TWI743679B - 氣相成長裝置 - Google Patents

氣相成長裝置 Download PDF

Info

Publication number
TWI743679B
TWI743679B TW109104401A TW109104401A TWI743679B TW I743679 B TWI743679 B TW I743679B TW 109104401 A TW109104401 A TW 109104401A TW 109104401 A TW109104401 A TW 109104401A TW I743679 B TWI743679 B TW I743679B
Authority
TW
Taiwan
Prior art keywords
gas
duct
adjustment
reaction chamber
chamber
Prior art date
Application number
TW109104401A
Other languages
English (en)
Other versions
TW202033847A (zh
Inventor
醍醐佳明
矢島雅美
鈴木邦彦
石黒暁夫
Original Assignee
日商紐富來科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商紐富來科技股份有限公司 filed Critical 日商紐富來科技股份有限公司
Publication of TW202033847A publication Critical patent/TW202033847A/zh
Application granted granted Critical
Publication of TWI743679B publication Critical patent/TWI743679B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/063Heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明的實施方式的氣相成長裝置包括:反應室;第一氣體室,設置在反應室的上方,供導入第一製程氣體;多個第一氣體導管,自第一氣體室向反應室供給所述第一製程氣體,且具有規定長度;以及第一調節導管,插入至多個第一氣體導管中的至少一個第一氣體導管的上側,且第一調節導管具有設置在上端部的外周的環狀的凸部,而能夠自第一氣體導管卸下。

Description

氣相成長裝置
本發明是有關於一種對基板供給氣體以形成膜的氣相成長裝置。
作為形成高品質半導體膜的方法,有藉由氣相成長而於基板的表面形成單晶膜的磊晶(epitaxial)成長技術。於利用磊晶成長技術的氣相成長裝置中,將基板載置於保持為常壓或減壓的反應室中的保持具(holder)上。
然後,一面將基板進行加熱,一面將包含膜的原料的製程氣體經由反應室的上部的緩衝室供給至反應室。製程氣體於基板表面產生熱反應,而於基板表面形成磊晶單晶膜。
例如,在同一規格的不同的氣相成長裝置之間,有時無法得到在同一製程條件下形成的膜的特性的再現性。其原因認為是例如構成各氣相成長裝置的零件在加工公差內的尺寸偏差。例如,認為其原因之一是由於向緩衝室供給製程氣體的流路的尺寸偏差,無法得到緩衝室內的壓力分佈的再現性,從而無法得到膜的特性的再現性。
本發明的實施方式提供一種可提高膜的特性的再現性的氣相成長裝置。
本發明的一形態的氣相成長裝置包括:反應室;第一氣體室,設置於所述反應室的上部,供導入第一製程氣體;多個第一氣體導管,自所述第一氣體室向所述反應室供給所述第一製程氣體,且具有規定長度;以及第一調節導管,插入至所述多個第一氣體導管中的至少一個第一氣體導管的上側,且所述第一調節導管具有設置在上端部的外周的環狀的凸部,而能夠自所述第一氣體導管卸下。
根據本發明的實施方式,可實現一種能夠提高膜的特性的再現性的氣相成長裝置。
以下,一面參照圖式,一面對本發明的實施方式進行說明。
本說明書中,有時對相同或類似的構件附上相同的符號。 本說明書中,將氣相成長裝置經設置成可進行膜的形成的狀態下的重力方向定義為「下」,將其相反方向定義為「上」。因此,「下部」是指相對於基準的重力方向的位置,「下方」是指相對於基準的重力方向。而且,「上部」是指相對於基準的重力方向的反方向的位置,「上方」是指相對於基準的重力方向的反方向。另外,「縱向」為重力方向。 又,於本說明書中,「製程氣體」是指為了膜的形成而使用的氣體的總稱,例如,設為包含源氣體(source gas)、輔助氣體(assist gas)、摻雜氣體(dopant gas)、載體氣體(carrier gas)、及該些的混合氣體的概念。
傳導性(conductance)表示流體於流路中流動的流動容易性。例如,內徑為D、長度為L的圓筒形狀的導管的傳導性與D4 /L成比例。以後,將D4 /L稱為傳導性係數。再者,於本說明書中,設為導管的入口與出口的壓力伴隨導管的形狀變更而無變化。又,於黏性流區域中,傳導性亦與導管的平均壓力成比例,但於本說明書中,為了避免繁雜而於計算上予以省略。藉此,可將導管的傳導性視為僅與傳導性係數成比例。
(第一實施方式) 第一實施方式的氣相成長裝置包括:反應室;第一氣體室,設置在反應室的上方,供導入第一製程氣體;多個第一氣體導管,自第一氣體室向反應室供給第一製程氣體,且具有規定長度;以及第一調節導管,插入至多個第一氣體導管中的至少一個第一氣體導管的上側,且第一調節導管具有設置在上端部的外周的環狀的凸部,而能夠自第一氣體導管卸下。
圖1是第一實施方式的氣相成長裝置的示意剖面圖。第一實施方式的氣相成長裝置100例如是使單晶碳化矽(SiC)膜於單晶碳化矽(SiC)基板上磊晶成長的單片型磊晶成長裝置。
第一實施方式的氣相成長裝置100具備反應室10、第一緩衝室11(第一氣體室)、第二緩衝室12(第二氣體室)。反應室10包括:基座(susceptor)14(保持具(holder))、旋轉體16、旋轉軸18、旋轉驅動機構20、第一加熱器(heater)22、反射器(reflector)28、支撐柱30、固定台32、固定軸34、罩(hood)40、第二加熱器42、氣體排出口44、第一氣體導管51、第一調節導管52、第二氣體導管61及第二調節導管62。第一緩衝室11(氣體室)具備第一隔板36、第一氣體供給口81。第二緩衝室12具備第二隔板37、第二氣體供給口82。
反應室10例如為不鏽鋼(stainless)製。反應室10具有圓筒形狀的壁。於反應室10內,於晶圓(wafer)W上形成SiC膜。晶圓W是基板的一例。
基座14設置於反應室10中。於基座14可載置晶圓W。於基座14,亦可於中心部設置開口部。基座14是保持具的一例。
基座14例如是由SiC或碳(carbon)、或塗佈有SiC或碳化鉭(TaC)的碳等耐熱性高的材料形成。
基座14固定於旋轉體16的上部。旋轉體16固定於旋轉軸18。基座14間接地固定於旋轉軸18。
旋轉軸18可藉由旋轉驅動機構20進行旋轉。藉由利用旋轉驅動機構20使旋轉軸18旋轉而可使基座14旋轉。藉由使基座14旋轉,而可使載置於基座14的晶圓W旋轉。
藉由旋轉驅動機構20,例如可使晶圓W以300 rpm以上3000 rpm以下的旋轉速度進行旋轉。旋轉驅動機構20例如由馬達(motor)與軸承(bearing)構成。
第一加熱器22設置於基座14的下方。第一加熱器22設置於旋轉體16內。第一加熱器22自下方對保持於基座14的晶圓W進行加熱。第一加熱器22例如是電阻加熱器。第一加熱器22例如呈經施加有梳形圖案的圓板狀。
反射器28設置於第一加熱器22的下方。於反射器28與基座14之間,設置有第一加熱器22。
反射器28將自第一加熱器22朝下方放射的熱予以反射,而提高晶圓W的加熱效率。又,反射器28防止較反射器28更下方的構件被加熱。反射器28例如為圓板狀。反射器28例如由被覆有SiC的碳等耐熱性高的材料形成。
反射器28例如藉由多個支撐柱30固定於固定台32。固定台32例如由固定軸34支撐。
於旋轉體16內,為了使基座14自旋轉體16分離,而設置有上推銷(未圖示)。上推銷例如將反射器28、及第一加熱器22貫通。
第二加熱器42設置於罩40與反應室10的內壁之間。第二加熱器42自上方對保持於基座14的晶圓W進行加熱。將晶圓W除了利用第一加熱器22還利用第二加熱器42進行加熱,藉此可將晶圓W加熱至SiC膜的成長所需的溫度,例如加熱至1500℃以上的溫度。第二加熱器42例如是電阻加熱器。
罩40例如是圓筒形狀。罩40具備防止第一製程氣體G1及第二製程氣體G2與第二加熱器42相接觸的功能。罩40例如是由被覆有SiC的碳等耐熱性高的材料形成。
氣體排出口44設置於反應室10的底部。氣體排出口44將源氣體於晶圓W表面處進行了反應後的剩餘的反應產物、及剩餘的製程氣體排出至反應室10的外部。氣體排出口44例如連接於未圖示的真空泵。
另外,於反應室10,設置有未圖示的晶圓出入口及閘閥(gate valve)。藉由晶圓出入口及閘閥,可將晶圓W搬入至反應室10內或者搬出至反應室10外。
第一緩衝室11設置於反應室10的上部。於第一緩衝室11,設置有用於導入第一製程氣體G1的第一氣體供給口81。自第一氣體供給口81導入的第一製程氣體G1填充至第一緩衝室11中。
第一製程氣體G1例如包含矽(Si)的源氣體。第一製程氣體G1例如是矽的源氣體、抑制矽的團簇(cluster)化的輔助氣體、以及載體氣體的混合氣體。
矽的源氣體例如是矽烷(SiH4 )。輔助氣體例如是氯化氫(HCl)。載體氣體例如是氫氣、或氬氣(argon gas)。
第二緩衝室12設置於反應室10的上部。第二緩衝室12設置於反應室10與第一緩衝室11之間。於第二緩衝室12,設置有用於導入第二製程氣體G2的第二氣體供給口82。自第二氣體供給口82導入的第二製程氣體G2填充至第二緩衝室12中。
第二製程氣體G2例如包含碳的源氣體。第二製程氣體G2例如是碳的源氣體、n型雜質的摻雜氣體、以及載體氣體的混合氣體。
碳的源氣體例如是丙烷(C3 H8 )。n型雜質的摻雜氣體例如是氮氣。載體氣體例如是氫氣、或氬氣。
多個第一氣體導管51設置在第一緩衝室11與反應室10之間。第一氣體導管51在自第一緩衝室11朝向反應室10的第一方向上延伸。多個第一氣體導管51自第一緩衝室11向反應室10供給第一製程氣體G1。
第一調節導管52插入到多個第一氣體導管51的至少一個第一氣體導管51的第一緩衝室11側。在圖1中,示出僅在第一緩衝室11的中央部的第一氣體導管51中插入第一調節導管52的情況。第一調節導管52可插入到多個第一氣體導管51的全部。
第一調節導管52具有對經由第一氣體導管51的氣體的流路的傳導性進行調節的功能。藉由將第一調節導管52安裝到第一氣體導管51上,經由第一氣體導管51的氣體的流路的傳導性變小。第一調節導管52調節在多個第一氣體導管51中流動的第一製程氣體G1的分配比率。
多個第二氣體導管61設置在第二緩衝室12和反應室10之間。第二氣體導管61在自第二緩衝室12朝向反應室10的第一方向上延伸。第二氣體導管61自第二緩衝室12向反應室10供給第二製程氣體G2。
第二調節導管62插入到多個第二氣體導管61的至少一個第二氣體導管61的第二緩衝室12側。在圖1中,示出僅在第二緩衝室12的中央部的第二氣體導管61上插入第二調節導管62的情況。第二調節導管62可插入到多個第二氣體導管61的全部。
第二調節導管62具有對經由第二氣體導管61的氣體的流路的傳導性進行調節的功能。藉由將第二調節導管62安裝到第二氣體導管61上,經由第二氣體導管61的氣體的流路的傳導性變小。第二調節導管62調節在多個第二氣體導管61中流動的第二製程氣體G2的分配比率。
圖2是第一實施方式的第一氣體導管及第一調節導管的示意剖面圖。圖3是第一實施方式的第一調節導管的示意圖。圖3的(a)是剖面圖,圖3的(b)是俯視圖。
第一氣體導管51沿第一方向延伸。第一氣體導管51在第一方向上具有第一長度L1(規定長度)。第一氣體導管51具有圓筒部51a及凸緣51b。
圓筒部51a在與製程氣體流動的第一方向垂直的面(圖2中的P1)上具有第一開口剖面積S1。圓筒部51a的面P1上的開口剖面例如為內徑D1的圓形。圓筒部51a在第二方向上的厚度t1例如為0.5 mm以上且5 mm以下。
凸緣51b設置在第一氣體導管51的位於第一緩衝室11一側的端部的外周。凸緣51b是自圓筒部51a向外側突出的環狀的凸部。凸緣51b的外徑較圓筒部51a的外徑大。
第一氣體導管51例如包含耐熱性高的材料。第一氣體導管51例如包含被覆有SiC的碳。藉由用SiC被覆碳,對氫氣的蝕刻耐性提高。第一氣體導管51例如可以是金屬或陶瓷。
第一調節導管52插入至第一氣體導管51中。第一調節導管52可自第一氣體導管51上卸下。第一調節導管52藉由自重而固定到第一氣體導管51。
第一調節導管52在第一方向上延伸。第一調節導管52在第一方向上具有第二長度L2。長度L2較長度L1短。第一調節導管52具有圓筒部52a(部分)和凸緣52b(凸部)。
圓筒部52a在第一方向上延伸。圓筒部52a在與製程氣體流動的第一方向垂直的面(圖2中的P2)上具有第二開口剖面積S2。
第二開口剖面積S2小於第一開口剖面積S1。第二開口剖面積S2例如為第一開口剖面積S1的10%以上且80%以下。
圓筒部52a在面P2上的開口剖面例如為內徑D2的圓形。內徑D2小於內徑D1。內徑D2例如為內徑D1的30%以上且90%以下。
圓筒部52a在第二方向上的厚度t2例如為0.5 mm以上且2 mm以下。
凸緣52b設置在第一調節導管52的位於第一緩衝室11一側的端部的外周上。凸緣52b是自圓筒部52a向外側突出的環狀的凸部。凸緣52b的外徑較圓筒部52a的外徑大。
凸緣52b在第一方向上的厚度t3例如較圓筒部52a在第二方向上的厚度t2厚。
第一調節導管52的材料例如與第一氣體導管51的材料不同。第一調節導管52例如包含加工性優異的材料。第一調節導管52例如包含碳。第一調節導管52例如可以是金屬或陶瓷。
第一調節導管52的插入至第一氣體導管51中的部分與第一氣體導管51在第一氣體導管51的直徑方向上隔開規定距離而分開。第一調節導管52的插入到第一氣體導管51中的部分與第一氣體導管51在垂直於第一方向的第二方向上隔開第一距離d1而分開。第一調節導管52的圓筒部52a與第一氣體導管51的圓筒部51a的第二方向間的距離為第一距離d1。第一距離d1例如為0.5 mm以上且5 mm以下。
第一調節導管52的位於反應室10側的端部與第一氣體導管51的位於反應室10側的端部之間的第一方向上的第二距離d2例如為第一氣體導管51在第一方向上的長度L1的二分之一以上。
第一調節導管52的凸緣52b的下表面與第一氣體導管51的凸緣51b的上表面接觸。凸緣52b的下表面與凸緣51b的上表面接觸的接觸面(圖2中的CP)是環狀的平面。
藉由利用第一調節導管52的自重將凸緣52b的下表面按壓在凸緣51b的上表面上,形成接觸面CP。藉由接觸面CP,抑制第一製程氣體G1在凸緣52b的下表面與凸緣51b的上表面之間流動。藉由接觸面CP密封第一製程氣體G1。
圖4是第一實施方式的第二氣體導管及第二調節導管的示意剖面圖。
第二氣體導管61在第一方向上延伸。第二氣體導管61在第一方向上具有第三長度L3。第二氣體導管61具有圓筒部61a和凸緣61b。圓筒部61a在與製程氣體流動的第一方向垂直的面(圖4中的P3)上具有第三開口剖面積S3。
第二調節導管62插入至第二氣體導管61中。第二調節導管62可自第二氣體導管61上卸下。第二調節導管62藉由自重而固定到第二氣體導管61。
第二調節導管62在第一方向上延伸。第二調節導管62在第一方向上具有第四長度L4。長度L4較長度L3短。第二調節導管62具有圓筒部62a和凸緣62b。圓筒部62a在與製程氣體流動的第一方向垂直的面(圖4中的P4)上具有第四開口剖面積S4。
第二氣體導管61與第一氣體導管51的各尺寸等可不同,但是具有相同的構成。第二調節導管62與第一調節導管52的各尺寸等可不同,但具有相同的構成。
接著,對第一實施方式的氣相成長裝置的作用及效果進行說明。
在使用磊晶成長技術的氣相成長裝置中,在保持為常壓或減壓的反應室中的保持具上載置基板。然後,一邊加熱基板,一邊經由反應室上部的緩衝室向反應室供給含有膜的原料的製程氣體。基板的表面發生製程氣體的熱反應,在基板的表面形成磊晶單晶膜。
例如,在同一規格的不同的氣相成長裝置之間,有時無法得到在同一製程條件下形成的膜的特性的再現性。所謂膜的特性是指例如膜厚、膜厚的均勻性、膜中的雜質濃度、膜中的雜質濃度的均勻性。
無法獲得再現性的原因認為是例如構成氣相成長裝置的零件在加工公差內的尺寸偏差。例如,認為是由於向緩衝室供給製程氣體的流路的尺寸偏差,無法得到氣體室內的壓力分佈的再現性,從而無法得到膜的特性的再現性。
例如,由於緩衝室內的壓力分佈變化,向反應室供給製程氣體的多個氣體導管之間的氣體流量的分配比率發生變化。因此,向反應室供給的製程氣體的流量分佈發生變化,從而不能再現膜的特性。
第一實施方式的氣相成長裝置100在第一氣體導管51上安裝有可卸下的第一調節導管52。第一調節導管52安裝到多個第一氣體導管51中的至少一個。
第一調節導管52的第二開口剖面積S2小於第一氣體導管51的第一開口剖面積S1。因此,藉由將第一調節導管52安裝到第一氣體導管51上,經由第一氣體導管51的氣體的流路的傳導性變小。因此,藉由安裝第一調節導管52,能夠抑制在第一氣體導管51中流動的第一製程氣體G1的流量。
例如,僅在多個第一氣體導管51中的一部分第一氣體導管51上安裝第一調節導管52。藉此,能夠改變多個第一氣體導管51之間的第一製程氣體G1的分配比率。因此,能夠改變向反應室10供給的第一製程氣體G1的流量分佈。
另外,例如使安裝在多個第一氣體導管51上的多個第一調節導管52的第二開口剖面積S2在不同的第一調節導管52之間不同。藉此,能夠改變多個第一氣體導管51之間的第一製程氣體G1的分配比率。因此,能夠改變向反應室10供給的第一製程氣體G1的流量分佈。
藉由適當地選擇安裝第一調節導管52的第一氣體導管51的位置、或第一調節導管52的第二開口剖面積S2的大小,能夠在反應室10內實現第一製程氣體G1的期望的流量分佈。
與使用第一調節導管52的情況同樣地,藉由適當地選擇安裝第二調節導管62的第二氣體導管61的位置或第二調節導管62的第四開口剖面積S4的大小,能夠在反應室10內實現第二製程氣體G2的期望的流量分佈。
根據第一實施方式的氣相成長裝置100,使用第一調節導管52或第二調節導管62,能夠在反應室10內實現第一製程氣體G1的期望的流量分佈、或第二製程氣體G2的期望的流量分佈。因此,能夠提高同一規格的不同的氣相成長裝置之間的膜特性的再現性。
較佳為第一調節導管52的插入第一氣體導管51中的部分與第一氣體導管51在垂直於第一製程氣體G1流動的第一方向的第二方向上分開。換言之,較佳為第一調節導管52的圓筒部52a與第一氣體導管51的圓筒部51a在第二方向上分開。
藉由第一調節導管52的圓筒部52a與第一氣體導管51的圓筒部51a在第二方向上分開,能夠降低例如由第一調節導管52和第一氣體導管51的熱膨脹程度的不同引起的干涉,能夠抑制第一調節導管52或第一氣體導管51破損。
自抑制第一調節導管52或第一氣體導管51破損的觀點出發,第一調節導管52的圓筒部52a與第一氣體導管51的圓筒部51a的第二方向(直徑方向)之間的第一距離d1(規定距離)較佳為0.5 mm以上,更佳為1 mm以上。
另外,自確保在第一調節導管52中流動的第一製程氣體G1的流量的觀點來看,第一距離d1較佳為5 mm以下。
第一調節導管52的位於反應室10側的端部與第一氣體導管51的位於反應室10側的端部之間在第一方向上的第二距離d2較佳為第一氣體導管51在第一方向上的長度L1的二分之一以上,並且更佳為第一氣體導管51在第一方向上的長度L1的三分之二以上。
藉由增大第二距離d2,能夠抑制第一調節導管52的熱膨脹。因此,能夠抑制例如第一調節導管52因熱膨脹而變形,從而損害接觸面CP對第一製程氣體G1的密封性。另外,藉由增大第二距離d2,可將耐熱性低的材料用於第一調節導管52。
第一調節導管52的第二開口剖面積S2較佳為第一氣體導管51的第一開口剖面積S1的10%以上80%以下,更佳為20%以上70%以下。藉由小於上述上限值,能夠充分減小第一氣體導管51的傳導性。另外,藉由大於所述下限值,來抑制傳導性變得過小。
第一調節導管52的內徑D2較佳為第一氣體導管51的內徑D1的30%以上且90%以下,更佳為40%以上且80%以下。藉由小於上述上限值,能夠充分減小第一氣體導管51的傳導性。另外,藉由大於所述下限值,來抑制傳導性變得過小。
第一調節導管52的圓筒部52a在第二方向上的厚度t2較佳為0.5 mm以上且2 mm以下,更佳為0.7 mm以上且1.5 mm以下。藉由大於上述下限值,能夠確保充分的強度。另外,藉由小於上述上限值,來抑制經由第一氣體導管51的氣體的流路的傳導性變得過小。
第一調節導管52的凸緣52b在與第一調節導管52的直徑方向垂直的方向上的厚度t3較第一調節導管52的插入至第一氣體導管51的部分在第一調節導管52的直徑方向上的厚度t2厚。第一調節導管52的凸緣52b在第一方向上的厚度t3較佳為較第一調節導管52的圓筒部52a在第二方向上的厚度t2厚。藉由增大凸緣52b的厚度t3,第一調節導管52的自重變大。因此,例如,在第一緩衝室11相對於反應室10成為負壓力的情況下,能夠防止第一調節導管52自第一氣體導管51脫落。
第一氣體導管51的材料與第一調節導管52的材料較佳為不同。藉由改變第一氣體導管51的材料與第一調節導管52的材料,能夠使用最適合各自功能的材料。
例如,對於由於至少端部露出到反應室10內而溫度變高的第一氣體導管51而言,較佳為使用耐熱性、耐蝕刻性高的材料。例如,第一氣體導管51使用由耐熱性及耐蝕刻性高的SiC被覆的碳。
例如,對於溫度不會變得較高的第一調節導管52而言,與耐熱性和耐蝕刻性相比,較佳使用加工性和經濟性優異的材料。例如,第一調節導管52使用加工性及經濟性優異的表面沒有被覆層的碳。
以上,根據第一實施方式的氣相成長裝置,能夠調節向反應室供給的製程氣體的流量分佈。因此,根據第一實施方式的氣相成長裝置,可提高膜的特性的再現性。
(第二實施方式) 第二實施方式的氣相成長裝置與第一實施方式的氣相成長裝置的不同之處在於,氣體導管及調節導管的形狀不同。以下,針對與第一實施方式重覆的內容,省略一部分記述。
圖5是第二實施方式的第一氣體導管及第一調節導管的示意剖面圖。
第一氣體導管51的凸緣51b設置在第一氣體導管51的位於第一緩衝室11一側的端部的外周。凸緣51b是自圓筒部51a向外側突出的環狀的凸部。
第一氣體導管51的內周面的至少一部分為錐形形狀。凸緣51b的內周面為錐形形狀。凸緣51b的內周面相對於第一方向及第二方向傾斜。再者,將第一氣體導管51的自錐形端部到反應室側的端部的距離設為第一長度L1(規定長度)。
第一調節導管52的凸緣52b設置在第一調節導管52的位於第一緩衝室11一側的端部的外周上。凸緣52b是自圓筒部52a向外側突出的環狀的凸部。
凸緣52b的外周面為錐形形狀。凸緣52b的外周面相對於第一方向及第二方向傾斜。
第一調節導管52的凸緣52b的外周面與第一氣體導管51的凸緣51b的內周面接觸。凸緣52b的外周面與凸緣51b的內周面接觸的接觸面(圖5中的CP)為環狀,具有相當於圓錐台的外表面的形狀。
藉由第一調節導管52的自重將凸緣52b的外周面按壓至凸緣51b的內周面,從而形成接觸面CP。藉由接觸面CP,抑制第一製程氣體G1在凸緣52b的下表面與凸緣51b的上表面之間流動。藉由接觸面CP密封第一製程氣體G1。
以上,根據第二實施方式的氣相成長裝置,與第一實施方式同樣,能夠調節向反應室供給的製程氣體的流量分佈。因此,根據第二實施方式的氣相成長裝置,能夠提高膜的特性的再現性。
(第三實施方式) 第三實施方式的氣相成長裝置與第一實施方式的氣相成長裝置的不同之處在於,只有一個氣體室。以下,針對與第一實施方式重覆的內容,省略一部分記述。
圖6是第三實施方式的氣相成長裝置的示意剖面圖。第三實施方式的氣相成長裝置300例如是使單晶SiC膜於單晶SiC基板上磊晶成長的單片型磊晶成長裝置。
第三實施方式的氣相成長裝置300具備:反應室10、緩衝室13(氣體室)。反應室10具備基座14(保持具)、旋轉體16、旋轉軸18、旋轉驅動機構20、第一加熱器22、反射器28、支撐柱30、固定台32、固定軸34、罩40、第二加熱器42、氣體排出口44、氣體導管56以及調節導管57。緩衝室13具備隔板39、及氣體供給口85。
緩衝室13設置在反應室10的上部。在緩衝室13中設置有用於導入製程氣體G0的氣體供給口85。自氣體供給口85導入的製程氣體G0填充至緩衝室13中。
製程氣體G0例如是包含矽(Si)的源氣體、碳(C)的源氣體、n型雜質的摻雜氣體、抑制矽的團簇化的輔助氣體、以及載體氣體的混合氣體。矽的源氣體例如是矽烷(SiH4 )。碳的源氣體例如是丙烷(C3 H8 )。n型雜質的摻雜氣體例如是氮氣。輔助氣體例如是氯化氫(HCl)。載體氣體例如是氬氣、或氫氣。
多個氣體導管56設置在緩衝室13和反應室10之間。氣體導管56在自緩衝室13朝向反應室10的第一方向上延伸。多個氣體導管56自緩衝室13向反應室10供給製程氣體G0。氣體導管56例如具有與第一實施方式的第一氣體導管51相同的構成。
調節導管57插入到多個氣體導管56的至少一個氣體導管56的緩衝室13側。在圖6中,示出了僅在緩衝室13的中央部的氣體導管56中插入調節導管57的情況。調節導管57可插入到多個氣體導管56的全部中。調節導管57調節在多個氣體導管56中流動的製程氣體G0的分配比率。調節導管57例如具有與第一實施方式的第一調節導管52相同的構成。
以上,根據第三實施方式的氣相成長裝置,與第一實施方式同樣,能夠調節向反應室供給的製程氣體的流量分佈。因此,根據第三實施方式的氣相成長裝置,能夠提高膜的特性的再現性。
以上,一面參照具體例一面對本發明的實施方式進行了說明。所述實施形態只不過是作為示例而列舉,並非限定本發明。另外,可適當組合各實施方式的構成要素。
於實施方式中,以形成單晶SiC膜的情形為例進行了說明,但於多晶或非晶SiC膜的形成上亦可應用本發明。另外,於SiC膜以外的膜的形成上亦可應用本發明。
另外,於實施方式中,以單晶SiC的晶圓作為基板的一例進行了說明,但基板並不限於單晶SiC的晶圓。
另外,於實施方式中,作為n型雜質以氮為例進行了說明,但作為n型雜質,例如亦可應用磷(P)。另外,作為雜質亦可應用p型雜質。
另外,在實施方式中,以導管為圓筒形狀的情形為例進行了說明,但導管的形狀不限於圓筒形狀,亦可以是其他的形狀。另外,在實施方式中,儘管以導管的開口剖面為圓形的情形為例進行了說明,然而導管的開口剖面不限於圓形,亦可以是諸如橢圓、正方形、長方形等其它形狀。
另外,例如在第一實施方式中,亦可在第一調節導管52的凸緣52b的下表面與第一氣體導管51的凸緣51b的上表面之間,設置用於密封製程氣體的密封材。密封材的材料例如是碳片。
另外,例如,在第一實施方式中,亦可在第一調節導管52的凸緣52b上設置螺紋孔,並用固定螺釘固定第一調節導管52和第一隔板36。
在實施方式中,以提高在同一規格的不同的氣相成長裝置之間,在同一製程條件下形成的膜的特性的再現性的情形為例進行了說明。但是,例如在同一氣相成長裝置中,膜的特性發生經時變化的情況下,利用本發明,亦可提高膜的特性的再現性。另外,例如,在相同的氣相成長裝置中,欲提高膜的特性的均勻性的情況下,亦可使用本發明。
在實施方式中,關於裝置構成或製造方法等對於本發明的說明而言並非直接必要的部分等省略了記載,但可適當選擇使用必要的裝置構成或製造方法等。另外,具備本發明的要素、且可由本領域技術人員適當進行設計變更的全部氣相成長裝置包含在本發明的範圍內。本發明的範圍是藉由申請專利範圍及其均等物的範圍而定義。
10:反應室 11:第一緩衝室(第一氣體室) 12:第二緩衝室(第二氣體室) 13:緩衝室(氣體室) 14:基座 16:旋轉體 18:旋轉軸 20:旋轉驅動機構 22:第一加熱器 28:反射器 30:支撐柱 32:固定台 34:固定軸 36:第一隔板 37:第二隔板 39:隔板 40:罩 42:第二加熱器 44:氣體排出口 51:第一氣體導管 51a:圓筒部 51b:凸緣 52:第一調節導管 52a:圓筒部(部分) 52b:凸緣(凸部) 56:氣體導管 57:調節導管 61:第二氣體導管 61a:圓筒部 61b:凸緣 62:第二調節導管 62a:圓筒部 62b:凸緣 81:第一氣體供給口 82:第二氣體供給口 85:氣體供給口 100:氣相成長裝置 300:氣相成長裝置 CP:接觸面 D1、D2:內徑 G0:製程氣體 G1:第一製程氣體(製程氣體) G2:第二製程氣體 W:晶圓(基板) L1:第一長度(規定長度) L2:第二長度 L3:第三長度 L4:第四長度 P1、P2、P3、P4:面 S1:第一開口剖面積 S2:第二開口剖面積 S3:第三開口剖面積 S4:第四開口剖面積 t1、t2、t3:厚度 d1:第一距離(規定距離) d2:第二距離
圖1是第一實施方式的氣相成長裝置的示意剖面圖。 圖2是第一實施方式的第一氣體導管及第一調節導管的示意剖面圖。 圖3是第一實施方式的第一調節導管的示意圖。 圖4是第一實施方式的第二氣體導管及第二調節導管的示意剖面圖。 圖5是第二實施方式的第一氣體導管及第一調節導管的示意剖面圖。 圖6是第三實施方式的氣相成長裝置的示意剖面圖。
10:反應室
11:第一緩衝室(第一氣體室)
12:第二緩衝室(第二氣體室)
14:基座
16:旋轉體
18:旋轉軸
20:旋轉驅動機構
22:第一加熱器
28:反射器
30:支撐柱
32:固定台
34:固定軸
36:第一隔板
37:第二隔板
40:罩
42:第二加熱器
44:氣體排出口
51:第一氣體導管
52:第一調節導管
61:第二氣體導管
62:第二調節導管
81:第一氣體供給口
82:第二氣體供給口
100:氣相成長裝置
G1:第一製程氣體(製程氣體)
G2:第二製程氣體
W:晶圓(基板)

Claims (9)

  1. 一種氣相成長裝置,包括:反應室;第一氣體室,設置在所述反應室的上方,導入第一製程氣體;多個第一氣體導管,自所述第一氣體室向所述反應室供給所述第一製程氣體,且具有規定長度;以及第一調節導管,插入至所述多個第一氣體導管中的至少一個第一氣體導管的上側,且所述第一調節導管具有設置在上端部的外周的環狀的凸部,而能夠自所述第一氣體導管卸下,所述第一調節導管的插入至所述第一氣體導管的部分與所述第一氣體導管在所述第一氣體導管的直徑方向上隔開規定距離而分開。
  2. 如請求項1所述的氣相成長裝置,其中,所述規定距離為0.5mm以上且5mm以下。
  3. 如請求項1所述的氣相成長裝置,其中,所述第一調節導管的下端與插入有所述第一調節導管的所述第一氣體導管的下端之間的距離為所述規定長度的二分之一以上。
  4. 如請求項1所述的氣相成長裝置,其中,所述第一氣體導管的材料與所述第一調節導管的材料不同。
  5. 如請求項1所述的氣相成長裝置,其中,所述第一調節導管的內徑為所述第一氣體導管的內徑的30%以上且90%以下。
  6. 如請求項1所述的氣相成長裝置,其中,所述凸部在與所述第一調節導管的直徑方向垂直的方向上的厚度較所述第一調節導管的插入至所述第一氣體導管的部分在所述直徑方向上的厚度厚。
  7. 如請求項1所述的氣相成長裝置,其中,所述凸部的外周面為錐形形狀。
  8. 如請求項7所述的氣相成長裝置,其中,所述第一氣體導管的至少一部分為錐形形狀。
  9. 如請求項1所述的氣相成長裝置,其更包括:第二氣體室,設置在所述反應室與所述第一氣體室之間,導入與所述第一製程氣體不同的第二製程氣體;多個第二氣體導管,自所述第二氣體室向所述反應室供給所述第二製程氣體,且具有規定長度;以及第二調節導管,插入至所述多個第二氣體導管中的至少一個第二氣體導管的上側,且所述第二調節導管具有設置在上端部的外周的環狀的凸部,而能夠自所述第二氣體導管卸下。
TW109104401A 2019-03-01 2020-02-12 氣相成長裝置 TWI743679B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019037984A JP7152970B2 (ja) 2019-03-01 2019-03-01 気相成長装置
JP2019-037984 2019-03-01

Publications (2)

Publication Number Publication Date
TW202033847A TW202033847A (zh) 2020-09-16
TWI743679B true TWI743679B (zh) 2021-10-21

Family

ID=72280611

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109104401A TWI743679B (zh) 2019-03-01 2020-02-12 氣相成長裝置

Country Status (6)

Country Link
US (1) US20210381128A1 (zh)
EP (1) EP3933888A4 (zh)
JP (1) JP7152970B2 (zh)
CN (1) CN113287188B (zh)
TW (1) TWI743679B (zh)
WO (1) WO2020179272A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4261870A1 (en) 2020-12-14 2023-10-18 NuFlare Technology, Inc. Vapor-phase growth apparatus and vapor-phase growth method
WO2022130926A1 (ja) * 2020-12-14 2022-06-23 株式会社ニューフレアテクノロジー 気相成長装置及び気相成長方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114081A (ja) * 2009-11-25 2011-06-09 Sharp Corp 気相成長装置
TWI630282B (zh) * 2016-03-01 2018-07-21 紐富來科技股份有限公司 成膜裝置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257321A (ja) * 1988-04-07 1989-10-13 Fujitsu Ltd 気相成長装置
US20020069970A1 (en) * 2000-03-07 2002-06-13 Applied Materials, Inc. Temperature controlled semiconductor processing chamber liner
US20050103267A1 (en) 2003-11-14 2005-05-19 Hur Gwang H. Flat panel display manufacturing apparatus
US7510624B2 (en) * 2004-12-17 2009-03-31 Applied Materials, Inc. Self-cooling gas delivery apparatus under high vacuum for high density plasma applications
JP4451455B2 (ja) * 2006-02-21 2010-04-14 株式会社ニューフレアテクノロジー 気相成長装置及び支持台
US8440049B2 (en) * 2006-05-03 2013-05-14 Applied Materials, Inc. Apparatus for etching high aspect ratio features
JP5463536B2 (ja) * 2006-07-20 2014-04-09 北陸成型工業株式会社 シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
US9328417B2 (en) * 2008-11-01 2016-05-03 Ultratech, Inc. System and method for thin film deposition
KR20120066991A (ko) * 2010-12-15 2012-06-25 주식회사 원익아이피에스 샤워헤드 및 이를 구비한 진공처리장치
TWI473903B (zh) * 2013-02-23 2015-02-21 Hermes Epitek Corp 應用於半導體設備的噴射器與上蓋板總成
US9328420B2 (en) * 2013-03-14 2016-05-03 Sunedison Semiconductor Limited (Uen201334164H) Gas distribution plate for chemical vapor deposition systems and methods of using same
JP5800957B1 (ja) * 2014-06-17 2015-10-28 株式会社日立国際電気 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
JP6499493B2 (ja) * 2015-04-10 2019-04-10 株式会社ニューフレアテクノロジー 気相成長方法
JP6718730B2 (ja) * 2016-04-19 2020-07-08 株式会社ニューフレアテクノロジー シャワープレート、気相成長装置及び気相成長方法
JP7365761B2 (ja) * 2018-08-24 2023-10-20 株式会社ニューフレアテクノロジー 気相成長装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114081A (ja) * 2009-11-25 2011-06-09 Sharp Corp 気相成長装置
TWI630282B (zh) * 2016-03-01 2018-07-21 紐富來科技股份有限公司 成膜裝置

Also Published As

Publication number Publication date
EP3933888A1 (en) 2022-01-05
CN113287188A (zh) 2021-08-20
JP7152970B2 (ja) 2022-10-13
US20210381128A1 (en) 2021-12-09
EP3933888A4 (en) 2022-11-23
TW202033847A (zh) 2020-09-16
JP2020141112A (ja) 2020-09-03
CN113287188B (zh) 2023-12-22
WO2020179272A1 (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
US10975495B2 (en) Epitaxial growth apparatus, preheat ring, and method of manufacturing epitaxial wafer using these
JP6792083B2 (ja) 気相成長装置、及び、気相成長方法
TWI810333B (zh) 氣相成長裝置
TWI743679B (zh) 氣相成長裝置
US10513797B2 (en) Manufacturing method of epitaxial silicon wafer
US20230257904A1 (en) Vapor phase growth apparatus
US11692266B2 (en) SiC chemical vapor deposition apparatus
TWI806273B (zh) 氣相成長裝置以及氣相成長方法
JP6521140B2 (ja) エピタキシャル成長装置およびプリヒートリングならびにそれらを用いたエピタキシャルウェーハの製造方法
WO2022130926A1 (ja) 気相成長装置及び気相成長方法
CN218812237U (zh) 一种提高成膜质量的进气结构
JP2022159954A (ja) サセプタ
JP2002198318A (ja) エピタキシャル成長方法