TWI747602B - 具獨立分離結構之電致色變層與敏化吸光層的光電極與光驅動電致色變元件 - Google Patents

具獨立分離結構之電致色變層與敏化吸光層的光電極與光驅動電致色變元件 Download PDF

Info

Publication number
TWI747602B
TWI747602B TW109139286A TW109139286A TWI747602B TW I747602 B TWI747602 B TW I747602B TW 109139286 A TW109139286 A TW 109139286A TW 109139286 A TW109139286 A TW 109139286A TW I747602 B TWI747602 B TW I747602B
Authority
TW
Taiwan
Prior art keywords
layer
electrochromic
light
electrochromic layer
photoelectrode
Prior art date
Application number
TW109139286A
Other languages
English (en)
Other versions
TW202219610A (zh
Inventor
葉旻鑫
鄭朝元
姜羽柔
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW109139286A priority Critical patent/TWI747602B/zh
Priority to US17/123,154 priority patent/US20220148817A1/en
Application granted granted Critical
Publication of TWI747602B publication Critical patent/TWI747602B/zh
Publication of TW202219610A publication Critical patent/TW202219610A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/209Light trapping arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • G02F2001/1555Counter electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/14Materials and properties photochromic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

一種具獨立分離結構之電致色變層與敏化吸光層的光電極。所述光電極包括第一透明導電基板、第一電致色變層與敏化吸光層,其中第一電致色變層與敏化吸光層設置於第一透明導電基板的表面上並且彼此相鄰。

Description

具獨立分離結構之電致色變層與敏化吸光層的光電極與光驅動電致色變元件
本發明是有關於一種光驅動電致色變元件(Photoelectrochromic device,PECD)的技術,且特別是有關於一種具獨立分離結構之電致色變層與敏化吸光層的光電極與具快速著去色特性的光驅動電致色變元件。
現今光驅動電致色變元件(PECD)的系統受限於光活化層穿透度、電致色變材料選擇、電解質種類與濃度以及結構上差異,因此無法達到傳統電致色變元件的高光學對比與快速的響應時間。
為了解決上述問題,目前發展出將電致色變層與敏化吸光層分別固定於光電極與對電極表面的分離型PECD(S-PECD)與將電致色變層與敏化吸光層一同固定於光電極表面的組合型 PECD(C-PECD)。組合型PECD相較於分離型PECD因工作原理上的不同而有較突出的著去色響應時間,但由於製備光電極的高溫製程的緣故,使得目前組合型PECD研究皆使用無機電致色變材料,這種材料雖然擁有高穩定性的優點,但由於著色效率低(<100cm2 C-1)且電子轉移阻力較大,因此組合型PECD的響應時間均落在數百秒的區間,而失去此結構原有的優勢。
另一方面,分離型PECD為目前已知開發最完整的結構,此結構強調於對電極上無機複合材料/導電高分子的雙功能電極,藉由提升PECD的光伏效能,拉高光學對比與縮短著去色響應時間。然而,當對電極上的催化能力提升時,意味著電極將傾向將著色電致色變材料的電子轉移至電極表面來進行還原I3 -反應而導致還原態程度下降(較淺的著色態),進而影響了整體PECD的光學對比。
本發明提供一種具獨立分離結構之電致色變層與敏化吸光層的光電極,可減少電子轉移阻力並增加電致色變層的選擇性。
本發明另提供一種光驅動電致色變元件,具快速著去色特性並解決雙功能電極光學對比度不足的問題。
本發明的具獨立分離結構之電致色變層與敏化吸光層的光電極包括第一透明導電基板、第一電致色變層與敏化吸光層, 其中第一電致色變層與敏化吸光層設置於第一透明導電基板的表面上並且彼此相鄰。
在本發明的一實施例中,上述第一電致色變層與上述敏化吸光層的間距在0.05cm以內。
在本發明的一實施例中,上述第一電致色變層與上述敏化吸光層直接接觸且互不重疊。
本發明的光驅動電致色變元件包括如上述的光電極、對電極板與電解質。光電極包括相鄰的第一電致色變層與敏化吸光層。對電極板包括第二透明導電基板與設置於第二透明導電基板的表面上的第二電致色變層或金屬層。電解質則是位於所述工作電極板與所述對電極板之間。
在本發明的另一實施例中,上述第一電致色變層的材料與上述第二電致色變層的材料各自獨立地包括過渡金屬氧化物、金屬氰化物、有機小分子化合物或導電高分子。
在本發明的另一實施例中,上述第一電致色變層的材料與上述第二電致色變層的材料各自獨立地包括聚乙烯二氧噻吩(PEDOT)、聚(羥甲基3,4-乙烯二氧噻吩)(Poly(hydroxymethyl 3,4-ethylenedioxythiophene),縮寫為PEDOT-MeOH)或普魯士藍(Prussian blue,PB)。
在本發明的另一實施例中,上述金屬層的材料包括鉑(Pt)。
在本發明的另一實施例中,上述第一電致色變層的面積與上述敏化吸光層的面積之比可介於1與4之間。
基於上述,本發明藉由敏化吸光層與電致色變層的特別設計,可達成敏化吸光層與電致色變層的製程分離,使得PECD中供能端與電致色變材料,能夠存在於同一光電極,所以對於材料的選擇將更為多元,並可使用不耐高溫製程的導電高分子作為電致色變層的材料,以大幅改善傳統使用氧化物作為電致色變材料的響應時間慢的問題。另外,對電極除了使用金屬之類的材料作為電極,也可採用具高穿透性的雙功能對電極來加強PECD的效能,亦即使用電致色變材料作為對電極。本發明的結構因為工作機制與電致色變層材料的多元性,使得元件的響應時間與傳統PECD相比,有快速縮短的趨勢。除此之外,本發明具備相當高的光著色效率(Photocoloration efficiency,PhCE)使得能量的需求降低,而且經實驗證實本發明的光驅動電致色變元件展現出快速的響應時間,可在數秒內完成著去色並達成平衡。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100、300:光驅動電致色變元件
102:電解質
104:第一透明導電基板
104a、110a:表面
106:第一電致色變層
108:敏化吸光層
110:第二透明導電基板
112:第二電致色變層
302:金屬層
CE:對電極板
d:間距
WE:光電極
圖1是依照本發明的第一實施例的一種光驅動電致色變元件 的剖面示意圖。
圖2A與圖2B分別顯示圖1的II部位的不同實例的放大示意圖。
圖3是依照本發明的第二實施例的一種光驅動電致色變元件的剖面示意圖。
圖4是進行響應時間與光著色效率的測試裝置示意圖。
圖5是製備例1與比較例之光學性能變化曲線圖。
圖6是製備例1與比較例之光著色效率曲線圖。
以下實施例中所附的圖式是為了能更完整地描述本發明的實施例,然而本發明仍可使用許多不同的形式來實施,不限於所記載的實施例。此外,各個區域或膜層的相對厚度、距離及位置可能經由縮小或放大,以便清楚其中的差異,所以圖式的尺寸並未按比例繪製。另外,在圖式中使用相似或相同的元件符號表示相似或相同的部位或區域。
圖1是依照本發明的第一實施例的一種光驅動電致色變元件的剖面示意圖。
請參照圖1,第一實施例的光驅動電致色變元件100包括光電極(或稱工作電極)WE、對電極板CE與電解質102。光電極WE包括第一透明導電基板104與設置於第一透明導電基板104 的表面104a上的相鄰的第一電致色變層106與敏化吸光層108。在一實施例中,第一電致色變層106的材料可包括過渡金屬氧化物、金屬氰化物、有機小分子化合物或導電高分子。所述過渡金屬氧化物可列舉但不限於:三氧化鎢(Tungsten oxide,WO3)、三氧化鉬(molybdenum trioxide,MoO3)、二氧化鈦(Titanium oxide,TiO2)、五氧化二鉈(Tantalum oxide,Ta2O5)、氧化鈮(Niobium oxide,NbO)、氧化鎳(Nickel oxide,NiO)、五氧化二釩(Vanadium oxide,V2O5)、氧化鉻(chromic oxide,CrO3)、氧化鈷(cobalt oxide,CoO)、二氧化銥(Iridium Oxide,IrO2)或三氧化二銠(Rhodium oxide,Rh2O3)。所述金屬氰化物可列舉但不限於:普魯士藍(Prussian blue,PB)、亞鈷氰化鐵、亞鐵氰化釕、亞鐵氰化鎳等。所述有機小分子可列舉但不限於:紫精(Viologen)、甲基紫精(Methyl viologen)或庚基紫精(Heptyl viologen)。所述導電高分子可列舉但不限於:聚吡咯(Polypyrrole,PPy)、聚(3-甲基噻吩)(poly(3-methyl thiophene),PMeT)、聚苯胺(Polyaniline,PANI)、聚(羥甲基3,4-乙烯二氧噻吩)(Poly(3,4-ethylenedioxythiophene),PEDOT)、聚(羥甲基3,4-乙烯二氧噻吩)(Poly(hydroxymethyl 3,4-ethylenedioxythiophene),PEDOT-MeOH)、聚(3,4-乙烯二氧噻吩)-聚(苯乙烯磺酸鹽)(Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate),PEDOT-PSS)、聚(2,2-二甲基-3,4-丙烯二氧噻吩)(Poly(2,2-dimethyl-3,4-propylenedioxythiophene), PProdot-Me2)或聚(2,2-二乙基-3,4-丙烯二氧噻吩)(Poly(2,2-diethyl-3,4-propylenedioxythiophene),PProdot-Et2)。若是以縮短響應時間的觀點來看,第一電致色變層106的材料例如聚乙烯二氧噻吩(PEDOT)、聚(羥甲基3,4-乙烯二氧噻吩)(PEDOT-MeOH)或普魯士藍(PB),較佳是PEDOT-MeOH。敏化吸光層108則包括光敏化染料層,例如吸收有染料的TiO2層。在本實施例中,第一電致色變層106與敏化吸光層108的間距d可在0.05cm以內,請見圖2A,且間距d例如在0.04cm以內、在0.03cm以內、在0.02cm以內、在0.01cm以內;依此類推。
然而,本發明並不限於此;在另一實施例中,第一電致色變層106與敏化吸光層108是直接接觸且互不重疊,請見圖2B。也就是說,第一電致色變層106與敏化吸光層108的間距為0也可行。在一實施例中,第一電致色變層106的面積與敏化吸光層108的面積之比可介於1與4之間。由於圖1顯示的是元件的剖面,所以雖然沒有直接顯示出第一電致色變層106的面積與敏化吸光層108的面積,但應知形成於第一透明導電基板104的表面104a上的第一電致色變層106與敏化吸光層108可以具有的外形(如矩形、圓形、多邊形等),且在兼顧發電與顯示變色區的功能下,調整兩者面積之比。
請繼續參照圖1,光驅動電致色變元件100的對電極板CE包括第二透明導電基板110與設置於第二透明導電基板110的 表面110a上的第二電致色變層112。在一實施例中,第二電致色變層112的材料各自獨立地包括過渡金屬氧化物、金屬氰化物、有機小分子化合物或導電高分子,且可參照上述第一電致色變層106的材料。若是以縮短響應時間的觀點來看,第二電致色變層的材料例如PEDOT、PEDOT-MeOH或普魯士藍(PB),較佳是PEDOT-MeOH。電解質102則是位於光電極WE與對電極板CE之間,其中電解質102較佳是電解液。
在本實施例中,由於第一電致色變層106與敏化吸光層108是分開的(未重疊),所以不需要顧慮電致色變材料的耐溫性,避免在製作敏化吸光層108時使得陰極著色材料(第一電致色變層106)經過高溫煅燒程序而受到破壞。因此,除了使用耐高溫的過渡金屬氧化物,也能採用響應時間短的有機小分子化合物或導電高分子作為電致色變材料。也就是說,可先在第一透明導電基板104的表面104a上利用高溫燒製敏化吸光層108,再以較低溫製作第一電致色變層106。而且,對電極板CE的第二電致色變層112也具有可同時變色與催化電解液(電解質102)的負離子的雙重功能。即使使用過渡金屬氧化物作為第一電致色變層106的材料,也因為第一電致色變層106與敏化吸光層108並不重疊,所以照射到敏化吸光層108的光不會經過第一電致色變層106,可增加敏化吸光層108的吸光程度,並因此增加光電轉換效能。
以下說明光驅動電致色變元件100的操作機制,並以含 LiI以及I2的電解液作為電解質102為例。首先,於開路照光的情形下,敏化吸光層108中的染料分子(S)接受光子能量由基態(S0)轉變為激發態(S*),激發態的染料將電子注入敏化吸光層108中的半導體奈米粒子中,使得染料分子被氧化(S+),氧化態染料分子與電解質102中的碘離子(I-)反應回到基態,碘離子則被氧化為三碘離子(I3 -),位於敏化吸光層108旁邊的第一電致色變層106如為還原著色材料,則接收來自染料分子的電子進行還原反應,此時電解質102中的鋰離子扮演平衡電荷的角色而遷入第一電致色變層106中,使其由去色態轉變為著色態;而在短路遮光的情形下,著色態的第一電致色變層106會因擴散作用而被電解質102氧化而去色,除此之外,於CE端的第二電致色變層112也因為具有催化I3 -還原的能力,促使第一電致色變層106的去色程序加速。依此類推,位於敏化吸光層108旁邊的第一電致色變層106若是氧化著色材料,例如使用PB膜作為第一電致色變層、PEDOT-MeOH膜作為第二電致色變層,則去色程序的操作方式如下:於照光/開路(I/OC)下,光電極中的染料分子(S)接受光子能量由基態(S0)轉變為激發態(S*),激發態的染料將電子注入半導體奈米粒子中,使得染料分子被氧化(S+),氧化態染料分子與I-反應回到基態,I-則被氧化成I3 -,此時光電極中的PB將接受由染料分子激發的電子進行還原反應而去色,且Li+為了平衡電荷而摻雜在PB膜上。同時,對電極上的PEDOT-MeOH膜被電解液中的I3 -氧化而變為去色 態,ClO4 -為了平衡電荷而摻雜在PEDOT-MeOH膜上。著色程序的操作方式如下:於照光/短路(I/SC)下,光電極中的染料分子(S)接受光子能量由基態(S0)轉變為激發態(S*),激發態的染料將電子注入半導體奈米粒子中,使得染料分子被氧化(S+),氧化態染料分子與I-反應回到基態,I-則被氧化成I3 -,而光電極中的PB膜因短路的情況下,兩極之間無偏壓存在,使得還原態的PB膜迅速被電解液中的I3 -氧化,Li+為了平衡電荷而從PB膜上遷出,PB的氧化反應大多數由對電極上的PEDOT-MeOH催化而發生。於此同時,光電極所產生的電子經由外電路傳遞至對電極,促使PEDOT-MeOH進行還原反應而著色,此時ClO4 -為了平衡電荷而從PEDOT-MeOH膜上遷出。
圖3是依照本發明的第二實施例的一種光驅動電致色變元件的剖面示意圖,其中使用第一實施例的元件符號來表示相同或類似的構件,且相同的構件的說明可參照上述的相關內容,於此不再贅述。
請參照圖3,本實施例的光驅動電致色變元件300與第一實施例的差別在於對電極板CE,其中設置於第二透明導電基板110表面110a的是金屬層302,所以能大幅增加電流密度,其中金屬層300的材料例如鉑(Pt)。
以下列舉實驗來驗證本發明的功效,但本發明並不侷限於以下的內容。
〈製備例1〉(WE和CE都是PEDOT-MeOH)
1. 光電極(WE)的製備
1-1. 敏化吸光層的製備
敏化吸光層中的TiO2層總共有三層,包含接觸層、穿透層和散射層。接觸層TiO2的配製為異丙胺基鈦(TTIP)與乙二醇單甲醚(2-methoxyethanol)以重量比1:3混合;穿透層TiO2購買於Solaronix;散射層TiO2合成步驟如下:首先將0.5M的TTIP與0.1M的硝酸水溶液混合並於88℃下均勻攪拌8小時,之後放入水熱釜中加熱至240℃持續12小時。反應完成後,水熱釜中的TiO2漿料中含有8%重量百分比的TiO2奈米粒子。在先前合成的TiO2漿料中加入25%重量百分比的聚乙二醇(PEG)(相對於TiO2奈米粒子)與100%重量百分比的石原公司(Ishihara Sangyo Kaisha ltd)的型號ST-41銳鈦礦相TiO2(相對於TiO2奈米粒子),可合成用於散射層的TiO2膠體。
製備完上述三層TiO2溶液與膠體後,以旋轉塗佈法在2.0cm×4.0cm的FTO導電玻璃表面塗佈接觸層TiO2,參數為3000rpm持續30秒,塗佈面積為1.0cm×2.0cm。而穿透層TiO2與散射層TiO2皆以刮刀(doctor blade)的方式進行塗佈,塗佈面積為1.0cm×0.25cm。塗佈的順序依序為接觸層、穿透層、散射層,每一層塗佈完後皆須燒結至500℃持續30分鐘。最後將燒結完之TiO2電極浸泡於N719染料24小時即完成敏化吸光層的製備。
1-2. 第一電致色變層的製備
將0.01M的EDOT-MeOH、0.1M的LiClO4溶於乙腈(ACN)溶劑中,成為鍍液。
在與敏化吸光層的邊緣相隔0.05cm的位置,以環氧樹脂膠帶圍成1.0cm×1.0cm的工作面積,然後使用定電位析鍍法以定電位方式將上述鍍液中的EDOT-MeOH單體聚合於FTO導電玻璃表面。定電位法的參數為1.2V並限制13mC的電量。最後將製備完的PEDOT-MeOH(第一電致色變層),以ACN沖洗表面上殘留的鍍液,最後使用氮氣將表面吹乾。
2. 對電極板(CE)的製備
將0.01M的EDOT-MeOH、0.1M的LiClO4溶於乙腈(ACN)溶劑中,成為鍍液。
在2.0cm×4.0cm的ITO導電玻璃表面,以環氧樹脂膠帶圍成1cm×1.3cm的工作面積,再使用定電位析鍍法以定電位方式將上述鍍液中的EDOT-MeOH單體聚合於ITO導電玻璃表面。定電位法的參數為1.2V並限制13mC的電量。最後將製備完的PEDOT-MeOH(第二電致色變層),以ACN沖洗表面上殘留的鍍液,最後使用氮氣將表面吹乾。
3. 光驅動電致色變元件的封裝
將對電極板(CE)周圍以Surlyn®進行封裝,作為厚度控制層及封裝材料,再將光電極(WE)以長尾夾組合對電極板(CE),最 後以熱壓方式將兩電極板中間的Surlyn®熔化。接著以5mL的針筒注入所需的電解液於角落的孔洞,並以透明膠帶貼住,完成封裝。電解液的配方分別為含有0.5M LiI、0.001M I2於PC溶劑或0.5M LiI、0.005M I2於PC溶劑。
〈比較例〉
1. 光電極(WE)的製備(無第一電致色變層)
1-1. 敏化吸光層的製備:與製備例1一樣。
2. 對電極板(CE)的製備:與製備例1一樣。
3. 光驅動電致色變元件的封裝:與製備例1一樣。
〈製備例2〉(WE是PB、CE是PEDOT-MeOH)
1. 光電極(WE)的製備
1-1. 敏化吸光層的製備:與製備例1一樣。
1-2. 合成奈米化之普魯士藍(PB)粒子
將3.23g Fe(NO3)3.9H2O與2.90g Na4Fe(CN)6.10H2O混合於45mL的純水中並震盪均勻。將混合溶液於離心機中離心4000rpm持續30分鐘,將離心完的沉澱物以純水離心4000rpm持續五分鐘六次,將離心完的沉澱物加入0.542g Na4Fe(CN)6.10H2O與10mL的純水並攪拌一周。將攪拌完的溶液離心3000rpm持續15分鐘,接著將離心完的澄清液做迴旋濃縮處理取得PB粉末,最後將粉末於真空下乾燥一天。
1-3. 第一電致色變層的製備
製備前將ITO玻璃放入臭氧清洗機清洗30分鐘增加表面的親水性。以100mg/mL的PB與純水比例作為鍍液,取40μL的量均勻滴加在清洗完畢之ITO玻璃與光電極表面,以旋轉塗佈的方式控制在3000rpm持續30秒。接著使用棉花棒沾取純水在旋轉塗佈後的電極板上擦出1.0cm×1.0cm的PB面積。最後放置於加熱板上設定於80℃靜置30分鐘烘乾完成光電極(WE)的製備。
2. 對電極板(CE)的製備:與製備例1一樣。
3. 光驅動電致色變元件的封裝:與製備例1一樣。
〈製備例3〉(WE是PEDOT-MeOH、CE是PB)
1. 光電極(WE)的製備:與製備例1一樣。
2. 對電極板(CE)的製備
首先,採用製備例2的方式先合成奈米化之普魯士藍(PB)粒子。
然後先將ITO玻璃放入臭氧清洗機清洗30分鐘增加表面的親水性。以100mg/mL的PB與純水比例作為鍍液,取40μL的量均勻滴加在清洗完畢之ITO玻璃表面,以旋轉塗佈的方式控制在3000rpm持續30秒。接著使用棉花棒沾取純水在旋轉塗佈後的電極板上擦出1.0cm×1.3cm的PB面積。最後放置於加熱板上設定於80℃靜置30分鐘烘乾完成對電極板(CE)的製備。
3. 光驅動電致色變元件的封裝:與製備例1一樣。
〈響應時間〉
將封裝完之光驅動電致色變元件(PECD)固定於光譜儀載台上,將光譜儀中的光源打在光電極上的第一電致色變層,以偵測電致色變材料的著去色響應時間,並以電腦連接光譜儀並記錄PECD之光學性能變化。
而太陽模擬光架設於光譜儀載台元件斜前方並照射於光電極中的敏化吸光層(TiO2/染料層)以驅動染料激發電子,使得電致色變材料發生著去色反應,裝置如圖4所示。
由圖4之裝置進行測試,製備例1之光學效能顯示於圖5,其中著去色響應時間分別為τcb=5.5/3.3s、比較例的去色響應時間分別為τcb=33.1/18.1s。因此本發明的光驅動電致色變元件經實驗證實遠比傳統PECD的響應時間要快得多。
〈光著色效率〉
同樣使用圖4的裝置進行光著色效率測試,結果顯示於圖6,其中製備例1之初始光著色效率為160cm2 min-1 W-1、比較例的初始光著色效率大概為20cm2 min-1 W-1左右。因此本發明的光驅動電致色變元件經實驗證實可大幅改善光著色效率。
綜上所述,本發明的光電極與電致色變層因為可分開製作,所以對於電致色變材料的選擇將更為多元,以大幅改善傳統使用氧化物作為電致色變材料的響應時間慢的問題。另外,對電極除了使用金屬之類的材料作為電極,也可採用具高穿透性的雙功能對電極來加強PECD的效能,使本發明具備相當高的光著色 效率(PhCE)並降低對能量的需求。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:光驅動電致色變元件
102:電解質
104:第一透明導電基板
104a、110a:表面
106:第一電致色變層
108:敏化吸光層
110:第二透明導電基板
112:第二電致色變層
CE:對電極板
WE:光電極

Claims (6)

  1. 一種具獨立分離結構之電致色變層與敏化吸光層的光電極,包括:一第一透明導電基板;一第一電致色變層,設置於所述第一透明導電基板的表面上;以及一敏化吸光層,設置於所述第一透明導電基板的所述表面上並與所述第一電致色變層相鄰,其中所述第一電致色變層與所述敏化吸光層的間距在0.05cm以內或是所述第一電致色變層與所述敏化吸光層直接接觸且互不重疊。
  2. 一種光驅動電致色變元件,包括:光電極,如請求項1所述的光電極,包括所述第一電致色變層與所述敏化吸光層;對電極板,包括一第二透明導電基板與設置於所述第二透明導電基板的表面上的一第二電致色變層或一金屬層;以及電解質,位於所述光電極與所述對電極板之間。
  3. 如請求項2所述的光驅動電致色變元件,其中所述第一電致色變層的材料與所述第二電致色變層的材料各自獨立地包括過渡金屬氧化物、金屬氰化物、有機小分子化合物或導電高分子。
  4. 如請求項2所述的光驅動電致色變元件,其中所述第一電致色變層的材料與所述第二電致色變層的材料各自獨立地包括聚乙烯二氧噻吩(PEDOT)、PEDOT-MeOH(Poly(hydroxymethyl 3,4-ethylenedioxythiophene))或普魯士藍(Prussian blue,PB)。
  5. 如請求項2所述的光驅動電致色變元件,其中所述金屬層的材料包括鉑(Pt)。
  6. 如請求項2所述的光驅動電致色變元件,其中所述第一電致色變層的面積與所述敏化吸光層的面積之比介於1到4之間。
TW109139286A 2020-11-11 2020-11-11 具獨立分離結構之電致色變層與敏化吸光層的光電極與光驅動電致色變元件 TWI747602B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109139286A TWI747602B (zh) 2020-11-11 2020-11-11 具獨立分離結構之電致色變層與敏化吸光層的光電極與光驅動電致色變元件
US17/123,154 US20220148817A1 (en) 2020-11-11 2020-12-16 Photoelectrode with independent separate structures of electrochromic layer and sensitized light-absorbing layer, and photoelectrochromic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109139286A TWI747602B (zh) 2020-11-11 2020-11-11 具獨立分離結構之電致色變層與敏化吸光層的光電極與光驅動電致色變元件

Publications (2)

Publication Number Publication Date
TWI747602B true TWI747602B (zh) 2021-11-21
TW202219610A TW202219610A (zh) 2022-05-16

Family

ID=79907544

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109139286A TWI747602B (zh) 2020-11-11 2020-11-11 具獨立分離結構之電致色變層與敏化吸光層的光電極與光驅動電致色變元件

Country Status (2)

Country Link
US (1) US20220148817A1 (zh)
TW (1) TWI747602B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811079B (zh) * 2022-08-25 2023-08-01 捷能科技股份有限公司 電致變色元件結構及其製作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181068A1 (en) * 1996-03-15 2002-12-05 Pierre Bonhote Electrochromic or photoelectrochromic device
US20050254130A1 (en) * 2002-02-22 2005-11-17 Wolfgang Graf Device for guiding light
WO2014002076A1 (en) * 2012-06-29 2014-01-03 Fondazione Istituto Italiano Di Tecnologia Photovoltachromic device with interdigitated electrodes
CN109283766A (zh) * 2018-10-08 2019-01-29 浙江工业大学 一种光驱动电致变色储能器件及其制备方法
CN208872989U (zh) * 2018-09-14 2019-05-17 爱卓塑料(上海)有限公司 一种汽车高反低透型电致变色内后视镜用导电膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181068A1 (en) * 1996-03-15 2002-12-05 Pierre Bonhote Electrochromic or photoelectrochromic device
US20050254130A1 (en) * 2002-02-22 2005-11-17 Wolfgang Graf Device for guiding light
WO2014002076A1 (en) * 2012-06-29 2014-01-03 Fondazione Istituto Italiano Di Tecnologia Photovoltachromic device with interdigitated electrodes
CN208872989U (zh) * 2018-09-14 2019-05-17 爱卓塑料(上海)有限公司 一种汽车高反低透型电致变色内后视镜用导电膜
CN109283766A (zh) * 2018-10-08 2019-01-29 浙江工业大学 一种光驱动电致变色储能器件及其制备方法

Also Published As

Publication number Publication date
TW202219610A (zh) 2022-05-16
US20220148817A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
Dokouzis et al. Photoelectrochromic devices with cobalt redox electrolytes
JP4788761B2 (ja) 機能性デバイス及びその製造方法
JP4172239B2 (ja) 光電変換素子
JP5139054B2 (ja) メゾ多孔性金属酸化物薄膜を含む色素増感太陽電池用の光電極及びその製造方法
JP5389372B2 (ja) 中空球状の金属酸化物ナノ粒子を含む色素増感太陽電池用の光電極及びその製造方法
KR20110082106A (ko) 색소 증감 태양 전지 및 그 제조 방법
JP4287344B2 (ja) 染料感応太陽電池
US20090211638A1 (en) Multiple-dyes sensitized solar cells and a method for preparing the same
KR20100069630A (ko) 색소 증감 광전 변환 소자 및 그 제조 방법
WO2011002073A1 (ja) 光電変換素子およびその製造方法ならびに電子機器
JP2006216562A (ja) フレキシブル太陽電池およびその製造方法
TW201117455A (en) Dye-sensitized photoelectric conversion element, method of manufacturing the same and electronic equipment
KR20090091869A (ko) 다파장 흡수 나노 구조 염료감응 태양전지 및 그 제조방법
US20220220368A1 (en) Method for preparing photoresponsive self-powered electrochromic precursor, method for fabricating photoresponsive self-powered electrochromic device and photoresponsive self-powered electrochromic device fabricated by the fabrication method
JP4422236B2 (ja) 光電変換素子及びその製造方法
TWI747602B (zh) 具獨立分離結構之電致色變層與敏化吸光層的光電極與光驅動電致色變元件
TW201301538A (zh) 複合型染料敏化光電裝置
JP4993895B2 (ja) 色素増感型太陽電池素子
JP5000119B2 (ja) 色素増感型太陽電池素子
KR20110086269A (ko) 광전극의 제조 방법 및 이에 의한 광전극을 포함하는 염료감응 태양전지
JP2008186669A (ja) 色素増感型太陽電池の製造方法
KR101507300B1 (ko) 태양전지-전기변색부 일체형 소자 및 이의 제조방법
JP2011228312A (ja) 機能性デバイス
KR20130044462A (ko) 염소 이온이 흡착된 이산화티탄 나노입자 및 이의 제조방법
JP4347593B2 (ja) 色素増感型太陽電池モジュール及びその製造方法