TWI746007B - Power device - Google Patents

Power device Download PDF

Info

Publication number
TWI746007B
TWI746007B TW109119789A TW109119789A TWI746007B TW I746007 B TWI746007 B TW I746007B TW 109119789 A TW109119789 A TW 109119789A TW 109119789 A TW109119789 A TW 109119789A TW I746007 B TWI746007 B TW I746007B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
gate
trench
field plate
Prior art date
Application number
TW109119789A
Other languages
Chinese (zh)
Other versions
TW202147620A (en
Inventor
普佳 瑞凡卓 戴許曼
陳柏安
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW109119789A priority Critical patent/TWI746007B/en
Priority to CN202110480080.5A priority patent/CN113809162B/en
Application granted granted Critical
Publication of TWI746007B publication Critical patent/TWI746007B/en
Publication of TW202147620A publication Critical patent/TW202147620A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure

Abstract

Provided is a power device including an epitaxial layer having a trench extending from a first surface to a second surface of the epitaxial layer; an isolated-field plate in the trench; an insulating filling layer located in the trench, surrounding the sidewalls and bottom of a lower part of the isolation field plate; a first gate electrode and a second gate electrode located in the trench and on the insulating filling layer; and a dielectric layer surrounds sidewalls of the first gate electrode and the second gate electrode, wherein a lower portion of the dielectric layer has a maximum width of the dielectric layer, and the isolation field plate includes a first portion and a second portion, the first portion is adjacent to the lower portion of the dielectric layer, and a doping concentration of the lower portion is greater than that of the second portion.

Description

功率元件Power components

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種功率元件及其製造方法。The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a power device and a manufacturing method thereof.

功率金氧半場效電晶體(MOSFET)為電壓型控制元件,其驅動電路簡單、驅動的功率大且開關速度快,具有高的工作頻率,是一種廣泛用於各種電子應用元件的開關元件。Power MOSFET is a voltage-type control element. Its driving circuit is simple, the driving power is high, the switching speed is fast, and it has a high operating frequency. It is a switching element widely used in various electronic application components.

溝槽閘極金氧半場效電晶體是一種將閘極埋入在基底或磊晶層中以使其具有垂直通道的功率金氧半場效電晶體。此種功率金氧半場效電晶體具有較小的單元尺寸與小的導通電阻,適合用於中低壓的功率MOSFET。The trench gate MOSFET is a power MOSFET in which the gate is buried in the substrate or the epitaxial layer to make it have a vertical channel. This kind of power metal oxide half field effect transistor has a small cell size and small on-resistance, and is suitable for medium and low voltage power MOSFETs.

分離閘極溝槽閘極(Split Gate Trench,SGT)金氧半場效電晶體則是將單一個閘極拆成兩個閘極,並以隔離場板分隔兩個閘極的一種功率MOSFET。深入磊晶層的隔離場板可增加橫向空乏區(lateral depletion),並使N漂移摻雜濃度(N-drift doping concentration)增加。隔離場板還可以減少閘極和汲極的重疊,因此可以減小閘極到汲極的電容(gate-to-drain capacitance)。因此,該結構在靜態和動態特性方面均具有優異的性能。The Split Gate Trench (SGT) MOSFET is a power MOSFET in which a single gate is split into two gates, and the two gates are separated by an isolation field plate. The isolation field plate deep in the epitaxial layer can increase the lateral depletion and increase the N-drift doping concentration. Isolating the field plate can also reduce the overlap of the gate and the drain, so it can reduce the gate-to-drain capacitance. Therefore, the structure has excellent performance in both static and dynamic characteristics.

然而,由於SGT MOSFET的製程較為複雜,閘極與隔離場板之間容易產生漏電流,以致元件的崩潰電壓不足。另一方面,若為了降低閘極與隔離場板之間的漏電流而減少磊晶層的摻雜濃度,則會造成導通電阻(Ron)增加,閘極電荷量(gate charge,QG)增加,而影響元件的效能。However, due to the complicated manufacturing process of the SGT MOSFET, leakage current is likely to occur between the gate electrode and the isolation field plate, so that the breakdown voltage of the device is insufficient. On the other hand, if the doping concentration of the epitaxial layer is reduced in order to reduce the leakage current between the gate and the isolation field plate, the on-resistance (Ron) will increase and the gate charge (QG) will increase. And affect the performance of the component.

本發明提出一種功率元件可以降低閘極與隔離場板之間的漏電流,提升元件的崩潰電壓,降低導通電阻,減少閘極電荷量(QG),改善品質因素(figure of merit,FOM),提升元件的效能。The present invention proposes a power element that can reduce the leakage current between the gate and the isolation field plate, increase the breakdown voltage of the element, reduce the on-resistance, reduce the gate charge (QG), and improve the figure of merit (FOM), Improve the performance of components.

本發明的實施例的一種功率元件,包括一種功率元件,包括:磊晶層,具有溝渠,自所述磊晶層的第一表面向第二表面延伸;汲極摻雜層,位於所述磊晶層的所述第二表面上;第一基體區與第二基體區,位於所述溝渠兩側的所述磊晶層中;第一源極摻雜區與第二源極摻雜區,分別位於所述第一基體區與所述第二基體區中;隔離場板,位於所述溝渠中;絕緣填充層,位於所述溝渠中,環繞所述隔離場板的下部的側壁與底部;第一閘極與第二閘極,位於所述溝渠中且位於所述絕緣填充層上,其中所述第一閘極位於所述隔離場板與所述第一基體區之間,所述第二閘極位於所述隔離場板與所述第二基體區之間;以及介電層,環繞所述第一閘極與所述第二閘極的側壁,其中所述介電層的下部具有所述介電層的最大寬度,且其中所述隔離場板包括第一部分與第二部分,所述第一部分與所述介電層的所述下部相鄰,且其摻雜濃度大於第二部分。A power device according to an embodiment of the present invention includes a power device, including: an epitaxial layer having trenches extending from a first surface to a second surface of the epitaxial layer; and a drain doped layer located on the epitaxial layer On the second surface of the crystal layer; a first body region and a second body region located in the epitaxial layer on both sides of the trench; a first source doped region and a second source doped region, Are respectively located in the first base region and the second base region; an isolation field plate is located in the trench; an insulating filling layer is located in the trench and surrounds the sidewall and bottom of the lower part of the isolation field plate; The first gate and the second gate are located in the trench and on the insulating filling layer, wherein the first gate is located between the isolation field plate and the first base region, and the second Two gates are located between the isolation field plate and the second base region; and a dielectric layer surrounds the sidewalls of the first gate and the second gate, wherein the lower part of the dielectric layer has The maximum width of the dielectric layer, and wherein the isolation field plate includes a first portion and a second portion, the first portion is adjacent to the lower portion of the dielectric layer, and the doping concentration of the first portion is greater than that of the second portion .

基於上述,閘極溝槽底角處具有足夠厚的氧化層,因此可以降低閘極與隔離場板之間的漏電流,提升元件的崩潰電壓。在維持相同的崩潰電壓的前提下,可以增加磊晶層的濃度,以降低導通電阻(Ron),減少閘極電荷量(QG),改善品質因素(FOM),提升元件的效能。Based on the above, there is a sufficiently thick oxide layer at the bottom corner of the gate trench, so that the leakage current between the gate and the isolation field plate can be reduced, and the breakdown voltage of the device can be increased. Under the premise of maintaining the same breakdown voltage, the concentration of the epitaxial layer can be increased to reduce the on-resistance (Ron), reduce the gate charge (QG), improve the quality factor (FOM), and enhance the performance of the device.

圖1A至圖1J是依照本發明的第一實施例的一種功率元件的製造方法的剖面示意圖。功率元件例如是SGT MOSFET。1A to 1J are schematic cross-sectional views of a method of manufacturing a power device according to a first embodiment of the present invention. The power element is, for example, SGT MOSFET.

請參照圖1A,功率元件的製造方法包括在基底10中形成汲極摻雜層12。基底10可以是半導體基底10,例如矽基底。汲極摻雜層12可以在晶片製造時以原位(in-situ)摻質製程形成。汲極摻雜層12具有第一導電型摻質。第一導電型摻質為N型摻質,例如是磷或是砷。接著,在汲極摻雜層12上形成磊晶層14。磊晶層14的形成方法例如是選擇性磊晶生長製程。磊晶層14具有第一導電型摻質。第一導電型摻質為N型摻質,例如是磷或是砷。磊晶層14的摻雜濃度例如是低於汲極摻雜層12的摻雜濃度。磊晶層14的摻質可以在進行選擇性磊晶生長製程時原位(in-situ)形成,或是在進行選擇性磊晶生長製程之後再藉由離子植入製程來形成之。1A, the manufacturing method of the power device includes forming the drain doped layer 12 in the substrate 10. The substrate 10 may be a semiconductor substrate 10, such as a silicon substrate. The drain doped layer 12 may be formed by an in-situ doping process during wafer manufacturing. The drain doped layer 12 has first conductivity type dopants. The first conductivity type dopant is an N-type dopant, such as phosphorus or arsenic. Next, an epitaxial layer 14 is formed on the drain doped layer 12. The method for forming the epitaxial layer 14 is, for example, a selective epitaxial growth process. The epitaxial layer 14 has dopants of the first conductivity type. The first conductivity type dopant is an N-type dopant, such as phosphorus or arsenic. The doping concentration of the epitaxial layer 14 is, for example, lower than the doping concentration of the drain doped layer 12. The dopants of the epitaxial layer 14 may be formed in-situ during the selective epitaxial growth process, or may be formed by an ion implantation process after the selective epitaxial growth process is performed.

其後,在磊晶層14中形成溝渠16。溝渠16自磊晶層14的第一表面14a向第二表面14b延伸。溝渠16可以藉由微影與蝕刻製程來形成。蝕刻製程可以是非等向性蝕刻製程、等向性蝕刻製程或其組合。之後,在磊晶層14上以及溝渠16之中形成絕緣填充層18與導體層20。絕緣填充層18的材料例如是以化學氣相沉積法形成的氧化矽、氮化矽或其組合。導體層20形成在絕緣填充層18上,並將溝渠16剩餘的空間填滿。導體層20可以是半導體材料,例如是以化學氣相沉積法形成的未摻雜多晶矽或摻雜的多晶矽。Thereafter, trenches 16 are formed in the epitaxial layer 14. The trench 16 extends from the first surface 14a to the second surface 14b of the epitaxial layer 14. The trench 16 can be formed by lithography and etching processes. The etching process may be an anisotropic etching process, an isotropic etching process, or a combination thereof. After that, an insulating filling layer 18 and a conductive layer 20 are formed on the epitaxial layer 14 and in the trench 16. The material of the insulating filling layer 18 is, for example, silicon oxide, silicon nitride, or a combination thereof formed by chemical vapor deposition. The conductor layer 20 is formed on the insulating filling layer 18 and fills the remaining space of the trench 16. The conductive layer 20 may be a semiconductor material, such as undoped polysilicon or doped polysilicon formed by a chemical vapor deposition method.

請參照圖1B,對導體層20進行回蝕刻製程,移除溝渠16以外的導體層20,以在溝渠16之中留下導體層20a。在一些實施例中,導體層20a的頂面低於磊晶層14的頂面。1B, the conductive layer 20 is etched back to remove the conductive layer 20 other than the trench 16 to leave the conductive layer 20a in the trench 16. In some embodiments, the top surface of the conductive layer 20 a is lower than the top surface of the epitaxial layer 14.

請參照圖1C,在導體層20a上或是導體層20a中形成摻雜層(或稱為摻雜區)20b。摻雜層/摻雜區20b與導體層20a具有相同的導電型的摻質,例如是第一導電型摻質。第一導電型摻質為N型摻質,例如是磷或是砷。摻雜層/摻雜區20b的摻雜濃度例如是高於導體層20a的摻雜濃度。在一些實施例中,摻雜層/摻雜區20b的摻雜濃度範圍為5E18 1/cm 3至5E20 1/cm 3。摻雜層/摻雜區20b的厚度/深度大於1500埃可以有利於後續形成閘極溝槽的蝕刻製程的控制。摻雜層/摻雜區20b的厚度/深度範圍例如是1600埃至 2500埃。 1C, a doped layer (or doped region) 20b is formed on or in the conductive layer 20a. The doped layer/doped region 20b and the conductive layer 20a have dopants of the same conductivity type, for example, dopants of the first conductivity type. The first conductivity type dopant is an N-type dopant, such as phosphorus or arsenic. The doping concentration of the doped layer/doped region 20b is, for example, higher than the doping concentration of the conductive layer 20a. In some embodiments, the doping concentration of the doped layer/doped region 20b ranges from 5E18 1/cm 3 to 5E20 1/cm 3 . The thickness/depth of the doped layer/doped region 20b greater than 1500 angstroms can facilitate the control of the subsequent etching process for forming the gate trench. The thickness/depth range of the doped layer/doped region 20b is, for example, 1600 angstroms to 2500 angstroms.

在一實施例中,摻雜區20b位於導體層20a中。摻雜區20b的形成方法例如是對導體層20a進行離子植入製程IMP 1。離子植入製程IMP 1以垂直基底10的表面的方式將摻質植入於導體層20a之中。在另一實施例中,摻雜層20b位於導體層20a上。摻雜層20b的形成方法例如是在形成導體層20a之後,以原位進行化學氣相沉積製程,以在導體層20a上形成濃度大於導體層20a的摻雜層20b。In one embodiment, the doped region 20b is located in the conductive layer 20a. The method for forming the doped region 20b is, for example, performing an ion implantation process IMP 1 on the conductor layer 20a. The IMP 1 ion implantation process implants dopants into the conductive layer 20a in a manner perpendicular to the surface of the substrate 10. In another embodiment, the doped layer 20b is located on the conductive layer 20a. The formation method of the doped layer 20b is, for example, after the conductive layer 20a is formed, a chemical vapor deposition process is performed in situ to form the doped layer 20b on the conductive layer 20a with a concentration greater than that of the conductive layer 20a.

之後,請參照圖1D,在摻雜層/摻雜區20b上形成導體層20c。導體層20c的形成方法例如是在絕緣填充層18以及摻雜層/摻雜區20b上形成導體層後,再進行回蝕刻製程,以移除溝渠16以外的導體層。導體層20c可以是半導體材料,例如是以化學氣相沉積法形成的未摻雜多晶矽或摻雜的多晶矽。導體層20c的頂面可以與磊晶層14的第一表面14a共平面或低於磊晶層14的第一表面14a。After that, referring to FIG. 1D, a conductive layer 20c is formed on the doped layer/doped region 20b. The method for forming the conductive layer 20c is, for example, after forming a conductive layer on the insulating filling layer 18 and the doped layer/doped region 20b, and then performing an etch-back process to remove the conductive layer other than the trench 16. The conductive layer 20c may be a semiconductor material, such as undoped polysilicon or doped polysilicon formed by a chemical vapor deposition method. The top surface of the conductive layer 20c may be coplanar with the first surface 14a of the epitaxial layer 14 or lower than the first surface 14a of the epitaxial layer 14.

其後,請參照圖1E,對絕緣填充層18進行回蝕刻製程,移除溝渠16以外的絕緣填充層18,以在溝渠16之中留下絕緣填充層18a。絕緣填充層18a環繞導體層20a的側壁與底面,且環繞部分的摻雜層/摻雜區20b的側壁,並且絕緣填充層18a的頂面介於摻雜區20b的頂面與底面之間。換言之,絕緣填充層18a上具有第一閘極溝槽22與第二閘極溝槽24。第一閘極溝槽22與第二閘極溝槽24的側壁裸露出磊晶層14、導體層20c與部分的摻雜區20b,且第一閘極溝槽22與第二閘極溝槽24的底面裸露出絕緣填充層18a的頂面。回蝕刻製程例如是非等向性蝕刻製程、等向性蝕刻製程或組合。Thereafter, referring to FIG. 1E, an etch-back process is performed on the insulating filling layer 18 to remove the insulating filling layer 18 other than the trench 16, so as to leave the insulating filling layer 18 a in the trench 16. The insulating filling layer 18a surrounds the sidewalls and the bottom surface of the conductor layer 20a, and surrounds part of the sidewalls of the doped layer/doped region 20b, and the top surface of the insulating filling layer 18a is between the top surface and the bottom surface of the doped region 20b. In other words, the insulating filling layer 18 a has a first gate trench 22 and a second gate trench 24. The sidewalls of the first gate trench 22 and the second gate trench 24 expose the epitaxial layer 14, the conductor layer 20c and a part of the doped region 20b, and the first gate trench 22 and the second gate trench The bottom surface of 24 exposes the top surface of the insulating filling layer 18a. The etch-back process is, for example, an anisotropic etching process, an isotropic etching process, or a combination.

請參照圖1F,在磊晶層14與導體層20c上以及第一閘極溝槽22與第二閘極溝槽24之中形成介電層30。介電層30可以是以熱氧化法或是化學氣相沉積法形成的氧化矽。在介電層30是以熱氧化法形成的氧化矽層的一些實施例中,摻雜區20b的摻雜濃度大於磊晶層14的摻雜濃度,相較於磊晶層14,摻雜區20b較易於氧化。因此,在摻雜區20b表面所形成的介電層(氧化矽層)30的厚度大於在磊晶層14表面所形成的介電層(氧化矽層)30的厚度。此外,由於摻雜區20b的摻雜濃度大於導體層20c的摻雜濃度,相較於導體層20c,摻雜區20b較易於氧化。因此,在摻雜區20b表面所形成的介電層(氧化矽層)30的厚度大於在導體層20c表面所形成的介電層(氧化矽層)30的厚度,其後將參照圖2詳述之。1F, a dielectric layer 30 is formed on the epitaxial layer 14 and the conductor layer 20c and in the first gate trench 22 and the second gate trench 24. The dielectric layer 30 may be silicon oxide formed by a thermal oxidation method or a chemical vapor deposition method. In some embodiments where the dielectric layer 30 is a silicon oxide layer formed by a thermal oxidation method, the doping concentration of the doped region 20b is greater than the doping concentration of the epitaxial layer 14. Compared with the epitaxial layer 14, the doped region 20b is easier to oxidize. Therefore, the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the doped region 20 b is greater than the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the epitaxial layer 14. In addition, since the doping concentration of the doped region 20b is greater than the doping concentration of the conductive layer 20c, the doped region 20b is easier to oxidize compared to the conductive layer 20c. Therefore, the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the doped region 20b is greater than the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductor layer 20c. Narrated.

請參照圖1G,在介電層30上形成導體層31。導體層31將第一閘極溝槽22與第二閘極溝槽24剩餘的空間填滿。導體層31可以是半導體材料,例如是以化學氣相沉積法形成的摻雜的多晶矽。1G, a conductive layer 31 is formed on the dielectric layer 30. The conductor layer 31 fills up the remaining space of the first gate trench 22 and the second gate trench 24. The conductive layer 31 may be a semiconductor material, for example, doped polysilicon formed by a chemical vapor deposition method.

請參照圖1H,對導體層31進行回蝕刻,移除第一閘極溝槽22與第二閘極溝槽24以外的導體層31,以在第一閘極溝槽22與第二閘極溝槽24之中形成第一閘極32與第二閘極34。第一閘極32與第二閘極34的頂面可以與磊晶層14的第一表面14a共平面或低於磊晶層14的第一表面14a。1H, the conductive layer 31 is etched back to remove the conductive layer 31 other than the first gate trench 22 and the second gate trench 24, so that the first gate trench 22 and the second gate trench A first gate 32 and a second gate 34 are formed in the trench 24. The top surfaces of the first gate electrode 32 and the second gate electrode 34 may be coplanar with the first surface 14 a of the epitaxial layer 14 or lower than the first surface 14 a of the epitaxial layer 14.

請繼續參照圖1H,於溝渠16兩側的磊晶層14中形成第一基體區36與第二基體區38。第一基體區36與第二基體區38自磊晶層14的第一表面14a向第二表面14b延伸。第一基體區36與第二基體區38具有第二導電型摻質,例如是P型摻質。P型摻質例如是硼或是三氟化硼。第一基體區36與第二基體區38的形成方法例如是離子植入法。在另一實施例中,第一基體區36與第二基體區38可以在形成溝渠16之前形成。舉例來說,第一基體區36與第二基體區38可以在形成磊晶層14的選擇性磊晶生長製程時原位(in-situ)形成,或是在進行選擇性磊晶生長製程之後再藉由離子植入製程來形成之。Please continue to refer to FIG. 1H, a first base region 36 and a second base region 38 are formed in the epitaxial layer 14 on both sides of the trench 16. The first body region 36 and the second body region 38 extend from the first surface 14a to the second surface 14b of the epitaxial layer 14. The first body region 36 and the second body region 38 have second conductivity type dopants, such as P-type dopants. The P-type dopant is, for example, boron or boron trifluoride. The formation method of the first base region 36 and the second base region 38 is, for example, an ion implantation method. In another embodiment, the first body region 36 and the second body region 38 may be formed before the trench 16 is formed. For example, the first body region 36 and the second body region 38 can be formed in-situ during the selective epitaxial growth process of forming the epitaxial layer 14, or after the selective epitaxial growth process is performed Then it is formed by ion implantation process.

接著,於第一基體區36與第二基體區38中分別形成第一源極摻雜區42與第二源極摻雜區44。第一源極摻雜區42與第二源極摻雜區44。具有第一導電型摻質,例如是N型摻質。N型摻質,例如是磷或是砷。第一源極摻雜區42與第二源極摻雜區44形成方法例如是離子植入法。Next, a first source doped region 42 and a second source doped region 44 are formed in the first body region 36 and the second body region 38, respectively. The first source doped region 42 and the second source doped region 44. It has a first conductivity type dopant, for example, an N-type dopant. N-type dopants, such as phosphorus or arsenic. The formation method of the first source doped region 42 and the second source doped region 44 is, for example, an ion implantation method.

請參照圖1I,於磊晶層14上形成介電層46,以覆蓋第一源極摻雜區42、第二源極摻雜區44、第一閘極32、第二閘極34以及介電層30。介電層46例如是化學氣相沉積法形成的硼磷矽酸鹽玻璃(BPSG)、氧化矽、氮化矽或其組合。接著,進行微影與蝕刻製程,在介電層46中形成第一接觸窗開口52與第二接觸窗開口54,以分別裸露出第一源極摻雜區42與第二源極摻雜區44。其後,在第一基體區36與第二基體區38中分別形成第一摻雜區62與第二摻雜區64。第一摻雜區62與第二摻雜區64中具有第二導電型摻質。第二導電型摻質可以是P型摻質,例如是硼或是三氟化硼。第一摻雜區62與第二摻雜區64形成方法例如是離子植入法。1I, a dielectric layer 46 is formed on the epitaxial layer 14 to cover the first source doped region 42, the second source doped region 44, the first gate 32, the second gate 34, and the dielectric Electric layer 30. The dielectric layer 46 is, for example, borophosphosilicate glass (BPSG) formed by chemical vapor deposition, silicon oxide, silicon nitride, or a combination thereof. Next, a lithography and etching process is performed to form a first contact window opening 52 and a second contact window opening 54 in the dielectric layer 46 to expose the first source doped region 42 and the second source doped region, respectively 44. Thereafter, a first doped region 62 and a second doped region 64 are formed in the first body region 36 and the second body region 38, respectively. The first doped region 62 and the second doped region 64 have second conductivity type dopants. The second conductivity type dopant may be a P type dopant, such as boron or boron trifluoride. The formation method of the first doped region 62 and the second doped region 64 is, for example, an ion implantation method.

請參照圖1J,之後,在第一接觸窗開口52與第二接觸窗開口54中分別形成與第一摻雜區62接觸的第一接觸窗72以及與第二摻雜區64接觸的第二接觸窗74,並且第一接觸窗72與第二接觸窗74彼此電性連接。其後,進行後續的金屬化製程。後續的金屬化製程可以包括將第一閘極32與第二閘極34電性連接等製程。1J, after that, a first contact 72 contacting the first doped region 62 and a second contact 72 contacting the second doped region 64 are formed in the first contact opening 52 and the second contact opening 54 respectively. The contact window 74, and the first contact window 72 and the second contact window 74 are electrically connected to each other. After that, the subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the first gate electrode 32 and the second gate electrode 34.

請參照圖1J,在本實施例中,導體層20a、摻雜層/摻雜區20b以及導體層20c可合稱為源極多晶矽層或隔離場板PL。隔離場板PL可以均勻第一基體區(p-body region)36與第二基體區38下方的磊晶層14的電場分布,使峰值的電場強度降低,因此可以提升崩潰電壓。從另一方面來說,在相同的崩潰電壓下,可以將磊晶層14的摻雜濃度提高,以降低導通電阻(Ron)。1J, in this embodiment, the conductive layer 20a, the doped layer/doped region 20b, and the conductive layer 20c can be collectively referred to as a source polysilicon layer or an isolation field plate PL. The isolation field plate PL can uniform the electric field distribution of the epitaxial layer 14 under the first p-body region 36 and the second p-body region 38, so that the peak electric field intensity is reduced, and therefore the breakdown voltage can be increased. On the other hand, under the same breakdown voltage, the doping concentration of the epitaxial layer 14 can be increased to reduce the on-resistance (Ron).

此外,在本實施例中,隔離場板PL包括第一部分P1與第二部分P2。摻雜層/摻雜區20b為隔離場板PL的第一部分P1;導體層20a與導體層20c可以合稱為隔離場板PL的第二部分P2。第一部分P1,被夾在第二部分P2之中,且第一部分P1的摻雜濃度大於第二部分P2的摻雜濃度。In addition, in this embodiment, the isolation field plate PL includes a first part P1 and a second part P2. The doped layer/doped region 20b is the first part P1 of the isolation field plate PL; the conductor layer 20a and the conductor layer 20c can be collectively referred to as the second part P2 of the isolation field plate PL. The first part P1 is sandwiched in the second part P2, and the doping concentration of the first part P1 is greater than the doping concentration of the second part P2.

由於本實施例中具有較高濃度的隔離場板PL的第一部分P1被第一閘極溝槽22與第二閘極溝槽24暴露,且第一閘極溝槽22與第二閘極溝槽24的底部高於第一部分P1的底部(如圖1E所示)。因此,後續在形成介電層30的熱氧化製程時,具有較高濃度的第一部分P1有助於較厚的氧化矽層的形成,因此,有較多的第一部分P1被氧化。故而,在形成介電層30之後,水平高度在第一閘極溝槽22與第二閘極溝槽24的頂面與底面之間的隔離場板PL中,第一部分P1為寬度最窄之處,如圖1F與圖2所示。Since the first portion P1 of the isolation field plate PL having a higher concentration in this embodiment is exposed by the first gate trench 22 and the second gate trench 24, and the first gate trench 22 and the second gate trench The bottom of the groove 24 is higher than the bottom of the first part P1 (as shown in FIG. 1E). Therefore, during the subsequent thermal oxidation process for forming the dielectric layer 30, the first portion P1 having a higher concentration contributes to the formation of a thicker silicon oxide layer, and therefore, more of the first portion P1 is oxidized. Therefore, after the dielectric layer 30 is formed, in the isolation field plate PL with the horizontal height between the top and bottom surfaces of the first gate trench 22 and the second gate trench 24, the first portion P1 has the narrowest width , As shown in Figure 1F and Figure 2.

圖2示出圖1J中區域R的放大示意圖。請參照圖2,在磊晶層14與第一閘極32之間的介電層30稱為第一閘介電層30a。在磊晶層14與第二閘極34之間的介電層30稱為第二閘介電層30b。在隔離場板PL與第一閘極32之間的介電層30稱為第一絕緣層30c。在隔離場板PL與第二閘極34之間的介電層30稱為第二絕緣層30d。Fig. 2 shows an enlarged schematic diagram of the area R in Fig. 1J. Please refer to FIG. 2, the dielectric layer 30 between the epitaxial layer 14 and the first gate electrode 32 is referred to as the first gate dielectric layer 30 a. The dielectric layer 30 between the epitaxial layer 14 and the second gate electrode 34 is referred to as the second gate dielectric layer 30b. The dielectric layer 30 between the isolation field plate PL and the first gate electrode 32 is referred to as a first insulating layer 30c. The dielectric layer 30 between the isolation field plate PL and the second gate electrode 34 is referred to as a second insulating layer 30d.

隔離場板PL的第一部分P1(摻雜層/摻雜區20b)與第一絕緣層30c以及第二絕緣層30d的下部30L相鄰且接觸。在隔離場板PL中,在第一部分P1上方的第二部分P2(導體層20c)與第一絕緣層30c以及第二絕緣層30d的上部30U相鄰且接觸。The first portion P1 (doped layer/doped region 20b) of the isolation field plate PL is adjacent to and in contact with the first insulating layer 30c and the lower portion 30L of the second insulating layer 30d. In the isolation field plate PL, the second portion P2 (conductor layer 20c) above the first portion P1 is adjacent to and in contact with the first insulating layer 30c and the upper portion 30U of the second insulating layer 30d.

由於具有較高濃度的第一部分P1有助於形成較厚的氧化矽層,因此,第一絕緣層30c與第二絕緣層30d的下部30L為第一絕緣層30c與第二絕緣層30d中具有最大厚度T max1 T max2之處。此外,雖然在第一閘極32的底面與隔離場板PL的第一部分P1(摻雜層/摻雜區20b)之間的第一絕緣層30c與第二絕緣層30d具有最小厚度T min1、T min2,但是,此最小厚度T min1與第一絕緣層30c的平均厚度的比例,以及最小厚度T min2與第二絕緣層30d的平均厚度的比例仍大於0.8。在一實施例中,第一絕緣層30c與第二絕緣層30d的平均厚度約為900埃,其中下部30L的最大厚度T max1 T max2約為1600埃,下部30L的最小厚度T min1、T min2約為800埃。 Since the first portion P1 having a higher concentration helps to form a thicker silicon oxide layer, the lower portion 30L of the first insulating layer 30c and the second insulating layer 30d is formed by the first insulating layer 30c and the second insulating layer 30d. Where the maximum thicknesses are T max1 and T max2 . In addition, although the first insulating layer 30c and the second insulating layer 30d between the bottom surface of the first gate 32 and the first portion P1 (doped layer/doped region 20b) of the isolation field plate PL have the minimum thickness T min1 , T min2 , however, the ratio of the minimum thickness T min1 to the average thickness of the first insulating layer 30c, and the ratio of the minimum thickness T min2 to the average thickness of the second insulating layer 30d are still greater than 0.8. In one embodiment, the average thickness of the first insulating layer 30c and the second insulating layer 30d is about 900 angstroms, the maximum thickness T max1 and T max2 of the lower part 30L is about 1600 angstroms, and the minimum thickness T min1 , T min1 and T of the lower part 30L min2 is about 800 angstroms.

由於與第一閘極32與第二閘極34接觸的介電層30(第一絕緣層30c與第二絕緣層30d)的下部30L具有較厚且足夠厚的厚度,因此,可以降低第一閘極32與隔離場板PL之間以及第二閘極34與隔離場板PL之間的漏電流,提升元件的崩潰電壓。Since the lower portion 30L of the dielectric layer 30 (the first insulating layer 30c and the second insulating layer 30d) in contact with the first gate electrode 32 and the second gate electrode 34 has a relatively thick and sufficiently thick thickness, the first The leakage current between the gate 32 and the isolation field plate PL and between the second gate 34 and the isolation field plate PL increases the breakdown voltage of the device.

圖3A至圖3E是依照本發明的第二實施例的一種功率元件的製造方法的剖面示意圖。3A to 3E are schematic cross-sectional views of a method of manufacturing a power device according to a second embodiment of the present invention.

請參照圖3A,依照上述第一實施例所述的方法,在溝渠16之中形成導體層20a之後,在導體層20a中形成兩個摻雜區20b’。摻雜區20b’形成在導體層20a的邊緣區中,導體層20a的中心區並未形成摻雜區20b’。摻雜區20b’與導體層20a具有相同的導電型的摻質,例如是第一導電型摻質。第一導電型摻質為N型摻質,例如是磷或是砷。摻雜區20b’的摻雜濃度高於導體層20a的摻雜濃度。在一些實施例中,摻雜區20b’的摻雜濃度範圍為 5E18 1/cm 3至 5E20 1/cm 3。摻雜區20b’的形成方法例如是對導體層20a進行傾斜離子植入製程IMP 2。傾斜離子植入製程IMP 2與基底10的表面的法線方向的夾角θ範圍例如是介於30度至60度。 3A, according to the method described in the first embodiment, after the conductive layer 20a is formed in the trench 16, two doped regions 20b' are formed in the conductive layer 20a. The doped region 20b' is formed in the edge region of the conductive layer 20a, and the central region of the conductive layer 20a is not formed with the doped region 20b'. The doped region 20b' and the conductive layer 20a have dopants of the same conductivity type, for example, dopants of the first conductivity type. The first conductivity type dopant is an N-type dopant, such as phosphorus or arsenic. The doping concentration of the doped region 20b' is higher than the doping concentration of the conductive layer 20a. In some embodiments, the doping concentration of the doped region 20b' ranges from 5E18 1/cm 3 to 5E20 1/cm 3 . The formation method of the doped region 20b' is, for example, performing the inclined ion implantation process IMP 2 on the conductor layer 20a. The angle θ between the inclined ion implantation process IMP 2 and the normal direction of the surface of the substrate 10 ranges from 30 degrees to 60 degrees, for example.

其後,請參照圖3B,依照上述第一實施例所述的方法,在導體層20a與摻雜區20b’上形成導體層20c。在本實施例中,導體層20a、摻雜區20b’以及導體層20c可合稱為源極多晶矽層或隔離場板PL。隔離場板PL可包括第一部分P1與第二部分P2。第一部分P1包括分離的兩個不連接的摻雜區20b’。第二部分P2包括彼此連接的導體層20a與導體層20c,且將兩個摻雜區20b’彼此分隔開。第一部分P1的摻雜濃度大於第二部分P2的摻雜濃度。Thereafter, referring to FIG. 3B, a conductive layer 20c is formed on the conductive layer 20a and the doped region 20b' according to the method described in the first embodiment above. In this embodiment, the conductive layer 20a, the doped region 20b', and the conductive layer 20c can be collectively referred to as a source polysilicon layer or an isolation field plate PL. The isolation field plate PL may include a first part P1 and a second part P2. The first part P1 includes two separate doped regions 20b' that are not connected. The second part P2 includes a conductive layer 20a and a conductive layer 20c connected to each other, and separates the two doped regions 20b' from each other. The doping concentration of the first part P1 is greater than the doping concentration of the second part P2.

之後,請參照圖3C,依照上述第一實施例所述的方法,對絕緣填充層18進行回蝕刻製程,以在溝渠16之中留下絕緣填充層18a,並在絕緣填充層18a上形成第一閘極溝槽22與第二閘極溝槽24。第一閘極溝槽22與第二閘極溝槽24的底面的高度介於兩個摻雜區20b’的頂面與底面之間。3C, according to the method described in the first embodiment, the insulating filling layer 18 is etched back to leave the insulating filling layer 18a in the trench 16 and forming a second insulating filling layer 18a on the insulating filling layer 18a. A gate trench 22 and a second gate trench 24. The height of the bottom surface of the first gate trench 22 and the second gate trench 24 is between the top surface and the bottom surface of the two doped regions 20b'.

其後,請參照圖3D,依照上述第一實施例所述的方法,在磊晶層14與導體層20c上以及第一閘極溝槽22與第二閘極溝槽24之中形成介電層30。同樣地,由於摻雜區20b’的摻雜濃度大於導體層20c的摻雜濃度且大於磊晶層14的摻雜濃度,相較於導體層20c以及磊晶層14,摻雜區20b’較易於氧化。因此,在摻雜區20b’的表面所形成的介電層30的厚度大於在導體層20c的表面所形成的介電層30的厚度,且在導體層20c的表面所形成的介電層30的厚度大於在磊晶層14的表面所形成的介電層30的厚度。Thereafter, referring to FIG. 3D, according to the method described in the first embodiment above, a dielectric is formed on the epitaxial layer 14 and the conductor layer 20c, and in the first gate trench 22 and the second gate trench 24. Layer 30. Similarly, since the doping concentration of the doped region 20b' is greater than the doping concentration of the conductive layer 20c and greater than the doping concentration of the epitaxial layer 14, compared to the conductive layer 20c and the epitaxial layer 14, the doped region 20b' is higher. Easy to oxidize. Therefore, the thickness of the dielectric layer 30 formed on the surface of the doped region 20b' is greater than the thickness of the dielectric layer 30 formed on the surface of the conductive layer 20c, and the dielectric layer 30 formed on the surface of the conductive layer 20c The thickness of is greater than the thickness of the dielectric layer 30 formed on the surface of the epitaxial layer 14.

之後,請參照圖3E,依照上述第一實施例所述的方法進行後續的製程直至形成第一接觸窗72與第二接觸窗74。其後,進行後續的金屬化製程。後續的金屬化製程可以包括將第一閘極32與第二閘極34電性連接等製程。After that, referring to FIG. 3E, the subsequent manufacturing process is performed according to the method described in the above first embodiment until the first contact window 72 and the second contact window 74 are formed. After that, the subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the first gate electrode 32 and the second gate electrode 34.

圖4A至圖4E是依照本發明的第三實施例的一種功率元件的製造方法的剖面示意圖。4A to 4E are schematic cross-sectional views of a method of manufacturing a power device according to a third embodiment of the present invention.

請參照圖4A,依照上述第一實施例所述形成導體層20a的方法,在溝渠16之中形成導體層20a’。但,在本實施例中,導體層20a’為具有較高濃度的摻雜的多晶矽。在一實施例中,導體層20a’的摻雜濃度範圍為1E19 1/cm 3至5E20 1/cm 34A, according to the method of forming the conductive layer 20a described in the first embodiment, the conductive layer 20a' is formed in the trench 16. However, in this embodiment, the conductive layer 20a' is doped polysilicon with a higher concentration. In an embodiment, the doping concentration of the conductive layer 20a' ranges from 1E19 1/cm 3 to 5E20 1/cm 3 .

之後,在導體層20a’的邊緣區的表面上形成罩幕層19。罩幕層19裸露出導體層20a’的中心區的表面。罩幕層19可以是圖案化的光阻層,其覆蓋絕緣填充層19的表面與側壁以及導體層20a’的邊緣區的表面。罩幕層19具有開口,裸露出導體層20a’的中心區的表面。罩幕層19也可以是間隙壁,其僅覆蓋在絕緣填充層19的側壁以及導體層20a’的邊緣區的表面。間隙壁的材料可以是氧化矽、氮化矽或其組合。間隙壁的形成方法可以先形成間隙壁材料層,然後再進行非等向性蝕刻製程。After that, a mask layer 19 is formed on the surface of the edge region of the conductor layer 20a'. The mask layer 19 exposes the surface of the central area of the conductor layer 20a'. The mask layer 19 may be a patterned photoresist layer, which covers the surface and sidewalls of the insulating filling layer 19 and the surface of the edge region of the conductor layer 20a'. The mask layer 19 has an opening, which exposes the surface of the central area of the conductor layer 20a'. The mask layer 19 may also be a spacer, which only covers the sidewall of the insulating filling layer 19 and the surface of the edge area of the conductor layer 20a'. The material of the spacer can be silicon oxide, silicon nitride or a combination thereof. The method for forming the spacer can be to form the spacer material layer first, and then perform an anisotropic etching process.

對導體層20a’進行離子植入製程IMP 3,在導體層20a’中形成摻雜區20d。摻雜區20d與導體層20a’可以具有相同或相異導電型的摻質。The conductive layer 20a' is subjected to the ion implantation process IMP 3 to form a doped region 20d in the conductive layer 20a'. The doped region 20d and the conductive layer 20a' may have dopants of the same or different conductivity types.

在摻雜區20d與導體層20a’具有相同導電型的摻質的實施例中,摻雜區20d的摻雜濃度低於導體層20a’的摻雜濃度。摻雜區20d可以採用離子植入製程IMP 3將摻質以垂直於基底10的表面的方式植入於導體層20a’之中。離子植入製程IMP 3例如是將與導體層20a’的第一導電型摻質相異的第二導電型摻質植入於導體層20a’中,藉由摻質相互補償,以使得所形成的摻雜區20d的摻雜濃度低於導體層20a’的摻雜濃度。第二導電型摻質為P型摻質,例如是硼或是三氟化硼。摻雜區20d的摻雜濃度範圍為5E18 1/cm 3至1E20 1/cm 3In an embodiment where the doped region 20d and the conductive layer 20a' have dopants of the same conductivity type, the doping concentration of the doped region 20d is lower than the doping concentration of the conductive layer 20a'. The doped region 20d can be implanted into the conductive layer 20a' by the ion implantation process IMP 3 in a manner perpendicular to the surface of the substrate 10. The ion implantation process IMP 3 is, for example, implanting a second conductivity type dopant different from the first conductivity type dopant of the conductive layer 20a' into the conductive layer 20a', and the dopants compensate each other to make the formed The doping concentration of the doped region 20d is lower than the doping concentration of the conductor layer 20a'. The second conductivity type dopant is a P type dopant, such as boron or boron trifluoride. The doping concentration of the doping region 20d ranges from 5E18 1/cm 3 to 1E20 1/cm 3 .

在摻雜區20d與導體層20a’具有相異導電型的摻質的實施例中,可以採用離子植入製程IMP 3將摻質以垂直於基底10的表面的方式植入於導體層20a’之中以形成摻雜區20d。離子植入製程IMP 3例如是將與導體層20a’的第一導電型摻質相異且摻雜濃度高於導體層20a’的第二導電型摻質植入於導體層20a’中,藉由摻質相互補償,以使得所形成的摻雜區20d的摻質的導電型與導體層20a’的摻質的導電型相異。第二導電型摻質為P型摻質,例如是硼或是三氟化硼。摻雜區20d為具有導電型摻質的摻雜濃度範圍例如是 5E19 1/cm 3至 8E20 1/cm 3In an embodiment where the doped region 20d and the conductor layer 20a' have dopants of different conductivity types, the ion implantation process IMP 3 can be used to implant the dopants into the conductor layer 20a' in a manner perpendicular to the surface of the substrate 10 Among them, a doped region 20d is formed. The ion implantation process IMP 3 is, for example, implanting a second conductivity type dopant that is different from the first conductivity type dopant of the conductive layer 20a' and has a higher doping concentration than the conductive layer 20a' into the conductive layer 20a', by The dopants compensate each other so that the conductivity type of the dopants of the formed doped region 20d is different from the conductivity type of the dopants of the conductor layer 20a'. The second conductivity type dopant is a P type dopant, such as boron or boron trifluoride. The doping region 20d has conductivity type dopants, and the doping concentration range is, for example, 5E19 1/cm 3 to 8E20 1/cm 3 .

請參照圖4B,將罩幕層19移除。罩幕層19可以藉由灰化法或蝕刻法移除。之後,依照上述第一實施例所述的方法,在摻雜區20d以及導體層20a’上形成導體層20c。在本實施例中,導體層20a’、摻雜區20d以及導體層20c可合稱為源極多晶矽層或隔離場板PL。Please refer to FIG. 4B to remove the mask layer 19. The mask layer 19 can be removed by an ashing method or an etching method. After that, according to the method described in the first embodiment, a conductive layer 20c is formed on the doped region 20d and the conductive layer 20a'. In this embodiment, the conductive layer 20a', the doped region 20d, and the conductive layer 20c can be collectively referred to as a source polysilicon layer or an isolation field plate PL.

隔離場板PL可包括第一部分P1、第二部分P2與第三部分P3。第一部分P1的摻雜濃度大於第二部分P2的摻雜濃度,且大於第三部分P3的摻雜濃度。第一部分P1包括導體層20a’;第二部分P2包括摻雜區20d;第三部分包括導體層20c。第二部分P2的側壁與底部被第一部分P1環繞包覆,且第三部分P3覆蓋第一部分P1與第二部分P2的頂面。The isolation field plate PL may include a first part P1, a second part P2, and a third part P3. The doping concentration of the first part P1 is greater than the doping concentration of the second part P2, and is greater than the doping concentration of the third part P3. The first part P1 includes the conductor layer 20a'; the second part P2 includes the doped region 20d; and the third part includes the conductor layer 20c. The sidewalls and bottom of the second part P2 are surrounded by the first part P1, and the third part P3 covers the top surfaces of the first part P1 and the second part P2.

之後,請參照圖4C,依照上述第一實施例所述的方法,對絕緣填充層18進行回蝕刻製程,以在溝渠16之中留下絕緣填充層18a,並在絕緣填充層18a上形成第一閘極溝槽22與第二閘極溝槽24。第一閘極溝槽22與第二閘極溝槽24的底面的高度低於導體層20a’的頂面,以使得第一閘極溝槽22與第二閘極溝槽24的側壁裸露出導體層20c以及部分的導體層20a’。4C, according to the method described in the first embodiment above, the insulating filling layer 18 is etched back to leave the insulating filling layer 18a in the trench 16 and forming a second insulating filling layer 18a on the insulating filling layer 18a. A gate trench 22 and a second gate trench 24. The height of the bottom surface of the first gate trench 22 and the second gate trench 24 is lower than the top surface of the conductor layer 20a', so that the sidewalls of the first gate trench 22 and the second gate trench 24 are exposed The conductor layer 20c and part of the conductor layer 20a'.

其後,請參照圖4D,依照上述第一實施例所述的方法,在磊晶層14與導體層20c上以及第一閘極溝槽22與第二閘極溝槽24之中形成介電層30。由於導體層20a’的摻雜濃度大於導體層20c的摻雜濃度,相較於導體層20c,導體層20a’較易於氧化。因此,在導體層20a’表面所形成的介電層(氧化矽層)30的厚度大於在導體層20c表面所形成的介電層(氧化矽層)30的厚度。摻雜區20d的摻雜,相較於導體層20a’較不易氧化,因此,隔離場板PL可以維持足夠的寬度,避免因為導體層20a’過度氧化變得太細造成阻值太高而影響功率元件的特性。此外,也可確保左右兩側的介電層不會因為導體層20a’過度氧化而彼此相連,若左右兩側的介電層(氧化層)30相連,將導致隔離場板PL的斷路。Thereafter, referring to FIG. 4D, according to the method described in the first embodiment above, a dielectric is formed on the epitaxial layer 14 and the conductor layer 20c, and in the first gate trench 22 and the second gate trench 24. Layer 30. Since the doping concentration of the conductive layer 20a' is greater than the doping concentration of the conductive layer 20c, the conductive layer 20a' is easier to oxidize compared to the conductive layer 20c. Therefore, the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductive layer 20a' is greater than the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductive layer 20c. The doping of the doped region 20d is less likely to be oxidized than the conductive layer 20a'. Therefore, the isolation field plate PL can maintain a sufficient width to prevent the conductive layer 20a' from being over-oxidized and becoming too thin, resulting in too high resistance. The characteristics of power components. In addition, it can also be ensured that the dielectric layers on the left and right sides are not connected to each other due to excessive oxidation of the conductor layer 20a'. If the dielectric layers (oxide layers) 30 on the left and right sides are connected, the isolation field plate PL will be disconnected.

之後,請參照圖4E,依照上述第一實施例所述的方法進行後續的製程直至形成第一接觸窗72與第二接觸窗74。其後,進行後續的金屬化製程。後續的金屬化製程可以包括將第一閘極32與第二閘極34電性連接等製程。After that, referring to FIG. 4E, the subsequent manufacturing process is performed according to the method described in the first embodiment above until the first contact window 72 and the second contact window 74 are formed. After that, the subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the first gate electrode 32 and the second gate electrode 34.

圖5A至圖5D是依照本發明的第四實施例的一種功率元件的製造方法的剖面示意圖。5A to 5D are schematic cross-sectional views of a method of manufacturing a power device according to a fourth embodiment of the present invention.

請參照圖5A,依照上述第一實施例所述的形成導體層20a方法,在溝渠16之中形成導體層20a’,但在本實施例中,導體層20a’為具有較高濃度的摻雜的多晶矽。在一實施例中,導體層20a’的摻雜濃度範圍為5E19 1/cm 3至8E20 1/cm 3Referring to FIG. 5A, according to the method for forming the conductive layer 20a described in the first embodiment, a conductive layer 20a' is formed in the trench 16. However, in this embodiment, the conductive layer 20a' is doped with a higher concentration. Of polysilicon. In one embodiment, the doping concentration of the conductive layer 20a' ranges from 5E19 1/cm 3 to 8E20 1/cm 3 .

之後,依照上述第一實施例所述的方法,在導體層20a’上形成導體層20c。導體層20c與導體層20a’具有相同的導電型的摻質,例如是第一導電型摻質。導體層20c的摻雜濃度低於導體層20a’的摻雜濃度。導體層20c的形成方法例如是在形成導體層20a’之後,原位進行化學氣相沉積製程,但將摻雜的氣體的濃度降低,以在導體層20a’上形成濃度低於導體層20a’的導體層20c。導體層20c的摻雜濃度例如是導體層20a’的摻雜濃度的2/3~1/2。After that, the conductor layer 20c is formed on the conductor layer 20a' according to the method described in the above-mentioned first embodiment. The conductive layer 20c and the conductive layer 20a' have dopants of the same conductivity type, for example, dopants of the first conductivity type. The doping concentration of the conductor layer 20c is lower than the doping concentration of the conductor layer 20a'. The method for forming the conductive layer 20c is, for example, after the conductive layer 20a' is formed, a chemical vapor deposition process is performed in situ, but the concentration of the doped gas is reduced to form a lower concentration on the conductive layer 20a' than the conductive layer 20a'的 Conductor layer 20c. The doping concentration of the conductive layer 20c is, for example, 2/3 to 1/2 of the doping concentration of the conductive layer 20a'.

在本實施例中,導體層20a’以及導體層20c可合稱為源極多晶矽層或隔離場板PL。導體層20a’為隔離場板PL的第一部分P1;導體層20c為隔離場板PL的第二部分P2。第一部分P1的摻雜濃度大於第二部分P2的摻雜濃度。第二部分P2覆蓋第一部分P1的頂面。In this embodiment, the conductive layer 20a' and the conductive layer 20c can be collectively referred to as a source polysilicon layer or an isolation field plate PL. The conductor layer 20a' is the first part P1 of the isolation field plate PL; the conductor layer 20c is the second part P2 of the isolation field plate PL. The doping concentration of the first part P1 is greater than the doping concentration of the second part P2. The second part P2 covers the top surface of the first part P1.

請參照圖5B,依照上述第一實施例所述的方法,對絕緣填充層18進行回蝕刻製程,以在溝渠16之中留下絕緣填充層18a,並在絕緣填充層18a上形成第一閘極溝槽22與第二閘極溝槽24。第一閘極溝槽22與第二閘極溝槽24的底面的高度低於導體層20a’的頂面,以使得第一閘極溝槽22與第二閘極溝槽24的側壁裸露出導體層20c以及部分的導體層20a’。5B, according to the method described in the first embodiment, the insulating filling layer 18 is etched back to leave the insulating filling layer 18a in the trench 16 and forming a first gate on the insulating filling layer 18a The pole trench 22 and the second gate trench 24. The height of the bottom surface of the first gate trench 22 and the second gate trench 24 is lower than the top surface of the conductor layer 20a', so that the sidewalls of the first gate trench 22 and the second gate trench 24 are exposed The conductor layer 20c and part of the conductor layer 20a'.

請參照圖5C,依照上述第一實施例所述的方法,在磊晶層14與導體層20c上以及第一閘極溝槽22與第二閘極溝槽24之中形成介電層30。由於導體層20a’的摻雜濃度大於導體層20c的摻雜濃度,相較於導體層20c,導體層20a’較易於氧化。因此,在導體層20a’表面所形成的介電層(氧化矽層)30的厚度大於在導體層20c表面所形成的介電層(氧化矽層)30的厚度。5C, according to the method described in the first embodiment, a dielectric layer 30 is formed on the epitaxial layer 14 and the conductive layer 20c and in the first gate trench 22 and the second gate trench 24. Since the doping concentration of the conductive layer 20a' is greater than the doping concentration of the conductive layer 20c, the conductive layer 20a' is easier to oxidize compared to the conductive layer 20c. Therefore, the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductive layer 20a' is greater than the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductive layer 20c.

之後,請參照圖5D,依照上述第一實施例所述的方法進行後續的製程直至形成第一接觸窗72與第二接觸窗74。其後,進行後續的金屬化製程。後續的金屬化製程可以包括將第一閘極32與第二閘極34電性連接等製程。After that, referring to FIG. 5D, the subsequent manufacturing process is performed according to the method described in the above first embodiment until the first contact window 72 and the second contact window 74 are formed. After that, the subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the first gate electrode 32 and the second gate electrode 34.

以上圖1J、3E、4E、5D分別繪示出SGT MOSFET的一個單元。然而,本發明不以此為限。在一些實施例中,SGT MOSFET可以具有兩個單元C1與C1’,如圖6所示。在圖6中是以圖1J的單元為例來說明之,但本發明不以此為限。單元C1’與C1中相似或相同的構件的元件符號以相同的數字來表示,且在數字後加「’」“’”來表示。舉例來說,第二摻雜區64’與第二摻雜區64相似,均是具有第二導電型的摻質。The above Figures 1J, 3E, 4E, and 5D respectively depict a unit of the SGT MOSFET. However, the present invention is not limited to this. In some embodiments, the SGT MOSFET may have two cells C1 and C1', as shown in FIG. 6. In FIG. 6, the unit of FIG. 1J is taken as an example for illustration, but the present invention is not limited to this. The component symbols of the similar or identical components in the units C1' and C1 are represented by the same numbers, and "'" and "'" are added after the numbers. For example, the second doped region 64' is similar to the second doped region 64, and both have dopants of the second conductivity type.

單元C1與C1’彼此相鄰,第一基體區36與第一摻雜區62被單元C1與C1’共用。此外,第一摻雜區62、第二摻雜區64以及第二摻雜區64’藉由第一接觸窗72與第二接觸窗74、74’彼此電性連接。單元C1的第一閘極32與第二閘極34以及單元C1’的第一閘極32’與第二閘極34’可以彼此電性連接。The cells C1 and C1' are adjacent to each other, and the first base region 36 and the first doped region 62 are shared by the cells C1 and C1'. In addition, the first doped region 62, the second doped region 64, and the second doped region 64' are electrically connected to each other through the first contact window 72 and the second contact windows 74, 74'. The first gate 32 and the second gate 34 of the cell C1 and the first gate 32' and the second gate 34' of the cell C1' may be electrically connected to each other.

在另一些實施例中,SGT MOSFET可以具有更多個單元,而這一些單元可以排列成一個陣列。換言之,SGT MOSFET可具有多個閘極、多個源極摻雜區與多個汲極摻雜區。這一些多個閘極、多個源極與多個汲極可以分別排列成一個陣列,且這一些多個閘極、多個源極摻雜區與多個汲極摻雜區可以分別藉由內連線而連接在一起而形成一個閘極端點、一個源極端點以及一個汲極端點In other embodiments, the SGT MOSFET may have more cells, and these cells may be arranged in an array. In other words, the SGT MOSFET may have multiple gates, multiple source doped regions, and multiple drain doped regions. These multiple gates, multiple sources, and multiple drains can be respectively arranged in an array, and these multiple gates, multiple source doped regions, and multiple drain doped regions can be respectively arranged by Interconnected and connected together to form a gate terminal point, a source terminal point and a drain terminal point

綜上所述,本發明在閘極溝槽的下側壁裸露出具有高摻雜濃度的隔離場板,因此,可以在閘極溝槽底角處形成厚的氧化層,故可以降低閘極與源極之間的漏電流,提升元件的崩潰電壓。在維持相同的崩潰電壓的前提下,可以增加磊晶層的濃度,以降低導通電阻(Ron),減少閘極電荷量(gate charge,QG),改善品質因素(figure of merit,FOM),提升元件的效能。In summary, the present invention exposes an isolation field plate with a high doping concentration on the bottom sidewall of the gate trench. Therefore, a thick oxide layer can be formed at the bottom corners of the gate trench, so that the gate and the gate can be reduced. The leakage current between the sources increases the breakdown voltage of the device. Under the premise of maintaining the same breakdown voltage, the concentration of the epitaxial layer can be increased to reduce the on-resistance (Ron), reduce the gate charge (QG), improve the figure of merit (FOM), and improve The performance of the component.

10:基底 12:汲極摻雜層 14:磊晶層 14a:第一表面 14b:第二表面 16:溝渠 18、18a:絕緣填充層 20、20a、20a’、20c、31:導體層 20b:摻雜層、摻雜區 20b’、20d:摻雜區 22:第一閘極溝槽 24:第二閘極溝槽 30、46:介電層 30a:第一閘介電層 30b:第二閘介電層 30c:第一絕緣層 30d:第二絕緣層 30L:下部 30U:上部 32、32’:第一閘極 34、34’:第二閘極 36:第一基體區 38:第二基體區 42:第一源極摻雜區 44:第二源極摻雜區 52:第一接觸窗開口 54:第二接觸窗開口 62:第一摻雜區 64、64’:第二摻雜區 72:第一接觸窗 74、74’:第二接觸窗 C1、C1’:單元 PL:隔離場板 P1:第一部分 P2:第二部分 P3:第三部分 IMP 1、IMP 2、IMP3:離子植入製程 T min1、T min2:最小厚度 T max1 T max2: 最大厚度 α1、α2、β1、β2:底角 θ:夾角10: substrate 12: drain doped layer 14: epitaxial layer 14a: first surface 14b: second surface 16: trench 18, 18a: insulating filling layer 20, 20a, 20a', 20c, 31: conductor layer 20b: Doped layer, doped regions 20b', 20d: doped region 22: first gate trench 24: second gate trench 30, 46: dielectric layer 30a: first gate dielectric layer 30b: second Gate dielectric layer 30c: first insulating layer 30d: second insulating layer 30L: lower part 30U: upper part 32, 32': first gate 34, 34': second gate 36: first base region 38: second Body region 42: first source doping region 44: second source doping region 52: first contact window opening 54: second contact window opening 62: first doping region 64, 64': second doping Zone 72: first contact window 74, 74': second contact window C1, C1': unit PL: isolation field plate P1: first part P2: second part P3: third part IMP 1, IMP 2, IMP3: ion Implantation process T min1 , T min2 : minimum thickness T max1 , T max2 : maximum thickness α1, α2, β1, β2: bottom angle θ: included angle

圖1A至圖1J是依照本發明的第一實施例的一種功率元件的製造方法的剖面示意圖。 圖2是圖1J中區域R的放大示意圖。 圖3A至圖3E是依照本發明的第二實施例的一種功率元件的製造方法的剖面示意圖。 圖4A至圖4E是依照本發明的第三實施例的一種功率元件的製造方法的剖面示意圖。 圖5A至圖5D是依照本發明的第四實施例的一種功率元件的製造方法的剖面示意圖。 圖6繪示出功率元件的兩個單元的剖面示意圖。 1A to 1J are schematic cross-sectional views of a method of manufacturing a power device according to a first embodiment of the present invention. Fig. 2 is an enlarged schematic diagram of area R in Fig. 1J. 3A to 3E are schematic cross-sectional views of a method of manufacturing a power device according to a second embodiment of the present invention. 4A to 4E are schematic cross-sectional views of a method of manufacturing a power device according to a third embodiment of the present invention. 5A to 5D are schematic cross-sectional views of a method of manufacturing a power device according to a fourth embodiment of the present invention. FIG. 6 is a schematic cross-sectional view showing two units of the power device.

10:基底 10: Base

12:汲極摻雜層 12: Drain doped layer

14:磊晶層 14: epitaxial layer

14a:第一表面 14a: first surface

14b:第二表面 14b: second surface

16:溝渠 16: trench

18a:絕緣填充層 18a: Insulating filling layer

20a、20c:導體層 20a, 20c: conductor layer

20b:摻雜層、摻雜區 20b: doped layer, doped area

22:第一閘極溝槽 22: The first gate trench

24:第二閘極溝槽 24: The second gate trench

30:介電層 30: Dielectric layer

PL:隔離場板 PL: Isolated field board

P1:第一部分 P1: Part One

P2:第二部分 P2: Part Two

Claims (10)

一種半導體元件,包括: 磊晶層,具有溝渠,自所述磊晶層的第一表面向第二表面延伸; 汲極摻雜層,位於所述磊晶層的所述第二表面上; 第一基體區與第二基體區,位於所述溝渠兩側的所述磊晶層中; 第一源極摻雜區與第二源極摻雜區,分別位於所述第一基體區與所述第二基體區中; 隔離場板,位於所述溝渠中; 絕緣填充層,位於所述溝渠中,環繞所述隔離場板的下部的側壁與底部; 第一閘極與第二閘極,位於所述溝渠中且位於所述絕緣填充層上,其中所述第一閘極位於所述隔離場板與所述第一基體區之間,所述第二閘極位於所述隔離場板與所述第二基體區之間;以及 介電層,環繞所述第一閘極與所述第二閘極的側壁,其中所述介電層的下部具有所述介電層的最大寬度,且 其中所述隔離場板包括第一部分與第二部分,所述第一部分與所述介電層的所述下部相鄰,且其摻雜濃度大於第二部分。 A semiconductor component, including: An epitaxial layer having trenches extending from the first surface to the second surface of the epitaxial layer; A drain doped layer located on the second surface of the epitaxial layer; The first body region and the second body region are located in the epitaxial layer on both sides of the trench; The first source doped region and the second source doped region are respectively located in the first body region and the second body region; Isolation field board, located in the ditch; An insulating filling layer, located in the trench, surrounding the sidewall and bottom of the lower part of the isolation field plate; The first gate and the second gate are located in the trench and on the insulating filling layer, wherein the first gate is located between the isolation field plate and the first base region, and the second Two gates are located between the isolation field plate and the second base region; and A dielectric layer surrounds the sidewalls of the first gate and the second gate, wherein the lower part of the dielectric layer has the maximum width of the dielectric layer, and The isolation field plate includes a first part and a second part, the first part is adjacent to the lower part of the dielectric layer, and the doping concentration of the first part is greater than that of the second part. 如請求項1所述的半導體元件,其中所述第一部分為摻雜層,被夾在所述第二部分之中。The semiconductor element according to claim 1, wherein the first part is a doped layer and is sandwiched in the second part. 如請求項1所述的半導體元件,其中所述第一部分包括被所述第二部分分離的兩個不連接的摻雜區。The semiconductor element according to claim 1, wherein the first part includes two unconnected doped regions separated by the second part. 如請求項1所述的半導體元件,其中所述隔離場板更包括第三部分,其摻雜濃度低於所述第一部分且覆蓋所述第一部分與所述第二部分的頂面,並且所述第二部分的側壁與底部被所述第一部分環繞包覆。The semiconductor device according to claim 1, wherein the isolation field plate further includes a third part whose doping concentration is lower than that of the first part and covers the top surfaces of the first part and the second part, and The side walls and the bottom of the second part are surrounded by the first part. 如請求項1所述的半導體元件,其中所述第二部分位於所述第一部分上且覆蓋所述第一部分的頂面。The semiconductor element according to claim 1, wherein the second part is located on the first part and covers the top surface of the first part. 如請求項1所述的半導體元件,其中所述第一部分的底面高於所述介電層的底面。The semiconductor element according to claim 1, wherein the bottom surface of the first portion is higher than the bottom surface of the dielectric layer. 如請求項1所述的半導體元件,其中所述第一部分的頂面高於所述介電層的底面。The semiconductor device according to claim 1, wherein the top surface of the first portion is higher than the bottom surface of the dielectric layer. 如請求項1所述的半導體元件,其中所述介電層的所述最大寬度大於所述介電層的平均寬度。The semiconductor device according to claim 1, wherein the maximum width of the dielectric layer is greater than the average width of the dielectric layer. 如請求項1所述的半導體元件,其中所述隔離場板在對應所述介電層的所述下部之處具有介電層的最小寬度。The semiconductor element according to claim 1, wherein the isolation field plate has a minimum width of the dielectric layer at a position corresponding to the lower portion of the dielectric layer. 如請求項9所述的半導體元件,其中所述介電層的所述最小寬度與所述介電層的平均寬度的比值為0.8以上。The semiconductor element according to claim 9, wherein the ratio of the minimum width of the dielectric layer to the average width of the dielectric layer is 0.8 or more.
TW109119789A 2020-06-12 2020-06-12 Power device TWI746007B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109119789A TWI746007B (en) 2020-06-12 2020-06-12 Power device
CN202110480080.5A CN113809162B (en) 2020-06-12 2021-04-30 Power element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109119789A TWI746007B (en) 2020-06-12 2020-06-12 Power device

Publications (2)

Publication Number Publication Date
TWI746007B true TWI746007B (en) 2021-11-11
TW202147620A TW202147620A (en) 2021-12-16

Family

ID=78892933

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109119789A TWI746007B (en) 2020-06-12 2020-06-12 Power device

Country Status (2)

Country Link
CN (1) CN113809162B (en)
TW (1) TWI746007B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525663B (en) * 2023-07-05 2023-09-12 江苏应能微电子股份有限公司 Trench type power MOSFET device with gate source end clamping structure and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
US5801417A (en) * 1988-05-17 1998-09-01 Advanced Power Technology, Inc. Self-aligned power MOSFET device with recessed gate and source
TW456049B (en) * 2000-09-05 2001-09-21 Ind Tech Res Inst Trench-type metal oxide semiconductor stop structure
US7183610B2 (en) * 2004-04-30 2007-02-27 Siliconix Incorporated Super trench MOSFET including buried source electrode and method of fabricating the same
US8373225B2 (en) * 2009-12-28 2013-02-12 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with Resurf stepped oxides and split gate electrodes
TWI414025B (en) * 2008-12-05 2013-11-01 Maxpower Semiconductor Inc Power gold - oxygen half - effect transistor structure and its manufacturing method
TWI503983B (en) * 2012-06-01 2015-10-11 Taiwan Semiconductor Mfg Co Ltd Power mosfet and methods for forming the same
TW201903956A (en) * 2017-06-06 2019-01-16 馬克斯半導體股份有限公司 Power element with polycrystalline silicon filled trenches with tapered oxide thickness doping nitrogen into the trench walls to form tapered oxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895810A (en) * 1986-03-21 1990-01-23 Advanced Power Technology, Inc. Iopographic pattern delineated power mosfet with profile tailored recessed source
EP1005091B1 (en) * 1998-11-17 2002-07-10 STMicroelectronics S.r.l. A method of manufacturing a vertical-channel MOSFET
US7829947B2 (en) * 2009-03-17 2010-11-09 Alpha & Omega Semiconductor Incorporated Bottom-drain LDMOS power MOSFET structure having a top drain strap
US8067800B2 (en) * 2009-12-28 2011-11-29 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with resurf step oxide and the method to make the same
US8896060B2 (en) * 2012-06-01 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Trench power MOSFET
CN108878527B (en) * 2017-05-12 2021-09-28 新唐科技股份有限公司 U-shaped metal oxide semiconductor assembly and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801417A (en) * 1988-05-17 1998-09-01 Advanced Power Technology, Inc. Self-aligned power MOSFET device with recessed gate and source
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
TW456049B (en) * 2000-09-05 2001-09-21 Ind Tech Res Inst Trench-type metal oxide semiconductor stop structure
US7183610B2 (en) * 2004-04-30 2007-02-27 Siliconix Incorporated Super trench MOSFET including buried source electrode and method of fabricating the same
TWI414025B (en) * 2008-12-05 2013-11-01 Maxpower Semiconductor Inc Power gold - oxygen half - effect transistor structure and its manufacturing method
US8373225B2 (en) * 2009-12-28 2013-02-12 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with Resurf stepped oxides and split gate electrodes
TWI503983B (en) * 2012-06-01 2015-10-11 Taiwan Semiconductor Mfg Co Ltd Power mosfet and methods for forming the same
TW201903956A (en) * 2017-06-06 2019-01-16 馬克斯半導體股份有限公司 Power element with polycrystalline silicon filled trenches with tapered oxide thickness doping nitrogen into the trench walls to form tapered oxide

Also Published As

Publication number Publication date
CN113809162A (en) 2021-12-17
TW202147620A (en) 2021-12-16
CN113809162B (en) 2023-05-05

Similar Documents

Publication Publication Date Title
US10553717B2 (en) Medium voltage MOSFET device
US7858478B2 (en) Method for producing an integrated circuit including a trench transistor and integrated circuit
US7598144B2 (en) Method for forming inter-poly dielectric in shielded gate field effect transistor
US7417298B2 (en) High voltage insulated-gate transistor
KR101293927B1 (en) Semiconductor device having screening electrode and method
US8174066B2 (en) Semiconductor device and method of manufacturing semiconductor device
US7608510B2 (en) Alignment of trench for MOS
US20080042172A1 (en) Semiconductor component having a space saving edge structure
TWI475614B (en) Trench device structure and fabrication
US5182222A (en) Process for manufacturing a DMOS transistor
US8471331B2 (en) Method of making an insulated gate semiconductor device with source-substrate connection and structure
KR101332590B1 (en) Power semiconductor device having improved performance and method
WO2007036793A2 (en) Power mosfets and methods of making same
KR19990050418A (en) Power Device with Double Field Plate Structure
TWI746007B (en) Power device
JP5037103B2 (en) Silicon carbide semiconductor device
JP3354127B2 (en) High voltage element and method of manufacturing the same
TWI731714B (en) Power device and method of fabricating the same
US11444167B2 (en) Method of manufacturing trench type semiconductor device
KR102444384B1 (en) Trench power MOSFET and manufacturing method thereof
US20240136411A1 (en) Transistor device and method of fabricating contacts to a semiconductor substrate
CN115312601A (en) MOSFET device and preparation method thereof
KR20000032754A (en) Method for fabricating trench gate power device
KR100405450B1 (en) Dmos transistor having structure of pocket type junction layer and manufacturing method thereof
TW202228288A (en) High voltage device and manufacturing method thereof