TWI753335B - 積層鐵芯、鐵芯塊、旋轉電機及鐵芯塊的製造方法 - Google Patents

積層鐵芯、鐵芯塊、旋轉電機及鐵芯塊的製造方法 Download PDF

Info

Publication number
TWI753335B
TWI753335B TW108146185A TW108146185A TWI753335B TW I753335 B TWI753335 B TW I753335B TW 108146185 A TW108146185 A TW 108146185A TW 108146185 A TW108146185 A TW 108146185A TW I753335 B TWI753335 B TW I753335B
Authority
TW
Taiwan
Prior art keywords
bonding portion
steel sheet
bonding
electromagnetic steel
iron core
Prior art date
Application number
TW108146185A
Other languages
English (en)
Other versions
TW202030957A (zh
Inventor
本間
平山隆
竹田和年
Original Assignee
日商日本製鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本製鐵股份有限公司 filed Critical 日商日本製鐵股份有限公司
Publication of TW202030957A publication Critical patent/TW202030957A/zh
Application granted granted Critical
Publication of TWI753335B publication Critical patent/TWI753335B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Abstract

本發明之一態樣為一種積層鐵芯,具備:複數個電磁鋼板,互相積層;及複數個接著部,配置於在積層方向上相鄰之前述電磁鋼板彼此之間,而分別將前述電磁鋼板彼此接著,又,從前述積層方向觀看,複數個前述接著部形成為各自在第1方向上延伸的帶狀,且複數個前述接著部互相在與前述第1方向正交的第2方向上排列並配置,前述第1方向與前述電磁鋼板的軋延方向所構成的角度為30°以上且90°以下。

Description

積層鐵芯、鐵芯塊、旋轉電機及鐵芯塊的製造方法
本發明是有關於一種積層鐵芯、鐵芯塊、旋轉電機及鐵芯塊的製造方法。 本申請是依據2018年12月17日於日本提出申請之特願2018-235856號、2018年12月17日於日本提出申請之特願2018-235872號、2019年6月26日於日本提出申請之特願2019-118338號、2019年6月26日於日本提出申請之特願2019-118339號主張優先權,並在此援用其內容。
自以往就已知有如下述專利文獻1所記載的積層鐵芯。在此積層鐵芯中,在積層方向上相鄰的電磁鋼板彼此是藉由接著層而接著。 先前技術文獻 專利文獻
專利文獻1:日本專利特開2011-023523號公報
發明欲解決之課題
在前述以往的積層鐵芯中,針對使磁特性提升仍有改善的餘地。
本發明是有鑒於前述之事情而作成的發明,目的在於提升積層鐵芯的磁特性。 用以解決課題之手段
為了解決前述課題,本發明提案有以下之手段。
(1)本發明之一態樣為一種積層鐵芯,具備: 複數個電磁鋼板,互相積層;及 複數個接著部,配置於在積層方向上相鄰之前述電磁鋼板彼此之間,而分別將前述電磁鋼板彼此接著, 又,從前述積層方向觀看,複數個前述接著部形成為各自在第1方向上延伸的帶狀,且複數個前述接著部互相在與前述第1方向正交的第2方向上排列並配置,前述第1方向與前述電磁鋼板的軋延方向所構成的角度為30°以上且90°以下。
(2)在前述(1)所記載之積層鐵芯中,亦可為如下的構成:前述第1方向與前述電磁鋼板的前述軋延方向所構成的角度為52.3°以上。
(3)在前述(1)或前述(2)所記載之積層鐵芯中,亦可為以下構成:前述接著部的寬度尺寸比與相鄰之前述接著部在前述第2方向上的間隔尺寸更小。
(4)在前述(3)所記載之積層鐵芯中,亦可為以下構成:前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為67%±5%。
(5)在前述(4)所記載之積層鐵芯中,亦可為以下構成:前述第1方向與前述電磁鋼板的前述軋延方向所構成的角度為75°±5°。
(6)在前述(1)或前述(2)所記載之積層鐵芯中,亦可為以下構成:前述接著部的寬度尺寸比與相鄰之前述接著部在前述第2方向上的間隔尺寸更大。
(7)在前述(6)所記載之積層鐵芯中,亦可為以下構成:前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為167%±5%,且前述第1方向與前述電磁鋼板的前述軋延方向所構成的角度為85°以上。
(8)在前述(6)所記載之積層鐵芯中,亦可為以下構成:前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為233%±5%,且前述第1方向與前述電磁鋼板的前述軋延方向所構成的角度為85°以上。
(9)本發明之一態樣為一種積層鐵芯,具備: 複數個電磁鋼板,互相積層;及 複數個接著部,配置於在積層方向上相鄰之前述電磁鋼板彼此之間,並分別將前述電磁鋼板彼此接著, 又,從前述積層方向觀看,複數個前述接著部形成為各自在第1方向上延伸的帶狀,且複數個前述接著部互相在與前述第1方向正交的第2方向上排列並配置,前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為368%以下。
(10)在前述(1)~前述(9)中任一項所記載之積層鐵芯中,亦可為以下構成:前述接著部的平均厚度為1.0μm~3.0μm。
(11)在前述(1)~前述(10)中任一項所記載之積層鐵芯中,亦可為以下構成:前述接著部的平均拉伸彈性模數E為1500MPa~4500MPa。
(12)在前述(1)~前述(11)中任一項所記載之積層鐵芯中, 亦可為以下構成:前述接著部是由含彈性體之丙烯酸系接著劑所構成之包含SGA的常溫接著型丙烯酸系接著劑。
(13)本發明之一態樣為一種鐵芯塊,前述鐵芯塊是藉由環狀地連結複數個而構成積層鐵芯,並具備: 複數個電磁鋼板片,互相積層;及 複數個接著部,配置於在積層方向上相鄰之前述電磁鋼板片彼此之間,而分別將前述電磁鋼板片彼此接著, 又,從前述積層方向觀看,複數個前述接著部形成為各自在第1方向上延伸的帶狀,且複數個前述接著部互相在與前述第1方向正交的第2方向上排列並配置,前述第1方向與前述電磁鋼板片的軋延方向所構成的角度為45°以上且90°以下。
(14)在前述(13)所記載之鐵芯塊中,亦可為以下構成:前述第1方向與前述電磁鋼板片的前述軋延方向所構成的角度為52.3°以上。
(15)在前述(13)或前述(14)所記載之鐵芯塊中,亦可為以下構成:具備圓弧狀之芯背部、及從前述芯背部朝前述芯背部的徑方向突出的齒部,前述齒部是沿著前述軋延方向延伸。
(16)在前述(13)~前述(15)中任一項所記載之鐵芯塊中,亦可為以下構成:前述接著部的寬度尺寸比與相鄰之前述接著部在前述第2方向上的間隔尺寸更小。
(17)在前述(16)所記載之鐵芯塊中,亦可為以下構成:前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為60%以下。
(18)在前述(17)所記載之鐵芯塊中,亦可為以下構成:前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為43%以下。
(19)在前述(17)所記載之鐵芯塊中,亦可為以下構成:前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為43%±5%,且前述第1方向與前述電磁鋼板片之前述軋延方向所構成的角度為45°以上。
(20)在前述(16)所記載之鐵芯塊中,亦可為以下構成:前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為60%±5%,且前述第1方向與前述電磁鋼板片之前述軋延方向所構成的角度為60°以上。
(21)在前述(13)~前述(15)中任一項所記載之鐵芯塊中,亦可為以下構成:前述接著部的寬度尺寸比與相鄰之前述接著部在前述第2方向上的間隔尺寸更大。
(22)在前述(21)所記載之鐵芯塊中,亦可為以下構成:前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為150%±5%,且前述第1方向與前述電磁鋼板片的前述軋延方向所構成的角度為85°以上。
(23)在前述(13)~前述(22)中任一項所記載之鐵芯塊中,亦可為以下構成:前述接著部的平均厚度為1.0μm~3.0μm。
(24)在前述(13)~前述(23)中任一項所記載之鐵芯塊中,亦可為以下構成:前述接著部的平均拉伸彈性模數E為1500MPa~4500MPa。
(25)在前述(13)~前述(24)中任一項所記載之鐵芯塊中, 亦可為以下構成:前述接著部是由含彈性體之丙烯酸系接著劑所構成之包含SGA的常溫接著型丙烯酸系接著劑。
(26)本發明之一態樣為一種積層鐵芯,前述積層鐵芯是將前述(13)~前述(25)中任一項所記載之鐵芯塊環狀地連結複數個而構成。
(27)本發明之一態樣為一種旋轉電機,前述旋轉電機具備前述(1)~前述(12)、及前述(26)中任一項所記載之積層鐵芯。
(28)本發明之一態樣為一種鐵芯塊的製造方法,具有以下步驟: 第1步驟,從電磁鋼板沖裁出複數個電磁鋼板片;及 第2步驟,在複數個前述電磁鋼板片彼此之間一邊設置接著部一邊進行積層, 又,在前述第1步驟中,前述電磁鋼板片是沖裁成齒部沿著前述電磁鋼板的軋延方向延伸,在前述第2步驟中,將複數個前述接著部形成為從積層方向觀看各自在第1方向上延伸的帶狀,並且將複數個前述接著部互相在與前述第1方向正交的第2方向上排列並配置,且將複數個前述電磁鋼板片積層成前述第1方向與前述軋延方向所構成的角度成為45°以上且90°以下。
(29)在前述(28)所記載之鐵芯塊的製造方法中,亦可為以下構成:前述接著部的寬度尺寸比與相鄰之前述接著部在前述第2方向上的間隔尺寸更小。 發明效果
根據本發明,可以使積層鐵芯的磁特性提升。
用以實施發明之形態
以下,參照圖式,說明本發明之一實施形態的旋轉電機。另外,本實施形態中,作為旋轉電機,是列舉電動機,具體而言是交流電動機,更具體而言是同步電動機、再更具體而言是永磁磁場型電動機為一例來進行說明。這種電動機可在例如電動汽車等中合宜地採用。
(第1實施形態) 首先,依據圖1~圖4,針對第1實施形態之旋轉電機10進行說明。 如圖1及圖2所示,第1實施形態之旋轉電機10具備定子20、轉子30、罩殼50、及旋轉軸60。定子20及轉子30是容置於罩殼50內。定子20是固定於罩殼50。
在本實施形態之旋轉電機10中,可例如對定子20之各相施加有效值10A,頻率100Hz之勵磁電流,伴隨於此,轉子30及旋轉軸60以旋轉數1000rpm旋轉。
本實施形態中,作為旋轉電機10,採用了轉子30位於定子20內側的內轉子型。然而,作為旋轉電機10,亦可採用轉子30位於定子20之外側的外轉子型。又,本實施形態中,旋轉電機10為12極18槽的三相交流馬達。然而,例如極數或槽數、相數等是可以適當變更的。
定子20具備定子鐵芯(積層鐵芯)21及未圖示之繞組。 本實施形態之定子鐵芯21為一體鐵芯。定子鐵芯21具備環狀的芯背部22與複數個齒部23。以下,將定子鐵芯21(芯背部22)之軸方向(定子鐵芯21之中心軸線O方向)稱為軸方向,並將定子鐵芯21(芯背部22)之徑方向(正交於定子鐵芯21之中心軸線O的方向)稱為徑方向,且將定子鐵芯21(芯背部22)之圓周方向(於定子鐵芯21之中心軸線O周圍環繞的方向)稱為圓周方向。
在從軸方向來觀看定子20的平面視角下,芯背部22是形成為圓環狀。 複數個齒部23是從芯背部22朝向徑方向的內側(沿著徑方向並朝向芯背部22的中心軸線O)突出。複數個齒部23是在圓周方向上空出同等的間隔而配置。在本實施形態中,以每間隔以中心軸線O為中心之中心角20度的方式設置有18個齒部23。複數個齒部23是互相形成為同等的形狀且同等的大小。 前述繞組是捲繞於齒部23。前述繞組可為集中捲繞,亦可為分布捲繞。
轉子30是相對於定子20(定子鐵芯21)而配置於徑方向的內側。轉子30具備轉子鐵芯31與複數個永久磁鐵32。 轉子鐵芯31是形成為與定子20同軸地配置的環狀(圓環狀)。在轉子鐵芯31內配置有前述旋轉軸60。旋轉軸60是固定於轉子鐵芯31。 複數個永久磁鐵32是固定於轉子鐵芯31。在本實施形態中,2個1組的永久磁鐵32形成有1個磁極。複數組永久磁鐵32是在圓周方向上空出同等的間隔而配置。本實施形態中,以每間隔以中心軸線O為中心之中心角30度的方式設置有12組(整體為24個)永久磁鐵32。
在本實施形態中,是採用磁鐵埋入型馬達來作為永磁磁場型電動機。於轉子鐵芯31形成有在軸方向上貫通轉子鐵芯31的複數個貫通孔33。複數個貫通孔33是對應於複數個永久磁鐵32而設置。各永久磁鐵32是在已配置於所對應之貫通孔33內的狀態下固定於轉子鐵芯31。各永久磁鐵32之對轉子鐵芯31的固定,可以藉由例如將永久磁鐵32的外表面與貫通孔33的內表面以接著劑接著等來實現。再者,亦可取代磁鐵埋入型馬達而採用表面磁鐵型馬達來作為永磁磁場型電動機。
<積層鐵芯> 如圖3所示,定子鐵芯21是積層鐵芯。定子鐵芯21是藉由積層複數個電磁鋼板40而形成。亦即,定子鐵芯21具備在厚度方向上積層的複數個電磁鋼板40。
再者,定子鐵芯21之積層厚度是設為例如50.0mm。定子鐵芯21之外徑是設為例如250.0mm。定子鐵芯21之內徑是設為例如165.0mm。但是,這些值為一例,定子鐵芯21之積層厚度、外徑或內徑並不受限於這些值。在此,定子鐵芯21之內徑是以定子鐵芯21中的齒部23的前端部為基準。定子鐵芯21的內徑是在所有齒部23的前端部內接的假想圓之直徑。
形成定子鐵芯21之各電磁鋼板40是藉由例如將已軋延之板狀的母材沖裁加工等而形成。電磁鋼板40可以使用周知的電磁鋼板。電磁鋼板40的化學組成並無特別限定。在本實施形態中是採用無方向性電磁鋼板來作為電磁鋼板40。無方向性電磁鋼板可採用例如JIS C 2552:2014的無方向性電鋼帶。 然而,亦可取代無方向性電磁鋼板而採用方向性電磁鋼板來作為電磁鋼板40。方向性電磁鋼板可採用例如JIS C 2553:2012的方向性電鋼帶。
無方向性電鋼帶之鐵損的各向異性的最大值比以JIS所規定的閾值更小,在鐵損不具有明顯的方向性。然而,因為無方向性電鋼帶為軋延板,所以沿著軋延方向,具有以JIS所規定之閾值以下的鐵損的方向性。同樣地,方向性電磁鋼帶是鐵損在軋延方向上最小。從而,無方向性電鋼帶及方向性電鋼帶都是軋延方向的鐵損比其他方向小。
在本實施形態中,形成定子鐵芯21之複數個電磁鋼板40的軋延方向互相一致。如上述,電磁鋼板40是鐵損在軋延方向上最小。因此,定子鐵芯21是磁特性在電磁鋼板40的軋延方向上最優異。
為了改善電磁鋼板的加工性或積層鐵芯的鐵損,在電磁鋼板40的兩面設置有絕緣被膜。構成絕緣被膜的物質可以適用例如:(1)無機化合物、(2)有機樹脂、(3)無機化合物與有機樹脂之混合物等。無機化合物可列舉例如:(1)重鉻酸鹽與硼酸之複合物、(2)磷酸鹽與二氧化矽之複合物等。有機樹脂可列舉:環氧系樹脂、丙烯酸系樹脂、丙烯酸苯乙烯系樹脂、聚酯系樹脂、聚矽氧系樹脂及氟系樹脂等。
為了確保在互相積層的電磁鋼板40之間的絕緣性能,絕緣被膜的厚度(在電磁鋼板40每個單面的厚度)宜設為0.1μm以上。 另一方面,絕緣效果隨著絕緣被膜變厚而飽和。又,隨著絕緣被膜變厚而使定子鐵芯21中的絕緣被膜所佔的比例增加,且定子鐵芯21之磁特性降低。從而,絕緣被膜在可以確保絕緣性能的範圍內以較薄為佳。絕緣被膜的厚度(在電磁鋼板40每個單面的厚度),宜為0.1μm以上且5μm以下,較佳為0.1μm以上且2μm以下。
隨著電磁鋼板40變薄而讓鐵損的改善效果逐漸飽和。又,隨著電磁鋼板40變薄電磁鋼板40的製造成本會增加。因此,若考慮到鐵損的改善效果及製造成本,電磁鋼板40的厚度宜設為0.10mm以上。 另一方面,若電磁鋼板40過厚,電磁鋼板40之壓製沖裁作業即變得較困難。因此,若考慮電磁鋼板40的壓製沖裁作業,電磁鋼板40的厚度宜設為0.65mm以下。 又,若電磁鋼板40變厚,鐵損即增大。因此,若考慮電磁鋼板40的鐵損特性,宜將電磁鋼板40的厚度設為0.35mm以下,且較佳為0.20mm或0.25mm。 考慮上述之點,各電磁鋼板40的厚度可為例如0.10mm以上且0.65mm以下,較佳為0.10mm以上且0.35mm以下,更佳為0.20mm或0.25mm。再者,於電磁鋼板40的厚度中也包含絕緣被膜的厚度。
形成定子鐵芯21的複數個電磁鋼板40是藉由接著部41而接著。接著部41是設置於在積層方向上相鄰的電磁鋼板40彼此之間,且為未被斷開地經硬化的接著劑。關於接著劑,可使用例如聚合結合之熱硬化型的接著劑等。作為接著劑的組成物,可適用:(1)丙烯酸系樹脂、(2)環氧系樹脂、(3)包含有丙烯酸系樹脂及環氧系樹脂的組成物等。作為如上述之接著劑,除了熱硬化型之接著劑以外,亦可使用自由基聚合型之接著劑等,從生產性的觀點來看,所期望的是使用常溫硬化型之接著劑。常溫硬化型之接著劑是在20℃~30℃硬化。作為常溫硬化型的接著劑,宜為丙烯酸系接著劑。代表性的丙烯酸系接著劑,有SGA(第二代丙烯酸系接著劑,Second Generation Acrylic Adhesive)等。在不失去本發明之效果的範圍內,亦可使用厭氧性接著劑、瞬間接著劑、含彈性體之丙烯酸系接著劑之任一種。又,在此所謂的接著劑是指硬化前的狀態,接著劑硬化後是成為接著部41。
接著部41之常溫(20℃~30℃)下的平均拉伸彈性模數E是設為1500MPa~4500MPa的範圍內。若接著部41之平均拉伸彈性模數E小於1500MPa,即產生以下的不良狀況:積層鐵芯之剛性降低。因此,接著部41的平均拉伸彈性模數E的下限值宜設為1500MPa,且較佳為1800MPa。相反地,若接著部41的平均拉伸彈性模數E超過4500MPa,即產生以下的不良狀況:形成在電磁鋼板40之表面的絕緣被膜剝落。因此,接著部41的平均拉伸彈性模數E的上限值宜設為4500MPa,且較佳為3650MPa。 再者,平均拉伸彈性模數E是藉由共振法而測定。具體而言,是根據JIS R 1602:1995來測定拉伸彈性模數。 更具體而言,首先,製作測定用的試樣(未圖示)。此試樣是藉由於2片電磁鋼板40之間以測定對象之接著劑來進行接著並使其硬化來形成接著部41而獲得。此硬化在接著劑為熱硬化型的情況下,是藉由以實際作業上的加熱加壓條件來加熱加壓而進行。另一方面,在接著劑為常溫硬化型的情況下,是藉由在常溫下加壓而進行。 並且,以共振法測定關於此試樣的拉伸彈性模數。如上述,藉由共振法所進行之拉伸彈性模數的測定方法是根據JIS R 1602:1995而進行。然後,藉由計算將電磁鋼板40本身的影響份量從試樣的拉伸彈性模數(測定值)中除去,藉此可求出接著部41單體的拉伸彈性模數。 由於如此進行而從試樣所求得的拉伸彈性模數會變得與作為積層鐵芯整體之平均值相等,因此將此數值視為平均拉伸彈性模數E。平均拉伸彈性模數E是將組成設定為:在沿著其積層方向的積層位置或繞著積層鐵芯之中心軸線的圓周方向位置上幾乎不變。因此,平均拉伸彈性模數E也可以用測定了位於積層鐵芯的上端位置之硬化後的接著部41的數值來作為該值。
馬達是在驅動時發熱。因此,若接著部41的融點較低,接著部41會因馬達的發熱而熔融並導致接著區域42的形狀改變,因而無法獲得所期望的效果。一般而言,可在捲繞於定子鐵芯21之繞組的表面設置絕緣性之被覆(漆料(enamel))。此被覆的耐熱溫度是例如180℃左右。因此,一般的馬達是以成為180℃以下的方式來驅動。亦即,馬達可升溫至180℃左右。在本實施形態中,接著部41的融點宜為180℃以上。進一步考慮已將具有局部成為高溫的部位之情形納入的安全率,更佳的是接著部41的融點為200℃以上。
作為接著方法,可以採用例如以下之方法:在電磁鋼板40塗佈接著劑後,藉由加熱及壓接之任一種或兩種方式來進行接著。再者,加熱手段是例如在高溫槽或電氣爐內之加熱、或直接通電的方法等,不論何種手段皆可。
為了獲得穩定且充分的接著強度,接著部41的厚度宜設為1μm以上。 另一方面,若接著部41的厚度大於100μm,則接著力會飽和。又,隨著接著部41變厚而使占積率降低,且積層鐵芯的鐵損等之磁特性降低。從而,接著部41的厚度宜設為1μm以上且100μm以下,更佳是設為1μm以上且10μm以下。 另外,在上述中接著部41的厚度意指接著部41的平均厚度。
接著部41的平均厚度宜設為1.0μm以上且3.0μm以下。若接著部41的平均厚度小於1.0μm,即無法如前述地確保充分的接著力。因此,接著部41的平均厚度的下限值是設為1.0μm,較佳是設為1.2μm。相反地,若接著部41的平均厚度大於3.0μm而變得較厚,會產生以下不良狀況:由熱硬化時的收縮所造成的電磁鋼板40的應變量大幅增加等。因此,接著部41的平均厚度的上限值是設為3.0μm,較佳是設為2.6μm。 接著部41的平均厚度是作為積層鐵芯整體的平均值。接著部41的平均厚度在沿著其積層方向的積層位置或積層鐵芯之中心軸線周圍的圓周方向位置上幾乎不變。因此,接著部41的平均厚度,可以用在積層鐵芯之上端位置中,在圓周方向10處以上所測定到之數值的平均值來作為該值。
再者,接著部41的平均厚度可以例如改變接著劑的塗佈量而調整。又,接著部41的平均拉伸彈性模數E在例如熱硬化型之接著劑的情況下,可以藉由變更在接著時所施加的加熱加壓條件及硬化劑種類之其中一者或兩者之作法等來調整。
接下來,依據圖4,說明電磁鋼板40與接著部41之關係。 另外,在本說明書中,將積層複數個電磁鋼板40的方向簡稱為積層方向。積層方向與電磁鋼板40的厚度方向一致。又,積層方向與中心軸線O延伸的方向一致。
從積層方向觀看,複數個接著部41整體形成為條紋狀。在積層方向上相鄰的電磁鋼板40彼此並未全部互相整面接著。這些電磁鋼板40彼此為全部互相局部地接著。
從積層方向觀看,複數個接著部41各自沿著第1方向D1形成為帶狀,且各接著部41各自沿著第2方向D2等間隔地排列並配置。換言之,在電磁鋼板40中面向積層方向的面(以下稱為電磁鋼板40的第1面),具備設置有接著部41的接著區域42、及未設置有接著部41的非接著區域43(毛胚區域)。再者,設置有接著部41的電磁鋼板40的接著區域42意指:在電磁鋼板40的第1面當中,設置有未被斷開地經硬化的接著劑之區域。又,未設置有接著部41的電磁鋼板40的非接著區域43意指:在電磁鋼板40的第1面當中,未設置有未被斷開地經硬化的接著劑之區域。接著部41是形成為沿著第1方向D1延伸的帶狀,且沿著第2方向D2等間隔地排列並配置。因此,電磁鋼板40的第1面的接著區域42及非接著區域43是各自形成為沿著第1方向D1延伸的帶狀,且接著區域42與非接著區域43是沿著第2方向D2交互地排列而形成。 再者,所謂第1方向D1是形成為帶狀之接著部41延伸的方向,且相當於接著部41的長邊方向。又,所謂第2方向D2相當於形成為帶狀之接著部41的短邊方向。又,第1方向D1與第2方向D2互相正交。再者,在本實施形態中,所設想的是接著部41的寬度尺寸及接著部41彼此的間隙尺寸為均一的的情況。 又,本說明書中,所謂作為接著部41延伸的形狀之「帶形狀」,意指在一個方向上延伸的形狀,且寬度為定子鐵芯21之外徑的1.5%以上。藉由使接著部41的寬度為定子鐵芯21之外徑的1.5%以上,可以充分地確保電磁鋼板40彼此的接著強度。
圖4中顯示電磁鋼板40之軋延方向RD。又,將第1方向D1與電磁鋼板40之軋延方向RD所構成的角度設為角度α。一般而言,雖然作為2個方向所構成的角度可定義大小的2個角度,但角度α是指第1方向D1與軋延方向RD所構成的2個角度中角度較小的那個角度。亦即,在本說明書中,角度α是設為0°以上且90°以下的角度。
在本實施形態中,接著劑於硬化時收縮。因此,伴隨於接著劑的硬化而對電磁鋼板40賦與壓縮應力,且伴隨於此對電磁鋼板40會產生應變。對電磁鋼板40產生應變時,會使鐵損之值上升,恐有定子鐵芯21之磁特性降低之虞。 再者,在本說明書中,有時將鐵損之值上升之情形稱為「鐵損的劣化」。
若將接著部41形成為帶狀時,對電磁鋼板40所賦與的壓縮應力會在接著部41延伸的方向(第1方向D1)上變得最大。 電磁鋼板40是與軋延方向RD正交的方向之剛性為最高,而難以對壓縮應力產生應變。因此,藉由使第1方向D1與軋延方向RD所構成的角度α接近90°,可以抑制電磁鋼板40的應變。
此外,如上述,電磁鋼板40的鐵損,雖然是在軋延方向RD上最小,但另一方面,當在軋延方向RD上產生應變時,會使鐵損的劣化變得最為明顯。從而,當第1方向D1與電磁鋼板40之軋延方向RD為一致時(角度α=0°),會使定子鐵芯21之磁特性降得最多。因此,藉由使第1方向D1與軋延方向RD所構成的角度α遠離0°,可以抑制電磁鋼板40之鐵損的劣化。
在本實施形態中,藉由使第1方向D1與軋延方向RD所構成的角度α遠離0°並接近於90°,可以抑制電磁鋼板40的應變,並抑制電磁鋼板40之鐵損的劣化。在本實施形態中,角度α宜設為30°以上且90°以下。藉由將角度α設為30°以上而使第1方向D1相對於軋延方向以一定的角度以上交叉,可以抑制接著劑之壓縮應力對電磁鋼板40之鐵損造成的影響,並且抑制電磁鋼板40的應變,就結果而言,可以充分地確保定子鐵芯21之磁特性。
電磁鋼板40之鐵損是在相對於軋延方向RD以特定的角度傾斜的方向上變得最大。在本說明書中,將鐵損變得最大的方向稱為特異方向SD。本發明之發明人們已發現到以下情形:電磁鋼板40之特異方向SD是相對於軋延方向RD傾斜了57.3°的方向。再者,本實施形態中的特異方向SD,在電磁鋼板40之結晶構造即立方晶中,是米勒指數{111}>112>之結晶方位。電磁鋼板40因為在特異方向SD上原本鐵損就較大,所以即便在沿著特異方向SD產生應變時,鐵損的劣化也會變得比較小。因此,藉由以接近於特異方向SD的方向作為應變產生的方向,可以整體地抑制電磁鋼板40之鐵損的劣化。
在此,針對抑制電磁鋼板40之鐵損的劣化的構成進行匯整。抑制起因於接著劑之壓縮應力所導致的電磁鋼板40之鐵損的劣化的構成,主要為以下2種。 第1種構成是使第1方向D1接近於與電磁鋼板40之軋延方向RD正交的方向之構成。在此構成中,是壓抑電磁鋼板40的應變本身來抑制鐵損的劣化。亦即,在第1種構成中,角度α宜接近於90°。 第2種構成是使第1方向D1接近於電磁鋼板40之特異方向SD之構成。在此構成中,是抑制相對於應變之電磁鋼板40之鐵損的劣化。亦即,在第2種構成中,角度α宜接近於57.3°。
電磁鋼板40之鐵損是藉由上述之2種構成,來抑制起因於接著劑之壓縮應力的劣化。因此,可以藉由將角度α設為57.3°與90°之間的角度,而分別享受到上述之2種構成的效果。再者,角度α即便在改變了±5°左右的情況下對鐵損也不會有太大的改變。從而,第1方向D1與軋延方向RD所構成的角度α宜為52.3°以上且90°以下。又,57.3°亦可說是約60°。亦即,在本實施形態中,亦可說第1方向D1與軋延方向RD所構成的角度α宜為60°以上且90°以下。
如圖4所示,複數個接著部41各自在電磁鋼板40的第1面上,形成為沿著第2方向D2之寬度尺寸d1的帶狀。又,在第2方向D2上互相相鄰的2個接著部41彼此設置有相當於間隔尺寸d2的間隙。間隔尺寸d2是非接著區域43的寬度尺寸。在此,接著部41的寬度尺寸d1相當於接著區域42的寬度尺寸,接著部41彼此的間隔尺寸d2相當於非接著區域43的寬度尺寸。
接著部41的寬度尺寸d1相對於定子鐵芯21之外徑宜設為5%以下。藉由將寬度尺寸d1設為定子鐵芯21之外徑的5%以下,不會使電磁鋼板40因接著劑的壓縮應力而局部產生較大的應變,可以抑制電磁鋼板40整體的鐵損的劣化。
接著部41的寬度尺寸d1宜設為比與相鄰之接著部41在第2方向D2上的間隔尺寸d2更小(d1>d2)。換言之,寬度尺寸d1相對於間隔尺寸d2宜小於100%。如上述,因接著劑之壓縮應力而在電磁鋼板40產生有應變,且由於此應變而讓電磁鋼板40之鐵損變大。根據本實施形態,藉由將寬度尺寸d1設得比間隔尺寸d2更小,可以抑制起因於接著劑之電磁鋼板40的應變,並確保定子鐵芯21之磁特性。
較佳的是,接著部41的寬度尺寸d1相對於與相鄰之接著部41的間隔尺寸d2為67%±5%。若相對於間隔尺寸d2將寬度尺寸d1設得過大時,恐有起因於接著劑之壓縮應力之電磁鋼板40的應變變大之虞。另一方面,若相對於間隔尺寸d2將寬度尺寸d1設得過小時,恐有電磁鋼板40彼此的接著強度不足之虞。根據本實施形態,藉由相對於間隔尺寸d2將寬度尺寸d1設為67%±5%,可以既充分地確保電磁鋼板40彼此的接著強度,並且抑制電磁鋼板40的應變,而確保定子鐵芯21之磁特性。
又,當寬度尺寸d1相對於間隔尺寸d2為67%±5%時,第1方向D1與軋延方向RD所構成的角度α宜設為75°±5°。藉此,可以更有效地抑制定子鐵芯21之磁特性的劣化。
其次,針對接著部41的寬度尺寸d1比與相鄰之接著部41的間隔尺寸d2更大的情況(d1>d2)進行說明。藉由使接著部41的寬度尺寸d1比間隔尺寸d2更大,可以提高電磁鋼板40彼此的接著力。
另一方面,恐有起因於接著劑之壓縮應力之電磁鋼板40的應變變大之虞。因此,當將接著部41的寬度尺寸d1設得比間隔尺寸d2更大時,宜使接著部41延伸的方向(第1方向D1)接近於剛性較高的方向(與軋延方向RD正交的方向)。更具體而言,當將接著部41的寬度尺寸d1設得比間隔尺寸d2更大時,宜將第1方向D1與軋延方向RD所構成的角度α設為85°以上。藉此,可以提高電磁鋼板40彼此的接著力,並抑制電磁鋼板40的應變,而確保定子鐵芯21之磁特性。
在本實施形態中,形成定子鐵芯21之所有的電磁鋼板40之軋延方向RD為互相一致。然而,所有的電磁鋼板40之軋延方向RD亦可為不一致。例如,定子鐵芯21亦可藉由將電磁鋼板40轉動積層來形成。作為一例,針對將電磁鋼板40轉動積層而成的定子鐵芯具體地進行說明。在轉動積層後之定子鐵芯中,著眼於1個接著部41之層、與夾住該層的一組電磁鋼板40。夾住接著部41之層的一組電磁鋼板40之軋延方向RD互相不同。此時,只要讓第1方向D1與位於積層方向其中一側之電磁鋼板40之軋延方向RD所構成的角度α包含在上述之較佳的角度範圍內,並且與積層方向另一側之電磁鋼板40之軋延方向RD所構成的角度α包含在上述之較佳的角度範圍內即可。另外,在轉動積層而成之定子鐵芯中,設置於電磁鋼板40彼此之間的接著部41的各層的第1方向D1亦可互相不同。
在本實施形態中,轉子鐵芯31是與定子鐵芯21同樣為積層鐵芯。亦即,轉子鐵芯31具備在厚度方向上積層的複數個電磁鋼板。在本實施形態中,轉子鐵芯31之積層厚度與定子鐵芯21相等,可設為例如50.0mm。轉子鐵芯31之外徑是設為例如163.0mm。轉子鐵芯31之內徑是設為例如30.0mm。但是,這些值為一例,轉子鐵芯31之積層厚度、外徑或內徑並不受限於這些值。
在本實施形態中,形成轉子鐵芯31的複數個電磁鋼板是藉由歛合件C(定位銷,參照圖1)而互相固定。然而,亦可將形成轉子鐵芯31的複數個電磁鋼板40藉由和定子鐵芯21同樣的接著部來接著。
(第2實施形態) 其次,依據圖5、圖6,針對第2實施形態之旋轉電機110進行說明。 如圖5所示,第2實施形態之旋轉電機110具備與第1實施形態同樣的轉子30、罩殼50及旋轉軸60、與定子120。
定子120具備定子鐵芯(積層鐵芯)121、緊固環129與未圖示之繞組。
定子鐵芯121為分割鐵芯。從而,定子鐵芯121具有複數個鐵芯塊(積層鐵芯)124。複數個鐵芯塊124是藉由環狀地連結複數個來構成定子鐵芯121。在複數個鐵芯塊124的徑方向外側可配置緊固環129。複數個鐵芯塊124是藉由嵌入緊固環129而互相固定。 再者,本實施形態之定子鐵芯121的構成,除了為分割鐵芯這一點外,關於各部分的尺寸等,與第1實施形態相同。
其次,針對鐵芯塊124進行說明。 鐵芯塊124是積層鐵芯的一態樣。鐵芯塊124具有沿著圓周方向延伸之圓弧狀的芯背部122、及齒部123。
在從軸方向來觀看定子120的平面視角下,芯背部122是形成為以中心軸線O為中心之圓環狀。 齒部123是從芯背部122朝向徑方向的內側(沿著徑方向並朝向芯背部122的中心軸線O)突出。藉由複數個鐵芯塊124沿著圓周方向環狀地排列而構成定子鐵芯121,可將複數個齒部123在圓周方向上隔著同等的間隔而配置。本實施形態之定子120中,以將中心軸線O作為中心而每隔20度的方式設置有18個齒部123。複數個齒部123是互相形成為同等的形狀且同等的大小。 前述繞組是捲繞於齒部123。前述繞組可為集中捲繞,亦可為分布捲繞。
鐵芯塊124是藉由將沖裁加工電磁鋼板所形成之複數個電磁鋼板片140積層於軸方向而構成。亦即,鐵芯塊124具有互相積層之複數個電磁鋼板片140。因此,定子鐵芯121是積層鐵芯。從軸方向觀看,各個複數個電磁鋼板片140是T字形狀。
形成鐵芯塊124之各電磁鋼板片140是例如藉由將已軋延之板狀的母材沖裁加工而形成。作為電磁鋼板片140,可以使用與第1實施形態之電磁鋼板同樣之電磁鋼板片。
形成鐵芯塊124的複數個電磁鋼板片140是藉由接著部141而接著。構成本實施形態之接著部141的接著劑,是使用與第1實施形態同樣之接著劑。
其次,依據圖6,針對電磁鋼板片140與接著部141的關係進行說明。在圖6中,是以點圖案來強調並顯示接著部141。 從積層方向觀看,複數個接著部141整體形成為條紋狀。在積層方向上相鄰的電磁鋼板片140彼此並未整面接著,而是局部接著來互相固定。
從積層方向觀看,複數個接著部141各自沿著第1方向D1形成為帶狀,且各接著部141各自沿著第2方向D2等間隔地排列並配置。換言之,在電磁鋼板片140中面向積層方向的面(以下稱為電磁鋼板片140的第1面),具備設置有接著部141的接著區域142、及未設置有接著部141的非接著區域143(毛胚區域)。再者,設置有接著部141的電磁鋼板片140的接著區域142意指:在電磁鋼板片140的第1面當中,設置有未被斷開地經硬化的接著劑之區域。又,未設置有接著部141的電磁鋼板片140的非接著區域143意指:在電磁鋼板片140的第1面當中,未設置有未被斷開地經硬化的接著劑之區域。接著部141是形成為沿著第1方向D1延伸的帶狀,且沿著第2方向D2等間隔地排列並配置。因此,電磁鋼板片140的第1面的接著區域142及非接著區域143是各自形成為沿著第1方向D1延伸的帶狀,且接著區域142與非接著區域143是沿著第2方向D2交互地排列而形成。
在本實施形態之鐵芯塊124中,電磁鋼板片140之軋延方向RD與齒部123延伸的方向大致平行。亦即,齒部123是沿著軋延方向RD延伸。電磁鋼板片140是鐵損在軋延方向RD上變得最小。因為磁通量是在齒部123中沿著齒部123延伸的方向流動,所以可以藉由使軋延方向RD與齒部123延伸的方向大致平行而提高鐵芯塊124之磁特性。再者,在此所謂「沿著延伸」及「大致平行」,是視為除了嚴格地平行的情況以外,還包含在±5°以內之範圍內並行而延伸的情況。亦即,本實施形態中,齒部123延伸的方向與軋延方向RD所構成的角度為5°以內。
在圖6中,顯示第1方向D1與電磁鋼板片140之軋延方向RD所構成的角度α。與上述之實施形態同樣地,電磁鋼板片140是與軋延方向RD正交的方向之剛性為最高,而難以對壓縮應力產生應變。因此,藉由使第1方向D1與軋延方向RD所構成的角度α接近於90°,可以抑制電磁鋼板片140的應變。
此外,如上述,電磁鋼板片140的鐵損,雖然是在軋延方向RD上最小,但另一方面,當在軋延方向RD上產生應變時,會使鐵損的劣化變得最為明顯。從而,當第1方向D1與電磁鋼板片140之軋延方向RD為一致時(角度α=0°),會使鐵芯塊124之磁特性降得最多。因此,藉由使第1方向D1與軋延方向RD所構成的角度α遠離0°,可以抑制電磁鋼板片140之鐵損的劣化。
在本實施形態中,藉由使第1方向D1與軋延方向RD所構成的角度α遠離0°並接近於90°,可以抑制電磁鋼板片140的應變,並抑制電磁鋼板片140之鐵損的劣化。
在本實施形態中,角度α宜設為45°以上且90°以下。藉由將角度α設為45°以上而使第1方向D1相對於軋延方向以一定的角度以上交叉,可以抑制接著劑之壓縮應力對電磁鋼板片140之鐵損造成的影響,並且抑制電磁鋼板片140的應變,就結果而言,可以充分地確保鐵芯塊124之磁特性。
電磁鋼板片140因為在特異方向SD上原本鐵損就較大,所以即便在沿著特異方向SD產生應變時,鐵損的劣化也會變得比較小。因此,藉由以接近特異方向SD的方向作為應變產生的方向,可以整體地抑制電磁鋼板片140之鐵損的劣化。
在此,針對抑制電磁鋼板片140之鐵損的劣化的構成進行匯整。抑制起因於接著劑之壓縮應力所導致的電磁鋼板片140之鐵損的劣化的構成,主要為以下2種。 第1種構成是使第1方向D1接近於與電磁鋼板片140之軋延方向RD正交的方向之構成。在此構成中,是壓抑電磁鋼板片140的應變本身來抑制鐵損的劣化。亦即,在第1種構成中,角度α宜接近於90°。 第2種構成是使第1方向D1接近於電磁鋼板片140之特異方向SD的構成。在此構成中,是抑制相對於應變之電磁鋼板片140之鐵損的劣化。亦即,在第2種構成中,角度α宜接近於57.3°。
電磁鋼板片140之鐵損是藉由上述之2種構成,來抑制起因於接著劑之壓縮應力的劣化。因此,可以藉由將角度α設為57.3°與90°之間的角度,而分別享受到上述之2種構成的效果。再者,因為角度α即便在改變了±5°左右的情況下對鐵損也不會有太大的改變,所以第1方向D1與軋延方向RD所構成的角度α宜為52.3°以上且90°以下。又,因為57.3°亦可說是約60°,所以在本實施形態中,亦可說第1方向D1與軋延方向RD所構成的角度α宜為60°以上且90°以下。
複數個接著部141各自在電磁鋼板片140的第1面上,形成為沿著第2方向D2之寬度尺寸d1的帶狀。又,在第2方向D2上互相相鄰的2個接著部141彼此設置有相當於間隔尺寸d2的間隙。間隔尺寸d2是非接著區域143的寬度尺寸。在此,接著部141的寬度尺寸d1相當於接著區域142的寬度尺寸,接著部141彼此的間隔尺寸d2相當於非接著區域143的寬度尺寸。
接著部141的寬度尺寸d1相對於定子鐵芯121之外徑宜設為5%以下。藉由將寬度尺寸d1設為定子鐵芯121之外徑的5%以下,不會使電磁鋼板片140因接著劑的壓縮應力而局部產生較大的應變,可以抑制電磁鋼板片140整體的鐵損的劣化。
接著部141的寬度尺寸d1宜設為比與相鄰之接著部141在第2方向D2上的間隔尺寸d2更小(d1>d2)。換言之,寬度尺寸d1相對於間隔尺寸d2宜小於100%。如上述,因接著劑之壓縮應力而在電磁鋼板片140產生有應變,且由於此應變而讓電磁鋼板片140之鐵損變大。根據本實施形態,藉由將寬度尺寸d1設得比間隔尺寸d2更小,可以抑制起因於接著劑之電磁鋼板片140的應變,並確保鐵芯塊124之磁特性。
較佳的是,接著部141的寬度尺寸d1相對於與相鄰之接著部141的間隔尺寸d2為60%以下。藉此,可以更確實地抑制起因於接著劑之電磁鋼板片140的應變,並確保鐵芯塊124之磁特性。又,從同樣的理由來看,較佳的是,接著部141的寬度尺寸d1相對於與相鄰之接著部141的間隔尺寸d2為43%以下。
其次,針對接著部141的寬度尺寸d1比與相鄰之接著部141的間隔尺寸d2更大的情況(d1>d2)進行說明。藉由使接著部141的寬度尺寸d1比間隔尺寸d2更大,可以提高電磁鋼板片140彼此的接著力。
另一方面,恐有起因於接著劑之壓縮應力之電磁鋼板片140的應變變大之虞。因此,當將接著部141的寬度尺寸d1設得比間隔尺寸d2更大時,宜使接著部141延伸的方向(第1方向D1)接近於剛性較高的方向(與軋延方向RD正交的方向)。更具體而言,當將接著部141的寬度尺寸d1設得比間隔尺寸d2更大時,宜將第1方向D1與軋延方向RD所構成的角度α設為85°以上。藉此,可以提高電磁鋼板片140彼此的接著力,並且抑制電磁鋼板片140的應變,而確保鐵芯塊124之磁特性。
其次,針對本實施形態之鐵芯塊124及定子鐵芯121的製造方法進行說明。鐵芯塊124的製造方法主要具有第1步驟與第2步驟。
首先,作為第1步驟,從已軋延之電磁鋼板沖裁複數個T字狀的電磁鋼板片140。在第1步驟中,電磁鋼板片140是沖裁成齒部沿著電磁鋼板之軋延方向RD延伸。
其次,作為第2步驟,在複數個電磁鋼板片140彼此之間一邊設置接著部141一邊進行積層。在第2步驟中,將複數個接著部141形成為從積層方向觀看各自在第1方向D1上延伸的帶狀。又,將複數個接著部141互相在第2方向D2上排列並配置。此外,以第1方向D1與軋延方向RD所構成的角度成為45°以上且90°以下的方式積層複數個電磁鋼板片140。藉由接著部141硬化,可將複數個電磁鋼板片140互相固定。
(變形例) 其次,依據圖7,針對在上述之各實施形態中可採用的變形例之接著部241進行說明。再者,對於與上述之實施形態為相同態樣的構成要素,是附加相同符號並省略其說明。
與上述之實施形態同樣,在本變形例之電磁鋼板40(或電磁鋼板片140)彼此之間設置有複數個接著部241。從積層方向觀看,各個接著部241是在電磁鋼板40的第1面上沿著第1方向D1形成為帶狀。又,複數個接著部241沿著第2方向D2等間隔地排列並配置。在第2方向D2上互相相鄰的2個接著部是分開相當於間隔尺寸d2而配置。
本變形例之接著部241具有沿著第1方向D1排列的複數個要素接著部241c。在本實施形態中,所謂要素接著部241c是指沿著第1方向D1排列複數個而構成接著部241的接著劑之塊。複數個接著劑彼此為互相大致相同形狀。相鄰的要素接著部241c彼此在第1方向D1上為互相相連。從積層方向觀看,各個要素接著部241c是以第1方向D1為長軸之大致橢圓形狀。從而,接著部241的寬度方向兩端部是沿著第1方向D1而彎彎曲曲地延伸。要素接著部241c除了本變形例所示之大致橢圓形狀以外,亦可為大致圓形狀等。 如本變形例所示,本說明書中的「帶狀地延伸的接著部」亦可為:寬度方向兩端部不一定是直線狀,而為沿著第1方向D1彎彎曲曲。
接著部241是以和第1方向D1平行的中心線CL為中心而沿著中心線CL延伸。接著部241是以中心線CL為中心為對稱形狀。
如本變形例所示,當接著部241的寬度方向兩端部彎彎曲曲而延伸時,可以將接著部241的寬度尺寸d1的定義設成如以下。亦即,在接著部241的寬度方向兩端部設定近似於直線狀的假想線VL來定義接著部241的寬度尺寸d1。假想線VL是與中心線CL大致平行地延伸。一對假想線VL是以如下的方式所定義之假想的直線:被一對假想線VL所夾住的區域的面積變得與從積層方向觀看之接著部241的面積相等。
在本變形例中,接著部241的寬度尺寸d1是一對假想線VL沿著第2方向D2的距離尺寸。又,在本變形例中,間隔尺寸d2是相鄰的接著部241的假想線VL彼此的距離尺寸。
本變形例所示之接著部241可以發揮與上述之實施形態中的接著部41同樣的效果。這種接著部241是藉由例如以下的作法而形成:從複數個分配器將接著劑在電磁鋼板40沿著第1方向D1點狀地塗佈複數處後,將此電磁鋼板40按壓至其他電磁鋼板40而在兩電磁鋼板40之間壓縮接著劑。如此,即便在接著部241的寬度尺寸變得不均一時,仍然可以獲得與上述之實施形態同樣的效果。
再者,本發明之技術範圍並不限定於上述之各實施形態及其變形例,且可在不脫離本發明的主旨之範圍內加上各種變更。
針對在上述之各實施形態中,將接著部設置於電磁鋼板40或電磁鋼板片140的面內的整個區域的情況進行了說明。然而,接著部亦可在電磁鋼板40或電磁鋼板片140的面內部分地設置。作為一例,亦可僅在與電磁鋼板之芯背部重疊的區域設置有條紋狀之接著部。又,亦可僅在與電磁鋼板之齒部重疊的區域設置有條紋狀之接著部。
定子鐵芯的形狀,並不限定於在上述之各實施形態中所示的形態。具體而言,定子鐵芯之外徑及內徑的尺寸、積層厚度、槽數、齒部之圓周方向與徑方向的尺寸比率、齒部與芯背部之徑方向的尺寸比率等,可因應於所期望的旋轉電機的特性而任意設計。
又,亦可在第2實施形態之鐵芯塊124中,在芯背部122之圓周方向其中一側的端面設置有凸形狀,並在圓周方向另一側的端面設置有凹形狀。此時,可以藉由將凸形狀插入凹形狀來抑制複數個鐵芯塊124在圓周方向的連結時的位置偏移。此外,鐵芯塊亦可為:相對於1個芯背部具有2個以上的齒部。此外,亦可為:芯背部與齒部分別為不同個體之鐵芯塊。
在上述之各實施形態的轉子中,雖然2個1組的永久磁鐵32形成有1個磁極,但本發明並非限定於此。例如,亦可為1個永久磁鐵32形成有1個磁極,亦可為3個以上的永久磁鐵32形成有1個磁極。
在上述之各實施形態中,作為旋轉電機,是列舉永磁磁場型電動機為一例而進行了說明,但如下所例示地,旋轉電機的構造並非受限於此,並且亦可進一步採用以下未例示之各種周知的構造。 在上述之各實施形態中,作為同步電動機,是列舉永磁磁場型電動機為一例而進行了說明,但本發明並非受限於此。例如,旋轉電機亦可為磁阻型電動機或電磁鐵磁場型電動機(磁場繞組型電動機)。 在上述之各實施形態中,作為交流電動機,是列舉同步電動機為一例而進行了說明,但本發明並非受限於此。例如,旋轉電機亦可為感應電動機。 在上述之各實施形態中,作為電動機,是列舉交流電動機為一例而進行了說明,但本發明並非受限於此。例如,旋轉電機亦可為直流電動機。 在上述之各實施形態中,作為旋轉電機,是列舉電動機為一例而進行了說明,但本發明並非受限於此。例如,旋轉電機亦可為發電機。
在上述之各實施形態中,雖然例示了將本發明之積層鐵芯適用於定子鐵芯的情況,但亦可適用於轉子鐵芯。又,亦可將本發明之積層鐵芯適用於變壓器等旋轉電機以外之積層鐵芯。
其他,在不脫離本發明主旨之範圍內,可適當進行將上述之各實施形態中的構成要素適當轉換成周知之構成要素的作法,又,亦可適當組合前述之變形例。 [實施例]
其次,實施了用以驗證上述之作用效果的驗證試驗。驗證試驗是藉由使用了軟體之模擬來實施。作為軟體所利用的是JSOL股份公司製之有限要素法電磁場解析軟體JMAG。
>第1驗證試驗> 首先,作為第1驗證試驗,針對作為第1實施形態而例示之一體鐵芯進行了驗證。作為在模擬中使用的模型,設想了以下所說明之模型編號A1~模型編號A22的定子鐵芯(積層鐵芯)。各模型所使用之電磁鋼板為板厚0.25mm之無方向性電磁鋼板。電磁鋼板的形狀是與圖2所示之形狀為相同形狀。
在模型編號A1~模型編號A21之定子鐵芯中,在電磁鋼板彼此之間是設置如圖4所示之複數個接著部。亦即,在模型編號A1~模型編號A21之定子鐵芯中,複數個接著部是沿著第1方向D1帶狀地延伸。另一方面,在模型編號A22之定子鐵芯中,於電磁鋼板彼此之間,是在電磁鋼板的第1面的整個面設置接著部。亦即,模型編號A22之接著部是設置於電磁鋼板的第1面的整個面。模型編號A22之定子鐵芯是用於求出鐵損之基準值而準備的模型。以下,將模型編號A22之定子鐵芯稱為「基準模型」。
將模型編號A1~編號A7之定子鐵芯設為第A1群的模型。在第A1群的模型中,接著部的寬度尺寸d1相對於與相鄰之接著部的間隔尺寸d2為233%。第A1群的各模型之接著部的寬度尺寸d1為7mm,接著部彼此的間隔尺寸d2為3mm。 將模型編號A8~編號A14之定子鐵芯設為第A2群的模型。在第A2群的模型中,接著部的寬度尺寸d1相對於與相鄰之接著部的間隔尺寸d2為167%。第A2群的各模型之接著部的寬度尺寸d1為5mm,接著部彼此的間隔尺寸d2為3mm。 將模型編號A15~編號A21之定子鐵芯設為第A3群的模型。在第A3群的模型中,接著部的寬度尺寸d1相對於與相鄰之接著部的間隔尺寸d2為67%。第A3群的各模型之接著部的寬度尺寸d1為2mm,接著部彼此的間隔尺寸d2為3mm。 在第A1群、第A2群及第A3群中,準備了將第1方向D1與軋延方向RD所構成的角度α(參照圖4)設為0°、15°、30°、45°、60°、75°及90°的模型。
針對各模型,將電磁鋼板之鐵損的模擬結果顯示於表1。再者,針對各模型之鐵損,以基準模型(模型編號A22之定子鐵芯)之鐵損的值為基準並以百分率來表示。又,表1中是記載以下結果:針對設置了與各模型同樣之接著部的實體模型(mock‐up)進行墜落試驗後的結果。在墜落試驗中,是各模型從1m高度進行了10次墜落。評價A是顯示在10次墜落後未產生有接著部之剝離的情形。又,評價A-是顯示在5次墜落後未產生有接著部之剝離,但在到10次以前產生有剝離的情形。
[表1]
模型 編號 寬度尺寸d1 /間隔尺寸d2 角度α [° ] 鐵損比 [%] 墜落 試驗 備註
第 A 1 群 A1 233% 96.661 A
A2 233% 15° 96.695 A
A3 233% 30° 96.593 A
A4 233% 45° 96.525 A
A5 233% 60° 96.457 A
A6 233% 75° 96.354 A
A7 233% 90° 96.252 A
第 A 2 群 A8 167% 95.843 A
A9 167% 15° 95.741 A
A10 167% 30° 95.639 A
A11 167% 45° 95.537 A
A12 167% 60° 95.434 A
A13 167% 75° 95.366 A
A14 167% 90° 95.332 A
第 A 3 群 A15 67% 92.572 A-
A16 67% 15° 92.504 A-
A17 67% 30° 92.334 A-
A18 67% 45° 92.266 A-
A19 67% 60° 92.164 A-
A20 67% 75° 92.095 A-
A21 67% 90° 92.129 A-
A22 - - 100 - 基準模型
若比較模型編號A1~模型編號A21之定子鐵芯,已確認到以下情形:在屬於第1~第A3群之任一群的模型中,都可以藉由將第1方向D1與軋延方向RD所構成的角度α設為30°以上來抑制鐵損。此外,已確認到以下情形:藉由角度α設為60°以上,可以更加抑制鐵損。
若互相比較第A1群、第A2群及第A3群,則第A3群的模型之鐵損為最小。第A3群的模型為:寬度尺寸d1相對於間隔尺寸d2為67%。亦即,第A3群的模型為:寬度尺寸d1比間隔尺寸d2更小。因此可考慮為:可抑制以接著劑為起因之電磁鋼板40的應變,而可以確保定子鐵芯21之磁特性。又,已確認到以下情形:在相對於間隔尺寸d2將寬度尺寸d1設為67%時,可以抑制電磁鋼板40之鐵損的劣化。即便在寬度尺寸d1相對於間隔尺寸d2的比例改變了±5%左右的情況下,對鐵損也不會有太大的改變。因此可說是,即便在相對於間隔尺寸d2而將寬度尺寸d1設為67%±5%的情況下,仍然可以抑制電磁鋼板40之鐵損的劣化。
當在第A3群內比較各個模型後,將第1方向D1與軋延方向RD所構成的角度α設為75°之模型編號A20的定子鐵芯為鐵損最小。亦即,可以確認到以下情形:在寬度尺寸d1相對於間隔尺寸d2為67%的情況下,藉由將角度α設為75°,最能夠抑制鐵損的劣化。再者,角度α即便在改變了±5°左右的情況下對鐵損也不會有太大的改變。又,即便在寬度尺寸d1相對於間隔尺寸d2的比例改變了±5%左右的情況下,對鐵損也不會有太大的改變。因此可說是:在寬度尺寸d1相對於間隔尺寸d2為67%±5%的情況下,藉由將角度α設為75°±5°,最能夠抑制鐵損的劣化。
第A2群的模型為:寬度尺寸d1相對於間隔尺寸d2為167%。當在第A2群內比較各個模型後,將第1方向D1與軋延方向RD所構成的角度α設為90°之模型編號A14的定子鐵芯為鐵損最小。亦即,可以確認到以下情形:在寬度尺寸d1相對於間隔尺寸d2為167%的情況下,藉由將角度α設為90°,最能夠抑制鐵損的劣化。如上述,角度α即便在改變了±5°左右的情況下,對鐵損也不會有太大的改變。又,即便在寬度尺寸d1相對於間隔尺寸d2的比例改變了±5%左右的情況下,對鐵損也不會有太大的改變。因此可說是:在寬度尺寸d1相對於間隔尺寸d2為167%±5%的情況下,藉由將角度α設為85°以上,最能夠抑制鐵損的劣化。
第A1群的模型為:寬度尺寸d1相對於間隔尺寸d2為233%。當在第A1群內比較各個模型後,將第1方向D1與軋延方向RD所構成的角度α設為90°之模型編號A7的定子鐵芯為鐵損最小。亦即,可以確認到以下情形:在寬度尺寸d1相對於間隔尺寸d2為233%的情況下,藉由將角度α設為90°,最能夠抑制鐵損的劣化。如上述,角度α即便在改變了±5°左右的情況下,對鐵損也不會有太大的改變。又,即便在寬度尺寸d1相對於間隔尺寸d2的比例改變了±5%左右的情況下,對鐵損也不會有太大的改變。因此可說是:在寬度尺寸d1相對於間隔尺寸d2為233%±5%的情況下,藉由將角度α設為85°以上,最能夠抑制鐵損的劣化。
如表1所示,與第A3群的實體模型相比較,第A1群及第A2群的實體模型在墜落強度上較優異。第A1群及第A2群的實體模型為接著部的寬度尺寸d1比間隔尺寸d2更大,而第A3群的實體模型為接著部的寬度尺寸d1比間隔尺寸d2更小。由此可確認到以下之點:在接著部的寬度尺寸d1比與相鄰之接著部在第2方向D2上的間隔尺寸d2更大的情況下,可以提高接著強度。
其次,除了上述之編號A1~A21的各模型之外,還對使寬度尺寸d1/間隔尺寸d2及角度α在寬廣的範圍內改變後的模型進行了模擬。更具體而言,是準備將寬度尺寸d1/間隔尺寸d2分別變更為0%、50%、67%、100%、150%、167%、200%、233%、250%、300%、350%、400%、450%、500%,並將角度α分別變更為0°、15°、30°、45°、60°、75°、90°的模擬模型,且分別計算出鐵損。此外,依據這些模擬結果,相對於以往技術之基準模型編號A22,針對鐵損改善的閾值進行了驗證。
圖8是將寬度尺寸d1/間隔尺寸d2設為橫軸,將角度α設為縱軸,且藉由灰階的濃淡來顯示相對於基準模型編號22之鐵損比的圖表。在圖8中,灰階之濃度較淺的區域意指相對於基準模型編號A22,鐵損為已改善(亦即鐵損比100%以下)之情形。
如圖8所示地,在寬度尺寸d1/間隔尺寸d2為368%以下的情況下,不論角度α為多少,相對於以往技術之基準模型編號A22皆可以改善鐵損。亦即,已確認到以下情形:接著部的寬度尺寸d1相對於與相鄰之接著部在第2方向D2上的間隔尺寸d2宜為368%以下。寬度尺寸d1/間隔尺寸d2越小鐵損越改善,且宜為233%以下,較佳為167%以下,更佳為67%以下。
>第2驗證試驗> 其次,作為第2驗證試驗,針對作為第2實施形態而例示之分割鐵芯進行了驗證。 作為在模擬中使用的模型,設想了以下所說明之模型編號B1~模型編號B21的定子鐵芯(積層鐵芯)。模型編號B1~模型編號B21之定子鐵芯具有在圓周方向上連結之複數個鐵芯塊。各定子鐵芯之鐵芯塊是由板厚0.25mm之無方向性的電磁鋼板片所構成。電磁鋼板片的形狀是與圖6所示之形狀為相同形狀,且電磁鋼板片之軋延方向RD與齒部延伸的方向一致。
在模型編號B1~模型編號B21之鐵芯塊中,在電磁鋼板片彼此之間是設置如圖6所示之複數個接著部。亦即,在模型編號B1~模型編號B21之鐵芯塊中,複數個接著部是沿著第1方向D1帶狀地延伸。
將模型編號B1~編號B7之定子鐵芯設為第B1群的模型。在第B1群的模型中,接著部的寬度尺寸d1相對於與相鄰之接著部的間隔尺寸d2為150%。第B1群的各模型之接著部的寬度尺寸d1為3mm,接著部彼此的間隔尺寸d2為2mm。在第B1群中,將以第1方向D1與軋延方向RD所構成的角度α(參照圖6)為0°、15°、30°、45°、60°、75°及90°的定子鐵芯設為各個模型編號B1~編號B7。
將模型編號B8~編號B14之定子鐵芯設為第B2群的模型。在第B2群的模型中,接著部的寬度尺寸d1相對於與相鄰之接著部的間隔尺寸d2為60%。第B2群的各模型之接著部的寬度尺寸d1為3mm,接著部彼此的間隔尺寸d2為5mm。在第B2群中,將以第1方向D1與軋延方向RD所構成的角度α(參照圖6)為0°、15°、30°、45°、60°、75°及90°的定子鐵芯設為各個模型編號B8~編號B14。
將模型編號B15~編號B21之定子鐵芯設為第B3群的模型。在第B3群的模型中,接著部的寬度尺寸d1相對於與相鄰之接著部的間隔尺寸d2為43%。第B3群的各模型之接著部的寬度尺寸d1為3mm,接著部彼此的間隔尺寸d2為7mm。在第B3群中,將以第1方向D1與軋延方向RD所構成的角度α(參照圖6)為0°、15°、30°、45°、60°、75°及90°的定子鐵芯設為各個模型B15~編號B21。
又,作為比較對象,也求出了如圖9所示,已將複數個無方向性之電磁鋼板片140進行整層歛合之模型編號B22的定子鐵芯121X之鐵損。模型編號B22之定子鐵芯121X是為了比較以往構成與本發明之鐵損而準備的模型。以下,將模型編號B22之定子鐵芯稱為「基準模型」。基準模型之定子鐵芯121X具有複數個鐵芯塊124X。基準模型之定子鐵芯121X之電磁鋼板片140的板厚為0.25mm,且電磁鋼板片之軋延方向RD與齒部延伸的方向一致。在基準模型之定子鐵芯121X之鐵芯塊分別設置有設置於芯背部122的第1歛合件C1、及設置於齒部123的2個第2歛合件C2。第1歛合件C1位於芯背部122的圓周方向中央。2個第2歛合件C2是在齒部123的圓周方向中央沿著徑方向排列。電磁鋼板片140之第1面當中,歛合件C1、C2所佔有的面積之比例為3.2%左右。
針對各模型,將電磁鋼板片之鐵損的模擬結果顯示於表2。又,表2中是記載以下結果:針對設置了與各模型同樣之接著部的實體模型(mock‐up)進行墜落試驗後的結果。墜落試驗是以和上述之第1驗證試驗同樣的順序來進行。又,本試驗中的墜落試驗的評價基準也是與第1驗證試驗同樣。
再者,表2所示之所謂鐵損抑制率Rt,是將各模型之鐵損與基準模型(模型編號B22之定子鐵芯)之鐵損的差分,除以基準模型之鐵損後的值以百分率來表示之值。亦即,表中之鐵損抑制率,在將各模型之鐵損設為W並將基準模型之鐵損設為Worg時,是用以下之式(1)來表示。
[數式1]
Figure 02_image001
[表2]
模型 編號 寬度尺寸d1 /間隔尺寸d2 角度α [° ] 鐵損抑制率 Rt [%] 墜落 試驗 備註
第 B 1 群 B1 150% -6.9 A
B2 150% 15° -7.2 A
B3 150% 30° -7.5 A
B4 150% 45° -7.9 A
B5 150% 60° -8.0 A
B6 150% 75° -7.8 A
B7 150% 90° -8.3 A
第 B 2 群 B8 60% -7.5 A-
B9 60% 15° -7.8 A-
B10 60% 30° -7.8 A-
B11 60% 45° -7.9 A-
B12 60% 60° -8.1 A-
B13 60% 75° -8.3 A-
B14 60% 90° -8.5 A-
第 B 3 群 B15 43% -7.5 A-
B16 43% 15° -7.7 A-
B17 43% 30° -8.0 A-
B18 43% 45° -8.2 A-
B19 43% 60° -8.2 A-
B20 43% 75° -8.6 A-
B21 43% 90° -8.9 A-
B22 - - 0 - 基準模型
若比較模型編號B1~模型編號B21之定子鐵芯,即可確認到以下情形:在屬於第1~第B3群之任一群的模型中,都可以藉由將第1方向D1與軋延方向RD所構成的角度α設為45°以上,而充分地將鐵損抑制(至鐵損抑制率Rt為-7.8%以下)。此外,已確認到以下情形:可以藉由角度α設為60°以上,而進一步將鐵損抑制(至鐵損抑制率Rt為-7.9%以下)。
若互相比較第B1群、第B2群及第B3群,則第B2群的模型之鐵損比第B1群的模型之鐵損小,此外第B3群的模型之鐵損為最小。第B2群及第B3群的模型為:寬度尺寸d1比間隔尺寸d2更小。因此可考慮為:可抑制起因於接著劑之電磁鋼板片140的應變,而可以確保定子鐵芯121之磁特性。第B2群的模型的寬度尺寸d1相對於間隔尺寸d2為60%,第B3群的模型的寬度尺寸d1相對於間隔尺寸d2為43%。亦即,第B3群的模型和第B2群的模型相比較,寬度尺寸d1相對於間隔尺寸d2之比率為較小。在第B3群的模型中,已可確認到以下情形:可以比第B2群的模型更有效地抑制電磁鋼板片140之鐵損的劣化。亦即,藉由此驗證試驗,已可確認到以下情形:寬度尺寸d1相對於間隔尺寸d2在60%以下的情形下可以抑制鐵損,且在43%以下的情形下可以更進一步地抑制鐵損。
因為按第B1群、第B2群及第B3群之每一群使寬度尺寸d1相對於間隔尺寸d2之比率不同,所以較佳的角度α的範圍互相不同。表2中之鐵損抑制率Rt,宜設為-8%以下來作為1個基準。
第B1群的模型為:寬度尺寸d1相對於間隔尺寸d2為150%。當在第B1群內比較各個模型後,僅將第1方向D1與軋延方向RD所構成的角度α設為90°的模型編號B7之定子鐵芯為鐵損低於-8%。亦即,可以確認到到以下情形:在寬度尺寸d1相對於間隔尺寸d2為150%的情況下,藉由將角度α設為90°,最能夠充分地抑制鐵損的劣化。再者,角度α即便在改變了±5°左右的情況下對鐵損也不會有太大的改變。又,即便在寬度尺寸d1相對於間隔尺寸d2的比例改變了±5%左右的情況下,對鐵損也不會有太大的改變。因此可說是:在寬度尺寸d1相對於間隔尺寸d2為150%±5%的情況下,藉由將角度α設為85°以上,可以充分地抑制鐵損的劣化。
第B2群的模型為:寬度尺寸d1相對於間隔尺寸d2為60%。當在第B2群內比較各個模型後,則在將第1方向D1與軋延方向RD所構成的角度α設為60°以上的模型編號B12、13、14之定子鐵芯中,鐵損為低於-8%。亦即,可以確認到到以下情形:在寬度尺寸d1相對於間隔尺寸d2為60%的情況下,藉由將角度α設為60°以上,可以充分地抑制鐵損的劣化。如上述,即便在寬度尺寸d1相對於間隔尺寸d2的比例改變了±5%左右的情況下,對鐵損也不會有太大的改變。因此可說是:在寬度尺寸d1相對於間隔尺寸d2為60%±5%的情況下,藉由將角度α設為60°以上,最能夠充分地抑制鐵損的劣化。
第B3群的模型為:寬度尺寸d1相對於間隔尺寸d2為43%。當在第B3群內比較各個模型後,則在將第1方向D1與軋延方向RD所構成的角度α設為45°以上的模型編號B18、19、20、21之定子鐵芯中,鐵損為低於-8%。亦即,可以確認到到以下情形:在寬度尺寸d1相對於間隔尺寸d2為43%的情況下,藉由將角度α設為45°以上,可以充分地抑制鐵損的劣化。如上述,即便在寬度尺寸d1相對於間隔尺寸d2的比例改變了±5%左右的情況下,對鐵損也不會有太大的改變。因此可說是:在寬度尺寸d1相對於間隔尺寸d2為43%±5%的情況下,藉由將角度α設為60°以上,最能夠充分地抑制鐵損的劣化。
如表2所示,與第B2群及第B3群的實體模型相比較,第B1群的實體模型在墜落強度上較優異。第B1群的實體模型之接著部的寬度尺寸d1比間隔尺寸d2更大,而第B2群及第B3群的實體模型之接著部的寬度尺寸d1比間隔尺寸d2更小。由此可確認到以下之點:即使在分割鐵芯中,也是在接著部的寬度尺寸d1比與相鄰之接著部在第2方向D2上的間隔尺寸d2更大的情況下,可以提高接著強度。 產業上之可利用性
根據本發明,可以使磁特性提升。據此,產業上之可利用性是很大的。
10,110:旋轉電機 20,120:定子 21,121,121X:定子鐵芯 22,122:芯背部 23,123:齒部 30:轉子 31:轉子鐵芯 32:永久磁鐵 33:貫通孔 40:電磁鋼板 41,141,241:接著部 42,142:接著區域 43,143:非接著區域 50:罩殼 60:旋轉軸 124,124X:鐵芯塊 129:緊固環 140:電磁鋼板片 241c:要素接著部 C:歛合件 C1:第1歛合件 C2:第2歛合件 CL:中心線 d1:寬度尺寸 D1:第1方向 d2:間隔尺寸 D2:第2方向 O:中心軸線 RD:軋延方向 SD:特異方向 VL:假想線 α:角度
圖1是第1實施形態之旋轉電機的截面圖。 圖2是具備第1實施形態之旋轉電機的定子的平面圖。 圖3是具備第1實施形態之旋轉電機的定子的正面圖。 圖4是第1實施形態之電磁鋼板及接著部的示意圖。 圖5是第2實施形態之旋轉電機的平面圖。 圖6是第2實施形態之電磁鋼板及接著部的示意圖。 圖7是變形例之定子之接著部的示意圖。 圖8是顯示在第1驗證試驗中,鐵損相對於接著部的寬度尺寸與間隔尺寸的比率及角度的圖表。 圖9是第2驗證試驗中作為鐵損的模擬對象之基準模型的定子鐵芯的平面圖,且是顯示將電磁鋼板歛合接合後的狀態的平面圖。
20:定子
21:定子鐵芯
22:芯背部
23:齒部
40:電磁鋼板
41:接著部
42:接著區域
43:非接著區域
d1:寬度尺寸
D1:第1方向
d2:間隔尺寸
D2:第2方向
O:中心軸線
RD:軋延方向
SD:特異方向
α:角度

Claims (28)

  1. 一種積層鐵芯,具備:複數個電磁鋼板,互相積層;及複數個接著部,配置於在積層方向上相鄰之前述電磁鋼板彼此之間,而分別將前述電磁鋼板彼此接著,又,從前述積層方向觀看,複數個前述接著部形成為各自在第1方向上延伸的帶狀,且複數個前述接著部互相在與前述第1方向正交的第2方向上排列並配置,前述第1方向與前述電磁鋼板之軋延方向所構成的角度為30°以上且90°以下。
  2. 如請求項1之積層鐵芯,其中前述第1方向與前述電磁鋼板的前述軋延方向所構成的角度為52.3°以上。
  3. 如請求項1或2之積層鐵芯,其中前述接著部的寬度尺寸比與相鄰之前述接著部在前述第2方向上的間隔尺寸更小。
  4. 如請求項3之積層鐵芯,其中前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為67%±5%。
  5. 如請求項4之積層鐵芯,其中前述第1方向與前述電磁鋼板的前述軋延方向所構成的角度為75°±5°。
  6. 如請求項1或2之積層鐵芯,其中前述接著部的寬度尺寸比與相鄰之前述接著部在前述第2方向上的間隔尺寸更大。
  7. 如請求項6之積層鐵芯,其中前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為167%±5%,且前述第1方向與前述電磁鋼板的前述軋延方向所構成的角度為85°以上。
  8. 如請求項6之積層鐵芯,其中前述接著部的寬度尺寸相對於與 相鄰之前述接著部在前述第2方向上的間隔尺寸為233%±5%,且前述第1方向與前述電磁鋼板的前述軋延方向所構成的角度為85°以上。
  9. 如請求項1之積層鐵芯,其中前述接著部的平均厚度為1.0μm~3.0μm。
  10. 如請求項1之積層鐵芯,其中前述接著部的平均拉伸彈性模數E為1500MPa~4500MPa。
  11. 如請求項1之積層鐵芯,其中前述接著部是由含彈性體之丙烯酸系接著劑所構成之包含SGA的常溫接著型丙烯酸系接著劑。
  12. 一種鐵芯塊,是藉由環狀地連結複數個而構成積層鐵芯,前述鐵芯塊具備:複數個電磁鋼板片,互相積層;及複數個接著部,配置於在積層方向上相鄰之前述電磁鋼板片彼此之間,而分別將前述電磁鋼板片彼此接著,又,從前述積層方向觀看,複數個前述接著部形成為各自在第1方向上延伸的帶狀,且複數個前述接著部互相在與前述第1方向正交的第2方向上排列並配置,前述第1方向與前述電磁鋼板片的軋延方向所構成的角度為45°以上且90°以下。
  13. 如請求項12之鐵芯塊,其中前述第1方向與前述電磁鋼板片的前述軋延方向所構成的角度為52.3°以上。
  14. 如請求項12或13之鐵芯塊,其具備圓弧狀之芯背部、及從前述芯背部朝前述芯背部的徑方向突出的齒部,前述齒部是沿著前述軋延方向延伸。
  15. 如請求項12之鐵芯塊,其中前述接著部的寬度尺寸比與相鄰 之前述接著部在前述第2方向上的間隔尺寸更小。
  16. 如請求項15之鐵芯塊,其中前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為60%以下。
  17. 如請求項16之鐵芯塊,其中前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為43%以下。
  18. 如請求項16之鐵芯塊,其中前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為43%±5%,前述第1方向與前述電磁鋼板片的前述軋延方向所構成的角度為45°以上。
  19. 如請求項15之鐵芯塊,其中前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為60%±5%,前述第1方向與前述電磁鋼板片的前述軋延方向所構成的角度為60°以上。
  20. 如請求項12之鐵芯塊,其中前述接著部的寬度尺寸比與相鄰之前述接著部在前述第2方向上的間隔尺寸更大。
  21. 如請求項20之鐵芯塊,其中前述接著部的寬度尺寸相對於與相鄰之前述接著部在前述第2方向上的間隔尺寸為150%±5%,前述第1方向與前述電磁鋼板片的前述軋延方向所構成的角度為85°以上。
  22. 如請求項12之鐵芯塊,其中前述接著部的平均厚度為1.0μm~3.0μm。
  23. 如請求項12之鐵芯塊,其中前述接著部的平均拉伸彈性模數E為1500MPa~4500MPa。
  24. 如請求項12之鐵芯塊,其中前述接著部是由含彈性體之丙烯酸系接著劑所構成之包含SGA的常溫接著型丙烯酸系接著劑。
  25. 一種積層鐵芯,是將請求項12至24中任一項之鐵芯塊環狀地連結複數個而構成。
  26. 一種旋轉電機,具備如請求項1至11、25中任一項之積層鐵芯。
  27. 一種鐵芯塊的製造方法,具有以下步驟:第1步驟,從電磁鋼板沖裁出複數個電磁鋼板片;及第2步驟,在複數個前述電磁鋼板片彼此之間一邊設置接著部一邊進行積層,又,在前述第1步驟中,前述電磁鋼板片是沖裁成齒部沿著前述電磁鋼板的軋延方向延伸,在前述第2步驟中,將複數個前述接著部形成為從積層方向觀看各自在第1方向上延伸的帶狀,並且將複數個前述接著部互相在與前述第1方向正交的第2方向上排列並配置,且將複數個前述電磁鋼板片積層成前述第1方向與前述軋延方向所構成的角度成為45°以上且90°以下。
  28. 如請求項27之鐵芯塊的製造方法,其中前述接著部的寬度尺寸比與相鄰之前述接著部在前述第2方向上的間隔尺寸更小。
TW108146185A 2018-12-17 2019-12-17 積層鐵芯、鐵芯塊、旋轉電機及鐵芯塊的製造方法 TWI753335B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018235856 2018-12-17
JP2018235872 2018-12-17
JP2018-235856 2018-12-17
JP2018-235872 2018-12-17
JP2019118339 2019-06-26
JP2019118338 2019-06-26
JP2019-118338 2019-06-26
JP2019-118339 2019-06-26

Publications (2)

Publication Number Publication Date
TW202030957A TW202030957A (zh) 2020-08-16
TWI753335B true TWI753335B (zh) 2022-01-21

Family

ID=71100305

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108146185A TWI753335B (zh) 2018-12-17 2019-12-17 積層鐵芯、鐵芯塊、旋轉電機及鐵芯塊的製造方法

Country Status (10)

Country Link
US (1) US20210343466A1 (zh)
EP (1) EP3872963A4 (zh)
JP (1) JP6940007B2 (zh)
KR (1) KR102573664B1 (zh)
CN (1) CN113169595A (zh)
BR (1) BR112021009584A2 (zh)
CA (1) CA3131358A1 (zh)
SG (1) SG11202108886SA (zh)
TW (1) TWI753335B (zh)
WO (1) WO2020129938A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3902108A4 (en) 2018-12-17 2022-10-05 Nippon Steel Corporation LAMINATED CORE AND ROTATING ELECTRICAL MACHINE
EA202192063A1 (ru) 2018-12-17 2021-11-24 Ниппон Стил Корпорейшн Шихтованный сердечник и электродвигатель
KR102607589B1 (ko) 2018-12-17 2023-11-30 닛폰세이테츠 가부시키가이샤 적층 코어 및 회전 전기 기기
TWI717154B (zh) 2018-12-17 2021-01-21 日商日本製鐵股份有限公司 積層鐵芯及旋轉電機
TWI744741B (zh) 2018-12-17 2021-11-01 日商日本製鐵股份有限公司 積層鐵芯及旋轉電機
US11855485B2 (en) 2018-12-17 2023-12-26 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
KR102583082B1 (ko) 2018-12-17 2023-09-27 닛폰세이테츠 가부시키가이샤 접착 적층 코어, 그의 제조 방법 및 회전 전기 기계
TWI732384B (zh) 2018-12-17 2021-07-01 日商日本製鐵股份有限公司 積層鐵芯及旋轉電機
WO2020258160A1 (zh) * 2019-06-27 2020-12-30 京东方科技集团股份有限公司 覆晶薄膜cof、触控模组及显示装置
US20230238163A1 (en) * 2022-01-24 2023-07-27 Ford Global Technologies, Llc Electrical steel lamination stacks with magnetic insulator coating for electrical apparatus cores
JP2023132233A (ja) * 2022-03-10 2023-09-22 株式会社三井ハイテック 積層鉄心、積層鉄心の製造方法および順送り金型装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177895A (ja) * 2008-01-23 2009-08-06 Mitsubishi Electric Corp 積層コア、積層コアの製造方法、積層コアの製造装置およびステータ
JP2011023523A (ja) * 2009-07-15 2011-02-03 Nippon Steel Corp 良好な熱伝導性を有する電磁鋼板積層コアおよびその製造方法
TWI596868B (zh) * 2012-08-07 2017-08-21 山洋電氣股份有限公司 永久磁鐵式馬達及永久磁鐵式馬達之製造方法
WO2017208290A1 (ja) * 2016-05-30 2017-12-07 三菱電機株式会社 固定子、電動機、圧縮機、および冷凍空調装置
WO2018116585A1 (ja) * 2016-12-22 2018-06-28 株式会社三井ハイテック 積層鉄心の製造方法及び積層鉄心の製造装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3386058A (en) * 1966-11-21 1968-05-28 Westinghouse Electric Corp Inductive assembly with supporting means
JPS4938389B1 (zh) * 1968-03-19 1974-10-17
US4025379A (en) * 1973-05-03 1977-05-24 Whetstone Clayton N Method of making laminated magnetic material
US4103195A (en) * 1976-08-11 1978-07-25 General Electric Company Bonded laminations forming a stator core
US4413406A (en) * 1981-03-19 1983-11-08 General Electric Company Processing amorphous metal into packets by bonding with low melting point material
JPS60186884U (ja) * 1984-05-18 1985-12-11 ブラザー工業株式会社 電磁アクチユエ−タ
JPS60186834U (ja) * 1984-05-18 1985-12-11 株式会社東芝 回転電機の固定子鉄心
JP2002164224A (ja) * 2000-08-30 2002-06-07 Mitsui Chemicals Inc 磁性基材およびその製造方法
JP2003284274A (ja) * 2002-03-22 2003-10-03 Nippon Steel Corp 永久磁石同期モータのロータ
JP2005094929A (ja) * 2003-09-17 2005-04-07 Toyota Motor Corp ステータコアの製造方法、その製造方法により製造されたステータコアを有する電動機、および製造装置
JP4548049B2 (ja) * 2004-09-01 2010-09-22 株式会社日立製作所 回転電機
JP4498154B2 (ja) * 2005-01-27 2010-07-07 ファナック株式会社 モータの製造方法、及びモータ製造装置
JP4687289B2 (ja) * 2005-07-08 2011-05-25 東洋紡績株式会社 ポリアミド系混合樹脂積層フィルムロール、およびその製造方法
JP4938389B2 (ja) * 2006-09-06 2012-05-23 三菱電機株式会社 積層コアおよびステータ
NL2001190C1 (nl) * 2008-01-16 2009-07-20 Lagerwey Wind B V Generator voor een direct aangedreven windturbine.
DE112009004598B4 (de) * 2009-03-26 2023-02-23 Vacuumschmelze Gmbh & Co. Kg Verfahren zum stoffschlüssigen fügen von paketlamellen zu einem weichmagnetischen blechpaket
US8179002B2 (en) * 2011-03-31 2012-05-15 General Electric Company Axial cooled generator
JP6064923B2 (ja) * 2014-01-29 2017-01-25 Jfeスチール株式会社 積層鉄心の製造方法
EP3176285B1 (en) * 2014-07-29 2018-09-05 JFE Steel Corporation Electrical steel sheet for stacking, stacked electrical steel sheet, method of manufacturing stacked electrical steel sheet, and iron core for automotive motor
JP6247630B2 (ja) * 2014-12-11 2017-12-13 Ckd株式会社 コイルの冷却構造
US10658885B2 (en) * 2015-11-27 2020-05-19 Nidec Corporation Motor and manufacturing method of motor
CN109155574B (zh) * 2016-05-20 2020-11-06 日本电产株式会社 定子铁芯的制造方法
TWI689258B (zh) 2017-12-29 2020-04-01 康建生物科技股份有限公司 牛樟芝醱酵糙米,其製法及其組成物
JP6578405B2 (ja) 2018-04-09 2019-09-18 ヤマトエスロン株式会社 Pcr用容器及び試薬入りpcr用容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177895A (ja) * 2008-01-23 2009-08-06 Mitsubishi Electric Corp 積層コア、積層コアの製造方法、積層コアの製造装置およびステータ
JP2011023523A (ja) * 2009-07-15 2011-02-03 Nippon Steel Corp 良好な熱伝導性を有する電磁鋼板積層コアおよびその製造方法
TWI596868B (zh) * 2012-08-07 2017-08-21 山洋電氣股份有限公司 永久磁鐵式馬達及永久磁鐵式馬達之製造方法
WO2017208290A1 (ja) * 2016-05-30 2017-12-07 三菱電機株式会社 固定子、電動機、圧縮機、および冷凍空調装置
WO2018116585A1 (ja) * 2016-12-22 2018-06-28 株式会社三井ハイテック 積層鉄心の製造方法及び積層鉄心の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 71968/1984 *

Also Published As

Publication number Publication date
KR102573664B1 (ko) 2023-09-04
EP3872963A1 (en) 2021-09-01
WO2020129938A1 (ja) 2020-06-25
BR112021009584A2 (pt) 2021-08-17
SG11202108886SA (en) 2021-09-29
CN113169595A (zh) 2021-07-23
CA3131358A1 (en) 2020-06-25
JPWO2020129938A1 (ja) 2021-02-15
JP6940007B2 (ja) 2021-09-22
TW202030957A (zh) 2020-08-16
KR20210082509A (ko) 2021-07-05
US20210343466A1 (en) 2021-11-04
EP3872963A4 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
TWI753335B (zh) 積層鐵芯、鐵芯塊、旋轉電機及鐵芯塊的製造方法
TWI733277B (zh) 定子用接著積層鐵芯及旋轉電機
TWI729628B (zh) 積層鐵芯及旋轉電機
TWI724690B (zh) 積層鐵芯及旋轉電機
TWI744743B (zh) 積層鐵芯及旋轉電機
TWI717154B (zh) 積層鐵芯及旋轉電機
TWI732384B (zh) 積層鐵芯及旋轉電機
TWI742488B (zh) 定子用接著積層鐵芯及旋轉電機
TWI735105B (zh) 積層鐵芯及旋轉電機
TWI734303B (zh) 積層鐵芯及旋轉電機
TWI738152B (zh) 積層鐵芯及旋轉電機
TWI744741B (zh) 積層鐵芯及旋轉電機
TWI717940B (zh) 定子用接著積層鐵芯及旋轉電機
TWI766299B (zh) 鐵芯塊、積層鐵芯及旋轉電機
JP7486434B2 (ja) ステータ用接着積層コアおよび回転電機