係等予以顯示之情形。又,對於同一或同樣之要素,標注相同之符號。
電子束裝置廣泛活用於細微加工、分析評估等,特別是,電子束描繪裝置成為在用於量產半導體器件之遮罩製造等中不可或缺之支撐巨大半導體產業之重要基礎設施裝置。近年來之半導體技術藉由推進進一步之細微化、或實效性細微化而持續進展,電子束描繪裝置之細微化與提高產能之要求日益增高。
另一方面,電子束描繪之細微化伴隨著描繪資料之龐大化,而遮罩製造之產能降低嚴重化。因此,需要提高用於電子束遮罩描繪裝置之高產能化之描繪速度,推進藉由電子束之多束化而大幅度提高易於受抗蝕劑曝光時間限制之描繪速度之開發。在多電子束描繪裝置中,由於同時利用複數個電子束進行圖案描繪,故與單一電子束描繪相比能夠實現大幅度之產能提高。
一般而言,為了進行多電子束描繪,需要進行電子束之分割、及經分割之電子束之個別消隱(導通/關斷)控制,而需要與各分割電子束對應之消隱器陣列。作為多電子束描繪裝置之消隱器亦可考量機械性快門,但在電子束描繪裝置中使用10~50keV之加速電子,在快門之耐久性或動作速度之觀點而言並不理想。因此,在多電子束描繪裝置中採用將束偏轉器用作消隱器,藉由電子束偏轉而自成像面移位而進行實質之束消除之方法。
實際之多電子束描繪裝置將分割電子束等間隔配置,藉由在束節距間一面一併移動全束一面進行一齊描繪而無間隙地描繪。因此,分割電子束及消隱器陣列需要高精度地維持二維排列,利用分別形成於一塊基板之二維排列之開口陣列,進行分割束產生、個別束偏轉。以下,將前者記為SAA(Shaping Aperture Array,成形開孔陣列)基板(或簡單地記為SAA),將後者記為BAA(Blanking Aperture Array,消隱開孔陣列)基板(或簡單地記為BAA)。
然而,在利用BAA之多電子束裝置中,加速電子(例如加速電壓5~50kV)之一部分散射而照射至BAA,又,在加速電子利用SAA整形時,被SAA遮斷之電子所產生之螢光X射線照射至BAA。因此,BAA暴露於散射電子或螢光X射線中而引起內置之電路要素(電晶體、電阻、配線金屬)等暫時之特性變動或不可逆之劣化,而存在易於引起BAA之功能劣化之問題。亦即,在利用BAA之多電子束裝置中,要求BAA(束偏轉器件)具有較高之放射線耐性,除了裝置之維持管理以外且需要定期進行BAA之更換及與其相伴之複雜之多電子束之調整,而在裝置之信賴性及運轉成本上存在較大之課題。
在實施形態中,不是利用複數個消隱器來控制經分割之多電子束,而是利用複數個電子束產生源在電子束產生時點下產生電子束照射圖案。亦即,由於在實施形態中產生如照射圖案般之多電子束,且無需利用照射路徑對該多電子束進行導通/關斷控制,故大幅度地減輕如使用BAA之多電子束裝置之裝置運用上之課題,又,無需為了確保BAA之放射線耐性而限制內部構成或應用構件而限制BAA之動作速度,而可大幅度地提高多電子束裝置之產能。
又,根據實施形態,可抑制例如在專利文獻1(WO 2006/123447)等所示之先前技術中成為問題之因電子束分散所致之束間串擾或因電子源劣化所致之經時變動等,而可構建實用性較高之多電子束裝置。
以下,說明實施形態之具體構成。
(第1實施形態)
圖1係顯示第1實施形態之概略構成圖,抽取多電子束裝置之電子束產生部分而記述。對於多電子束裝置之整體構成,將以描繪裝置為例而於後文記述。
圖1顯示有:激發光源部100,其決定多電子束照射圖案;多電子束產生部200;多電子束倍增部300;及多電子束整形部400。
激發光源部100具有:發光元件2;及驅動電路1,其根據多電子束之照射圖案而驅動發光元件2。發光元件2例如為LED(Light Emitting Diode,發光二極體)、半導體雷射、EL(Electro Luminescence,電致發光)元件等之陣列元件。
多電子束產生部200具有:基板4,其相對於發光元件2之放出光3為透明;及光電膜5,其接受發光元件2之放出光3而放出電子6。
多電子束倍增部300具有:微通道板(Micro Channel Plate,以下記為MCP)支持體7,其將藉由二次電子放出而令電子倍增之微通道10陣列化;MCP輸入電極8;MCP輸出電極9;及MCP 301之偏壓電源11。MCP 301包含:微通道10;微通道板支持體7,其將微通道10陣列化;MCP輸入電極8;及MCP輸出電極9。
多電子束整形部400具有SAA 13。SAA 13將經MCP 301倍 增之電子12整形為電子束14。
如後述之圖14所示般,圖1所示之要素配置於真空鏡筒38中。
發光元件2例如係含有AlGaAs/GaAs系材料之LED,放出例如在波長780~850nm之範圍內具有峰值波長之光。發光元件2例如亦可為垂直共振面型半導體雷射(Vertical Cavity Surface Emitting Laser diode,垂直共振腔面射型雷射二極體,以下記為VCSEL)。該情形下,藉由使用可在單橫向模態下振盪之VCSEL,而可構成放射光之指向性高,且為細束徑之發光源。
又,發光元件2亦可為根據發光波長而使用其他材料系者,例如,可為GaInAsP/InP系、AlInGaAs/InP系、AlGaInN/GaN系、AlGaN/AlN系、GaInN/GaN系等,可藉由與所使用之光電膜5之材料之組合或與驅動電路1之組合而決定。
驅動電路1、發光元件2理想的是與光電膜5相比在負電位下動作。亦即,構成為將光電膜5例如設為接地電位,而由負電源將驅動電路1、發光元件2進行驅動。該情形下,具有下述效果,即:在光電膜5產生之電子被朝驅動電路1、發光元件2之電源電位推動而易於往向微通道10側。另一方面,在驅動電路1、發光元件2係由正電位驅動之情形下,產生自光電膜5放出之電子被朝驅動電路1側之電源電位拉回之效果,而存在產生光電子轉換效率降低之現象、或相應於驅動電路1之動作之雜訊與放出電子6重疊之現象之情形。
進而,亦可取代將發光元件2如圖1所示般配置,而將光纖陣列之一端配置於圖1之發光元件2之位置,在遠離光電膜5之位置於光纖 陣列之另一端配置發光元件2及驅動電路1,而與圖1同樣地將發光元件2之放出光3照射至光電膜5。該情形下,可使驅動電路1或發光元件2在遠離光電膜5之位置動作,而可防止因驅動電路1或發光元件2之發熱而光電膜5之溫度上升。進而,該情形下,可將驅動電路1或發光元件2配置於真空鏡筒外而僅將光纖導入真空鏡筒中,而可隔離真空鏡筒中之電場或磁場之擾亂源從而提高多電子束之品質。
再者,自上述發光元件2(發光元件陣列)或光纖陣列放出之光源陣列圖案可被透鏡整體縮小而投影至光電膜5。又,亦可與光纖陣列之發光元件2側之節距相比縮窄光纖陣列之光輸出側之節距而將光源陣列圖案縮小投影。該情形下,可利用寬廣節距之發光圖案構成窄節距之電子源陣列,例如,若將發光元件2之發光節距設為96μm,將透鏡倍率設為1/6,或將光纖陣列之節距縮小設為1/6而將光源陣列之大小縮小為1/6,則由於光電膜5之光照射區域節距成為16μm,故作為電子源可實現16μm節距之窄節距陣列。
一般而言,發光元件因電流消耗所致之發熱大,元件間節距狹窄之陣列元件中與陣列端部相比在陣列中央部易於高溫化,因動作溫度之面內不均一性而難以均一地確保發光強度分佈。因此,由於如上述之光源陣列大小轉換有利於發光元件陣列之散熱,故可有助於發光元件光輸出之均一化,亦即有助於電子源陣列之電子束強度之均一化。
又,在利用上述之光纖陣列將光源陣列圖案照射至光電膜5之情形下,藉由將驅動電路1與發光元件2分離為若干個單元而分散安裝而可易於將描繪資料等之大容量資料導入驅動電路。例如在將多電子束之排列設為1024×1024(約105萬束),將束排列節距設為16μm之情形下,包含 資料之輸入輸出電路之驅動電路1之晶片面積為16mm×16mm以上,若考量包含輸入輸出電路等周邊電路,則需要就細微LSI製造所使用之光罩大小充分地形成電路。
另一方面,在將驅動電路1之輸入輸出墊以一般之50μm節距設置之情形下,驅動電路1之每一邊之輸入輸出墊數目為400個左右,若全部包含資料端子、電源端子、控制端子等,則端子數不足。因此,需要將描繪資料複數端子份額串列化地輸入,且需要於驅動電路1具備非常高速之輸入輸出電路。
相對於此,若能夠將驅動電路1與發光元件2分離為若干個單元而安裝,則能夠將例如4分割之驅動電路形成於例如22mm×22mm之晶片,而晶片之輸入輸出墊數可就此減少所搭載之光束數,故能夠將輸入輸出電路之動作速度(資料端子速度)低速化為1/4。亦即,藉由利用光纖陣列將光源陣列及驅動電路分散安裝而可易於將描繪資料等之大容量資料導入驅動電路1。換言之,保持不分割驅動電路1與發光元件2之情形之輸入輸出電路動作速度不變而將驅動電路1與發光元件2分離為若干個單元並分散安裝,藉由例如4分割安裝而將總輸入輸出墊數設為4倍而能夠進行4倍之高速資料傳送。
透明基板4含有可透過發光元件2之放出光3之材料,例如可使用石英玻璃或硼矽酸玻璃等光學玻璃、SiC、AlN等寬能帶隙半導體。
光電膜5可使用例如薄膜化為3~10μm之GaAs等。特別是,若於p型摻雜之GaAs塗佈CsO則可提高電子之放出效率。光電膜5可使用其他半導體材料或鹼金屬,例如可使用InP、GaAsP、GaInAs、GaN、AlN、SiC等半導體材料,SbCs、SbRbCs、SbKCs、SbNaK、 SbNaKCs、AgOCs等鹼金屬。然而,由於各個感度峰值波長不同,故需要考量與發光元件2之發光波長之組合。
又,透明基板4亦可如圖2所示般於發光元件2或上述光纖陣列之光路中設置微透鏡401,而將發光元件2或上述光纖陣列之放出之光3有效地集光照射至光電膜5。
微通道10係包含筒狀之電子倍增通道之電子倍增元件,藉由施加高電場而重複電子朝內壁之加速碰撞與由此所致之二次電子放出,藉此將入射電子倍增地輸出。在無入射電子時,微通道10基本上不輸出電子。
MCP 301係將微通道10以特定節距排列者,例如將內徑10μm且長度600μm之微通道10例如以16μm節距排列。又,將微通道10相對於MCP 301之厚度方向傾斜例如5°而陣列化,使得入射至微通道10之電子不會原樣穿過。該傾斜角度理想的是設為5~15°左右之範圍。
微通道10例如可使用含鉛玻璃或Al2O3等,例如亦可將MgO、LiF、NaF、NaCl、KCl、KBr、BaO、DLC(Diamond Like Carbon)等塗佈於內壁。
又,由於MCP 301如上述般理想的是將微通道10傾斜,故微通道10之入口與出口之位置關係發生移位,為了對此進行修正,而可如圖3所示般將微通道10之傾斜為反方向之MCP 302重疊而將入口與出口之位置返回原來之位置。由於該構成亦存在於修正因微通道10之傾斜所致之倍增電子12之放出角度之偏轉之方向,故理想的是將MCP 301、302在修正微通道10之傾斜之方向重疊偶數段。例如,理想的是配套使用具有180。旋轉之關係之MCP 301與MCP 302。然而,亦可為使MCP旋轉120°而積 層3段,或使MCP90°旋轉而積層4段。在以下之說明中,因圖式之簡略化而以MCP 301為1段之例予以記述,但同樣理想的是將由微通道板支持體7、MCP輸入電極8、MCP輸出電極9、及微通道10構成之MCP 301在修正微通道10之傾斜之方向上重疊偶數段等而將因微通道10之傾斜所致之位置之偏移返回原位之積層配置。
再者,微通道10具有產生下述現象之情形,即:在連續倍增動作中先產生之電子進行電場遮蔽而使電子倍增率飽和。此種情形特別是在高電子倍增率狀態下易於引起,在剛自無輸入電子之狀態倍增後之電子倍增率與連續倍增之狀態之電子倍增率上產生差異。由於此會導致微通道10之輸出電子束之強度變動,故可使發光元件2之動作以較多電子束裝置之最小電子束照射時間更短之時間進行脈衝動作。例如,將電子束之最小照射時間設為1μs,使發光元件2以發光100ns、非發光400ns重複斷續動作,而使該2循環與電子束之最小照射時間對應。當然,該等之時間設定等為任意,例如,可進行將電子束之最小照射時間設為500ns,使發光元件2以發光10ns、非發光90ns之斷續動作進行5循環動作而與最小照射時間對應等的各種變更。
SAA 13係將自上述多電子束倍增部300輸出之多電子束12整形,而輸出多電子束14之開口陣列。SAA 13之開口較微通道10之內徑小,且以開口中心位於與各自對應之微通道之大致中心之方式排列。例如將微通道10以垂直開口為直徑10μm之圓形而以16μm節距排列,將SAA 13之開口設為例如2μm而以16μm節距排列,從而微通道10與SAA 13之各個開口中心為大致一致。又,亦可使SAA 13之開口位於微通道10之放出之電子之強度為最大之位置及角度。SAA 13為了抗靜電而被接地。其 結果為,多電子束14之各個電子束為2μm而成為16μm節距之排列。
SAA 13之開口大小設為小於微通道10之通道大小,此係緣於在微通道10中經倍增之電子之中,相對於自微通道10之出口往向SAA 13之開口之方向,遮斷具有比較大之放出角度之電子之故。亦即,相對於電子束輸出方向(自微通道10往向SAA 13之方向)以比較大之角度被放出之電子成為即便藉由電場加速而欲將行進方向一致但在其後之路徑中逐漸將電子束模糊之要因,在某種情形下混入相鄰電子束路徑而有引起電子束之串擾之問題。因此,需要藉由SAA 13遮斷成為電子束之解析度降低要因或多電子束間之串擾要因之比較大之放出角度之電子。
如此般產生之多電子束14之束大小、節距一致,並且各電子束根據輸入資料而被控制而形成特定之電子束照射圖案,故可原樣或被加速或縮小投影地照射至試樣。
多電子束之束間(在2μm光束、16μm節距之情形下成為空間之14μm),藉由將全部多電子束以束大小單位一面一併移動一面內插描繪而可無間隙地描繪。例如,重複在2μm之電子束以16μm節距排列之情形下,在XY平面上例如一面在X方向移位2μm一面描繪8次,一面在Y方向移位2μm且在X方向移位-2μm一面描繪8次之描繪,藉由X方向移位8次與Y方向移位8次之組合,而可完全涵蓋多電子束間。在該內插描繪中,當然亦可實施上述之步驟以外之移位描繪方法,並且在多電子束被縮小投影之情形下之光束大小單位依存於縮小率等。
又,上述多電子束14將在微通道10中經倍增之電子中放出角度比較小之電子選擇性地提取並使用,故可構建多電子束之各電子束之模糊小、且各電子束間之串擾少之多電子束裝置。
進而,無需對例如加速為50kV之電子束利用BAA等進行偏轉控制,而解決BAA劣化而裝置之運轉時間變短之問題,而可顯著降低裝置保養維修之頻度與難度,從而發揮能夠大幅度地降低總體之裝置運用成本之效果。
(第2實施形態)
圖4係第2實施形態之多電子束裝置之概略構成圖,係於光電膜5之光入射面側或光出射面側設置用於推出光電膜5所放出之電子之推出電極15之實施形態。
推出電極15係用於以將自光電膜5放出之電子朝遠離光電膜5之方向推出之方式施加電場之電極,例如將Ti、Ni、Cr、Cu、Pt、Au等之金屬薄膜、或含有該等之金屬多層膜形成例如300nm之厚度,且於接受發光元件2之放出光之位置設置例如直徑8μm之圓形開口而構成。而且,藉由利用光電膜偏壓電源16施加電壓,而以使光電膜5放出之電子不再附著於光電膜5(消滅)之方式發揮功能,從而可有助於光電轉換效率之提高。
又,光電膜5基本上含有導電性材料,在如圖1所示般朝接受光之面之相反面放出電子之所謂透過型光電膜之情形下,為了提高光電子放出率而將膜厚以某種程度較薄地形成,而多為光電膜之薄片電阻較高之情形。因此,若照射光量變大,則無法滿足朝光電膜5之膜整體之電子供給而有在光電子放出率上產生面內不均一之情形。在設置有推出電極15之情形下,即便在如上述之狀況下,推出電極15作為朝光電膜5之電子供給配線發揮功能,而能夠均一且穩定地進行光電膜5之光電子放出。
又,藉由利用推出電極15將光電膜5之特定光照射部(電子產生部)以外遮光,而與相鄰光照射部之邊界變得明確,從而可提高作為電子源之對比度。又,因推出電極15對自相鄰光照射部(電子產生部)在光電膜5之膜內擴散而來之電子抑制中途之電子擴散,故可有助於降低與相鄰光照射部之串擾。
圖5(a)~圖5(d)係顯示第2實施形態之多電子束裝置之光電膜5與推出電極15之構成關係之例,其係考量若干種材料及製法之構成圖。
圖5(a)係於光電膜5使用多鹼金屬(例如SbNaKCs等)之例。該實施形態可例如將石英(SiO2)用作透明基板4,例如將Ti/Cu/Ti(例如50/200/50nm)用作推出電極15,預先在使光照射之部分設置例如直徑8μm之圓形開口,其後,例如將SbNaKCs膜以例如總厚度成為100nm之方式形成為光電膜5而製作。
又,可如圖5(b)所示般將光電膜5分離,而使得在各光照射部(光電子放出部)產生之電子不通過光電膜5擴散到達相鄰之光照射部。該情形下,將光照射部(推出電極15之開口部)設為例如直徑8μm之圓形開口,將光照射部之排列節距設為例如16μm。光電膜5加工為以光照射部為中心之例如直徑12μm之圓形且各自分離。
圖5(c)係將半導體膜(例如GaAs等)用於光電膜5之例。該實施形態於例如p型之GaAs基板(相當於5)形成推出電極15(例如Ti/Cu/Ti,50/200/50nm),於使光照射之部分之推出電極15預先設置例如直徑8μm之圓形開口。
其次,於推出電極15及露出之GaAs基板(5)上利用 CVD(Chemical Vapor Deposition,化學氣相沈積)將例如SiO2 402形成例如800nm,例如以推出電極15上之膜厚成為例如100nm之方式利用CMP(Chemical Mechanical Polishing,化學機械研磨)之平坦化研磨。其後,於含有例如石英之透明基板4貼合經CMP之SiO2 402並進行熱處理(例如150℃)而直接接合,將GaAs基板(5)研磨直至例如殘餘厚度為5μm。最後,在GaAs基板(5)之研磨面將CsO或CsTe形成例如1nm而作為光電膜5。
又,可如圖5(d)所示般將光電膜5分離,使得在各光照射部(光電子放出部)產生之電子不在光電膜5內擴散而到達相鄰之光照射部。該情形下,將光照射部(推出電極15之開口部)設為例如直徑8μm之圓形開口,將光照射部之排列節距設為例如16μm。光電膜5加工為以光照射部為中心之例如直徑12μm之圓形且各個分離。形成於光電膜5表面之CsO或CsTe為了確保清潔表面,而可如圖5(d)所示般在將光電膜5分離後全面形成。
圖6係第2實施形態之多電子束裝置之概略構成,係在光電膜5與MCP 301之間進一步設置引出電極17之實施形態。
引出電極17係用於以將自光電膜5放出之電子朝遠離光電膜5之方向引出之方式施加電場之電極,於例如光電膜5設置絕緣膜(例如將SiO2設為250nm,未圖示),將Ti、Ni、Cr、Cu、Pt、Au等之金屬薄膜、或包含該等之金屬多層膜形成例如300nm之厚度,且在藉由發光元件2之光將電子放出之位置設置例如直徑10μm且到達光電膜5之表面(電子放出面)之圓形開口。又,引出電極17無需與光電膜5相接,可為設置於光電膜5與微通道10之間且具有與光電膜5之光照射部(電子放出部)對應之 開口之電極板、或網狀電極。藉此,自光電膜5放出之電子藉由引出偏壓電源18對推出電極15與引出電極17施加電壓而形成之電場而加速,朝向微通道10指向性良好地被引出。
亦即,根據圖6之實施形態,發揮下述效果,即:不僅可提高光電膜5之電子放出效率,而且可提高自光電膜5朝微通道10之電子輸送效率。又,由於引出電極17作為防止在光電膜5之各光照射部(光電子放出部)產生之電子朝相鄰光照射部之混入之區域規定遮罩(遮蔽遮罩)發揮功能,故亦成為電子產生源彼此之串擾防止遮罩。再者,光電膜偏壓電源16之電壓預先設定為大於引出偏壓電源18之電壓。
圖7係構成為MCP 301之輸入電極8兼作圖6所示之引出電極17之實施形態,於MCP輸入電極8之表面設置未圖示之絕緣膜(例如SiO2,500nm)使得光電膜5與MCP輸入電極8不短路。在該例中,光電膜5之光照射部(光電子放出部)與相鄰之光照射部MCP輸入電極8隔絕,而可將在光電膜5產生之電子在不因散射等損失下誘導至微通道10,又,電子源彼此之串擾被完全抑制,進而可將光電膜5與MCP 301視為一體化之積體板(電子源陣列)。因此,具有作為電子源之效率提高,且易於進行裝置保養維修之調整之優點。
(第3實施形態)
圖8係第3實施形態之多電子束裝置之概略構成圖,係藉由開關19、20之切換而可自使推出電極15作為對光電膜5光照射而產生之電子之加速電極發揮功能之狀態,切換為作為電子之吸引電極發揮功能之狀態,而使其在進行對光電膜5之光照射遮斷時等具有遮斷暗電子之功能之實施形 態。
光電膜5或微通道10基本上在無來自發光元件2之光輸入之狀態下不產生電子並倍增,但存在因之前之動作時之殘留電荷或材料中之電子陷阱之影響等而產生暗電子之情形。因此,有在無光輸入之狀態下誤產生電子束之情形,在進行對於光電膜5之光照射遮斷時等,藉由遮斷電源21施加逆向偏壓而遮斷暗電子。
遮斷電源21之電壓設定為例如大於光電膜偏壓電源16之電壓。藉此可遮斷光電膜5之暗電子。又,為了遮斷MCP 301之暗電子而設為大於MCP偏壓電源11之電壓。藉此,可在MCP 301可瞬間開始動作之狀態不變下中和MCP 301內電場。該等之設定可根據所使用之構成材料、偏壓電壓、暗電子產生要因等而適當選定。
又,亦可在MCP輸出電極9與SAA 13之間設置未圖示之其他電極(具有與微通道10之電子輸出部對應之開口之電極板、或網狀電極),而直接遮斷來自MCP 301之電子輸出。
(第4實施形態)
圖9係第4實施形態之多電子束裝置之概略構成圖,係在MCP 301與SAA 13之間設置將電子加速通道37陣列配置之抑制板22及抑制電源24之實施形態。
抑制電源24亦為用於將電子加速之加速電源。抑制板22之電子加速通道37係朝向抑制電極23之例如圓筒狀之孔,為了在不進行電子倍增下使電子加速,而無須相對於電子束之行進方向之傾斜。不如說是預先儘量排除相對於電子束之行進方向之傾斜。又,理想的是於其內面預 先塗佈2次電子放出係數比較小,而可防止因散射電子之附著所致之帶電之程度之導電性材料。例如,將抑制板22之母材設為石英,將Bi、Mn、NiCr等高電阻金屬或CaO、SrO、CaF2等塗佈於電子加速通道37之內面例如1nm,而賦予對電子加速電場無較大影響之程度之導電性。當然,亦可利用Cr、Ni、Ti、Mo、W等一般之金屬設為膜厚0.2nm之極薄膜。
抑制板22之電子加速通道37之通道長理想的是較通道開口長,通道長/通道開口之比率愈大,則愈可抑制或去除散逸電子。亦即,上述電子加速通道37藉由將電子束中之較小角度成分之電子利用電場加速而朝行進方向矯正軌道,將較大角度成分之電子朝電子加速通道37之內壁吸收而去除,從而作為散逸電子之抑制部而發揮功能。
在圖9中,藉由除了多電子束圖案決定部(激發光源部)100、多電子束產生部200、多電子束倍增部300、多電子束整形部400以外,添加包含抑制板22及抑制電源24之多電子束加速精製部500,而可提高電子束品質。
其結果為,可藉由抑制板22抑制在MCP 301中倍增之電子中所含的在倍增時產生之角度比較分散之大的電子,藉由後段之SAA 13之開口限制而可獲得指向性品質非常高之電子束。藉此,可克服在周知技術等中難於實用化之電子束品質提高之課題。
(第5實施形態)
圖10係第5實施形態之多電子束裝置之概略構成圖,係用於實現光電子產生部(光電膜5)之穩定性及長壽命化之實施形態。
圖10所示之多電子束裝置除了上述實施形態之構成以外, 更具有內部電極25、電子透過膜26、支撐基板27、及電子透過電源28。
電子透過膜26可使用例如Ti、SiO2、SiN、DLC等之薄膜(例如,200nm膜厚),可利用下述方法製作,即:例如將Si用作支撐基板27,在Si基板上形成電子透過膜26,且自Si基板背面進行Si蝕刻而薄膜狀地殘留電子透過膜。此時,可配合電子透過膜26之材料而適當選擇Si蝕刻選擇比大之蝕刻方法。作為詳細之例,亦於專利文獻2(JP5339584)等揭示。
將形成該電子透過膜26之支撐基板27作為在透明基板4設置側壁之容器之蓋,例如利用低融點玻璃等熔接、或藉由金屬密封件之焊料密封等進行氣密密封而將光電膜5真空密封於其內部。在將DLC用作電子透過膜26之情形下,藉由膜質或膜厚之控制而可例如使電子以7~8kV之加速而透過。因此,藉由將電子透過電源28設為例如10kV,與電子引出電源16獨立地設定電子透過電壓,而可將光電子產生電場與電子透過電場分別最佳化。又,電子透過窗及透明基板4之真空密封理想的是在進行充分之脫氣處理後,設為儘可能之高真空。此防止因殘存氣體成分之附著所致之光電膜5表面之電子放出效率降低。
藉由如此般構成,可抑制作為電子產生源之光電膜5因多電子束裝置(例如電子描繪裝置)之試樣取出/放入所致之大氣暴露、或因電子曝光抗蝕劑之反應產物氣體暴露而被污染從而劣化。亦即,可實現作為電子源之壽命之長壽命化及穩定化。
又,真空密封之區域並不僅限於光電膜5,可如圖11所示般,將光電膜5與MCP 301一起密封。在圖11中,電子透過電極29係為了獨立控制電子透過電子透過膜26之電壓而設置之電極。該情形下,可實現作為電子源之光電膜5之穩定化,且亦可實現MCP 301之電子倍增特性之 穩定化。一般而言,電子透過膜26係非晶材料,由於至少透過之電子受到原子散射,故理想的是成為多電子束加速精製部之抑制板22配置於電子透過窗之外。
又,光電膜5至抑制板22之構成要素理想的是在將多電子束之各電子束路徑(通過通道)進行位置調整之狀態下,如圖12所示般積層而預先一體型模組化。此當然易於進行多電子束裝置之組裝調整及保養維修調整,從而在降低裝置成本及運用成本上發揮效果。
進而,可如圖13所示般,設置將通過SAA 13之多電子束加速之加速電極30。如前文所述般,由於抑制板22吸收散逸電子而精製電子束,故未必對電子加速通道37之內面賦予導電性,而可施加電壓至最終加速電壓。又,在SAA 13通過後之最終整形電子束中進行電子加速更易於減小束分散。因此,進行由加速電源31及加速電極30實現之最終加速更可提高多電子束之品質。
圖14係顯示將上述多電子束產生構成之多電子束縮小投影,而進行細微圖案描繪之作為多電子束描繪裝置之整體構成。
該多電子束描繪裝置除了圖1~圖13所示之多電子束裝置600以外,更具有投影透鏡32、物鏡33、副偏轉器34、主偏轉器35、及載置多電子束描繪之試樣之可動載台36。可動載台36為了抗靜電而被接地。又,多電子束裝置600、投影透鏡32、物鏡33、副偏轉器34、主偏轉器35、及可動載台36配置於真空鏡筒38中。
雖然說明了本發明之若干個實施形態,但該等實施形態係作為例子而提出者,並非意欲限定本發明之範圍。該等新穎之實施形態可利用其他各種形態實施,在不脫離發明之要旨之範圍內可進行各種省略、 置換、變更。該等實施形態及其變化,包含於發明之範圍及要旨內,且包含於申請專利範圍所記載之發明及其均等之範圍內。
1:驅動電路
2:發光元件
3:光、放出光
4:基板、透明基板
5:光電膜
6:電子
7:微通道板(MCP)支持體
8:MCP輸入電極
9:MCP輸出電極
10:微通道
11:偏壓電源、MCP偏壓電源
12:電子、倍增電子、多電子束
13:SAA
14:電子束、多電子束
100:多電子束圖案決定部(激發光源部)
200:多電子束產生部
300:多電子束倍增部
301:MCP
400:多電子束整形部

Claims (11)

  1. 一種多電子束裝置,其至少具有:發光元件陣列;驅動電路,其將前述發光元件陣列控制為所期望之發光圖案;光電膜,其藉由前述發光元件發出之光而放出電子;微通道板,其將藉由二次電子放出而令前述電子倍增之微通道排列於與前述發光元件陣列之各發光元件對應之位置;及開孔陣列,其將較限制自前述微通道板放出之電子束大小之前述微通道之輸出開口更窄之開口排列於與前述微通道對應之位置;且至少前述光電膜、前述微通道板、及前述開孔陣列配置於真空鏡筒中。
  2. 如請求項1之多電子束裝置,其將前述發光元件陣列之驅動電位設為較前述光電膜為負之電位。
  3. 如請求項1之多電子束裝置,其中前述發光元件陣列之前述各發光元件之發光動作與前述裝置之單位電子束照射時間同步地進行單次或複數次脈衝動作。
  4. 如請求項1之多電子束裝置,其在前述發光元件陣列與前述光電膜之間,更具有將集光前述各發光元件發出之光之微透鏡排列於與前述各發光元件對應之位置而成之微透鏡陣列。
  5. 如請求項1之多電子束裝置,其更具有推出電極,該推出電極具有與 前述發光元件陣列之前述各發光元件對應之開口部,且於前述推出電極之至少前述開口部設置有前述光電膜。
  6. 如請求項1之多電子束裝置,其在前述光電膜與前述微通道板之間,更具有引出電極,該引出電極具有與前述各發光元件對應之開口部。
  7. 如請求項6之多電子束裝置,其更具有對前述引出電極賦予較前述光電膜為負之電位而遮斷通過前述引出電極之電子之機構。
  8. 如請求項1之多電子束裝置,其更具有對前述微通道板之輸出側賦予較前述光電膜為負之電位而將電子流一齊遮斷之機構。
  9. 如請求項1之多電子束裝置,其在前述微通道板與前述開孔陣列之間,更具有抑制板,該抑制板將具有較通道開口更長之通道長之加速通道排列於與前述微通道對應之位置。
  10. 如請求項1之多電子束裝置,其更具有加速電極,該加速電極將通過前述開孔陣列之多電子束加速。
  11. 如請求項1之多電子束裝置,其更具有真空容器,該真空容器在前述發光元件與前述光電膜之間具有透明窗,且在前述光電膜至前述開孔陣列之間具有電子透過窗,且至少前述光電膜配置於前述真空容器中。
TW108132426A 2019-02-28 2019-09-09 多電子束裝置 TWI756562B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-036193 2019-02-28
JP2019036193 2019-02-28

Publications (2)

Publication Number Publication Date
TW202101518A TW202101518A (zh) 2021-01-01
TWI756562B true TWI756562B (zh) 2022-03-01

Family

ID=72236809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108132426A TWI756562B (zh) 2019-02-28 2019-09-09 多電子束裝置

Country Status (3)

Country Link
US (1) US10854424B2 (zh)
JP (1) JP7111673B2 (zh)
TW (1) TWI756562B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018210098B4 (de) * 2018-06-21 2022-02-03 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Untersuchen und/oder zum Bearbeiten einer Probe
WO2022209733A1 (ja) 2021-03-29 2022-10-06 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP2022185486A (ja) * 2021-06-02 2022-12-14 株式会社ニューフレアテクノロジー ブランキングアパーチャアレイユニット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271511B1 (en) * 1999-02-22 2001-08-07 Litton Systems, Inc. High-resolution night vision device with image intensifier tube, optimized high-resolution MCP, and method
WO2006123447A1 (ja) * 2005-05-17 2006-11-23 Kyoto University 電子ビーム露光装置
JP5339584B2 (ja) * 2008-09-01 2013-11-13 広島県 電子透過膜及びその製造方法
US20150060663A1 (en) * 2013-09-02 2015-03-05 Fenno-Aurum Oy Electron source and X-ray fluorescence analyser using an electron source
TW201820375A (zh) * 2016-09-08 2018-06-01 美商克萊譚克公司 於多行掃描電子顯微鏡系統中用於校正陣列散光之裝置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066816A (ja) * 1983-09-22 1985-04-17 Fujitsu Ltd 電子ビ−ム露光装置
JP2751717B2 (ja) 1991-03-13 1998-05-18 富士通株式会社 荷電粒子ビーム露光方法及び荷電粒子ビーム露光装置
DE69226553T2 (de) 1991-03-13 1998-12-24 Fujitsu Ltd Vorrichtung und Verfahren zur Belichtung mittels Ladungsträgerstrahlen
GB2260666B (en) * 1991-09-20 1995-12-20 Sharp Kk Time division multiplexed diode lasers
JPH097538A (ja) * 1995-06-26 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> 荷電ビーム描画装置
KR19990062942A (ko) 1997-12-10 1999-07-26 히로시 오우라 전하 입자 빔 노출 장치
JP3801333B2 (ja) 1997-12-10 2006-07-26 株式会社アドバンテスト 荷電粒子ビーム露光装置
JP4679978B2 (ja) 2005-06-28 2011-05-11 株式会社日立ハイテクノロジーズ 荷電粒子ビーム応用装置
ATE424037T1 (de) 2005-07-20 2009-03-15 Zeiss Carl Sms Gmbh Teilchenstrahlbelichtungssystem und vorrichtung zur strahlbeeinflussung
JP5268170B2 (ja) 2008-04-15 2013-08-21 マッパー・リソグラフィー・アイピー・ビー.ブイ. 投影レンズ構成体
JP2011023126A (ja) 2009-07-13 2011-02-03 Kobe Univ 荷電粒子線照射装置、描画装置、分析顕微鏡、荷電粒子線出射装置および荷電粒子線用のレンズ装置
JP2014120675A (ja) 2012-12-18 2014-06-30 Ebara Corp 電子露光装置
JP6230881B2 (ja) 2013-11-12 2017-11-15 株式会社ニューフレアテクノロジー マルチ荷電粒子ビームのブランキング装置及びマルチ荷電粒子ビーム描画方法
US9443699B2 (en) 2014-04-25 2016-09-13 Ims Nanofabrication Ag Multi-beam tool for cutting patterns
KR102247563B1 (ko) 2014-06-12 2021-05-03 삼성전자 주식회사 전자빔을 이용한 노광 방법과 그 노광 방법을 이용한 마스크 및 반도체 소자 제조방법
EP3355337B8 (en) 2017-01-27 2024-04-10 IMS Nanofabrication GmbH Advanced dose-level quantization for multibeam-writers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271511B1 (en) * 1999-02-22 2001-08-07 Litton Systems, Inc. High-resolution night vision device with image intensifier tube, optimized high-resolution MCP, and method
WO2006123447A1 (ja) * 2005-05-17 2006-11-23 Kyoto University 電子ビーム露光装置
JP5339584B2 (ja) * 2008-09-01 2013-11-13 広島県 電子透過膜及びその製造方法
US20150060663A1 (en) * 2013-09-02 2015-03-05 Fenno-Aurum Oy Electron source and X-ray fluorescence analyser using an electron source
TW201820375A (zh) * 2016-09-08 2018-06-01 美商克萊譚克公司 於多行掃描電子顯微鏡系統中用於校正陣列散光之裝置及方法

Also Published As

Publication number Publication date
US20200279717A1 (en) 2020-09-03
JP2020145401A (ja) 2020-09-10
TW202101518A (zh) 2021-01-01
US10854424B2 (en) 2020-12-01
JP7111673B2 (ja) 2022-08-02

Similar Documents

Publication Publication Date Title
TWI756562B (zh) 多電子束裝置
US6376985B2 (en) Gated photocathode for controlled single and multiple electron beam emission
US8837678B2 (en) Long-lasting pulseable compact X-ray tube with optically illuminated photocathode
JP2006073510A (ja) 電子放出素子及びその製造方法
KR102149936B1 (ko) 멀티 하전 입자 빔 묘화 장치
JP2016076548A (ja) ブランキングアパーチャアレイ及び荷電粒子ビーム描画装置
KR20010089522A (ko) 다중 대전된 입자 빔렛 방출 칼럼들의 어레이
KR20180077059A (ko) 멀티 빔용 애퍼쳐 세트 및 멀티 하전 입자 빔 묘화 장치
US10748734B2 (en) Multi-cathode EUV and soft x-ray source
JP2005127800A (ja) 電子線照射装置と照射方法および電子線描画装置
CN114078678A (zh) 多电子束描绘装置以及多电子束描绘方法
US20070051879A1 (en) Image Intensifier Device and Method
US7800085B2 (en) Microelectronic multiple electron beam emitting device
US20230260748A1 (en) Multi-electron beam writing apparatus and multi-electron beam writing method
JP7105022B1 (ja) 電子銃、電子線適用装置およびマルチ電子ビームの形成方法
JP4477433B2 (ja) 電子ビーム露光装置及びマルチビーム電子光学系
JP2023070548A (ja) 電子銃、電子線適用装置およびマルチ電子ビームの形成方法
CN118251746A (zh) 通过光电阴极薄膜产生多个电子束
TW202326786A (zh) 電子槍、電子射線應用裝置以及多重電子束的形成方法
KR20060123790A (ko) 전자빔 큐어링 장치
KR20060088865A (ko) 광방출 소자, 그 제조방법 및 광방출 소자를 이용한 노광장치
JP2013041737A (ja) 荷電粒子線描画装置、および、物品の製造方法
JP2007073529A (ja) イメージインテンシファイア装置および方法
JP2015149449A (ja) 荷電粒子線描画装置、汚染物除去方法、及びデバイス製造方法