TWI744479B - 包含雙歧桿菌的組合物及其製備方法 - Google Patents

包含雙歧桿菌的組合物及其製備方法 Download PDF

Info

Publication number
TWI744479B
TWI744479B TW107104756A TW107104756A TWI744479B TW I744479 B TWI744479 B TW I744479B TW 107104756 A TW107104756 A TW 107104756A TW 107104756 A TW107104756 A TW 107104756A TW I744479 B TWI744479 B TW I744479B
Authority
TW
Taiwan
Prior art keywords
bifidobacterium
composition
strain
perfect
strains
Prior art date
Application number
TW107104756A
Other languages
English (en)
Other versions
TW201834674A (zh
Inventor
趙立平
吳國軍
張夢暉
張晨虹
吳歡
Original Assignee
大陸商完美(中國)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商完美(中國)有限公司 filed Critical 大陸商完美(中國)有限公司
Publication of TW201834674A publication Critical patent/TW201834674A/zh
Application granted granted Critical
Publication of TWI744479B publication Critical patent/TWI744479B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/745Bifidobacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K2035/11Medicinal preparations comprising living procariotic cells
    • A61K2035/115Probiotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

本發明提供新型雙歧桿菌益生菌菌株,特別是假小鏈雙歧桿菌菌株;及其在食品、飼料產品、膳食補充劑和藥物製劑中的用途。該細菌適用於治療肥胖、糖尿病及相關病症。

Description

包含雙歧桿菌的組合物及其製備方法
本發明關於新型雙歧桿菌菌株及它們的用途,關於包含它們的食品、飼料產品、膳食補充劑和藥物製劑,並關於製備和使用這些組合物的方法。
益生菌,通常被理解為意指“當以適當量施用時對宿主發揮健康益處的活微生物”,已被廣泛應用於預防和治療多種疾病,並且它們的效力在某些臨床情境中有有力的證據。例如,WO 2007/043933記載了將益生菌用於製造食品、飼料產品、膳食補充劑,以控制體重增加、預防肥胖、提高飽腹感、延長飽腹感、降低食物攝入量、降低脂肪沉積、改善能量代謝、增強胰島素敏感性、治療肥胖和治療胰島素抵抗。
WO 2009/024429記載了基本組合物在治療或預防代謝失調及/或支持體重管理中的用途,所述基本組合物包含降低變形菌(proteobacteria)特別是腸道中脫鐵桿菌(deferribacteres)及/或腸細菌(enterobacteria)的數量的藥劑。
WO 2009/004076記載了益生菌在使血漿葡萄糖濃度正常化、改善胰島素敏感度、降低孕婦中的發育風險和預防妊娠糖尿病中的用途。
WO 2009/021824記載了益生菌、特別是鼠李糖乳桿菌(Lactobacillus rhamnosus)在治療肥胖、治療代謝失調以及支持減肥及/或維持體重中的用途。
WO 2008/016214記載了益生乳酸菌的格氏乳桿菌BNR17(Lactobacillus gasseri BNR17)菌株及其在抑制體重增加中的用途。
WO 02/38165記載了乳桿菌菌株(特別是胚芽乳桿菌(Lactobacillus plantarum))在降低參與代謝綜合症的風險因子中的用途。
US 2002/0037577記載了諸如乳桿菌的微生物藉由降低可被吸收入體內的單糖或二糖量、藉由將這樣的化合物轉化成無法被腸吸收的聚合材料在治療或預防肥胖或糖尿病中的用途。
Lee等(J.Appl.Microbiol.2007,103,1140-1146)記載了產生反式-10、順式-12-綴合亞油酸(trans-10,cis-12-conjugated linoleic acid,CLA)的細菌的胚芽乳桿菌PL62(Lactobacillus plantarum PL62)菌株在小鼠中的抗肥胖活性。
Li等(Hepatology,2003,37(2),343-350)記載了益生菌和抗-TNF抗體在非酒精性脂肪肝病小鼠模型中的用途。
US2014/0369965公開了從健康的母乳飼餵小鼠糞便中分離的假小鏈雙歧桿菌(Bifidobacterium pseudocatenulatem)菌株。 該專利文件進一步公開了該菌株及其細胞組分、代謝物、所分泌分子、及其與其它微生物的組合在預防及/或治療以下中的用途:肥胖、超重、高血糖症和糖尿病、肝性脂肪變性或脂肪肝、血脂異常、代謝綜合症、與肥胖和超重相關的免疫系統功能障礙以及與肥胖和超重相關的腸道菌群組成失衡。然而,此菌株並非來源於人類。
PCT/CN2015/082887公開了假小鏈雙歧桿菌菌株,其被發現富含於經歷以基於全榖類、傳統中國藥膳和益生元的建立的膳食(WTP膳食)進行住院干預之個體的糞便樣品中。這些個體經過30天的膳食干預後,遺傳型和單純性肥胖兒童的代謝惡化均得到了顯著緩解。然而,儘管發現這些菌株富含於那些干預後個體中,但是並未確定這些菌株是藉由干預顯著增加,還是導致患者健康狀況改善。
換句話說,目前存在的益生菌具有很多局限性,需要新的益生微生物菌株。
人類腸道有益菌反應於膳食干預的基因組基礎依然不清 楚,這阻礙了對用於人類健康的腸道菌群的精確操作。在接受富含不易消化的碳水化合物的膳食干預105天後,患有小胖-威利綜合症(Prader-Willi Syndrome)的遺傳型肥胖兒童的體重減輕了18.4%,並顯示出其生物臨床參數的顯著改善。從干預後糞便樣品獲得了豐度最大幅提高的菌種之一假小鏈雙歧桿菌的5個分離株(稱為PERFECT-2017-0001,寄存編號為BCRC 910817;PERFECT-2017-0002,寄存編號為BCRC 910818;PERFECT-2017-0003,寄存編號為BCRC 910819;PERFECT-2017-0004,寄存編號為BCRC 910820;和C95)。 有趣的是,這5種假小鏈雙歧桿菌菌株在干預期間表現出不同的反應。兩種菌株幾乎沒有受到影響,而另外三種則因飲食碳水化合物源中的變化不同程度地增加。這些菌株的差異反應與基於COG(Cluster of Orthologous Group,直系同源聚類組)(包括參與ABC型糖轉運系統的那些)的功能聚類一致,表明菌株特異性基因組變異可能有助於生態位適應(niche adaption)。 特別地,具有最多樣化類型和最高基因複製數的靶向植物多糖的碳水化合物活性酶的假小鏈雙歧桿菌PERFECT-2017-0002在干預後具有最高豐度。
因此,一方面,本發明提供了雙歧桿菌屬細菌或其混合物在製備用於在哺乳動物中治療肥胖、控制體重增加及/或誘導體重降低的食品、膳食補充劑或藥物中的用途。
另一方面,本發明公開了組合物,其包含:(1)假小鏈雙歧桿菌菌株PERFECT-2017-0001或PERFECT-2017-0002或高度類似的菌株,或者(2)由其衍生的菌株;(3)藥物可接受的 載體或飲食載體。
另一方面,本發明公開了製備本發明組合物的方法,其包括將假小鏈雙歧桿菌菌株PERFECT-2017-0001或PERFECT-2017-0002或高度類似的菌株配製成適當的組合物。
另一方面,本發明公開了預防及/或治療選自以下的疾病的方法:超重、肥胖、高血糖症、糖尿病、脂肪肝、血脂異常、代謝綜合症、肥胖或超重對象中的感染及/或脂肪細胞肥大,所述方法包括向有需要的對象施用本發明的組合物。
另一方面,本發明公開了在有需要的對象中降低單純性肥胖或遺傳型肥胖、緩解代謝惡化或者降低炎症和脂肪堆積(fat accumulation)的方法,其包括向有需要的對象施用本發明的組合物。
另一方面,本發明公開了建立限定健康腸道生態系統結構的基礎菌種、導致對致病細菌和有害細菌不利的腸道環境、降低腸細菌在腸內容物中相對於未處理對照的濃度的方法,所述方法包括向有需要的對象施用本發明的組合物。
另一方面,本發明公開了在有需要的對象中治療糖尿病的方法,其包括向有需要的對象施用本發明的組合物。
圖1示出了干預後生物臨床參數和炎症狀況的改善。(紅色)人體測量標誌物。(綠色)血漿脂質內穩態。(藍色)血漿葡萄糖內穩態。(紫色)炎症相關標誌物。BMI(body mass index):體重指數;OGTT(Oral glucose tolerance test):口服葡萄糖耐量測試;LBP(Lipopolysaccharide-binding protein):脂多糖結合蛋白。
圖2示出了膳食干預期間腸道菌群的轉變。(A)7個時間點的屬水平腸道菌群組成。頂部圖示出了向農指數(Shannon index)值,底部圖示出了每個屬的百分比。根據平均豐度,前15個屬藉由其分類學名稱標記。(B)5種假小鏈雙歧桿菌菌株的差異豐度。階段I:第0天至第60天,基礎膳食干預;階段II:第60天至第75天,基礎干預+多100g 3號配方;階段III:較少的1號配方+多100g 3號配方)。
圖3示出了臨床參數的變化與五種假小鏈雙歧桿菌菌株的豐度之間的相關性。執行斯皮爾曼相關性。*校正P<0.05;**校正P<0.01(Benjamini & Hochberg 1995)。
圖4示出了假小鏈雙歧桿菌的直系同源基因的直系同源聚類(COG)分類。對於每個COG,指出了六個完整假小鏈雙歧桿菌基因組的平均百分比。
圖5示出了假小鏈雙歧桿菌菌株之間的基因組變異。(A)六個完整假小鏈雙歧桿菌基因組之間基於利用MUMmer進行的基因組序列比對的配對點圖比較。(B)維恩圖(Venn diagram) 示出了每種菌株中核心獨特基因組的數目。
圖6示出了具有至少2個複製的複製數差異的核心COG的分佈。熱圖示出了標註為特定COG功能的基因的複製數。將菌株利用歐幾裡得距離(Euclidean distance)和離差平方和(Ward linkage)法聚類。
圖7示出了干預期間生物臨床參數改變。(紅色)人體測量標誌物。(綠色)血漿脂質內穩態。(藍色)血漿葡萄糖內穩態。(紫色)炎症相關標誌物。SAA:血清澱粉樣蛋白A蛋白質;CRP:C-反應蛋白。
圖8示出了第105天時腸道微生物群落中9種鑒定的雙歧桿菌菌種的豐度。
圖9示出了假小鏈雙歧桿菌的泛基因組和核心基因組曲線。(A)相對於添加的基因組的數目繪圖的假小鏈雙歧桿菌泛基因組中的累積基因數目。還指出了推導的數學函數。(B)相對於添加的基因組的數目繪圖的,歸因於核心基因組的累積降低的基因數目。還指出了推導的數學函數。
圖10示出了來自6個完整假小鏈雙歧桿菌的預測的eps簇的物理圖譜。根據其潛在功能,基因以有色箭頭示出。
圖11示出了六個假小鏈雙歧桿菌基因組中非必需的獨特COG的分佈。熱圖示出了注釋為特定COG功能的基因的複製 數。菌株利用傑卡德距離和離差平方和法聚類。
本發明人已經發現了假小鏈雙歧桿菌的菌株,其可以在哺乳動物中降低單純性肥胖或遺傳型肥胖、緩解代謝惡化以及降低炎症和脂肪堆積。當在腸道中構建時,本發明的假小鏈雙歧桿菌菌株單獨或與其它益生微生物相組合,充當基礎菌種,所述基礎菌種藉由例如可能經由提高乙酸鹽/酯的產生導致對致病細菌和有害細菌不利的腸道環境來限定健康腸道生態系統的結構。
如下文更詳細描述的,本發明的假小鏈雙歧桿菌菌株分離自經歷了以基於全榖物類、傳統中國藥膳和益生元的先前公開的膳食(WTP膳食)進行住院干預的個體(S.Xiao等,A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome.FEMS Microbiol Ecol87,357(Feb,2014))。這些個體經過30天的膳食干預後,遺傳型和單純性肥胖兒童的代謝惡化均得到了顯著緩解。
如下文的實施例中詳細描述的,本發明人成功地獲得了本發明基礎菌種的大量菌株,經鑒定為假小鏈雙歧桿菌。代表性分離株是PERFECT-2017-0001菌株和PERFECT-2017-0002菌株,於2017年1月23日保藏於中國普通微生物菌種保藏中心(China General Microbiological Culture Collection Center, CGMCC),保藏編號分別為CGMCC 13650(亦即,寄存編號BCRC 910817)和CGMCC 13651(亦即,寄存編號BCRC 910818)。
本發明的益生菌菌株可以使用本領域普通技術人員熟知的既定方法進行培養、維持和繁殖,其中的某些方法在下文的實施例中例示。
本發明中所用的細菌為假小鏈雙歧桿菌菌株或其混合物。較佳地,本發明所用的雙歧桿菌是假小鏈雙歧桿菌PERFECT-2017-0001菌株或PERFECT-2017-0002菌株。
可以以能夠發揮本文所述作用的任何形式來利用該細菌。較佳地,該細菌是活菌。
該細菌可以包含整個細菌,或者可以包含細菌組分。這樣的組分的實例包括諸如肽聚糖的細菌細胞壁組分、諸如DNA和RNA的細菌核酸、細菌膜組分、以及細菌結構組分,如蛋白質、碳水化合物、脂類及這些的組合,如脂蛋白、糖脂和糖蛋白。
細菌還可包含或者替代地包含細菌代謝物。在本說明書中,術語“細菌代謝物”包括在哺乳動物中益生產物產生和運輸期間以及胃腸道轉運期間由於細菌生長、存活、持續、轉運或存在期間的細菌代謝而被(益生)細菌生產或修飾的所有分子。實例包括所有有機酸、無機酸、鹼、蛋白質和肽、酶和輔酶、胺基酸和核酸、碳水化合物、脂質、糖蛋白、脂蛋白、糖脂、維生素、所有的生物活性化合物、含有無機組分的代謝物、以 及所有的小分子,例如含氮分子或含亞硫酸的分子。較佳地,該細菌包含整個細菌,更佳整個活菌。
較佳地,根據本發明使用的雙歧桿菌是適用於人及/或動物攝取的雙歧桿菌。在本發明中,所用的雙歧桿菌可以是同一類型的(菌種和菌株)或者可以包含菌種及/或菌株的混合物。
適當的雙歧桿菌選自以下菌種:乳酸雙歧桿菌(Bifidobacterium lactis)、雙歧雙歧桿菌(Bifidobacterium bifidium)、長雙歧桿菌(Bifidobacterium longum)、動物雙歧桿菌(Bifidobacterium animalis)、短雙歧桿菌(Bifidobacterium breve)、嬰兒雙歧桿菌(Bifidobacterium infantis)、鏈狀雙歧桿菌(Bifidobacterium catenulatum)、假小鏈雙歧桿菌、青春雙歧桿菌(Bifidobacterium adolescentis)和角形雙歧桿菌(Bifidobacterium angulatum)以及它們的任意組合。
如下文的實施例所示,黏膜乳桿菌(Lactobacillus mucosae),尤其是與黏膜乳桿菌菌株32高度類似的那些,在膳食干預後顯著上升。因此,與本發明的假小鏈雙歧桿菌菌株組合使用的一種較佳菌是黏膜乳桿菌,尤其是菌株32。
在一個實施方案中,本發明所使用的細菌是益生菌。在本說明書中,術語“益生菌”被定義為涵蓋當以適量的量以活菌施用時對宿主產生健康益處的任何非致病細菌。這些益生菌菌株一般能夠在消化道的上部藉由中存活下來。它們是非致病性、無毒的,一方面藉由與消化道中的常居菌(resident flora)進行 生態相互作用,另一方面藉由經由“GALT”(腸道相關淋巴組織)以積極的方式影響免疫系統的能力來發揮它們對健康的有益作用。根據益生菌的定義,這些細菌,當以足夠的數量提供時,有能力活著行進藉由腸道,但它們不能穿過腸屏障,因此它們的主要作用在胃腸道的腔及/或壁中被誘發。然後,它們在施用期間形成常居菌的一部分。這種定植(或短暫的定植)使該益生菌發揮有益的作用,如抑制存在於菌群中的潛在致病微生物和與腸道的免疫系統相互作用。
在某些實施方案中,該雙歧桿菌在本發明中與乳桿菌屬細菌聯用。根據本發明的雙歧桿菌與乳桿菌的組合在某些應用中表現出協同效應(即效應大於單獨使用時細菌的疊加效應)。例如,除了作為單一組分對哺乳動物發揮作用外,聯用可以對該組合的其它組分產生有益效果,例如藉由產生隨後轉而被該組合的其它組分用作能量來源的代謝物或保持對其它組分有利的生理條件。
通常,乳桿菌選自以下菌種:嗜酸乳桿菌(Lactobacillus acidophilus)、乾酪乳桿菌(Lactobacillus casei)、開菲爾乳桿菌(Lactobacillus kefiri)、雙叉乳桿菌(Lactobacillus bifidus)、短乳桿菌(Lactobacillus brevis)、瑞士乳桿菌(Lactobacillus helveticus)、副乾酪乳桿菌(Lactobacillus paracasei)、鼠李糖乳桿菌(Lactobacillus rhamnosus)、唾液乳桿菌(Lactobacillus salivarius)、彎曲乳桿菌(Lactobacillus curvatus)、保加利亞乳桿菌(Lactobacillus bulgaricus)、沙克乳酸桿菌(Lactobacillus sakei)、羅伊氏乳桿菌(Lactobacillus reuteri)、發酵乳桿菌 (Lactobacillus fermentum)、香腸乳桿菌(Lactobacillus farciminis)、乳酸乳桿菌(Lactobacillus lactis)、德氏乳桿菌(Lactobacillus delbreuckii)、植物乳桿菌(Lactobacillus plantarum)、類植物乳桿菌(Lactobacillus paraplantarum)、捲曲乳桿菌(Lactobacillus crispatus)、格氏乳桿菌(Lactobacillus gassed)、約氏乳桿菌(Lactobacillus johnsonii)和詹氏乳桿菌(Lactobacillus jensenii)、及其任意組合。
在一些較佳實施方案中,本發明所用的乳桿菌是益生乳桿菌。較佳地,本發明所用的乳桿菌是嗜酸乳桿菌菌種。
劑量和施用. 可以藉由任何能將生物體引入消化道的方法完成益生菌的施用。可將該細菌與載體混合,以及將其施加至液體或固體飼料或飲用水。載體材料應是對細菌和動物無毒的。較佳地,該載體含有提高細菌在儲存期間的生存力的成分。也可以將細菌配製成待直接注入動物口中的接種體糊(inoculant paste)。該製劑可以包含另外的成分以改善可口性、提高保質期、賦予營養益處等。如果期望劑量可重複和經測量,可以藉由瘤胃插管(rumen cannula)施用細菌。待施用的益生菌的量由影響效力的因素控制。當在飼料或飲用水中施用時,可以將劑量在數天或者甚至數周的時間段內分散開。數日內施用較低劑量的累積效應可能大於單次施用較大劑量的效應。藉由監測施用優勢益生菌之前、期間和之後糞便中導致人類沙門氏菌病的沙門氏菌菌株的數量,本領域技術人員可以很容易地確定減少動物攜帶的導致人類沙門氏菌病的沙門氏菌菌株量所需的劑量水平。優勢益生菌的一個或更多種菌株可以一起施 用。菌株的組合可能是有利的,因為各個動物可能在給定個體中最持久的菌株方面不同。
根據本發明使用的假小鏈雙歧桿菌可包含106至1012CFU細菌/g支持物,其更佳108至1012CFU細菌/g支持物,對於凍乾形式而言較佳109至1012CFU/g。
適當地,可以以約106至約1012CFU微生物/劑量、較佳約108至約1012CFU微生物/劑量的劑量施用假小鏈雙歧桿菌。術語“每劑量”意指每天或每次攝入、較佳每天向對象提供該量的微生物。例如,如果要在食品(如酸奶)中施用該微生物-則酸奶會較佳包含約108至1012CFU的微生物。或者,然而,可以將該微生物量分多次施用,每次施用由少量微生物負載組成,只要對象在任何特定時間(例如每24小時內)內接受的微生物總量為約106至約1012CFU的微生物,較佳108至約1012CFU的微生物。
根據本發明,至少一株微生物的有效量可以為至少106CFU微生物/劑量,較佳約106至約1012CFU微生物/劑量,較佳約108至約1012CFU微生物/劑量。
在一實施方案中,可以以約106至約1012CFU微生物/天,較佳約108至約1012CFU微生物/天的劑量施用假小鏈雙歧桿菌菌株。因此,該實施方案中的有效量可為約106至約1012CFU微生物/天,較佳約108至約1012CFU微生物/天。
CFU表示“菌落形成單位”。“支持物”是指食品、膳食補充劑或藥物可接受的支持物。
當在本發明中將雙歧桿菌與另一種益生菌聯用時,該細菌可以能夠實現本文所述的本發明期望效果的任意比例存在。
對象/醫學適應症
將假小鏈雙歧桿菌菌株施用至哺乳動物,包括例如牲畜(包括牛、馬、豬、雞和羊)和人類。在本發明的某些方面中,哺乳動物是伴侶動物(包括寵物),例如狗或貓。在本發明的某些方面中,對象可以適當地是人。
該假小鏈雙歧桿菌菌株可適用於在哺乳動物(特別是人)中治療多種疾病或病症。在本說明書中,術語“治療”是指在(1)防止哺乳動物中特定的疾病發生,所述哺乳動物可能易患該疾病但還沒有經歷或顯示該疾病的病理或症狀(包括與該疾病相關的一個或更多個風險因素的預防);(2)在正在經歷或顯示該疾病的病理或症狀的哺乳動物中抑制該疾病,或者(3)在正在經歷或顯示該疾病的病理或症狀的哺乳動物中緩解該疾病中本發明的假小鏈雙歧桿菌菌株的任何施用。
本發明的假小鏈雙歧桿菌菌株適用於施用至兼患糖尿病和肥胖的哺乳動物。它們也適用於患有糖尿病和非肥胖的哺乳動物以及具有糖尿病風險因素但尚未處於糖尿病狀態的肥胖哺乳動物。這方面在下面更詳細地討論。
如下文的實施例更詳細描述的,本發明的假小鏈雙歧桿菌菌株具有多種生物學活性。具體地,本發明所用的雙歧桿菌能夠在哺乳動物中使胰島素敏感性正常化、提高進食後胰島素的分泌(fed insulin secretion)、降低空腹胰島素分泌、改善糖耐量。這些作用賦予用於治療糖尿病和糖尿病相關病症(特別是2型糖尿病和糖耐量受損)的潛力。
此外,本發明所用的雙歧桿菌能誘導體重降低和降低身體脂肪重量(特別是腸系膜脂肪重量)。這些作用賦予用於在哺乳動物中治療肥胖和控制體重增加及/或誘導體重降低的潛力。
具體地,如下文的實施例更詳細描述的,根據本發明與乳桿菌(特別是嗜酸乳桿菌)聯用的雙歧桿菌能夠誘導體重降低和降低身體脂肪重量(特別是腸系膜脂肪重量)。這些作用賦予用於在哺乳動物中治療肥胖和控制體重增加及/或誘導體重降低的潛力。
在本說明書中,術語肥胖與體重指數(body mass index,BMI)相關。體重指數(BMI)(按以千克表示的體重除以以公尺表示的身高的平方計算)是最常被接受的超重及/或肥胖的量度。BMI超過25被認為是超重。肥胖被定義為BMI為30或更多,BMI為35或以上被認為是嚴重的合併症肥胖(comorbidity obesity),BMI為40或以上被認為是病態肥胖。
如上文所指出的,本文所用的術語“肥胖”包括肥胖、合併 症肥胖和病態肥胖。因此,此處所用的術語“肥胖”可定義為BMI大於或等於30的對象。在某些實施方案中,肥胖對象可適當地具有大於或等於30、適當地35、適當地40的BMI。
雖然本發明組合物特別適用於兼患糖尿病和肥胖的患者,但該組合物也適合於那些患有糖尿病但不肥胖的患者。還可以適用於具有糖尿病風險因素但尚未處於糖尿病狀態的肥胖患者,因為可以預期,肥胖(但無糖尿病)的人可限制其肥胖的代謝後果,即糖尿病或至少胰島素抗性發展。
此外,本發明所用的雙歧桿菌可用於在哺乳動物中治療代謝綜合症。代謝綜合症是提高發展心血管疾病和糖尿病風險的醫學疾病的組合。代謝綜合症也被稱為代謝綜合症X、X綜合症、胰島素抵抗綜合症、萊特爾氏綜合症(Reaven's syndrome)或CHAOS(澳大利亞)。
遺傳型肥胖
在另一些實施方案中,本發明所用的雙歧桿菌(以及如果存在的話,乳桿菌)可用於在哺乳動物中降低組織炎症(特別是但不僅限於,肝組織炎症、肌肉組織炎症及/或脂肪組織炎症)。
可使用根據本發明的雙歧桿菌(以及如果存在的話,乳桿菌)治療的心血管疾病的實例包括動脈瘤、心絞痛、動脈粥樣硬化、腦血管意外(中風)、腦血管疾病、充血性心力衰竭 (CHF)、冠心病、心肌梗死(心臟病發作)和外周血管疾病。
預期在本發明的範圍內,本發明的實施方案可以組合,使得本文所述的任何特徵的組合包括在本發明的範圍之內。具體地,預期在本發明的範圍內,該細菌的任何的治療作用均可伴隨顯現。
組合物
雖然根據本發明可以單獨施用本發明的假小鏈雙歧桿菌菌株(即沒有任何支持物、稀釋劑或賦形劑),本發明的假小鏈雙歧桿菌菌株通常且較佳作為產品的一部分在支持物上或支持物內施用,特別是作為食品、膳食補充劑或藥物製劑的組分。這些產品通常含有本領域技術人員熟知的額外組分。
可從該組合物受益的任何產品都可用於本發明。這些包括但不限於食物,特別是水果蜜餞、乳製品和乳製品的衍生產品,以及醫藥產品。本發明的假小鏈雙歧桿菌菌株在本文中可以稱作“本發明的組合物”或“該組合物”。
食物
在一實施方案中,本發明的假小鏈雙歧桿菌菌株應用於食品,如食品補充劑、飲料或乳粉。在此,術語“食物”以廣義使用,並且涵蓋人類的食物以及動物的食物(即飼料)。在較佳的方面中,食物用於人類消耗。
食物可以為溶液或固體的形式,取決於用途及/或應用方式及/或施用途徑。當用作或用於製備食物如功能性食品時,本發明的組合物可與以下的一種或多種一起使用:營養可接受的載體,營養可接受的稀釋劑、營養可接受的賦形劑、營養可接受的輔助劑、營養活性成分。
例如,本發明的組合物可用作以下各項的成分:軟飲料、果汁或含有乳清蛋白的飲料、保健茶、可可飲料、乳飲料和乳酸菌飲料、酸乳和飲用型酸乳、奶酪、冰淇淋、冰糕(water ices)和甜點、糖果、餅乾糕點和蛋糕混合料、休閒食品、均衡的食物和飲料、水果餡料、care glaze、巧克力麵包餡、乳酪蛋糕味夾心餅餡(cheese cake flavoured filling)、水果味蛋糕餡(fruit flavoured cake filling)、蛋糕和甜甜圈酥皮(cake and doughnut icing)、瞬間麵包填充膏(instant bakery filling creams)、餅乾餡(fillings for cookies)、即用型焙烤食品餡、減少熱量的餡(reduced calorie filling)、成人營養飲料、酸化大豆/果汁飲料(acidified soy/juice beverage)、無菌/殺菌巧克力飲料(aseptic/retorted chocolate drink)、棒混合物(bar mixes)、飲料粉末(beverage powders)、鈣強化大豆/純巧克力牛奶(calcium fortified soy/plain and chocolate milk)、鈣強化咖啡飲料。
該組合物還可以用作諸如以下的食品中的成分:美國奶酪醬(American cheese sauce)、乳酪粉&起司絲防結塊劑、薯條醬(chip dip)、奶油乾酪(cream cheese)、乾混合植脂奶油脫脂酸奶油(dry blended whip topping fat free sour cream)、凍融動 物性鮮奶油(freeze/thaw dairy whipping cream)、凍融穩定性攪打發泡頂端附加物(freeze/thaw stable whipped tipping)、低脂輕天然切達乾酪(low fat and light natural cheddar cheese)、低脂瑞士風格的酸奶、充氣冷凍甜品(aerated frozen desserts)、硬盒冰淇淋(hard pack ice cream)、標簽友好且經濟/放縱改善的硬包裝冰淇淋(label friendly,improved economics &indulgence of hard pack ice cream)、低脂冰淇淋、軟冰淇淋、燒烤醬(barbecue sauce)、奶酪蘸醬(cheese dip sauce)、生乾酪上的稀奶油(cottage cheese dressing)、乾拌阿爾弗雷多醬(dry mix Alfredo sauce)、混合奶酪醬(mix cheese sauce)、乾拌番茄醬等。
本文所用的術語“乳製品”意在包括含有動物及/或植物來源的乳的介質。作為動物來源的乳,可以提及的是源自奶牛、綿羊、山羊或水牛的乳。作為植物來源的乳,可以提及的是可以根據本發明使用的源自植物的任何可發酵的物質,特別是源自大豆、大米或穀物的乳。
對於某些方面而言,較佳本發明可用於酸乳生產,如發酵酸乳飲料、酸乳、飲用型酸乳、奶酪、發酵乳、牛奶基甜點(milk based desserts)等。
適當地,該組合物還可用作以下一種或更多種中的成分:乾酪應用、肉類應用,或包含保鮮菌(protective cultures)的應用。
本發明還提供了製備食物或食物成分的方法,該方法包括將根據本發明的組合物與另一食物組分混合。
有利地,本發明涉及已經與本發明組合物(以及任選地與其它組分/成分)相接觸的產品,其中該組合物以能夠改善產品的營養及/或健康益處的量使用。
本文使用的術語“接觸”是指將本發明的組合物間接或直接應用於產品。可以使用的應用方法的實例包括但不限於,在包含該組合物的材料中處理該產品,藉由將該組合物與該產品混合直接應用,將該組合物噴至該產品表面,或將該產品浸入該組合物的製劑中。
如果本發明的產品是食品,則較佳將本發明的組合物與該產品混合。或者,該組合物可包括在食品的原料成分或乳液中。再或者,該組合物可作為調味品、蛋漿、著色劑混合物等應用。
可將本發明的組合物以控制量的微生物應用於點綴、塗覆及/或注入產品。
較佳地,將該組合物用於發酵乳或蔗糖強化乳(sucrose fortified milk)或者具有蔗糖及/或麥芽糖的乳酸介質,如果含有該組合物所有組分-即根據本發明的所述微生物-的所得介質可以作為成分以適當濃度添加至酸乳中,例如在最終產品中提供106至1010CFU的日劑量的濃度。根據本發明的微生物可以在酸乳發酵前或發酵後使用。
對於某些方面,根據本發明的微生物被用作或用於製備動物飼料,例如家畜飼料,特別是家禽(如雞)飼料,或寵物食品。
有利地,如果產品是食品,那麼本發明的假小鏈雙歧桿菌菌株應該在零售商銷售該食品的正常“最遲銷售”或“有效期”內保持有效。較佳地,有效的時間應該延長至超過這樣的日期直至食物腐敗變得明顯的正常新鮮期結束時。期望的時間長度和正常的保質期隨食品而變化,並且本領域技術人員會意識到保質期會隨食品類型、食品大小、儲存溫度、加工條件、包裝材料和包裝設備而變化。
食物成分、食物補充劑和功能性食物
本發明的組合物可用作食物成分及/或飼料成分。本文所用的術語“食物成分”或“飼料成分”包括為營養補充劑或者可以作為營養補充劑添加至功能性食物或食料中的製劑。食物成分可為溶液或固體的形式,取決於用途及/或應用方式及/或施用方式。
本發明的組合物可以是(或可以添加至)食物補充劑(本文中也稱為膳食補充劑)中。
本發明的組合物可以是(或可以添加至)功能性食物中。本文所用術語“功能性食物”意指不僅能夠為消費者提供營養作用,而且還能夠提供進一步的有益效果的食物。
因此,功能性食物是併入了賦予食物除了純營養作用之外的特定功能(如醫藥或生理益處)的組分或成分(如本文所述的這些)的普通食物。某些功能性食品是保健品。在此,術語“保健品”是指不僅能夠向消費者提供營養作用及/或味覺上的滿足感,還能提供治療(或其它有益的)的作用的食物。保健品跨越食物與藥物之間的傳統分界線。
藥劑(medicament)
本文所用的術語“藥劑”涵蓋在人和獸醫學上用於人和動物的藥劑。此外,本文所用的術語“藥劑”指提供治療及/或有益效果的任何物質。本文所用的術語“藥劑”不局限於需要上市許可的物質,還可包括可用於化妝品、保健品、食物(包括例如飼料和飲料)、益生菌培養物(probiotic cultures)和自然療法的物質。此外,本文所用的術語“藥劑”涵蓋設計用於併入動物飼料(例如家畜飼料及/或寵物食品)的產品。
藥物(pharmaceuticals)
本發明的組合物可用作(或用於製備)藥物。在此,術語“藥物”以廣義使用,並且涵蓋用於人的藥物和用於動物的藥物(即獸醫應用)。在較佳的方面中,該藥物用於人類用途及/或畜牧業。該藥物可用於治療目的,在性質上可以是治療性或緩解性或預防性的。該藥物甚至可以用於診斷目的。
藥物可接受的支持物可以是例如壓制片、片劑、膠囊、軟膏、栓劑或可飲用溶液(drinkable solutions)形式的支持物。其它適當形式如下。
當用作(或用於製備)藥物時,本發明的組合物可與以下的一種或更多種聯用:藥物可接受的載體、藥物可接受的稀釋劑、藥物可接受的賦形劑、藥物可接受的輔助劑、藥物活性成分。藥物可以為溶液或固體的形式,取決於用途及/或應用方式及/或施用方式。
用於製備這些形式的營養可接受載體的實例包括例如水、鹽溶液、醇、矽酮、蠟、凡士林、植物油、聚乙二醇、丙二醇、脂質體、糖類、明膠、乳糖、直鏈澱粉(amylose)、硬脂酸鎂、滑石粉、表面活性劑、矽酸、黏性石蠟、芳香油、脂肪酸甘油單酯和甘油二酯、石化(petroethral)脂肪酸酯、羥甲基纖維素、聚乙烯吡咯烷酮等。
對於水性懸浮劑及/或酏劑,本發明的組合物可與各種甜味劑或調味劑、著色劑或染料相組合,與乳化劑及/或懸浮劑相組合,以及與諸如水、丙二醇和甘油的稀釋劑相組合,及其組合。劑型還可包括明膠膠囊、纖維膠囊、纖維片等,或者甚至纖維飲料。劑型的其它實例包括乳膏。對於某些方面,本發明所用的微生物可用於藥物及/或化妝品的乳膏,如防曬霜及/或曬後潤膚膏(after-sun creams)。
與益生元組合
本發明的組合物還可以包含一種或更多種益生元。益生元是一類功能性食物,定義為藉由選擇性刺激結腸內一種或少數細菌的生長及/或活性來對宿主產生有益作用,從而改善宿主健康的不易消化的食物成分。通常,益生元是碳水化合物(如寡糖),但該定義不排除非碳水化合物。益生元最普遍的形式在營養學上分類為可溶性纖維。在某種程度上,許多形式的膳食纖維表現出一定程度的益生作用。
在一實施方案中,益生元是選擇性發酵成分,其允許胃腸道微生物群落組成及/或活性的對宿主健康產生益處的特定變化。
適當地,根據本發明,益生元可以0.01至100克/天的量使用,較佳0.1至50克/天,更佳0.5至20克/天。在一實施方案中,根據本發明,可以1至100克/天的量使用益生元,較佳2至9克/天,更佳3至8克/天。在另一實施方案中,根據本發明,可以5至50克/天的量使用益生元,較佳10至25克/天。
益生元的膳食來源的實例包括大豆、菊糖源(如菊芋、豆薯和菊苣根)、生燕麥、未純化小麥、未純化大麥和雪蓮果。適當的益生元的實例包括藻酸鹽、黃原膠、果膠、刺槐豆膠(LBG)、菊糖、瓜爾豆膠、低聚半乳糖(GOS)、低聚果糖(FOS)、聚右旋糖(即Litesse®)、乳糖醇、低聚乳果糖、大豆低聚糖、異麥芽酮糖(Palatinose.TM.)、異麥芽寡糖、低聚葡萄糖、低聚木糖、低聚甘露糖、β-葡聚糖、纖維二糖、棉子糖、龍膽二糖、 蜜二糖、木二糖、環糊精、異麥芽糖、海藻糖、水蘇糖、潘糖、普魯蘭多糖、毛蕊花糖、半乳甘露聚糖和所有形式的抗性澱粉。益生元的特別較佳實例是聚右旋糖。
在某些實施方案中,根據本發明的本發明假小鏈雙歧桿菌菌株與益生元的組合在某些應用中表現出協同效應(即效應大於單獨使用時細菌的疊加效應)。
實施例
最近的證據表明,腸道微生物群的菌群失調在諸如肥胖和糖尿病的人類疾病中起關鍵作用(1,2)。對疾病/健康表型造成影響的腸道菌群的特定成員不僅可作為疾病診斷的有力工具(3,4),而且還可作為靶標藉由諸如藥物(5)、糞便微生物移植(6)和飲食(7)的多種方法用於疾病緩解/治療。然而,由於腸道菌群本身的複雜性和個體間差異以及其與宿主和飲食的相互作用(8),用於實現最佳人類健康而對腸道微生物群的精確操作需要在基因組和分子水平更深入的理解。
在我們之前的一項膳食干預研究中,我們發現由全榖類、傳統中國藥膳和益生元組成的富含不易消化但可發酵的碳水化合物的膳食(WTP膳食)不僅顯著改變腸道菌群,還改善患有小胖-威利綜合症的遺傳型肥胖兒童的生物臨床參數和炎症狀況(9)。一種特定的有益菌假小鏈雙歧桿菌在干預後顯著富集,其與其它潛在有害菌種負相關,並且與宿主臨床參數的改善正相關(9)。
來自該群組的一名兒童完成了105天的干預。他的生物臨床參數得到改善,初始體重損失超過25.8kg,同時腸道微生物群落發生顯著轉變,例如,糞便菌(Faecalibacterium)、乳桿菌(Lactobacillus)和雙歧桿菌(Bifidobacterium)屬增多。此外,我們發現干預後假小鏈雙歧桿菌是雙歧桿菌屬中的最優勢菌種。有趣的是,我們已經在第105天從他的糞便樣品中分離出五種菌株(10),這些菌株對富含碳水化合物的干預具有差異反應。為瞭解參與腸道生態系統中細菌生態位適應的遺傳特性以及與宿主和膳食的相互作用(11),我們對假小鏈雙歧桿菌進行了比較基因組學研究。
結果和討論
改善的生物臨床參數和轉變的腸道菌群
在干預期間該肥胖兒童的生物臨床變量得到改善(圖1和圖7)。體重從140.1kg降至114.3kg,並且血漿葡萄糖和脂質內穩態二者改善至正常範圍。干預後,兩種全身性炎症標誌物C-反應蛋白(C-reactive protein,CRP)和血清澱粉樣蛋白A(serum amyloid A protein,SAA)降低。脂聯素從2.17μg/ml提高至5.39μg/ml,瘦素從63.82ng/ml降低至34.47ng/ml,表明“風險”表型(12)的緩解。此外,血液中細菌抗原負載的替代標誌物脂多糖結合蛋白(LBP)(13)降低。
我們藉由宏基因組測序在7個時間點(0、15、30、45、60、75和105天)獲得了每個糞便樣品25.2±4.8百萬(平均值±s.d.) 個高質量雙端讀長(paired-end reads)。干預期間腸道菌群的組成發生轉變(圖2A),並且反應於三個干預階段(階段I:第0天至第60天的基礎干預;階段II:第60天至第75天的基礎干預+多100g 3號配方;階段III:第75天至第105天的減少的1號配方+多100g 3號配方,詳見方法)表現出不同模式。該肥胖兒童在不同階段的排便頻率類似(平均每天3至4次),未發生腹瀉。干預期間群落的多樣性下降,其與群組的變化一致(9)。在基線時,瘤胃球菌屬(Ruminococcus)和布勞特氏菌屬(Blautia)是兩個最豐富的屬,分別占26.95%和18.41%。同時,擬桿菌屬(Bacteroides)和普雷沃氏菌屬(Prevotella)具有低豐度,表明該群落可能屬□腸類型3(14)。干預後,瘤胃球菌屬和布勞特氏菌屬降至低豐度,而擬桿菌屬和普雷沃氏菌屬幾乎未受干預影響。與基線相比,被報道為抗炎菌種(15,16)和有益的(5)共生細菌的糞便菌在階段I增多,在第15天豐度達到41.95%。前15天糞便菌的急劇增多可能有助於緩解炎症,因為在該階段,CRP和SAA分別下降33.37%和50.85%。 當提供更多寡糖時,糞便菌在階段II和階段III中下降至低豐度。另一方面,良好配備以代謝寡糖(17)的乳桿菌屬在基線和階段I期間具有低豐度,但是從階段II開始變成最優勢屬之一。多個研究已經報道了乳桿菌屬菌株對胰島素抵抗的有益作用(18,19)。乳桿菌屬的急劇增多可有助於來自階段II的胰島素敏感性改善,如藉由該時期期間OGTT胰島素AUC(area under the curve,曲線下面積)的顯著降低和穩定的OGTT葡萄糖AUC所指示的。能夠藉由細胞內和細胞外途徑來代謝多種碳水化合物(20)的雙歧桿菌的豐度從第15天開始是顯著的,並且在整個干預期間仍然是優勢屬:從該兒童接受基礎干預時的27.47% 升高到第75天時的65.53%,然後當提供較少的包含複合膳食纖維的1號配方時降低至36.41%。這些結果表明,雙歧桿菌種群反應於三個階段中提供的碳水化合物源的變化,並且在每個階段,其佔據優勢生態位。考慮到雙歧桿菌菌株對肥胖的已知有益作用(21,22),其在我們以前的群組研究相互作用網絡中的重要作用(9),以及其在干預期間的持續高豐度,我們推測它們可能有助於持續降低體重、BMI、腰圍和臀圍。因此,我們對該屬進行了更深入的分析。
在干預後樣品中鑒定了總共9種雙歧桿菌屬菌種(圖8)。其中,假小鏈雙歧桿菌最佔優勢,第105天在整個腸道菌群中的豐度為29.36%。長雙歧桿菌、短雙歧桿菌和青春雙歧桿菌分別占9.94%、7.61%和3.75%,其它5個菌種的豐度低於1%。
假小鏈雙歧桿菌菌株對干預的差異反應
為了詳細研究假小鏈雙歧桿菌群,我們從在第105天自我們的對象收集的糞便樣品中分離了5種假小鏈雙歧桿菌菌株(下文定義為菌株PERFECT-2017-0001、PERFECT-2017-0002、PERFECT-2017-0003、PERFECT-2017-0004和C95(23))並進行了完整測序(10)。藉由將宏基因組數據與完整基因組進行比對,利用Sigma(24)鑒定了這五種菌株在每個時間點的豐度變化(圖2B)。干預前,所有菌株具有低豐度(最大值=0.5%,假小鏈雙歧桿菌PERFECT-2017-0001)。假小鏈雙歧桿菌PERFECT-2017-0003和假小鏈雙歧桿菌C95的豐度似乎不反應於膳食干預,因為前者在整個試驗期間保持低豐度,後者僅在 階段II和階段III期間顯示小的增加。相比之下,假小鏈雙歧桿菌PERFECT-2017-0001、假小鏈雙歧桿菌PERFECT-2017-0004和假小鏈雙歧桿菌PERFECT-2017-0002菌株反應於膳食干預,它們的豐度變化與對於雙歧桿菌屬所觀察的一致,表明這些假小鏈雙歧桿菌菌株主要造成這些變化。事實上,在干預後這三種菌株顯著增多,尤其是假小鏈雙歧桿菌PERFECT-2017-0002。
與先前的研究(9)中的發現一致,生物臨床變量的改善與假小鏈雙歧桿菌菌株的增多相關(圖3)。假小鏈雙歧桿菌C95與人體測量標誌物(包括體重、BMI、腰圍和臀圍)負相關。此外,假小鏈雙歧桿菌PERFECT-2017-0002也與炎症標誌物的改善(包括瘦素的減少和脂聯素的增加)相關。
假小鏈雙歧桿菌的泛基因組分析
基於我們的五個完整假小鏈雙歧桿菌基因組以及可用的公共數據(包括5個假小鏈雙歧桿菌基因組草圖和假小鏈雙歧桿菌JCM1200T的完整基因組(25)),泛基因組分析中包括總共11個假小鏈雙歧桿菌基因組。泛基因組曲線顯示,PERFECT-2017-0001的生物臨床變量呈漸近趨勢,在前六個疊代中平均生長速率為每個基因組100個基因,然後降低到低得多的速率(圖9A)。曲線最終達到2,482個基因。這表明進一步併入額外的基因組可能僅導致泛基因組大小的輕微增加。核心基因組曲線顯示出前六個疊代中更明顯的漸近趨勢以及更清楚的下降(圖9B)。曲線最終達到1,427基因。泛基因組和核心基 因組的趨勢表明,假小鏈雙歧桿菌表現出封閉泛基因組,並且六個基因組幾乎足以描述假小鏈雙歧桿菌的基因特徵。基於這些結果並且為了避免基因組草圖造成的模糊不清,我們在隨後的分析中僅使用六個完整基因組來探索假小鏈雙歧桿菌的基因組特徵。
假小鏈雙歧桿菌的一般特徵
我們的五種菌株和假小鏈雙歧桿菌JCM1200T的基因組顯示平均2,355,185bp和56.63 G+C%,這與雙歧桿菌屬的G+C%範圍一致(26)。在假小鏈雙歧桿菌的基因組中鑒定了5或6個rRNA操縱子基因座,並且在每個基因組中,有5S rRNA rRNA基因的一個額外複製(表1)。此外,16S rRNA基因的異質性存在於除了假小鏈雙歧桿菌JCM1200T的基因組以外的所有基因組中(表S1)。每個假小鏈雙歧桿菌基因組中平均包含54個tRNA基因。
Figure 107104756-A0305-02-0032-1
Figure 107104756-A0305-02-0033-2
Figure 107104756-A0305-02-0034-4
預測每個基因組平均1,871個開放閱讀框(Open Reading Frame,ORF),其中80%檢測出的ORF基於在NCBI數據庫上的BLAST藉由計算機預測(silico prediction)進行功能性分配,其餘的20%預測為假定蛋白(表1)。根據COG(直系同源聚類組)(27)鑒定直系同源基因表明,假小鏈雙歧桿菌基因組中的大部分基因參與各種管家功能(housekeeping function),尤其是用於碳水化合物轉運和代謝(12.54%)以及胺基酸轉運和代謝(10.23%)的那些(圖4)。這些百分比與其它雙歧桿菌基因組的那些一致(28,29)。
基於基因組分析並由實驗證據支持,已經鑒定了雙歧桿菌的多種宿主定殖因子,包括參與膽汁抗性和黏附素的功能(11)。膽汁抗性對於許多腸道細菌的定植是重要的,因為膽汁酸在生理濃度下可具有抗微生物活性(30)。在全部6種假小鏈雙歧桿菌菌株中鑒定出了賦予膽汁抗性的膽汁鹽水解酶及/或膽汁酸轉運蛋白。在黏附方面,所有基因組具有編碼烯醇化酶和DnaK的基因,而DnaK已被證明是動物雙歧桿菌乳酸菌亞種BI07(B.animalis subsp.lactis BI07)中的纖溶酶原結合相關蛋白(31,32)。此外,編碼參與存在於四個雙歧雙歧桿菌(B.bifidum)菌株中的黏蛋白結合的轉醛醇酶(33)以及已被報道促進與細胞外基質的黏附的血管性血友病因子A(von Willebrand factor A)(34)的基因也存在於每個基因組中。這些功能基因的存在表明,類似於其它雙歧桿菌菌種,假小鏈雙歧桿菌具有在人腸中定殖的基因組基礎。
假小鏈雙歧桿菌的基因組微多樣性
六個完整假小鏈雙歧桿菌基因組中的平均核苷酸同一性(average nucleotide identity,ANI)滿足菌種分界的閾值(35),因為最小值為97.76%。當與從不同生境分離的假小鏈雙歧桿菌JCM1200T相比時(最大ANI=97.80%),觀察到從相同生境分離的菌株內稍微更高的相似性(假小鏈雙歧桿菌PERFECT-2017-0001、PERFECT-2017-0002、PERFECT-2017-0003、PERFECT-2017-0004和C95,最小ANI=99.88%)。這些結果表明所有這些基因組中的高度同線性,這藉由基因組的點圖比對來證實(圖5A),儘管在點圖中在假小鏈雙歧桿菌JCM1200T與其它五種菌株之間存在較小共線性和一些差異(包括插入缺失)。這種變異的一個值得注意的實例是編碼胞外多糖(EPS)的eps基因簇。EPS可以形成黏附在細胞上的黏液層,也可以釋放到環境中(36)。雙歧桿菌產生的一些EPS被認為潛在地有助於其宿主的多種有益的活性,包括調節免疫系統、抵抗病原體、作為清除劑以及調節微生物群落(37)。在假小鏈雙歧桿菌的每個完整基因組中鑒定了eps基因簇的一個複製,並且這些eps簇在我們的五種假小鏈雙歧桿菌菌株中是相同的,但是與在假小鏈雙歧桿菌JCM1200T中發現的完全不同。
將在六種完整基因組上鑒定的所有ORF與BLASTP進行比較,並用MCL算法進一步聚類,顯示存在2,115個基因組(圖5B)。其中~72%(1,520)是所有六種假小鏈雙歧桿菌基因組共有的,其代表了假小鏈雙歧桿菌的核心基因組。鑒定出了僅存在於所測試的假小鏈雙歧桿菌基因組的子集中的總共312個非必需基因組。超過61.48%的獨特組為假小鏈雙歧桿菌JCM1200T所特有。基於COG分配獲得了類似結果,從六個完整假小鏈雙歧桿菌基因組中鑒定出1,101個COG家族。其中59個COG家族僅存在於所檢查的假小鏈雙歧桿菌基因組的子集中,並且37個另外的COG是單一菌株獨特的,其中35個僅在假小鏈雙歧桿菌JCM1200T中鑒定出。還有46個COG家族存在於我們的分離株中,但不存在於假小鏈雙歧桿菌JCM1200T基因組中。有趣的是,這些差異中的至少一些與移動基因組(mobilome)和DNA重排有關,我們的分離株具有更多與前噬菌體功能、細胞過程和信號傳導有關的獨特的COG,而假小鏈雙歧桿菌JCM1200T具有的更多獨特COG包括參與CRISPR/Cas系統的那些。
特別地,我們的分離株和假小鏈雙歧桿菌JCM1200T暴露於不同的碳水化合物源。前者來自干預後兒童的糞便樣品,所述兒童接受來自富含膳食纖維和包含低聚果糖和低聚異麥芽糖的粉末的全穀類和TCM食用植物的混合材料,而後者分離自推測接受相對更簡單的碳水化合物的嬰兒的糞便。相應地,發現了參與碳水化合物轉運和代謝的遺傳變異,例如假小鏈雙歧桿菌JCM1200T缺少COG0383(α-甘露糖苷酶)、COG3594(岩藻糖4-O-乙醯酯酶或相關乙醯基轉移酶)、COG4209(ABC型多糖轉運系統,通透酶組分)和COG4214(ABC型木糖轉運系統, 通透酶組分),但獨特地具有COG1554(海藻糖和麥芽糖水解酶(可能有磷酸化酶))。
核心COG的不同複製數也有助於假小鏈雙歧桿菌的微多樣性。在存在於每種完整假小鏈雙歧桿菌基因組中的1,005個核心COG中,51個參與多種功能類別的COG在複製數方面具有至少2個複製的不同(圖6)。根據這些COG的分佈,與我們的5種菌株相比假小鏈雙歧桿菌JCM1200T是最不同的。
以前的研究已經報道了來自相同生境的相同菌種中不同菌株的微多樣性(38-40)。在我們的五種假小鏈雙歧桿菌菌株中,差異似乎是由分配給特定核心COG家族的基因的複製數的變異引起的,而不是獨特及/或非必需COG的存在/不存在方面的差異。聚類結果(圖6)與菌株對碳水化合物干預的差異性反應一致。在這種情況下,幾乎不受干預影響的假小鏈雙歧桿菌C95和假小鏈雙歧桿菌PERFECT-2017-0003與三種反應菌株明顯分開;對干預具有適度反應的假小鏈雙歧桿菌PERFECT-2017-0001和假小鏈雙歧桿菌PERFECT-2017-0004兩者一起分組;而對干預反應最高的菌株假小鏈雙歧桿菌PERFECT-2017-0002可與其它4種菌株進一步分開,但與假小鏈雙歧桿菌PERFECT-2017-0001和假小鏈雙歧桿菌PERFECT-2017-0004最相似。
關於碳水化合物轉運和代謝,假小鏈雙歧桿菌PERFECT-2017-0002具有COG2814(預測的阿拉伯糖流出通透酶,MFS家族)和COG3250(β-半乳糖苷酶/β-葡糖醛酸糖苷酶) 的最高複製數。此外,在5種菌株中,鑒定出106±2(平均值±s.d.)個ORF為碳水化合物活性酶(CAZy)基因,占41個CAZy家族。假小鏈雙歧桿菌PERFECT-2017-0002基因組具有所有鑒定的CAZy家族,並具有這些基因的最大複製數。其還具有編碼碳水化合物酯酶之基因的最高複製數,所述酶據報道使植物多糖脫乙醯化以克服複雜性,並在植物多糖降解中與糖苷水解酶協作(41)。據推測,這些特徵是造成假小鏈雙歧桿菌PERFECT-2017-0002對膳食干預之反應的主要差異,因此其佔據全部假小鏈雙歧桿菌的超過50%,並且在整個干預期間占整個雙歧桿菌群體的很大比例。
結論
在研究WTP膳食如何導致遺傳型肥胖者體重減輕的以前研究中,假小鏈雙歧桿菌被鑒定是最豐富的雙歧桿菌菌種。在本文中,我們表明,假小鏈雙歧桿菌的特定菌株對膳食干預的反應表現出變化,我們使用比較基因組學鑒定了這些動態背後的可能原因。作為本研究的一部分分離的五種假小鏈雙歧桿菌菌株顯示出相對於從嬰兒糞便中分離的假小鏈雙歧桿菌JCM1200T的一些差異,這顯示出不同的環境參數對基因組微多樣性的影響(42)。在我們的五種分離株中觀察到的微多樣性大部分是核心COG家族的複製數的變化,並且這些差異為干預期間五種菌株的種群變化提供了猜測性解釋。具體地,假小鏈雙歧桿菌PERFECT-2017-0002在遺傳上具有更多樣化和植物多糖基因的更多複製數,具有反應於膳食干預的最大豐度。多種菌株的共存和分佈是直觀的,因為這會支持整個群體比同基因 群體在更廣泛的環境條件下存活(43)。因此,對膳食干預具有不同反應的五種菌株的共存可以作為一種機制來保證人腸道中重要的有益菌種如假小鏈雙歧桿菌的穩定和恢復。但是重要的是,本研究中鑒定的五種假小鏈雙歧桿菌菌株也被發現與宿主生物臨床參數具有不同的相關性,表明至少一些歸因於腸道菌群之變化的有益功能是菌株特異性的(44)。本文介紹的這種類型的更多研究將是必要的,以確保從腸道微生物群的飲食操作中獲得的健康益處的全部潛力得以實現。
材料和方法
臨床研究
該研究在上海交通大學生命科學與生物技術學院倫理委員會(Ethics Committee of the School of Life Sciences and Biotechnology,Shanghai Jiao Tong University)的批准(No.2012-2016)下進行。臨床試驗在中國臨床試驗註冊中心(Chinese Clinical Trial Registry)註冊(No.ChiCTR-ONC-12002646)。從肥胖兒童的監護人處獲得了書面知情同意書。
在中國廣東省廣州市婦女兒童醫院(GuangDong Women and Children Hosiptal,Guanzhou,Chian),該肥胖兒童接受了住院膳食干預105天。該志願者沒有實施任何鍛煉計劃。根據營養師的建議,與適量蔬菜、水果和堅果組合地施用了基於全榖類、傳統中國藥膳和益生元的膳食(WTP膳食)(7)(膳食中的三種即食預製食品1號配方、2號配方和3號配方由完美(中 國)有限公司生產)。干預分為三個階段。在階段I(第0天至第60天),該兒童接受了基礎干預(9)。在階段II(第60天至第75天),他消耗了多100g的3號配方。在階段III(第75天至第105天)期間,他仍然消耗了多100g的3號配方,但提供了較少1號配方。
在7個時間點(0、15、30、45、60、75和105天)獲得了生物樣品、人體測量數據和臨床實驗室分析。生物臨床參數的測量結果與我們以前的研究(9)相同。
宏基因組測序和分析
如以前的描述(45),進行從糞便樣品中提取DNA用於宏基因組測序。在上海Genergy生物技術有限公司(Shanghai Genergy Bio-technology Co.,Ltd)使用Illumina Hiseq 2000平臺對7個樣品進行了測序。DNA文庫製備遵循Illumina的說明書。根據供應商指示的工作流程進行了聚類生成、模板雜交、等溫擴增、線性化、封閉和變性以及測序引物的雜交。構建文庫,然後在正向和反向方向進行高通量測序,獲得具有151bp的雙端讀長。
使用Flexbar(46)調整來自讀長的適配器。使用Prinseq(47),a)以20的質量閾值從3'端調整讀長直到達到第一個核苷酸;b)如果讀長短於75bp或包含‘N’鹼基,則去除讀長對,以及c)對讀長進行去重。去除可與人類基因組(H.sapiens,UCSC hg19)對齊的讀長(與Bowtie2(48)對齊,使用-重排- 無hd-不包含--吻合(-reorder --no-hd --no-contain --dovetail))。平均每個樣品保留25.3±4.1百萬(平均值±s.d.)雙端讀長,並用於進一步分析。
在第105天使用MetaPhlan(49)(--bt2_ps非常敏感的局部)來計算雙歧桿菌種的豐度。使用Sigma來計算我們的五種假小鏈雙歧桿菌菌株的豐度(24)。
全基因組測序和數據組裝
藉由PacBio RS II測序儀對假小鏈雙歧桿菌PERFECT-2017-0001、假小鏈雙歧桿菌PERFECT-2017-0002、假小鏈雙歧桿菌PERFECT-2017-0003、假小鏈雙歧桿菌PERFECT-2017-0004和假小鏈雙歧桿菌C95的基因組進行了測序,分別具有約245、415、285、459和198倍的覆蓋率(Nextomics Biosciences,Wuhan 430000,China)。使用HGAP/Quiver(50)從頭重新組裝子讀長,然後是miniums2(51)和Quiver。將每種菌株組裝成對應於其染色體的一個重疊群。
一般特徵預測
藉由Prodigal v2_60(52)和BLAST比對的組合進行了開放閱讀框(Open Reading Frame,ORF)預測。然後在NCBI nr數據庫上使用BLASTP對鑒定的ORF進行了注釋。使用Rnammer v1.2(53)檢測了核糖體RNA基因,並用tRNAscan-SE v.14(54)鑒定了轉運RNA基因。使用USEARCH v8.0.1517(55)計算了 所有16S rRNA基因之間的同一性矩陣。使用COGtriangles(ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/COGsoft/)完成了COG的分配。
泛基因組計算
使用PGAPv1.12(56)計算了假小鏈雙歧桿菌的泛基因組。藉由GF(Gene Family,基因家族)方法進行了功能基因聚類,然後構建了泛基因組譜。
基因組比較
使用軟件包MUMmer v3.0(57)在核苷酸水平進行了全基因組序列比對。對於每個基因組對,使用程序JSpecies版本1.2.1(35)計算了平均核苷酸同一性(ANI)。在蛋白質水平上,使用BLASTP(對於每一蛋白質,最大E值1e-10,最小比對同一性50%以及最小比對覆蓋率50%)以全對全方式(all against all way)對序列進行了比較,然後在PGAP v1.12中使用馬爾可夫聚類算法(Markov Cluster Algorithm,MCL)聚類到基因家族。
胞外多糖(Exoplysaccharide,EPS)基因簇的鑒定
藉由在每個基因組(37)中搜索推定的引發-GTF(p-gtf)基因rfbP(NP_695444)和cpsD(NP_695447)然後手動檢查p-gtf周圍的基因進行了Bifido-eps簇的計算機分析。
碳水化合物活化酶(CAZys)的鑒定
下載了dbCAN v3.0(58)的本地版本數據庫。使用HMMscan(59)將每個基因組中的基因與數據庫進行比對。用dbCAN提供的hmmscan-parser.sh對比對進行解析,並保留最好的命中。
數據和材料的可獲得性
本研究中產生的所有基因組和宏基因組數據以收錄號PRJEB18557保藏在歐洲核苷酸文庫(European Nucleotide Archive,ENA)(www.ebi.ac.uk/ena)中。用於我們的分析的假小鏈雙歧桿菌的所有其它基因組均以以下收錄號從NCBI數據庫下載:AP012330.1、CDPW00000000.1、ABXX02000001、JEOD01000001、JGZF01000001,假小鏈雙歧桿菌D2CA從MetaHIT(http://www.sanger.ac.uk/resources/downloads/bacteria/metahit/)下載。
以上的說明書中提及的所有出版物均併入本文作為參考。在不偏離本發明範圍和精神的情況下,所記載的本發明方法和系統的各種修改和變化對於本領域技術人員而言會是顯而易見的。雖然已經結合具體的較佳實施方案描述了本發明,但是應當理解,請求保護的發明不應當不適當地限於這樣的具體實施方案。事實上,預期所記載的實施本發明的方式的對於生物化學和生物技術或相關領域的技術人員來說顯而易見的各種修改均在下述申請專利範圍的範圍內。
[所引用文獻]
1. Zhao L. 2013. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11:639-647.
2. Boulange CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. 2016. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8:42.
3. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J, Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Ehrlich SD, Zheng S, Li L. 2014. Alterations of the human gut microbiome in liver cirrhosis. Nature 513:59-64.
4. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y, Lan Z, Chen B, Li Y, Zhong H, Xie H, Jie Z, Chen W, Tang S, Xu X, Wang X, Cai X, Liu S, Xia Y, Li J, Qiao X, Al-Aama JY, Chen H, Wang L, Wu QJ, Zhang F, Zheng W, Li Y, Zhang M, Luo G, Xue W, Xiao L, Li J, Chen W, Xu X, Yin Y, Yang H, Wang J, Kristiansen K, Liu L, Li T, Huang Q, Li Y, Wang J. 2015. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 21:895-905.
5. Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X, Guo Y, Zhang C, Zhou Q, Xue Z, Pang X, Zhao L, Tong X. 2015. Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J 9:552-562.
6. Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, Moore T, Wu G. 2015. Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. Gastroenterology 149:223-237.
7. Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, Zhang M, Zhang X, Zhang C, Li M, Sun L, Xue Z, Wang J, Feng J, Yan F, Zhao N, Liu J, Long W, Zhao L. 2014. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 87:357-367.
8. Human Microbiome Project C. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207-214.
9. Zhang C, Yin A, Li H, Wang R, Wu G, Shen J, Zhang M, Wang L, Hou Y, Ouyang H, Zhang Y, Zheng Y, Wang J, Lv X, Wang Y, Zhang F, Zeng B, Li W, Yan F, Zhao Y, Pang X, Zhang X, Fu H, Chen F, Zhao N, Hamaker BR, Bridgewater LC, Weinkove D, Clement K, Dore J, Holmes E, Xiao H, Zhao G, Yang S, Bork P, Nicholson JK, Wei H, Tang H, Zhang X, Zhao L. 2015. Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine 2:966-982.
10. Wu H, Wang R, Zhao Y, Pang X, Shen J, Zhang C. 2015. Exploring Carbohydrate Utilization Capacity of Bifidobacterium pseudocate-
11. nulatum Isolated from a Morbidly Obese Child after Dietary Intervention. Genomics and Applied Biology 34:1384-1391.
12. Grimm V, Westermann C, Riedel CU. 2014. Bifidobacteria-host interactions--an update on colonisation factors. Biomed Res Int 2014:960826.
13. Labruna G, Pasanisi F, Nardelli C, Caso R, Vitale DF, Contaldo F, Sacchetti L. 2011. High leptin/adiponectin ratio and serum triglycerides are associated with an "at-risk" phenotype in young severely obese patients. Obesity(Silver Spring) 19:1492-1496.
14. Zweigner J, Schumann RR, Weber JR. 2006. The role of lipopolysaccharide-binding protein in modulating the innate immune response. Microbes Infect 8:946-952.
15. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Meta HITC, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, et al. 2011. Enterotypes of the human gut microbiome. Nature 473:174-180.
16. Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A. 2013. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J Gastroenterol Hepatol 28:613-619.
17. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731-16736.
18. Ganzle MG, Follador R. 2012. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol 3:340.
19. Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Moller K, Svendsen KD, Jakobsen M, Pedersen BK. 2010. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr 104:1831-1838.
20. Hulston CJ, Churnside AA, Venables MC. 2015. Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects. Br J Nutr 113:596-602.
21. Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB, Mills DA, Gordon JI. 2016. A microbial perspective of human developmental biology. Nature 535:48-55.
22. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, van-Hylckama Vlieg JE, Strissel K, Zhao L, Obin M, Shen J. 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9:1-15.
23. Stenman LK, Waget A, Garret C, Klopp P, Burcelin R, Lahtinen S. 2014. Potential probiotic Bifidobacterium animalis ssp. lactis 420 prevents weight gain and glucose intolerance in diet-induced obese mice. Benef Microbes 5:437-445.
24. STALEY J, KRIEG N. 1984. Classification of prokaryotes organisms: an overview. KRIEG, NR,HOLT, JG Bergey’s manual of systemayic bacteriology 1.
25. Ahn TH, Chai J, Pan C. 2015. Sigma: strain-level inference of genomes from metagenomic analysis for biosurveillance. Bioinformatics 31:170-177.
26. Morita H, Toh H, Oshima K, Nakano A, Arakawa K, Takayama Y, Kurokawa R, Takanashi K, Honda K, Hattori M. 2015. Complete genome sequence of Bifidobacterium pseudocatenulatum JCM 1200(T) isolated from infant feces. J Biotechnol 210:68-69.
27. Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E, Riley D, Giubellini V, Tettelin H, van Sinderen D, Ventura M. 2010. Comparative genomics of the genus Bifidobacterium. Microbiology 156:3243-3254.
28. Galperin MY, Makarova KS, Wolf YI, Koonin EV. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261-269.
29. Bottacini F, O'Connell Motherway M, Kuczynski J, O'Connell KJ, Serafini F, Duranti S, Milani C, Turroni F, Lugli GA, Zomer A, Zhurina D, Riedel C, Ventura M, van Sinderen D. 2014. Comparative genomics of the Bifidobacterium breve taxon. BMC Genomics 15:170.
30. O'Callaghan A, Bottacini F, O'Connell Motherway M, van Sinderen D. 2015. Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 16:832.
31. Begley M, Gahan CGM, Hill C. 2005. The interaction between bacteria and bile. Fems Microbiology Reviews 29:625-651.
32. Candela M, Biagi E, Centanni M, Turroni S, Vici M, Musiani F, Vitali B, Bergmann S, Hammerschmidt S, Brigidi P. 2009. Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology 155:3294-3303.
33. Candela M, Centanni M, Fiori J, Biagi E, Turroni S, Orrico C, Bergmann S, Hammerschmidt S, Brigidi P. 2010. DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology 156:1609-1618.
34. Gonzalez-Rodriguez I, Sanchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P, Gueimonde M, Margolles A. 2012. Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 78:3992-3998.
35. Pareti FI, Fujimura Y, Dent JA, Holland LZ, Zimmerman TS, Ruggeri ZM. 1986. Isolation and characterization of a collagen binding domain in human von Willebrand factor. J Biol Chem 261:15310-15315.
36. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition.Proc Natl Acad Sci U S A 106:19126-19131.
37. Schmid J, Sieber V, Rehm B. 2015. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496.
38. Hidalgo-Cantabrana C, Sanchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P. 2014. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol 80:9-18.
39. Zhang XL, Gao PP, Chao QF, Wang LH, Senior E, Zhao LP. 2004. Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp from an activated sludge system. Fems Microbiology Letters 237:369-375.
40. Mao YJ, Zhang XJ, Xia X, Zhong HH, Zhao LP. 2010. Versatile aromatic compound-degrading capacity and microdiversity of Thauera strains isolated from a coking wastewater treatment bioreactor. Journal of Industrial Microbiology & Biotechnology 37:927-934.
41. Patra R, Chattopadhyay S, De R, Ghosh P, Ganguly M, Chowdhury A, Ramamurthy T, Nair GB, Mukhopadhyay AK. 2012. Multiple Infection and Microdiversity among Helicobacter pylori Isolates in a Single Host in India. Plos One 7.
42. Biely P. 2012. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30:1575-1588.
43. Jezbera J, Jezberova J, Kasalicky V, Simek K, Hahn MW. 2013. Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by Reverse Line Blot Hybridization. PLoS One 8:e58527.
44. Moore LR, Rocap G, Chisholm SW. 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464-467.
45. Zhang C, Zhao L. 2016. Strain-level dissection of the contribution of the gut microbiome to human metabolic disease. Genome Med 8:41.
46. Fei N, Zhao L. 2013. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 7:880-884.
47. Dodt M, Roehr JT, Ahmed R, Dieterich C. 2012. FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms. Biology (Basel) 1:895-905.
48. Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863-864.
49. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357-359.
50. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811-814.
51. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563-569.
52. Sommer DD, Delcher AL, Salzberg SL, Pop M. 2007. Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 8:64.
53. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119.
54. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100-3108.
55. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955-964.
56. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460-2461.
57. Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. 2012. PGAP: pan-genomes analysis pipeline. Bioinformatics 28:416-418.
58. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12.
59. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445-451.
60. Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29-37.
【生物材料寄存】
國內寄存資訊【請依寄存機構、日期、號碼順序註記】
1.財團法人食品工業發展研究所、2016.09.20、BCRC 910746
2.財團法人食品工業發展研究所、2018.01.29、BCRC 910817
3.財團法人食品工業發展研究所、2018.01.29、BCRC 910818
4.財團法人食品工業發展研究所、2018.01.29、BCRC 910819
5.財團法人食品工業發展研究所、2018.01.29、BCRC 910820
國外寄存資訊【請依寄存國家、機構、日期、號碼順序註記】
1.中國、中國普通微生物菌種保藏管理中心、2015.02.09 CGMCC 10549
2.中國、中國普通微生物菌種保藏管理中心、2017.01.23 CGMCC 13650
3.中國、中國普通微生物菌種保藏管理中心、2017.01.23 CGMCC 13651
4.中國、中國普通微生物菌種保藏管理中心、2017.02.07 CGMCC 13653
5.中國、中國普通微生物菌種保藏管理中心、2017.02.07 CGMCC 13654

Claims (11)

  1. 一種組合物,包含:(1)選自由寄存編號為BCRC 910817的Perfect-2017-0001菌株、寄存編號為BCRC 910818的Perfect-2017-0002菌株、寄存編號為BCRC 910819的Perfect-2017-0003菌株和寄存編號為BCRC 910820的Perfect-2017-0004菌株所組成之分離株的假小鏈雙歧桿菌(Bifidobactgerium pseudocatenulatem)菌株;以及(2)藥物可接受的載體或飲食載體。
  2. 如請求項1所記載之組合物,其還包含C95菌株。
  3. 如請求項2所記載之組合物,其包含寄存編號為BCRC 910817的Perfect-2017-0001菌株。
  4. 如請求項2所記載之組合物,其包含寄存編號為BCRC 910818的Perfect-2017-0002菌株。
  5. 如請求項2所記載之組合物,其包含寄存編號為BCRC 910819的Perfect-2017-0003菌株。
  6. 如請求項2所記載之組合物,其中前述組合物是藥物組合物。
  7. 如請求項2所記載之組合物,其中前述組合物是營養補充劑或營養組合物。
  8. 如請求項2所記載之組合物,其中前述組合物在每克組合物或每毫克組合物中包含至少103至1014個菌落形成單位的前述菌株。
  9. 如請求項6所記載之組合物,其進一步包含黏膜乳桿菌(Lactobacillus mucosae)菌株。
  10. 一種製備如請求項2所記載之組合物的方法,其包括將前述 假小鏈雙歧桿菌菌株配製成適當的組合物。
  11. 如請求項10所記載之方法,其中前述組合物進一步包含前述菌株和黏膜乳桿菌菌株。
TW107104756A 2017-02-10 2018-02-09 包含雙歧桿菌的組合物及其製備方法 TWI744479B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/073209 WO2018145294A1 (en) 2017-02-10 2017-02-10 Novel probiotics bifidobacteria strains
WOPCT/CN2017/073209 2017-02-10
??PCT/CN2017/073209 2017-02-10

Publications (2)

Publication Number Publication Date
TW201834674A TW201834674A (zh) 2018-10-01
TWI744479B true TWI744479B (zh) 2021-11-01

Family

ID=63107098

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107104756A TWI744479B (zh) 2017-02-10 2018-02-09 包含雙歧桿菌的組合物及其製備方法

Country Status (9)

Country Link
US (1) US11607435B2 (zh)
EP (1) EP3580326A4 (zh)
JP (1) JP6974483B2 (zh)
KR (1) KR20190116248A (zh)
CN (1) CN109089421A (zh)
CA (1) CA3046705A1 (zh)
MY (1) MY197201A (zh)
TW (1) TWI744479B (zh)
WO (1) WO2018145294A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536417A (zh) * 2018-12-27 2019-03-29 黄河三角洲京博化工研究院有限公司 一种生物降酚菌剂及其应用方法
CN110093287B (zh) * 2019-03-19 2022-05-20 江南大学 假小链双歧杆菌ccfm1045、其组合物、发酵食品、用途、菌剂及其菌剂制备方法
CN110093286B (zh) * 2019-03-19 2021-12-17 江南大学 假小链双歧杆菌ccfm1046、其组合物、发酵食品、用途、菌剂及其菌剂制备方法
CN110106103B (zh) * 2019-03-19 2022-05-03 江南大学 假小链双歧杆菌ccfm1047、其组合物、发酵食品、用途、菌剂及其菌剂制备方法
CN110106104B (zh) * 2019-03-19 2021-12-17 江南大学 假小链双歧杆菌ccfm1048、其组合物、发酵食品、用途、菌剂及其菌剂制备方法
CN111979145B (zh) * 2020-08-07 2022-06-28 上海交通大学 人源的粘膜乳杆菌及其用途
CN112391484B (zh) * 2020-11-17 2022-12-27 江南大学 一种定量检测长双歧杆菌菌株的方法
TWI742939B (zh) * 2020-11-25 2021-10-11 王奕凱 乳酪蛋糕與其製法
MX2023009770A (es) * 2021-02-22 2023-11-22 Tate & Lyle Solutions Usa Llc Métodos y composiciones usando combinaciones de lactobacillus mucosae y fibra alimentaria soluble.
EP4094590A1 (en) * 2021-05-27 2022-11-30 Tate & Lyle Solutions USA LLC Methods and compositions using combinations of lactobacillus mucosae and soluble dietary fiber
CN113073071B (zh) * 2021-06-03 2021-08-03 北京量化健康科技有限公司 一株假小链双歧杆菌及其在代谢综合征中的应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580542B2 (ja) 2000-05-17 2010-11-17 株式會社バイオニア 肥満又は糖尿病治療用微生物及びその微生物を含む医薬組成物
SE0004124D0 (sv) 2000-11-10 2000-11-10 Probi Ab New use
ES2290762T3 (es) * 2004-08-05 2008-02-16 Anidral S.R.L. Cepas bacterianas de bifidobacterium que producen acido folico, sus formulaciones y utilizacion.
SE529185C2 (sv) 2005-10-07 2007-05-22 Arla Foods Amba Användning av probiotiska bakterier för tillverkning av livsmedel eller läkemedel för förhindrande av övervikt
KR101108428B1 (ko) 2006-08-04 2012-01-31 (주)바이오니아 인간의 모유에서 분리한 프로바이오틱 활성 및 체중 증가억제 효과를 갖는 유산균
EP2011506A1 (en) 2007-07-05 2009-01-07 Nestec S.A. Supplementation of maternal diet
EP2022502A1 (en) 2007-08-10 2009-02-11 Nestec S.A. Lactobacillus rhamnosus and weight control
EP2030623A1 (en) 2007-08-17 2009-03-04 Nestec S.A. Preventing and/or treating metabolic disorders by modulating the amount of enterobacteria
EP2442814B1 (en) * 2009-06-19 2018-09-26 DuPont Nutrition Biosciences ApS Bifidobacteria for treating diabetes and related conditions
ES2389547B1 (es) 2010-12-07 2013-08-08 Consejo Superior De Investigaciones Científicas (Csic) Bifidobacterium cect 7765 y su uso en la prevención y/o tratamiento del sobrepeso, la obesidad y patologías asociadas.
US20180177833A1 (en) * 2015-06-30 2018-06-28 Perfect (China) Co., Ltd. Bifidobacteria as probiotic foundation species of gut microbiota
CN106148230B (zh) 2016-07-12 2019-04-09 江南大学 一株假小链双歧杆菌及其制备共轭亚油酸或共轭亚麻酸的应用

Also Published As

Publication number Publication date
MY197201A (en) 2023-05-31
US20200069746A1 (en) 2020-03-05
CN109089421A (zh) 2018-12-25
JP6974483B2 (ja) 2021-12-01
EP3580326A1 (en) 2019-12-18
KR20190116248A (ko) 2019-10-14
US11607435B2 (en) 2023-03-21
JP2020507324A (ja) 2020-03-12
TW201834674A (zh) 2018-10-01
CA3046705A1 (en) 2018-08-16
WO2018145294A1 (en) 2018-08-16
EP3580326A4 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
TWI744479B (zh) 包含雙歧桿菌的組合物及其製備方法
TWI594758B (zh) 包含雙歧桿菌的組合物、其製備方法及其用途
AU2019204819B9 (en) Compositions comprising bacterial strains
Leahy et al. Getting better with bifidobacteria
De Vries et al. Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract
Zago et al. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses
US10543239B2 (en) Lactic acid bacteria and bifidobacteria for treating endotoxemia
CN116570631A (zh) 微生物群落用于人类和动物健康的用途
CA3138520C (en) Probiotic bacterial strains that produce short chain fatty acids and compositions comprising same
CN110325198A (zh) 益生菌在治疗和/或预防银屑病中的用途
AU2017327485B2 (en) Bacteria
Jan et al. Diversity, distribution and role of probiotics for human health: current research and future challenges
JP2019513390A (ja) 食物、エネルギーおよび/または脂肪の摂取を減少させるためのビフィズス菌(Bifidobacterium)
JP2012180288A (ja) 抗菌剤
Wells et al. Gastrointestinal microflora and interactions with gut mucosa
Archer Food biotechnology
Walter et al. PROBIOTICS AND METHODS OF OBTAINING SAME