WO2022215556A1 - エッチング方法及びエッチング処理装置 - Google Patents

エッチング方法及びエッチング処理装置 Download PDF

Info

Publication number
WO2022215556A1
WO2022215556A1 PCT/JP2022/014615 JP2022014615W WO2022215556A1 WO 2022215556 A1 WO2022215556 A1 WO 2022215556A1 JP 2022014615 W JP2022014615 W JP 2022014615W WO 2022215556 A1 WO2022215556 A1 WO 2022215556A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
etching
substrate
etching method
ratio
Prior art date
Application number
PCT/JP2022/014615
Other languages
English (en)
French (fr)
Inventor
一仁 遠江
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022215556A1 publication Critical patent/WO2022215556A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present disclosure relates to an etching method and an etching processing apparatus.
  • Patent Document 1 discloses a method of etching a first region having a multilayer film formed by alternately providing a silicon oxide film and a silicon nitride film and a second region having a single-layer silicon oxide film. It is According to the etching method described in Patent Document 1, the step of generating plasma of a first processing gas containing hydrofluorocarbon and the step of generating plasma of a second processing gas containing fluorocarbon are alternately repeated. executed.
  • the technique according to the present disclosure improves the selectivity of the layer to be etched with respect to the mask layer.
  • One aspect of the present disclosure includes steps of: (a) providing a substrate including a multilayer film in which a silicon oxide film and a silicon nitride film are alternately laminated; and a mask on the multilayer film; and (b) supporting the substrate. (c) etching the substrate with a plasma generated from a processing gas containing a hydrofluorocarbon gas having an unsaturated bond and a CF3 group and an oxygen-containing gas; ,including.
  • FIG. 1 is a longitudinal sectional view schematically showing an example of the configuration of a plasma processing system;
  • FIG. 4 is an explanatory diagram showing an example of an etching target layer formed on the substrate surface;
  • 1 is a flow diagram showing main steps of plasma processing according to one embodiment;
  • FIG. 4 is a timing chart for explaining an example of the timing of supplying the high frequency power HF for plasma generation and the pulse voltage for bias in the substrate processing method according to the embodiment.
  • 10 is a graph of O 2 gas flow rate dependence of selectivity when C 3 H 2 F 4 gas and O 2 gas are used as process gases.
  • 4 is a graph showing the relationship between the flow rate ratio and each parameter (etching rate, selectivity) when C 3 H 2 F 4 gas and O 2 gas are used as processing gases.
  • FIG. 4 is an explanatory diagram relating to in-plane uniformity of etching processing;
  • an etching process is performed using a patterned mask layer as a mask on a layer to be etched which is laminated on the surface of a semiconductor substrate (hereinafter simply referred to as "substrate"). It is This etching process is generally performed in a plasma processing apparatus as an etching processing apparatus.
  • Patent Document 1 in a processing container of a plasma processing apparatus, a step of generating plasma from a first processing gas containing hydrofluorocarbon, a step of generating plasma from a second processing gas containing fluorocarbon, is disclosed for etching a layer to be etched (first region and second region) by repeatedly performing
  • a HARC (High Aspect Ratio Contact) process in which a hole is deeply formed in a substrate having a laminated film, may be performed as the etching process described above.
  • a HARC process along with the recent demand for large-capacity and low-cost devices, formation of an etching shape (mask pattern) with a high aspect ratio during the etching process and an increase in mask material consumption rate due to a low-pitch pattern are required.
  • a high mask selectivity is required as a countermeasure.
  • FIG. 1 is a vertical cross-sectional view showing an outline of the configuration of a plasma processing system.
  • the plasma processing system includes a capacitively coupled plasma processing apparatus 1 and a controller 2.
  • the plasma processing apparatus 1 includes a plasma processing chamber 10 , a gas supply section 20 , a power supply 30 and an exhaust system 40 .
  • the plasma processing apparatus 1 also includes a substrate support 11 and a gas inlet.
  • a substrate support 11 is positioned within the plasma processing chamber 10 .
  • the gas introduction is configured to introduce at least one process gas into the plasma processing chamber 10 .
  • the gas introduction section includes a showerhead 13 .
  • a showerhead 13 is positioned above the substrate support 11 . In one embodiment, showerhead 13 forms at least a portion of the ceiling of plasma processing chamber 10 .
  • the plasma processing chamber 10 has at least one gas supply port for supplying at least one processing gas to the plasma processing space 10s and at least one gas exhaust port for exhausting gas from the plasma processing space 10s.
  • Side wall 10a is grounded.
  • showerhead 13 and substrate support 11 are electrically isolated from plasma processing chamber 10 .
  • the substrate support 11 includes a body member 111 and a ring assembly 112.
  • the top surface of body member 111 has a central region 111a (substrate support surface) for supporting a substrate (wafer) W and an annular region 111b (ring support surface) for supporting ring assembly 112 .
  • the annular region 111b surrounds the central region 111a in plan view.
  • Ring assembly 112 includes one or more annular members, at least one of which is an edge ring.
  • body member 111 includes base 113 and electrostatic chuck 114 .
  • Base 113 includes a conductive member.
  • the conductive member of base 113 functions as a lower electrode.
  • the electrostatic chuck 114 is arranged on the upper surface of the base 113 .
  • the upper surface of the electrostatic chuck 114 has the aforementioned central region 111a and annular region 111b.
  • the substrate support 11 may include a temperature control module configured to control at least one of the ring assembly 112, the electrostatic chuck 114, and the substrate W to a target temperature.
  • the temperature control module may include heaters, heat transfer media, flow paths, or combinations thereof.
  • the substrate support 11 may also include a heat transfer gas supply configured to supply a heat transfer gas (backside gas) between the back surface of the substrate W and the top surface of the electrostatic chuck 114 .
  • the showerhead 13 is configured to introduce at least one processing gas from the gas supply unit 20 into the plasma processing space 10s.
  • the showerhead 13 has at least one gas supply port 13a, at least one gas diffusion chamber 13b, and multiple gas introduction ports 13c.
  • the processing gas supplied to the gas supply port 13a passes through the gas diffusion chamber 13b and is introduced into the plasma processing space 10s through a plurality of gas introduction ports 13c.
  • showerhead 13 also includes a conductive member.
  • a conductive member of the showerhead 13 functions as an upper electrode.
  • the gas introduction part may include one or more side gas injectors (SGI: Side Gas Injector) attached to one or more openings formed in the side wall 10a.
  • SGI Side Gas Injector
  • the gas supply unit 20 may include at least one gas source 21 and at least one flow controller 22 .
  • gas supply 20 is configured to supply at least one process gas from respective gas sources 21 through respective flow controllers 22 to showerhead 13 .
  • Each flow controller 22 may include, for example, a mass flow controller or a pressure controlled flow controller.
  • gas supply 20 may include one or more flow modulation devices that modulate or pulse the flow of at least one process gas.
  • Power supply 30 includes an RF power supply 31 coupled to plasma processing chamber 10 via at least one impedance matching circuit.
  • RF power supply 31 is configured to supply at least one RF signal (RF power), such as a source RF signal and a bias RF signal, to the bottom electrode and/or the top electrode.
  • RF power source 31 may function as at least part of a plasma generator configured to generate a plasma from one or more process gases in plasma processing chamber 10 .
  • a bias RF signal to the lower electrode, a bias potential is generated in the substrate W, and ion components in the formed plasma can be drawn into the substrate W.
  • the RF power supply 31 includes a first RF generator 31a and a second RF generator 31b.
  • the first RF generator 31a is coupled to the lower electrode and/or the upper electrode via at least one impedance matching circuit and configured to generate a source RF signal (source RF power) for plasma generation.
  • the source RF signal has a frequency within the range of 13 MHz to 150 MHz.
  • the first RF generator 31a may be configured to generate multiple source RF signals having different frequencies.
  • One or more source RF signals generated are provided to the bottom electrode and/or the top electrode.
  • a second RF generator 31b is coupled to the lower electrode via at least one impedance matching circuit and configured to generate a bias RF signal (bias RF power).
  • the bias RF signal has a lower frequency than the source RF signal. In one embodiment, the bias RF signal has a frequency within the range of 400 kHz to 13.56 MHz. In one embodiment, the second RF generator 31b may be configured to generate multiple bias RF signals having different frequencies. One or more bias RF signals generated are provided to the bottom electrode. Also, in various embodiments, at least one of the source RF signal and the bias RF signal may be pulsed.
  • Power supply 30 may also include a DC power supply 32 coupled to plasma processing chamber 10 .
  • the DC power supply 32 includes a first DC generator 32a and a second DC generator 32b.
  • the first DC generator 32a is connected to the bottom electrode and configured to generate a first DC signal.
  • the generated first bias DC signal is applied to the bottom electrode.
  • the first DC signal may be applied to other electrodes, such as electrodes in an electrostatic chuck.
  • the second DC generator 32b is connected to the upper electrode and configured to generate the second DC signal.
  • the generated second DC signal is applied to the upper electrode.
  • at least one of the first and second DC signals may be pulsed. Note that the first and second DC generators 32a and 32b may be provided in addition to the RF power supply 31, and the first DC generator 32a may be provided instead of the second RF generator 31b. good.
  • the exhaust system 40 may be connected to a gas exhaust port 10e provided at the bottom of the plasma processing chamber 10, for example.
  • Exhaust system 40 may include a pressure regulating valve and a vacuum pump.
  • the pressure regulating valve regulates the pressure in the plasma processing space 10s.
  • Vacuum pumps may include turbomolecular pumps, dry pumps, or combinations thereof.
  • the controller 2 processes computer-executable instructions that cause the plasma processing apparatus 1 to perform the various steps described in this disclosure. Controller 2 may be configured to control elements of plasma processing apparatus 1 to perform the various processes described herein. In one embodiment, part or all of the controller 2 may be included in the plasma processing apparatus 1 .
  • the control unit 2 may include, for example, a computer 2a.
  • the computer 2a may include, for example, a processing unit (CPU: Central Processing Unit) 2a1, a storage unit 2a2, and a communication interface 2a3. Processing unit 2a1 can be configured to perform various control operations based on programs stored in storage unit 2a2.
  • the storage unit 2a2 may include RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof.
  • the communication interface 2a3 may communicate with the plasma processing apparatus 1 via a communication line such as a LAN (Local Area Network).
  • the plasma processing system may include inductively coupled plasma (ICP), electron-cyclotron-resonance plasma (ECR), helicon wave excited plasma (HWP), or surface wave plasma (SWP). It may have a processing apparatus including a plasma generation unit such as Plasma. Also, processing apparatus including various types of plasma generators may be used, including AC (Alternating Current) plasma generators and DC (Direct Current) plasma generators.
  • ICP inductively coupled plasma
  • ECR electron-cyclotron-resonance plasma
  • HWP helicon wave excited plasma
  • SWP surface wave plasma
  • processing apparatus including various types of plasma generators may be used, including AC (Alternating Current) plasma generators and DC (Direct Current) plasma generators.
  • FIG. 2(a) is a diagram showing an example of a substrate W to be processed in this embodiment.
  • the substrate W includes an underlying layer G, an etching target layer E and a mask layer M.
  • the underlying layer G can be a silicon nitride film.
  • the etching target layer E is provided on the underlying layer G.
  • the underlying layer G may be a multilayer film ON in which a silicon nitride film (Nit) and a silicon oxide film (Ox) are alternately laminated.
  • a mask layer M is provided on the layer E to be etched.
  • the mask layer M may consist of amorphous silicon.
  • the underlying layer G may be a dielectric film containing metal.
  • the etching target layer may be a single layer of silicon oxide or silicon nitride.
  • the mask layer M may be composed of a silicon-containing material other than amorphous silicon or a metal silicide, may be composed of a metal material such as tungsten, titanium or ruthenium, or may be composed of spin-on carbon, tungsten carbide, amorphous carbon or carbonization. It may also be composed of a carbon-containing material such as boron.
  • FIG. 2B a case where a hole H with a high aspect ratio is formed in an etching target layer E by plasma processing will be described as an example.
  • the substrate W is loaded into the plasma processing chamber 10 and placed on the substrate support 11 . After that, by supplying a DC voltage to a chuck electrode provided in the electrostatic chuck 114, the substrate W is attracted and held by the electrostatic chuck 114 by Coulomb force (step S1 in FIG. 3: provision of the substrate W).
  • step S2 in FIG. 3 etching process
  • a processing gas which will be described later
  • step S2 hydrofluorocarbon gas (e.g., C 3 H 2 F 4 gas) having an unsaturated bond and CF 3 groups as an etching gas and oxygen
  • a process gas is provided that includes a contained gas (eg, O 2 gas).
  • the high-frequency power HF for plasma generation is supplied to the upper electrode or the lower electrode by the first RF generator 31a to excite the processing gas and generate plasma.
  • the second RF generator 31b supplies high-frequency power LF for bias to the lower electrode to control the incidence of ions onto the substrate W.
  • the etching target layer E formed on the substrate W is etched by the action of the generated plasma.
  • the processing gas containing a hydrofluorocarbon gas having an unsaturated bond and three CF.sub.3 groups and an O.sub.2 gas can etch the multilayer film ON with respect to the mask layer M at a high selectivity.
  • step S2 by adjusting the ratio of the flow rate of the oxygen-containing gas to the flow rate of the hydrofluorocarbon gas having unsaturated bonds and CF 3 groups (O/CHF ratio), the selection ratio of the silicon nitride film Nit to the silicon oxide film Ox can be changed. Specifically, when the O/CHF ratio is less than 3.0, the selection ratio of the silicon nitride film to the silicon oxide film is greater than 1.0. When the O/CHF ratio is in the range of 3.0 to 3.5, the selection ratio of the silicon nitride film to the silicon oxide film is about 1.0. When the O/CHF ratio exceeds 3.5, the selection ratio of the silicon nitride film to the silicon oxide film becomes less than 1.0.
  • the O/CHF ratio is adjusted in the range of 2.0-3.0 or 2.0-2.5. If the O/CHF ratio is less than 2.0, the openings of the mask may be clogged due to deposition of reaction products generated by etching. If the O/CHF ratio exceeds 3.0, the selectivity to the mask may decrease.
  • the ratio of the flow rate of the C 3 H 2 F 4 gas to the total flow rate of the processing gas may be 20 to 40 volume % or 25 to 35 volume %.
  • the ratio of the flow rate of the C 3 H 2 F 4 gas to the total flow rate of the processing gas is within this range, the in-plane uniformity of the etching rate can be made excellent.
  • the hydrofluorocarbon gas having an unsaturated bond and three CF groups includes a C H F gas and an O gas. is not limited to this.
  • hydrofluorocarbon gases having unsaturated bonds and CF3 groups include C3HF5 , C3H3F3 , C3HF3 , and C4H2F6 .
  • the processing gas may contain a carbon-containing gas other than a hydrofluorocarbon gas having an unsaturated bond and a CF 3 group, from the viewpoint of suppressing shape anomalies such as bowing.
  • the carbon-containing gas may be a fluorocarbon gas, a hydrofluorocarbon gas other than a hydrofluorocarbon gas having unsaturated bonds and CF3 groups, or a hydrocarbon gas.
  • it may be at least one fluorocarbon gas selected from the group consisting of carbon - containing gas C3F8 gas, C4F6 gas and C4F8 gas .
  • the carbon - containing gas includes C3F8 gas.
  • the carbon - containing gas includes C4F8 gas.
  • etching the laminated film ON in FIG . Conceivable.
  • mainly C 3 H 2 F 4 gas functions as an etchant.
  • mainly C 3 F 8 gas functions as an etchant.
  • the C 3 H 2 F 4 gas is deposited on the surfaces of the mask layer M and the silicon oxide film Ox, and the C 3 F 8 gas is deposited on the surface of the silicon nitride film Nit to form protective films.
  • the O 2 gas controls the deposition amount of each gas and suppresses clogging of the openings of the mask.
  • the C 3 H 2 F 4 with respect to the flow rate of the C 3 F 8 gas may be adjusted in the range of 1.0 to 2.0.
  • a pulse voltage other than high frequency may be supplied to the lower electrode instead of the bias high frequency power LF.
  • the pulse voltage is a pulse voltage supplied from a pulse power supply.
  • a pulsed power supply may be configured such that the power supply itself provides a pulsed wave, or may comprise a device downstream of the pulsed power supply for pulsing the voltage.
  • a pulsed voltage is applied to the bottom electrode such that the substrate W has a negative potential.
  • the pulse voltage may be a negative DC voltage pulse.
  • the pulse voltage may be a square-wave pulse, a triangular-wave pulse, an impulse, or may have other voltage waveform pulses.
  • FIG. 4 shows an example of a timing chart relating to the substrate processing method of this embodiment.
  • the horizontal axis indicates time.
  • the vertical axis indicates the levels of the first high frequency power HF and the pulse voltage.
  • pulses of the first high frequency power HF and pulse voltage are periodically supplied to the lower electrode. Furthermore, the period during which the pulse of the first high-frequency power HF is supplied and the period during which the pulse voltage is supplied are synchronized.
  • the pulse voltage may be supplied to a bias electrode separately provided inside the electrostatic chuck 114 instead of the lower electrode.
  • the "L" level of the first high frequency power HF means that the first high frequency power HF is not supplied or the power level of the first high frequency power HF is the power level indicated by "H". indicates that it is lower than
  • the "L" level of the pulse voltage indicates that the pulse voltage is not applied to the lower electrode or the level of the pulse voltage is lower than the level indicated by "H”.
  • the period during which the voltage level of the pulse voltage is L is defined as “L period”
  • the period during which the voltage level of the pulse voltage is H is defined as "H period”.
  • the frequency (first frequency) of the pulse voltage in the H period may be controlled to 1 kHz to 1 MHz. In one example, the first frequency is controlled at 2 kHz.
  • the duty ratio (first duty ratio) indicating the proportion of the period in which the level of the pulse voltage is H in one cycle may be 100% or less, or 60% or less.
  • the absolute value of the pulse voltage may be 1000V or more or 2000V or more.
  • the frequency of the pulse voltage supplied periodically that is, the frequency (second frequency) that defines the cycle of the H period may be 1 kHz to 1 MHz or 100 Hz to 600 kHz.
  • the duty ratio (second duty ratio) indicating the proportion of the H period within one cycle may be 5% to 50%.
  • both the first high-frequency power HF and the pulse voltage are periodically supplied, and the period during which the first high-frequency power HF is supplied is synchronized with the period during which the pulse voltage is supplied.
  • the supply of the first high-frequency power HF and the pulse voltage according to this embodiment is not limited to this.
  • at least one of the first high frequency power HF and the pulse voltage may be supplied continuously.
  • the period during which the first high-frequency power HF is supplied and the period during which the pulse voltage is supplied (H period) may have different lengths.
  • the period during which the first high-frequency power HF is supplied and the period during which the pulse voltage is supplied (H period) need not be synchronized.
  • the level of the pulse voltage indicated by H is constant, but this level does not have to be constant.
  • the etching process in the plasma processing apparatus 1 is finished.
  • the supply of the high-frequency power HF from the RF power supply 31 and the supply of the processing gas from the gas supply unit 20 are stopped.
  • the supply of the high frequency power LF is also stopped.
  • the supply of the heat transfer gas to the back surface of the substrate W is stopped, and the adsorption and holding of the substrate W by the electrostatic chuck is stopped.
  • a series of plasma processes for the substrate W is completed.
  • Example 1 In Experiment 1, the flow rate of C 3 H 2 F 4 gas was fixed, and the ratio of the flow rate of O 2 gas to the flow rate of C 3 H 2 F 4 gas (O/CHF ratio) was set in the range of 2.5 to 10.0. , the etching rates of the silicon nitride film (Nit), the silicon oxide film (Ox) and the amorphous silicon film (a-Si:H) at each O/CHF ratio were measured.
  • the selectivity ratio of the silicon nitride film to the silicon oxide film (Nit/Ox), the selectivity ratio of the silicon nitride film to the amorphous silicon film (Nit/a-Si:H), and the silicon oxide film to the amorphous silicon film were determined.
  • the horizontal axis of FIG. 5 indicates the flow rate of O 2 gas, and the vertical axis indicates the selectivity.
  • the selectivity ratio of the silicon nitride film to the amorphous silicon film and the selectivity ratio of the silicon oxide film to the amorphous silicon film are both 1.00 or more. That is, regardless of the O/CHF ratio, the etching selectivity for the silicon nitride film and the silicon oxide film for the amorphous silicon film is maintained. Further, from FIG. 5, when the O/CHF ratio is around 0.30 to 0.35, the selectivity ratio of the silicon nitride film to the silicon oxide film becomes around 1.00, and the etching of the silicon nitride film becomes dominant at this point.
  • the region shifts to the region where etching of the silicon oxide film is dominant (the region where the Nit/Ox selectivity is 1 or less). That is, by changing the O/CHF ratio, it is possible to change the ratio between the etching rate of the silicon nitride film and the etching rate of the silicon oxide film.
  • Example 2 silicon nitride film ( Nit), silicon Etching rates of an oxide film (Ox) and an amorphous silicon film (a-Si:H) were measured. Based on the measured etching rate, the selectivity ratio of the silicon nitride film to the silicon oxide film (Nit/Ox), the selectivity ratio of the silicon nitride film to the amorphous silicon film (Nit/a-Si:H), and the silicon oxide film to the amorphous silicon film were determined. The selectivity ratio (Ox/a-Si:H) was calculated for each. The results are shown in FIG. The horizontal axes in FIGS.
  • FIG. 6A to 6C all indicate the ratio of the flow rate of the C 3 H 2 F 4 gas to the total flow rate in the process gas.
  • the vertical axis of FIG. 6A indicates the etching rate (ER) of each layer E to be etched.
  • the vertical axes in FIGS. 6B and 6C indicate the selectivity of each layer E to be etched.
  • FIG. 6(c) is an enlarged view of FIG. 6(b).
  • the etching rates of the silicon nitride film, the silicon oxide film and the amorphous silicon film can be changed even under the condition that the total flow rate of the processing gas is fixed. Further, as shown in FIG. 6A, when C 3 H 2 F 4 gas and O 2 gas are used as processing gases, the etching rate has a peak corresponding to the type of film. This is thought to be because the reaction product generated by the etching deposits on the surface of the layer E to be etched at a flow rate higher than the flow rate at which the etching rate reaches its peak, thereby lowering the etching rate. Therefore, when etching the multilayer film ON shown in FIG.
  • the ratio of C 3 H 2 F 4 gas to the total flow rate of the processing gas is changed (switch ).
  • switch the ratio of C 3 H 2 F 4 gas to the total flow rate of the processing gas
  • the etching characteristics can be controlled by adjusting the ratio of the C 3 H 2 F 4 gas to the total flow rate of the processing gas. For example, by setting the flow rate of the C 3 H 2 F 4 gas to 40% by volume or more with respect to the total flow rate of the processing gas, a silicon oxide film (SiO x film) and a silicon nitride film are formed on the mask made of amorphous silicon. It can be seen that the selection ratio of each film (SiN film) can be set to 10.0 or more.
  • Experiment 3 In Experiment 3 , (a) a silicon oxide film ( Ox ), (b) a silicon nitride film (Nit), and (c) an amorphous silicon film (a-Si:H), the etching rate in the x-axis direction and the etching rate in the y-axis direction orthogonal to the x-axis were measured. This result is shown in FIG.
  • the horizontal axes in FIGS. 7A to 7C indicate the distance from the center of the substrate W in the x-axis direction and the distance in the y-axis direction orthogonal to the x-axis direction.
  • the vertical axis in FIGS. 7A to 7C indicates the etching rate.
  • the etching rate is approximately constant for all films, indicating excellent in-plane uniformity of the etching rate. That is, a hydrofluorocarbon gas (for example, C 3 H 2 F 4 gas) having an unsaturated bond and CF 3 groups and an oxygen-containing gas (for example, O 2 gas) are used as process gases, and a silicon oxide film Ox and a silicon nitride film SiN are formed. It can be said that, when etching a multilayer film ON in which are alternately laminated, it is possible to perform an etching process with a high selectivity and excellent in-plane uniformity by appropriately adjusting the flow rate ratio.
  • a hydrofluorocarbon gas for example, C 3 H 2 F 4 gas
  • an oxygen-containing gas for example, O 2 gas
  • the flow rate ratio of the oxygen-containing gas to the hydrofluorocarbon gas having unsaturated bonds and CF3 groups was constant throughout step S2, but the O/CHF ratio changed during the etching stage. may be changed accordingly.
  • the O/CHF ratio may be changed stepwise or continuously according to the depth and aspect ratio of the holes H.
  • the etching target film E is etched (first etching) by setting the O/CHF ratio to the first flow ratio
  • the O/CHF ratio is set to a second flow ratio different from the first flow ratio.
  • the etching target film E may be etched (second etching). Furthermore, the first etching and the second etching may be repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

表面にマスク層とエッチング対象の多層膜が表面に形成された基板のエッチング処理を適切に行う。(a)シリコン酸化膜とシリコン窒化膜が交互に積層された多層膜と、前記多層膜上のマスクとを含む基板を提供する工程と、(b)前記基板を支持する基板支持体にパルス電圧を印加する工程と、(c)不飽和結合及びCF基を有するハイドロフルオロカーボンガスと、酸素含有ガスとを含む処理ガスから生成したプラズマにより前記基板をエッチングする工程と、を含む。

Description

エッチング方法及びエッチング処理装置
 本開示は、エッチング方法及びエッチング処理装置に関する。
 特許文献1には、シリコン酸化膜及びシリコン窒化膜が交互に設けられることによって構成された多層膜を有する第1領域と、単層のシリコン酸化膜を有する第2領域とをエッチングする方法が開示されている。特許文献1に記載のエッチング方法によれば、ハイドロフルオロカーボンを含む第1の処理ガスのプラズマを生成する工程と、フルオロカーボンを含む第2の処理ガスのプラズマを生成する工程と、が交互に繰り返して実行される。
特開2016-51750号公報
 本開示にかかる技術は、マスク層に対するエッチング対象層の選択比を改善する。
 本開示の一態様は、(a)シリコン酸化膜とシリコン窒化膜が交互に積層された多層膜と、前記多層膜上のマスクとを含む基板を提供する工程と、(b)前記基板を支持する基板支持体にパルス電圧を印加する工程と、(c)不飽和結合及びCF基を有するハイドロフルオロカーボンガスと、酸素含有ガスとを含む処理ガスから生成したプラズマにより前記基板をエッチングする工程と、を含む。
 本開示によれば、マスク層に対するエッチング対象層の選択比を改善することができる。
プラズマ処理システムの構成の一例を模式的に示す縦断面図である。 基板表面に形成されるエッチング対象層の一例を示す説明図である。 一実施形態にかかるプラズマ処理の主な工程を示すフロー図である。 一実施形態にかかる基板処理方法において、プラズマ生成用の高周波電力HFとバイアス用のパルス電圧を供給するタイミングの一例を説明するためのタイミングチャートである。 ガス及びOガスを処理ガスとして用いた場合の選択比のOガス流量依存性についてのグラフである。 ガス及びOガスを処理ガスとして用いた場合の流量比と各パラメータ(エッチングレート、選択性)との関係を示すグラフである。 エッチング処理の面内均一性に関する説明図である。
 半導体デバイスの製造工程では、半導体基板(以下、単に「基板」という。)の表面に積層して形成されたエッチング対象層に対して、パターンが形成されたマスク層をマスクとしたエッチング処理が行われている。このエッチング処理は、一般的にエッチング処理装置としてのプラズマ処理装置で行われる。
 上述した特許文献1には、プラズマ処理装置の処理容器内に、ハイドロフルオロカーボンを含む第1の処理ガスからプラズマを生成する工程と、フルオロカーボンを含む第2の処理ガスからプラズマを生成する工程と、を繰り返し行うことによりエッチング対象層(第1領域及び第2領域)をエッチングする方法が開示されている。
 ところで近年のプラズマ処理装置においては、前述のエッチング処理として、積層膜を有する基板に対してホールを深掘り形成する、HARC(High Aspect Ratio Contact)工程が行われる場合がある。かかるHARC工程においては、近年のデバイスの大容量化や低コスト化の要求に伴い、エッチング処理に際しての高アスペクト比のエッチング形状(マスクパターン)の形成と、低ピッチパターンによるマスク材消費レート上昇に対する対策としてマスク高選択比が求められている。
 本開示に係る技術は上記事情に鑑みてなされたものであり、シリコン酸化膜(SiO膜)及び/又はシリコン窒化膜(SiN膜)を含むシリコン含有膜に対して、不飽和結合及びCF基を有するハイドロフルオロカーボンガス(Cガス)と、酸素含有ガス(Oガス)とを用いることで、マスクに対するシリコン含有膜の選択比の向上を図るものである。以下、本開示の一実施形態にかかるプラズマ処理システム、及び一実施形態にかかるエッチング方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
 <プラズマ処理システム>
 先ず、一実施形態にかかるプラズマ処理システムについて説明する。図1は、プラズマ処理システムの構成の概略を示す縦断面図である。
 プラズマ処理システムは、容量結合型のプラズマ処理装置1及び制御部2を含む。プラズマ処理装置1は、プラズマ処理チャンバ10、ガス供給部20、電源30及び排気システム40を含む。また、プラズマ処理装置1は、基板支持体11及びガス導入部を含む。基板支持体11は、プラズマ処理チャンバ10内に配置される。ガス導入部は、少なくとも1つの処理ガスをプラズマ処理チャンバ10内に導入するように構成される。ガス導入部は、シャワーヘッド13を含む。シャワーヘッド13は、基板支持体11の上方に配置される。一実施形態において、シャワーヘッド13は、プラズマ処理チャンバ10の天部(ceiling)の少なくとも一部を構成する。プラズマ処理チャンバ10の内部には、シャワーヘッド13、プラズマ処理チャンバ10の側壁10a及び基板支持体11により規定されたプラズマ処理空間10sが形成される。プラズマ処理チャンバ10は、少なくとも1つの処理ガスをプラズマ処理空間10sに供給するための少なくとも1つのガス供給口と、プラズマ処理空間10sからガスを排出するための少なくとも1つのガス排出口とを有する。側壁10aは接地される。シャワーヘッド13及び基板支持体11は、プラズマ処理チャンバ10とは電気的に絶縁される。
 基板支持体11は、本体部材111及びリングアセンブリ112を含む。本体部材111の上面は、基板(ウェハ)Wを支持するための中央領域111a(基板支持面)と、リングアセンブリ112を支持するための環状領域111b(リング支持面)とを有する。環状領域111bは、平面視で中央領域111aを囲んでいる。リングアセンブリ112は、1又は複数の環状部材を含み、1又は複数の環状部材のうち少なくとも1つはエッジリングである。
 一実施形態において本体部材111は、基台113及び静電チャック114を含む。基台113は導電性部材を含む。基台113の導電性部材は下部電極として機能する。静電チャック114は、基台113の上面に配置される。静電チャック114の上面は前述の中央領域111a及び環状領域111bを有する。
 また、図示は省略するが、基板支持体11は、リングアセンブリ112、静電チャック114及び基板Wのうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、伝熱媒体、流路、又はこれらの組み合わせを含んでもよい。流路には、ブラインやガスのような伝熱流体が流れる。また、基板支持体11は、基板Wの裏面と静電チャック114の上面との間に伝熱ガス(バックサイドガス)を供給するように構成された伝熱ガス供給部を含んでもよい。
 シャワーヘッド13は、ガス供給部20からの少なくとも1つの処理ガスをプラズマ処理空間10s内に導入するように構成される。シャワーヘッド13は、少なくとも1つのガス供給口13a、少なくとも1つのガス拡散室13b、及び複数のガス導入口13cを有する。ガス供給口13aに供給された処理ガスは、ガス拡散室13bを通過して複数のガス導入口13cからプラズマ処理空間10s内に導入される。また、シャワーヘッド13は、導電性部材を含む。シャワーヘッド13の導電性部材は上部電極として機能する。なお、ガス導入部は、シャワーヘッド13に加えて、側壁10aに形成された1又は複数の開口部に取り付けられる1又は複数のサイドガス注入部(SGI:Side Gas Injector)を含んでもよい。
 ガス供給部20は、少なくとも1つのガスソース21及び少なくとも1つの流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、少なくとも1つの処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してシャワーヘッド13に供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、少なくとも1つの処理ガスの流量を変調又はパルス化する1又はそれ以上の流量変調デバイスを含んでもよい。
 電源30は、少なくとも1つのインピーダンス整合回路を介してプラズマ処理チャンバ10に結合されるRF電源31を含む。RF電源31は、ソースRF信号及びバイアスRF信号のような少なくとも1つのRF信号(RF電力)を、下部電極及び/又は上部電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された少なくとも1つの処理ガスからプラズマが形成される。従って、RF電源31は、プラズマ処理チャンバ10において1又はそれ以上の処理ガスからプラズマを生成するように構成されるプラズマ生成部の少なくとも一部として機能し得る。また、バイアスRF信号を下部電極に供給することにより、基板Wにバイアス電位が発生し、形成されたプラズマ中のイオン成分を基板Wに引き込むことができる。
 一実施形態において、RF電源31は、第1のRF生成部31a及び第2のRF生成部31bを含む。第1のRF生成部31aは、少なくとも1つのインピーダンス整合回路を介して下部電極及び/又は上部電極に結合され、プラズマ生成用のソースRF信号(ソースRF電力)を生成するように構成される。一実施形態において、ソースRF信号は、13MHz~150MHzの範囲内の周波数を有する。一実施形態において、第1のRF生成部31aは、異なる周波数を有する複数のソースRF信号を生成するように構成されてもよい。生成された1又は複数のソースRF信号は、下部電極及び/又は上部電極に供給される。第2のRF生成部31bは、少なくとも1つのインピーダンス整合回路を介して下部電極に結合され、バイアスRF信号(バイアスRF電力)を生成するように構成される。一実施形態において、バイアスRF信号は、ソースRF信号よりも低い周波数を有する。一実施形態において、バイアスRF信号は、400kHz~13.56MHzの範囲内の周波数を有する。一実施形態において、第2のRF生成部31bは、異なる周波数を有する複数のバイアスRF信号を生成するように構成されてもよい。生成された1又は複数のバイアスRF信号は、下部電極に供給される。また、種々の実施形態において、ソースRF信号及びバイアスRF信号のうち少なくとも1つがパルス化されてもよい。
 また、電源30は、プラズマ処理チャンバ10に結合されるDC電源32を含んでもよい。DC電源32は、第1のDC生成部32a及び第2のDC生成部32bを含む。一実施形態において、第1のDC生成部32aは、下部電極に接続され、第1のDC信号を生成するように構成される。生成された第1のバイアスDC信号は、下部電極に印加される。一実施形態において、第1のDC信号が、静電チャック内の電極のような他の電極に印加されてもよい。一実施形態において、第2のDC生成部32bは、上部電極に接続され、第2のDC信号を生成するように構成される。生成された第2のDC信号は、上部電極に印加される。種々の実施形態において、第1及び第2のDC信号のうち少なくとも1つがパルス化されてもよい。なお、第1及び第2のDC生成部32a、32bは、RF電源31に加えて設けられてもよく、第1のDC生成部32aが第2のRF生成部31bに代えて設けられてもよい。
 排気システム40は、例えばプラズマ処理チャンバ10の底部に設けられたガス排出口10eに接続され得る。排気システム40は、圧力調整弁及び真空ポンプを含んでもよい。圧力調整弁によって、プラズマ処理空間10s内の圧力が調整される。真空ポンプは、ターボ分子ポンプ、ドライポンプ又はこれらの組み合わせを含んでもよい。
 制御部2は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部2は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。一実施形態において、制御部2の一部又は全てがプラズマ処理装置1に含まれてもよい。制御部2は、例えばコンピュータ2aを含んでもよい。コンピュータ2aは、例えば、処理部(CPU:Central Processing Unit)2a1、記憶部2a2、及び通信インターフェース2a3を含んでもよい。処理部2a1は、記憶部2a2に格納されたプログラムに基づいて種々の制御動作を行うように構成され得る。記憶部2a2は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース2a3は、LAN(Local Area Network)等の通信回線を介してプラズマ処理装置1との間で通信してもよい。
 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な追加、省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。
 例えば、本実施形態においてはプラズマ処理システムが容量結合型(CCP;Capacitively Coupled Plasma)のプラズマ処理装置1を有する場合を例に説明を行ったが、プラズマ処理システムの構成はこれに限定されるものではない。例えばプラズマ処理システムは、誘導結合プラズマ(ICP;Inductively Coupled Plasma)、ECRプラズマ(Electron-Cyclotron-resonance plasma)、ヘリコン波励起プラズマ(HWP:Helicon Wave Plasma)、又は、表面波プラズマ(SWP:Surface Wave Plasma)等のプラズマ生成部を含む処理装置を有していてもよい。また、AC(Alternating Current)プラズマ生成部及びDC(Direct Current)プラズマ生成部を含む、種々のタイプのプラズマ生成部を含む処理装置が用いられてもよい。
<プラズマ処理方法>
 次に、以上のように構成されたプラズマ処理装置1を用いて行われる本開示の技術に係る基板Wのエッチング処理について説明する。
 図2(a)は、本実施形態の処理対象となる基板Wの一例を示す図である。基板Wは、下地層G、エッチング対象層E及びマスク層Mを含む。図2(a)の例では、下地層Gはシリコン窒化膜であり得る。エッチング対象層Eは下地層G上に設けられる。下地層Gは、シリコン窒化膜(Nit)とシリコン酸化膜(Ox)とが交互に積層された多層膜ONであり得る。マスク層Mはエッチング対象層E上に設けられる。マスク層Mはアモルファスシリコンから構成され得る。なお、下地層Gは、金属を含む誘電膜であってもよい。エッチング対象層は、シリコン酸化膜又はシリコン窒化膜の単層膜であってもよい。マスク層Mは、アモルファスシリコン以外のシリコン含有材料もしくは金属シリサイドから構成されてもよく、タングステン、チタンもしくはルテニウム等の金属材料から構成されてもよく、又は、スピンオンカーボン、炭化タングステン、アモルファスカーボンもしくは炭化ホウ素等の炭素含有材料から構成されてもよい。
 また本実施形態では、図2(b)に示すように、プラズマ処理によってエッチング対象層Eに高アスペクト比のホールHを形成する場合を例に説明を行う。
 プラズマ処理においては、先ず、プラズマ処理チャンバ10の内部に基板Wを搬入し、基板支持体11上に基板Wを載置する。その後、静電チャック114内に設けられたチャック電極に直流電圧を供給することにより、基板Wはクーロン力によって静電チャック114に吸着保持される(図3のステップS1:基板Wの提供)。
 静電チャック114に基板Wが保持されると、プラズマ処理チャンバ10の内部が密閉され、排気システム40によってプラズマ処理チャンバ10の内部を所望の真空度まで減圧する。その後、後述する処理ガスを用いたエッチング処理(図3のステップS2:エッチング処理)を含むシーケンスが実行される。エッチング処理では、図2(b)に示したようにエッチング対象層Eがエッチングされ、基板W上にマスクパターン(ホールH)が形成される。
 ステップS2では、ガス供給部20からシャワーヘッド13を介してプラズマ処理空間10sに、エッチングガスとして、不飽和結合及びCF基を有するハイドロフルオロカーボンガス(例えば、Cガス)並びに酸素含有ガス(例えば、Oガス)を含む処理ガスを供給する。また、第1のRF生成部31aによりプラズマ生成用の高周波電力HFを上部電極又は下部電極に供給し、処理ガスを励起させてプラズマを生成する。また更に、第2のRF生成部31bによりバイアス用の高周波電力LFを下部電極に供給し、基板Wに対するイオンの入射を制御する。そして、生成されたプラズマの作用によって、基板W上に形成されたエッチング対象層Eにエッチング処理が施される。この際、不飽和結合及びCF基を有するハイドロフルオロカーボンガス並びにOガスを含む処理ガスは、マスク層Mに対して多層膜ONを高い選択比でエッチングすることができる。
 ステップS2では、不飽和結合及びCF基を有するハイドロフルオロカーボンガスの流量に対する酸素含有ガスの流量の比率(O/CHF比)を調整することで、シリコン酸化膜Oxに対するシリコン窒化膜Nitの選択比を変化させることができる。具体的には、O/CHF比が3.0未満では、シリコン酸化膜に対するシリコン窒化膜の選択比が1.0よりも大きくなる。O/CHF比が3.0~3.5の範囲では、シリコン酸化膜に対するシリコン窒化膜の選択比が1.0程度となる。O/CHF比が3.5よりも大きくなると、シリコン酸化膜に対するシリコン窒化膜の選択比が1.0よりも小さくなる。シリコン窒化膜をエッチングする場合、一例では、O/CHF比は2.0~3.0又は2.0~2.5の範囲に調整される。O/CHF比が2.0未満では、エッチングにより生じた反応生成物の堆積により、マスクの開口が閉塞するおそれある。O/CHF比が3.0を超えると、マスクに対する選択比が低下するおそれがある。
 また、ステップS2では、処理ガスの総流量に対するCガスの流量の割合を20~40体積%又は25~35体積%としてよい。処理ガスの総流量に対するCガスの流量の割合がこのような範囲にある場合、エッチングレートの面内均一性を優れたものとすることができる。
 なお、上述の実施形態では、不飽和結合及びCF基を有するハイドロフルオロカーボンガスとして、Cガス及びOガスを含む場合を例に説明したが、不飽和結合及びCF基を有するハイドロフルオロカーボンガスはこれに限られない。例えば、不飽和結合及びCF基を有するハイドロフルオロカーボンガスとしてCHF、C、CHF、Cが挙げられる。
 ステップS2において、ボーイング等の形状異常を抑制する観点から、処理ガスは、不飽和結合及びCF基を有するハイドロフルオロカーボンガス以外の炭素含有ガスを含んでもよい。例えば、炭素含有ガスは、フルオロカーボンガス、不飽和結合及びCF基を有するハイドロフルオロカーボンガス以外のハイドロフルオロカーボンガス又はハイドロカーボンガスであってよい。また例えば、炭素含有ガスCガス、Cガス及びCガスからなる群から選択される少なくとも1種のフルオロカーボンガスであってよい。一例では、炭素含有ガスは、Cガスを含む。また一例では、炭素含有ガスは、Cガスを含む。例えば、Cガス、Oガス及びCガスを含む処理ガスを用いて、図2(a)の積層膜ONをエッチングする場合、各ガスは以下のように機能すると考えられる。シリコン窒化膜Nitのエッチング時には、主としてCガスがエッチャントして機能する。一方、シリコン酸化膜Oxのエッチング時には、主としてCガスがエッチャントとして機能する。この際、Cガスはマスク層Mとシリコン酸化膜Oxの表面に堆積し、Cガスはシリコン窒化膜Nitの表面に堆積し、それぞれ保護膜を形成する。また、Oガスは、各ガスの堆積量を調整し、マスクの開口の閉塞を抑制する。なお、ホールHのアスペクト比や、バイアス用の高周波電力の大きさ(又は、後述するパルス電圧の大きさ)によっても異なるが、一例では、Cガスの流量に対するCガスの流量比は、1.0~2.0の範囲に調整してよい。
 また、ステップS2において、バイアス用の高周波電力LFに代えて、高周波以外のパルス電圧を下部電極に供給してもよい。ここで、パルス電圧とは、パルス電源から供給されるパルス状の電圧である。パルス電源は、電源自体がパルス波を供給するように構成されてもよく、パルス電源の下流側に電圧をパルス化するためのデバイスを備えてもよい。一例では、パルス電圧は、基板Wに負の電位が生じるように下部電極に供給される。パルス電圧は、負極性の直流電圧のパルスであってよい。また、パルス電圧は、矩形波のパルスであってもよく、三角波のパルスあってもよく、インパルスであってもよく、又はその他の電圧波形のパルスを有していてもよい。
 図4に、本実施形態の基板処理方法に関するタイミングチャートの一例を示す。図4において、横軸は、時間を示している。図4において、縦軸は、第1の高周波電力HF及びパルス電圧のレベルを示している。図4において、第1の高周波電力HFのパルス及びパルス電圧は、下部電極に周期的に供給されている。さらに、第1の高周波電力HFのパルスが供給される期間及びパルス電圧が供給される期間は同期している。なお、パルス電圧は、下部電極に代えて、静電チャック114内に別途設けたバイアス電極に供給してもよい。
 図4において、第1の高周波電力HFの「L」レベルは、第1の高周波電力HFが供給されていないか、又は、第1の高周波電力HFの電力レベルが、「H」で示す電力レベルよりも低いことを示している。パルス電圧の「L」レベルは、パルス電圧が下部電極に与えられないか、又は、パルス電圧のレベルが、「H」で示すレベルよりも低いことを示している。ここで、パルス電圧の電圧レベルがLである期間を「L期間」、パルス電圧の電圧レベルがHである期間を「H期間」とする。
 H期間におけるパルス電圧の周波数(第1の周波数)は1kHz~1MHzに制御されてよい。一例では、第1の周波数は2kHzに制御される。また、この場合、一周期内でパルス電圧のレベルがHとなる期間が占める割合を示すDuty比(第1のDuty比)は100%以下であってよく、又は60%以下であってよい。また、パルス電圧の絶対値は、1000V以上又は2000V以上であってよい。
 また、周期的に供給されるパルス電圧の周波数、すなわち、H期間の周期を規定する周波数(第2の周波数)は、1kHz~1MHz又は100Hz~600kHzとしてよい。また、この場合、一周期内でH期間が占める割合を示すDuty比(第2のDuty比)は、5%~50%であってよい。
 なお、上述の実施形態では、第1の高周波電力HF及びパルス電圧のいずれも周期的に供給され、第1の高周波電力HFが供給される期間と、パルス電圧が供給される期間とが同期している場合について説明した。しかしながら、本実施形態にかかる第1の高周波電力HF及びパルス電圧の供給はこれに限定されない。たとえば、第1の高周波電力HF及びパルス電圧の少なくとも一方が連続的に供給されてもよい。第1の高周波電力HFが供給される期間と、パルス電圧が供給される期間(H期間)とは異なる長さであってもよい。第1の高周波電力HFが供給される期間と、パルス電圧が供給される期間(H期間)とは同期していなくてもよい。また、図4では、Hで示すパルス電圧のレベルは一定であるが、このレベルは一定でなくてもよい。
 基板Wのエッチング対象層Eに対するマスクパターン(ホールH)の形成が完了すると、プラズマ処理装置1におけるエッチング処理を終了する。エッチング処理を終了する際には、先ず、RF電源31からの高周波電力HFの供給及びガス供給部20による処理ガスの供給を停止する。また、プラズマ処理中に高周波電力LFを供給していた場合には、該高周波電力LFの供給も停止する。次いで、基板Wの裏面への伝熱ガスの供給を停止し、静電チャックによる基板Wの吸着保持を停止する。
 エッチング処理が施された基板Wは、その後、図示しない基板搬送機構によりプラズマ処理チャンバ10から搬出され(図3のステップS3:基板Wの搬出)、基板Wに対する一連のプラズマ処理が終了する。
 以下、本実施形態について、(実験1)~(実験3)を用いて具体的に説明する。
 (実験1)
 実験1では、Cガスの流量を固定し、Cガスの流量に対するOガスの流量の比率(O/CHF比)を2.5~10.0の範囲で変動させた上で、各O/CHF比におけるシリコン窒化膜(Nit)、シリコン酸化膜(Ox)及びアモルファスシリコン膜(a-Si:H)のエッチングレートをそれぞれ測定した。測定したエッチングレートに基づき、シリコン酸化膜に対するシリコン窒化膜の選択比(Nit/Ox)、アモルファスシリコン膜に対するシリコン窒化膜の選択比(Nit/a-Si:H)及びアモルファスシリコン膜に対するシリコン酸化膜の選択比(Ox/a-Si:H)をそれぞれ算出した。この結果を図5に示す。図5の横軸は、Oガスの流量を、縦軸は選択比を示す。
 図5に示すように、Oガスの流量が変わった場合でも、アモルファスシリコン膜に対するシリコン窒化膜の選択比及びアモルファスシリコン膜に対するシリコン酸化膜の選択比はいずれも1.00以上である。すなわち、O/CHF比にかかわらず、アモルファスシリコン膜に対するシリコン窒化膜及びシリコン酸化膜に対するエッチング選択性は保持されることが分かる。また、図5より、O/CHF比が0.30~0.35あたりでシリコン酸化膜に対するシリコン窒化膜の選択比が1.00近辺となり、そこを境としてシリコン窒化膜のエッチングが優位となる領域(Nit/Ox選択比が1以上となる領域)からシリコン酸化膜のエッチングが優位となる領域(Nit/Ox選択比が1以下となる領域)に移行していることが分かる。すなわち、O/CHF比を変更することで、シリコン窒化膜のエッチングレートとシリコン酸化膜のエッチングレートとの比率を変更できることが分かる。
 (実験2)
 実験2では、処理ガスの総流量を固定し、処理ガスの総流量に対するCガスの割合を10~60体積%の範囲で変動させた場合におけるシリコン窒化膜(Nit)、シリコン酸化膜(Ox)及びアモルファスシリコン膜(a-Si:H)のエッチングレートをそれぞれ測定した。測定したエッチングレートに基づき、シリコン酸化膜に対するシリコン窒化膜の選択比(Nit/Ox)、アモルファスシリコン膜に対するシリコン窒化膜の選択比(Nit/a-Si:H)及びアモルファスシリコン膜に対するシリコン酸化膜の選択比(Ox/a-Si:H)をそれぞれ算出した。この結果を図6に示す。図6(a)~(c)の横軸は、いずれも処理ガス中の総流量に対するCガスの流量の割合を示す。また、図6(a)の縦軸は、各エッチング対象層Eのエッチングレート(ER)を示す。図6(b)及び(c)の縦軸は、各エッチング対象層Eの選択比(Selectivity)を示す。図6(c)は、図6(b)の拡大図である。
 図6(a)に示すように、処理ガスの総流量を固定した条件下であっても、シリコン窒化膜、シリコン酸化膜及びアモルファスシリコン膜のエッチングレートを変化させることができる。また、図6(a)に示すように、Cガス及びOガスを処理ガスとして用いた場合に、エッチングレートには膜種に応じたピークが存在する。これは、エッチングレートがピークとなる流量比以上では、エッチングにより生じた反応生成物がエッチング対象層E表面に堆積することにより、エッチングレートが低下するためと考えられる。したがって、図2に示す多層膜ONをエッチングする場合に、シリコン酸化膜SiOの層と、シリコン窒化膜SiNの層で、処理ガスの総流量に対するCガスの割合を変更(切り替え)してもよい。これにより、エッチング対象層Eのエッチングレートの低下を抑制できるため、マスク層Mに対するエッチング対象層Eの選択比をさらに改善することができる。
 図6(b)及び(c)に示すように、処理ガスの総流量に対するCガスの割合を調整することにより、エッチング特性を制御できることが分かる。例えば、処理ガスの総流量に対してCガスの流量を40体積%以上とすることで、アモルファスシリコンから構成されるマスクに対してシリコン酸化膜(SiO膜)とシリコン窒化膜(SiN膜)の選択比それぞれ10.0以上にできることが分かる。
 (実験3)
 実験3では、実験2において、処理ガスの総流量に対するCガスの流量の割合が25~35体積%にある場合に、基板上に形成された(a)シリコン酸化膜(Ox)、(b)シリコン窒化膜(Nit)及び(c)アモルファスシリコン膜(a-Si:H)のx軸方向のエッチングレートと、x軸に直交するy軸方向のエッチングレートをそれぞれ測定した。この結果を図7に示す。図7(a)~(c)の横軸は、基板Wの中心からx軸方向の距離と、x軸方向に直交するy軸方向の距離を示す。また、図7(a)~(c)の縦軸は、エッチングレートを示す。
 図7(a)~(c)に示すように、いずれの膜においても、エッチングレートは概ね一定であり、エッチングレートの面内均一性に優れていることが分かる。即ち、不飽和結合及びCF基を有するハイドロフルオロカーボンガス(例えば、Cガス)及び酸素含有ガス(例えばOガス)を処理ガスとし、シリコン酸化膜Oxとシリコン窒化膜SiNとが交互に積層された多層膜ONをエッチング処理する場合に、流量比を適切に調整することで高選択比で面内均一性に優れたエッチング処理を行うことができるといえる。
<変形例>
 上述の実施形態では、ステップS2を通じて、不飽和結合及びCF基を有するハイドロフルオロカーボンガスに対する酸素含有ガスの流量比(O/CHF比)は一定であったが、O/CHF比はエッチングの段階に応じて変更してもよい。例えば、O/CHF比は、ホールHの深さやアスペクト比に応じて、段階的又は連続的に変更してもよい。また、O/CHF比を第1の流量比に設定してエッチング対象膜Eをエッチング(第1のエッチング)した後、O/CHF比を第1の流量比と異なる第2の流量比に設定してエッチング対象膜Eをエッチング(第2のエッチング)してもよい。さらに、第1のエッチングと第2のエッチングとを繰り返し行ってもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
  1   プラズマ処理装置
  10  プラズマ処理チャンバ
  10s プラズマ処理空間
  11  基板支持体
  32  DC電源
  ON  多層膜
  Ox  シリコン酸化膜
  R1  領域
  SiN シリコン窒化膜
  W   基板
 

Claims (18)

  1. (a)シリコン酸化膜とシリコン窒化膜が交互に積層された多層膜と、前記多層膜上のマスクとを含む基板を提供する工程と、
    (b)前記基板を支持する基板支持体にパルス電圧を印加する工程と、
    (c)不飽和結合及びCF基を有するハイドロフルオロカーボンガスと、酸素含有ガスとを含む処理ガスから生成したプラズマにより前記基板をエッチングする工程と、
    を含むエッチング方法。
  2. 前記パルス電圧は、負極性のパルス状の直流電圧であり、前記基板支持体に周期的に印加される、請求項1に記載のエッチング方法。
  3. 前記ハイドロフルオロカーボンガスはCガスである、請求項1又は2に記載のエッチング方法。
  4. 前記Cガスの流量に対する前記酸素含有ガスの流量の比は2.0~3.0である、請求項3に記載のエッチング方法。
  5. 前記処理ガスの総流量に対する前記ハイドロフルオロカーボンガスの流量の割合は20~40体積%である、請求項1~4のいずれか一項に記載のエッチング方法。
  6. 前記処理ガスは、Cガス、C及びCから選択される少なくとも1種のフルオロカーボンガスを更に含む、請求項1~5のいずれか一項に記載のエッチング方法。
  7. 前記フルオロカーボンガスの流量に対する前記ハイドロフルオロカーボンガスの流量の比は1.0~2.0である、請求項6に記載のエッチング方法。
  8. 前記(c)は、
    (c-1)前記ハイドロフルオロカーボンガスに対して前記酸素含有ガスを第1の流量比で含む第1の処理ガスで前記基板をエッチングする工程と、
    (c-2)前記ハイドロフルオロカーボンガスに対して前記酸素含有ガスを第1の流量比と異なる第2の流量比で含む第2の処理ガスで前記基板をエッチングする工程と、
    を含む、請求項1~7のいずれか一項に記載のエッチング方法。
  9. 前記(c)は、前記(c-1)と前記(c-2)とを繰り返し実行する工程をさらに含む、請求項8に記載のエッチング方法。
  10. 前記パルス電圧の周波数は、1kHz以上、1MHz以下で、請求項1~9のいずれか一項に記載のエッチング方法。
  11. 前記パルス電圧のDuty比は、100%以下である、請求項1~10のいずれか一項に記載のエッチング方法。
  12. 前記パルス電圧の絶対値は1000V以上である、請求項1~11のいずれか一項に記載のエッチング方法。
  13. 前記パルス電圧が前記基板支持体に印加される周期を規定する周波数は、1kHz以上、1MHz以下である、請求項2~12のいずれか一項に記載のエッチング方法。
  14. 前記周期的に印加されるパルス電圧のDuty比は、5%~50%である、請求項2~13のいずれか一項に記載のエッチング方法。
  15. 前記マスクは、シリコン含有材料又は炭素含有材料から構成される、請求項1~14のいずれか一項に記載のエッチング方法。
  16. (a)シリコン酸化膜とシリコン窒化膜が交互に積層された多層膜と、前記多層膜上のSi含有マスクとを含む基板を提供する工程と、
    (b)Cガスと、酸素ガスとを含む処理ガスから生成したプラズマにより前記基板をエッチングする工程と、
    を含み、
    前記Cガスの流量に対する前記酸素含有ガスの流量の比は2.0~3.0である、
    エッチング方法。
  17. 前記処理ガスは、Cガスを更に含む、請求項16に記載のエッチング方法。
  18. ガス供給口及びガス排出口を有するチャンバと、
    前記チャンバ内に設けられた基板支持体と、
    プラズマ生成部と、
    制御部と、を備え、
    前記制御部は、
    (a)シリコン酸化膜とシリコン窒化膜が交互に積層された多層膜と、前記多層膜上のSi含有マスクとを含む基板を、前記基板支持体の支持面に配置する工程と、
    (b)前記基板支持体にパルス電圧を印加する工程と、
    (c)不飽和結合及びCF基を有するハイドロフルオロカーボンガスと、酸素含有ガスとを含む処理ガスから生成したプラズマにより前記基板をエッチングする工程と、
    を行うように、前記エッチング処理を制御する、エッチング処理装置。
     
PCT/JP2022/014615 2021-04-05 2022-03-25 エッチング方法及びエッチング処理装置 WO2022215556A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063983A JP2022159653A (ja) 2021-04-05 2021-04-05 エッチング方法及びエッチング処理装置
JP2021-063983 2021-04-05

Publications (1)

Publication Number Publication Date
WO2022215556A1 true WO2022215556A1 (ja) 2022-10-13

Family

ID=83545402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014615 WO2022215556A1 (ja) 2021-04-05 2022-03-25 エッチング方法及びエッチング処理装置

Country Status (3)

Country Link
JP (1) JP2022159653A (ja)
TW (1) TW202249118A (ja)
WO (1) WO2022215556A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211168A (ja) * 2010-03-09 2011-10-20 Toshiba Corp 半導体装置の製造方法及び半導体製造装置
JP2012114402A (ja) * 2010-07-12 2012-06-14 Central Glass Co Ltd ドライエッチング剤
JP2017050529A (ja) * 2015-08-12 2017-03-09 セントラル硝子株式会社 ドライエッチング方法
JP2020126776A (ja) * 2019-02-05 2020-08-20 東京エレクトロン株式会社 高周波電源及びプラズマ処理装置
US20200294771A1 (en) * 2019-02-08 2020-09-17 Applied Materials, Inc. Methods and apparatus for etching semiconductor structures
JP2020178099A (ja) * 2019-04-22 2020-10-29 東京エレクトロン株式会社 整合方法及びプラズマ処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211168A (ja) * 2010-03-09 2011-10-20 Toshiba Corp 半導体装置の製造方法及び半導体製造装置
JP2012114402A (ja) * 2010-07-12 2012-06-14 Central Glass Co Ltd ドライエッチング剤
JP2017050529A (ja) * 2015-08-12 2017-03-09 セントラル硝子株式会社 ドライエッチング方法
JP2020126776A (ja) * 2019-02-05 2020-08-20 東京エレクトロン株式会社 高周波電源及びプラズマ処理装置
US20200294771A1 (en) * 2019-02-08 2020-09-17 Applied Materials, Inc. Methods and apparatus for etching semiconductor structures
JP2020178099A (ja) * 2019-04-22 2020-10-29 東京エレクトロン株式会社 整合方法及びプラズマ処理装置

Also Published As

Publication number Publication date
JP2022159653A (ja) 2022-10-18
TW202249118A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
KR102121640B1 (ko) 에칭 방법
JP5390846B2 (ja) プラズマエッチング装置及びプラズマクリーニング方法
US9852922B2 (en) Plasma processing method
WO2014034396A1 (ja) プラズマ処理方法、及びプラズマ処理装置
US10714355B2 (en) Plasma etching method and plasma etching apparatus
US11972925B2 (en) Plasma processing apparatus and plasma processing method
WO2022215556A1 (ja) エッチング方法及びエッチング処理装置
TW202245053A (zh) 蝕刻方法及蝕刻處理裝置
JP2022158811A (ja) エッチング方法及びエッチング処理装置
WO2022244638A1 (ja) プラズマ処理装置及びrfシステム
WO2022220224A1 (ja) エッチング方法及びプラズマ処理装置
WO2022124334A1 (ja) プラズマ処理方法及びプラズマ処理装置
WO2024014398A1 (ja) プラズマ処理装置及びプラズマ処理方法
US20230100292A1 (en) Plasma processing method and plasma processing system
US20240006152A1 (en) Etching method and etching apparatus
JP2023121650A (ja) プラズマ処理方法及びプラズマ処理システム
JP2023032693A (ja) エッチング方法及びプラズマエッチング装置
JP2023050155A (ja) プラズマ処理方法及びプラズマ処理システム
TW202405936A (zh) 基板處理方法
JP2024017869A (ja) エッチング方法及び基板処理装置
JP2024033846A (ja) 基板処理方法及びプラズマ処理装置
JP2024001464A (ja) エッチング方法及びプラズマ処理装置
JP2024035702A (ja) プラズマ処理装置及びプラズマ処理方法
JP2024033323A (ja) プラズマ処理装置及びプラズマ処理方法
JP2024013628A (ja) エッチング方法及びプラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784541

Country of ref document: EP

Kind code of ref document: A1