TWI751585B - 類升糖素肽1受體促效劑 - Google Patents

類升糖素肽1受體促效劑 Download PDF

Info

Publication number
TWI751585B
TWI751585B TW109120333A TW109120333A TWI751585B TW I751585 B TWI751585 B TW I751585B TW 109120333 A TW109120333 A TW 109120333A TW 109120333 A TW109120333 A TW 109120333A TW I751585 B TWI751585 B TW I751585B
Authority
TW
Taiwan
Prior art keywords
phenyl
methyl
fluoro
mmol
compound
Prior art date
Application number
TW109120333A
Other languages
English (en)
Other versions
TW202115040A (zh
Inventor
大衛 安德魯 寇特
陶德 菲爾茲
長志 何
付成 屈
Original Assignee
美商美國禮來大藥廠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美國禮來大藥廠 filed Critical 美商美國禮來大藥廠
Publication of TW202115040A publication Critical patent/TW202115040A/zh
Application granted granted Critical
Publication of TWI751585B publication Critical patent/TWI751585B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration

Abstract

在一實施例中,本發明提供一種下式化合物:

Description

類升糖素肽1受體促效劑
本發明係關於類升糖素肽-1受體促效劑及該等化合物用於治療II型糖尿病之治療用途。
類升糖素肽-1 (GLP-1)為由腸道腸內分泌L細胞分泌之肽激素之腸促胰島素家族中的一員。GLP-1以葡萄糖依賴性方式誘導β細胞釋放胰島素。然而,GLP-1迅速代謝使得僅較小百分比之GLP-1可用於誘導胰島素分泌。為了抵消此,已開發出GLP-1受體(GLP-1R)促效劑來增強胰島素分泌以治療II型糖尿病。
已批准用於治療II型糖尿病之大部分GLP-1R促效劑為注射劑。患者通常偏好經口投與之藥物,此係因為與注射相關聯之缺點,諸如不便、疼痛及潛在的注射部位刺激。
WO2018/109607揭示某些描述為GLP-1R促效劑之苯并咪唑衍生物。
然而,需要替代的GLP-1R促效劑。特定言之,需要可經口投與之GLP-1R促效劑。尤其需要具有經改良之效能、有利的毒理學特徵及/或支持每日一次給藥之藥物動力學特徵的GLP-1R促效劑。
因此,本發明提供一種下式化合物:
Figure 02_image004
, 式I 其中 R1 為H或F; R2 為H或F;且 R3 為H或CH3 ; 或其醫藥學上可接受之鹽。
式I包括所有個別對映異構體及其混合物以及外消旋體及其醫藥學上可接受之鹽。
在一實施例中,提供一種下式化合物:
Figure 02_image007
, 式Ia 或其醫藥學上可接受之鹽。
在一實施例中,提供一種下式化合物:
Figure 02_image009
, 式II 其中R1 為H或F,或其醫藥學上可接受之鹽。
在一實施例中,提供一種下式化合物:
Figure 02_image011
, 式IIa 其中R1 為H或F,或其醫藥學上可接受之鹽。
在一個實施例中,化合物為下式化合物:
Figure 02_image013
, 或其醫藥學上可接受之鹽。在一較佳實施例中,化合物為下式化合物:
Figure 02_image015
, 或其醫藥學上可接受之鹽。
在一個實施例中,化合物為下式化合物:
Figure 02_image017
, 或其醫藥學上可接受之鹽。在一較佳實施例中,化合物為下式化合物:
Figure 02_image019
, 或其醫藥學上可接受之鹽。在一尤其較佳實施例中,提供以下之第三丁胺鹽(亦稱作特丁胺鹽):
Figure 02_image021
在一實施例中,提供一種下式化合物:
Figure 02_image023
, 式III 其中R2 為H或F,或其醫藥學上可接受之鹽。
在一實施例中,提供一種下式化合物:
Figure 02_image025
, 式IIIa 其中R2 為H或F,或其醫藥學上可接受之鹽。
在一個實施例中,化合物為下式化合物:
Figure 02_image027
, 或其醫藥學上可接受之鹽。在一較佳實施例中,化合物為下式化合物:
Figure 02_image029
, 或其醫藥學上可接受之鹽。
在一個實施例中,化合物為下式化合物:
Figure 02_image031
, 或其醫藥學上可接受之鹽。在一較佳實施例中,化合物為下式化合物:
Figure 02_image033
, 或其醫藥學上可接受之鹽。
式I涵蓋式Ia、Ib、II、IIa、IIb、III、IIIa及IIIb,且例如在治療方法及治療用途中對以下式I之參考亦將理解為對此等子式中之每一者及所有者的參考。
在另一實施例中,提供一種醫藥學上可接受之組合物,其包含式I化合物或其醫藥學上可接受之鹽,及醫藥學上可接受之載劑、稀釋劑或賦形劑中之至少一者。在一較佳實施例中,醫藥學上可接受之組合物經調配用於經口投與。
在另一實施例中,提供一種治療哺乳動物II型糖尿病之方法,該方法包含向需要治療之哺乳動物投與醫藥學上可接受之組合物,該醫藥學上可接受之組合物包含有效量的式I化合物或其醫藥學上可接受之鹽,及醫藥學上可接受之載劑、稀釋劑或賦形劑中之至少一者。在一個實施例中,醫藥學上可接受之組合物經調配用於經口投與。較佳地,哺乳動物為人類。
在另一實施例中,提供一種治療哺乳動物II型糖尿病之方法,該方法包含向需要治療之哺乳動物投與有效量的式I化合物或其醫藥學上可接受之鹽。在一較佳實施例中,哺乳動物為人類。
在另一實施例中,提供一種降低哺乳動物血糖含量之方法,該方法包含向需要治療之哺乳動物投與有效量的式I化合物或其醫藥學上可接受之鹽。在一較佳實施例中,哺乳動物為人類。
在另一實施例中,提供一種治療哺乳動物高血糖症之方法,該方法包含向需要治療之哺乳動物投與有效量的式I化合物或其醫藥學上可接受之鹽。在一較佳實施例中,哺乳動物為人類。
在一實施例中,提供一種用於治療之式I化合物或其醫藥學上可接受之鹽。
在另一實施例中,提供一種用於治療II型糖尿病之式I化合物或其醫藥學上可接受之鹽。
在另一實施例中,提供一種用於降低血糖含量之式I化合物或其醫藥學上可接受之鹽。
在另一實施例中,亦提供用於治療高血糖症之式I化合物或其醫藥學上可接受之鹽。
在一實施例中,提供一種式I化合物或其醫藥學上可接受之鹽的用途,其用於製造用以治療II型糖尿病之藥劑。
在一實施例中,提供一種式I化合物或其醫藥學上可接受之鹽的用途,其用於製造用以降低血糖含量之藥劑。
在一實施例中,提供一種式I化合物或其醫藥學上可接受之鹽的用途,其用於製造用以治療高血糖症之藥劑。
在一較佳實施例中,式I化合物係經口投與。在一較佳實施例中,式I化合物係每日一次投與。在另一個較佳實施例中,治療用途用於人類。
本申請案主張2019年6月28日申請之美國臨時申請案序列號62/868,117及2019年9月24日申請之美國臨時申請案序列號62/904,906根據35 U.S.C. §119(e)之權益,其揭示內容以引用之方式併入本文中。
如本文所用,術語「醫藥學上可接受之鹽」係指視為臨床及/或獸醫用途可接受的本發明化合物之鹽。醫藥學上可接受之鹽的實例及用於製備其之常見方法可見於「Handbook of Pharmaceutical Salts: Properties, Selection and Use」P. Stahl,等人,第2修訂版, Wiley-VCH, 2011及S.M. Berge,等人, 「Pharmaceutical Salts」,Journal of Pharmaceutical Sciences , 1977, 66(1), 1-19。
醫藥組合物之實例及用於其製備之方法可見於「Remington: The Science and Practice of Pharmacy」, Loyd, V.等人編,第22版, Mack Publishing Co., 2012。在一個實施例中,醫藥組合物可經調配用於經口投與。較佳地,醫藥組合物經調配為錠劑、膠囊或溶液。錠劑、膠囊或溶液可包括對於治療需要治療之患者呈有效量的式I化合物。
術語「有效量」係指式I化合物或其醫藥學上可接受之鹽在單劑量或多劑量投與至患者後,對診斷或治療下之患者提供期望效果的量或劑量。作為熟習此項技術者的主治醫師可易於藉由使用習知技術且藉由觀測類似情況下所獲得之結果來測定有效量。在測定化合物之有效量或劑量時考慮之因素包括:是否將投與化合物或其鹽;其他藥劑之共同投藥(若使用);待治療之哺乳動物之物種;其大小、年齡及一般健康;病症之受累程度或嚴重程度;個別哺乳動物之反應;投藥模式;投與製劑之生物可用性特徵;所選擇的劑量方案;及其他相關情形。本發明之化合物以每天約0.01至約15 mg/kg體重之範圍內的劑量有效。
如本文所使用,術語「治療(treating/to treat/treatment)」係指降低、減小或逆轉現有症狀、病症或病狀(諸如高血糖症)之發展或嚴重程度,其可包括增加胰島素分泌。
式I化合物經調配為藉由使得化合物生物可用之任何途徑投與的醫藥組合物。較佳地,此類組合物用於經口投與。此類醫藥組合物及用於製備其之方法在此項技術中已熟知(參見例如,「Remington: The Science and Practice of Pharmacy」, L.V. Allen,編者,第22版, Pharmaceutical Press, 2012)。
式I化合物及其醫藥學上可接受之鹽適用於本發明之治療用途,其中某些組態係較佳的。
本發明之化合物包括:
Figure 02_image035
式Ia;及
Figure 02_image037
式Ib, 或其醫藥學上可接受之鹽。
本發明之其他化合物包括:
Figure 02_image039
式IIa;及
Figure 02_image041
式IIb, 或其醫藥學上可接受之鹽。
本發明之其他化合物包括:
Figure 02_image043
式IIIa;及
Figure 02_image045
式IIIb, 或其醫藥學上可接受之鹽。
儘管本發明涵蓋所有個別對映異構體、其混合物及外消旋體,但式Ia、IIa及IIIa化合物及其醫藥學上可接受之鹽為尤其較佳的。
個別對映異構體可藉由一般熟習此項技術者在合成本發明之化合物中之任何適宜點處藉由以下方法分離或分解,諸如選擇性結晶技術、對掌性層析法(參見例如,J. Jacques等人, Enantiomers, Racemates, and Resolutions , John Wiley and Sons, Inc., 1981, 以及E.L. Eliel及S.H. Wilen, Stereochemistry of Organic Compounds , Wiley-Interscience, 1994)或超臨界流體層析法(SFC) (參見例如, T. A. Berger; Supercritical Fluid Chromatography Primer , Agilent Technologies,2015年7月)。
本發明之化合物的醫藥學上可接受之鹽可例如藉由式I化合物與合適之醫藥學上可接受之鹼在適合之溶劑中在此項技術所熟知之標準條件下反應來形成(參見例如,Bastin, R.J.等人;Org. Process. Res. Dev. , 4, 427-435, 2000及Berge, S.M.等人; J. Pharm. Sci. , 66, 1-19, 1977)。較佳之鹽為第三丁胺(或特丁胺)鹽。
根據Daub G.H.等人, 「The Use of Acronyms in Organic Chemistry」Aldrichimica Acta , 1984, 17(1), 6-23定義本文所使用的某些縮寫。某些縮寫如下所定義:「ACN」係指乙腈;「ATP」係指三磷酸腺苷;「BSA」係指牛血清白蛋白;「cAMP」係指環狀腺苷-3',5'-單磷酸;「DCM」係指二氯甲烷(dichloromethane/methylene chloride);「DIPEA」係指N,N-二異丙基乙胺;「DMF」係指N,N-二甲基甲醯胺;「DMSO」係指二甲亞碸;「EC50 」係指與預定陽性對照化合物(絕對EC50 )相比,產生50%目標活性反應之藥劑濃度;「ES/MS」係指電灑質譜分析法;「EtOAc」係指乙酸乙酯;「HATU」係指3-氧化六氟磷酸1-[雙(二甲胺基)亞甲基]-1H -1,2,3-三唑并[4,5-b ]吡啶鎓鹽;「HEK」係指人類胚腎;「HEPES」係指4-(2-羥基乙基)-1-哌嗪乙磺酸;「h」各別地係指小時(hours/hour);「MeOH」係指甲醇(methanol/methyl alcohol);「min」係指分鐘(minute/minutes);「Pd(dppf)Cl2 」係指[1,1'-雙(二苯基膦基)二茂鐵]二氯鈀(II);「RT」係指室溫;且「THF」係指四氫呋喃。
本發明之化合物可藉由多種程序製備,該等程序中之一些在以下製備及實例中加以說明。所描述之途徑中之每一者的特定合成步驟可以不同方式組合以製備本發明之化合物或其鹽。下文各步驟之產物可藉由習知方法回收,該等習知方法包括萃取、蒸發、沈積、層析、過濾、研磨及結晶。試劑及起始物質係一般熟習此項技術者容易獲得的。個別異構體、對映異構體或非對映異構體可在合成中之任何適宜點處藉由諸如選擇性結晶技術或對掌性層析法之方法分離或分解(參見例如 J. Jacques等人, Enantiomers, Racemates, and Resolutions , John Wiley and Sons, Inc., 1981, 以及E.L. Eliel及S.H. Wilen, Stereochemistry of Organic Compounds , Wiley-Interscience, 1994)。在不限制本發明之範疇的情況下,提供以下製備及實例以進一步說明本發明。
流程 1
Figure 02_image047
流程1展示合成中間物6,其用於製備式I化合物。在步驟1中,苯甲酸1首先用甲硼烷二甲基硫醚複合物還原以得到醇2。將醇轉化成離去基(LG,中間物3)。舉例而言,在步驟2中,可在-15℃下使用甲磺醯氯將中間物2中之醇轉化成甲磺酸鹽基團,或可在0℃下使用三溴化磷將其轉化成溴化物。在步驟3中,使中間物3與NaCN反應以得到腈4。在步驟4中,在高溫下用KOH轉化腈4以得到酸5,隨後在步驟5中使用乙二醯氯、DMF及甲醇將酸5酯化以得到中間物6。
流程 2
Figure 02_image049
流程2描繪經由兩種途徑製備關鍵中間物12,以用於製備式I化合物。在第一途徑中,芳基鹵化物6經歷一鍋式美由奈(Miyura)硼醯化/鈴木(Suzuki)偶合:在步驟1a中,在高溫下使用雙(頻哪醇根基)二硼、Pd(dppf)Cl2 及乙酸鉀將芳基鹵化物6轉化成硼酸酯7,之後將溴吡啶8及K2 CO3 添加至反應(步驟2a)中得到中間物12。在第二途徑中,採用兩步法:在高溫下使用Pd(dppf)Cl2 及K2 CO3 使芳基鹵化物6與6-羥基吡啶-2-硼酸頻哪醇酯9鈴木偶合(步驟1b)得到中間物10,隨後在高溫下使用Ag2 CO3 使中間物10與4-(溴甲基)-3-氟苯甲腈6烷基化(步驟2b)以得到中間物12。在步驟3中,使用LiOH酯水解中間物12產出酸中間物13。
流程 3
Figure 02_image051
替代地,可根據流程3製備關鍵中間物12及13,即在高溫下使用Pd(dppf)Cl2 及碳酸鉀使溴吡啶8與硼酸酯7或硼酸14偶合。
流程 4
Figure 02_image053
流程4展示將關鍵中間物13轉化成式I化合物。在步驟1中,使用HATU及二苯胺15醯胺偶合得到中間物16。藉由在乙酸中加熱中間物16完成環化(步驟2)以得到苯并咪唑17。最後,在步驟3中,藉由使用LiOH水解17獲得式I化合物。
製備及實例 LC-ES/MS在AGILENT® HP1200液相層析系統上進行。在接合至HPLC (其可或可不具有ELSD)之質量選擇性偵測器四極質譜儀上進行電灑質譜分析量測(在正及/或負模式中獲得)。LC-ES/MS條件(低pH):管柱:PHENOMENEX® GEMINI® NX C18 2.0 × 50 mm 3.0 μm,110 Å;梯度:在1.5 min內5-95% B,隨後95% B維持0.5 min;管柱溫度:50℃ +/- 10℃;流率:1.2 mL/min;1 μL注射體積;溶劑A:含有0.1% HCOOH之去離子水;溶劑B:含有0.1%甲酸之ACN;波長:200至400 nm及212至216 nm。若HPLC裝備有ELSD,則設定為45℃蒸發器溫度、40℃噴霧器溫度及1.6 SLM氣體流速。替代的LC-MS條件(高pH):管柱:Waters xBridge® C18管柱2.1 × 50 mm,3.5 μm;梯度:在1.5 min內5-95% B,隨後95% B維持0.50 min;管柱溫度:50℃ +/- 10℃;流率:1.2 mL/min;1 μL注射體積;溶劑A:10 mM NH4 HCO3 pH 9;溶劑B:ACN;波長:200至400 nm及212至216 nm;若具有ELSD:則45℃蒸發器溫度、40℃噴霧器溫度及1.60 SLM氣體流速。
在裝配有CuKα源及Vantec偵測器且在35 kV及50 mA下操作之Bruker D4 Endeavor X射線粉末繞射儀上獲得結晶固體的X射線粉末繞射(XRPD)圖案。用0.008 2θ°之步長及0.5秒/步長之掃描速率且使用1.0 mm發散、6.6 mm之固定抗散射及11.3 mm偵測器隙縫在4與40 2θ°之間掃描樣本。將乾燥粉末裝填於石英樣本固持器上,且使用玻璃載片獲得光滑表面。在環境溫度及相對濕度下收集結晶形式繞射圖。在整個圖案基於峰在8.853及26.774 2θ°處的內部NIST 675標準偏移之後在MDI-Jade中測定結晶峰位置。結晶學技術中已熟知,對於任何既定結晶形式,因由諸如晶體形態學及慣態之因素所產生之較佳定向,繞射峰之相對強度可變化。在存在較佳定向之影響的情況下,峰強度得到改變,但多晶型物之特徵峰位置不變。參見例如,The United States Pharmacopeia,第23版,National Formulary,第18版,第1843-1844頁,1995。此外,結晶學技術中亦熟知,對於任何既定結晶形式,角峰位置可略微變化。舉例而言,峰位置可由於分析樣本時之溫度變化、樣本移位或是否存在內標而偏移。在本發明之情況下,假定± 0.2 2θ°之峰位置變化以考慮此等潛在變化而不妨礙明確識別所指定之結晶形式。可基於區分峰之任何獨特組合進行結晶形式之確認。
製備 1 (4-溴-2-氟-5-甲基苯基)甲醇
Figure 02_image055
向燒瓶中添加:4-溴-2-氟-5-甲基苯甲酸(100 g,421 mmol)、THF (200 mL)及甲硼烷(二甲硫醚複合物,2 mol/L溶液/THF,210 mL,10 mmol)。在RT下攪拌混合物隔夜。用HCl (1.0 N水溶液,50 mL)淬滅反應混合物,且過濾混合物。真空濃縮過濾物,且將殘餘物分配在EtOAc (400 mL)與水(400 mL)之間。用飽和NaCl水溶液(400 mL)洗滌有機物,經Na2 SO4 乾燥,過濾且濃縮以得到呈固體狀之標題化合物(93.5 g,99%)。1 H-NMR (400 MHz, CDCl3 ) δ 7.29 (d,J = 7.9 Hz, 1H), 7.26 (d,J = 9.1 Hz, 1H), 4.69 (s, 2H), 2.38 (s, 3H)。
製備 2 (4-溴-2-氟-3-甲基-苯基)甲醇
Figure 02_image057
基本上如製備1中所描述使用4-溴-2-氟-3-甲基苯甲酸製備標題化合物。使用梯度10%至35%之EtOAc/己烷,藉由矽膠層析純化產物。LC-ES/MS峰滯留時間:1.01 min。
製備 3 2-(4-溴-2-氟-5-甲基苯基)乙腈
Figure 02_image059
將(4-溴-2-氟-5-甲基苯基)甲醇(92 g,420 mmol)溶解於DCM (500 mL)中,且添加三乙胺(120 mL,861 mmol)。將混合物冷卻至-15℃,且將甲磺醯氯(40 mL,517 mmol)於DCM (30 mL)中之溶液逐滴添加至反應混合物中。將混合物在RT下攪拌30 min。將反應混合物分配在DCM (500 mL)與水(500 mL)之間。用飽和NaCl水溶液(500 mL)洗滌有機物,經Na2 SO4 乾燥,過濾,且濃縮。將殘餘物溶解於DMF (400 mL)中,且用冰浴冷卻混合物。將NaCN(21.0 g,429 mmol)一次性添加至反應混合物中,且在RT下攪拌隔夜。將混合物分配在EtOAc (400 mL)與水(500 mL)之間。用飽和NaCl水溶液(500 mL)洗滌有機物,經Na2 SO4 乾燥,過濾,且濃縮。使用梯度10%至30%之EtOAc/己烷,藉由矽膠層析純化殘餘物以得到呈油狀物之標題化合物(47.0 g,48%)。1 H-NMR (400 MHz, CDCl3 ) δ 7.34 (d,J = 8.7 Hz,  1H), 7.32 (d,J = 8.1 Hz, 1H), 3.71 (s, 2H), 2.41 (s, 3H)。
製備 4 2-(4-溴-2-氟-3-甲基-苯基)乙腈
Figure 02_image061
將(4-溴-2-氟-3-甲基-苯基)甲醇(1.90 g,8.67 mmol)與DCM (20 mL)混合在一起。將混合物冷卻至0℃,隨後逐滴添加三溴化磷(1.0 mL,11 mmol)。在0℃下攪拌混合物15 min,隨後用飽和NaHCO3 水溶液(10 mL)使混合物鹼化。用DCM (40 mL)萃取混合物。用鹽水(30 mL)洗滌有機物,經(Na2 SO4 )乾燥,過濾且濃縮以得到固體。將固體溶解於DMSO (10 mL)中,隨後添加NaCN (0.60 g,13.0 mmol),且攪拌1 h。將混合物分配在EtOAc (50 mL)與水(50 mL)之間。用鹽水(50 mL)洗滌有機物,經Na2 SO4 乾燥,過濾且濃縮以得到呈固體狀之產物(1.3 g,64%)。LC-ES/MS峰滯留時間:1.17 min。
製備 5 2-(4-溴-2-氟-5-甲基-苯基)乙酸甲酯
Figure 02_image063
向燒瓶中添加:2-(4-溴-2-氟-5-甲基苯基)乙腈(1.20 g,5.10mmol)、乙醇(5 mL)、水(3 mL)及氫氧化鉀(0.90 g,16 mmol)。在90℃下加熱混合物隔夜。用冰浴冷卻混合物,且用1.0 M HCl酸化至pH 4-5,隨後將混合物分配在EtOAc (30 mL)與水(30 mL)之間。用飽和NaCl水溶液(30 mL)洗滌有機物,經Na2 SO4 乾燥,過濾,且濃縮以得到呈固體狀之2-(4-溴-2-氟-5-甲基-苯基)乙酸。將此物質溶解於DCM (10 mL)中,隨後在RT下添加DMF (0.05 mL,0.6 mmol)及乙二醯氯(0.5 mL,6 mmol)。在RT下將混合物攪拌30 min,隨後逐滴添加MeOH (2 mL,49.4 mmol)。在30 min之後,真空移除溶劑,且將殘餘物分配在EtOAc (40 mL)與5% NaHCO3 (30 mL)之間。用飽和NaCl水溶液(40 mL)洗滌有機物,經Na2 SO4 乾燥,過濾且濃縮以得到呈油狀物之標題化合物(1.1 g,80%)。ES/MSm/z (79 Br,81 Br) 278,280 (M+NH4 + )。
製備 6 2-(4-溴-2-氟-3-甲基-苯基)乙酸甲酯
Figure 02_image065
基本上如製備5中所描述使用2-(4-溴-2-氟-3-甲基-苯基)乙腈製備標題化合物。LC-ES/MS峰滯留時間:1.22 min。
製備 7 2-(4-溴-2,6-二氟苯基)乙酸甲酯
Figure 02_image067
將4-溴-2,6-二氟苯基乙酸(3.30 g,12.5 mmol)、DCM (20 mL)、DMF (0.05 mL,0.6 mmol)與乙二醯氯(1.3 mL ,15 mmol)混合。在RT下將混合物攪拌30 min,隨後逐滴添加MeOH (1.5 mL,37 mmol,100質量%)。濃縮混合物且將其分配在EtOAc (30 ml)與飽和NaHCO3 水溶液(15 mL)之間。用飽和NaCl水溶液(30 mL)洗滌有機物,經Na2 SO4 乾燥,過濾且濃縮以得到呈油狀物之標題化合物(3.41 g,定量產率),其不經進一步純化即用於製備10中。ES/MSm/z (79 Br,81 Br) 265,267 (M+H)。
製備 8 4-[(6-溴-2-吡啶基)氧基甲基]-3-氟-苯甲腈
Figure 02_image069
將2-溴-6-氟吡啶(2.50 g,13.8 mmol)及3-氟-4-(羥基甲基)苯甲腈(2.15 g ,13.8 mmol)溶解於1,4-二噁烷(25 ml)中,且在RT下歷經12 min逐滴添加第三丁醇鉀溶液(20 wt%於THF中,10.0 mL,16.6 mmol)。將反應混合物在40℃下加熱30 min。將混合物倒入K2 CO3 水溶液(1M)中,且用EtOAc萃取兩次。用水及飽和NaCl水溶液洗滌有機物,經Na2 SO4 乾燥,過濾,且濃縮。在真空烘箱中在50℃下乾燥殘餘物以得到呈淡黃色固體狀之標題化合物(4.23 g,95%)。ES/MSm/z (79 Br,81 Br) 307,309 (M+H)。
製備 9 2-[2-氟-4-(6-羥基-2-吡啶基)-5-甲基-苯基]乙酸甲酯
Figure 02_image071
向燒瓶中添加:6-羥基吡啶-2-硼酸頻哪醇酯(1.6 g,6.9 mmol)、2-(4-溴-2-氟-5-甲基-苯基)乙酸甲酯(2.2 g,8.4 mmol)、THF (15ml)、水(1 mL)及碳酸鉀(2.0 g,14 mmol)。將混合物用氮氣吹掃10 min,隨後添加Pd(dppf)Cl2 (0.26 g,0.35 mmol),且在75℃下加熱2 h。將混合物分配在EtOAc (30 mL)與水(30 mL)之間。用飽和NaCl水溶液(30 mL)洗滌有機物,經Na2 SO4 乾燥,過濾且濃縮以得到呈固體狀之標題化合物(1.4 g,74%)。ES/MSm/z 276 (M+H), 274 (M-H)。
製備 10 2-[2,6-二氟-4-(6-羥基-2-吡啶基)苯基]乙酸甲酯
Figure 02_image073
基本上如製備9中所描述使用2-(4-溴-2,6-二氟苯基)乙酸甲酯,在75℃下加熱反應物隔夜來製備標題化合物。ES/MSm/z 280 (M+H)。
製備 11 2-[2-氟-4-(6-羥基-2-吡啶基)-3-甲基-苯基]乙酸甲酯
Figure 02_image075
基本上如製備9中所描述使用2-(4-溴-2-氟-3-甲基-苯基)乙酸甲酯,在75℃下加熱反應物隔夜(18 h)來製備標題化合物。ES/MSm/z 276 (M+H), 274 (M-H)。
製備 12 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-3-甲基-苯基]乙酸甲酯
Figure 02_image077
將2-(4-溴-3-甲基苯基)乙酸(10.7 g,45.8 mmol)溶解於DCM (50 mL)中。將混合物在冰/水浴中冷卻,且隨後添加乙二醯氯(4.8 mL,55mmol)及DMF (0.1 ml)。移除冰/水浴且在RT下攪拌2 h。歷經2 min逐滴添加MeOH (6.0 ml)且在RT下攪拌1小時。真空濃縮反應混合物,且將殘餘物溶解於EtOAc中。用飽和NaHCO3 水溶液及飽和NaCl水溶液洗滌有機物。將有機物經Na2 SO4 乾燥,隨後過濾且濃縮。向殘餘物中添加雙(頻哪醇根基)二硼(12.8 g,50.4 mmol)及乙酸鉀(13.6 g,137 mmol)。將氮氣鼓泡通過反應混合物15 min,隨後添加Pd(dppf)Cl2 (具有DCM之複合物,1.13 g,1.37 mmol)。在85℃下在氮氣下於油浴中將反應物加熱15 h,隨後自油浴中移除反應燒瓶。將碳酸鉀(9.49 g,68.7 mmol)溶解於水(60 mL)中,鼓泡氮氣通過溶液10 min,且隨後將此溶液添加至反應混合物中,接著添加4-[(6-溴-2-吡啶基)氧基甲基]-3-氟-苯甲腈(14.1 g,45.8 mmol)。鼓泡氮氣通過全部反應混合物5 min,且在85℃下在氮氣下加熱6 h。將反應物冷卻至接近RT且真空濃縮以移除大部分1,4-二噁烷。用EtOAc (200 ml)稀釋此混合物且用水及飽和NaCl水溶液洗滌。將有機物經Na2 SO4 乾燥,隨後過濾且濃縮。使用梯度5%至50%之EtOAc/己烷,藉由矽膠層析純化粗產物以得到呈淡黃色固體狀之標題化合物(13.3 g,70%)。ES/MSm/z 391 (M+H)。
製備 13 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]乙酸甲酯
Figure 02_image079
向燒瓶中添加2-[2-氟-4-(6-羥基-2-吡啶基)-5-甲基-苯基]乙酸甲酯(1.40 g,5.09 mmol)、1,4-二噁烷(35 mL)、碳酸銀(1.7 g,6.2 mmol)及4-(溴甲基)-3-氟苯甲腈(1.4 g,6.2 mmol)。將混合物在60℃下加熱隔夜。過濾出固體及濃縮濾液。用12%至55%之EtOAc/己烷,藉由矽膠層析純化殘餘物以得到呈固體狀之標題化合物(1.60 g,77%)。ES/MSm/z 409 (M+H), 407 (M-H)。
製備 14 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-苯基]乙酸甲酯
Figure 02_image081
向燒瓶中裝入4-[(6-溴-2-吡啶基)氧基甲基]-3-氟-苯甲腈(2.02 g,6.58 mmol)、2-(2-氟-4-(4,4,5,5-四甲基-1,3,2-二氧硼㖦-2-基)苯基)乙酸甲酯(2.99 g,9.88mmol)、K2 CO3 (2.30 g,16.5 mmol)、1,4-二噁烷 (30 mL)及水(10 mL)。鼓泡氮氣通過混合物10 min。將Pd(dppf)Cl2 DCM複合物(492 mg,0.658 mmol)添加至混合物中,且在氮氣下加熱至80℃持續5 h。冷卻反應混合物,用EtOAc (75 mL)稀釋,且經由Celite® 墊過濾。用水及飽和NaCl水溶液洗滌過濾物,經Na2 SO4 乾燥,過濾且濃縮。使用梯度5%至90%之EtOAc/己烷,藉由矽膠層析純化所得殘餘物以獲得標題化合物(2.68 g,94%)。ES/MSm/z 395 (M+H)。
製備 15 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2,6-二氟-苯基]乙酸甲酯
Figure 02_image083
基本上如製備13中所描述使用2-[2,6-二氟-4-(6-羥基-2-吡啶基)苯基]乙酸甲酯,在80℃下加熱反應物隔夜來製備標題化合物。ES/MSm/z 413 (M+H)。
製備 16 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-3-甲基-苯基]乙酸甲酯
Figure 02_image085
基本上如製備13中所描述使用2-[2-氟-4-(6-羥基-2-吡啶基)-3-甲基-苯基]乙酸甲酯,在80℃下加熱反應物3 h來製備標題化合物。ES/MSm/z 409 (M+H)。
製備 17 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-3-甲基-苯基]乙酸
Figure 02_image087
向燒瓶中添加:2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-3-甲基-苯基]乙酸甲酯(1.20 g,3.07 mmol)、ACN (20 mL)、水(10 mL)及(0.35 g,15 mmol)。將混合物在45℃下加熱3 h。用冰浴冷卻混合物,且用1.0 M HCl酸化至pH = 4-5。將混合物分配在EtOAc (30 mL)與水(30 mL)之間。用鹽水(30 mL)洗滌有機物,經Na2 SO4 乾燥,過濾且濃縮以得到呈固體狀之標題化合物(1.1 g,95%)。ES/MSm/z 377 (M+H)。
製備 18 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]乙酸
Figure 02_image089
向瓶中添加2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]乙酸甲酯(1.6 g,3.9 mmol)、ACN (20 mL)、水(6 mL)及氫氧化鋰(0.45 g,19 mmol)。將混合物在45℃下加熱2 h,用冰浴冷卻混合物,且用1.0 M HCl酸化至pH = 4-5。將混合物分配在EtOAc (50 mL)與水(50 mL)之間。用飽和NaCl水溶液(50 mL)洗滌有機物,經Na2 SO4 乾燥,過濾且濃縮以得到呈固體狀之標題化合物(1.55 g,100%)。ES/MS m/z 395 (M+H)。
製備 19 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-苯基]乙酸
Figure 02_image091
將2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-苯基]乙酸甲酯(2.68 g,6.25 mmol)溶解於THF (50 mL)中,隨後添加氫氧化鋰(797 mg,32.9 mmol)及水(20 mL)。在RT下攪拌5 h之後,用HCl水溶液(1M)將反應混合物之pH調整為5。真空移除揮發性溶劑以得到含水漿料。過濾且乾燥固體以獲得標題化合物(2.24 g,88%)。ES/MSm/z 381 (M+H)。
製備 20 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2,6-二氟-苯基]乙酸
Figure 02_image093
基本上如製備18中所描述使用2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2,6-二氟-苯基]乙酸甲酯製備標題化合物。ES/MSm/z 399 (M+H)。
製備 21 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-3-甲基-苯基]乙酸
Figure 02_image095
基本上如製備17中所描述使用2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-3-甲基-苯基]乙酸甲酯製備標題化合物。ES/MS m/z 395 (M+H)。
製備 22 2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]苯基]乙酸
Figure 02_image097
將4-[(6-溴-2-吡啶基)氧基甲基]-3-氟-苯甲腈(0.70 g,2.3 mmol)與2-(4-二羥硼基苯基)乙酸(0.64 g,3.4 mmol)、THF (15 mL)、水(5 mL)及碳酸鉀(0.63 g,4.6 mmol)混合在一起。將混合物用氮氣吹掃10 min,隨後添加Pd(dppf)Cl2 (0.085 g,0.11 mmol),且將混合物在75℃下加熱8 h。用HCl水溶液(1M)將混合物酸化至pH 4-5。將混合物分配在EtOAc (50 mL)與水(50 mL)之間。用鹽水(50 mL)洗滌有機物,經(Na2 SO4 )乾燥,隨後過濾且濃縮。使用梯度25%至65%之EtOAc/己烷,藉由矽膠層析純化殘餘物以得到呈固體狀之標題化合物(800 mg,97%產率)。ES/MSm/z 363.0 (M+H)。
製備 23 4-胺基-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯
Figure 02_image099
在RT下向3-氟-4-硝基-苯甲酸甲酯(2.0 g,10 mmol)於THF (10 mL)及DMF (10 mL)中之溶液中添加三乙胺(3.1 mL,22 mmol)。向淺黃色溶液中添加[(2S)-氧雜環丁-2-基]甲胺(Austin Chemical Company,1.0 g,11mmol),且攪拌鏽色溶液隔夜。用EtOAc (100 mL)及水(50 mL)稀釋反應物。分離有機層,且隨後用EtOAc (2 × 50 mL)反萃取水層。合併有機物,且用飽和NaCl水溶液洗滌有機物。將有機物經Na2 SO4 乾燥,過濾,濃縮,且在高真空下乾燥殘餘物。此操作得到呈黃色固體狀之粗製4-硝基-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯(2.8 g,10 mmol) (ES/MS m/z 267 (M+H))。
接著,將4-硝基-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯(2.8 g,10 mmol)溶解於THF(50 mL)中,且添加鈀/碳(5%用水預先潤濕,0.5 g)。用氫氣真空吹掃反應混合物,隨後在RT下在氫氣球囊下攪拌2 h,在此期間黃色消失。經由Celite® 過濾混合物且濃縮以得到標題化合物(2.4 g,99%)。ES/MSm/z 237 (M+H)。
製備 24 4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-3-甲基-苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯
Figure 02_image101
向瓶中添加2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-3-甲基-苯基]乙酸1.10 g,2.92mmol)、DMF (10mL)、HATU (1.4 g,3.6 mmol)、4-胺基-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯(0.76 g,3.2 mmol)及DIPEA (1.5 mL,8.6 mmol)。在RT下將混合物攪拌30 min,隨後分配在EtOAc (30 mL)與水(30 mL)之間。用飽和NaCl水溶液(30 mL)洗滌有機物,隨後經Na2 SO4 乾燥,過濾,且濃縮。使用梯度10%至35%之EtOAc/DCM,藉由矽膠層析純化殘餘物以得到呈固體狀之標題化合物(1.2 g,69%)。ES/MSm/z 595 (M+1), 593 (M-1)。
製備 25 4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯
Figure 02_image103
向燒瓶中添加:2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]乙酸(1.20 g,3.04mmol)、DMF (15 ml)、HATU (1.2 g,3.1mmol)、4-胺基-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯(0.80 g,3.4mmol)及DIPEA (1.5 mL,8.6 mmol)。在RT下將混合物攪拌30 min,隨後分配在EtOAc (30 mL)與水(30 mL)之間。用飽和NaCl水溶液(30 mL)洗滌有機物,隨後經Na2 SO4 乾燥,過濾,且濃縮。使用梯度10%至35%之EtOAc/DCM,藉由矽膠層析純化殘餘物以得到呈固體狀之標題化合物(1.20 g,64%)。ES/MSm/z 613 (M+1), 611 (M-H)。
製備 26 2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸甲酯
Figure 02_image105
向圓底燒瓶中添加2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-苯基]乙酸(205 mg,0.540 mmol)、4-胺基-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯(116 mg,0.490 mmol)、HATU (224 mg,0.589 mmol)、DIPEA (0.26 mL,1.5 mmol)及DMF (5 mL)。在RT下攪拌3.5 h之後,用EtOAc (30 mL)稀釋反應混合物,且用水及飽和NaCl水溶液洗滌。將有機物經Na2 SO4 乾燥,過濾且濃縮。使用梯度0%至10%之MeOH/DCM,藉由矽膠層析純化殘餘物以獲得中間物醯胺(326 mg)。ES/MSm/z 599 (M+H)。
將中間物醯胺與乙酸(5 mL)在50℃下加熱15 h。真空濃縮反應混合物,且將剩餘之殘餘物溶解於EtOAc (25 mL)中。用飽和NaHCO3 水溶液及飽和NaCl水溶液洗滌有機物。將有機物經Na2 SO4 乾燥,過濾且濃縮。使用梯度20%至100%之EtOAc/己烷,藉由矽膠層析純化所得物以獲得標題化合物(152 mg,52%)。ES/MSm/z 581 (M+H)。
製備 27 4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2,6-二氟-苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯
Figure 02_image107
基本上如製備24中所描述使用2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2,6-二氟-苯基]乙酸製備標題化合物。藉由過濾收集在水處理期間沈積之產物,且不經進一步純化即使用。ES/MSm/z 617 (M+H), 615 (M-H)。
製備 28 4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-3-甲基-苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯
Figure 02_image109
基本上如製備24中所描述使用2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-3-甲基-苯基]乙酸製備標題化合物。ES/MSm/z 613 (M+H), 611 (M-H)。
製備 29 4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯
Figure 02_image111
基本上如製備25中所描述使用2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]苯基]乙酸製備標題化合物。ES/MSm/z 581.0 (M+H), 579.0 (M-H)。
實例 1 2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-3-甲基-苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸
Figure 02_image113
向瓶中添加4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-3-甲基-苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯(1.2 g,2.0 mmol)及乙酸(6 mL)。將混合物在80℃下加熱2 h,隨後真空移除溶劑。將殘餘物分配在EtOAc (30 mL)與NaHCO3 水溶液(5%,20 mL)之間。用飽和NaCl水溶液(30 mL)洗滌有機物,經Na2 SO4 乾燥,過濾,且濃縮。將殘餘物溶解於ACN (5 mL)及水(3 mL)中,隨後向混合物中添加LiOH (0.22 g,9.2 mmol),且在50℃下攪拌2 h。真空移除溶劑。使用梯度20%至35%之ACN/5% NH4 HCO3 水溶液,藉由逆相急驟層析純化殘餘物以得到呈固體狀之標題化合物(900 mg,79%)。ES/MSm/z 563 (M+H), 561 (M-H)。
實例 2 2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸
Figure 02_image115
向瓶中添加4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯(1.20 g,1.96 mmol)及乙酸(15 mL),隨後將混合物在80℃下加熱2 h。真空移除溶劑。將殘餘物分配在EtOAc (30 mL)與NaHCO3 水溶液(5%,20 mL)之間。用飽和NaCl水溶液(30 mL)洗滌有機物,經Na2 SO4 乾燥,過濾,且濃縮。將殘餘物溶解於ACN (10 mL)及水(4 mL)中,隨後向混合物中添加LiOH (0.24 g,10 mmol),且在50℃下攪拌2 h。用飽和檸檬酸水溶液將混合物酸化至pH = 4-5。真空移除溶劑。使用梯度20%至35%之ACN/5% NH4 HCO3 水溶液,藉由逆相急驟層析純化殘餘物以得到呈固體狀之標題化合物(745 mg,66%)。ES/MSm/z 581 (M+H), 579 (M-H)。
實例 2a 2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸第三 丁銨
Figure 02_image117
方法 1- 在無晶種之情況下製備 將2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸(555 mg,0.96mmol)懸浮於丙酮(6 mL)中,同時在50℃下以800 rpm攪拌,得到白色固體狀之漿料。添加第三丁胺(115 µL,1.09 mmol,1.14當量),觀測到混合物之短暫澄清,隨後沈積白色固體。將此漿料在50℃下攪拌1 h,隨後停止加熱且在到達RT時攪拌樣本。藉由真空過濾過濾出固體,且在氮氣流下在適當位置乾燥15 min,隨後在50℃下真空乾燥1 h以得到標題化合物(612 mg,98%)。
方法 2- 在有晶種之情況下製備 將2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸(50 g,86.1 mmol)、丙酮(658 mL)與水(42 mL)混合在一起,且將混合物加熱50℃。經GF/F紙過濾混合物,且用94:6 v:v丙酮:水(25 mL)沖洗。在50℃下加熱所得溶液。製備第三丁胺(10 mL,94.7 mmol,1.1 eq)及94:6 v:v丙酮:水(25 mL)之溶液。添加一部分第三丁胺溶液(7 mL),隨後添加2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-5-甲基-苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸第三丁銨之晶種(50 mg)。經由注射泵以0.47 mL/min之速率歷經大約1小時添加剩餘第三丁胺溶液。將所得懸浮液在50℃下加熱2 h,隨後將混合物冷卻至環境溫度隔夜。過濾漿料且用丙酮(2 × 100 mL)沖洗。在50℃下真空乾燥濕濾餅至恆重以得到呈淡黃色固體狀之標題化合物(51.8 g,92%)。
標題化合物之經製備樣本藉由使用CuKα輻射之XRD圖案表徵,因為其具有如下表1中所描述之繞射峰(2-θ值),且特別地具有6.9處之峰以及具有選自由16.3及22.5組成之群的峰中之一或多者;其中繞射角之公差為0.2度。 1.2-[[4-[6-[(4- 氰基 -2- - 苯基 ) 甲氧基 ]-2- 吡啶基 ]-2- -5- 甲基 - 苯基 ] 甲基 ]-3-[[(2S)- 氧雜環丁 -2- ] 甲基 ] 苯并咪唑 -5- 酸第三丁銨之 X 射線粉末繞射峰
角(°2-θ) +/- 0.2° 相對強度(最強峰之%)
1 5.5 26.20%
2 6.9 64.90%
3 11.2 49.20%
4 16.3 100.00%
5 17.1 34.70%
6 19.6 53.00%
7 21.8 43.10%
8 22.5 93.80%
9 27.3 41.10%
10 28.0 37.90%
實例 3 2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-苯基]甲基]-3-[(2S)-氧雜環丁-2-基甲基]苯并咪唑-5-甲酸
Figure 02_image119
將2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸甲酯(152 mg,0.256mmol)溶解於THF(6 mL)中,隨後添加氫氧化鋰(31 mg,1.26 mmol)及水(2 mL)。將混合物在RT下攪拌16 h,隨後用HCl水溶液(1N)將pH調整至6。真空移除THF,且藉由過濾收集剩餘固體。使用梯度10%至40%之ACN/NH4 HCO3 水溶液(10 mM,pH 10),藉由逆相急驟層析純化以獲得標題化合物(60 mg,41%)。ES/MSm/z 567 (M+H)。
實例 4 2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2,6-二氟-苯基]甲基]-3-[(2S)-氧雜環丁-2-基甲基]苯并咪唑-5-甲酸
Figure 02_image121
基本上如實例1中所描述使用4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2,6-二氟-苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯製備標題化合物。使用梯度30%至50%之ACN/NH4 HCO3 水溶液(10 mM,pH 10),藉由逆相急驟層析純化產物。ES/MSm/z 585 (M+H), 583 (M-H)。
實例 5 2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟基-3-甲基-苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸
Figure 02_image123
基本上如實例2中所描述使用4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]-2-氟-3-甲基-苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯製備標題化合物。使用梯度5%至40%之ACN/5% NH4 HCO3 水溶液,藉由逆相急驟層析純化產物。ES/MSm/z 581 (M+H), 579 (M-H)。
實例 6 2-[[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]苯基]甲基]-3-[[(2S)-氧雜環丁-2-基]甲基]苯并咪唑-5-甲酸
Figure 02_image125
基本上如實例1中所描述使用4-[[2-[4-[6-[(4-氰基-2-氟-苯基)甲氧基]-2-吡啶基]苯基]乙醯基]胺基]-3-[[(2S)-氧雜環丁-2-基甲基]胺基]苯甲酸甲酯製備標題化合物。使用梯度20%至35%之ACN/5% NH4 HCO3 水溶液,藉由逆相急驟層析純化粗產物。ES/MSm/z 549.0 (M+H), 547.1 (M-H)。
生物學分析 人類 GLP-1 受體 HEK293 細胞 cAMP 分析
在以581 ± 94 (n=6)及104 ± 12 (n=5) fmol/mg蛋白(使用[125 I]GLP-1(7-36)NH2 同源競爭性結合分析測定)之表現密度表現人類GLP-1R (NCBI寄存編號NP_002053)之HEK293純系細胞株中使用cAMP形成測定GLP-1受體功能活性。在補充有1× GlutaMAXTM (Gibco目錄號35050)、0.1%牛酪蛋白(Sigma C4765-10ML)、250 µM IBMX (3-異丁基-1-甲基黃嘌呤,Acros目錄號228420010)及20 mM HEPES (Gibco目錄號15630)之DMEM (Gibco目錄號31053)中,以20 µL分析體積(最終DMSO濃度為0.5%),用化合物(DMSO中之20點濃度反應曲線、2.75倍Labcyte Echo直接稀釋液、384孔盤Corning目錄號3570)處理hGLP-1R受體表現細胞。在37℃下培育30 min之後,引起胞內cAMP之增加使用CisBio cAMP Dynamic 2 HTRF分析套組(62AM4PEJ)來定量地測定。簡言之,細胞內之cAMP含量係藉由添加含cAMP-d2結合物之細胞溶解緩衝液(10 µL),隨後添加亦含抗體抗cAMP-Eu3+ 穴狀化合物之細胞溶解緩衝液(10 µL)來偵測。所得之競爭性分析在RT下培育至少60 min,隨後使用具有320 nm之激發光及665 nm與620 nm之發射光的PerkinElmer Envision®儀器來偵測。Envision單元(以665 nm/620 nm* 10,000發射)與cAMP存在量成反比且使用cAMP標準曲線轉化成nM cAMP/孔。將各孔中產生之cAMP量(nM)轉化成用人類GLP-1(7-36)NH2 所觀測到之最大反應百分比。相對EC50 值及最大百分比(Emax )藉由使用最大反應百分比相對於所添加化合物之濃度的非線性回歸分析,與四參數對數等式擬合來推導出。當使用表現581及104 fmol/mg GLP-1R之HEK293細胞於上文所描述之cAMP分析中測試實例1-6之化合物時,EC50 及Emax 資料分別展示於表2及表3中。此等資料指示實例1-6之化合物為人類GLP-1受體之促效劑。 2. 具有 581 fmol/mg 表現密度之 GLP-1R 、胞內 cAMP 反應 HEK293 細胞株
實例 EC50 (nM) ± SEM (n) Emax (%) ± SEM (n)
1 9.33 ± 1.36 (n = 6) 99.5 ± 2.53 (n = 6)
2 1.14 ± 0.315 (n = 6) 104 ± 4.35 (n = 6)
3 3.08 ± 0.379 (n = 5) 99 ± 3.69 (n = 5)
4 3.99 ± 0.378 (n = 3) 99.2 ± 4 (n = 3)
5 6.45 ± 0.934 (n = 3) 105 ± 2.43 (n = 3)
6 20 ± 6.51 (n = 4) 101 ± 3.42 (n = 4)
3. 具有 104 fmol/mg 表現密度之 GLP-1R 、胞內 cAMP 反應之 HEK293 細胞株
實例 EC50 (nM) ± SEM (n) Emax (%) ± SEM (n)
1 20 ± 3.25 (n = 6) 71.4 ± 2.26 (n = 6)
2 3.97 ± 0.61 (n = 6) 79.2 ± 3.2 (n = 6)
3 10 ± 2.3 (n = 5) 81.7 ± 3.86 (n = 5)
4 9.59 ± 2.36 (n = 3) 78.3 ± 5.1 (n = 3)
5 23.6 ± 5.43 (n = 3) 76.7 ± 3.88 (n = 3)
6 47.7 ± 17.9 (n = 4) 80.3 ± 3.1 (n = 4)
人類 GLP-1R 基因嵌入小鼠中之活體內腹膜內葡萄糖耐受性測試 使用自小鼠Glp-1r 基因座(Jun, L.S.,等人, PLoS One. 2014 9:e93746)表現人類GLP-1R (NCBI寄存編號NP_002053)之小鼠,來測定例示性化合物降低活體內血糖濃度之效能。將溶解於含10% Kolliphor® (HS15)之聚乙二醇400 (PEG400)中的測試化合物經口投與隔夜禁食之小鼠。給藥後一小時,將葡萄糖藉由腹膜內注射(2 g/kg)投與動物,且使用血糖儀在隨後兩小時間歇性地量測血糖含量。遞送劑量範圍之測試化合物,且測定各劑量組之曲線下面積計算,並與四參數對數模型擬合,該四參數對數模型用於以95%信賴區間計算活體內效能作為ED50 。當於上文所描述之活體內腹膜內葡萄糖耐受性測試中測試時,實例1-3之化合物展示出以如表4中所示之ED50 (及95%信賴區間)值降低表現人類GLP-1R之小鼠中之血糖濃度的效能,其指示此等化合物係小鼠經口可獲得之有效GLP-1R促效劑。 4. 表現人類 GLP-1R 之小鼠中之血糖降低功效
實例 血糖降低ED50 (mg/kg) 95% 信賴區間
1 0.09 0.0301-0.2592
2 0.07 0.0246-0.1808
3 0.06 0.013-0.246
非人靈長類 (NHP) 藥物代謝動力學: 測試化合物以0.5 mg/kg (使用1 mL/kg之劑量體積)經靜脈(IV)投與禁食雄性食蟹獼猴。IV推注給藥後0.08、0.25、0.5、1、2、4、8、12及24小時收集連續血液樣本。在用EDTA凝血劑處理之後,血漿藉由離心獲得且儲存於-70℃下直至藉由LC-MS/MS分析。測定血漿中之測試物濃度。非房室模型分析用於計算血漿消除率及穩態之分佈體積。表5展示此分析中實例1-3之化合物的藥物代謝動力學資料。此等資料部分地用於傳達人類機械PK預測,其表明人類藥物動力學概況支持每日一次給藥。 5. 食蟹獼猴藥物代謝動力學資料
實例 血漿消除率(mL/min/kg) 分佈體積(L/kg) 媒劑*
1 13 1.2 A
2 11 1.1 A
3 6 1.1 B
* 媒劑A:5% DMSO及95% (20% CAPTISOL® (w/v))/水;媒劑B:20%卡布迪索(captisol)(w/v)/水+ 1莫耳當量NaOH
磷酸二酯酶 10 (PDE10) 酶活性分析 為了產生磷酸二酯酶10A1 (PDE10A1)蛋白,將對應於GenBank ID AAD32595.1之全長PDE10A1純系選殖至pFastBac1 (Invitrogen)中。具有C端FLAG標記之PDE10A1蛋白藉由昆蟲細胞之桿狀病毒感染表現,且使用抗FLAG M2-瓊脂糖(Sigma)及在Superdex 200管柱(GE Healthcare)上尺寸排阻層析純化,且以較小等分試樣(20 mM Tris-HCl,Ph 7.5,150 mM NaCl,10%甘油)儲存於-80℃下。
用基於矽酸釔之閃爍近接分析(SPA)量測PDE10A1酶活性,該基於矽酸釔之閃爍近接分析偵測放射性核苷酸單磷酸酯而非環狀單磷酸酯。分析緩衝液由50 mM Tris-HCl pH 7.5、8 mM MgCl2 、3.4 mM EDTA及0.1% BSA (Sigma)組成。在384孔盤(3706,Corning)中以50 μl總體積(由24 μl PDE10A1酵素、1 μl測試化合物及25 μl環狀核苷酸組成)進行分析。在純DMSO中使用具有3倍稀釋因子之十點濃度反應曲線稀釋測試化合物,且使用Echo555 (LabCyte)將1 μl以聲學方式施配至分析盤中。在藉由添加[8-3 H]-cGMP基質(6.5 Ci/mmol,Perkin Elmer)開始反應之前,用1 μl化合物將24 μl PDE10A1蛋白培育30 min。在分析緩衝液中組分之最終濃度為70 pM PDE10A1、80 nM (3 H-cGMP)及2% DMSO。反應混合物中之最大化合物濃度為10 µM。在淬滅且添加400 mg/每孔SPA珠粒(RPNQ0150,Perkin Elmer)之前,將反應在RT下培育60 min。12 h後用Microbeta計數器(Perkin Elmer)對珠粒結合放射能(產物)進行定量。將資料標準化為抑制%,且使用如所描述之4參數對數等式計算IC50 值(Campbell, R.M.; Dymshitz, J.; Eastwood, B.J.;等人「Data Standardization for Results Management.」 In: Sittampalam, G.S.; Grossman, A.; Brimacombe, K.;等人編Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company 及the National Center for Advancing Translational Sciences; 2004.)。表6展示此分析中實例1-4之化合物的活性。此等資料展示實例1至4之化合物與PDE10A的結合親和力弱,其指示毒性風險降低。 表6.抑制PDE10A1之活體外效能
實例 IC50 (µM), n = 1
1 >10
2 7.43
3 >10
4 5.41
人類 hERG K+ 通道親和力放射性配位體結合分析 如本文所描述,在放射性配位體結合分析中評估化合物對轉染之HEK-293細胞中人類hERG K+ 通道之親和力。在不存在或存在測試化合物之情況下,將細胞膜勻漿(約40 μg蛋白)在22℃下用3 nM [3 H]多非利特(dofetilide)在含有50 mM Tris-HCl (pH 7.4)、10 mM KCl及1 mM MgCl2 之緩衝液中培育60 min。在96孔盤格式中用含有最大1% DMSO之200 µL體積自測試化合物之最初溶解進行分析。在培育之後,於真空下經由用0.3% PEI預浸之玻璃纖維過濾器(GF/B,Packard)迅速過濾樣本,,且使用96樣本細胞收集器(Unifilter,Packard)用冰冷的50 mM Tris-HCl、10 mM KCl及1 mM MgCl2 沖洗數次。過濾器乾燥,且隨後使用閃爍混合液(Microscint 0,Packard)在閃爍計數器(Topcount,Packard)中對放射活性進行計數。表7展示此分析中實例1-3之活性,表示為對照放射性配位體特異性結合之抑制百分比。此等資料展示實例1至3之化合物具有弱hERG抑制活性,其指示毒性風險降低。 7. 人類 hERGK+ 通道親和力放射性配位體抑制百分比
實例 100 µM化合物濃度下之抑制百分比(%)n = 1
1 0
2 54
3 37
Figure 109120333-A0101-11-0002-3

Claims (9)

  1. 一種化合物或其醫藥學上可接受之鹽,其係選自:
    Figure 109120333-A0305-02-0046-5
    Figure 109120333-A0305-02-0046-6
    ;及
    Figure 109120333-A0305-02-0046-7
    或其醫藥學上可接受之鹽。
  2. 如請求項1之化合物或其醫藥學上可接受之鹽,其係選自:
    Figure 109120333-A0305-02-0047-8
    Figure 109120333-A0305-02-0047-9
    ;及
    Figure 109120333-A0305-02-0047-10
    或其醫藥學上可接受之鹽。
  3. 如請求項2之化合物或其醫藥學上可接受之鹽,其中該化合物為
    Figure 109120333-A0305-02-0047-3
  4. 如請求項3之化合物或其醫藥學上可接受之鹽,其為以下化合物之第 三丁胺鹽:
    Figure 109120333-A0305-02-0048-4
  5. 一種醫藥組合物,其包含如請求項1至4中任一項之化合物或其醫藥學上可接受之鹽,及至少一種醫藥學上可接受之載劑、稀釋劑或賦形劑。
  6. 一種如請求項1至4中任一項之化合物或其醫藥學上可接受之鹽的用途,其係用於製造用以治療II型糖尿病之藥劑。
  7. 一種如請求項1至4中任一項之化合物或其醫藥學上可接受之鹽的用途,其係用於製造用以降低血糖含量之藥劑。
  8. 一種如請求項1至4中任一項之化合物或其醫藥學上可接受之鹽的用途,其用於製造用以治療高血糖症之藥劑。
  9. 如請求項6至8中任一項之用途,其中該藥劑用於經口投與。
TW109120333A 2019-06-28 2020-06-17 類升糖素肽1受體促效劑 TWI751585B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962868117P 2019-06-28 2019-06-28
US62/868,117 2019-06-28
US201962904906P 2019-09-24 2019-09-24
US62/904,906 2019-09-24

Publications (2)

Publication Number Publication Date
TW202115040A TW202115040A (zh) 2021-04-16
TWI751585B true TWI751585B (zh) 2022-01-01

Family

ID=71575804

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109120333A TWI751585B (zh) 2019-06-28 2020-06-17 類升糖素肽1受體促效劑

Country Status (27)

Country Link
US (2) US11655242B2 (zh)
EP (2) EP3989972B1 (zh)
JP (1) JP7256300B2 (zh)
KR (1) KR20220012924A (zh)
CN (1) CN114008033A (zh)
AU (1) AU2020309064B2 (zh)
BR (1) BR112021023923A2 (zh)
CA (1) CA3144055C (zh)
CL (1) CL2021003419A1 (zh)
CO (1) CO2021017433A2 (zh)
CR (1) CR20210599A (zh)
DK (1) DK3989972T3 (zh)
DO (1) DOP2021000273A (zh)
EC (1) ECSP21093576A (zh)
FI (1) FI3989972T3 (zh)
HR (1) HRP20231586T1 (zh)
IL (1) IL288479A (zh)
JO (1) JOP20210337A1 (zh)
LT (1) LT3989972T (zh)
MX (1) MX2021015328A (zh)
PE (1) PE20220590A1 (zh)
PL (1) PL3989972T3 (zh)
PT (1) PT3989972T (zh)
RS (1) RS64940B1 (zh)
SI (1) SI3989972T1 (zh)
TW (1) TWI751585B (zh)
WO (1) WO2020263695A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10954221B2 (en) 2019-04-12 2021-03-23 Qilu Regor Therapeutics Inc. GLP-1R agonists and uses thereof
CN114630823A (zh) 2019-10-25 2022-06-14 吉利德科学公司 Glp-1r调节化合物
US20230051318A1 (en) * 2019-12-02 2023-02-16 Hyundai Pharm Co., Ltd. Glp-1 receptor agonist
MX2022009524A (es) 2020-02-07 2023-01-11 Gasherbrum Bio Inc Agonistas heterociclicos de glp-1.
WO2021160127A1 (en) * 2020-02-13 2021-08-19 Gasherbrum Bio, Inc. Heterocyclic glp-1 agonists
CN115279750A (zh) * 2020-03-18 2022-11-01 株式会社Lg化学 Glp-1受体激动剂、包含该激动剂的药物组合物及其制备方法
AU2021237185B2 (en) * 2020-03-18 2023-11-30 Lg Chem, Ltd. GLP-1 receptor agonist, pharmaceutical composition comprising same, and method for preparing same
CR20230066A (es) 2020-08-06 2023-05-29 Gasherbrum Bio Inc Agonistas del glp-1 heterocíclicos
WO2022042691A1 (en) 2020-08-28 2022-03-03 Gasherbrum Bio, Inc. Heterocyclic glp-1 agonists
WO2022109182A1 (en) 2020-11-20 2022-05-27 Gilead Sciences, Inc. Polyheterocyclic glp-1 r modulating compounds
WO2022111624A1 (zh) * 2020-11-27 2022-06-02 深圳信立泰药业股份有限公司 一种苯并咪唑类衍生物及其制备方法和医药用途
WO2022184849A1 (en) 2021-03-04 2022-09-09 Les Laboratoires Servier Glp-1r agonists, uses and pharmaceutical compositions thereof
JPWO2022202864A1 (zh) 2021-03-24 2022-09-29
JP2024514259A (ja) * 2021-04-08 2024-03-29 エルジー・ケム・リミテッド Glp-1受容体作動薬、それを含む薬学的組成物、およびその製造方法
CR20230495A (es) 2021-04-21 2023-11-30 Gilead Sciences Inc Compuestos moduladores del glp-ir carboxibenzimidazólicos.
WO2022235717A1 (en) * 2021-05-03 2022-11-10 Carmot Therapeutics, Inc. Benzimidazoyl glp-1 receptor agonists, pharmaceutical compositions comprising the same, and methods for their use
TW202310838A (zh) 2021-05-20 2023-03-16 美商美國禮來大藥廠 類升糖素肽1受體促效劑
WO2023038039A1 (ja) 2021-09-08 2023-03-16 塩野義製薬株式会社 抗肥満作用の関与する疾患の予防及び治療用医薬
WO2023057429A1 (en) 2021-10-05 2023-04-13 Astrazeneca Ab Certain 2,5-diazabicyclo[4.2.0]octanes and octahydrofuro[3,4- b]pyrazines as glp-1 receptor modulators
WO2023057414A1 (en) 2021-10-05 2023-04-13 Astrazeneca Ab Certain octahydrofuro[3,4- b]pyrazines as glp-1 receptor modulators
WO2023057427A1 (en) 2021-10-05 2023-04-13 Astrazeneca Ab Certain 2,5-diazabicyclo[4.2.0]octanes as glp-1 receptor modulators
WO2023111144A1 (en) 2021-12-16 2023-06-22 Astrazeneca Ab Certain 3-azabicyclo[3.1.0]hexanes as glp-1 receptor modulators
WO2023111145A1 (en) 2021-12-16 2023-06-22 Astrazeneca Ab Certain 3-azabicyclo[3.1.0]hexanes as glp-1 receptor modulators
WO2023169436A1 (zh) * 2022-03-08 2023-09-14 广州市联瑞制药有限公司 苯并双环类化合物及其制备方法和应用
WO2024041609A1 (zh) * 2022-08-24 2024-02-29 广州市联瑞制药有限公司 苯并双环类化合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109607A1 (en) * 2016-12-16 2018-06-21 Pfizer Inc. Glp-1 receptor agonists and uses thereof
TW202015679A (zh) * 2018-06-13 2020-05-01 美商輝瑞股份有限公司 Glp-1受體促效劑及其用途
TW202039458A (zh) * 2018-11-22 2020-11-01 大陸商上海齊魯銳格醫藥研發有限公司 Glp-1r促效劑及其用途

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020013624A (es) 2018-06-15 2022-08-11 Pfizer Agonistas del receptor glp-1 y usos de los mismos.
US10954221B2 (en) * 2019-04-12 2021-03-23 Qilu Regor Therapeutics Inc. GLP-1R agonists and uses thereof
MA55627A (fr) * 2019-04-12 2022-02-16 Qilu Regor Therapeutics Inc Agonistes de glp-1r et leurs utilisations
WO2021018023A1 (zh) 2019-08-01 2021-02-04 济南泰达领创医药技术有限公司 小分子glp-1受体调节剂
CN114630823A (zh) * 2019-10-25 2022-06-14 吉利德科学公司 Glp-1r调节化合物
EP4059929A4 (en) 2019-11-15 2023-11-01 Ildong Pharmaceutical Co., Ltd. GLP-1 RECEPTOR AGONIST AND ITS USE
US20230051318A1 (en) 2019-12-02 2023-02-16 Hyundai Pharm Co., Ltd. Glp-1 receptor agonist
CA3168543A1 (en) 2020-01-29 2021-08-05 Gilead Sciences, Inc. Glp-1r modulating compounds
WO2021160127A1 (en) 2020-02-13 2021-08-19 Gasherbrum Bio, Inc. Heterocyclic glp-1 agonists
AU2021237185B2 (en) * 2020-03-18 2023-11-30 Lg Chem, Ltd. GLP-1 receptor agonist, pharmaceutical composition comprising same, and method for preparing same
TW202144340A (zh) 2020-04-03 2021-12-01 大陸商江蘇恆瑞醫藥股份有限公司 稠合咪唑類衍生物、其製備方法及其在醫藥上的應用
US20230295154A1 (en) 2020-04-29 2023-09-21 Gasherbrum Bio, Inc. Heterocyclic glp-1 agonists

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109607A1 (en) * 2016-12-16 2018-06-21 Pfizer Inc. Glp-1 receptor agonists and uses thereof
TW202015679A (zh) * 2018-06-13 2020-05-01 美商輝瑞股份有限公司 Glp-1受體促效劑及其用途
TW202039458A (zh) * 2018-11-22 2020-11-01 大陸商上海齊魯銳格醫藥研發有限公司 Glp-1r促效劑及其用途

Also Published As

Publication number Publication date
CL2021003419A1 (es) 2022-09-23
LT3989972T (lt) 2023-12-27
RS64940B1 (sr) 2024-01-31
CA3144055A1 (en) 2020-12-30
KR20220012924A (ko) 2022-02-04
MX2021015328A (es) 2022-01-18
AU2020309064B2 (en) 2023-08-17
EP3989972A1 (en) 2022-05-04
DK3989972T3 (da) 2023-12-04
EP4302826A3 (en) 2024-04-17
PE20220590A1 (es) 2022-04-22
US11655242B2 (en) 2023-05-23
PL3989972T3 (pl) 2024-03-25
ECSP21093576A (es) 2022-01-31
HRP20231586T1 (hr) 2024-03-15
PT3989972T (pt) 2023-12-04
SI3989972T1 (sl) 2024-01-31
US20230250092A1 (en) 2023-08-10
CN114008033A (zh) 2022-02-01
CO2021017433A2 (es) 2022-04-19
BR112021023923A2 (pt) 2022-01-25
CA3144055C (en) 2024-01-02
IL288479A (en) 2022-01-01
FI3989972T3 (fi) 2024-01-24
US20200407347A1 (en) 2020-12-31
JP7256300B2 (ja) 2023-04-11
TW202115040A (zh) 2021-04-16
EP4302826A2 (en) 2024-01-10
AU2020309064A1 (en) 2022-01-27
WO2020263695A1 (en) 2020-12-30
CR20210599A (es) 2021-12-22
JP2022540044A (ja) 2022-09-14
JOP20210337A1 (ar) 2023-01-30
EP3989972B1 (en) 2023-11-08
DOP2021000273A (es) 2022-03-15

Similar Documents

Publication Publication Date Title
TWI751585B (zh) 類升糖素肽1受體促效劑
JP7089566B2 (ja) 疾患の処置のための縮合二環式化合物
KR20210098960A (ko) Helios의 소분자 분해제 및 사용 방법
TW201206944A (en) Morpholine compounds
TW201139444A (en) Heteroaryl-cyclohexyl-tetraazabenzo[e]azulenes
WO2009111943A1 (zh) 用作雌激素相关受体调节剂的化合物及其应用
TW201130814A (en) Pyrazine derivatives
EA026655B1 (ru) 6-ЗАМЕЩЕННЫЕ 3-(ХИНОЛИН-6-ИЛТИО)[1,2,4]ТРИАЗОЛО[4,3-a]ПИРИДИНЫ В КАЧЕСТВЕ ИНГИБИТОРОВ c-MET ТИРОЗИНКИНАЗЫ
RU2727194C2 (ru) Гетероциклические соединения для лечения заболевания
CA2915470A1 (en) Antagonists of prostaglandin ep3 receptor
TWI444376B (zh) 脯胺醯胺吡啶化合物、其藥學組成物及醫藥用途
EP3715348A1 (en) Fused bicyclic compounds for the treatment of disease
SI9520096A (sl) Derivati 2,7-substituiranega oktahidro-1H-pirido /1,2-a/ pirazina
JP7214053B2 (ja) 糖尿病治療に有用な6-メトキシ-3,4-ジヒドロ-1h-イソキノリン化合物
WO2018139471A1 (ja) ジベンゾジアゼピン誘導体
JP2022551180A (ja) イソクエン酸デヒドロゲナーゼ(idh)阻害剤
EA045067B1 (ru) Агонисты рецептора глюкагонподобного пептида 1
US9604969B2 (en) Pyrimidin-4-yl)oxy)-1h-indole-1-carboxamide derivatives and use thereof
WO2023111144A1 (en) Certain 3-azabicyclo[3.1.0]hexanes as glp-1 receptor modulators
EP2678337A1 (en) 2-amino-naphthyridine derivatives