TWI751331B - 半導體裝置的製造方法以及半導體裝置的中間體 - Google Patents

半導體裝置的製造方法以及半導體裝置的中間體 Download PDF

Info

Publication number
TWI751331B
TWI751331B TW107115973A TW107115973A TWI751331B TW I751331 B TWI751331 B TW I751331B TW 107115973 A TW107115973 A TW 107115973A TW 107115973 A TW107115973 A TW 107115973A TW I751331 B TWI751331 B TW I751331B
Authority
TW
Taiwan
Prior art keywords
sealing
semiconductor device
semiconductor
manufacturing
support substrate
Prior art date
Application number
TW107115973A
Other languages
English (en)
Other versions
TW201907494A (zh
Inventor
鎌田潤
春田佳一郎
茅場靖剛
高村一夫
児玉洋一
Original Assignee
日商三井化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三井化學股份有限公司 filed Critical 日商三井化學股份有限公司
Publication of TW201907494A publication Critical patent/TW201907494A/zh
Application granted granted Critical
Publication of TWI751331B publication Critical patent/TWI751331B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

本發明的半導體裝置的製造方法包括:第1步驟,於支撐基板上,將多個半導體晶片以其電路面與所述支撐基板對向的方式予以固定;第2步驟,利用三維成型法對所述多個半導體晶片上賦予包含密封樹脂的密封材,藉此空開間隔形成多個藉由所述密封材埋入有所述半導體晶片的密封層;第3步驟,使所述密封層硬化或固化;以及第4步驟,將經硬化或固化的所述密封層自所述支撐基板剝離而獲得密封體。

Description

半導體裝置的製造方法以及半導體裝置的中間 體
本發明是有關於一種半導體裝置的製造方法以及半導體裝置的中間體。
先前,關於使用矽半導體的積體電路(integrated circuit,IC)或使用有機半導體的有機電激發光(Electro-Luminescence,EL)元件等半導體元件(半導體晶片),通常藉由於晶圓基板面呈矩陣狀地形成多個元件之後,利用切片(dicing)而分割為單獨的元件來製造。半導體晶片通常被實施樹脂密封等來封裝(package)化,並搭載於各種電子設備。
作為半導體晶片的封裝(packaging)技術,近年來提出有被稱為扇出型晶圓級封裝(Fan-out wafer level package)的技術:將半導體晶片的背面側(與電路面相反的一側)予以樹脂密封之後,於半導體晶片的表面(電路面)形成再配線層,並於其上進而形成外部端子(例如,參照專利文獻1)。
而且,就低成本化的觀點而言,需要大面積封裝技術。尤其需要多個半導體晶片的統括密封或作為高成本製程即再配線層(Re-Distribution Layer,RDL)的大面積統括形成。
與此相對,於專利文獻1中揭示了經由如下步驟來製造半導體裝置的方法,所述步驟即:1)於支撐基板上,將多個半導體晶片以其表面(電路面)朝下的方式予以固定的步驟;2)利用密封材將多個半導體晶片的背面統括密封的步驟;3)剝離支撐基板而獲得密封體的步驟;4)於密封體的露出半導體晶片的表面(電路面)形成再配線層,並進而形成金屬凸塊(bump)等外部連接端子的步驟;5)以每個半導體晶片或以多個半導體晶片成為一個封裝體(package)為單位進行分割的步驟。
[現有技術文獻]
[專利文獻]
[專利文獻1] 日本專利特開2001-308116號公報
然而,於專利文獻1的樹脂密封步驟(2)的步驟中,是將密封樹脂形成於包含多個半導體晶片間的支撐基板的整個面上。如此,密封材與支撐基板之間的接觸面積大,因此存在於密封時或剝離支撐基板時因密封材與支撐基板的熱膨脹率的差異而容易產生密封體的翹曲或半導體晶片的偏移(晶片偏移(die shift))這一問題。藉此,存在使之後的密封體的操作(handling)性下降,或使獲得的半導體裝置的可靠性下降之虞。
本發明是鑒於所述情況而成,目的在於提供一種半導體裝置的製造方法以及半導體裝置的中間體,其可在將多個半導體 晶片統括密封而獲得密封體時,抑制密封體的翹曲或半導體晶片的偏移,並可抑制之後的密封體的操作性或半導體裝置的可靠性的下降。
本發明是有關於以下的半導體裝置的製造方法以及半導體裝置的中間體。
[1]一種半導體裝置的製造方法,包括:第1步驟,於支撐基板上,將多個半導體晶片以其電路面與所述支撐基板對向的方式予以固定;第2步驟,利用三維成型法對所述多個半導體晶片上賦予包含密封樹脂的密封材,藉此空開間隔形成多個藉由所述密封材埋入有所述半導體晶片的密封層;第3步驟,使所述密封層硬化或固化;以及第4步驟,將所述經硬化或固化的密封層自所述支撐基板剝離而獲得密封體。
[2]如[1]所述的半導體裝置的製造方法,其中,於所述第2步驟中,在對所述支撐基板俯視的狀態下,相鄰的兩個所述密封層間的間隔的最小值相對於所述密封層的最大寬度的比例為0.19%~10%。
[3]如[1]或[2]所述的半導體裝置的製造方法,其進而包括:於所述支撐基板上形成多個包圍所述半導體晶片的框體的步驟,於所述第2步驟中,藉由對所述框體的內側賦予所述密封材而形成由所述密封材埋入有所述半導體晶片的密封層。
[4]如[3]所述的半導體裝置的製造方法,其中,所述框體包 含60℃~250℃下的線膨脹係數為35ppm/K以下的材料。
[5]如[3]所述的半導體裝置的製造方法,其中,所述框體包含60℃~250℃下的拉伸彈性率較硬化或固化後的所述密封材的拉伸彈性率低0.5GPa以上的樹脂。
[6]如[1]~[5]中任一項所述的半導體裝置的製造方法,其中,所述密封材亦可進而包含填充劑,相對於所述密封材的總質量的所述填充劑的含有率為10質量%以下。
[7]如[1]~[6]中任一項所述的半導體裝置的製造方法,其中,於利用所述三維成型法將所述密封材賦予至所述半導體晶片上時的所述密封材的黏度為1mPa.s~20mPa.s。
[8]如[1]~[7]中任一項所述的半導體裝置的製造方法,其中,所述密封層的玻璃轉移溫度為110℃以上。
[9]如[1]~[8]中任一項所述的半導體裝置的製造方法,其中,所述密封樹脂是選自由環氧樹脂、聚醯亞胺樹脂及脲樹脂組成的群組中的至少一種。
[10]如[1]~[9]中任一項所述的半導體裝置的製造方法,其進而包括:於所述密封體的露出所述半導體晶片的面,藉由三維成型法形成再配線層的步驟。
[11]如[1]~[10]中任一項所述的半導體裝置的製造方法,其進而包括:於所述密封體的露出所述半導體晶片的面的所述半導體晶片的外周部,藉由三維成型法形成接地配線的步驟。
[12]如[1]~[11]中任一項所述的半導體裝置的製造方法,其 進而包括:於所述密封體的未露出所述半導體晶片的面的至少一部分,藉由三維成型法形成電磁波屏蔽層的步驟。
[13]如[1]~[12]中任一項所述的半導體裝置的製造方法,其中,所述密封體包含多個所述半導體晶片,所述半導體裝置的製造方法進而包括將所述密封體中所含的所述多個半導體晶片間予以切斷的步驟。
[14]一種半導體裝置的中間體,其具有:支撐基板;多個半導體晶片,以電路面與所述支撐基板對向的方式固定於所述支撐基板上;以及多個密封層,彼此空開間隔配置,並且所述半導體晶片埋入至所述密封材中。
[15]如[14]所述的半導體裝置的中間體,其中,在對所述支撐基板俯視的狀態下,相鄰的兩個所述密封層間的間隔的最小值相對於所述密封層的最大寬度的比例為0.19%~10%。
[16]如[15]所述的半導體裝置的中間體,其中,所述密封層的間隔的最小值為0.18mm~6mm,並且,所述密封層的最大寬度為10mm~60mm。
根據本發明,可提供一種抑制將多個半導體晶片統括封裝來獲得密封體時的密封體的翹曲或半導體晶片的偏移,並可抑制之後的密封體的操作性或半導體裝置的可靠性的下降的半導體裝置的製造方法。
11:支撐基板
13:半導體晶片
13A:表面
13B:背面
15:黏著片
17:密封材
17':硬化或固化的密封材
19:密封層
21:密封體
23:再配線層
25:凸塊
27、27':半導體封裝體
29:框體
d:(密封層19彼此的)間隔的最小寬度
L:光
t1、t2:厚度
W:(密封層19的)最大寬度
圖1A~圖1I是表示本實施形態的半導體裝置的製造方法的一例的圖。
圖2A及圖2B是表示形成多個密封層的步驟的一例的圖。
圖3A及圖3B是表示形成多個密封層的步驟的另一例的圖。
圖1A~圖1I是表示本實施形態的半導體裝置的製造方法的一例的圖。本實施形態的半導體裝置的製造方法包括:第1步驟,於支撐基板11上固定多個半導體晶片13;第2步驟,對多個半導體晶片13上賦予密封材17,藉此形成多個由密封材17埋入有半導體晶片13的密封層19;第3步驟,使密封層19硬化或固化;以及第4步驟,將經硬化或固化的密封層19自支撐基板11剝離而獲得密封體21。本實施形態的半導體裝置的製造方法視需要亦可進而包括於獲得的密封體21的露出半導體晶片13的面形成再配線層23的步驟、於所述再配線層23上形成凸塊25的步驟、於獲得的密封體21的半導體晶片13的外周部形成接地配線的步驟、或於獲得的密封體21的未露出半導體晶片13的面形成電磁波屏蔽層的步驟中的一個以上的其他步驟。另外,其他步驟的順序並無特別限制。如此,將對半導體晶片的與電路面相反的一側進行樹脂密封之後,視需要於半導體晶片的電路面依次形成再配線層或外部端子來製造半導體裝置的方法,亦稱為扇出型晶圓級封裝(Fan-out wafer level package)法。
以下,參照圖示對各步驟進行說明。
(第1步驟)
首先,準備支撐基板11(參照圖1A)。支撐基板11的示例包括:石英基板、無鹼玻璃基板等玻璃基板;鐵用不銹鋼(Steel Use Stainless,SUS)基板等金屬板;矽晶圓、碳化矽(SiC)晶圓、砷化鎵(GaAs)晶圓等晶圓基板;樹脂基板等。其中,就以抑制密封體21的翹曲或晶片偏移為目標的熱膨脹率控制的觀點而言,較佳為線膨脹係數低,因此較佳為玻璃基板或SUS基板。
支撐基板11的厚度並無特別限制,但就進一步減少密封體21的翹曲或變形並且提高操作性的觀點而言,例如可為10μm~20mm。若支撐基板11的厚度為10μm以上,則於製造步驟中更不易產生密封體21的翹曲或變形,並且不易產生製造步驟中的搬送故障,因此不易產生因良率的下降而導致的生產性的下降。若支撐基板11的厚度為20mm以下,則重量不會變的過大,因此搬送不會變得困難,從而操作性優異。
支撐基板11的大小並無特別限制,但就進一步減少密封體21的翹曲或變形並且提高產率的觀點而言,最大寬度較佳為5cm~50cm,更佳為10cm~30cm(12吋),尤佳為10cm~20cm(8吋)。
其次,於支撐基板11上將多個半導體晶片13以其表面13A(電路面)成為支撐基板11側的方式予以固定。固定多個半導體晶片13的方法並無特別限制,例如可藉由將黏著片(sheet) 15配置於支撐基板11上之後,於其上進而配置多個半導體晶片13來進行(參照圖1B~圖1C)。
黏著片15的示例包括藉由光照射而硬化由此黏著力下降的光硬化型黏著片或藉由加熱而熱膨脹由此黏著力下降的熱膨脹性黏著片等。
(第2步驟)
對固定於支撐基板11上的多個半導體晶片13的背面13B(與電路面為相反的一側的面)賦予包含密封樹脂的密封材17。藉此,於支撐基板11上空開間隔的形成多個藉由密封材17埋入有半導體晶片13的密封層19。
圖2A及圖2B是表示形成多個密封層19的步驟的一例的圖。其中,圖2A是平面圖,圖2B是剖面圖。如圖2A及圖2B所示,於支撐基板11上空開間隔的形成多個密封層19。藉此,可減小支撐基板11與各密封層19之間的接觸面積,因此可減少因支撐基板11與密封層19(或密封材17)的線膨脹係數之差引起的密封體21的翹曲或半導體晶片13的偏移。
密封層19的形狀並無特別限制,既可為矩形狀,亦可為圓形狀,就提高產率的觀點而言,較佳為矩形狀。
如前所述,因密封層19與支撐基板11的線膨脹係數的差異引起的半導體晶片13的偏移或密封體21的翹曲與單個連續的密封層19和支撐基板11之間的接觸面積成比例。
於密封材17含有「使線膨脹係數成為密封層19<支撐基 板11般的熱硬化性樹脂」作為密封樹脂的情況下,於賦予密封材17並進行加熱硬化之後,進行冷卻時的冷卻過程中,因兩者的收縮率的差異(線膨脹係數的差異)而容易產生半導體晶片13的偏移或密封體21的翹曲。尤其,若支撐基板11的收縮率大於密封層19的收縮率,則有於冷卻過程中,相鄰的密封層19彼此的間隔縮窄而產生接觸之虞。若因產生所述接觸,相鄰的密封層19彼此結合而成為單個連續的密封層19,則半導體晶片13的偏移或密封體21的翹曲容易進一步變大。從而,為了減少半導體晶片13的偏移或密封體21的翹曲,期待於冷卻過程中抑制相鄰的密封層19彼此的接觸。
另外,於密封材17含有「使線膨脹係數成為密封層19>支撐基板11般的熱硬化性樹脂或光硬化性樹脂」作為密封樹脂的情況下,於賦予密封材17並進行加熱硬化之後,進行加熱時的過程中,因兩者的膨脹率的差異(線膨脹係數的差異)而容易產生半導體晶片13的偏移或密封體21的翹曲。尤其,若支撐基板11的膨脹率小於密封層19的膨脹率,則有於硬化後的加熱過程中,相鄰的密封層19彼此的間隔縮窄而產生接觸之虞。若因產生所述接觸,相鄰的密封層19彼此結合而成為單個連續的密封層19,則半導體晶片13的偏移或密封體21的翹曲容易進一步變大。從而,為了減少半導體晶片13的偏移或密封體21的翹曲,期待於硬化後的加熱過程中抑制相鄰的密封層19彼此的接觸。
俯視的狀態下、相鄰的密封層19與密封層19之間的間 隔的最小寬度d相對於密封層19的最大寬度W的比例(密封層19與密封層19之間的間隔的最小寬度d/密封層19的最大寬度W×100(%))較佳為相對於密封層19的最大寬度W而為0.19%~10%。若所述比例(d/W×100)為0.19%以上,則可高度抑制於加熱硬化後的冷卻過程或硬化後的加熱過程中相鄰的密封層19彼此的間隔d縮窄而接觸。藉此,相鄰的密封層19與密封層19之間的間隔得到確保,因此可高度抑制因支撐基板11與密封層19的熱膨脹係數的差異而導致的密封體21的翹曲或半導體晶片13的偏移。若所述比例(d/W×100)為10%以下,則可抑制因密封層19的面積過度變小而導致的產率的下降。
所述數值範圍可使用解析軟體ANSYS等來求出。即,使用解析軟體ANSYS來計算將支撐基板11、半導體晶片13及密封層19的材質設為特定的組合時的、加熱硬化後的冷卻過程或硬化後的加熱過程中半導體晶片13的移動距離的最大值。並且,將超過獲得的半導體晶片13的移動距離的最大值的值作為相鄰的密封層19彼此的間隔d的最小值,並除以密封層19的最大寬度W,而算出所述比例(d/W×100)。可改變材料的組合進行所述操作,並將獲得的比例(d/W×100)中的最小值作為所述比例(d/W×100)的下限值。
作為支撐基板11與密封層19的組合,較佳為支撐基板11為選自SUS基板、玻璃基板、矽晶圓中的至少一種,且密封層19包含熱硬化性樹脂及光硬化性樹脂的至少一種,更佳為支撐基 板11為SUS基板,且密封層19包含環氧樹脂。藉由於所述組合時將所述比例(d/W×100)設為0.19%~10%,容易抑制於加熱硬化後的冷卻過程或硬化後的加熱過程中相鄰的密封層19彼此接觸,從而容易進一步抑制半導體晶片13的偏移或密封體21的翹曲。
密封層19的最大寬度W因半導體晶片13的大小或製造裝置等而異,並無特別限制,例如較佳為10mm~60mm。若密封層19的最大寬度W為10mm以上,則容易於單個密封層19配置充分數量的半導體晶片13,若為60mm以下,則可充分減少單個密封層19與支撐基板11之間的接觸面積,因此容易充分抑制密封體21的翹曲或半導體晶片13的偏移。
相鄰的密封層19與密封層19之間的間隔的最小值d只要滿足所述比例(d/W×100)則並無特別限制,例如較佳為0.18mm~6.0mm,更佳為0.5mm~3.0mm。若最小值d為所述範圍內,則可高度兼顧對密封體21的翹曲或半導體晶片13的偏移的抑制與半導體13的產率。
密封層19的厚度t1只要為於硬化或固化後可掩埋半導體晶片13整體的程度的厚度即可,例如能夠以硬化或固化後的厚度成為0.1mm~5mm程度的方式進行設定(參照圖2B)。
關於支撐基板11與密封材17的線膨脹係數之差的絕對值,就為了容易抑制半導體晶片13的偏移或密封體21的翹曲的觀點而言,較佳為15ppm/K以下,更佳為9.3ppm/K以下。
而且,就藉由減少單個連續的密封層19的面積來抑制半導體晶片13的偏移或密封體21的翹曲的觀點而言,單個密封層19中所含的半導體晶片13的數量越少越佳。具體而言,單個密封層19中所含的半導體晶片13的數量較佳為1個~10個,更佳為1個~3個,尤佳為1個。
密封層19的形成即密封材17的賦予是藉由三維成型法來進行。於三維成型法中,與先前的轉注(transfer)成形等金屬模具成形法不同,難以於使之硬化或固化時產生熱。藉此,於抑制因支撐基板11與密封層19的熱膨脹率之差引起的翹曲的同時可抑制半導體晶片13的偏移。
三維成型法並無特別限制,可為光成型法(立體印刷(Stereo lithography);STL法)、材料噴射(material jetting)法(噴墨(inkjet)法)、熱溶解積層法(熔融積層成型(Fused Deposition Modeling);FDM法)、粉末燒結積層成型法(選擇性雷射燒結(Selective Laser Sintering);SLS法)中的任一種。
光成型法(STL法)是藉由只對裝滿液狀的光硬化性樹脂組成物的槽的液面的規定部分照射光,而於配置於槽內的成型台上的、固定有多個半導體晶片13的支撐基板11上形成/積層樹脂層的方法。
材料噴射法(噴墨法)是藉由噴射液狀的光硬化性樹脂組成物或熱硬化性樹脂組成物,並對所述噴射的液狀的光硬化性樹脂組成物照射光使其硬化,或對所述噴射的液狀的熱硬化性樹 脂組成物進行加熱使其硬化,來形成/積層樹脂層的方法。
熱溶解積層方式(FDM法)是藉由將因熱而溶解的熱可塑性樹脂組成物自頭部(head)(噴嘴)擠出之後,進行冷卻,而形成/積層樹脂層的方法。
粉末燒結方式(SLS法)是藉由噴射熱可塑性樹脂粉末之後,利用雷射將其燒固(使其熔接)而形成/積層樹脂層的方法。
其中,就不易於密封時產生熱並且可簡化裝置構成的觀點而言,較佳為材料噴射法(噴墨法)或熱溶解積層法(FDM法)。
所使用的密封材17可根據三維成型法的種類來選擇。密封材17既可為含有硬化性樹脂作為密封樹脂的硬化性樹脂組成物,亦可為含有熱可塑性樹脂作為密封樹脂的熱可塑性樹脂組成物。
硬化性樹脂組成物既可為光硬化性樹脂組成物,亦可為熱硬化性樹脂組成物。
光硬化性樹脂組成物包含作為密封樹脂的光硬化性樹脂、及硬化劑。光硬化性樹脂的示例包括:(甲基)丙烯酸酯化合物等光自由基硬化性化合物;或環氧樹脂等光陽離子硬化性化合物。光自由基硬化性化合物的硬化劑的示例包括:苯乙酮類;安息香系化合物、醯基膦氧化物系化合物、二苯甲酮系化合物等光自由基起始劑。光陽離子硬化性化合物的硬化劑的示例包括光酸產生劑等光陽離子起始劑。
熱硬化性樹脂組成物包含作為密封樹脂的熱硬化性樹 脂、及硬化劑。熱硬化性樹脂的示例包括環氧樹脂。熱硬化性樹脂的硬化劑的示例包括酸酐類、胺化合物、酚化合物等。
熱可塑性樹脂組成物包含熱可塑性樹脂作為密封樹脂。熱可塑性樹脂的示例包括:聚乳酸(PLA(poly lactic acid)樹脂)、丙烯腈/丁二烯/苯乙烯共聚物(ABS(Acrylonitrile Butadiene Styrene)樹脂)、聚烯烴、聚酯、聚醯胺、聚醯亞胺、聚醚酮、聚苯並
Figure 107115973-A0305-02-0016-1
唑、丙烯酸樹脂等。
就力學強度、耐熱性、水蒸氣透過性等觀點而言,密封材17較佳為熱硬化性樹脂組成物或光硬化性樹脂組成物。熱硬化性樹脂組成物中所使用的熱硬化性樹脂或光硬化性樹脂組成物中所使用的光硬化性樹脂較佳為選自由環氧樹脂、聚醯亞胺樹脂及脲樹脂組成的群組中的至少一種。另一方面,就為了不易於密封時發熱的觀點而言,密封材17較佳為光硬化性樹脂組成物或熱可塑性樹脂組成物。
就藉由提高硬化後或固化後的密封層19的耐熱性或降低線膨脹係數,來進一步抑制所獲得的密封體21的翹曲,並進一步提高半導體封裝體27或半導體封裝體27'(參照圖1H及圖1I)的可靠性或良率的觀點而言,光硬化性樹脂組成物、熱硬化性樹脂組成物及熱可塑性樹脂組成物亦可視需要進而分別含有陶瓷填料或無機填料等絕緣性填充劑。
如此,密封材17亦可進而含有填充劑。其中,就為了於利用三維成型法將密封材17賦予至半導體晶片13時,容易抑 制裝置內的堵塞,並且不損害射出性的觀點而言,密封材17中的填充劑的含有率較佳為相對於密封材17的總質量而為10質量%以下,更佳為5質量%以下,尤佳為1質量%以下。
填充劑的示例可列舉:滑石、煅燒黏土、未煅燒黏土、雲母、玻璃等矽酸鹽,氧化鈦、氧化鋁、熔融二氧化矽(熔融球狀二氧化矽、熔融破碎二氧化矽)、晶矽石粉末等氧化物,碳酸鈣、碳酸鎂、水滑石(hydrotalcite)等碳酸鹽,氫氧化鋁、氫氧化鎂、氫氧化鈣等氫氧化物,硫酸鋇、硫酸鈣、次硫酸鈣等硫酸鹽或亞硫酸鹽,硼酸鋅、偏硼酸鋇(barium metaborate)、硼酸鋁、硼酸鈣、硼酸鈉等硼酸鹽,氮化鋁、氮化硼、氮化矽等氮化物等。
就為了抑制三維成型法中裝置的堵塞並且容易形成玻璃轉移溫度高的密封層19的觀點而言,較佳為密封材17中所含的密封樹脂為環氧樹脂,並且填充劑(填料)的含有率相對於密封材17的總質量而為10質量%以下;更佳為密封樹脂為環氧樹脂,並且填充劑(填料)的含有率相對於密封材17的總質量而為5質量%以下。
密封材17的、自三維成型法的裝置射出時的黏度較佳為1mPa.s~20mPa.s。若密封材17的黏度在所述範圍,則容易抑制三維成型法中裝置的堵塞,因此射出性容易變良好,並且容易將密封層19形成為期望的形狀。
(第3步驟)
使獲得的密封層19硬化或固化(參照圖1E)。
密封層19的硬化既可為光硬化亦可為熱硬化。即,於密封層19包含光硬化性樹脂組成物的情況下,對密封層19進行光照射而使其硬化(參照圖1E)。於密封層19包含熱硬化性樹脂組成物的情況下,對密封層19進行加熱而使其硬化。
密封層19的固化亦可為冷卻固化。即,於密封層19包含熱可塑性樹脂組成物的情況下,對密封層19進行冷卻而使其固化。
硬化或固化後的密封層19的玻璃轉移溫度較佳為110℃以上,更佳為150℃以上,尤佳為200℃以上。
玻璃轉移溫度可藉由以下的方法來進行測定。即,準備包含硬化或固化的密封材17、寬4mm長20mm的試驗片。可使用島津製作所公司製作的熱分析裝置(TMA-50),於25℃~350℃的溫度範圍內,以升溫速度5℃/分、負載14g/mm2、拉伸模式的測定條件下,對所述試驗片的玻璃轉移溫度進行熱機械分析(thermomechanical analysis,TMA)測定,並根據獲得的溫度-試驗片伸長曲線的拐點確定玻璃轉移溫度(Tg)。
硬化或固化後的密封層19的玻璃轉移溫度可主要藉由密封材17的組成來調整。為了將硬化或固化後的密封層19的玻璃轉移溫度設為一定以上,較佳為例如選擇硬化性樹脂組成物作為密封材17或添加填充劑(填料)。
密封層19的填充劑的含有率較佳為相對於密封層19的總質量而為50質量%~95質量%,更佳為60質量%~90質量%。 若填充劑的含量為所述範圍內,則會高度抑制因大氣中的水分導致的半導體晶片13的劣化並且容易抑制裂紋的產生。
另外,包含填充劑的密封層19既可藉由利用三維成型法賦予包含填充劑的密封材17來形成,亦可預先將填充劑賦予至半導體晶片13的周邊,並於其上進而賦予不包含填充劑的密封材17來形成。
藉由如此,獲得具有支撐基板11、配置於支撐基板11上的多個半導體晶片13、及空開間隔配置並且半導體晶片13埋入至密封材17中的多個密封層19的半導體裝置的中間體。
(第4步驟)
將獲得的中間體的硬化或固化後的密封層19自支撐基板11剝離,獲得密封體21(參照圖1F)。
將硬化或固化後的密封層19自支撐基板11剝離的方法並無特別限制。例如,於黏著片15為光硬化型黏著片的情況下,藉由進行光照射使黏著力下降,來將經硬化或固化的密封層19剝離(參照圖1F)。於黏著片15為熱膨脹型黏著片的情況下,藉由進行加熱使黏著力下降,來將經硬化或固化的密封層19剝離。
獲得的密封體21包括:半導體晶片13及包含掩埋半導體晶片13的表面13A以外的半導體晶片13的整體的硬化或固化的密封材17'的層。
(其他步驟)
進而,亦可對獲得的密封體21的露出半導體晶片13的面, 形成再配線層23(形成再配線層23的步驟,參照圖1G)。
再配線層23包括再配線部(未圖示)及再配線絕緣層(未圖示)。
再配線部的材質可為通常用作配線的金屬材料,其示例包括銅、鋁等。
再配線絕緣層的材質可為環氧樹脂、聚烯烴、丙烯酸樹脂、聚酯、ABS樹脂、聚醯亞胺、聚醚酮、聚苯並
Figure 107115973-A0305-02-0020-2
唑等樹脂。其中,優選硬化後的玻璃轉移溫度為110℃以上,較佳為150℃以上、更佳為200℃以上的硬化性樹脂,其示例包括環氧樹脂、熱硬化性聚烯烴、聚醯亞胺、聚醚酮、聚苯並
Figure 107115973-A0305-02-0020-3
唑。
硬化性樹脂的硬化物的玻璃轉移溫度可藉由與經硬化或固化的密封層19的玻璃轉移溫度相同的方法來進行測定。
就藉由提高耐熱性或降低線膨脹係數,來抑制半導體封裝體27或半導體封裝體27'(參照圖1H及圖1I)的翹曲,並提高半導體封裝體27或半導體封裝體27'的可靠性/良率的觀點;以及藉由降低材料的介電常數來減少傳輸損失的觀點而言;再配線絕緣層亦可視需要進而含有陶瓷填料或無機填料等絕緣性填充材。
形成再配線層23的方法並無特別限制,存在半加成法(semiadditive method)或減色法(subtractive method)、三維成型法等,其中,較佳為三維成型法。藉由以三維成型法形成再配線層23,可減少形成再配線層23時熱的產生,因此,可進一步抑制密封體21的翹曲或半導體晶片13的偏移。進而,目前難以形成 的微細的配線的形成成為可能,視需要針對每個密封體21進行的設計變更亦變得容易。例如,配線部的形成可藉由使用銅漿(paste)等金屬漿的材料噴射法(噴墨法)或使用金、銀、銅、鎳等金屬微粒子的金屬粉末燒結方式(SLS法)來形成。
而且,亦可進而進行於獲得的密封體21的露出半導體晶片13的面或再配線層23上形成凸塊25的步驟(形成凸塊25的步驟,參照圖1H)。凸塊的材質可為通常用作凸塊的公知的金屬材料。
而且,亦可進而進行於獲得的密封體21的露出半導體晶片13的面上半導體晶片13的外周部形成接地配線(未圖示)的步驟(形成接地配線的步驟,未圖示)。
接地配線的材質可為通常用作配線的公知的金屬材料,其示例包括銅、鋁等。
形成接地配線的方法並無特別限制,就可減少配線形成時的熱的產生,並且亦可形成微細的配線的觀點而言,較佳為三維成型法。具體而言,可藉由使用銅漿等金屬漿的材料噴射法(噴墨法)或使用金、銀、銅、鎳等金屬微粒子的金屬粉末燒結方式(SLS法)來形成。
而且,亦可進而進行對獲得的密封體21的未露出半導體晶片13的面的至少一部分形成電磁波屏蔽層(未圖示)的步驟(形成電磁波屏蔽層的步驟,未圖示)。
電磁波屏蔽層的材質可為通常用作電磁波屏蔽材的金 屬材料,其示例包括:銀、銅、金、鋁、鎂、鎢、鈷、鋅、鎳、鐵、鉑、錫、鉻、鉛、鈦、錳、不銹鋼等。其中,較佳為電阻率低的銀、銅、金、鋁。
形成電磁波屏蔽層的方法並無特別限制,較佳為三維成型法。具體而言,可藉由使用金屬漿的材料噴射法(噴墨法)或使用金屬微粒子的金屬粉末燒結方式(SLS法)來形成。
既可將如此獲得的密封體21直接作為半導體封裝體27(半導體裝置)(參照圖1H);亦可將密封體21進而以每個半導體晶片13或成為一個封裝體的多個半導體晶片13為單位進行分割,而形成半導體封裝體27'(半導體裝置)(參照圖1I)。
於本實施形態中,如前所述,空開間隔形成多個密封層19。藉此,可減小各密封層19與支撐基板11之間的接觸面積。進而,藉由三維成型法進行密封層19的形成。藉此,與先前的金屬模具成形法相比,可減少形成密封層19時的熱的產生。藉此,可抑制因支撐基板11與密封層19的熱膨脹率的差異引起的密封體21的翹曲或半導體晶片13的偏移(晶片偏移)。
另外,於本實施形態中,示出了於第2步驟中,以單個密封層19包含多個半導體晶片13的方式進行密封的示例,但並不限於此,亦能夠以單個密封層19包含一個半導體晶片13的方式進行密封。
而且,於本實施形態中,例示了不使用框體的示例,但並不限於此,亦可進而使用框體。
圖3A及圖3B是表示形成多個密封層19的步驟的另一例的圖。其中,圖3A是平面圖,圖3B是剖面圖。亦可如圖3A及圖3B所示,進而進行形成包圍密封層19的外周的框體29的步驟。框體29的形成既可於第2步驟之前進行,亦可於之後進行。其中,就為了容易抑制因密封時產生的熱導致的密封層19的變形的觀點而言,較佳為於第2步驟之前進行。
即,較佳為藉由於固定有多個半導體晶片13的支撐基板11上形成多個包圍半導體晶片13的框體29之後,於第2步驟中對框體29的內側賦予密封材17,來形成密封層19。
形成框體29的方法既可為配置預先成形的框體的方法,亦可為於支撐基板11上直接塗布形成的方法。
框體29可具有抑制因密封層19的熱膨脹導致的變形的功能。而且,即便於相鄰的密封層19間的最小間隔窄,且因熱膨脹而使密封層19彼此容易相連的情況下,框體29亦可具有使兩者不易相連的功能。
框體29較佳為包含60℃~250℃下的線膨脹係數為35ppm/K以下的材料;或包含60℃~250℃下的拉伸彈性率較硬化或固化後的密封材17的拉伸彈性率低0.5GPa以上的樹脂。
藉由框體29包含60℃~250℃下的線膨脹係數為35ppm/K以下的材料,可壓制密封層19欲進行熱膨脹的力。藉此,可進一步抑制密封體21的翹曲或半導體晶片13的偏移。
材料的線膨脹係數可藉由以下的方法來進行測定。即, 準備包含作為測定對象的材料的試樣片(約30μm、長20mm)。其後,藉由熱機械分析計(TMA-50、島津製作所製)對所述試樣片的兩端施加一定負載(相對於膜的剖面積1mm2而為14g),並根據使溫度變化時的伸長(收縮)來測定線膨脹係數(單位:ppm/K)。
60℃~250℃下的線膨脹係數為35ppm/K以下的材料的示例包括:鋁(23ppm/K)、鐵(12ppm/K)、鎢(4.3ppm/K)、鉻(6.8ppm/K)、碳鋼(10.8ppm/K)、不鏽鋼(10ppm/K~17ppm/K)、鎳(12.8ppm/K)、銅(16.8ppm/K)、鎂(25.4ppm/K)等金屬材料;或派熱克斯(Pyrex)(註冊商標)玻璃(3.2ppm/K)、碳化矽(6.6ppm/K)、硬質玻璃(8.5ppm/K)、矽(24ppm/K)等無機材料。
另一方面,藉由框體29包含60℃~250℃下的拉伸彈性率較硬化或固化後的密封材的拉伸彈性率低0.5GPa以上的樹脂,可吸收並緩和密封層19的進行熱膨脹的力。藉此,可進一步抑制密封體21的翹曲或半導體晶片13的偏移。
樹脂的拉伸彈性率可藉由以下的方法來測定。即,準備包含作為測定對象的樹脂的厚度1mm的片狀的試驗片。依據美國材料實驗協會規格(American Society for Testing and Materials,ASTM)D638,於60℃~250℃中的任一溫度、相對濕度50%的環境下,藉由拉伸實驗裝置對所述試驗片的拉伸彈性率(GPa)進行測定。
60℃~250℃下的拉伸彈性率較硬化或固化後的密封材的拉伸彈性率低0.5GPa以上的樹脂的示例包括:丁二烯橡膠、異戊二烯橡膠、矽橡膠、苯乙烯-丁二烯橡膠、氯平橡膠、丁腈橡膠、丁基橡膠、乙烯-丙烯橡膠、丙烯酸橡膠、氯磺化(chlorosulfonated)聚乙烯橡膠、氟橡膠、氫化丁腈橡膠、表氯醇橡膠等彈性體。
框體29的厚度t2既可與密封層19的厚度t1相同,亦可與之不同,但就改良密封體21的操作性或外觀的觀點而言,較佳為與密封層19的厚度t1相同(參照圖3B)。
於密封層19的外周形成有框體29的情況下,相鄰的密封層19與密封層19之間的間隔的最小寬度d成為將相鄰的兩個框體29的壁厚與框體29間的間隔相加而得的寬度(參照圖3B)。
框體29既可於後步驟中去除,亦可不去除而搭載於半導體封裝體27或半導體封裝體27'。於框體29包含金屬材料等的情況下,藉由不去除框體29而是將其搭載於半導體封裝體27或半導體封裝體27',可對獲得的半導體封裝體27或半導體封裝體27'進而賦予放熱性或電磁波屏蔽性。
如此,藉由進而形成框體29,可進一步控制獲得密封體21時的密封體21的翹曲或半導體晶片13的偏移。進而,藉由利用金屬材料構成框體29並且不去除框體29而是將其搭載於封裝體,可提高獲得的半導體封裝體27或半導體封裝體27'的放熱性或電磁波屏蔽性。
[實施例]
(模擬)
使用解析軟體ANSYS並利用有限元法,計算出將支撐基板11、半導體晶片13及密封層19設為如下般的組合,並自室溫(24℃)加熱至150℃之後,冷卻至室溫時的半導體晶片13的移動距離的最大值。
並且,考慮若相鄰的密封層19彼此的間隔d超過了半導體晶片13的移動距離的最大值,則可抑制密封層19彼此的接觸,以及半導體晶片13的移動距離與密封層19的最大寬度(W)成比例,確定出密封層19彼此的間隔的最小值d相對於密封層19的最大寬度W的比例(d/W×100)的範圍。
解析模型設為於12吋晶圓(支撐基板11)上以5mm的間隔配置多個矽晶片(半導體晶片13)(尺寸:10mm×10mm×500μm),並藉由環氧樹脂(密封材17)(密封厚度700μm)對12吋晶圓的整個面進行密封而成者。模擬藉由以下條件進行。
支撐基板11的材質:SUS基板(楊氏模量:197000MPa、帕松比(Poisson's ratio):0.30、線膨脹係數:17.3ppm/℃)
密封層19的材質:環氧樹脂(楊氏模量:3000MPa、帕松比:0.34、線膨脹係數:8ppm/℃(Tg以下的溫度)、17.3ppm/℃(超過Tg的溫度)、硬化溫度:150℃)
半導體晶片13的材質:矽(楊氏模量:131000MPa、帕松比:0.27、線膨脹係數:2.62ppm/℃)
冷卻過程下的半導體晶片13的移動距離的最大值(即,處於 最遠離晶圓(支撐基板11)的中心的位置的半導體晶片13的移動距離)是0.27mm,所述半導體晶片13的移動距離的最大值相對於密封層19的最大寬度(W)的比例被算出為0.18%。由此可知:若以相鄰的兩個密封層19彼此的間隔的最小值d相對於密封層19的最大寬度W的比例(d/W×100)成為0.19%以上的方式來設定相鄰的密封層19彼此的間隔,則可高度抑制相鄰的密封層19彼此的接觸。
本申請主張基於2017年5月10日提出申請的特願2017-093599的優先權。將所述申請的說明書及圖示所記載的內容全部引用至本案說明書。
[產業上之可利用性]
根據本發明,可提供一種抑制將多個半導體晶片統括封裝來獲得密封體時的、密封體的翹曲或半導體晶片的偏移,並可抑制之後的密封體的操作性或半導體裝置的可靠性的下降的半導體裝置的製造方法。
11:支撐基板
13:半導體晶片
13A:表面
13B:背面
15:黏著片
17:密封材
19:密封層
L:光

Claims (16)

  1. 一種半導體裝置的製造方法,包括:第1步驟,於支撐基板上,將多個半導體晶片以其電路面與所述支撐基板對向的方式予以固定;第2步驟,利用三維成型法對所述多個半導體晶片上賦予包含密封樹脂的密封材,藉此空開間隔形成多個藉由所述密封材埋入有所述半導體晶片的密封層;第3步驟,使所述密封層硬化或固化;以及第4步驟,將經硬化或固化的所述密封層自所述支撐基板剝離而獲得密封體。
  2. 如申請專利範圍第1項所述的半導體裝置的製造方法,其中於所述第2步驟中,在對所述支撐基板俯視的狀態下,相鄰的兩個所述密封層間的間隔的最小值相對於所述密封層的最大寬度的比例為0.19%~10%。
  3. 如申請專利範圍第1項所述的半導體裝置的製造方法,其進而包括:於所述支撐基板上形成多個包圍所述半導體晶片的框體的步驟,於所述第2步驟中,藉由對所述框體的內側賦予所述密封材而形成所述半導體晶片藉由所述密封材掩埋的密封層。
  4. 如申請專利範圍第3項所述的半導體裝置的製造方法,其中所述框體包含60℃~250℃下的線膨脹係數為35ppm/K 以下的材料。
  5. 如申請專利範圍第3項所述的半導體裝置的製造方法,其中所述框體包含60℃~250℃下的拉伸彈性率較硬化或固化後的所述密封材的拉伸彈性率低0.5GPa以上的樹脂。
  6. 如申請專利範圍第1項所述的半導體裝置的製造方法,其中所述密封材亦可進而包含填充劑,相對於所述密封材的總質量的所述填充劑的含有率為10質量%以下。
  7. 如申請專利範圍第1項所述的半導體裝置的製造方法,其中於利用所述三維成型法將所述密封材賦予至所述半導體晶片上時的所述密封材的黏度為1mPa.s~20mPa.s。
  8. 如申請專利範圍第1項所述的半導體裝置的製造方法,其中所述密封層的玻璃轉移溫度為110℃以上。
  9. 如申請專利範圍第1項所述的半導體裝置的製造方法,其中所述密封樹脂是選自由環氧樹脂、聚醯亞胺樹脂及脲樹脂組成的群組中的至少一種。
  10. 如申請專利範圍第1項所述的半導體裝置的製造方法,其進而包括:於所述密封體的露出所述半導體晶片的面,藉由三維成型法形成再配線層的步驟。
  11. 如申請專利範圍第1項所述的半導體裝置的製造方法,其進而包括:於所述密封體的露出所述半導體晶片的面的所述半導體晶片 的外周部,藉由三維成型法形成接地配線的步驟。
  12. 如申請專利範圍第1項所述的半導體裝置的製造方法,其進而包括:於所述密封體的未露出所述半導體晶片的面的至少一部分,藉由三維成型法形成電磁波屏蔽層的步驟。
  13. 如申請專利範圍第1項所述的半導體裝置的製造方法,其中,所述密封體包含多個所述半導體晶片,所述半導體裝置的製造方法進而包括將所述密封體中所含的所述多個半導體晶片間予以切斷的步驟。
  14. 一種半導體裝置的中間體,其具有:支撐基板;多個半導體晶片,以電路面與所述支撐基板對向的方式配置於所述支撐基板上;黏著片,配置於所述支撐基板與所述多個半導體晶片之間;以及多個密封層,彼此空開間隔配置,並且所述半導體晶片埋入至密封材中,所述半導體晶片的電路面與所述黏著片接觸而固定。
  15. 如申請專利範圍第14項所述的半導體裝置的中間體,其中在對所述支撐基板俯視的狀態下,相鄰的兩個所述密封層間的間隔的最小值相對於所述密封層的最大寬度的比例為0.19%~10%。
  16. 如申請專利範圍第15項所述的半導體裝置的中間體,其中所述密封層的所述間隔的最小值為0.18mm~6mm,並且,所述密封層的最大寬度為10mm~60mm。
TW107115973A 2017-05-10 2018-05-10 半導體裝置的製造方法以及半導體裝置的中間體 TWI751331B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017093599 2017-05-10
JP2017-093599 2017-05-10

Publications (2)

Publication Number Publication Date
TW201907494A TW201907494A (zh) 2019-02-16
TWI751331B true TWI751331B (zh) 2022-01-01

Family

ID=64102797

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107115973A TWI751331B (zh) 2017-05-10 2018-05-10 半導體裝置的製造方法以及半導體裝置的中間體

Country Status (5)

Country Link
US (1) US11581197B2 (zh)
EP (1) EP3624172A4 (zh)
JP (1) JP6777815B2 (zh)
TW (1) TWI751331B (zh)
WO (1) WO2018207862A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220148992A1 (en) * 2020-11-12 2022-05-12 Taiwan Semiconductor Manufacturing Company Ltd. Package structure and method of forming the package structure
CN117882185A (zh) * 2021-08-30 2024-04-12 富士胶片株式会社 电子器件的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293509A (ja) * 1995-04-21 1996-11-05 Hitachi Ltd 半導体装置製造方法およびそれを用いた半導体装置
US20020011655A1 (en) * 2000-04-24 2002-01-31 Kazuo Nishiyama Chip-like electronic components, a method of manufacturing the same, a pseudo wafer therefor and a method of manufacturing thereof
US20050009259A1 (en) * 2000-08-08 2005-01-13 Farnworth Warren M. Underfill and encapsulation of carrier substrate-mounted flip-chip components using stereolithography
TW201620049A (zh) * 2014-08-26 2016-06-01 Nitto Denko Corp 半導體裝置之製造方法及密封用片材

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090053850A1 (en) * 2005-03-25 2009-02-26 Fujifilm Corporation Method of manufacturing solid state imaging device
EP2218311B1 (en) 2007-10-16 2016-09-14 Promex Industries Incorporated Process for placing, securing and interconnecting electronic components
US8338936B2 (en) * 2008-07-24 2012-12-25 Infineon Technologies Ag Semiconductor device and manufacturing method
JP2012199342A (ja) 2011-03-20 2012-10-18 Fujitsu Ltd 樹脂モールド基板の製造方法および樹脂モールド基板
JP2013069807A (ja) * 2011-09-21 2013-04-18 Shinko Electric Ind Co Ltd 半導体パッケージ及びその製造方法
KR20150056531A (ko) * 2012-09-24 2015-05-26 르네사스 일렉트로닉스 가부시키가이샤 반도체 장치의 제조 방법 및 반도체 장치
JP6320239B2 (ja) * 2013-09-24 2018-05-09 日東電工株式会社 半導体チップ封止用熱硬化性樹脂シート及び半導体パッケージの製造方法
US20150147845A1 (en) 2013-11-26 2015-05-28 Texas Instruments Incorporated Dual sided embedded die and fabrication of same background
US9508623B2 (en) * 2014-06-08 2016-11-29 UTAC Headquarters Pte. Ltd. Semiconductor packages and methods of packaging semiconductor devices
CN106796893B (zh) 2014-08-29 2019-09-20 住友电木株式会社 半导体装置的制造方法和半导体装置
JP6461770B2 (ja) 2015-11-19 2019-01-30 株式会社ニューギン 遊技機
US10535611B2 (en) * 2015-11-20 2020-01-14 Apple Inc. Substrate-less integrated components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293509A (ja) * 1995-04-21 1996-11-05 Hitachi Ltd 半導体装置製造方法およびそれを用いた半導体装置
US20020011655A1 (en) * 2000-04-24 2002-01-31 Kazuo Nishiyama Chip-like electronic components, a method of manufacturing the same, a pseudo wafer therefor and a method of manufacturing thereof
US20050009259A1 (en) * 2000-08-08 2005-01-13 Farnworth Warren M. Underfill and encapsulation of carrier substrate-mounted flip-chip components using stereolithography
TW201620049A (zh) * 2014-08-26 2016-06-01 Nitto Denko Corp 半導體裝置之製造方法及密封用片材

Also Published As

Publication number Publication date
WO2018207862A1 (ja) 2018-11-15
US11581197B2 (en) 2023-02-14
EP3624172A1 (en) 2020-03-18
US20200168476A1 (en) 2020-05-28
EP3624172A4 (en) 2020-12-02
JPWO2018207862A1 (ja) 2020-03-12
JP6777815B2 (ja) 2020-10-28
TW201907494A (zh) 2019-02-16

Similar Documents

Publication Publication Date Title
JP7322937B2 (ja) 電子部品装置の製造方法
CN103915414B (zh) 倒装芯片晶片级封装及其方法
EP2958142B1 (en) High density film for ic package
Braun et al. Large area compression molding for fan-out panel level packing
KR101317617B1 (ko) Flip 칩 패키징 내에 몰딩된 언더필을 위한 장치 및 방법
US7776648B2 (en) High thermal performance packaging for circuit dies
TW201709358A (zh) 電子元件封裝及其製造方法
KR20100051692A (ko) 집적 회로 다이를 패키징하는 방법
CN109801893A (zh) 半导体装置
US9073748B2 (en) Microelectro mechanical system encapsulation scheme
US20150303170A1 (en) Singulated unit substrate for a semicondcutor device
US9142523B2 (en) Semiconductor device and manufacturing method thereof
TWI751331B (zh) 半導體裝置的製造方法以及半導體裝置的中間體
KR20160002718A (ko) 열경화성 밀봉 수지 시트 및 전자 부품 패키지의 제조 방법
KR101109356B1 (ko) 임베디드 인쇄회로기판의 제조방법
US20150041182A1 (en) Package substrate and chip package using the same
CN107204332B (zh) 半导体装置及其制造方法
KR20010093717A (ko) 반도체 장치, 그 제조 공정 및 에폭시 수지 조성물을포함하는 태블릿
KR101488611B1 (ko) 반도체 디바이스 및 그 제조 방법
EP3175481B1 (en) A multi-chip-module semiconductor chip package having dense package wiring
KR20200032360A (ko) 반도체 패키지 및 그 제조방법
JP6988360B2 (ja) 半導体装置の製造方法及び半導体装置
CN115148685A (zh) 封装散热
JP2019033175A (ja) 半導体装置の製造方法
JP2003168696A (ja) 半導体装置の製造方法