TWI747137B - 用於超深寬比蝕刻的電漿反應器及其蝕刻方法 - Google Patents

用於超深寬比蝕刻的電漿反應器及其蝕刻方法 Download PDF

Info

Publication number
TWI747137B
TWI747137B TW109101245A TW109101245A TWI747137B TW I747137 B TWI747137 B TW I747137B TW 109101245 A TW109101245 A TW 109101245A TW 109101245 A TW109101245 A TW 109101245A TW I747137 B TWI747137 B TW I747137B
Authority
TW
Taiwan
Prior art keywords
radio frequency
etching
frequency
frequency power
plasma
Prior art date
Application number
TW109101245A
Other languages
English (en)
Other versions
TW202030797A (zh
Inventor
志堯 尹
張一川
梁潔
興才 蘇
圖強 倪
Original Assignee
大陸商中微半導體設備(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商中微半導體設備(上海)股份有限公司 filed Critical 大陸商中微半導體設備(上海)股份有限公司
Publication of TW202030797A publication Critical patent/TW202030797A/zh
Application granted granted Critical
Publication of TWI747137B publication Critical patent/TWI747137B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3343Problems associated with etching
    • H01J2237/3348Problems associated with etching control of ion bombardment energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

本發明公開了一種用於超深寬比蝕刻的電漿反應器及其蝕刻方法,包括:反應腔,所述反應腔內形成反應空間;反應空間底部包括一個基座,用於支撐處理基片;反應腔內頂部包括一氣體噴淋頭;第一射頻電源輸出具有第一頻率的射頻功率到基座或氣體噴淋頭,以形成並維持反應腔內的電漿;第二射頻電源輸出具有第二頻率的射頻功率到基座,以控制入射到基片的離子能量;所述第一頻率大於等於4MHz,第二頻率大於等於10KHz小於等於300KHz。

Description

用於超深寬比蝕刻的電漿反應器及其蝕刻方法
本發明涉及電漿蝕刻反應器,特別涉及一種用於超深寬比蝕刻的電容耦合型的電漿蝕刻反應器。
半導體晶片生產過程中,需要進行大量的微觀加工,常見的電漿蝕刻反應器能夠在基片上形成各種微米甚至奈米級尺寸的通孔或溝槽,再結合其它化學氣相沉積等製程,最終形成各種半導體晶片成品。
第1圖所示為典型的電容耦合性電漿蝕刻反應器,包括腔體101,腔體內底部為基座10,基座10同時作用為下電極連接到一個高頻射頻電源HF和一個低頻射頻電源LF。基座10上包括靜電夾盤21,用於固定待處理的基片100,圍繞靜電夾盤的和基片100的還包括輔助的邊緣環22。反應腔內的頂部設置有一個平板形的氣體噴淋頭11,氣體噴淋頭11藉由管道與外部氣源200相聯通。在電漿蝕刻過程中,高頻射頻電源HF(例如,頻率為27MHZ、60MHz)輸入的高頻能量使得通入反應腔內的反應氣體電離產生電漿P,低頻射頻電源LF(例如,2MHz)輸入基座10的電場使得基片上表面鞘層中產生足夠的直流偏置電壓,加速離子使得離子向下快速地向下轟擊,以進行蝕刻。
隨著技術的進步,超深寬比蝕刻的應用和需求越來越廣泛。例如,在儲存器領域,3D NAND閃存成為了主要的儲存晶片結構之一。製造3D NAND晶片的過程,包括先形成交替的氧化矽和氮化矽材料層,層數可以達到64層甚至上百層,然後藉由電漿蝕刻貫穿所有這些材料層,由於這些材料層的整體厚度很大,大於5μm甚至8μm以上,因而屬超深寬比蝕刻,前述習知電漿蝕刻反應器中的射頻能量控制系統無法將離子驅動到蝕刻材料層通孔的底部,造成通孔蝕刻失敗。
一般而言,介電孔或槽蝕刻所能達到的孔深或槽深,很大程度上受限於電漿中的離子能所到達的深度。對於超深寬比(>40)的蝕刻製程,往往會出現“離子受限”的製程區間。這是因為渡越鞘層之後離子本身能量具有局限性,加上深孔側壁累積電荷所形成電場對離子產生排斥作用,隨著蝕刻深度的增加,到達孔底部的離子數量越發有限,或者即使到達底部,其能量也不足以輔助蝕刻劑(活性基團)對底部材料繼續蝕刻,使得最終的孔深不能滿足製程要求。因此,如何提高離子的能量和降低電荷累積效應是解決這一製程問題的關鍵。
第2圖所示為電漿蝕刻過程中基片100內部的電荷分佈圖。被蝕刻基片100上沉積有絕緣材料層103,其中絕緣材料層103可以是均勻的材料層,也可以是由交替的多種絕緣材料層103堆疊而成。上方的遮罩層105上具有圖形化的開口,開口經過蝕刻向下延伸形成通孔102。對於這種超深寬比的蝕刻製程,在蝕刻通孔向下延伸的過程中,通孔側壁會逐漸積累電荷,由於通孔是絕緣材料構成的,這些電荷很難被導走。這些積累的電荷主要是正電荷,也可能出現少量負電荷,呈隨機不對稱分佈。經過基片表面的鞘層後,入射離子在向下運動的過程中會被這些電荷排斥而減速,向下運動的離子能量不足會導致蝕刻通孔底部無法被繼續向下蝕刻,反應停止;或者,向下運動的離子被這些不對稱 分佈的電荷形成的電場排斥後偏移運動方向,最後傾斜入射到通孔的側壁,最終使得蝕刻通孔發生偏斜。
隨著蝕刻製程發展,對蝕刻深寬比的要求越來越嚴苛,業內的普遍做法是,在習知的射頻電源的配置基礎上(比如,2MHz的低頻射頻電源LF、60MHz的高頻射頻電源HF),藉由不斷地提高射頻輸入源的射頻功率,從而加大射頻饋入反應腔內的能量,來提高離子的入射能量,來實現超深寬比的蝕刻,但這樣仍會出現蝕刻的瓶頸,出現前述的“離子受限”現象,到達一定的深度後,就再也蝕刻不下去了,同時,真正用於實現離子向下轟擊的能量很少(約占3%左右),因而輸入的射頻功率的利用率很低,造成射頻能源的巨大浪費和晶片生產商的成本大大提升。
所以,業界需要提出一種新的、低能耗的電漿蝕刻反應器,能夠突破習知技術中超深寬比蝕刻的瓶頸,有效進行超深寬比的蝕刻製程。
本發明的目的在於提供一種電漿蝕刻反應器,其能夠適用於超深寬比的通孔蝕刻製程,且比習知技術具有更低能耗。
本發明提供了一種用於超深寬比蝕刻的電漿反應器,包括:反應腔,所述反應腔內部形成反應空間,以進行電漿蝕刻製程處理;基座,設置於所述反應空間內,用於支撐被處理基片;氣體噴淋頭,設置於所述反應腔內的頂部;第一射頻電源,與所述基座或氣體噴淋頭相連接,以輸送具有第一頻率的射頻功率到所述基座或氣體噴淋頭,形成並維持所述反應腔內的電漿;第二射頻電源,與所述基座相連接,以輸送具有第二頻率的射頻功率到所述基座, 以控制入射到所述基片的離子能量;所述第一頻率大於等於4MHz,第二頻率大於等於10KHz小於等於300KHz;其中,所述基片的表面的直流偏壓電勢產生第一加速電場,所述第二射頻電源產生第二加速電場,所述第二射頻電源的每個輸出週期包括一正半週期和一負半週期,在所述正半週期內,所述第一加速電場驅動所述電漿中的離子加速向所述基片運動以進行蝕刻;在所述負半週期內,所述第一加速電場驅動所述電漿中的離子加速向所述基片運動以進行蝕刻,同時,所述第二加速電場直接驅動所述電漿中的離子加速向所述基片運動以進行蝕刻。可選地,第二加速電場持續時間為大於等於5/3微秒小於等於50微秒。較佳的,第二頻率小於等於200KHz。
其中所述第二頻率最佳的為100KHz或200KHz,所述第一頻率為13.56MHz或27MHz或60MHz,最佳的需要大於等於13MHz。
其中所述第二射頻電源的輸出功率大於等於4KW,更易達到在幫射頻功率變化週期內使得電漿中的離子轟擊到基片。
本發明中的超深寬比的深寬比值大小為大於40:1。
較佳的,所述第一頻率大於等於第二頻率的100倍,增加對超深寬比蝕刻通孔電荷的中和次數和時間。
本發明提供另一個較佳實施例,電漿蝕刻反應器中還包括一個第三射頻電源,所述第三射頻電源輸出第三頻率,所述第三頻率大於所述第二頻率小於第一頻率,所述第二和第三射頻電源藉由一個匹配切換電路連接到所述基座。其中所述第二和第三射頻電源通也可以過各自的匹配電路連接到所述基座。與之相對應的,同時提供一種電漿反應器進行超深寬比蝕刻的方法,包括:放置待處理基片到所述基座或下電極上;通入蝕刻反應氣體;施加頻率大於等於4MHz的高頻射頻功率至反應腔內的下電極或上電極,以形成並維持電漿,所述高頻射頻功率輸出第一功率;藉由匹配切換電路選擇施加第三射頻電源到所 述基座;檢測蝕刻通孔深度,當蝕刻深度超過預設值時,控制所述第二射頻電源輸出射頻功率到基座,同時控制所述高頻射頻功率輸出第二功率,其中第二功率大於所述第一功率。
本發明還提供了一種具有超低頻射頻電源驅動的電漿反應器,包括:反應腔,所述反應腔內部形成反應空間,以進行電漿蝕刻製程處理;下電極,設置於所述反應空間內,用於支撐被處理基片;反應腔內頂部包括上電極;高頻射頻電源,輸出具有高頻率的射頻功率到所述下電極或上電極,以形成並維持反應腔內的電漿;超低頻射頻電源,輸出具有一超低頻的射頻功率到下電極,以控制入射到基片的離子能量;所述高頻的頻率大於等於2MHz,所述超低頻的頻率大於10KHz小於等於200KHz;其中,所述基片的表面的直流偏壓電勢產生第一加速電場,所述第二射頻電源產生第二加速電場,所述第二射頻電源的每個輸出週期包括一正半週期和一負半週期,在所述正半週期內,所述第一加速電場驅動所述電漿中的離子加速向所述基片運動以進行蝕刻;在所述負半週期內,所述第一加速電場驅動所述電漿中的離子加速向所述基片運動以進行蝕刻,同時,所述第二加速電場直接驅動所述電漿中的離子加速向所述基片運動以進行蝕刻。可選地,第二加速電場持續時間為大於等於5/3微秒小於等於50微秒。本發明中的電漿反應器還可以包括一個低頻射頻電源,所述低頻射頻電源輸出頻率大於所述超低頻射頻電源的輸出頻率,小於高頻射頻電源的輸出頻率,所述低頻頻射頻電源和超低頻射頻電源藉由一個匹配切換電路連接到所述基座。
較佳的,本發明中的第一頻率大於等於13MHz。
本發明還提供了與上述電漿反應器相匹配的超深寬比蝕刻的方法,包括:放置待處理基片到所述基座或下電極上;通入蝕刻反應氣體; 施加頻率大於等於4MHz的高頻射頻功率至反應腔內的下電極或上電極,以形成並維持電漿;同時施加頻率大於等於10KHz小於等於300KHz的超低頻的射頻功率至反應腔內的下電極或基座上;利用電漿對基片表面進行蝕刻;其中,在電漿蝕刻製程處理時,施加於所述下電極或基座上的超低頻功率直接利用射頻電壓對所述電漿中的離子進行驅動,所述第二射頻電源的每個輸出週期包括一正半週期和一負半週期,在所述正半週期內,第一加速電場驅動所述電漿中的離子加速向所述基片運動以進行蝕刻,在所述負半週期內,第一加速電場驅動所述電漿中的離子加速向所述基片運動以進行蝕刻,同時,第二加速電場直接驅動所述電漿中的離子加速向所述基片運動以進行蝕刻,所述基片的表面的直流偏壓電勢產生所述第一加速電場,所述第二射頻電源產生所述第二加速電場;本發明選擇的射頻頻率組合可以使得所述超低頻的輸出電壓週期性循環變化,每個週期中包括多次鞘層坍塌點,鞘層坍塌時刻,電漿中的電子進入蝕刻通孔,中和蝕刻通孔中的電荷。
同時,受超低頻射頻功率影響的直流偏置電壓也驅動所述離子,使其加速向下運動轟擊基片,共同實現蝕刻。其中,所述絕緣材料層包括交替層疊的第一絕緣材料層和第二絕緣材料層。所述絕緣材料層上蝕刻形成的通孔的深寬比大於40。所述第一絕緣材料層由氧化矽構成,第二絕緣材料層由氮化矽構成。
本發明中的超低頻的射頻功率大於等於6KW,所述高頻射頻功率小於等於10KW,或者小於等於20KW。
本發明適用的蝕刻氣體包括碳氟化合物和或碳氫氟化合物。
10:基座
100:基片
101:腔體
102:通孔
103:絕緣材料層
105:遮罩層
11:氣體噴淋頭
200:外部氣源
21:靜電夾盤
22:邊緣環
EDC:直流加速電壓
HF:高頻射頻電源
LF、LF2:超低頻射頻電源
LF1:低頻射頻電源
P:電漿
Pa、Pb:時段
t1、t2:週期長度
V100:射頻電壓曲線
VDC:直流偏置電壓
VDD:超低頻射頻電壓
VP:電漿電勢
X、Y、Z:區域
本說明書中包含的圖式,作為本說明書的一部分,示出了本發明的實施方式,並與說明書一起用於解釋和描述本發明的原理和實施。圖式旨在以一種概略的方式描繪所述實施例的主要特徵。
第1圖是習知技術電漿蝕刻反應器示意圖;第2圖是習知技術超深寬比蝕刻中離子運動軌跡示意圖;第3圖是本發明射頻電壓曲線和影響離子加速的各種電勢示意圖;第4圖是本發明與習知技術在進行高深寬比蝕刻時蝕刻速率與蝕刻深度變化曲線對比圖;第5a圖是本發明電漿蝕刻反應器一種實施例圖;第5b圖是本發明電漿蝕刻反應器另一種實施例圖;第5c圖是本發明電漿蝕刻反應器另一種實施例圖;第6a圖是習知技術中低頻射頻功率驅動下基片表面電子和離子運動示意圖;以及第6b圖是本發明超低頻射頻功率驅動下基片表面電子和離子運動示意圖。
下文將結合附圖對本發明的技術方案進行詳細描述,需強調的是,這裡僅是示例性的闡述,不排除有其它利用本發明思想的實施方式。
為解決習知技術的不足,發明人經過研究分析、多次試錯和實驗驗證,發明並提出一種超低頻射頻電源驅動的電容耦合型電漿蝕刻反應器,所述超低頻射頻電源(LF)施加至該電容耦合型電漿蝕刻反應器的下電極,其頻率範圍為大於等於10KHz小於等於300KHz;一高頻射頻電源(HF)施加至下電極或上電極,其射頻頻率大於等於4MHz,優選為13.56MHz或27MHz或60MHz。
使用該超低頻射頻電源驅動的電容耦合型電漿蝕刻反應器可以實現高質量的超深寬比蝕刻,不僅能夠比習知技術蝕刻更深,而且也不會出現因蝕刻通孔側壁電場排斥而導致的側向蝕刻,同時,其所需要的功率輸入也比習知技術低。本發明所述的超深寬比蝕刻,是指蝕刻深寬比至少為40:1的深孔或深槽。
下面結合第3圖、第4圖來詳述本發明的原理和與習知技術相比更優的發明效果。
本發明所提出的超低頻射頻電源驅動的電容耦合型電漿蝕刻反應器,其架構配置與第1圖所示的設置類似,不同之處在於低頻射頻電源(LF)的頻率取超低頻,頻率的具體範圍為大於等於10KHz小於等於300KHz。當然,本發明所提供的蝕刻反應器,其也可以將高頻射頻電源(HF)設置在上電極(或氣體噴淋頭)11處,同樣,其低頻射頻電源(LF)的頻率取超低頻,具體範圍為大於等於10KHz小於等於300KHz,該設置也屬本發明的專利保護範圍。
第3圖示出使用本發明超低頻電容耦合型電漿蝕刻反應器在電漿處理時射頻電壓曲線和影響電漿中的離子加速的各種電勢示意圖。圖中,VP代表電漿處理時的電漿電勢;VDC代表電漿處理時被處理的基片上的直流偏置電壓,該VDC是由於在電漿中的電子運動的速度遠快於離子運動的速度,導致大量電子積累在基片表面形成負電勢的自偏壓;VDD代表低頻射頻電源LF的射頻電壓;電漿電勢VP與直流偏置電壓VDC的差VP-VDC=EDC(稱為:直流加速電壓)決定了對電漿中離子加速的直流加速電場強度,直流加速電壓EDC對電漿中的離子的作用如第2圖所示,可以持續地加速電漿中帶正電荷的離子向下運動,以進行後續的蝕刻。
本發明選用甚低的、特殊的低頻射頻頻率,使得在電漿蝕刻處理時,電漿中的離子能夠實現雙重驅動加速,分別是VDC直流驅動加速、VDD射頻 直接驅動加速。在第3圖所示的t1週期內,鞘層上具有的直流偏置電壓(VDC)會驅動離子加速向下運動轟擊基片(稱為:VDC直流驅動加速),以進行蝕刻;同時,超低頻射頻電壓(VDD)也會直接驅動(direct driving)該離子加速向下運動轟擊基片(稱為:VDD射頻直接驅動加速),以進行蝕刻。
以下結合第3圖詳述本發明的VDD射頻直接驅動加速以進行蝕刻的原理和過程。
本發明提出的具有超低頻射頻電源的電容耦合型電漿蝕刻反應器,由於其施加至下電極的射頻電源的頻率為10至300KHz,該超低頻率比習知技術所採用的頻率(1MHz以上)低很多,所以,其週期就會比習知技術長很多。以頻率為100K為例,第3圖中與該頻率所對應的週期時長t1為10μs,藉由選擇與該超低頻射頻功率相配合的的輸出功率,比如,大於等於4KW,在電漿中的離子加速時間內(第3圖中,每個週期時長t1內虛線Y所圈示的時間段,即,在射頻電壓為負的半個週期內),電漿中的離子加速時間足夠長且加速電壓足夠大,電漿中的離子足以被加速到穿過鞘層並轟擊基片表面。該驅動是直接利用射頻電壓對電漿中的離子進行直接驅動(direct driving)向下加速運動,因而稱之為VDD射頻直接驅動加速。離子加速完成後,VDD隨後變化為正電壓,對電漿中新產生的離子和前一階段加速不夠的部分離子產生反向向上推離基片的力和作用效果(第3圖中,每個週期內虛線Z所圈示的時間段)。
與習知技術相對比,本發明解決了電漿蝕刻處理時僅存在VDC直流驅動加速蝕刻的問題。習知技術中的低頻射頻電源的頻率遠高於本發明的超低頻,比如大於1MHz,參考第3圖所示,其週期時長t1小於1μs,在有效加速時間段(Y區域)內,對離子的實際加速時間小於0.5μs,由於離子質量較大且加速時間較短,所以在這段加速時間內,離子尚未被加速到足夠的速度以穿過鞘層 到達基片表面,就馬上被變為正的電場減速並反向向上推離基片表面,如第2圖所示,該情況下,只能使得離子上下震盪,無法有效加速離子向下運動。
由上所述,本發明選用甚低的射頻頻率,使得在電漿蝕刻處理過程中,離子加速電場變成了雙重加速電場,以進行超深寬比蝕刻,與習知技術中只有VDC直流驅動加速離子蝕刻產生了質的變化。
本發明中,VDD射頻直接驅動加速可以帶來諸多的發明效果。
由於VDD射頻直接驅動加速效果與超低頻的射頻功率的數值大小直接相關,因而,可以藉由控制該超低頻的射頻功率的數值大小來直接地精確控制離子入射能量。在超深寬比蝕刻過程中,隨著蝕刻通孔向下延伸的深度逐漸增加,在整個蝕刻製程過程中,本發明能夠藉由控制該超低頻的射頻功率的數值大小,來精確控制離子能量,使其逐漸變化,以實現所期望的蝕刻效果。
習知技術中,低頻射頻電源LF具有1MHz-2MHz的射頻頻率,在該頻率選擇範圍內,只能藉由調節低頻射頻電源的輸出功率來調節入射到基片表面的離子能量。但是,在超深寬比蝕刻時,習知技術的低頻射頻電源LF只能藉由功率控制,使其低頻射頻電源的輸出達到20KW或者更高。這麼高的輸出功率不僅成本高昂,而且會產生大量的多餘熱量,因而在電漿蝕刻反應器中需要配套大功率的散熱機構;此外,極高的電壓(一萬伏特以上)也容易造成電漿反應器中各種氣體發生放電,造成電漿不穩定,並容易損壞反應器內部的零部件。
另外,習知技術的蝕刻機,在超深寬比蝕刻時,為了使得離子能夠到達足夠深的通孔底部,需要極大的低頻射頻功率輸出。增加功率輸出,雖然會增加離子向下入射的能量,但也會有部分能量對蝕刻氣體解離,使得基片上方的電漿的濃度和成分發生變化,會與高頻射頻功率的解離效果互相疊加,因而,增加射頻功率控制的難度。而且,蝕刻氣體中含有大量的碳氟化合物和 碳氟氫化合物,在這些成分因超高功率的低頻射頻功率供應而發生大量解離時,過量的聚合物會在蝕刻通孔側壁和開口沉積,導致開口被封閉,無法向下繼續蝕刻。上述各種因低頻射頻功率過高帶來的問題,大幅增加了電漿蝕刻反應器的加工和製造成本。
與之相對比,本發明提供了一個更優化的頻率範圍,少量增加超低頻的射頻功率,就能獲得極大的離子入射能量。
此外,本發明中,加速時間段內的VDD的電壓平均值可以大於VDC,所以,向下轟擊到基片表面的離子的數量和能量都會顯著高於習知技術採用同等偏置射頻功率時的離子的數量和能量。
較佳地,本發明中,因為使用了超低頻的射頻功率,所以,本發明超低頻射頻電源的功率可以選擇比習知技術更小。較佳地,本發明中的超低頻射頻電源的功率為4KW以上,它可以達到習知技術需要較高頻(大於1MHz)和大於10KW才能達到的技術效果。所以,本發明在進行超深寬比蝕刻時,可以顯著減小超低頻的射頻功率。
本發明的超低頻功率源設置,可以在具有相同高頻率射頻電源的情況下,具有更佳的解耦合(de-couple)的效果。超低頻和高頻可以獨立控制,實現對電漿中不同能量和濃度的獨立控制。本發明中,選用10KHz-300KHz的低頻射頻功率,能夠避免低頻射頻功率對蝕刻氣體進行解離,干擾電漿濃度分佈的控制,因而使得低頻射頻功率和高頻射頻功率的控制效果解耦,互相不干涉。所以,在解耦的情況下,本發明中低頻射頻功率可以設置得更大,比如30KW,也不會大幅影響反應腔中的電漿濃度和成分分佈,避免了習知技術中低頻射頻功率很高時出現的兩個射頻功率互相影響的問題。
第3圖還示出施加到基片的射頻電壓曲線V100。該射頻電壓曲線V100是由超低頻射頻電源(LF)的電壓和高頻射頻電源(HF)的電壓疊加而成。 由於超低頻射頻電源LF的輸出功率/輸出電壓(例如,7000-10000V)遠大於高頻射頻電源HF輸出的電壓(例如,約幾百伏),所以,整體上看,V100電壓會隨著超低頻射頻電源LF的輸出電壓大幅波動,由於V100還疊加了高頻射頻電壓,所以曲線V100上還包括大量高頻的小幅震盪。其中超低頻射頻電源(LF)的輸出電壓具有一個變化週期,對應週期長度t1,以100KHz為例,對應的t1週期長度為10μs,其中高頻射頻電源(HF)對應的震盪週期時長t2,以27MHz為例,t2的週期長度約為0.04μs。在超低頻射頻電源LF的輸出電壓震盪到最高點時,基片表面的電勢會被提升到與電漿P接近的電勢,此時基片表面的鞘層坍塌,電漿中的電子和帶電離子將不再受鞘層的限制而能夠自由運動到蝕刻通孔中,這樣蝕刻通孔102(如第2圖所示)中的積累電荷能夠被中和或導走。但是,發生該鞘層坍塌和積累電荷被消除的時間段非常短暫。如第3圖中X區域內有6到7個電壓波峰時刻,與電漿P電勢最接近,只有在這個範圍內的幾個時間段中,鞘層厚度降低到一定閥值,電子能夠克服鞘層阻礙向下運動,蝕刻通孔中的積累電荷被消除,在其餘時間內,由於鞘層的存在,無法讓電子自由向下運動。為了更多地讓鞘層接近坍塌,讓電漿向下擴散到基片表面,作為一種優選的實施方式,本發明的高頻射頻電源(HF)的輸出頻率選擇高於超低頻射頻電源(LF)的輸出頻率的100倍,這樣就會在第3圖所示的X區域中出現更多個鞘層坍塌點,有利於消除積累電荷,也就有利於獲得垂直的蝕刻通孔。
因此,作為本發明的一種較佳實施方式,本發明所提出的超深寬比通孔蝕刻裝置中,超低頻射頻電源LF的輸出頻率選擇100KHz或200KHz,這樣能夠在不過大增加低頻射頻功率輸出的基礎上,給予離子更高的能量;另一方面,選擇高頻射頻電源HF輸出率大於超低頻射頻電源LF輸出頻率的100倍,比如,27MHz或60MHz,這樣能夠更好地實現超深寬比蝕刻,同時消除蝕刻通孔中積累的電荷,改善蝕刻通孔形貌。
第3圖中,蝕刻通孔電荷消除每個t1週期內只發生少數幾次,所以t1時間段不能太長,太長會導致在一個週期內仍可能發生足夠的電荷積累,導致離子入射方向傾斜,也就是說,本發明中,超低頻射頻電源LF的輸出頻率不能太低,需要大於等於10KHz,這樣才能保證蝕刻通孔側壁積累的電荷及時得到消除。採用本發明提出的高頻射頻電源HF和超低頻射頻電源LF的輸出頻率範圍,可以更好地蝕刻深度極大的蝕刻通孔(8μm),同時不需要過大的超低頻射頻功率,就能實現習知技術需要更高功率才能蝕刻達到的深度。高頻射頻功率和超低頻射頻功率也能夠徹底的獨立控制,不會發生互相影響。
前述實施例中,所述的蝕刻裝置,其下電極同時連接有一高頻射頻電源HF和一超低頻射頻電源LF。應當理解,本發明的發明精神和思路也可以適用於將上電極施加一高頻射頻電源HF,下電極施加前述的超低頻射頻電源LF,所述超低頻射頻電源LF的頻率也為10KHz至300KHz之間。
與前述蝕刻裝置相關,本發明還提出了一種使用前述電漿蝕刻反應器進行超深寬比的蝕刻方法,尤其適用於3D NAND製程蝕刻。
所述蝕刻方法包括:放置待處理基片到所述基座或下電極上;通入蝕刻反應氣體;施加高頻射頻功率至反應腔內的下電極或上電極,以形成並維持電漿;同時施加超低頻的射頻功率至反應腔內的下電極或基座上;利用電漿對基片表面進行蝕刻;其中,在電漿蝕刻製程處理時,施加於所述下電極或基座上的超低頻功率直接利用射頻電壓對所述電漿中的離子直接驅動,使所述離子在半個超低頻的射頻功率的變化週期內向下加速運動轟擊所述基片,以進行蝕刻;同 時,受超低頻射頻功率影響的直流偏置電壓VDC也驅動所述離子,使其加速向下運動轟擊基片,共同實現蝕刻。
前述基片包括基材及位於基材上方的絕緣材料層和位於絕緣材料層上方的遮罩層。所述絕緣材料層的厚度大於5μm。
所述絕緣材料層包括交替層疊的第一絕緣材料層和第二絕緣材料層。
所述第一絕緣材料層由氧化矽構成,第二絕緣材料層由氮化矽構成。
所述絕緣材料層上蝕刻形成的通孔的深寬比大於40。
所述超低頻的射頻電源的輸出功率大於等於6KW,高頻射頻電源HF的輸出功率小於等於10KW。
所述高頻射頻電源HF的輸出功率小於等於20KW。
藉由所述氣體噴淋頭向反應腔中通入的蝕刻氣體包括碳氟化合物和或碳氫氟化合物。
所述超低頻的射頻電源的輸出電壓週期性循環變化,每個週期中包括多次鞘層坍塌點,鞘層坍塌時刻,電漿中的電子進入蝕刻通孔,中和蝕刻通孔中的電荷。
本發明採用超低頻射頻功率作為偏置功率源,與高頻射頻電源HF一起對基片進行超深寬比蝕刻。當兩個射頻電源同時被連接到反應腔中的下電極時,需要在下電極和兩個射頻電源之間設置匹配電路,匹配電路中包括具有最佳參數的濾波器,只允許具有射頻電源輸出頻率的功率穿過,防止其它頻率的射頻功率穿過。比如本發明超低頻射頻電源LF對應的匹配器中的濾波電路對10-300KHz的射頻功率阻抗很低,使得這些頻率的功率能夠順利藉由,對於60MHz的高頻射頻功率來說阻抗極高能夠防止反向流入偏置功率源。除了射頻 電源輸出的這兩個基礎頻率外,這兩個頻率的射頻功率由於共同輸出到一個下電極,兩種頻率的訊號會互相干擾疊加,形成許多新的額外頻率,這些雜波頻率中包括功率較大的HF±LF頻率以及倍頻諧波。習知技術中由於LF的頻率較大達到1MHz,所以對應源射頻頻率來說,匹配器中的濾波器需要濾除的就是雜波頻率59MHz和61MHz,可以藉由優化濾波器的參數方法將這些雜波濾除,同時允許60MHz的有效功率藉由。本發明中由於低頻射頻電源LF的頻率極低,LF以200Khz為例,相應的對源射頻功率來說,需要濾除的雜波頻率就是59.8MHz和60.2MHz。由於這兩個雜波頻率都與基礎頻率60MHz非常接近,所以傳統的濾波器方法很難設計參數,無法實習知效濾除59.8/60.2MHz的同時還需要讓60MHz的功率藉由。為此本發明提出了如第5a圖所示的電漿蝕刻反應實施例,第5a圖的高頻射頻電源HF被連接到了上電極也就是氣體噴淋頭,低頻射頻電源LF被連接到下電極。由於低頻射頻電源LF的大部分射頻電流會經過電漿耦合擴散到反應腔側壁再回到LF匹配器,只有少部分射頻功率會耦合到上電極,所以HF匹配器在進行阻抗匹配時只能檢測到少量超低頻射頻功率,能夠有效實現對高頻射頻輸出功率和反射功率的監測。避免了高頻射頻功率連接到下電極時出現的受到本發明超低頻射頻功率的嚴重干擾,造成高頻射頻功率匹配無法有效進行,電漿無法穩定,大量射頻功率浪費。
本發明適用於超深寬比的蝕刻製程,第4圖示出了在採用不同的低頻射頻頻率時,蝕刻到不同深度時的蝕刻速率變化曲線圖。其中LF1為習知技術採用1MHz時,蝕刻速率隨著蝕刻通孔向下延伸,深度增加過程中蝕刻速率快速下降。除了蝕刻深度的快速下降,由於大量蝕刻氣體無法到達蝕刻通孔底部進行向下蝕刻,會橫向對蝕刻通孔側壁進行蝕刻,即使蝕刻通孔最終達到了需要的深度,也會導致蝕刻通孔的形貌發生嚴重變形,出現弓形側壁(bowing)和遮罩層105下方材料的底切(undercut)。第4圖中的LF2曲線顯示了採用本發 明的超低頻作為偏置射頻電源後的蝕刻速率變化曲線,可見採用本發明後蝕刻速率隨深度下降較慢,大量蝕刻氣體能夠向下蝕刻,也就減小了對側壁的破壞。本發明採用超低頻射頻功率能夠大幅增加離子入射功率,所以蝕刻通孔底部的聚合物層能夠被向下入射的高能離子清除,使得蝕刻向下繼續進行。
採用本發明的超低頻射頻功率後,由於超低頻無法解離反應氣體,所以電漿濃度和反應氣體中的自由基(Radical)濃度會下降,為了保證足夠的蝕刻速率,需要大幅增加高頻射頻功率的數值。比如習知技術中60Mhz輸出功率為1200W,低頻射頻電源LF 2MHz輸出功率10000W通入蝕刻氣體(氟碳化合物和氟碳氫化合物)作為反應氣體。採用本發明超低頻射頻功率時,為了達到類似的蝕刻效果,需要60Mhz輸出功率為3500W,同時低頻射頻電源LF 10-300KHz的輸出功率為5000-8000W。所以採用本發明超低頻射頻功率可以增加高深寬比蝕刻過程中的蝕刻速率,部分降低偏置射頻電源的功率,但是需要付出高頻射頻功率大幅增加的代價。為了進一步改進高深寬比蝕刻製程,本發明進一步提出了如第5b圖所示的另一個實施例,第5b圖與第5a圖基本結構相同,主要區別在於設置一個低頻射頻電源LF1、一個超低頻射頻電源LF2連接到下電極。其中,LF1、LF2藉由一個匹配切換電路連接到下電極,在蝕刻高深寬比通孔製程過程中,在蝕刻深度較低(小於6μm)的第一階段時首先施加頻率較高LF1的偏置射頻功率到下電極,LF1的頻率範圍為2MHz-13.56MHz,同時施加較低功率的高頻射頻電源(HF)射頻功率到上電極或基座,HF的頻率大於等於4MHz,作為一種實施例,當LF1頻率為13.56MHz時,HF的頻率大於等於27MHz。藉由第4圖所示的蝕刻速率和蝕刻深度的關係圖可知,在這一過程中,採用LF1低頻射頻功率雖然蝕刻速率會略低於同樣功率超低頻射頻功率LF2,但是可以節約大量高頻射頻電源(HF)射頻功率。在蝕刻深度達到6μm時匹配切換電路切換輸出超低頻射頻電源(LF2)功率到下電極,同時,停止LF1射頻電源的射頻 功率輸出,進行第二階段蝕刻,使得在蝕刻進程的第二階段仍然能保持較高的蝕刻速率,防止對蝕刻通孔側壁的蝕刻,最終達到需要的蝕刻深度。進行所述第二階段蝕刻時,可以選擇超低頻射頻電源的頻率為100KHz或200KHz。
最終在整個蝕刻過程中,即在第一階段蝕刻中大幅降低了功率消耗,也在第二階段蝕刻中保證蝕刻速率和蝕刻通孔形貌。本發明中的匹配切換電路可以是一個低頻射頻電源LF1、一個超低頻射頻電源LF2共用一個,也可以是如第5c圖所示兩個射頻電源具有各自獨立的匹配器1和匹配器2,每個射頻電源藉由各自的匹配器輸出射頻功率到基座。其中的切換電路可以包括一個切換開關,或一系列開關組,也可以沒有實體的開關,只要能實現多個射頻功率輸出的切換就可以應用於本發明場合。比如,當需要停止向基座輸出當前射頻功率低頻射頻電源(LF1)時,關閉低頻射頻電源(LF1)的輸出,同時另一個超低頻射頻電源(LF2)開始藉由自己的匹配器輸出,這樣沒有切換開關,也能夠實現射頻功率的切換。
第6a圖是習知技術中低頻射頻功率驅動下基片表面電子和離子運動示意圖;第6b圖是本發明超低頻射頻功率驅動下基片表面電子和離子運動示意圖。從圖中可知習知技術中採用高於400KHz的低頻射頻功率,低頻射頻功率保持穩定的情況下,在低頻射頻功率的正半週中,電漿中的電子被低頻電場驅動向下運動,在負半週中電子被推離基片,同時由於負半週的時間長度Pa’較短,離子尚未運動到基片電場方向就反轉了,所以沒有離子會被低頻電場直接驅動向下。在基片表面積累的直流偏置電壓VDC保持穩定。本發明由於採用了超低頻的射頻功率,所以輸出到下電極的低頻交流訊號的週期大幅增加。所述超低頻的射頻電源的每個輸出週期包括一正半週期和一負半週期,在所述正半週期內存在對離子進行加速的第一加速電場即直流偏置電壓VDC,在所述負半週期內存在對離子進行加速的第一加速電場和第二加速電場,其中,第二加速電場 為超低頻射頻電壓VDD,其具體為超低頻射頻功率源對電漿中的離子施加的加速電場。當所述超低頻射頻電源LF2的輸出頻率小於等於300KHz時,所述第二加速電場持續時間大於1.7微秒。當所述超低頻射頻電源LF2的輸出頻率小於等於200KHz時,所述第二加速電場持續時間大於等於2.5微秒。
在正半週期中電子被超低頻射頻電壓VDD驅動向下到達基片表面,長期積累導致基片表面的直流偏置電壓VDC電壓的負偏置幅度增加,在進入負半週後的Pa時段中電子被推離基片,電漿中的離子開始向下加速運動,進入Pb時段後向下運動的離子被加速到足夠速度轟擊到基片表面和蝕刻通孔中,同時大量帶正電的離子到達使得基片表面積累的負偏置電勢減小,但是在整個超低頻偏置功率訊號週期中負偏置電壓仍能維持在一個小範圍內波動。
從第6b圖中可以看出,在超低頻偏置功率訊號的正半週中VDD無法驅動離子向下運動,只靠VDC向下驅動離子加速,在負半週中VDD和VDC同時驅動離子向下加速。其中VDC的產生原因是電漿中的電子運動速度快於離子,所以在基片表面建立的負偏壓的電勢,所以VDC負偏壓分佈受基片上方電漿濃度的影響,濃度越高的區域相應的VDC也越高。而離子濃度分佈受到高頻射頻功率(典型的大於10MHz)分佈的影響,高頻射頻功率在上下電極間傳遞過程中由於受集膚效應影響,射頻電流在下電極10表面分佈不均勻,會出現基片中心和邊緣電漿濃度高,中間部分濃度低的電漿分佈形態,相應的VDC的分佈也具有不均勻的特性,因此習知技術只用VDC驅動很難獲得最均勻的離子入射能量分佈。本發明中VDD是直接施加在上下電極10、11之間的,上下電極是平行的互相靠近的電極板,而且本發明中的VDD具有超低頻率(<300KHz),肌膚效應不明顯,所以可以在上下電極之間產生非常均勻分佈的電場,因此受VDD驅動下的離子入射能量分佈更均勻。本發明由於採用了超低頻偏置功率源,所以在超低頻偏置訊號的 負半週期中不僅能夠由兩種電壓驅動離子向下運動,而且離子能量分佈也更均勻。儘管本發明的內容已經藉由上述較佳實施例作了詳細介紹,但應當認識到上述的描述不應被認為是對本發明的限制。在所屬技術領域具有通常知識者閱讀了上述內容後,對於本發明的多種修改和替代都將是顯而易見的。因此,本發明的保護範圍應由所附的申請專利範圍來限定。
100:基片
102:通孔
103:絕緣材料層
105:遮罩層
VP:電漿電勢
EDC:直流加速電壓
VDC:偏置電壓

Claims (29)

  1. 一種用於超深寬比蝕刻的電漿反應器,包括:一反應腔,該反應腔內部形成一反應空間,以進行電漿蝕刻製程處理;一基座,設置於該反應空間內,用於支撐被處理基片;一氣體噴淋頭,設置於該反應腔內的頂部;一第一射頻電源,與該基座或該氣體噴淋頭相連接,以輸送具有一第一頻率的射頻功率到該基座或該氣體噴淋頭,形成並維持該反應腔內的電漿;以及一第二射頻電源,與該基座相連接,以輸送具有一第二頻率的射頻功率到該基座,以控制入射到該基片的離子能量;該第一頻率大於等於4MHz,該第二頻率大於等於10KHz小於等於300KHz;該基片的表面的直流偏壓電壓產生一第一加速電場,該第二射頻電源產生一第二加速電場,該第二射頻電源的每個輸出週期包括一正半週期和一負半週期,在該正半週期內,該第一加速電場驅動該電漿中的離子加速向該基片運動以進行蝕刻;在該負半週期內,該第一加速電場驅動該電漿中的離子加速向該基片運動以進行蝕刻,同時,該第二加速電場直接驅動該電漿中的離子加速向該基片運動以進行蝕刻。
  2. 如請求項1所述的電漿反應器,其中該第二加速電場持續時間為大於等於5/3微秒且小於等於50微秒。
  3. 如請求項1所述的電漿反應器,其中該第二頻率為100KHz。
  4. 如請求項1所述的電漿反應器,其中該第二頻率為200KHz。
  5. 如請求項3或4所述的電漿反應器,其中該第一頻率為13.56MHz或27MHz或60MHz。
  6. 如請求項1所述的電漿反應器,其中該第一頻率大於等於13MHz。
  7. 如請求項1所述的電漿反應器,其中該第二射頻電源的輸出功率大於等於4KW。
  8. 如請求項1所述的電漿反應器,其中該超深寬比的深寬比值大小為大於40:1。
  9. 如請求項1所述的電漿反應器,其中該第一頻率大於等於該第二頻率的100倍。
  10. 如請求項1所述的電漿反應器,其中該第二頻率小於等於200KHz。
  11. 如請求項1所述的電漿反應器,其進一步包括一個第三射頻電源,該第三射頻電源輸出一第三頻率,該第三頻率大於該第二頻率且小於該第一頻率,該第二射頻電源和該第三射頻電源藉由一個匹配切換電路連接到該基座。
  12. 如請求項1所述的電漿反應器,其進一步包括一個第三射頻電源,該第三射頻電源輸出一第三頻率,該第三頻率大於該第二頻率且小於該第一頻率,該第二射頻電源和該第三射頻電源藉由各自的匹配器連接到該基座。
  13. 如請求項11或12所述的電漿反應器,其中該第三頻率大於等於2MHz小於等於13.56MHz。
  14. 一種具有超低頻射頻電源驅動的電漿反應器,包括: 一反應腔,該反應腔內部形成一反應空間,以進行電漿蝕刻製程處理;一下電極,設置於該反應空間內,用於支撐被處理基片;該反應腔內頂部包括一上電極;一高頻射頻電源,輸出具有高頻率的射頻功率到該下電極或該上電極,以形成並維持反應腔內的電漿;以及一超低頻射頻電源,輸出具有一超低頻的射頻功率到下電極,以控制入射到該基片的離子能量;該高頻的頻率大於等於4MHz,該超低頻的頻率大於10KHz且小於等於200KHz;該基片的表面的直流偏壓電壓產生一第一加速電場,該第二射頻電源產生一第二加速電場,該第二射頻電源的每個輸出週期包括一正半週期和一負半週期,在該正半週期內,該第一加速電場驅動該電漿中的離子加速向該基片運動以進行蝕刻;在該負半週期內,該第一加速電場驅動該電漿中的離子加速向該基片運動以進行蝕刻,同時,該第二加速電場直接驅動該電漿中的離子加速向該基片運動以進行蝕刻。
  15. 如請求項14所述的電漿反應器,其中該第二加速電場持續時間為大於等於5/3微秒且小於等於50微秒。
  16. 如請求項14所述的電漿反應器,其中該第一頻率大於13MHz。
  17. 如請求項14所述的電漿反應器,其進一步包括一個低頻射頻電源,該低頻射頻電源輸出頻率大於該超低頻射頻電源的輸出頻率,且小於該高頻射頻電源的輸出頻率,該低頻頻射頻電源和該超低頻射頻 電源藉由一個匹配切換電路連接到該基座。
  18. 一種使用請求項1或14所述的電漿反應器進行超深寬比蝕刻的方法,包括:放置待處理基片到基座或下電極上;通入蝕刻反應氣體;施加頻率大於等於4MHz的一高頻射頻功率至反應腔內的該下電極或上電極,以形成並維持一電漿;同時施加頻率大於等於10KHz小於等於300KHz的一超低頻的射頻功率至反應腔內的該下電極或該基座上;以及利用電漿對該基片表面進行蝕刻;其中,在電漿蝕刻製程處理時,施加於該下電極或該基座上的該超低頻功率直接利用一射頻電壓對該電漿中的離子進行驅動,該第二射頻電源的每個輸出週期包括一正半週期和一負半週期,在該正半週期內,一第一加速電場驅動該電漿中的離子加速向該基片運動以進行蝕刻,在該負半週期內,該第一加速電場驅動該電漿中的離子加速向該基片運動以進行蝕刻,同時,一第二加速電場直接驅動該電漿中的離子加速向該基片運動以進行蝕刻,該基片的表面的直流偏壓電壓產生該第一加速電場,該第二射頻電源產生該第二加速電場。
  19. 如請求項18所述的蝕刻方法,該第二加速電場持續時間為大於等於5/3微秒小於等於50微秒。
  20. 如請求項18所述的蝕刻方法,其中該絕緣材料層包括交替層疊的一第一絕緣材料層和一第二絕緣材料層。
  21. 如請求項18所述的蝕刻方法,其中該絕緣材料層上蝕刻形成的通孔的深寬比大於40。
  22. 如請求項18所述的蝕刻方法,其中該超低頻的射頻功率大於等於6KW,該高頻射頻功率小於等於10KW。
  23. 如請求項18所述的蝕刻方法,其中該高頻射頻功率小於等於20KW。
  24. 如請求項18所述的蝕刻方法,其中該蝕刻氣體包括碳氟化合物和或碳氫氟化合物。
  25. 如請求項18所述的蝕刻方法,其特中該超低頻的輸出電壓週期性循環變化,每個週期中包括多次鞘層坍塌點,鞘層坍塌時刻,電漿中的電子進入蝕刻通孔,中和蝕刻通孔中的電荷。
  26. 如請求項20所述的蝕刻方法,該第一絕緣材料層由氧化矽構成,該第二絕緣材料層由氮化矽構成。
  27. 一種使用請求項11或12所述的電漿反應器進行超深寬比蝕刻的方法,包括:放置一待處理基片到該基座或一下電極上;通入蝕刻反應氣體;施加頻率大於等於4MHz的一高頻射頻功率至反應腔內的下電極或上電極,以形成並維持電漿,該高頻射頻功率輸出一第一功率;施加該第三射頻電源到該基座,進行第一階段蝕刻;以及檢測蝕刻通孔深度,當蝕刻深度超過預設值時,控制該第二射頻電源輸出射頻功率到該基座,同時控制該高頻射頻功率輸出一第二功率進行第二階段蝕刻,其中該第二功率大於該第一功率。
  28. 如請求項27所述的方法,其中,進行該第二階段蝕刻時,設置該第二射頻電源的頻率為100KHz或200KHz。
  29. 如請求項27所述的方法,其中,在進行該第一階段蝕刻步驟中,該第三射頻電源藉由該匹配切換電路施加到該基座。
TW109101245A 2019-02-02 2020-01-14 用於超深寬比蝕刻的電漿反應器及其蝕刻方法 TWI747137B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910107649.6 2019-02-02
CN201910107649.6A CN111524780B (zh) 2019-02-02 2019-02-02 一种用于超深宽比刻蚀的等离子反应器及其刻蚀方法

Publications (2)

Publication Number Publication Date
TW202030797A TW202030797A (zh) 2020-08-16
TWI747137B true TWI747137B (zh) 2021-11-21

Family

ID=71836678

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109101245A TWI747137B (zh) 2019-02-02 2020-01-14 用於超深寬比蝕刻的電漿反應器及其蝕刻方法

Country Status (4)

Country Link
US (1) US11189496B2 (zh)
KR (1) KR102419368B1 (zh)
CN (1) CN111524780B (zh)
TW (1) TWI747137B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178099A (ja) * 2019-04-22 2020-10-29 東京エレクトロン株式会社 整合方法及びプラズマ処理装置
US20220076922A1 (en) * 2020-09-08 2022-03-10 Applied Materials, Inc. Single chamber flowable film formation and treatments
KR102482734B1 (ko) 2020-11-13 2022-12-30 충남대학교산학협력단 고주파 펄스 소스 및 저주파 펄스 바이어스를 이용한 플라즈마 극고종횡비 식각 방법
WO2023132889A1 (en) * 2022-01-04 2023-07-13 Applied Materials, Inc. Electrode tuning, depositing, and etching methods
US20230223268A1 (en) * 2022-01-10 2023-07-13 Applied Materials, Inc. BIAS VOLTAGE MODULATION APPROACH FOR SiO/SiN LAYER ALTERNATING ETCH PROCESS
US20240249936A1 (en) * 2023-01-24 2024-07-25 Applied Materials, Inc. Methods for reducing micro and macro scalloping on semiconductor devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201246450A (en) * 2010-12-09 2012-11-16 Novellus Systems Inc Bottom up fill in high aspect ratio trenches
TW201511122A (zh) * 2009-09-25 2015-03-16 Applied Materials Inc 用於感應耦合電漿反應器中的高效率氣體解離之方法及設備
TW201807738A (zh) * 2016-05-26 2018-03-01 東京威力科創股份有限公司 用以蝕刻高深寬比特徵部之多頻功率調變

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220383B2 (ja) * 1996-07-23 2001-10-22 東京エレクトロン株式会社 プラズマ処理装置及びその方法
KR100521120B1 (ko) * 1998-02-13 2005-10-12 가부시끼가이샤 히다치 세이사꾸쇼 반도체소자의 표면처리방법 및 장치
US7144521B2 (en) * 2003-08-22 2006-12-05 Lam Research Corporation High aspect ratio etch using modulation of RF powers of various frequencies
US7740737B2 (en) * 2004-06-21 2010-06-22 Tokyo Electron Limited Plasma processing apparatus and method
JP5922218B2 (ja) * 2012-02-20 2016-05-24 東京エレクトロン株式会社 電源システム及びプラズマ処理装置
KR20160028612A (ko) * 2014-09-03 2016-03-14 삼성전자주식회사 반도체 제조 장치 및 이를 이용한 반도체 소자의 제조 방법
CN106611691B (zh) * 2015-10-26 2018-10-12 中微半导体设备(上海)有限公司 多频脉冲等离子体处理装置及其处理方法和清洗方法
US11075084B2 (en) * 2017-08-31 2021-07-27 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Chemistries for etching multi-stacked layers
US10643846B2 (en) * 2018-06-28 2020-05-05 Lam Research Corporation Selective growth of metal-containing hardmask thin films
US20200058469A1 (en) * 2018-08-14 2020-02-20 Tokyo Electron Limited Systems and methods of control for plasma processing
CN209515601U (zh) * 2019-02-02 2019-10-18 中微半导体设备(上海)股份有限公司 一种用于超深宽比刻蚀的等离子反应器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201511122A (zh) * 2009-09-25 2015-03-16 Applied Materials Inc 用於感應耦合電漿反應器中的高效率氣體解離之方法及設備
TW201246450A (en) * 2010-12-09 2012-11-16 Novellus Systems Inc Bottom up fill in high aspect ratio trenches
TW201807738A (zh) * 2016-05-26 2018-03-01 東京威力科創股份有限公司 用以蝕刻高深寬比特徵部之多頻功率調變

Also Published As

Publication number Publication date
KR20200096731A (ko) 2020-08-13
CN111524780B (zh) 2024-07-05
TW202030797A (zh) 2020-08-16
CN111524780A (zh) 2020-08-11
KR102419368B1 (ko) 2022-07-11
US20200251345A1 (en) 2020-08-06
US11189496B2 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
TWI747137B (zh) 用於超深寬比蝕刻的電漿反應器及其蝕刻方法
KR100807131B1 (ko) 단일 주파수 rf전력을 이용하여 웨이퍼를 처리하는 플라즈마 처리시스템, 웨이퍼를 식각하기 위한 플라즈마 처리장치, 및 단일 주파수 rf전력을 이용하여 플라즈마 처리챔버에서 웨이퍼를 처리하는 방법
KR101286242B1 (ko) 반도체 소자 제조 방법
TWI843802B (zh) 蝕刻半導體結構的方法和設備
TWI552224B (zh) Semiconductor etching apparatus and semiconductor etching method
JP2014107363A (ja) プラズマ処理装置およびプラズマ処理方法
JP2008243568A (ja) 基板のプラズマ処理装置及びプラズマ処理方法
TW201426814A (zh) 半導體刻蝕裝置及半導體結構的刻蝕方法
KR20110110056A (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
TWI521597B (zh) Etching method of semiconductor structure
KR102550393B1 (ko) 플라즈마 처리 장치 및 이를 이용한 반도체 장치의 제조 방법
TW202110286A (zh) 一種電漿處理器及其處理方法
KR20190003093A (ko) 반도체 제조 장치, 이의 동작 방법
KR102438638B1 (ko) 플라즈마 에칭 방법
US20240087846A1 (en) Plasma processing apparatus and rf system
US20240038493A1 (en) Semiconductor processing apparatus
KR102419373B1 (ko) 플라스마 처리 방법
KR100716263B1 (ko) 건식 식각 장치
CN103295870A (zh) 等离子体刻蚀设备及刻蚀方法
CN209515601U (zh) 一种用于超深宽比刻蚀的等离子反应器
TW202245053A (zh) 蝕刻方法及蝕刻處理裝置
KR101503258B1 (ko) 플라즈마를 이용한 기판 처리 방법
WO2022215556A1 (ja) エッチング方法及びエッチング処理装置
US20240162007A1 (en) Reducing aspect ratio dependent etch with direct current bias pulsing
TW202308469A (zh) 電漿處理裝置及電漿處理方法